feat: Traditional Chinese version (#1163)

* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology.

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* Update terminology.md

* 操作数量(num. of operations)-> 操作數量

* 字首和->前綴和

* Update figures

* 歸 -> 迴
記憶體洩漏 -> 記憶體流失

* Fix the bug of the file filter

* 支援 -> 支持
Add zh-Hant/README.md

* Add the zh-Hant chapter covers.
Bug fixes.

* 外掛 -> 擴充功能

* Add the landing page for zh-Hant version

* Unify the font of the chapter covers for the zh, en, and zh-Hant version

* Move zh-Hant/ to zh-hant/

* Translate terminology.md to traditional Chinese
This commit is contained in:
Yudong Jin
2024-04-06 02:30:11 +08:00
committed by GitHub
parent 33d7f8a2e5
commit 5f7385c8a3
1875 changed files with 102923 additions and 18 deletions

View File

@ -0,0 +1,65 @@
"""
File: iteration.py
Created Time: 2023-08-24
Author: krahets (krahets@163.com)
"""
def for_loop(n: int) -> int:
"""for 迴圈"""
res = 0
# 迴圈求和 1, 2, ..., n-1, n
for i in range(1, n + 1):
res += i
return res
def while_loop(n: int) -> int:
"""while 迴圈"""
res = 0
i = 1 # 初始化條件變數
# 迴圈求和 1, 2, ..., n-1, n
while i <= n:
res += i
i += 1 # 更新條件變數
return res
def while_loop_ii(n: int) -> int:
"""while 迴圈(兩次更新)"""
res = 0
i = 1 # 初始化條件變數
# 迴圈求和 1, 4, 10, ...
while i <= n:
res += i
# 更新條件變數
i += 1
i *= 2
return res
def nested_for_loop(n: int) -> str:
"""雙層 for 迴圈"""
res = ""
# 迴圈 i = 1, 2, ..., n-1, n
for i in range(1, n + 1):
# 迴圈 j = 1, 2, ..., n-1, n
for j in range(1, n + 1):
res += f"({i}, {j}), "
return res
"""Driver Code"""
if __name__ == "__main__":
n = 5
res = for_loop(n)
print(f"\nfor 迴圈的求和結果 res = {res}")
res = while_loop(n)
print(f"\nwhile 迴圈的求和結果 res = {res}")
res = while_loop_ii(n)
print(f"\nwhile 迴圈(兩次更新)求和結果 res = {res}")
res = nested_for_loop(n)
print(f"\n雙層 for 迴圈的走訪結果 {res}")

View File

@ -0,0 +1,69 @@
"""
File: recursion.py
Created Time: 2023-08-24
Author: krahets (krahets@163.com)
"""
def recur(n: int) -> int:
"""遞迴"""
# 終止條件
if n == 1:
return 1
# 遞:遞迴呼叫
res = recur(n - 1)
# 迴:返回結果
return n + res
def for_loop_recur(n: int) -> int:
"""使用迭代模擬遞迴"""
# 使用一個顯式的堆疊來模擬系統呼叫堆疊
stack = []
res = 0
# 遞:遞迴呼叫
for i in range(n, 0, -1):
# 透過“入堆疊操作”模擬“遞”
stack.append(i)
# 迴:返回結果
while stack:
# 透過“出堆疊操作”模擬“迴”
res += stack.pop()
# res = 1+2+3+...+n
return res
def tail_recur(n, res):
"""尾遞迴"""
# 終止條件
if n == 0:
return res
# 尾遞迴呼叫
return tail_recur(n - 1, res + n)
def fib(n: int) -> int:
"""費波那契數列:遞迴"""
# 終止條件 f(1) = 0, f(2) = 1
if n == 1 or n == 2:
return n - 1
# 遞迴呼叫 f(n) = f(n-1) + f(n-2)
res = fib(n - 1) + fib(n - 2)
# 返回結果 f(n)
return res
"""Driver Code"""
if __name__ == "__main__":
n = 5
res = recur(n)
print(f"\n遞迴函式的求和結果 res = {res}")
res = for_loop_recur(n)
print(f"\n使用迭代模擬遞迴求和結果 res = {res}")
res = tail_recur(n, 0)
print(f"\n尾遞迴函式的求和結果 res = {res}")
res = fib(n)
print(f"\n費波那契數列的第 {n} 項為 {res}")

View File

@ -0,0 +1,90 @@
"""
File: space_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import ListNode, TreeNode, print_tree
def function() -> int:
"""函式"""
# 執行某些操作
return 0
def constant(n: int):
"""常數階"""
# 常數、變數、物件佔用 O(1) 空間
a = 0
nums = [0] * 10000
node = ListNode(0)
# 迴圈中的變數佔用 O(1) 空間
for _ in range(n):
c = 0
# 迴圈中的函式佔用 O(1) 空間
for _ in range(n):
function()
def linear(n: int):
"""線性階"""
# 長度為 n 的串列佔用 O(n) 空間
nums = [0] * n
# 長度為 n 的雜湊表佔用 O(n) 空間
hmap = dict[int, str]()
for i in range(n):
hmap[i] = str(i)
def linear_recur(n: int):
"""線性階(遞迴實現)"""
print("遞迴 n =", n)
if n == 1:
return
linear_recur(n - 1)
def quadratic(n: int):
"""平方階"""
# 二維串列佔用 O(n^2) 空間
num_matrix = [[0] * n for _ in range(n)]
def quadratic_recur(n: int) -> int:
"""平方階(遞迴實現)"""
if n <= 0:
return 0
# 陣列 nums 長度為 n, n-1, ..., 2, 1
nums = [0] * n
return quadratic_recur(n - 1)
def build_tree(n: int) -> TreeNode | None:
"""指數階(建立滿二元樹)"""
if n == 0:
return None
root = TreeNode(0)
root.left = build_tree(n - 1)
root.right = build_tree(n - 1)
return root
"""Driver Code"""
if __name__ == "__main__":
n = 5
# 常數階
constant(n)
# 線性階
linear(n)
linear_recur(n)
# 平方階
quadratic(n)
quadratic_recur(n)
# 指數階
root = build_tree(n)
print_tree(root)

View File

@ -0,0 +1,151 @@
"""
File: time_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
def constant(n: int) -> int:
"""常數階"""
count = 0
size = 100000
for _ in range(size):
count += 1
return count
def linear(n: int) -> int:
"""線性階"""
count = 0
for _ in range(n):
count += 1
return count
def array_traversal(nums: list[int]) -> int:
"""線性階(走訪陣列)"""
count = 0
# 迴圈次數與陣列長度成正比
for num in nums:
count += 1
return count
def quadratic(n: int) -> int:
"""平方階"""
count = 0
# 迴圈次數與資料大小 n 成平方關係
for i in range(n):
for j in range(n):
count += 1
return count
def bubble_sort(nums: list[int]) -> int:
"""平方階(泡沫排序)"""
count = 0 # 計數器
# 外迴圈:未排序區間為 [0, i]
for i in range(len(nums) - 1, 0, -1):
# 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
for j in range(i):
if nums[j] > nums[j + 1]:
# 交換 nums[j] 與 nums[j + 1]
tmp: int = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # 元素交換包含 3 個單元操作
return count
def exponential(n: int) -> int:
"""指數階(迴圈實現)"""
count = 0
base = 1
# 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
for _ in range(n):
for _ in range(base):
count += 1
base *= 2
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
def exp_recur(n: int) -> int:
"""指數階(遞迴實現)"""
if n == 1:
return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
def logarithmic(n: int) -> int:
"""對數階(迴圈實現)"""
count = 0
while n > 1:
n = n / 2
count += 1
return count
def log_recur(n: int) -> int:
"""對數階(遞迴實現)"""
if n <= 1:
return 0
return log_recur(n / 2) + 1
def linear_log_recur(n: int) -> int:
"""線性對數階"""
if n <= 1:
return 1
count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
for _ in range(n):
count += 1
return count
def factorial_recur(n: int) -> int:
"""階乘階(遞迴實現)"""
if n == 0:
return 1
count = 0
# 從 1 個分裂出 n 個
for _ in range(n):
count += factorial_recur(n - 1)
return count
"""Driver Code"""
if __name__ == "__main__":
# 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
n = 8
print("輸入資料大小 n =", n)
count: int = constant(n)
print("常數階的操作數量 =", count)
count: int = linear(n)
print("線性階的操作數量 =", count)
count: int = array_traversal([0] * n)
print("線性階(走訪陣列)的操作數量 =", count)
count: int = quadratic(n)
print("平方階的操作數量 =", count)
nums = [i for i in range(n, 0, -1)] # [n, n-1, ..., 2, 1]
count: int = bubble_sort(nums)
print("平方階(泡沫排序)的操作數量 =", count)
count: int = exponential(n)
print("指數階(迴圈實現)的操作數量 =", count)
count: int = exp_recur(n)
print("指數階(遞迴實現)的操作數量 =", count)
count: int = logarithmic(n)
print("對數階(迴圈實現)的操作數量 =", count)
count: int = log_recur(n)
print("對數階(遞迴實現)的操作數量 =", count)
count: int = linear_log_recur(n)
print("線性對數階(遞迴實現)的操作數量 =", count)
count: int = factorial_recur(n)
print("階乘階(遞迴實現)的操作數量 =", count)

View File

@ -0,0 +1,36 @@
"""
File: worst_best_time_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
import random
def random_numbers(n: int) -> list[int]:
"""生成一個陣列,元素為: 1, 2, ..., n ,順序被打亂"""
# 生成陣列 nums =: 1, 2, 3, ..., n
nums = [i for i in range(1, n + 1)]
# 隨機打亂陣列元素
random.shuffle(nums)
return nums
def find_one(nums: list[int]) -> int:
"""查詢陣列 nums 中數字 1 所在索引"""
for i in range(len(nums)):
# 當元素 1 在陣列頭部時,達到最佳時間複雜度 O(1)
# 當元素 1 在陣列尾部時,達到最差時間複雜度 O(n)
if nums[i] == 1:
return i
return -1
"""Driver Code"""
if __name__ == "__main__":
for i in range(10):
n = 100
nums: list[int] = random_numbers(n)
index: int = find_one(nums)
print("\n陣列 [ 1, 2, ..., n ] 被打亂後 =", nums)
print("數字 1 的索引為", index)