Format python codes with black. (#453)

This commit is contained in:
Yudong Jin
2023-04-09 05:05:35 +08:00
committed by GitHub
parent 1c8b7ef559
commit 5ddcb60825
45 changed files with 656 additions and 456 deletions

View File

@ -4,31 +4,35 @@ Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
"""
def constant(n: int) -> int:
""" 常数阶 """
"""常数阶"""
count: int = 0
size: int = 100000
for _ in range(size):
count += 1
return count
def linear(n: int) -> int:
""" 线性阶 """
"""线性阶"""
count: int = 0
for _ in range(n):
count += 1
return count
def array_traversal(nums: list[int]) -> int:
""" 线性阶(遍历数组)"""
"""线性阶(遍历数组)"""
count: int = 0
# 循环次数与数组长度成正比
for num in nums:
count += 1
return count
def quadratic(n: int) -> int:
""" 平方阶 """
"""平方阶"""
count: int = 0
# 循环次数与数组长度成平方关系
for i in range(n):
@ -36,8 +40,9 @@ def quadratic(n: int) -> int:
count += 1
return count
def bubble_sort(nums: list[int]) -> int:
""" 平方阶(冒泡排序)"""
"""平方阶(冒泡排序)"""
count: int = 0 # 计数器
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(len(nums) - 1, 0, -1):
@ -51,8 +56,9 @@ def bubble_sort(nums: list[int]) -> int:
count += 3 # 元素交换包含 3 个单元操作
return count
def exponential(n: int) -> int:
""" 指数阶(循环实现)"""
"""指数阶(循环实现)"""
count: int = 0
base: int = 1
# cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
@ -63,36 +69,44 @@ def exponential(n: int) -> int:
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
def exp_recur(n: int) -> int:
""" 指数阶(递归实现)"""
if n == 1: return 1
"""指数阶(递归实现)"""
if n == 1:
return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
def logarithmic(n: float) -> int:
""" 对数阶(循环实现)"""
"""对数阶(循环实现)"""
count: int = 0
while n > 1:
n = n / 2
count += 1
return count
def log_recur(n: float) -> int:
""" 对数阶(递归实现)"""
if n <= 1: return 0
"""对数阶(递归实现)"""
if n <= 1:
return 0
return log_recur(n / 2) + 1
def linear_log_recur(n: float) -> int:
""" 线性对数阶 """
if n <= 1: return 1
count: int = linear_log_recur(n // 2) + \
linear_log_recur(n // 2)
"""线性对数阶"""
if n <= 1:
return 1
count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
for _ in range(n):
count += 1
return count
def factorial_recur(n: int) -> int:
""" 阶乘阶(递归实现)"""
if n == 0: return 1
"""阶乘阶(递归实现)"""
if n == 0:
return 1
count: int = 0
# 从 1 个分裂出 n 个
for _ in range(n):