Format python codes with black. (#453)

This commit is contained in:
Yudong Jin
2023-04-09 05:05:35 +08:00
committed by GitHub
parent 1c8b7ef559
commit 5ddcb60825
45 changed files with 656 additions and 456 deletions

View File

@ -4,8 +4,9 @@ Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
"""
def two_sum_brute_force(nums: list[int], target: int) -> list[int]:
""" 方法一:暴力枚举 """
"""方法一:暴力枚举"""
# 两层循环,时间复杂度 O(n^2)
for i in range(len(nums) - 1):
for j in range(i + 1, len(nums)):
@ -13,8 +14,9 @@ def two_sum_brute_force(nums: list[int], target: int) -> list[int]:
return [i, j]
return []
def two_sum_hash_table(nums: list[int], target: int) -> list[int]:
""" 方法二:辅助哈希表 """
"""方法二:辅助哈希表"""
# 辅助哈希表,空间复杂度 O(n)
dic = {}
# 单层循环,时间复杂度 O(n)
@ -26,11 +28,11 @@ def two_sum_hash_table(nums: list[int], target: int) -> list[int]:
""" Driver Code """
if __name__ == '__main__':
if __name__ == "__main__":
# ======= Test Case =======
nums = [2,7,11,15]
nums = [2, 7, 11, 15]
target = 9
# ====== Driver Code ======
# 方法一
res: list[int] = two_sum_brute_force(nums, target)

View File

@ -5,16 +5,19 @@ Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
def function() -> int:
""" 函数 """
"""函数"""
# do something
return 0
def constant(n: int) -> None:
""" 常数阶 """
"""常数阶"""
# 常量、变量、对象占用 O(1) 空间
a: int = 0
nums: list[int] = [0] * 10000
@ -26,8 +29,9 @@ def constant(n: int) -> None:
for _ in range(n):
function()
def linear(n: int) -> None:
""" 线性阶 """
"""线性阶"""
# 长度为 n 的列表占用 O(n) 空间
nums: list[int] = [0] * n
# 长度为 n 的哈希表占用 O(n) 空间
@ -35,27 +39,34 @@ def linear(n: int) -> None:
for i in range(n):
mapp[i] = str(i)
def linear_recur(n: int) -> None:
""" 线性阶(递归实现) """
"""线性阶(递归实现)"""
print("递归 n =", n)
if n == 1: return
if n == 1:
return
linear_recur(n - 1)
def quadratic(n: int) -> None:
""" 平方阶 """
"""平方阶"""
# 二维列表占用 O(n^2) 空间
num_matrix: list[list[int]] = [[0] * n for _ in range(n)]
def quadratic_recur(n: int) -> int:
""" 平方阶(递归实现) """
if n <= 0: return 0
"""平方阶(递归实现)"""
if n <= 0:
return 0
# 数组 nums 长度为 n, n-1, ..., 2, 1
nums: list[int] = [0] * n
return quadratic_recur(n - 1)
def build_tree(n: int) -> TreeNode | None:
""" 指数阶(建立满二叉树) """
if n == 0: return None
"""指数阶(建立满二叉树)"""
if n == 0:
return None
root = TreeNode(0)
root.left = build_tree(n - 1)
root.right = build_tree(n - 1)

View File

@ -4,31 +4,35 @@ Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
"""
def constant(n: int) -> int:
""" 常数阶 """
"""常数阶"""
count: int = 0
size: int = 100000
for _ in range(size):
count += 1
return count
def linear(n: int) -> int:
""" 线性阶 """
"""线性阶"""
count: int = 0
for _ in range(n):
count += 1
return count
def array_traversal(nums: list[int]) -> int:
""" 线性阶(遍历数组)"""
"""线性阶(遍历数组)"""
count: int = 0
# 循环次数与数组长度成正比
for num in nums:
count += 1
return count
def quadratic(n: int) -> int:
""" 平方阶 """
"""平方阶"""
count: int = 0
# 循环次数与数组长度成平方关系
for i in range(n):
@ -36,8 +40,9 @@ def quadratic(n: int) -> int:
count += 1
return count
def bubble_sort(nums: list[int]) -> int:
""" 平方阶(冒泡排序)"""
"""平方阶(冒泡排序)"""
count: int = 0 # 计数器
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(len(nums) - 1, 0, -1):
@ -51,8 +56,9 @@ def bubble_sort(nums: list[int]) -> int:
count += 3 # 元素交换包含 3 个单元操作
return count
def exponential(n: int) -> int:
""" 指数阶(循环实现)"""
"""指数阶(循环实现)"""
count: int = 0
base: int = 1
# cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
@ -63,36 +69,44 @@ def exponential(n: int) -> int:
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
def exp_recur(n: int) -> int:
""" 指数阶(递归实现)"""
if n == 1: return 1
"""指数阶(递归实现)"""
if n == 1:
return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
def logarithmic(n: float) -> int:
""" 对数阶(循环实现)"""
"""对数阶(循环实现)"""
count: int = 0
while n > 1:
n = n / 2
count += 1
return count
def log_recur(n: float) -> int:
""" 对数阶(递归实现)"""
if n <= 1: return 0
"""对数阶(递归实现)"""
if n <= 1:
return 0
return log_recur(n / 2) + 1
def linear_log_recur(n: float) -> int:
""" 线性对数阶 """
if n <= 1: return 1
count: int = linear_log_recur(n // 2) + \
linear_log_recur(n // 2)
"""线性对数阶"""
if n <= 1:
return 1
count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
for _ in range(n):
count += 1
return count
def factorial_recur(n: int) -> int:
""" 阶乘阶(递归实现)"""
if n == 0: return 1
"""阶乘阶(递归实现)"""
if n == 0:
return 1
count: int = 0
# 从 1 个分裂出 n 个
for _ in range(n):

View File

@ -6,16 +6,18 @@ Author: Krahets (krahets@163.com)
import random
def random_numbers(n: int) -> list[int]:
""" 生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱 """
"""生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱"""
# 生成数组 nums =: 1, 2, 3, ..., n
nums: list[int] = [i for i in range(1, n + 1)]
# 随机打乱数组元素
random.shuffle(nums)
return nums
def find_one(nums: list[int]) -> int:
""" 查找数组 nums 中数字 1 所在索引 """
"""查找数组 nums 中数字 1 所在索引"""
for i in range(len(nums)):
# 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
# 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)