mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-25 03:08:54 +08:00
deploy
This commit is contained in:
@ -2017,8 +2017,8 @@
|
||||
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="../dp_solution_pipeline.md" class="md-nav__link">
|
||||
13.3. DP 解题步骤(New)
|
||||
<a href="../dp_solution_pipeline/" class="md-nav__link">
|
||||
13.3. DP 解题思路(New)
|
||||
</a>
|
||||
</li>
|
||||
|
||||
@ -2689,7 +2689,7 @@ dp[i] = dp[i-1] + dp[i-2]
|
||||
<a id="__codelineno-33-2" name="__codelineno-33-2" href="#__codelineno-33-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||
<a id="__codelineno-33-3" name="__codelineno-33-3" href="#__codelineno-33-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
|
||||
<a id="__codelineno-33-4" name="__codelineno-33-4" href="#__codelineno-33-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||||
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 列表,用于存储子问题的解</span>
|
||||
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||||
<a id="__codelineno-33-6" name="__codelineno-33-6" href="#__codelineno-33-6"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span>
|
||||
<a id="__codelineno-33-7" name="__codelineno-33-7" href="#__codelineno-33-7"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||||
<a id="__codelineno-33-8" name="__codelineno-33-8" href="#__codelineno-33-8"></a><span class="w"> </span><span class="n">dp</span><span class="o">[</span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||||
@ -2707,7 +2707,7 @@ dp[i] = dp[i-1] + dp[i-2]
|
||||
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span>
|
||||
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||||
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 列表,用于存储子问题的解</span>
|
||||
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||||
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a><span class="w"> </span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">dp</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
|
||||
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||||
<a id="__codelineno-34-8" name="__codelineno-34-8" href="#__codelineno-34-8"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
|
||||
@ -2725,7 +2725,7 @@ dp[i] = dp[i-1] + dp[i-2]
|
||||
<a id="__codelineno-35-2" name="__codelineno-35-2" href="#__codelineno-35-2"></a><span class="w"> </span><span class="sd">"""爬楼梯:动态规划"""</span>
|
||||
<a id="__codelineno-35-3" name="__codelineno-35-3" href="#__codelineno-35-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
|
||||
<a id="__codelineno-35-4" name="__codelineno-35-4" href="#__codelineno-35-4"></a> <span class="k">return</span> <span class="n">n</span>
|
||||
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a> <span class="c1"># 初始化 dp 列表,用于存储子问题的解</span>
|
||||
<a id="__codelineno-35-5" name="__codelineno-35-5" href="#__codelineno-35-5"></a> <span class="c1"># 初始化 dp 表,用于存储子问题的解</span>
|
||||
<a id="__codelineno-35-6" name="__codelineno-35-6" href="#__codelineno-35-6"></a> <span class="n">dp</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
|
||||
<a id="__codelineno-35-7" name="__codelineno-35-7" href="#__codelineno-35-7"></a> <span class="c1"># 初始状态:预设最小子问题的解</span>
|
||||
<a id="__codelineno-35-8" name="__codelineno-35-8" href="#__codelineno-35-8"></a> <span class="n">dp</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">dp</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span>
|
||||
@ -2756,7 +2756,7 @@ dp[i] = dp[i-1] + dp[i-2]
|
||||
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">climbingStairsDP</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">2</span><span class="p">)</span>
|
||||
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">n</span><span class="p">;</span>
|
||||
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 列表,用于存储子问题的解</span>
|
||||
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||||
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="kt">int</span><span class="p">[]</span><span class="w"> </span><span class="n">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="p">[</span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="m">1</span><span class="p">];</span>
|
||||
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||||
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="n">dp</span><span class="p">[</span><span class="m">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="m">1</span><span class="p">;</span>
|
||||
@ -2785,14 +2785,14 @@ dp[i] = dp[i-1] + dp[i-2]
|
||||
</div>
|
||||
<p>与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如对于爬楼梯问题,状态定义为当前所在楼梯阶数 <span class="arithmatex">\(i\)</span> 。<strong>动态规划的常用术语包括</strong>:</p>
|
||||
<ul>
|
||||
<li>将 <span class="arithmatex">\(dp\)</span> 数组称为「状态列表」,<span class="arithmatex">\(dp[i]\)</span> 代表第 <span class="arithmatex">\(i\)</span> 个状态的解;</li>
|
||||
<li>将数组 <code>dp</code> 称为「<span class="arithmatex">\(dp\)</span> 表」,<span class="arithmatex">\(dp[i]\)</span> 表示状态 <span class="arithmatex">\(i\)</span> 对应子问题的解;</li>
|
||||
<li>将最小子问题对应的状态(即第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶楼梯)称为「初始状态」;</li>
|
||||
<li>将递推公式 <span class="arithmatex">\(dp[i] = dp[i-1] + dp[i-2]\)</span> 称为「状态转移方程」;</li>
|
||||
</ul>
|
||||
<p><img alt="爬楼梯的动态规划过程" src="../intro_to_dynamic_programming.assets/climbing_stairs_dp.png" /></p>
|
||||
<p align="center"> Fig. 爬楼梯的动态规划过程 </p>
|
||||
|
||||
<p>细心的你可能发现,<strong>由于 <span class="arithmatex">\(dp[i]\)</span> 只与 <span class="arithmatex">\(dp[i-1]\)</span> 和 <span class="arithmatex">\(dp[i-2]\)</span> 有关,因此我们无需使用一个数组 <code>dp</code> 来存储所有状态</strong>,而只需两个变量滚动前进即可。如以下代码所示,由于省去了数组 <code>dp</code> 占用的空间,因此空间复杂度从 <span class="arithmatex">\(O(n)\)</span> 降低至 <span class="arithmatex">\(O(1)\)</span> 。</p>
|
||||
<p>细心的你可能发现,<strong>由于 <span class="arithmatex">\(dp[i]\)</span> 只与 <span class="arithmatex">\(dp[i-1]\)</span> 和 <span class="arithmatex">\(dp[i-2]\)</span> 有关,因此我们无需使用一个数组 <code>dp</code> 来存储所有子问题的解</strong>,而只需两个变量滚动前进即可。如以下代码所示,由于省去了数组 <code>dp</code> 占用的空间,因此空间复杂度从 <span class="arithmatex">\(O(n)\)</span> 降低至 <span class="arithmatex">\(O(1)\)</span> 。</p>
|
||||
<div class="tabbed-set tabbed-alternate" data-tabs="5:11"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Java</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Python</label><label for="__tabbed_5_4">Go</label><label for="__tabbed_5_5">JavaScript</label><label for="__tabbed_5_6">TypeScript</label><label for="__tabbed_5_7">C</label><label for="__tabbed_5_8">C#</label><label for="__tabbed_5_9">Swift</label><label for="__tabbed_5_10">Zig</label><label for="__tabbed_5_11">Dart</label></div>
|
||||
<div class="tabbed-content">
|
||||
<div class="tabbed-block">
|
||||
|
Reference in New Issue
Block a user