This commit is contained in:
krahets
2023-08-17 05:12:16 +08:00
parent 2014338a92
commit 5884de5246
70 changed files with 1890 additions and 1219 deletions

View File

@ -3567,7 +3567,7 @@
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="n">_maxHeap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="w"> </span><span class="c1">// 堆化除叶节点以外的其他所有节点</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">_parent</span><span class="p">(</span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;=</span><span class="w"> </span><span class="m">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="n">_siftDown</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="n">siftDown</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="p">}</span>
</code></pre></div>
@ -3596,7 +3596,7 @@
<p>将上述两者相乘,可得到建堆过程的时间复杂度为 <span class="arithmatex">\(O(n \log n)\)</span><strong>然而,这个估算结果并不准确,因为我们没有考虑到二叉树底层节点数量远多于顶层节点的特性</strong></p>
<p>接下来我们来进行更为详细的计算。为了减小计算难度,我们假设树是一个“完美二叉树”,该假设不会影响计算结果的正确性。设二叉树(即堆)节点数量为 <span class="arithmatex">\(n\)</span> ,树高度为 <span class="arithmatex">\(h\)</span> 。上文提到,<strong>节点堆化最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高度”</strong></p>
<p><img alt="完美二叉树的各层节点数量" src="../build_heap.assets/heapify_operations_count.png" /></p>
<p align="center"> Fig. 完美二叉树的各层节点数量 </p>
<p align="center"> 图:完美二叉树的各层节点数量 </p>
<p>因此,我们可以将各层的“节点数量 <span class="arithmatex">\(\times\)</span> 节点高度”求和,<strong>从而得到所有节点的堆化迭代次数的总和</strong></p>
<div class="arithmatex">\[

View File

@ -3500,7 +3500,7 @@
<li>「小顶堆 Min Heap」任意节点的值 <span class="arithmatex">\(\leq\)</span> 其子节点的值。</li>
</ul>
<p><img alt="小顶堆与大顶堆" src="../heap.assets/min_heap_and_max_heap.png" /></p>
<p align="center"> Fig. 小顶堆与大顶堆 </p>
<p align="center"> 图:小顶堆与大顶堆 </p>
<p>堆作为完全二叉树的一个特例,具有以下特性:</p>
<ul>
@ -3816,7 +3816,7 @@
<p>当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。<strong>节点指针通过索引映射公式来实现</strong></p>
<p>具体而言,给定索引 <span class="arithmatex">\(i\)</span> ,其左子节点索引为 <span class="arithmatex">\(2i + 1\)</span> ,右子节点索引为 <span class="arithmatex">\(2i + 2\)</span> ,父节点索引为 <span class="arithmatex">\((i - 1) / 2\)</span>(向下取整)。当索引越界时,表示空节点或节点不存在。</p>
<p><img alt="堆的表示与存储" src="../heap.assets/representation_of_heap.png" /></p>
<p align="center"> Fig. 堆的表示与存储 </p>
<p align="center"> 图:堆的表示与存储 </p>
<p>我们可以将索引映射公式封装成函数,方便后续使用。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:12"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JS</label><label for="__tabbed_2_6">TS</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label><label for="__tabbed_2_11">Dart</label><label for="__tabbed_2_12">Rust</label></div>
@ -4149,6 +4149,8 @@
</div>
</div>
</div>
<p align="center"> 图:元素入堆步骤 </p>
<p>设节点总数为 <span class="arithmatex">\(n\)</span> ,则树的高度为 <span class="arithmatex">\(O(\log n)\)</span> 。由此可知,堆化操作的循环轮数最多为 <span class="arithmatex">\(O(\log n)\)</span> <strong>元素入堆操作的时间复杂度为 <span class="arithmatex">\(O(\log n)\)</span></strong></p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:12"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><input id="__tabbed_5_12" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Java</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Python</label><label for="__tabbed_5_4">Go</label><label for="__tabbed_5_5">JS</label><label for="__tabbed_5_6">TS</label><label for="__tabbed_5_7">C</label><label for="__tabbed_5_8">C#</label><label for="__tabbed_5_9">Swift</label><label for="__tabbed_5_10">Zig</label><label for="__tabbed_5_11">Dart</label><label for="__tabbed_5_12">Rust</label></div>
<div class="tabbed-content">
@ -4414,10 +4416,24 @@
<a id="__codelineno-46-3" name="__codelineno-46-3" href="#__codelineno-46-3"></a><span class="w"> </span><span class="c1">// 添加节点</span>
<a id="__codelineno-46-4" name="__codelineno-46-4" href="#__codelineno-46-4"></a><span class="w"> </span><span class="n">_maxHeap</span><span class="p">.</span><span class="n">add</span><span class="p">(</span><span class="n">val</span><span class="p">);</span>
<a id="__codelineno-46-5" name="__codelineno-46-5" href="#__codelineno-46-5"></a><span class="w"> </span><span class="c1">// 从底至顶堆化</span>
<a id="__codelineno-46-6" name="__codelineno-46-6" href="#__codelineno-46-6"></a><span class="w"> </span><span class="n">_siftUp</span><span class="p">(</span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-46-6" name="__codelineno-46-6" href="#__codelineno-46-6"></a><span class="w"> </span><span class="n">siftUp</span><span class="p">(</span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-46-7" name="__codelineno-46-7" href="#__codelineno-46-7"></a><span class="p">}</span>
<a id="__codelineno-46-8" name="__codelineno-46-8" href="#__codelineno-46-8"></a>
<a id="__codelineno-46-9" name="__codelineno-46-9" href="#__codelineno-46-9"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">MaxHeap</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">siftUp</span><span class="p">}</span>
<a id="__codelineno-46-9" name="__codelineno-46-9" href="#__codelineno-46-9"></a><span class="cm">/* 从节点 i 开始,从底至顶堆化 */</span>
<a id="__codelineno-46-10" name="__codelineno-46-10" href="#__codelineno-46-10"></a><span class="kt">void</span><span class="w"> </span><span class="n">siftUp</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-11" name="__codelineno-46-11" href="#__codelineno-46-11"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="kc">true</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-12" name="__codelineno-46-12" href="#__codelineno-46-12"></a><span class="w"> </span><span class="c1">// 获取节点 i 的父节点</span>
<a id="__codelineno-46-13" name="__codelineno-46-13" href="#__codelineno-46-13"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">p</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">_parent</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
<a id="__codelineno-46-14" name="__codelineno-46-14" href="#__codelineno-46-14"></a><span class="w"> </span><span class="c1">// 当“越过根节点”或“节点无需修复”时,结束堆化</span>
<a id="__codelineno-46-15" name="__codelineno-46-15" href="#__codelineno-46-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">p</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">_maxHeap</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="n">_maxHeap</span><span class="p">[</span><span class="n">p</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-46-16" name="__codelineno-46-16" href="#__codelineno-46-16"></a><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-46-17" name="__codelineno-46-17" href="#__codelineno-46-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-46-18" name="__codelineno-46-18" href="#__codelineno-46-18"></a><span class="w"> </span><span class="c1">// 交换两节点</span>
<a id="__codelineno-46-19" name="__codelineno-46-19" href="#__codelineno-46-19"></a><span class="w"> </span><span class="n">_swap</span><span class="p">(</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">p</span><span class="p">);</span>
<a id="__codelineno-46-20" name="__codelineno-46-20" href="#__codelineno-46-20"></a><span class="w"> </span><span class="c1">// 循环向上堆化</span>
<a id="__codelineno-46-21" name="__codelineno-46-21" href="#__codelineno-46-21"></a><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">p</span><span class="p">;</span>
<a id="__codelineno-46-22" name="__codelineno-46-22" href="#__codelineno-46-22"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-46-23" name="__codelineno-46-23" href="#__codelineno-46-23"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
@ -4494,6 +4510,8 @@
</div>
</div>
</div>
<p align="center"> 图:堆顶元素出堆步骤 </p>
<p>与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 <span class="arithmatex">\(O(\log n)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="7:12"><input checked="checked" id="__tabbed_7_1" name="__tabbed_7" type="radio" /><input id="__tabbed_7_2" name="__tabbed_7" type="radio" /><input id="__tabbed_7_3" name="__tabbed_7" type="radio" /><input id="__tabbed_7_4" name="__tabbed_7" type="radio" /><input id="__tabbed_7_5" name="__tabbed_7" type="radio" /><input id="__tabbed_7_6" name="__tabbed_7" type="radio" /><input id="__tabbed_7_7" name="__tabbed_7" type="radio" /><input id="__tabbed_7_8" name="__tabbed_7" type="radio" /><input id="__tabbed_7_9" name="__tabbed_7" type="radio" /><input id="__tabbed_7_10" name="__tabbed_7" type="radio" /><input id="__tabbed_7_11" name="__tabbed_7" type="radio" /><input id="__tabbed_7_12" name="__tabbed_7" type="radio" /><div class="tabbed-labels"><label for="__tabbed_7_1">Java</label><label for="__tabbed_7_2">C++</label><label for="__tabbed_7_3">Python</label><label for="__tabbed_7_4">Go</label><label for="__tabbed_7_5">JS</label><label for="__tabbed_7_6">TS</label><label for="__tabbed_7_7">C</label><label for="__tabbed_7_8">C#</label><label for="__tabbed_7_9">Swift</label><label for="__tabbed_7_10">Zig</label><label for="__tabbed_7_11">Dart</label><label for="__tabbed_7_12">Rust</label></div>
<div class="tabbed-content">
@ -4881,12 +4899,28 @@
<a id="__codelineno-58-7" name="__codelineno-58-7" href="#__codelineno-58-7"></a><span class="w"> </span><span class="c1">// 删除节点</span>
<a id="__codelineno-58-8" name="__codelineno-58-8" href="#__codelineno-58-8"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">val</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">_maxHeap</span><span class="p">.</span><span class="n">removeLast</span><span class="p">();</span>
<a id="__codelineno-58-9" name="__codelineno-58-9" href="#__codelineno-58-9"></a><span class="w"> </span><span class="c1">// 从顶至底堆化</span>
<a id="__codelineno-58-10" name="__codelineno-58-10" href="#__codelineno-58-10"></a><span class="w"> </span><span class="n">_siftDown</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-58-10" name="__codelineno-58-10" href="#__codelineno-58-10"></a><span class="w"> </span><span class="n">siftDown</span><span class="p">(</span><span class="m">0</span><span class="p">);</span>
<a id="__codelineno-58-11" name="__codelineno-58-11" href="#__codelineno-58-11"></a><span class="w"> </span><span class="c1">// 返回堆顶元素</span>
<a id="__codelineno-58-12" name="__codelineno-58-12" href="#__codelineno-58-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">val</span><span class="p">;</span>
<a id="__codelineno-58-13" name="__codelineno-58-13" href="#__codelineno-58-13"></a><span class="p">}</span>
<a id="__codelineno-58-14" name="__codelineno-58-14" href="#__codelineno-58-14"></a>
<a id="__codelineno-58-15" name="__codelineno-58-15" href="#__codelineno-58-15"></a><span class="p">[</span><span class="n">class</span><span class="p">]{</span><span class="n">MaxHeap</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">siftDown</span><span class="p">}</span>
<a id="__codelineno-58-15" name="__codelineno-58-15" href="#__codelineno-58-15"></a><span class="cm">/* 从节点 i 开始,从顶至底堆化 */</span>
<a id="__codelineno-58-16" name="__codelineno-58-16" href="#__codelineno-58-16"></a><span class="kt">void</span><span class="w"> </span><span class="n">siftDown</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-58-17" name="__codelineno-58-17" href="#__codelineno-58-17"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="kc">true</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-58-18" name="__codelineno-58-18" href="#__codelineno-58-18"></a><span class="w"> </span><span class="c1">// 判断节点 i, l, r 中值最大的节点,记为 ma</span>
<a id="__codelineno-58-19" name="__codelineno-58-19" href="#__codelineno-58-19"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">l</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">_left</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
<a id="__codelineno-58-20" name="__codelineno-58-20" href="#__codelineno-58-20"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">r</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">_right</span><span class="p">(</span><span class="n">i</span><span class="p">);</span>
<a id="__codelineno-58-21" name="__codelineno-58-21" href="#__codelineno-58-21"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">ma</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="p">;</span>
<a id="__codelineno-58-22" name="__codelineno-58-22" href="#__codelineno-58-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">l</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">_maxHeap</span><span class="p">[</span><span class="n">l</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">_maxHeap</span><span class="p">[</span><span class="n">ma</span><span class="p">])</span><span class="w"> </span><span class="n">ma</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">l</span><span class="p">;</span>
<a id="__codelineno-58-23" name="__codelineno-58-23" href="#__codelineno-58-23"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">r</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">_maxHeap</span><span class="p">[</span><span class="n">r</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">_maxHeap</span><span class="p">[</span><span class="n">ma</span><span class="p">])</span><span class="w"> </span><span class="n">ma</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">r</span><span class="p">;</span>
<a id="__codelineno-58-24" name="__codelineno-58-24" href="#__codelineno-58-24"></a><span class="w"> </span><span class="c1">// 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出</span>
<a id="__codelineno-58-25" name="__codelineno-58-25" href="#__codelineno-58-25"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">ma</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">i</span><span class="p">)</span><span class="w"> </span><span class="k">break</span><span class="p">;</span>
<a id="__codelineno-58-26" name="__codelineno-58-26" href="#__codelineno-58-26"></a><span class="w"> </span><span class="c1">// 交换两节点</span>
<a id="__codelineno-58-27" name="__codelineno-58-27" href="#__codelineno-58-27"></a><span class="w"> </span><span class="n">_swap</span><span class="p">(</span><span class="n">i</span><span class="p">,</span><span class="w"> </span><span class="n">ma</span><span class="p">);</span>
<a id="__codelineno-58-28" name="__codelineno-58-28" href="#__codelineno-58-28"></a><span class="w"> </span><span class="c1">// 循环向下堆化</span>
<a id="__codelineno-58-29" name="__codelineno-58-29" href="#__codelineno-58-29"></a><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">ma</span><span class="p">;</span>
<a id="__codelineno-58-30" name="__codelineno-58-30" href="#__codelineno-58-30"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-58-31" name="__codelineno-58-31" href="#__codelineno-58-31"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">

View File

@ -3435,17 +3435,17 @@
<p>我们可以进行 <span class="arithmatex">\(k\)</span> 轮遍历,分别在每轮中提取第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> , <span class="arithmatex">\(\cdots\)</span> , <span class="arithmatex">\(k\)</span> 大的元素,时间复杂度为 <span class="arithmatex">\(O(nk)\)</span></p>
<p>该方法只适用于 <span class="arithmatex">\(k \ll n\)</span> 的情况,因为当 <span class="arithmatex">\(k\)</span><span class="arithmatex">\(n\)</span> 比较接近时,其时间复杂度趋向于 <span class="arithmatex">\(O(n^2)\)</span> ,非常耗时。</p>
<p><img alt="遍历寻找最大的 k 个元素" src="../top_k.assets/top_k_traversal.png" /></p>
<p align="center"> Fig. 遍历寻找最大的 k 个元素 </p>
<p align="center"> 图:遍历寻找最大的 k 个元素 </p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p><span class="arithmatex">\(k = n\)</span> 时,我们可以得到从大到小的序列,等价于「选择排序」算法。 </p>
<p><span class="arithmatex">\(k = n\)</span> 时,我们可以得到从大到小的序列,等价于「选择排序」算法。</p>
</div>
<h2 id="832">8.3.2. &nbsp; 方法二:排序<a class="headerlink" href="#832" title="Permanent link">&para;</a></h2>
<p>我们可以对数组 <code>nums</code> 进行排序,并返回最右边的 <span class="arithmatex">\(k\)</span> 个元素,时间复杂度为 <span class="arithmatex">\(O(n \log n)\)</span></p>
<p>显然,该方法“超额”完成任务了,因为我们只需要找出最大的 <span class="arithmatex">\(k\)</span> 个元素即可,而不需要排序其他元素。</p>
<p><img alt="排序寻找最大的 k 个元素" src="../top_k.assets/top_k_sorting.png" /></p>
<p align="center"> Fig. 排序寻找最大的 k 个元素 </p>
<p align="center"> 图:排序寻找最大的 k 个元素 </p>
<h2 id="833">8.3.3. &nbsp; 方法三:堆<a class="headerlink" href="#833" title="Permanent link">&para;</a></h2>
<p>我们可以基于堆更加高效地解决 Top-K 问题,流程如下:</p>
@ -3486,6 +3486,8 @@
</div>
</div>
</div>
<p align="center"> 图:基于堆寻找最大的 k 个元素 </p>
<p>总共执行了 <span class="arithmatex">\(n\)</span> 轮入堆和出堆,堆的最大长度为 <span class="arithmatex">\(k\)</span> ,因此时间复杂度为 <span class="arithmatex">\(O(n \log k)\)</span> 。该方法的效率很高,当 <span class="arithmatex">\(k\)</span> 较小时,时间复杂度趋向 <span class="arithmatex">\(O(n)\)</span> ;当 <span class="arithmatex">\(k\)</span> 较大时,时间复杂度不会超过 <span class="arithmatex">\(O(n \log n)\)</span></p>
<p>另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大 <span class="arithmatex">\(k\)</span> 个元素的动态更新。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:12"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JS</label><label for="__tabbed_2_6">TS</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label><label for="__tabbed_2_11">Dart</label><label for="__tabbed_2_12">Rust</label></div>
@ -3621,7 +3623,20 @@
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">top_k.dart</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="p">[</span><span class="n">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">top_k_heap</span><span class="p">}</span>
<div class="highlight"><span class="filename">top_k.dart</span><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="cm">/* 基于堆查找数组中最大的 k 个元素 */</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="n">MinHeap</span><span class="w"> </span><span class="n">topKHeap</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">k</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a><span class="w"> </span><span class="c1">// 将数组的前 k 个元素入堆</span>
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="w"> </span><span class="n">MinHeap</span><span class="w"> </span><span class="n">heap</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">MinHeap</span><span class="p">(</span><span class="n">nums</span><span class="p">.</span><span class="n">sublist</span><span class="p">(</span><span class="m">0</span><span class="p">,</span><span class="w"> </span><span class="n">k</span><span class="p">));</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="w"> </span><span class="c1">// 从第 k+1 个元素开始,保持堆的长度为 k</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">k</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a><span class="w"> </span><span class="c1">// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">peek</span><span class="p">())</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">pop</span><span class="p">();</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a><span class="w"> </span><span class="n">heap</span><span class="p">.</span><span class="n">push</span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]);</span>
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-12" name="__codelineno-10-12" href="#__codelineno-10-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-10-13" name="__codelineno-10-13" href="#__codelineno-10-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">heap</span><span class="p">;</span>
<a id="__codelineno-10-14" name="__codelineno-10-14" href="#__codelineno-10-14"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">