This commit is contained in:
krahets
2023-08-17 05:12:16 +08:00
parent 2014338a92
commit 5884de5246
70 changed files with 1890 additions and 1219 deletions

View File

@ -3456,7 +3456,7 @@
</div>
<p>请注意,物品编号 <span class="arithmatex">\(i\)</span><span class="arithmatex">\(1\)</span> 开始计数,数组索引从 <span class="arithmatex">\(0\)</span> 开始计数,因此物品 <span class="arithmatex">\(i\)</span> 对应重量 <span class="arithmatex">\(wgt[i-1]\)</span> 和价值 <span class="arithmatex">\(val[i-1]\)</span></p>
<p><img alt="0-1 背包的示例数据" src="../knapsack_problem.assets/knapsack_example.png" /></p>
<p align="center"> Fig. 0-1 背包的示例数据 </p>
<p align="center"> 图:0-1 背包的示例数据 </p>
<p>我们可以将 0-1 背包问题看作是一个由 <span class="arithmatex">\(n\)</span> 轮决策组成的过程,每个物体都有不放入和放入两种决策,因此该问题是满足决策树模型的。</p>
<p>该问题的目标是求解“在限定背包容量下的最大价值”,因此较大概率是个动态规划问题。</p>
@ -3674,7 +3674,7 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
<p>如下图所示,由于每个物品都会产生不选和选两条搜索分支,因此时间复杂度为 <span class="arithmatex">\(O(2^n)\)</span></p>
<p>观察递归树,容易发现其中存在重叠子问题,例如 <span class="arithmatex">\(dp[1, 10]\)</span> 等。而当物品较多、背包容量较大,尤其是相同重量的物品较多时,重叠子问题的数量将会大幅增多。</p>
<p><img alt="0-1 背包的暴力搜索递归树" src="../knapsack_problem.assets/knapsack_dfs.png" /></p>
<p align="center"> Fig. 0-1 背包的暴力搜索递归树 </p>
<p align="center"> 图:0-1 背包的暴力搜索递归树 </p>
<h3 id="_2">方法二:记忆化搜索<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h3>
<p>为了保证重叠子问题只被计算一次,我们借助记忆列表 <code>mem</code> 来记录子问题的解,其中 <code>mem[i][c]</code> 对应 <span class="arithmatex">\(dp[i, c]\)</span></p>
@ -3916,7 +3916,7 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
</div>
</div>
<p><img alt="0-1 背包的记忆化搜索递归树" src="../knapsack_problem.assets/knapsack_dfs_mem.png" /></p>
<p align="center"> Fig. 0-1 背包的记忆化搜索递归树 </p>
<p align="center"> 图:0-1 背包的记忆化搜索递归树 </p>
<h3 id="_3">方法三:动态规划<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h3>
<p>动态规划实质上就是在状态转移中填充 <span class="arithmatex">\(dp\)</span> 表的过程,代码如下所示。</p>
@ -4180,6 +4180,8 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
</div>
</div>
</div>
<p align="center">0-1 背包的动态规划过程 </p>
<h3 id="_4">状态压缩<a class="headerlink" href="#_4" title="Permanent link">&para;</a></h3>
<p>由于每个状态都只与其上一行的状态有关,因此我们可以使用两个数组滚动前进,将空间复杂度从 <span class="arithmatex">\(O(n^2)\)</span> 将低至 <span class="arithmatex">\(O(n)\)</span></p>
<p>进一步思考,我们是否可以仅用一个数组实现状态压缩呢?观察可知,每个状态都是由正上方或左上方的格子转移过来的。假设只有一个数组,当开始遍历第 <span class="arithmatex">\(i\)</span> 行时,该数组存储的仍然是第 <span class="arithmatex">\(i-1\)</span> 行的状态。</p>
@ -4210,6 +4212,8 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
</div>
</div>
</div>
<p align="center">0-1 背包的状态压缩后的动态规划过程 </p>
<p>在代码实现中,我们仅需将数组 <code>dp</code> 的第一维 <span class="arithmatex">\(i\)</span> 直接删除,并且把内循环更改为倒序遍历即可。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="6:12"><input checked="checked" id="__tabbed_6_1" name="__tabbed_6" type="radio" /><input id="__tabbed_6_2" name="__tabbed_6" type="radio" /><input id="__tabbed_6_3" name="__tabbed_6" type="radio" /><input id="__tabbed_6_4" name="__tabbed_6" type="radio" /><input id="__tabbed_6_5" name="__tabbed_6" type="radio" /><input id="__tabbed_6_6" name="__tabbed_6" type="radio" /><input id="__tabbed_6_7" name="__tabbed_6" type="radio" /><input id="__tabbed_6_8" name="__tabbed_6" type="radio" /><input id="__tabbed_6_9" name="__tabbed_6" type="radio" /><input id="__tabbed_6_10" name="__tabbed_6" type="radio" /><input id="__tabbed_6_11" name="__tabbed_6" type="radio" /><input id="__tabbed_6_12" name="__tabbed_6" type="radio" /><div class="tabbed-labels"><label for="__tabbed_6_1">Java</label><label for="__tabbed_6_2">C++</label><label for="__tabbed_6_3">Python</label><label for="__tabbed_6_4">Go</label><label for="__tabbed_6_5">JS</label><label for="__tabbed_6_6">TS</label><label for="__tabbed_6_7">C</label><label for="__tabbed_6_8">C#</label><label for="__tabbed_6_9">Swift</label><label for="__tabbed_6_10">Zig</label><label for="__tabbed_6_11">Dart</label><label for="__tabbed_6_12">Rust</label></div>
<div class="tabbed-content">