mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-03 05:27:55 +08:00
Update punctuation
This commit is contained in:
@ -188,6 +188,6 @@
|
||||
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度为 $O(n^2)$ 、自适应排序** :各轮“冒泡”遍历的数组长度依次为 $n - 1$ , $n - 2$ , $\dots$ , $2$ , $1$ ,总和为 $(n - 1) n / 2$ 。在引入 `flag` 优化后,最佳时间复杂度可达到 $O(n)$ 。
|
||||
- **空间复杂度为 $O(1)$ 、原地排序**:指针 $i$ , $j$ 使用常数大小的额外空间。
|
||||
- **时间复杂度为 $O(n^2)$、自适应排序**:各轮“冒泡”遍历的数组长度依次为 $n - 1$、$n - 2$、$\dots$、$2$、$1$ ,总和为 $(n - 1) n / 2$ 。在引入 `flag` 优化后,最佳时间复杂度可达到 $O(n)$ 。
|
||||
- **空间复杂度为 $O(1)$、原地排序**:指针 $i$ 和 $j$ 使用常数大小的额外空间。
|
||||
- **稳定排序**:由于在“冒泡”中遇到相等元素不交换。
|
||||
|
||||
@ -94,7 +94,7 @@
|
||||
|
||||
- **时间复杂度 $O(n + k)$** :假设元素在各个桶内平均分布,那么每个桶内的元素数量为 $\frac{n}{k}$ 。假设排序单个桶使用 $O(\frac{n}{k} \log\frac{n}{k})$ 时间,则排序所有桶使用 $O(n \log\frac{n}{k})$ 时间。**当桶数量 $k$ 比较大时,时间复杂度则趋向于 $O(n)$** 。合并结果时需要遍历所有桶和元素,花费 $O(n + k)$ 时间。
|
||||
- **自适应排序**:在最坏情况下,所有数据被分配到一个桶中,且排序该桶使用 $O(n^2)$ 时间。
|
||||
- **空间复杂度 $O(n + k)$ 、非原地排序** :需要借助 $k$ 个桶和总共 $n$ 个元素的额外空间。
|
||||
- **空间复杂度 $O(n + k)$、非原地排序**:需要借助 $k$ 个桶和总共 $n$ 个元素的额外空间。
|
||||
- 桶排序是否稳定取决于排序桶内元素的算法是否稳定。
|
||||
|
||||
## 如何实现平均分配
|
||||
|
||||
@ -206,7 +206,7 @@ $$
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度 $O(n + m)$** :涉及遍历 `nums` 和遍历 `counter` ,都使用线性时间。一般情况下 $n \gg m$ ,时间复杂度趋于 $O(n)$ 。
|
||||
- **空间复杂度 $O(n + m)$ 、非原地排序** :借助了长度分别为 $n$ 和 $m$ 的数组 `res` 和 `counter` 。
|
||||
- **空间复杂度 $O(n + m)$、非原地排序**:借助了长度分别为 $n$ 和 $m$ 的数组 `res` 和 `counter` 。
|
||||
- **稳定排序**:由于向 `res` 中填充元素的顺序是“从右向左”的,因此倒序遍历 `nums` 可以避免改变相等元素之间的相对位置,从而实现稳定排序。实际上,正序遍历 `nums` 也可以得到正确的排序结果,但结果是非稳定的。
|
||||
|
||||
## 局限性
|
||||
|
||||
@ -160,6 +160,6 @@
|
||||
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度 $O(n \log n)$ 、非自适应排序** :建堆操作使用 $O(n)$ 时间。从堆中提取最大元素的时间复杂度为 $O(\log n)$ ,共循环 $n - 1$ 轮。
|
||||
- **空间复杂度 $O(1)$ 、原地排序** :几个指针变量使用 $O(1)$ 空间。元素交换和堆化操作都是在原数组上进行的。
|
||||
- **时间复杂度 $O(n \log n)$、非自适应排序**:建堆操作使用 $O(n)$ 时间。从堆中提取最大元素的时间复杂度为 $O(\log n)$ ,共循环 $n - 1$ 轮。
|
||||
- **空间复杂度 $O(1)$、原地排序**:几个指针变量使用 $O(1)$ 空间。元素交换和堆化操作都是在原数组上进行的。
|
||||
- **非稳定排序**:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。
|
||||
|
||||
@ -93,8 +93,8 @@
|
||||
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度 $O(n^2)$ 、自适应排序** :最差情况下,每次插入操作分别需要循环 $n - 1$ , $n-2$ , $\dots$ , $2$ , $1$ 次,求和得到 $(n - 1) n / 2$ ,因此时间复杂度为 $O(n^2)$ 。在遇到有序数据时,插入操作会提前终止。当输入数组完全有序时,插入排序达到最佳时间复杂度 $O(n)$ 。
|
||||
- **空间复杂度 $O(1)$ 、原地排序** :指针 $i$ , $j$ 使用常数大小的额外空间。
|
||||
- **时间复杂度 $O(n^2)$、自适应排序**:最差情况下,每次插入操作分别需要循环 $n - 1$、$n-2$、$\dots$、$2$、$1$ 次,求和得到 $(n - 1) n / 2$ ,因此时间复杂度为 $O(n^2)$ 。在遇到有序数据时,插入操作会提前终止。当输入数组完全有序时,插入排序达到最佳时间复杂度 $O(n)$ 。
|
||||
- **空间复杂度 $O(1)$、原地排序**:指针 $i$ 和 $j$ 使用常数大小的额外空间。
|
||||
- **稳定排序**:在插入操作过程中,我们会将元素插入到相等元素的右侧,不会改变它们的顺序。
|
||||
|
||||
## 插入排序优势
|
||||
|
||||
@ -154,8 +154,8 @@
|
||||
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度 $O(n \log n)$ 、非自适应排序** :划分产生高度为 $\log n$ 的递归树,每层合并的总操作数量为 $n$ ,因此总体时间复杂度为 $O(n \log n)$ 。
|
||||
- **空间复杂度 $O(n)$ 、非原地排序** :递归深度为 $\log n$ ,使用 $O(\log n)$ 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 $O(n)$ 大小的额外空间。
|
||||
- **时间复杂度 $O(n \log n)$、非自适应排序**:划分产生高度为 $\log n$ 的递归树,每层合并的总操作数量为 $n$ ,因此总体时间复杂度为 $O(n \log n)$ 。
|
||||
- **空间复杂度 $O(n)$、非原地排序**:递归深度为 $\log n$ ,使用 $O(\log n)$ 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 $O(n)$ 大小的额外空间。
|
||||
- **稳定排序**:在合并过程中,相等元素的次序保持不变。
|
||||
|
||||
## 链表排序 *
|
||||
|
||||
@ -215,8 +215,8 @@
|
||||
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度 $O(n \log n)$ 、自适应排序** :在平均情况下,哨兵划分的递归层数为 $\log n$ ,每层中的总循环数为 $n$ ,总体使用 $O(n \log n)$ 时间。在最差情况下,每轮哨兵划分操作都将长度为 $n$ 的数组划分为长度为 $0$ 和 $n - 1$ 的两个子数组,此时递归层数达到 $n$ 层,每层中的循环数为 $n$ ,总体使用 $O(n^2)$ 时间。
|
||||
- **空间复杂度 $O(n)$ 、原地排序** :在输入数组完全倒序的情况下,达到最差递归深度 $n$ ,使用 $O(n)$ 栈帧空间。排序操作是在原数组上进行的,未借助额外数组。
|
||||
- **时间复杂度 $O(n \log n)$、自适应排序**:在平均情况下,哨兵划分的递归层数为 $\log n$ ,每层中的总循环数为 $n$ ,总体使用 $O(n \log n)$ 时间。在最差情况下,每轮哨兵划分操作都将长度为 $n$ 的数组划分为长度为 $0$ 和 $n - 1$ 的两个子数组,此时递归层数达到 $n$ 层,每层中的循环数为 $n$ ,总体使用 $O(n^2)$ 时间。
|
||||
- **空间复杂度 $O(n)$、原地排序**:在输入数组完全倒序的情况下,达到最差递归深度 $n$ ,使用 $O(n)$ 栈帧空间。排序操作是在原数组上进行的,未借助额外数组。
|
||||
- **非稳定排序**:在哨兵划分的最后一步,基准数可能会被交换至相等元素的右侧。
|
||||
|
||||
## 快排为什么快?
|
||||
@ -229,7 +229,7 @@
|
||||
|
||||
## 基准数优化
|
||||
|
||||
**快速排序在某些输入下的时间效率可能降低**。举一个极端例子,假设输入数组是完全倒序的,由于我们选择最左端元素作为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,导致左子数组长度为 $n - 1$ 、右子数组长度为 $0$ 。如此递归下去,每轮哨兵划分后的右子数组长度都为 $0$ ,分治策略失效,快速排序退化为“冒泡排序”。
|
||||
**快速排序在某些输入下的时间效率可能降低**。举一个极端例子,假设输入数组是完全倒序的,由于我们选择最左端元素作为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,导致左子数组长度为 $n - 1$、右子数组长度为 $0$ 。如此递归下去,每轮哨兵划分后的右子数组长度都为 $0$ ,分治策略失效,快速排序退化为“冒泡排序”。
|
||||
|
||||
为了尽量避免这种情况发生,**我们可以优化哨兵划分中的基准数的选取策略**。例如,我们可以随机选取一个元素作为基准数。然而,如果运气不佳,每次都选到不理想的基准数,效率仍然不尽如人意。
|
||||
|
||||
|
||||
@ -152,6 +152,6 @@ $$
|
||||
|
||||
相较于计数排序,基数排序适用于数值范围较大的情况,**但前提是数据必须可以表示为固定位数的格式,且位数不能过大**。例如,浮点数不适合使用基数排序,因为其位数 $k$ 过大,可能导致时间复杂度 $O(nk) \gg O(n^2)$ 。
|
||||
|
||||
- **时间复杂度 $O(nk)$** :设数据量为 $n$ 、数据为 $d$ 进制、最大位数为 $k$ ,则对某一位执行计数排序使用 $O(n + d)$ 时间,排序所有 $k$ 位使用 $O((n + d)k)$ 时间。通常情况下,$d$ 和 $k$ 都相对较小,时间复杂度趋向 $O(n)$ 。
|
||||
- **空间复杂度 $O(n + d)$ 、非原地排序** :与计数排序相同,基数排序需要借助长度为 $n$ 和 $d$ 的数组 `res` 和 `counter` 。
|
||||
- **时间复杂度 $O(nk)$**:设数据量为 $n$、数据为 $d$ 进制、最大位数为 $k$ ,则对某一位执行计数排序使用 $O(n + d)$ 时间,排序所有 $k$ 位使用 $O((n + d)k)$ 时间。通常情况下,$d$ 和 $k$ 都相对较小,时间复杂度趋向 $O(n)$ 。
|
||||
- **空间复杂度 $O(n + d)$、非原地排序**:与计数排序相同,基数排序需要借助长度为 $n$ 和 $d$ 的数组 `res` 和 `counter` 。
|
||||
- **稳定排序**:与计数排序相同。
|
||||
|
||||
@ -119,8 +119,8 @@
|
||||
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度为 $O(n^2)$ 、非自适应排序**:外循环共 $n - 1$ 轮,第一轮的未排序区间长度为 $n$ ,最后一轮的未排序区间长度为 $2$ ,即各轮外循环分别包含 $n$ , $n - 1$ , $\dots$ , $2$ 轮内循环,求和为 $\frac{(n - 1)(n + 2)}{2}$ 。
|
||||
- **空间复杂度 $O(1)$ 、原地排序**:指针 $i$ , $j$ 使用常数大小的额外空间。
|
||||
- **时间复杂度为 $O(n^2)$、非自适应排序**:外循环共 $n - 1$ 轮,第一轮的未排序区间长度为 $n$ ,最后一轮的未排序区间长度为 $2$ ,即各轮外循环分别包含 $n$、$n - 1$、$\dots$、$3$、$2$ 轮内循环,求和为 $\frac{(n - 1)(n + 2)}{2}$ 。
|
||||
- **空间复杂度 $O(1)$、原地排序**:指针 $i$ 和 $j$ 使用常数大小的额外空间。
|
||||
- **非稳定排序**:如下图所示,元素 `nums[i]` 有可能被交换至与其相等的元素的右边,导致两者相对顺序发生改变。
|
||||
|
||||

|
||||
|
||||
@ -39,7 +39,7 @@
|
||||
|
||||
自适应性需要根据具体情况来评估。如果最差时间复杂度差于平均时间复杂度,说明排序算法在某些数据下性能可能劣化,因此被视为负面属性;而如果最佳时间复杂度优于平均时间复杂度,则被视为正面属性。
|
||||
|
||||
**是否基于比较**:「基于比较的排序」依赖于比较运算符($<$ , $=$ , $>$)来判断元素的相对顺序,从而排序整个数组,理论最优时间复杂度为 $O(n \log n)$ 。而「非比较排序」不使用比较运算符,时间复杂度可达 $O(n)$ ,但其通用性相对较差。
|
||||
**是否基于比较**:「基于比较的排序」依赖于比较运算符($<$、$=$、$>$)来判断元素的相对顺序,从而排序整个数组,理论最优时间复杂度为 $O(n \log n)$ 。而「非比较排序」不使用比较运算符,时间复杂度可达 $O(n)$ ,但其通用性相对较差。
|
||||
|
||||
## 理想排序算法
|
||||
|
||||
|
||||
@ -36,7 +36,7 @@
|
||||
|
||||
递归深度就是当前未返回的递归方法的数量。每轮哨兵划分我们将原数组划分为两个子数组。在尾递归优化后,向下递归的子数组长度最大为原数组的一半长度。假设最差情况,一直为一半长度,那么最终的递归深度就是 $\log n$ 。
|
||||
|
||||
回顾原始的快速排序,我们有可能会连续地递归长度较大的数组,最差情况下为 $n, n - 1, n - 2, ..., 2, 1$ ,从而递归深度为 $n$ 。尾递归优化可以避免这种情况的出现。
|
||||
回顾原始的快速排序,我们有可能会连续地递归长度较大的数组,最差情况下为 $n$、$n - 1$、$\dots$、$2$、$1$ ,递归深度为 $n$ 。尾递归优化可以避免这种情况的出现。
|
||||
|
||||
!!! question "当数组中所有元素都相等时,快速排序的时间复杂度是 $O(n^2)$ 吗?该如何处理这种退化情况?"
|
||||
|
||||
|
||||
Reference in New Issue
Block a user