Update punctuation

This commit is contained in:
krahets
2023-08-27 23:40:39 +08:00
parent c5a7323817
commit 57851ab11e
50 changed files with 100 additions and 100 deletions

View File

@@ -999,7 +999,7 @@ $$
[class]{}-[func]{quadratic}
```
如下图所示,该函数的递归深度为 $n$ ,在每个递归函数中都初始化了一个数组,长度分别为 $n, n-1, n-2, ..., 2, 1$ ,平均长度为 $n / 2$ ,因此总体占用 $O(n^2)$ 空间:
如下图所示,该函数的递归深度为 $n$ ,在每个递归函数中都初始化了一个数组,长度分别为 $n$、$n-1$、$\dots$、$2$、$1$ ,平均长度为 $n / 2$ ,因此总体占用 $O(n^2)$ 空间:
=== "Java"

View File

@@ -11,7 +11,7 @@
- 时间复杂度用于衡量算法运行时间随数据量增长的趋势,可以有效评估算法效率,但在某些情况下可能失效,如在输入的数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣。
- 最差时间复杂度使用大 $O$ 符号表示,对应函数渐近上界,反映当 $n$ 趋向正无穷时,操作数量 $T(n)$ 的增长级别。
- 推算时间复杂度分为两步,首先统计操作数量,然后判断渐近上界。
- 常见时间复杂度从小到大排列有 $O(1)$ 、$O(\log n)$ 、$O(n)$ 、$O(n \log n)$ 、$O(n^2)$ 、$O(2^n)$ 、$O(n!)$ 等。
- 常见时间复杂度从小到大排列有 $O(1)$、$O(\log n)$、$O(n)$、$O(n \log n)$、$O(n^2)$、$O(2^n)$、$O(n!)$ 等。
- 某些算法的时间复杂度非固定,而是与输入数据的分布有关。时间复杂度分为最差、最佳、平均时间复杂度,最佳时间复杂度几乎不用,因为输入数据一般需要满足严格条件才能达到最佳情况。
- 平均时间复杂度反映算法在随机数据输入下的运行效率,最接近实际应用中的算法性能。计算平均时间复杂度需要统计输入数据分布以及综合后的数学期望。
@@ -20,13 +20,13 @@
- 空间复杂度的作用类似于时间复杂度,用于衡量算法占用空间随数据量增长的趋势。
- 算法运行过程中的相关内存空间可分为输入空间、暂存空间、输出空间。通常情况下,输入空间不计入空间复杂度计算。暂存空间可分为指令空间、数据空间、栈帧空间,其中栈帧空间通常仅在递归函数中影响空间复杂度。
- 我们通常只关注最差空间复杂度,即统计算法在最差输入数据和最差运行时间点下的空间复杂度。
- 常见空间复杂度从小到大排列有 $O(1)$ 、$O(\log n)$ 、$O(n)$ 、$O(n^2)$ 、$O(2^n)$ 等。
- 常见空间复杂度从小到大排列有 $O(1)$、$O(\log n)$、$O(n)$、$O(n^2)$、$O(2^n)$ 等。
## Q & A
!!! question "尾递归的空间复杂度是 $O(1)$ 吗?"
理论上,尾递归函数的空间复杂度可以被优化至 $O(1)$ 。不过绝大多数编程语言(例如 Java 、Python 、C++ 、Go 、C# 等)都不支持自动优化尾递归,因此通常认为空间复杂度是 $O(n)$ 。
理论上,尾递归函数的空间复杂度可以被优化至 $O(1)$ 。不过绝大多数编程语言(例如 Java、Python、C++、Go、C# 等)都不支持自动优化尾递归,因此通常认为空间复杂度是 $O(n)$ 。
!!! question "函数和方法这两个术语的区别是什么?"

View File

@@ -189,7 +189,7 @@ $$
时间复杂度分析统计的不是算法运行时间,**而是算法运行时间随着数据量变大时的增长趋势**。
“时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 $n$ ,给定三个算法函数 `A``B` 和 `C`
“时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 $n$ ,给定三个算法函数 `A``B` 和 `C`
=== "Java"
@@ -432,7 +432,7 @@ $$
- 算法 `B` 中的打印操作需要循环 $n$ 次,算法运行时间随着 $n$ 增大呈线性增长。此算法的时间复杂度被称为“线性阶”。
- 算法 `C` 中的打印操作需要循环 $1000000$ 次,虽然运行时间很长,但它与输入数据大小 $n$ 无关。因此 `C` 的时间复杂度和 `A` 相同,仍为“常数阶”。
![算法 A 、B 和 C 的时间增长趋势](time_complexity.assets/time_complexity_simple_example.png)
![算法 A、B 和 C 的时间增长趋势](time_complexity.assets/time_complexity_simple_example.png)
相较于直接统计算法运行时间,时间复杂度分析有哪些特点呢?
@@ -1210,7 +1210,7 @@ $$
![常数阶、线性阶和平方阶的时间复杂度](time_complexity.assets/time_complexity_constant_linear_quadratic.png)
以冒泡排序为例,外层循环执行 $n - 1$ 次,内层循环执行 $n-1, n-2, \dots, 2, 1$ 次,平均为 $n / 2$ 次,因此时间复杂度为 $O((n - 1) n / 2) = O(n^2)$ 。
以冒泡排序为例,外层循环执行 $n - 1$ 次,内层循环执行 $n-1$、$n-2$、$\dots$、$2$、$1$ 次,平均为 $n / 2$ 次,因此时间复杂度为 $O((n - 1) n / 2) = O(n^2)$ 。
=== "Java"