mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-23 17:54:27 +08:00
build
This commit is contained in:
@ -979,7 +979,7 @@ Note that memory occupied by initializing variables or calling functions in a lo
|
||||
|
||||
```rust title="space_complexity.rs"
|
||||
/* 函数 */
|
||||
fn function() ->i32 {
|
||||
fn function() -> i32 {
|
||||
// 执行某些操作
|
||||
return 0;
|
||||
}
|
||||
@ -1452,7 +1452,9 @@ As shown below, this function's recursive depth is $n$, meaning there are $n$ in
|
||||
/* 线性阶(递归实现) */
|
||||
fn linear_recur(n: i32) {
|
||||
println!("递归 n = {}", n);
|
||||
if n == 1 {return};
|
||||
if n == 1 {
|
||||
return;
|
||||
};
|
||||
linear_recur(n - 1);
|
||||
}
|
||||
```
|
||||
@ -1834,7 +1836,9 @@ As shown below, the recursive depth of this function is $n$, and in each recursi
|
||||
```rust title="space_complexity.rs"
|
||||
/* 平方阶(递归实现) */
|
||||
fn quadratic_recur(n: i32) -> i32 {
|
||||
if n <= 0 {return 0};
|
||||
if n <= 0 {
|
||||
return 0;
|
||||
};
|
||||
// 数组 nums 长度为 n, n-1, ..., 2, 1
|
||||
let nums = vec![0; n as usize];
|
||||
println!("递归 n = {} 中的 nums 长度 = {}", n, nums.len());
|
||||
@ -2011,7 +2015,9 @@ Exponential order is common in binary trees. Observe the below image, a "full bi
|
||||
```rust title="space_complexity.rs"
|
||||
/* 指数阶(建立满二叉树) */
|
||||
fn build_tree(n: i32) -> Option<Rc<RefCell<TreeNode>>> {
|
||||
if n == 0 {return None};
|
||||
if n == 0 {
|
||||
return None;
|
||||
};
|
||||
let root = TreeNode::new(0);
|
||||
root.borrow_mut().left = build_tree(n - 1);
|
||||
root.borrow_mut().right = build_tree(n - 1);
|
||||
|
Reference in New Issue
Block a user