This commit is contained in:
krahets
2024-03-18 03:11:07 +08:00
parent bc0054a577
commit 54c7448946
48 changed files with 577 additions and 408 deletions

View File

@ -151,7 +151,7 @@ The following function implements the sum $1 + 2 + \dots + n$ using a `for` loop
res += i;
}
res
}
}
```
=== "C"
@ -352,6 +352,7 @@ Below we use a `while` loop to implement the sum $1 + 2 + \dots + n$:
fn while_loop(n: i32) -> i32 {
let mut res = 0;
let mut i = 1; // 初始化条件变量
// 循环求和 1, 2, ..., n-1, n
while i <= n {
res += i;
@ -570,6 +571,7 @@ For example, in the following code, the condition variable $i$ is updated twice
fn while_loop_ii(n: i32) -> i32 {
let mut res = 0;
let mut i = 1; // 初始化条件变量
// 循环求和 1, 4, 10, ...
while i <= n {
res += i;

View File

@ -979,7 +979,7 @@ Note that memory occupied by initializing variables or calling functions in a lo
```rust title="space_complexity.rs"
/* 函数 */
fn function() ->i32 {
fn function() -> i32 {
// 执行某些操作
return 0;
}
@ -1452,7 +1452,9 @@ As shown below, this function's recursive depth is $n$, meaning there are $n$ in
/* 线性阶(递归实现) */
fn linear_recur(n: i32) {
println!("递归 n = {}", n);
if n == 1 {return};
if n == 1 {
return;
};
linear_recur(n - 1);
}
```
@ -1834,7 +1836,9 @@ As shown below, the recursive depth of this function is $n$, and in each recursi
```rust title="space_complexity.rs"
/* 平方阶(递归实现) */
fn quadratic_recur(n: i32) -> i32 {
if n <= 0 {return 0};
if n <= 0 {
return 0;
};
// 数组 nums 长度为 n, n-1, ..., 2, 1
let nums = vec![0; n as usize];
println!("递归 n = {} 中的 nums 长度 = {}", n, nums.len());
@ -2011,7 +2015,9 @@ Exponential order is common in binary trees. Observe the below image, a "full bi
```rust title="space_complexity.rs"
/* 指数阶(建立满二叉树) */
fn build_tree(n: i32) -> Option<Rc<RefCell<TreeNode>>> {
if n == 0 {return None};
if n == 0 {
return None;
};
let root = TreeNode::new(0);
root.borrow_mut().left = build_tree(n - 1);
root.borrow_mut().right = build_tree(n - 1);

View File

@ -1737,7 +1737,7 @@ For instance, in bubble sort, the outer loop runs $n - 1$ times, and the inner l
int count = 0; // 计数器
// 外循环:未排序区间为 [0, i]
for (int i = nums.Length - 1; i > 0; i--) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
@ -1781,7 +1781,7 @@ For instance, in bubble sort, the outer loop runs $n - 1$ times, and the inner l
var count = 0 // 计数器
// 外循环:未排序区间为 [0, i]
for i in stride(from: nums.count - 1, to: 0, by: -1) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for j in 0 ..< i {
if nums[j] > nums[j + 1] {
// 交换 nums[j] 与 nums[j + 1]
@ -1871,9 +1871,10 @@ For instance, in bubble sort, the outer loop runs $n - 1$ times, and the inner l
/* 平方阶(冒泡排序) */
fn bubble_sort(nums: &mut [i32]) -> i32 {
let mut count = 0; // 计数器
// 外循环:未排序区间为 [0, i]
for i in (1..nums.len()).rev() {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for j in 0..i {
if nums[j] > nums[j + 1] {
// 交换 nums[j] 与 nums[j + 1]
@ -1921,7 +1922,7 @@ For instance, in bubble sort, the outer loop runs $n - 1$ times, and the inner l
var i: i32 = @as(i32, @intCast(nums.len)) - 1;
while (i > 0) : (i -= 1) {
var j: usize = 0;
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
while (j < i) : (j += 1) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
@ -2792,10 +2793,10 @@ Linear-logarithmic order often appears in nested loops, with the complexities of
return 1;
}
let mut count = linear_log_recur(n / 2.0) + linear_log_recur(n / 2.0);
for _ in 0 ..n as i32 {
for _ in 0..n as i32 {
count += 1;
}
return count
return count;
}
```