mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 06:07:20 +08:00 
			
		
		
		
	Merge pull request #235 from xBLACKICEx/rust-lang
Add rust environment, and time_complexity.md rust code
This commit is contained in:
		
							
								
								
									
										163
									
								
								codes/rust/chapter_computational_complexity/time_complexity.rs
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										163
									
								
								codes/rust/chapter_computational_complexity/time_complexity.rs
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,163 @@
 | 
			
		||||
#![allow(unused_variables)]
 | 
			
		||||
 | 
			
		||||
/* 常数阶 */
 | 
			
		||||
fn constant(n: i32) -> i32 {
 | 
			
		||||
    let mut count = 0;
 | 
			
		||||
    let size = 100000;
 | 
			
		||||
    for _ in 0..size {
 | 
			
		||||
        count += 1
 | 
			
		||||
    }
 | 
			
		||||
    count
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn linear(n: i32) -> i32 {
 | 
			
		||||
    let mut count = 0;
 | 
			
		||||
    for _ in 0..n {
 | 
			
		||||
        count += 1;
 | 
			
		||||
    }
 | 
			
		||||
    count
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* 线性阶(遍历数组) */
 | 
			
		||||
fn array_traversal(nums: &[i32]) -> i32 {
 | 
			
		||||
    let mut count = 0;
 | 
			
		||||
    // 循环次数与数组长度成正比
 | 
			
		||||
    for _ in nums {
 | 
			
		||||
        count += 1;
 | 
			
		||||
    }
 | 
			
		||||
    count
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn quadratic(n: i32) -> i32 {
 | 
			
		||||
    let mut count = 0;
 | 
			
		||||
    // 循环次数与数组长度成平方关系
 | 
			
		||||
    for _ in 0..n {
 | 
			
		||||
        for _ in 0..n {
 | 
			
		||||
            count += 1;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    count
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* 平方阶(冒泡排序) */
 | 
			
		||||
fn bubble_sort(nums: &mut [i32]) -> i32 {
 | 
			
		||||
    let mut count = 0; // 计数器
 | 
			
		||||
    // 外循环:待排序元素数量为 n-1, n-2, ..., 1
 | 
			
		||||
    for i in (1..nums.len()).rev() {
 | 
			
		||||
        // 内循环:冒泡操作
 | 
			
		||||
        for j in 0..i {
 | 
			
		||||
            if nums[j] > nums[j + 1] {
 | 
			
		||||
                // 交换 nums[j] 与 nums[j + 1]
 | 
			
		||||
                let tmp = nums[j];
 | 
			
		||||
                nums[j] = nums[j + 1];
 | 
			
		||||
                nums[j + 1] = tmp;
 | 
			
		||||
                count += 3; // 元素交换包含 3 个单元操作
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    count
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* 指数阶(循环实现) */
 | 
			
		||||
fn exponential(n: i32) -> i32 {
 | 
			
		||||
    let mut count = 0;
 | 
			
		||||
    let mut base = 1;
 | 
			
		||||
    // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | 
			
		||||
    for _ in 0..n {
 | 
			
		||||
        for _ in 0..base {
 | 
			
		||||
            count += 1
 | 
			
		||||
        }
 | 
			
		||||
        base *= 2;
 | 
			
		||||
    }
 | 
			
		||||
    // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | 
			
		||||
    count
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* 指数阶(递归实现) */
 | 
			
		||||
fn exp_recur(n: i32) -> i32 {
 | 
			
		||||
    if n == 1 {
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
    exp_recur(n - 1) + exp_recur(n - 1) + 1
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* 对数阶(循环实现) */
 | 
			
		||||
fn logarithmic(mut n: i32) -> i32 {
 | 
			
		||||
    let mut count = 0;
 | 
			
		||||
 | 
			
		||||
    while n > 1 {
 | 
			
		||||
        n = n / 2;
 | 
			
		||||
        count += 1;
 | 
			
		||||
    }
 | 
			
		||||
    count
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn log_recur(n: i32) -> i32 {
 | 
			
		||||
    if n <= 1 {
 | 
			
		||||
        return 0;
 | 
			
		||||
    }
 | 
			
		||||
    log_recur(n / 2) + 1
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* 线性对数阶 */
 | 
			
		||||
fn linear_log_recur(n: f64) -> i32 {
 | 
			
		||||
    if n <= 1.0 {
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
    let mut count = linear_log_recur(n / 2.0) + linear_log_recur(n / 2.0);
 | 
			
		||||
    for _ in 0 ..n as i32 {
 | 
			
		||||
        count += 1;
 | 
			
		||||
    }
 | 
			
		||||
    return count
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* 阶乘阶(递归实现) */
 | 
			
		||||
fn factorial_recur(n: i32) -> i32 {
 | 
			
		||||
    if n == 0 {
 | 
			
		||||
        return 1;
 | 
			
		||||
    }
 | 
			
		||||
    let mut count = 0;
 | 
			
		||||
    // 从 1 个分裂出 n 个
 | 
			
		||||
    for _ in 0..n {
 | 
			
		||||
        count += factorial_recur(n - 1);
 | 
			
		||||
    }
 | 
			
		||||
    count
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Driver Code */
 | 
			
		||||
fn main() {
 | 
			
		||||
    // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | 
			
		||||
    let n: i32 = 8;
 | 
			
		||||
    println!("输入数据大小 n = {}", n);
 | 
			
		||||
 | 
			
		||||
    let mut count = constant(n);
 | 
			
		||||
    println!("常数阶的计算操作数量 = {}", count);
 | 
			
		||||
 | 
			
		||||
    count = linear(n);
 | 
			
		||||
    println!("线性阶的计算操作数量 = {}", count);
 | 
			
		||||
    count = array_traversal(&vec![0; n as usize]);
 | 
			
		||||
    println!("线性阶(遍历数组)的计算操作数量 = {}", count);
 | 
			
		||||
 | 
			
		||||
    count = quadratic(n);
 | 
			
		||||
    println!("平方阶的计算操作数量 = {}", count);
 | 
			
		||||
 | 
			
		||||
    let mut nums = (1..=n).rev().collect::<Vec<_>>(); // [n,n-1,...,2,1]
 | 
			
		||||
    count = bubble_sort(&mut nums);
 | 
			
		||||
    println!("平方阶(冒泡排序)的计算操作数量 = {}", count);
 | 
			
		||||
 | 
			
		||||
    count = exponential(n);
 | 
			
		||||
    println!("指数阶(循环实现)的计算操作数量 = {}", count);
 | 
			
		||||
    count = exp_recur(n);
 | 
			
		||||
    println!("指数阶(递归实现)的计算操作数量 = {}", count);
 | 
			
		||||
 | 
			
		||||
    count = logarithmic(n);
 | 
			
		||||
    println!("对数阶(循环实现)的计算操作数量 = {}", count);
 | 
			
		||||
    count = log_recur(n);
 | 
			
		||||
    println!("对数阶(递归实现)的计算操作数量 = {}", count);
 | 
			
		||||
 | 
			
		||||
    count = linear_log_recur(n.into());
 | 
			
		||||
    println!("线性对数阶(递归实现)的计算操作数量 = {}", count);
 | 
			
		||||
 | 
			
		||||
    count = factorial_recur(n);
 | 
			
		||||
    println!("阶乘阶(递归实现)的计算操作数量 = {}", count);
 | 
			
		||||
}
 | 
			
		||||
@ -46,3 +46,8 @@ comments: true
 | 
			
		||||
 | 
			
		||||
1. 下载并安装 [Swift](https://www.swift.org/download/);
 | 
			
		||||
2. 在 VSCode 的插件市场中搜索 `swift`,安装 [Swift for Visual Studio Code](https://marketplace.visualstudio.com/items?itemName=sswg.swift-lang)。
 | 
			
		||||
 | 
			
		||||
## Rust 环境
 | 
			
		||||
 | 
			
		||||
1. 下载并安装 [Rust](https://www.rust-lang.org/tools/install);
 | 
			
		||||
2. 在 VSCode 的插件市场中搜索 `rust`,安装 [rust-analyzer](https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer)。
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user