From 47b7d6fd4470cc21f979b06561b67f3c7564b453 Mon Sep 17 00:00:00 2001 From: krahets Date: Sun, 20 Aug 2023 23:28:04 +0800 Subject: [PATCH] deploy --- chapter_appendix/contribution/index.html | 4 +- chapter_array_and_linkedlist/array/index.html | 4 +- .../linked_list/index.html | 8 ++-- chapter_array_and_linkedlist/list/index.html | 2 +- .../backtracking_algorithm/index.html | 4 +- .../space_complexity/index.html | 4 +- .../time_complexity/index.html | 16 ++++---- .../basic_data_types/index.html | 2 +- .../index.html | 4 +- .../number_encoding/index.html | 11 +++--- .../divide_and_conquer/index.html | 10 ++--- .../dp_problem_features/index.html | 10 ++--- .../dp_solution_pipeline/index.html | 2 +- .../intro_to_dynamic_programming/index.html | 4 +- .../unbounded_knapsack_example.png | Bin 70520 -> 70479 bytes chapter_graph/graph/index.html | 26 ++++++------- chapter_graph/graph_operations/index.html | 2 +- chapter_graph/graph_traversal/index.html | 6 +-- chapter_hashing/hash_collision/index.html | 6 +-- chapter_hashing/hash_map/index.html | 10 ++--- chapter_heap/build_heap/index.html | 2 +- chapter_heap/heap/index.html | 14 +++---- chapter_heap/top_k/index.html | 2 +- .../binary_search_dictionary_step_1.png | Bin 50511 -> 49543 bytes .../algorithms_are_everywhere/index.html | 6 +-- chapter_introduction/what_is_dsa/index.html | 2 +- chapter_preface/suggestions/index.html | 6 +-- chapter_searching/binary_search/index.html | 2 +- .../searching_algorithm_revisited/index.html | 12 +++--- chapter_sorting/bubble_sort/index.html | 2 +- chapter_sorting/bucket_sort/index.html | 2 +- chapter_sorting/counting_sort/index.html | 4 +- chapter_sorting/heap_sort/index.html | 4 +- chapter_sorting/insertion_sort/index.html | 2 +- chapter_sorting/merge_sort/index.html | 2 +- chapter_sorting/quick_sort/index.html | 16 ++++---- chapter_sorting/radix_sort/index.html | 4 +- chapter_sorting/selection_sort/index.html | 2 +- chapter_sorting/sorting_algorithm/index.html | 6 +-- chapter_stack_and_queue/deque/index.html | 4 +- chapter_stack_and_queue/queue/index.html | 8 ++-- chapter_stack_and_queue/stack/index.html | 10 ++--- .../array_representation_of_tree/index.html | 2 +- chapter_tree/avl_tree/index.html | 26 ++++++------- chapter_tree/binary_search_tree/index.html | 2 +- chapter_tree/binary_tree/index.html | 36 +++++++++--------- chapter_tree/binary_tree_traversal/index.html | 8 ++-- search/search_index.json | 2 +- sitemap.xml.gz | Bin 967 -> 967 bytes 49 files changed, 161 insertions(+), 162 deletions(-) diff --git a/chapter_appendix/contribution/index.html b/chapter_appendix/contribution/index.html index 1c8162e87..bfa07c62e 100644 --- a/chapter_appendix/contribution/index.html +++ b/chapter_appendix/contribution/index.html @@ -3434,9 +3434,9 @@

然而在本开源书中,内容更迭的时间被缩短至数日甚至几个小时。

16.2.1   内容微调

-

在每个页面的右上角有一个「编辑」图标,您可以按照以下步骤修改文本或代码:

+

您可以按照以下步骤修改文本或代码:

    -
  1. 点击编辑按钮,如果遇到“需要 Fork 此仓库”的提示,请同意该操作。
  2. +
  3. 点击页面的右上角的“编辑图标”,如果遇到“需要 Fork 此仓库”的提示,请同意该操作。
  4. 修改 Markdown 源文件内容,检查内容的正确性,并尽量保持排版格式的统一。
  5. 在页面底部填写修改说明,然后点击“Propose file change”按钮。页面跳转后,点击“Create pull request”按钮即可发起拉取请求。
diff --git a/chapter_array_and_linkedlist/array/index.html b/chapter_array_and_linkedlist/array/index.html index a2cfc5fd6..4ce925be6 100644 --- a/chapter_array_and_linkedlist/array/index.html +++ b/chapter_array_and_linkedlist/array/index.html @@ -3536,7 +3536,7 @@

4.1   数组

-

「数组 Array」是一种线性数据结构,其将相同类型元素存储在连续的内存空间中。我们将某个元素在数组中的位置称为该元素的「索引 Index」。

+

「数组 array」是一种线性数据结构,其将相同类型元素存储在连续的内存空间中。我们将某个元素在数组中的位置称为该元素的「索引 index」。

数组定义与存储方式

图:数组定义与存储方式

@@ -4248,7 +4248,7 @@

6.   查找元素

在数组中查找指定元素需要遍历数组,每轮判断元素值是否匹配,若匹配则输出对应索引。

-

因为数组是线性数据结构,所以上述查找操作被称为「线性查找」。

+

因为数组是线性数据结构,所以上述查找操作被称为“线性查找”。

diff --git a/chapter_array_and_linkedlist/linked_list/index.html b/chapter_array_and_linkedlist/linked_list/index.html index 1d2c23cb9..8b9bef6b6 100644 --- a/chapter_array_and_linkedlist/linked_list/index.html +++ b/chapter_array_and_linkedlist/linked_list/index.html @@ -3523,17 +3523,17 @@

4.2   链表

内存空间是所有程序的公共资源,在一个复杂的系统运行环境下,空闲的内存空间可能散落在内存各处。我们知道,存储数组的内存空间必须是连续的,而当数组非常大时,内存可能无法提供如此大的连续空间。此时链表的灵活性优势就体现出来了。

-

「链表 Linked List」是一种线性数据结构,其中的每个元素都是一个节点对象,各个节点通过“引用”相连接。引用记录了下一个节点的内存地址,我们可以通过它从当前节点访问到下一个节点。这意味着链表的各个节点可以被分散存储在内存各处,它们的内存地址是无须连续的。

+

「链表 linked list」是一种线性数据结构,其中的每个元素都是一个节点对象,各个节点通过“引用”相连接。引用记录了下一个节点的内存地址,我们可以通过它从当前节点访问到下一个节点。这意味着链表的各个节点可以被分散存储在内存各处,它们的内存地址是无须连续的。

链表定义与存储方式

图:链表定义与存储方式

-

观察上图,链表中的每个「节点 Node」对象都包含两项数据:节点的“值”、指向下一节点的“引用”。

+

观察上图,链表的组成单位是「节点 node」对象。每个节点都包含两项数据:节点的“值”和指向下一节点的“引用”。

  • 链表的首个节点被称为“头节点”,最后一个节点被称为“尾节点”。
  • 尾节点指向的是“空”,它在 Java, C++, Python 中分别被记为 \(\text{null}\) , \(\text{nullptr}\) , \(\text{None}\)
  • 在 C, C++, Go, Rust 等支持指针的语言中,上述的“引用”应被替换为“指针”。
-

如以下代码所示,链表以节点对象 ListNode 为单位,每个节点除了包含值,还需额外保存下一节点的引用(指针)。因此在相同数据量下,链表通常比数组占用更多的内存空间

+

链表节点 ListNode 如以下代码所示。每个节点除了包含值,还需额外保存一个引用(指针)。因此在相同数据量下,链表比数组占用更多的内存空间

@@ -4302,7 +4302,7 @@

5.   查找节点

-

遍历链表,查找链表内值为 target 的节点,输出节点在链表中的索引。此过程也属于「线性查找」。

+

遍历链表,查找链表内值为 target 的节点,输出节点在链表中的索引。此过程也属于线性查找。

diff --git a/chapter_array_and_linkedlist/list/index.html b/chapter_array_and_linkedlist/list/index.html index 8ccd3f6ba..27928d1ce 100644 --- a/chapter_array_and_linkedlist/list/index.html +++ b/chapter_array_and_linkedlist/list/index.html @@ -3509,7 +3509,7 @@

4.3   列表

数组长度不可变导致实用性降低。在实际中,我们可能事先无法确定需要存储多少数据,这使数组长度的选择变得困难。若长度过小,需要在持续添加数据时频繁扩容数组;若长度过大,则会造成内存空间的浪费。

-

为解决此问题,出现了一种被称为「动态数组 Dynamic Array」的数据结构,即长度可变的数组,也常被称为「列表 List」。列表基于数组实现,继承了数组的优点,并且可以在程序运行过程中动态扩容。我们可以在列表中自由地添加元素,而无须担心超过容量限制。

+

为解决此问题,出现了一种被称为「动态数组 dynamic array」的数据结构,即长度可变的数组,也常被称为「列表 list」。列表基于数组实现,继承了数组的优点,并且可以在程序运行过程中动态扩容。我们可以在列表中自由地添加元素,而无须担心超过容量限制。

4.3.1   列表常用操作

1.   初始化列表

我们通常使用“无初始值”和“有初始值”这两种初始化方法。

diff --git a/chapter_backtracking/backtracking_algorithm/index.html b/chapter_backtracking/backtracking_algorithm/index.html index d16791b96..829faff73 100644 --- a/chapter_backtracking/backtracking_algorithm/index.html +++ b/chapter_backtracking/backtracking_algorithm/index.html @@ -3468,8 +3468,8 @@

13.1   回溯算法

-

「回溯算法 Backtracking Algorithm」是一种通过穷举来解决问题的方法,它的核心思想是从一个初始状态出发,暴力搜索所有可能的解决方案,当遇到正确的解则将其记录,直到找到解或者尝试了所有可能的选择都无法找到解为止。

-

回溯算法通常采用「深度优先搜索」来遍历解空间。在二叉树章节中,我们提到前序、中序和后序遍历都属于深度优先搜索。接下来,我们利用前序遍历构造一个回溯问题,逐步了解回溯算法的工作原理。

+

「回溯算法 backtracking algorithm」是一种通过穷举来解决问题的方法,它的核心思想是从一个初始状态出发,暴力搜索所有可能的解决方案,当遇到正确的解则将其记录,直到找到解或者尝试了所有可能的选择都无法找到解为止。

+

回溯算法通常采用“深度优先搜索”来遍历解空间。在二叉树章节中,我们提到前序、中序和后序遍历都属于深度优先搜索。接下来,我们利用前序遍历构造一个回溯问题,逐步了解回溯算法的工作原理。

例题一

给定一个二叉树,搜索并记录所有值为 \(7\) 的节点,请返回节点列表。

diff --git a/chapter_computational_complexity/space_complexity/index.html b/chapter_computational_complexity/space_complexity/index.html index 3034dd01c..58ab191bd 100644 --- a/chapter_computational_complexity/space_complexity/index.html +++ b/chapter_computational_complexity/space_complexity/index.html @@ -3787,7 +3787,7 @@

2.3.2   推算方法

空间复杂度的推算方法与时间复杂度大致相同,只需将统计对象从“操作数量”转为“使用空间大小”。

-

而与时间复杂度不同的是,我们通常只关注「最差空间复杂度」。这是因为内存空间是一项硬性要求,我们必须确保在所有输入数据下都有足够的内存空间预留。

+

而与时间复杂度不同的是,我们通常只关注最差空间复杂度。这是因为内存空间是一项硬性要求,我们必须确保在所有输入数据下都有足够的内存空间预留。

观察以下代码,最差空间复杂度中的“最差”有两层含义。

  1. 以最差输入数据为准:当 \(n < 10\) 时,空间复杂度为 \(O(1)\) ;但当 \(n > 10\) 时,初始化的数组 nums 占用 \(O(n)\) 空间;因此最差空间复杂度为 \(O(n)\)
  2. @@ -5134,7 +5134,7 @@ O(1) < O(\log n) < O(n) < O(n^2) < O(2^n) \newline

    图:递归函数产生的平方阶空间复杂度

    4.   指数阶 \(O(2^n)\)

    -

    指数阶常见于二叉树。高度为 \(n\) 的「满二叉树」的节点数量为 \(2^n - 1\) ,占用 \(O(2^n)\) 空间:

    +

    指数阶常见于二叉树。高度为 \(n\) 的“满二叉树”的节点数量为 \(2^n - 1\) ,占用 \(O(2^n)\) 空间:

    diff --git a/chapter_computational_complexity/time_complexity/index.html b/chapter_computational_complexity/time_complexity/index.html index 4b8c67a70..d5a158444 100644 --- a/chapter_computational_complexity/time_complexity/index.html +++ b/chapter_computational_complexity/time_complexity/index.html @@ -3766,7 +3766,7 @@ \]

    但实际上,统计算法的运行时间既不合理也不现实。首先,我们不希望将预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。其次,我们很难获知每种操作的运行时间,这给预估过程带来了极大的难度。

    2.2.1   统计时间增长趋势

    -

    「时间复杂度分析」采取了一种不同的方法,其统计的不是算法运行时间,而是算法运行时间随着数据量变大时的增长趋势

    +

    时间复杂度分析统计的不是算法运行时间,而是算法运行时间随着数据量变大时的增长趋势

    “时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 \(n\) ,给定三个算法函数 ABC

    @@ -3982,9 +3982,9 @@
    -

    算法 A 只有 \(1\) 个打印操作,算法运行时间不随着 \(n\) 增大而增长。我们称此算法的时间复杂度为「常数阶」。

    -

    算法 B 中的打印操作需要循环 \(n\) 次,算法运行时间随着 \(n\) 增大呈线性增长。此算法的时间复杂度被称为「线性阶」。

    -

    算法 C 中的打印操作需要循环 \(1000000\) 次,虽然运行时间很长,但它与输入数据大小 \(n\) 无关。因此 C 的时间复杂度和 A 相同,仍为「常数阶」。

    +

    算法 A 只有 \(1\) 个打印操作,算法运行时间不随着 \(n\) 增大而增长。我们称此算法的时间复杂度为“常数阶”。

    +

    算法 B 中的打印操作需要循环 \(n\) 次,算法运行时间随着 \(n\) 增大呈线性增长。此算法的时间复杂度被称为“线性阶”。

    +

    算法 C 中的打印操作需要循环 \(1000000\) 次,虽然运行时间很长,但它与输入数据大小 \(n\) 无关。因此 C 的时间复杂度和 A 相同,仍为“常数阶”。

    算法 A 、B 和 C 的时间增长趋势

    图:算法 A 、B 和 C 的时间增长趋势

    @@ -5595,7 +5595,7 @@ O((n - 1) \frac{n}{2}) = O(n^2)
-

指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用「动态规划」或「贪心」等算法来解决。

+

指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用动态规划或贪心等算法来解决。

5.   对数阶 \(O(\log n)\)

与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 \(n\) ,由于每轮缩减到一半,因此循环次数是 \(\log_2 n\) ,即 \(2^n\) 的反函数。相关代码如下:

@@ -6213,7 +6213,7 @@ n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
  • nums = [?, ?, ..., 1] ,即当末尾元素是 \(1\) 时,需要完整遍历数组,达到最差时间复杂度 \(O(n)\)
  • nums = [1, ?, ?, ...] ,即当首个元素为 \(1\) 时,无论数组多长都不需要继续遍历,达到最佳时间复杂度 \(\Omega(1)\)
  • -

    「最差时间复杂度」对应函数渐近上界,使用大 \(O\) 记号表示。相应地,「最佳时间复杂度」对应函数渐近下界,用 \(\Omega\) 记号表示:

    +

    “最差时间复杂度”对应函数渐近上界,使用大 \(O\) 记号表示。相应地,“最佳时间复杂度”对应函数渐近下界,用 \(\Omega\) 记号表示:

    @@ -6544,8 +6544,8 @@ n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
    -

    值得说明的是,我们在实际中很少使用「最佳时间复杂度」,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。而「最差时间复杂度」更为实用,因为它给出了一个效率安全值,让我们可以放心地使用算法。

    -

    从上述示例可以看出,最差或最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小,并不能真实地反映算法运行效率。相比之下,「平均时间复杂度」可以体现算法在随机输入数据下的运行效率,用 \(\Theta\) 记号来表示。

    +

    值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。而最差时间复杂度更为实用,因为它给出了一个效率安全值,让我们可以放心地使用算法。

    +

    从上述示例可以看出,最差或最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小,并不能真实地反映算法运行效率。相比之下,平均时间复杂度可以体现算法在随机输入数据下的运行效率,用 \(\Theta\) 记号来表示。

    对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 \(1\) 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 \(\frac{n}{2}\) ,平均时间复杂度为 \(\Theta(\frac{n}{2}) = \Theta(n)\)

    但对于较为复杂的算法,计算平均时间复杂度往往是比较困难的,因为很难分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。

    diff --git a/chapter_data_structure/basic_data_types/index.html b/chapter_data_structure/basic_data_types/index.html index 8455120d0..eb0cc7e6e 100644 --- a/chapter_data_structure/basic_data_types/index.html +++ b/chapter_data_structure/basic_data_types/index.html @@ -3482,7 +3482,7 @@
    -
    // 使用多种「基本数据类型」来初始化「数组」
    +
    // 使用多种基本数据类型来初始化数组
     var numbers = [5]int{}
     var decimals = [5]float64{}
     var characters = [5]byte{}
    diff --git a/chapter_data_structure/classification_of_data_structure/index.html b/chapter_data_structure/classification_of_data_structure/index.html
    index f7479df43..c11bd767e 100644
    --- a/chapter_data_structure/classification_of_data_structure/index.html
    +++ b/chapter_data_structure/classification_of_data_structure/index.html
    @@ -3414,7 +3414,7 @@
     

    3.1   数据结构分类

    常见的数据结构包括数组、链表、栈、队列、哈希表、树、堆、图,它们可以从“逻辑结构”和“物理结构”两个维度进行分类。

    3.1.1   逻辑结构:线性与非线性

    -

    「逻辑结构」揭示了数据元素之间的逻辑关系。在数组和链表中,数据按照顺序依次排列,体现了数据之间的线性关系;而在树中,数据从顶部向下按层次排列,表现出祖先与后代之间的派生关系;图则由节点和边构成,反映了复杂的网络关系。

    +

    逻辑结构揭示了数据元素之间的逻辑关系。在数组和链表中,数据按照顺序依次排列,体现了数据之间的线性关系;而在树中,数据从顶部向下按层次排列,表现出祖先与后代之间的派生关系;图则由节点和边构成,反映了复杂的网络关系。

    逻辑结构可被分为“线性”和“非线性”两大类。线性结构比较直观,指数据在逻辑关系上呈线性排列;非线性结构则相反,呈非线性排列。

    • 线性数据结构:数组、链表、栈、队列、哈希表。
    • @@ -3437,7 +3437,7 @@

      图:内存条、内存空间、内存地址

      内存是所有程序的共享资源,当某块内存被某个程序占用时,则无法被其他程序同时使用了。因此在数据结构与算法的设计中,内存资源是一个重要的考虑因素。比如,算法所占用的内存峰值不应超过系统剩余空闲内存;如果缺少连续大块的内存空间,那么所选用的数据结构必须能够存储在离散的内存空间内。

      -

      「物理结构」反映了数据在计算机内存中的存储方式,可分为连续空间存储(数组)和离散空间存储(链表)。物理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特点。

      +

      物理结构反映了数据在计算机内存中的存储方式,可分为连续空间存储(数组)和离散空间存储(链表)。物理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特点。

      连续空间存储与离散空间存储

      图:连续空间存储与离散空间存储

      diff --git a/chapter_data_structure/number_encoding/index.html b/chapter_data_structure/number_encoding/index.html index ca06d880e..99884f51c 100644 --- a/chapter_data_structure/number_encoding/index.html +++ b/chapter_data_structure/number_encoding/index.html @@ -3417,8 +3417,8 @@

      在本书中,标题带有的 * 符号的是选读章节。如果你时间有限或感到理解困难,可以先跳过,等学完必读章节后再单独攻克。

    3.3.1   原码、反码和补码

    -

    从上一节的表格中我们发现,所有整数类型能够表示的负数都比正数多一个。例如,byte 的取值范围是 \([-128, 127]\) 。这个现象比较反直觉,它的内在原因涉及到原码、反码、补码的相关知识。

    -

    在展开分析之前,我们首先给出三者的定义:

    +

    在上一节的表格中我们发现,所有整数类型能够表示的负数都比正数多一个,例如 byte 的取值范围是 \([-128, 127]\) 。这个现象比较反直觉,它的内在原因涉及到原码、反码、补码的相关知识。

    +

    实际上,数字是以“补码”的形式存储在计算机中的。在分析这样做的原因之前,我们首先给出三者的定义:

    • 原码:我们将数字的二进制表示的最高位视为符号位,其中 \(0\) 表示正数,\(1\) 表示负数,其余位表示数字的值。
    • 反码:正数的反码与其原码相同,负数的反码是对其原码除符号位外的所有位取反。
    • @@ -3427,8 +3427,7 @@

      原码、反码与补码之间的相互转换

      图:原码、反码与补码之间的相互转换

      -

      显然「原码」最为直观。但实际上,数字是以「补码」的形式存储在计算机中的。这是因为原码存在一些局限性。

      -

      一方面,负数的原码不能直接用于运算。例如,我们在原码下计算 \(1 + (-2)\) ,得到的结果是 \(-3\) ,这显然是不对的。

      +

      「原码 true form」虽然最直观,但存在一些局限性。一方面,负数的原码不能直接用于运算。例如在原码下计算 \(1 + (-2)\) ,得到的结果是 \(-3\) ,这显然是不对的。

      \[ \begin{aligned} & 1 + (-2) \newline @@ -3437,7 +3436,7 @@ & = -3 \end{aligned} \]
      -

      为了解决此问题,计算机引入了「反码」。如果我们先将原码转换为反码,并在反码下计算 \(1 + (-2)\) ,最后将结果从反码转化回原码,则可得到正确结果 \(-1\)

      +

      为了解决此问题,计算机引入了「反码 1's complement code」。如果我们先将原码转换为反码,并在反码下计算 \(1 + (-2)\) ,最后将结果从反码转化回原码,则可得到正确结果 \(-1\)

      \[ \begin{aligned} & 1 + (-2) \newline @@ -3455,7 +3454,7 @@ -0 & = 1000 \space 0000 \end{aligned} \]
      -

      与原码一样,反码也存在正负零歧义问题,因此计算机进一步引入了「补码」。我们先来观察一下负零的原码、反码、补码的转换过程:

      +

      与原码一样,反码也存在正负零歧义问题,因此计算机进一步引入了「补码 2's complement code」。我们先来观察一下负零的原码、反码、补码的转换过程:

      \[ \begin{aligned} -0 = \space & 1000 \space 0000 \space \text{(原码)} \newline diff --git a/chapter_divide_and_conquer/divide_and_conquer/index.html b/chapter_divide_and_conquer/divide_and_conquer/index.html index 0ff20dd95..f719ee5f9 100644 --- a/chapter_divide_and_conquer/divide_and_conquer/index.html +++ b/chapter_divide_and_conquer/divide_and_conquer/index.html @@ -3474,12 +3474,12 @@

      12.1   分治算法

      -

      「分治 Divide and Conquer」,全称分而治之,是一种非常重要且常见的算法策略。分治通常基于递归实现,包括“分”和“治”两步:

      +

      「分治 divide and conquer」,全称分而治之,是一种非常重要且常见的算法策略。分治通常基于递归实现,包括“分”和“治”两步:

      1. 分(划分阶段):递归地将原问题分解为两个或多个子问题,直至到达最小子问题时终止。
      2. 治(合并阶段):从已知解的最小子问题开始,从底至顶地将子问题的解进行合并,从而构建出原问题的解。
      -

      已介绍过的「归并排序」是分治策略的典型应用之一,它的分治策略为:

      +

      我们已学过的“归并排序”是分治策略的典型应用之一,其算法原理为:

      1. :递归地将原数组(原问题)划分为两个子数组(子问题),直到子数组只剩一个元素(最小子问题)。
      2. :从底至顶地将有序的子数组(子问题的解)进行合并,从而得到有序的原数组(原问题的解)。
      3. @@ -3504,7 +3504,7 @@

        分治不仅可以有效地解决算法问题,往往还可以带来算法效率的提升。在排序算法中,快速排序、归并排序、堆排序相较于选择、冒泡、插入排序更快,就是因为它们应用了分治策略。

        那么,我们不禁发问:为什么分治可以提升算法效率,其底层逻辑是什么?换句话说,将大问题分解为多个子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高?这个问题可以从操作数量和并行计算两方面来讨论。

        1.   操作数量优化

        -

        以「冒泡排序」为例,其处理一个长度为 \(n\) 的数组需要 \(O(n^2)\) 时间。假设我们把数组从中点分为两个子数组,则划分需要 \(O(n)\) 时间,排序每个子数组需要 \(O((\frac{n}{2})^2)\) 时间,合并两个子数组需要 \(O(n)\) 时间,总体时间复杂度为:

        +

        以“冒泡排序”为例,其处理一个长度为 \(n\) 的数组需要 \(O(n^2)\) 时间。假设我们把数组从中点分为两个子数组,则划分需要 \(O(n)\) 时间,排序每个子数组需要 \(O((\frac{n}{2})^2)\) 时间,合并两个子数组需要 \(O(n)\) 时间,总体时间复杂度为:

        \[ O(n + (\frac{n}{2})^2 \times 2 + n) = O(\frac{n^2}{2} + 2n) \]
        @@ -3520,8 +3520,8 @@ n(n - 4) & > 0 \end{aligned} \]

      这意味着当 \(n > 4\) 时,划分后的操作数量更少,排序效率应该更高。请注意,划分后的时间复杂度仍然是平方阶 \(O(n^2)\) ,只是复杂度中的常数项变小了。

      -

      进一步想,如果我们把子数组不断地再从中点划分为两个子数组,直至子数组只剩一个元素时停止划分呢?这种思路实际上就是「归并排序」,时间复杂度为 \(O(n \log n)\)

      -

      再思考,如果我们多设置几个划分点,将原数组平均划分为 \(k\) 个子数组呢?这种情况与「桶排序」非常类似,它非常适合排序海量数据,理论上时间复杂度可以达到 \(O(n + k)\)

      +

      进一步想,如果我们把子数组不断地再从中点划分为两个子数组,直至子数组只剩一个元素时停止划分呢?这种思路实际上就是“归并排序”,时间复杂度为 \(O(n \log n)\)

      +

      再思考,如果我们多设置几个划分点,将原数组平均划分为 \(k\) 个子数组呢?这种情况与“桶排序”非常类似,它非常适合排序海量数据,理论上时间复杂度可以达到 \(O(n + k)\)

      2.   并行计算优化

      我们知道,分治生成的子问题是相互独立的,因此通常可以并行解决。也就是说,分治不仅可以降低算法的时间复杂度,还有利于操作系统的并行优化

      并行优化在多核或多处理器的环境中尤其有效,因为系统可以同时处理多个子问题,更加充分地利用计算资源,从而显著减少总体的运行时间。

      diff --git a/chapter_dynamic_programming/dp_problem_features/index.html b/chapter_dynamic_programming/dp_problem_features/index.html index 163667b2a..3b31cd2f9 100644 --- a/chapter_dynamic_programming/dp_problem_features/index.html +++ b/chapter_dynamic_programming/dp_problem_features/index.html @@ -3422,9 +3422,9 @@

      14.2   动态规划问题特性

      在上节中,我们学习了动态规划是如何通过子问题分解来求解问题的。实际上,子问题分解是一种通用的算法思路,在分治、动态规划、回溯中的侧重点不同:

        -
      • 「分治算法」递归地将原问题划分为多个相互独立的子问题,直至最小子问题,并在回溯中合并子问题的解,最终得到原问题的解。
      • -
      • 「动态规划」也对问题进行递归分解,但与分治算法的主要区别是,动态规划中的子问题是相互依赖的,在分解过程中会出现许多重叠子问题。
      • -
      • 「回溯算法」在尝试和回退中穷举所有可能的解,并通过剪枝避免不必要的搜索分支。原问题的解由一系列决策步骤构成,我们可以将每个决策步骤之前的子序列看作为一个子问题。
      • +
      • 分治算法递归地将原问题划分为多个相互独立的子问题,直至最小子问题,并在回溯中合并子问题的解,最终得到原问题的解。
      • +
      • 动态规划也对问题进行递归分解,但与分治算法的主要区别是,动态规划中的子问题是相互依赖的,在分解过程中会出现许多重叠子问题。
      • +
      • 回溯算法在尝试和回退中穷举所有可能的解,并通过剪枝避免不必要的搜索分支。原问题的解由一系列决策步骤构成,我们可以将每个决策步骤之前的子序列看作为一个子问题。

      实际上,动态规划常用来求解最优化问题,它们不仅包含重叠子问题,还具有另外两大特性:最优子结构、无后效性。

      14.2.1   最优子结构

      @@ -3441,7 +3441,7 @@
      \[ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i] \]
      -

      这便可以引出「最优子结构」的含义:原问题的最优解是从子问题的最优解构建得来的

      +

      这便可以引出最优子结构的含义:原问题的最优解是从子问题的最优解构建得来的

      本题显然具有最优子结构:我们从两个子问题最优解 \(dp[i-1]\) , \(dp[i-2]\) 中挑选出较优的那一个,并用它构建出原问题 \(dp[i]\) 的最优解。

      那么,上节的爬楼梯题目有没有最优子结构呢?它的目标是求解方案数量,看似是一个计数问题,但如果换一种问法:“求解最大方案数量”。我们意外地发现,虽然题目修改前后是等价的,但最优子结构浮现出来了:第 \(n\) 阶最大方案数量等于第 \(n-1\) 阶和第 \(n-2\) 阶最大方案数量之和。所以说,最优子结构的解释方式比较灵活,在不同问题中会有不同的含义。

      根据状态转移方程,以及初始状态 \(dp[1] = cost[1]\) , \(dp[2] = cost[2]\) ,可以得出动态规划代码。

      @@ -3794,7 +3794,7 @@ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]

    14.2.2   无后效性

    -

    「无后效性」是动态规划能够有效解决问题的重要特性之一,定义为:给定一个确定的状态,它的未来发展只与当前状态有关,而与当前状态过去所经历过的所有状态无关

    +

    无后效性是动态规划能够有效解决问题的重要特性之一,定义为:给定一个确定的状态,它的未来发展只与当前状态有关,而与当前状态过去所经历过的所有状态无关

    以爬楼梯问题为例,给定状态 \(i\) ,它会发展出状态 \(i+1\) 和状态 \(i+2\) ,分别对应跳 \(1\) 步和跳 \(2\) 步。在做出这两种选择时,我们无须考虑状态 \(i\) 之前的状态,它们对状态 \(i\) 的未来没有影响。

    然而,如果我们向爬楼梯问题添加一个约束,情况就不一样了。

    diff --git a/chapter_dynamic_programming/dp_solution_pipeline/index.html b/chapter_dynamic_programming/dp_solution_pipeline/index.html index da886e4ec..81e4b00f9 100644 --- a/chapter_dynamic_programming/dp_solution_pipeline/index.html +++ b/chapter_dynamic_programming/dp_solution_pipeline/index.html @@ -3510,7 +3510,7 @@

    如果一个问题满足决策树模型,并具有较为明显的“加分项“,我们就可以假设它是一个动态规划问题,并在求解过程中验证它。

    14.3.2   问题求解步骤

    动态规划的解题流程会因问题的性质和难度而有所不同,但通常遵循以下步骤:描述决策,定义状态,建立 \(dp\) 表,推导状态转移方程,确定边界条件等。

    -

    为了更形象地展示解题步骤,我们使用一个经典问题「最小路径和」来举例。

    +

    为了更形象地展示解题步骤,我们使用一个经典问题“最小路径和”来举例。

    Question

    给定一个 \(n \times m\) 的二维网格 grid ,网格中的每个单元格包含一个非负整数,表示该单元格的代价。机器人以左上角单元格为起始点,每次只能向下或者向右移动一步,直至到达右下角单元格。请返回从左上角到右下角的最小路径和。

    diff --git a/chapter_dynamic_programming/intro_to_dynamic_programming/index.html b/chapter_dynamic_programming/intro_to_dynamic_programming/index.html index be5313734..da3c5057a 100644 --- a/chapter_dynamic_programming/intro_to_dynamic_programming/index.html +++ b/chapter_dynamic_programming/intro_to_dynamic_programming/index.html @@ -3448,7 +3448,7 @@

    14.1   初探动态规划

    -

    「动态规划 Dynamic Programming」是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。

    +

    「动态规划 dynamic programming」是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。

    在本节中,我们从一个经典例题入手,先给出它的暴力回溯解法,观察其中包含的重叠子问题,再逐步导出更高效的动态规划解法。

    爬楼梯

    @@ -3997,7 +3997,7 @@ dp[i] = dp[i-1] + dp[i-2]

    爬楼梯对应递归树

    图:爬楼梯对应递归树

    -

    观察上图发现,指数阶的时间复杂度是由于「重叠子问题」导致的。例如:\(dp[9]\) 被分解为 \(dp[8]\)\(dp[7]\)\(dp[8]\) 被分解为 \(dp[7]\)\(dp[6]\) ,两者都包含子问题 \(dp[7]\)

    +

    观察上图发现,指数阶的时间复杂度是由于“重叠子问题”导致的。例如:\(dp[9]\) 被分解为 \(dp[8]\)\(dp[7]\)\(dp[8]\) 被分解为 \(dp[7]\)\(dp[6]\) ,两者都包含子问题 \(dp[7]\)

    以此类推,子问题中包含更小的重叠子问题,子子孙孙无穷尽也。绝大部分计算资源都浪费在这些重叠的问题上。

    14.1.2   方法二:记忆化搜索

    为了提升算法效率,我们希望所有的重叠子问题都只被计算一次。为此,我们声明一个数组 mem 来记录每个子问题的解,并在搜索过程中这样做:

    diff --git a/chapter_dynamic_programming/unbounded_knapsack_problem.assets/unbounded_knapsack_example.png b/chapter_dynamic_programming/unbounded_knapsack_problem.assets/unbounded_knapsack_example.png index 016228998a857bfef8e15d3a111c1b2471bc4ba9..17d95b8435318f3b10329f94b1fb61ef294226de 100644 GIT binary patch delta 42300 zcmc$`byQW~w>L~mNhl)HC;|ckBHaiA(%mH>9fwA8gQAEMD$?EE-57w<-6h?9=y(?# zzQ5nS&v?iCj{DqaJole7^lNrMU;NM z87@p3?s`M%viX>va(}e1CnsqMmhUMjDOj(kj537!uw!$(s1$Y+<_1IA?U4GRw!)HT;Ctat!?hDN}5gV)x z0M~i|dbH>jbdI>}!`v6EX`CRfT`|d7I?&j^C zyW)od#n#5NIqxgRUko4l7@P!@9y&^e|HX$PWI9g@Fh2`W3}I#4`RRPEA#LDa%QkI+si`fT2ikjILrio|3FZu@x0gH0yW^ z)4+#vdTX5ry6szcXZS*}(ZlUK`3AkBx;mFt=Xn3OZyOWUPi33&%@S-MG4c+eU+`Y+gwp2~Bu*m7%0U`e&TloQA>rA)(edqP;8N;DOqtX`1?BXp zF2Bhw5hP@^SZWdcLPG5?eAGT7UUxr)ga{`?4ac7E?A4eS*R$O)IL5kXpD7}X|M@0G8Lz8AL$f3d3af{JX>@; zjDviQYFzye=@|6n>)57{m~PvIg)+DV2?di!)dy)f30J1<@_uOK42oJ`V$@<)L*M0a zuxYO9aq@YE*y=~!Dd50fB$=EMOqo)LBxFC*e9ydd`Aj4f7i5%|H8(7-hJ&_JCZZ~< zJ4IITX>#A!5bg1%wf<|T;xFS(FILS`;oL@F^IBgs)m5d%2&@`dhWCDdv1~Mda@$@m z$j`-NuFw|@2TVf@9n*(mv{04lHd=D;)1YJu2?x1qhX+YQx-=-5Ys9`#Wx6D(+>Lu_ ztAWM1@6BqIv~2J7)N68c^?iWZ{^BmnPfjkLNq1%0eJw~&;UOJW;bb>5ZiL{8C?lLLQo)eGM@=#g;pHmv_K zjc1{!o#FH%s2<7`kpA?_Vt%nTGjmuo&nIoSzo{+9!!4`4g<+tHmlp$Jm=jSSq}K+S z4)SQ04+#cpQ(Vt_m&zxsRHH?~Bt@9f_g=3+1}7%W_{lto3*_&9aB-N=BtwDgh|t_% z8n8(gz8szJZ=y$|N>$E!PM_XBsJNla3td^s0}az>qHnOjR0#Vy)p%Epvz}M&(|j!8 z7nxBa;)6dPB~L|bDP8%=v=0se64e&nG>R_sv?UHHA>0Rt4q5Rr#CODz$}2GtNv z6>gOan0ligu)~HW%u)v*y&uc^+ud8JLqF61eg(c->a&TVVR5Sm2AR|DKe%+AekNp; zY4-tg-9Q<1Pc}PU(WaR{?HDf0+&-2x1okN6{Iyy*UOffgp4(TxFGB5rrisqyF#3_n zxzwjxaqrdbDb?!cJhdKkLGs8&RQ~FwEOL}v426z8Le8g_$inaH1x~mhkbU_i0X%b@ zSp;cqV?Sdb4oNj~2PztFH4{}of^DQr!}GT;@4pi2L$WPVwnCl<$9aAKa(vVTzF;=D zhRt=0Q_v&j7MB*%91u=_>9`omKD><>$_ZVUcSm@^h zFMkjHS12Kx~|RVX3oYI}<0L11qrTe+a^ZaY0(z-&xC#lHlg%+E4F%OojtJJTfgf9}ZouD}y3-Z-Wd`WRq zAEr_bE$4oe?poZ{FW67~D%v#&7a!xg6LD8VRVNZLUQ8Z+>cMT!ROk)j2|TjXk#9R= z%WQj#nH}j0&b>uWLf;J9_O1LtZ-8}-s2Z)?jM5!__6;H{lPz|5aTV>Tr@4^beI^EH z`iU=}O+AA?V>HvX>FDL8+Fp4C%m1TwTQlJ(wEXmVna^V{=jn*mC+}lwtE08?#+|wA zJ3zO=E%bW3RSA73P|(rQ9bM}g85!LVHoS%n{b}jxHz(HzRc*8cD7)51N;2eP!asku z+v|~Z-54Lqb4Xgz)6(MgI(E{ca9>K2l6uBR8Nq5$Z_*Z?m|;FrY*OR0j^cVB7G2u0 zPgG{x_4LPz@Xf2Lla|oEqR(h4TZ<$u zMT)w%jSh(FBkMBj1jAw?J-=mG>p0x^mQGJStt4e-+x1*0;EkyGn!L6$e&3VHFzMr* zdKWrkm~+n0PN0JcR}vBub-aLgIK=uM>tzk+$2pILj+as#y9Bwr=l=RbRNlKC+^D-@ z?3VqR^zpBMz=(HTKBw@-7CVc5{|aMjf$D!g*=srY_>nEzIh(FBPVjz>+sU`3rANC2 zlUGM8fn5j^a-qj)bo7Ilx}Mujn++HB)WO3?qxD`VmG-j^j*e8GTi?s9hJq>h2je8l zOrp49lhfbdR@jUUrbgu|>y4KdYlLN%58ct57M=U5%8ay8ZzuNaL--Bsu-zavo zc(47D6}6h_H#qIlj6z3k2Io7iOa)6*hs{A`F`QNl*1m~lIm~Tae}4*}?e(>{xBm&H zznmc7VuXRW+n|;i!*;)l!i4*3-ZSAQ!Kf9ihK=e~^*rq~MtpLft%@mc710CCPX5hW z5kIENC#kwzl$^=uF~$^n=U41=Ma>7ol2M;iNV$VDC&{WrO8T_uJj(ZQ`XJJUv!sSO2iK<(sis(f6B|S&MH6QDBsU}cHj31uc2HmWAO&QFk277{b6HBdP%bRaC`P(VeX5Eb)F`Nq1wbk_L|_q zxUocoG<1HnXbRUG`(z6{>k>MV?J2NLuZ0iltlX~H9F5`F@pkWP7`b=vEL&Ff_r);L zac4}q)1Ps*68gOJ*)bwv&%&*N6T0A|Hdm%ajD&#ogCy&#vxb^r8Rh;(Lf~GjJ#>ai zt%!;owDSbR9ZfGK^9H@0>6dIxq4PsyN6mtf`JC1Q-Kw4Sim5>n^EBeenu$``op-YA z^EmP}cH4LiM1l#E%l{-g8M)kMlZ>r7P|rj>Bf zTG!BiVq9k+6mz|+6u_=>gKVUO2r}b*-fvoZen1H`4(3gFk>sm(QhSW;sdCyi;eEK4;5N+$n}~6)z!VNo)Z7inX%tpbX%c z^ZCV#?C$j`TpV>l>K1Z0Z6|Bp;QqXI&&wW1GccnvLnhMZxdk_lS0;VKc?Nesf2*?S zqsyQf@H$JEk7I1yUms(#9z?Mr)z{ZvnUV>potRLmZ~39IuZQhJbj-Nap{Jo-TBjRx zobvoxd4~Pl1#M{Nr~Ys}3u|8F*7gGryldzeORspQ{iQR9ofDj!g3)Rr>ueNv%Fj-w zF6!5c+g@g2eIl9C4&i@V18vqF=r5 z)d+o66a>}kmfT%bhw}B{9FR~)uJ?8mv4YUiD~g;9$B{0dT0OC4Z!w)=$96N}VaIG~ z`cLIE zWzbVpOvI30MlO#o%r4YIYHDg)C{;^W-aH%ndpH|1B(*o50@cu_1&;Vs zpKzf;Z%1jn-)}ZXNxr3-b;T=pBke$Es|IJsa56rp%m5=i>Y=_=Jl;71SGM)HqtQ44 z7U++eZV&oXZ_=Ml_Ngo?OgfJ>jizA^OZ&gjgqnn1;9!^Cw(+ov6C-tm0Y zyN(eeK9mSUC#Iu}jEscRE9^7n`PR&~glH@%?w9&?t8If>VYregKD@$UvU%(}N zx+PYZ!&;|TdbjDwaxD)j0)U$osuw|O{2)z&KQIs5DyrcbN-K9VD8ZEfxCmYgsj zs!6X~CZeFQsm~deUe%jDj+GXvBd`nbiGSd@UN%&J08M&i7o7WA*;#mco_-`^Ds>M% z_Z0?{;GS>_m3g!_aPuu7aq`68-vnoKFcMLNMeRnl^Qx0PdNZuytlWBi(bdo$1W9eO z_T0+zPiz|PgRYO+*p#A^%H1NMvpC7Mw43y}UTaRQa(MT;UELd)Ka8KoKrfRjj zOHM+m-LsHn!iiKG_o4aX-nSdLeWY6Ez5xyjZo1ZCOnPOT1Ji+IeCU+oc!))S>o)4% z`dND`*AIx5Ny?0?~twGu$cXja-8hENJ-TSBZ;LG3Z@Dg&Mk!&G<>Qv68%wgsD>Gh6{uN*-qiMDu;9R_Z3UOPIT;RB-r#)NRmmPU z;Z1NkGZ*^Zi-aVCB=!86>N5%t?ouu(1mGpOb(ux=$m%{s!H^IUON0h+GM-V@xxUBB9Nx7DSCuepWRPpDk1;6_Ft7WwFhx~r`O2d8c2c^Q_5A0qM4 z!#v$Bry62`+OWLRdv|WjVabml{hs>Tn_T;&_SfOB^NAbpg`_<~dyOQ6m-TGeuo1&o zEI_lohqS4Wl%lUENQ{WhNGNJpH+iaz%aHA!DS1DW^49^~fbe#sx*IH)Sw^@RiDYbdCoD7 zt23niE=PKga=bKK?>gWEywr{yymxo*_zH6CG7=CHdi8h9AFJppsz(}xf4!UVjg<8h z-TK$fhI2s$x6fI%WEFW<(Ibxqc~cmR>oYiDy8!ybZJ*xV#V>X zO7U!xv({wCF7=cIK5kAyw(c~gzS3O@XV_HEvuT$3N5_H=nr(?SzY())BtcQqX69pJ zk_kZ_C=r2Emh6Ikp4R}+myX^PnCT^1mt($4#C0Die%3hc!05}6(=E4{*k4-8R9`2< zy*ECe`q%3=6zW;`i)qo?fX8ArUG1Iru2zn|#bkkmP~XAo*UcLPmk$Fx*3TB|TL2}& z0ZKwd=IiwBfiLNe#+$w_J+5!E5sPz`=3dU}E(n&6t17ODH1(PjXcPzT&thqv{qf2T zkx(GS?JBhZ80^SXm_Vd7SKI;kAjTpv+MV*JlfH3i2ncZHC%*2n+1jh zFS^cy<&}T3{rv)wwevF`A>1qQ3V0f2YTo+tekRF+)RR_g)2v*n~%K<~~B zx|LaJtM$cr#er?Rmg5Eb#e?H{t2YQJMk|73t@IhOMASQI+OJB3K7M4`{l=op-B)|O zT_W_G^^Z^5 zb_ZoAijChUk8lO?Q;d3xNowBkB99M@& zt>->{i104E46vsBV{zJ7DD8Qwh`q&MR-F3i%B7gonRQcij%98(7KXy7UVM1t;SEQB zSYczIp_1ca$_)G!E{?*Ryw|HL2g209S&cX7UvDdeM;&LdUf2!)r7=o2Rwa}>?qF)g z%2k%q>PbmBQ|l>kiR(G&ZAAHp)({0AO3cNlc10$Au=f3RIQJJ-V$x%h30H+wO)WHm zIIyjAEU_*K>WjA8-z*N=ZHV69*p#Usvi_Tmcb^Keye&A-)zsBZO-ulCY-(;^5j0(7 z;^WhXR`uZAQ(9uZ+Xm>2A1)UK5QHOct5l~;)ro?Q>UwyVgJ+2g6AcNwMN#ZChhy?f zyzQehh=d2(4D(T;ns}{#!I8d_QW8`;31?(wJ$NnP4jU_HcJzts8Sh5{AbZK|yH!D* z3qbH@uU_>Zzg(oG4!56e#-$YC5fl`3Vul+#9qr72y35>~_fx;leR`RV7!C{NyvD&i9d4V^hezF!zh#s^z3k|SF0QlF5!FqO_l7u(=L_z? z)-Yk!DsoHGnx1(E-9N@PY+||EG%YyYsB4FG>2EO6hz~(p=8sPmA0A!~#_{djx9NA| z5huG{!c$%c6H-!A2Hr<$lQ}4gOCD{^6>|#<+UV6T>&M_C4KgmBd5YL>Zt3?j;g5@k ziew^KKs_vL#rBiYD1jyy#pZ5?*Z)Id;#>%WR z&L{6OYe&L4PX;*2k54um8USDO*bih`O?3vI+wUBlT9TfjOw)Xvf_Rk0&xG@f852>bPBC9M1z1(Ij{iPV%%DIWJ>uS#Dh=`1HDH}^m zC(OIfrj|*MiO4w2KfA3R!&e(lHu#xS3j%U;)bo^u?K0%!a{H>E7)}ru4%NBsF6=IJ z=#-cS3939RPKT7atp?Y&e&SawV#v|J%(SZ93{9m&ZS(MB5;$!nw>PSm_Mdt$fAiyL zAm_T~`;w3Z8(FNKve#UYna=^E78@Pyel#CZGx0+m0$-@Br~6h$4_dYDE7%TCdlY7? zbJ>m*r&Vp{RZJ?s@C4f>D#jG~;-_vyURV+Iir^lZ)eUF4WCMy%wP!M^^SPZQTZ^mm z^{(ynRHZh$DP%01fuZXOqNE6)S_DTje}P=qEtDj*JJ}Y4Y0|px%V`T=n}F|rc7HtO zx!a-W&+C<-DRi>NKA@ap*P-^EBUq#B!|_54>@+)H68=cC%^>RNV{3B=)l?1Sx(RBt z`dwnm>690av|?Sn`!S?6pxsGeY>Rv^DU$;2*L0GF#t z8$mH%A!+V+42&8gA#2f4i@$cGe>;7nfd~$s1@nV>?KT68{`|W`6U8Q*Le_th`rGhk`NJ?mkKIP8AOToU-9UwyW)dZAE(fe8KVF za$k|LWSWg5?l2km-yCPqrDV~AksLyA6Q36 zM+=mKdJv5_QqE2NTO)^< zf@mT|Zi+JRSXDlTNKM(?x@{NNTV8>){RI!_$P0OnR)HF>U2IR}!s>U%bR=Xa_n76g z_fPL2@KYm%jPm%+ypKdGHfF!-bVh==vJ(2kkF<9-qY6maO&{$73U6p(K*K<<&yhDX z_Q*~f?uSpox0iZR7yei)nGtaM>Lek;=ap)D6GDpGAwoN==Vf$CG3dEF`EpCajTElq zNo55by1G5E+2){wuP8^+DEXeWjDuEl#H9Ll#79uICp>%Wcrqm==+|ol(Hagu?Sj%f z1{HRLIPZsM$L9WJV?YPGm-W6>)p^gFl@{Oc9QEakVe?OKkBP#p;m4oF zt+W_aKIt)dvk$%FVrZB8Q5~=~A7S9K+&ll9CWK=*LpI8Yb^1mHfwSr!zx$r~1f+9o z`jU~O$Cr>0LOZ0aaqxb6XDoZOLOCUl&~w|yB(3QF7&jpgjm^*pbMYS?WF#i@HR%|{ zME974x%l)dTik}PEg1kZ3wdj`6+aOo6hitNTI}jpJRJ$b264{OIa*EjcwJlxIP)4( zf^^cW#;a%GFfHHYTZn{=@8HL<`*k!Wbkq^j$tsGrnRCJ>$Mq-QS+F0+aoI$ht_uM+ z#AA1friOCIC5W-l#7)AfD9P3!Z$DQU+Y8RfxD7|r_(n1r7qfCcFvZp*aoU-dq$XmV z8c}OmN@4jcL&MF~;;bC-WW9=mNe2+G2s%EY=Had9=oY5U^$5J#|-qv4Gil(7u?d>xM|Q`lhVlj zTZ?tqpyItCw=DbZ8BdBI?(2^@25t5QZ~wU&5|*<3z2j>T`oZD;4x$R%*aOZq{%SW+ zAm)S!G8ubwz9-4E+$O+WpPf(64yMdH zqSGEks|Y&G{cbE?fo%@tM1);((DKn7f5tg5k_!M7+?xJw+8O6MX+bYO>5%hOsrLJ$ z$6O9B_o|L0a_DL#c&w@mP+p$($UG}Z$5@3Xbnj^Ml44R2ui}IWG6lT}ldx=IROrM* zgvke&GL_#jF-wq9o@j{Bc))q)kx_3vmy~4Huhr}+Fs;U;5;~3d*a%=FzB}45M5vW8 zm@Y?lg07*iz7nOp&=wtV)^KxbYX8UYG0ry`#xp@*QsgP{{%U>-%mf|{lG)6`*ujX?s4x4l~p77KVZQy+^ zKv`$ya91pG)t=130@Q69(4G1UB||9TC!}$1&c8KA@`Et$S=~9_h+WMQbzj-+bT07J zt9M`i-heJ%UvB`%k6~rLn>SF{uGHQ7XKaOxqN5rGsV3AWlmu!anWU?UKW0Km~QUcPw`8>ITF=n-m$LdnAKo~-`I>De>FEpg5Fd!^hQ1XhG@jX24lMcVyZk! zKG6N{tG#;}(WkY2@4gLujQcwONxAJop8Wu|^U$H0FGt5-kPDY2j}=d8y#K2^q(sa0 zPZwmwQbJt>$J@%hRmm^$N#n?+Yu9*XQCyx}J|}3}L0ir!t8OpSOll&0xDsxXQ!VPO zNwYRJN1x?rSbp8C%lt+BB%(>`Ue9*Doc{HA{*#JFm#O>sF-`WD&F>A^_I)nF(4b22 zpe^CXPv&ttki0IDkQ zfS2;O2Q|&}zNSUEMAdz_@!uE^#S0^WQYyYU_$diENBD%htAER3s9)I8h;j6cS$QBo z!h5du#V+(_%Jz4OxAGfADGOHv+#pEA7^Ya4Wxm3L<8rB-1OLbD6e6(m^*MGvskc?-V%ypAlF`>< zWqyyp-bc7lE9$Y!cRvDf3klp9m+I#5xear3Zkio-3pI$^^EAiW+u{G2`kMh$;Dq zBmym1sCtA69Rj9a`og7P1IZ!UWq)r9*?iaQdIts7vigk0WEQ3v^a zGdJ(vJOZ8bJV9w-rZo5qf9U2o)-rFax0gVxFj?ZYUX1F<;CW4CePIy6w|fPZlWAO) z+oqrT%8d<~F4`!jVU(`tANX02%}hqc?oRgGoQ*wC@V2f=B9?6VRT=2Ff*{!xt$=F6 zO0F3h;jn9v@4Hpg6|vCS+x)M}Rg;$v=IgC8whgYr?{TceRP7J44-Fzb|~<>|JCGlT4o*ePO`eJD?-!pmc;>>Vk$?Rc%*t_X5S z3r)NDr@MfPfP-S6%~-jw$#^V)r6A#-$<578my6j48V#vXx+G2@;Q&=Q?$=w>dwYA` zw0cYpwqw$NoPJwVQV^*DS*d_)97Ssl#4Efntl}sXS)XUHn%Ng@0UgsiVUBsdKvdaY z0zcc8yHrtu9DOSWR!>se3DBK8P#(P5aPVAcxH#JcH3%+qPS)zBWHQ^z@308bDIMD? zT5j&4*3HqfRlxD<*=(7Hx!M^4^aJ#t2VZGDoWubdF=>xvBY{Xr)YMLg3?MaMV*S^D zLCz>EEuEbm88gqlU>cBS;%;2$QM}9asqO8fEV0+p;cWA9xr@TAWaD{%-bK7}+6szT zK)@p;lyoHICsSx>=%RlRp|O=&=u!C1DW}5uZPIgSEh;;CnltH=&7T2^K`p~3Mc!DXE2CpBMx69PcE|xozDx5 zE+35CPsk;%e@r%Bwv7&1I(6UoxbyO=UVwxgfmMhZ-bNY=HbLVgmih2*s#K^`@GTmN z$ew~;LV9_Qu4DL+!REv=&H2)7Fu(kPy1w_33DdD!*taZ;M(Ot0Wu0b*EfbfER`$Y% z3C2Lk(>kyKXJ{6FENgUdxarY9ieA)A$;J%1m24OP!61=_e$h_o z5R<_7_X;PSZ8(S^C<}sc^KuidKPqcJ+9?Q7$P#)yGulhV3%?VkZ?v!P1_pXqr8y#-_RZ>#&MQ0pqys=@Tvbgo?eS2AB@lkoWCgL@20y z28eXrJXwlcB8i=7T-IBHAJmx0ta_|>Q(<-RaM2k+e{_v=;Pj6y@2BA>CDkzg8TMt_LwclIV9K~X zIdpb*^wsgLFt@ri{i!Xqy06K`?;(@5=(jctXl@7Ur0hfDXH$~Eq78fB$0}Ijh*EEA zAuP%x<0D=eI}qQ0!#5i1@%YixHpY8{GF|aU01kIxrkXC=z04ZmH!y9wb8|Iqxjwqn z(ja0u5SDkp-t=ITNJBR%Lr9S2o+NKB*G2_GE1*(ogWcriRCj>vA0d1As%4(lYjOnEgRM$AcTSyPX;F z?$SMR$z@?okcPhNgfm#0Dn}}hwW8{yKum!)pbTTJ+v_C*EZT(Y)PQc^B|$n|XqfFE zU$YBzQ^QQEnwps%bFZeXW#3u4yBCJL_U`nkMAAyG2Le%c*Au-=W-WL_z$Tg)+O;YNt?Sp`&mTb#t`&Q+Xc_>cG}V z%W?*7dX2RK2PqyTG_YMzyCW^vHB;%}9=pjoq?|#2XH0 za6FtlzIQEjn|mA-v}T5?Y~qq~6h^qZ@$vI}^k*uOF6MskiqLb3N@xZ(Sd;{BRW+nQ zPa|FB&3)8YhpUWJGim{PIuD)3j6d&^;Kodpm>s|*WXJi(2BX$=T4ksv3;QS0M&{GH zVEPtaN_>nA`ODox6Hj{~D1N&))Zo-+e?|BdyD;DipolyN@?uG+UHk3J6pR(B&w+j{FbNAAL{-Nm%7vJ@LUcPu zB>f!~^20yY2CN*sW}DergrzqJWvt9Ieyy>UEC+B2vcSfhAAg=@xUf8-%PG8lQDL}z zH{{~+!Hq@oyK!F?7Z@%!i$E4@gjg%KE67D9I-e?4v3e$;i@t)$V zDoR2a=_bS3YE0~TBN_}g?64rULy^zu+Bb2MxYOjY4>Ca@C z*)%^FH~G~Z6B9?MLTNeBF`5Sb;*=Y6mKujQaqWWW@JiRouU9xfQcF>toQTNFXwz}s z|C$A+?nPg^uK#ADBJbYf)JAUm=(jqZ`US#v*2})FJ=*F%^M$J;D|v5?7a}D^+QZ@tn(EaiGM~9AkKlx-K zDr4vJ zi(YLU%J9-#VNg(Lt=w8#J$Ur<#$|ekgz|;8@MI7+H}sAa2rxNO44|{Jcujuu?nGJ{ zm!PQr(t%5i=sp}0EHE3$p3OU%R0BWF0DwUkI)h`sg*q55SF()Q^8)iad{Hq*SK~f^ ze)8%!0lTD%PKV$7)y^n($z^~cC-jHkS#$&s9vgo2<}7gq&=G7ZH34hLt!}dW@k-`R zZ6vo)aUmLodvOF2rFE&(N5Vq8s;a*#{#f%aoJKZ#+%%nBVX(SQCj6M@a6R(7jJJVG zwMUf$1V84g+b#W;!Uqrw`-%Tij0OYS%wa`!nk71AcBMC<1L=WSq};~gk3na6_Fd^4bnVfcGVp=+$uBgL zH`H}q@4CZRh$3P0szgXRNIU7up90G@@F?NEuJ|mi`nxl8T?N7pnw}@kdGQx2`^Hn> z+V!o%EpA6_dDbw-DagZi^z`=!LBtV{Mx4`SoHM~E4ry4O30X)0knNsEQhd0eo{ zo9mi19^r>7AXtRAC3w>hZbAz+w~x<$dTQ8oOo@x0O3XaDmHpP|Eqec1j#<&lNI4+y zC##)vD3wwuUj~h;Eu8?NGH>NfQcgNsHGQnzo58YPBMs~^CrJ^(##VvN+TA<$=#)8H z-`#Bs@0FQGJ}lELqRWM{FLaqGPjHj*1O~TxN$YYk82mFA%7*mGD#=UhP63q7r(2q8 zXrL^#?$RK2!%3B!eQT6#bT>by%CKcHjF$}0YJm4XCxi2ggJC+0G#M_n@NYV_Z|QEN zajt}pi%>M+vMx>S<@e1*b9N`1!_U0y?Y_1itiNs_pr2^EIC%ywBeWcuizv};DNOw} zXKBdh3o>WqN~1|ikiETq^jx~@*?xKi(aqJDY4A?S4_=#AC4gp0n+P4cqvgzS3of^4 zPgSa$*}XC>%GIk;H?&*qj4N}oFLUl+NA1W`=gDYc*cB_*&gXmVQyXx!O;zB$@z7 zUM^ogBF(V6!=`QgrN51QR-&@w_84&9bg_bR+?aRg1n}eYQipv7h{<&R?qbd>WzW{M zmPvukv8<#JBUVIYfvW?()Fc-!@q5IvtcU%Yv9%%UXtI)I^V_#|?XfC1OVbe3^)a(@ z^Dp69LVx{+4}pO3nbvmrk6O;En7d{LTJa^{PsQ)Iejpu&f7=bIrlTpd*V89lL}Xwu zFR&p3q)h|ZwU)ydl~GYM`eJsx%UgeIAe@5C(&2u<_8&HP+wOthYa}&9(S6)TN(L!dURA<(v(xD1e!L%++#o_H+3e+`lP*jVJXg zqCC(}e2@I33pscRQeT)s1eq=3rT!U$Gd4$=)=!_LcVq-<*?QRiU|D1ZET5;1TvtNn zK+0%qX|r-A-2s%vugZsK_F8FKEQnF5VIRhC|C1RZR^@W#TL7NnuMfzgM*IqasR152?Z_-j1td@88It_EZzWt#({ASm}Q_3A=;fYp@VTp`AjV5>(h_|Ok~5{ z%u*`^{SdvHk{d4qVaUseLeq}`pDD>n9~Pj9{9aMQ{HOiMKVt^x4Q=BC%`XG`y3GH1 zHX@PWmWDs<@BJ@dzXHWlNp%nVvVY&=>R*O{+VIC}G5lY?{z5APA(3mXHx2w}EfuC8 z1E8$v$o&zND>(QN7d{UMUjM3$SmTP;``6dh1b~jPi?k#E_q4A5MxX^o`TsL|=-+qo z5&5qV|Gz!@%YMB7#_<2!qlf+{jSohDt%n0}=6}HW!1mDpr1636q5m<@N4UtNAk&IyyNa3KD3l=?pri7#VNGMS z0144+6q)BQ5O&-F`4x z_ifG&9AJrbC=2*HtCF@LI};TZmBUNDJb!@#8q;T0&C!kx{F}zNw^y0{I8Vs}`zkc| zm-%>Ou8QB&9mjCDBjCW=sMXU=XMLG|m; z)d6nFlz30m{|QrNx$QSeB;PYu5&W%l?nOdC0uG|A=ujW$m62jxCQK(vB5Z{lsv9l% zb1C3-_O%0(`KdH}4|M7#pagnOCP1T}mwg`u$+K1Mz!oBfkK5 zFc|oMypN<$lGEQz`%9DBC88fLdnM}lbV(vXzKlT5k&|i&8o$ZykgIRuy(YA~EOUt5 zLpfev-+ujr=d;-5$h|-db8W#pUSX8W(-A}T`nc;yMGoI6zzAxj1(y&2jVbk`SNFj? z2M8XqvKHV+eCNEX#QWWE?Am(L&4UKk=q*?yZ;=HW(A`3g><;1oxH5-GqBrIid#!gV zss=z9=iuNxe_)NMO8_%suGJy+`5a7sW(QA+0|;k`mw_G_ijUwWiX8>D1NOi0kFOw@ z4(O4;W{fZ0iUsW+x*qYzSiowpXadj@{EQb=EBgbGax(g{AR78-m!?fb68?ivEkp(C zLuvp-XwZs*CKU1)$j7*N*WJVY@4!!1MZY+LAy8Znf$dSoRSgz_axSZ}nF(Or@DjaB z#($0Hin#XW1A?A>V?}xYe|9=TpP(p=4gu#jtFco9F2IH&E-nrTi_4yfdm6bZ<*+Hr z*VCXuG*^!ky88{An3xzN-fS>etGaxAe7sTbIw1h&VY&0c*)T5aDGFw#;`HUKH;PSU zaGByk>+XD*#$e$VH&BT+lfj%;`j@FL4kdB%**?wB&rdiH>1ji>Y8aGG-OmP#*v&dU zcmB|qflj>hzIYhXmW=gq;oto+SjeYO9;>~3nt9%mM#c_*!<5N2X$P!WDG7LY zK^r-_TOy6G&)`Eq_<9>fH02#@)!f%c6m0to(D2ph=@DG*NW?qln7jA+zF4R5g{PGY zmUxDN7d-4XsE`B;UaUd|4f>$9C~9}uI7IN`bQiq4Wgo@c!kOj*%&&EAqUOLPLeF$+ z74F{A0ZLs>@dbOh+~an?Zb=@RY@DS_yj`8)q|~WE{rdGQp3vcRC%?f;9G*bc4-X>! z!k6EB(`1MmbM$W9yqEYyXo&)Qzyy@+K7lsQBBOVmgMhk?hXg&chXl7u|Gk*^L5L8W zE(8u7OSc8osp+Yyewks_uikD<0C}2=i%Yj&D+g-ro4A5RlhPJe=!YLx^jXZ8FZOFi zE!s8e1^Q=z(YM^~m0^wJbIzXm$!6Rvu+@nA%vf|c69{>iqlpL@kp>COS5>7WOWr^O z%XyXk@dc$Vv)gSWCvqJ+-V0G?Yi8#_MdUPUJ5gXmWUFh7JKe zv(-?(nykl4Rz|cx(^HL*%wut#3R|0C&Cd4r+QoQ}JA914)QI!n7{cd|y#_sim?t73 zVG0y{X+i{g`9hMd*z=HoN|#!X^iK9<;}1lgb*9L@8(C1ad>5^Z{g~i^=E<@bIj;_0)-m&bcF6aDdNd=Q z>Rygp$qMN}jh3>b`M`EAQ4$fMB>@~LV=bMNvwapupzJBNfXiCz8V7zAD0H61`|p9R z8&lKn8uu4ed@2?rEtr1yTc94i@9g0%ds+5Af@x_0ey}-ZFi*5(`JtH8Ru})(Q`DDU zpUcQyK~LQ$*7{-4P#-pAqN7xLT$hKWIh&lP5aGk?tTp>{peWZ{OHMv(7)dnXG7HPIqKm_0C(sjVd=hMt%7M!6$Hjmo&YZeJGO_x?i~(SlZ7?0(9f zyOznhf)W(M-n9#7mTUGgTs9l^C$?~;v9?P|G~aWtnPQkM#8*(#$r{KGKE?nCxI>yelySO-$oJ#Gj?5`L(*Awf^wO_;{&BXjJ#1 z8G8~?N7lrEnyc5zei@4blU|g`uN@!)kFfxb@iVs6Hk{-v`Ute=6CxK%edh=J?DEJ| z1x+Wq%(u|NIr|3v&etdz5p=yV-ses2JaT&9NJYs@BPIT7pF#P)=y$5nO&KNo)Hyo_ zM$@DkfZ(!sA@SMU{F)6u@%|N#@|FSZIjvPuhH};6+z-cp{i)QSo{4oP1d+cIX;ga-@(Nk zk`XI&zR`4H>J5Re;EsT9(tYbNRnfD>eYxuz1~_Cf0h%D-0R?p555$$AzMNa%@`SMu zyk!B12flBLG}U3#UF!4?=QV1yG&Rlli&uIi7nV%mHQD|uUF3t7&7?PT&8YRfkLLF= z=ot3&svOcJY^@3?1Nt)*s08~pz8{rZ^g(;}(F8eSr$QPi?AAl-5xy*sjiT(j!U55U9ag zr@EeCju)gZTo`5{9|UpLKm&H967|+2PaO+B9ytr?NPhVjqFDp+&IK1N$utMDprVGF zGHd>zvT~_~`~$VlhI2S8dgI4dj#wV^SD9ZbzeW_X`M`zG3y2^h z0VavEPQ}orAx3Lj+seN;-t|S}TFq->;remUci_;OyJ!s zlz#fFLj~Ndvb69+BmNINoc$v=eLDWGn*Q3DN-{sPUbaZuqVoHl$BY~zG*%hoaB=YB;%Gps~*HEsGPxe z)H7#VO!BAf4fS?(bnGB+Skj1!#?QS!BAq!k#wXq6q&*-S>I=%~HU+_Tk!ta1*Siv- zhB6lg-L*U_B80Zkz=8Ro-0lnTmWq^82^!GJP$QkmJ^WF1z#}WFVuhtV*+6D)(qnTS zyp5%dgzx|1?JdKq>iYFjKtw=AIs`@O4(Uee5Co(fq#Hz#nji>BN_R_lcSuTimvndc z8B3r2?)|>|oDb(*|Lc5PFy~rx%u&C(?|Y;e-5FzAt-l)6DkU6tLJE!0p7ug|E&zlr z%K35%x_|@I4{ES}_7y;7BxiVfiWSRAavxZh)YreC#ugY9VE51_j}}?XYBN1l31+J} zYl60Pn^(8B?eB7;6CWDjj@=;VF7y!nqjUl+UJjVUxuGzER6K?CNMDpHZGM(HQWKuG zOK}Yeo8XkoK*6agM)o%>N*ZRD^ZguTx2qiv`fiO;trM-BEfv0cMI7WyUrpwxL#A@ACZm2>IJH6p zpog@XJIN0Mh(mc#sP~jodUA2EnwJD$j0g1Ov3z`nrbmlYE_Xysp>LnddA@7N@_^6# za^+x4?&a@72xnubp$Prx++zJpuAtJMFFRN>Mk*Hc$kq3h<`Sn?si#De=5lAIy0jYb z8WNh6@^Yn1uapDHnM(sQRMa~{|FxRlfT+ReR2O8tImMCzjtKa_EYOzzV~??nH+kI* zwbC|)?Yj)x4H~jELz}&^Kh!LG?cdOgt|)H8!}^Y6_2w##4P(W@N; zt27aHIApHHlMN+urmJI)VP&#@(X2n;OuYj@?YuDK@bU^_Wr49Chcp}o5;)Z5j@i>?Ir;`cJI*6iV?>Xc)4^ho0dj^g^$PF@hrWm$1 zd&PFJqy)J*OG(6<<*$%xJIQHr|B z6u9Z^%4_lJ$v^0K>I#_v_B!{-Y><(8b69A`@*SnMscDX$PJXn3W@w-FT7rW&XV+iP z>d&OPWgxa4d*ccY+;J)1W5gd&?g(S z8{fy~HxWtacfB;m&yRe{zY?yHcPsJr!=|}Lm34|z%TSdD?WM(F>er0K*!m1^rNU$* zr3{($j)%1Ghq1n4+tU^u(`FwuL25x#DH+^Mu()+&ICCE0_&m}e`*0GA`#Xw!gcALY zqo0p4P?3RCx^+gK!f}t7GcWhCtN62BK0uRb;f&i=SjTDiAo|M{22(v6L9S-LkOBGT zd4{$t0MAb!4>208)}m79J5Z<|1il7YA!=nSheLhrA|Rdb_&!rUW-&4vnOf%`2FKA!?l;sU4GIt{t1TeQ3)P9!yQ~0!~O#C zk#z*11LwxZb^Uuvc^3zS5LVL)cK_V=cROrS1l?I+Y6;Q&do86(8N~JV7P5aq$p5vs z!z;sx={eQebpK^WVIJ;_-&&w{bXLK~_8-J_z?k07Sj?kNwYa-G!-(nArz3xW z>wg0}ctill{{PbK|6{F&{`HE88viev4O%Ujmuo8ZSM3vEuVWA*B5da9y)hJ@54XnP z{80My?)EPM?pc${_8)c!0%C>L-1)D8*Taq1WI9g>>>0m9>#7kN4ZPJZs&z&}vq=do ze+G|J1dIYTy#(K%)@_Elk8indjcrLje8_XkSI4gz#ZpL~Q^MPz7p7W?*zc59G8A+2 z&m)}y1$MojVj1yo=OZHb5ZsN{d_7`#cJ#(Dmp#`Ok715m-)zCV#4mKYstm$4d4^`f zo@`_5@9y~vS>eT4E#D^OBTBe381Z#3Yvj&gAC`^%+e`#hMhv|Y{IdWNIttTi1No08*+~#W zTwff~($F9{>_GkTi;IhZB)YRD8-KWQ)yrdV!kj$bXvBATTW4fw6<=l9ak$-VpIgaz zslUTfDAVZB*RFkb_*7C#3V;mH4$17@&KKMK&+f(<+iUe5L?k&n-sA4g<=M~xG+TQB z!E665^?WGq^XJd6&vu8U*$x2S=k|Q*$(90zY~uA26f6)K90Hg6nkrJf`<{*Of*Jw|VbUh^n1rjclrP~L1 z=NZ~TcnlhjAk8t_u(ru&2Y0oG8RUbM-fw~Vb(1APEyyAj! zx@c1IS&awQ2h+|5#iDTV@)KFo`oFf!$DfE-SB~r{$S)D1nL3CTuHL&jG^?t1yKw?o z>MV8uPXxTBSrDW!L(I%RP;V;r&*^!I_rMFfIsz3JuetxRb3ep}WcLnJs#>VTCDG>qUKHag-@ca>qoQ<@?Pd{-+iC5n`f!KZ;ahb z3qIw^|A2i%Q~EZJ-L1BH`Z!NT;qoMS#SZUtX{E`giFCK2jSq2bT+HH$qgn^YW<|m0 z)5w)+eN?H?G+yfB4I6?7#H?A6b8whms@dgTVT0PGD0NW}5HhOeK0rl9&666ncxEq? zk(n7cFGxEt$!a=6#m}!5x9J7}IC0+f6vc?3-wMbIzah$cZqio&^l{3bmga%?Ij5O& zStV1=A>=^7``LSMzG{3*y~XQxbj$f1CIV#C22zWb0+RFccE1GApxxP>i<0KKEN$cXMRNJmVcURi8u2{E#>jsmSGK-2B$olRu z_gO5?^T88}%W@TQfO9arZ+b~wWag0tglRb?euI_pWP7?;`CZ5kd6b4;|AEw&vhK+y zmBMTs0Q`(;K`h&>_Wmx5o9pf%82XWsp?1Trw2+K)V(qi#|_7YRU%k`HBIFq$Ud^`bJ6OyFy3-#aW|Ob=}?0b_P;B zRaNS(H+?IJjb-E7MzGi%b~Wm!9b!yQR@p3PCc3OZ!fc+?=;T?ponqrE(hl;FM-3S* zdU;>z8OjYqfhE<+!R6!T5sd+mTDbyp1fzlXM9iKNTb>+mMtZ~w$;H$_v!}AhwIKNs zs5wsgX?sGBgTgEC^>#4tp*VncwO~tgXzbzjB|{GHr9XDD zrC64$WR68%$)vwRx@od_wncoY6YQtPW9ED>+W*{7`k+|p10BEj~s##^2j=bZ1g@t4Q7)s6-#o0USVbC*!;kq z1^)MsW0*)Bp7_;$(9Df5Pm6M12z#dIw}8Aj$6LX2c25dcb9o!J0nN?zQipf6ex(kO zPL8Qx<>b0!D_3Cqqpo=qTJG~qH%w@h8HaF>vD(Qm6uiOE47j9ZBU9f4G$t4g z!t^QyXNx1E4v+VeO%{ju@@BpRTAyeg_Gv9My=@G52W?#$?x11BAkVu&%OFS|SvTGi z>?F1yksHg1iGF3^hgm}k@UoeywjUYWyAF8BtQEA~W>@6wXvgXS9P|W7UN-v;zkNC` zF76!2gS_5bMNFg=moYHN*ZjDcJAC==B2e3sDt+Kr7&JwRL-7) z2|(*Lmhi$pW%>;1ZEnmpMgLZZ_yC-Wwx+99{+?&U^kwDV_~%^d8zBX@lP3bLHxG{_ zS;v~TWeX&dpC3buov`?mrPG6aZM`<}p98@5%Xr>SZ zXJ0A%>zFv60yfx>Uq7ZkkDp@EXmT$&w5V@=%czxIJlTBI8I@SdL-|UfCi};_GJN8# z=DHb_eCsm06s;d5x1NqM2%!B6h*>XZ#*`~p%L5KpDI*GfvyUHBaA?O)5gLSdINvqa zv%r`BpxHayaaGdM(NTHe1wV<0;!lT?iXey4>W<1lm#Xugy*NkmDqP^ex9 z-03WmqWGa>p??>{m~{B=8Uv5yJz0Bock03d8JXs6&NWnCeLCCOt$d!y190m3b2XLO z^A`{mn?D(-8>t^;X?CW>J ziH^jde+Z(c?^;>wVWb^L$Sl{Kj1l7mnTQxpq1HnO{oR@BHe5fh0^(6>m@?By*NnOEJSLp=ii*>Kap)p^+U6o=Y#H!yV6 zGNmjb97Qp2Y{HgU-Cme~ci?=>yAx0B-L=&>GGXRL_Jf?qqPD)s2~P>WA)Xq2m;h*E zsinL)5g(Qj0MAC*R_SMo_OTDL(L3hZDH}%Lu}4cgOYvwcXyMv4*S)>IfS5%vUE7|@ zJXd&?`^sK^jR{#ZF;Y-0!k8dxeE*Of>scFR>vt_VZ&_>%j6VNd73LQ#jh+X@AmK%7Q7`;xe`+!vr^mM)?~71tG7^b87FcnzPgG$D^!_iSe~n> zI1Sq1k=ed$x^yP;p)RnT?%;O61M zoPzaym9_89J=FcSAiV&B^MhInr^)2aC^c!seXjK#;VU;uK?F?vMhFqRY3Xc|%N9jE z86JW2bNeOV9Jbl}rTfn$B4<7-NNCX>kOc_7`jCofYbgKb@d9wxp15X>G{=`onlh0O z^`$%Rpg7DSuXN@0n54 zOe&)IeShWBVO$%WXWb$6D3N(^-ZUOxTg=>jy6cb|axi+}vG9TmAWk_Y+NGBbu0e(|GuP(|v!`n0JQuQq8De$4Ju>d$rqhplv(m zJ;6cJ_ZdVoSu^)R8P##^5xRm~Wepn<;RzCCto8*{f1Q|(rrN}$Ckl@~w&pzuejatc zt+ujQ#B+t)UNUzpIb9M&A8BtXXQD1uTj-3|{%#qvnf7liFn4rJ*B`ajZnk8EJ|$=G zPKvMS#hok{vBEj*zQ=TC+;3Typ|Im%-tw9x(hcww;=>|Oe)v*ynYS+cHGKb2q2BRT zfkXXPxPr_ALAvhm#K-L)TquYOZ5z^iUVD8A3`J~RRR5WyFLR;PG5?@hmBr#`E0*`- zOc`DyBzCJ}K#ACbkOwET{8n5L0V~2C!7-Izbx#T`&liF!8OU3&Sc&SEQvCeL@S)+6re|}_YGwM^(tI<7o%{u>ZD9qJH?2LqRF+UaonSE@M22*JQKa&Lt2GMXkN*B`2>*)D%oP2 zmG{QW^_Wv-_Tl2Ah?Ri?r+Bi9^+Z8Mzuk^*lfVbeHir6Rd43eqo@J2{R53W?AFn2V zK||s27!1Q?=NZi2@lp_L=*@EOFYJ3*sC3uu7WiwXZWNp=hTY3Un)OGW8@V4FXX+KS zuhgjV+cN0RG5kFqpkZ6h55dC+IPYVAI@`$l*rzgB{#n~u0`VkE?h32L1hFJY@7ilg z-Rt(l+)Imo!Y>tl^FUUo49V`3IE5ik1GII`bRi{gK}K!(yh5)6D_F0miaDx7yVSHC z`8rW^#ND@T9tMKyn7b`ax(QJ0=`DW4sh%(}Q0pqtV((C~gT@~sruOO0)SLBxdw z(PY8E;lgXN9x%5H`dK_6R1RgO6K&gJiBp(*t0Jdz(A{2FSFI;Qjnh;YClB!j=&1Tj zn#5K2lu^rNTba_t+v~{0kWCbLd!BUSt9^D@OOIg{qiG2Q9Lu(Kf}js9(#m429)Mur392TIxIMSC+7NWdWlZNIj= zxOVKucEuF)rFX7H)tj(m8Xz(kLW~x~D81FxPmJY-i(OJ4+m;d`SZY~i47r~V2HU*4 z`%|7{8M8K91)6*XMXG?p^%pjcS69ZOFyQLz{<>U%SA1E!DG8^fBIrZURDfbQ8wlCREgr z6)>k2VQ#nsoVS+89vAmlRnfTDUy#}CY^qG@iVzr%nTCJ(@{KEPQAx{%dGnCHpY@rk z0FO^ZwXr+`=J%%7mrTFr=fByd&3yw72{p=Z*|3pQ#}73$c(444%x1B__Ld=E(t_ zzLF0;e`TM;GYN7GQ(X_DP8e0EpwWq86oLD0&BbLe-JV@bbGBWg5^OIRD{J%?mxJWmEOwTWXCAVfHbSu#kcXFkP4piTeuEP4PoU9Cq9#7 zX(}PQ(Q_)?+}2B>ZS%UXMumFGEz!7K0a&@%XfgQosz19KguOIGUv@aNIQa12^;)@k zma+#w@Q;>b#Id$6i4gPYLnN8U#L21kY&9 z%JEyMU(6h5GHx4N6-sM*CVb9qb9jG=`{bJA&aX?eu= z`cBN;lY0^oNu^ASelbz@jWK~9YxvV7Q8-s7{b6hAJr;U+;Hy;wzpZ!0#0>Mh;1*`n zVa&B!2s%aI^f_?_oLUXI$JG>Mn1yuNh4}~VCx%sm zq%;`l)>NwPIDGw@T%(HHQpcRa1r?AcTSd9qlZG2Qw;PO*lycD)k{Renv_nP*zYA|2 z_Wr=7`AQ#taBOIlPg#>2|!KYaj-P;cp4)-yh0;dXUdom5Qxx*u2fuaYSLZo zjf)~VlQ)D=_jzenbGopkOs`zpi+~5E80vg{f8WNS=OrdUY@s|A=C^yC{nffcxN@98 zf=bamTlmaOtNz&Mo~<#m*jY+$qu_ZpiNu=}@+dqaBOllnxjCXLdKQcG!fgeS}43uq);b$ISi<8L@~(9ly7uNkW;98p9OM)WwsG6yC&aroJoXdF- zH)$JOvD#4BiJ1GfyAEl`KWa5YRl4E0_85NuhVGNNCAJ)W=hEv@Muj(YLcaKFzs6_! zAG7d7rq(=0PyLxTMDBvNsV;WLwTj&H`PCcLV%13zl@Dm7$e0d&9&jqF3jJJdZ_`@^ zU5FVi4t5Ew4HG9uuuae-c!j;BPzV=i7>L)a6H!Zco~-r#4b`Z;M~6F)8Z$NPWmBp@ z+zc2Dc8CK~Lc_uH~q z_ANLu>1~c`6!U$0cp*aTq&Po4p*n2K4U7+Qa7UiRJmAPgoN|(Ljfv9*YapTIbF@dEA+M; z5!-e#xI(qM&o+F&lw#*14*Ie(fJZ`*xph`2Ml62|I-IB zgBSw`jcMkoBa1w$t2;atbp}B8qs>lr{=Mw8IcLVie*B+~clwQQu{UX|vCZhV(?^1*;t-i3~ z(zK@(ruOpl0dYJoiJ=&#Nh?%WGW-jDk#ZbDzgN~zqp8AWEL(a<8rb&Y z0=Adn!nGA+@)sWM$or<<)4Jvmo7bh@badXgN0ml%dl*fvBxpXmYGQ@*4;x#j%$%6J zQdWuvh7e>%OjH(jqcu=lyyDbboq_sq$E6@Emsn1m6w@KT;-D`!xy^UcveGs=b4{#v zt)4*}94pa)f*Cdg^cG>MX3fan$P!e_lW3wG(rei+E6Fb}i%)1H8H61ng{S5TqBW;8 zUq|b@3#%J$U&hGi_j30Z(|_oM+PO; z(2nehUlhK{r`NJhxVNbmo1Y>oMzxnD?|{U^8f|w{_Hlju&NIGB^D((@cHWGku?FtO z#=?A8i;>*9Q_tOgiN5} zk?+xQ$4j12jaX_H+lf()lQ`0)Y~YydB2&3j_M{z)g8T(0g1|ZS^NF6-lL8Dm0%C!> zkk6I+n&hH7%^Jl8Ppph0m*m|=8hy1!7^S{&`69Rif?MxBREtoxohF(Mof6$C;nsY~j~MP%F$uSpJl(yQ4rxAmS-Ru#kUQ!w$71s` zVr9EySb0Oe!Za$4ye&iJxYn`n$|$&7td!Mn^lHTC^Cxln_A)Sv9=5;mbqvc4ZxD0g>8jF!$rW!4X2ZXV} z+07cr!UrkF&_i7q@#_{Nhaz~It;AX8F;7kCY7UNmCVkaobCWE_luWCD6y&8MDNm`EW zTsIGq-awzmIj7iTMI^e$saVRSvQ&Ra?M@!J8m@kQYfNYn*4Bbgrb_pn=I|Lq%~eM3 zTZuf!-36XT=a#X;9P|3|W>npzT%sEbzHW9-y~#XM+8u%?YYpUljGEKKGUvG`X>%og z`RHF2r&QtspCDri^>7>r8K%OIKf>khFesxEhLoPUM(w6&NA zkfc0>Bt{qm_oEQgTpx?X)?{jr&A;MkB__bd7%6nas5j3S)+W+jF2txIXoN$O&EqFo zv-vS+Mm90z;ziMH`f-yS1vmg{q98$NnzbViG7|R?vL=VLK94Wgqle)!mQx|Jk`;!^ zVM5j7j|eMHMLwirmTuxLp~OCh3(wsOm!|6Ann^oa9E#F6y{&e`^aMxF>Vw2%(f^oETUgH zl}0pD#gM}9 zjEye0ZQX_SD6>FrC2m(pYqogBus)ct`Z|guukLO^5`xZtUdh}wIZqjln=R&!vCVv! z<`VeyD75Xc=XUv3wL?x6f2_F#YLUlMh=w=^LOuzcvf1Dw%R!uW1 z6XU%2z@MI5`NgfM!7Qsh{PwkqaSQ^q1kWt)M5d=&qbB`gQ1#Yb!^rgB9mZ`1cDFEE zcj5-K@q1eR23WTDKqfh`(KGLn?o_lun#-Y9^G|h67hC5A8ilpHi*_Eg4o2WyAbTLc z87A?x!3Pct?f3j>tn&Y6v0^7*dHpX ztuO<9*p%zLpCf*4`7B{5FuYInHN)M zD{vS?;_n@>)WSbEdy9ZcPUoT&348dz{tN4{H{gO+V)znlullzuy1)^5@-Qg^_+!w2 z{mh>`bn4K7ix5S*!U=QL{&~RPD=NU1ZfQ0$__zOp#^5u;Dkv)wTr&Ub3NHNp{i1!< z|LT~3{b2h;aKZ7je2@YHCiK1O{KY;H>*E8UuPP#jY-!45>FGQ-M>-jc9MH{ z)p(~~@{D}5Mpo=WjztXVKvS?Cf}grBID z+#+!Qp|W(tydd z8|=ERA7@_D*?8UE_~B?v0(RmYIL#so6bP(j6S&J04a@|s&H?^|5>vL!TT+?_xkC)5ISKyW47nc&Oog(LYMV7UdhL8-GOJjDpY8s4kh<23_C}C)#@p`u+->B&R|r z*at)o=LQEu>OTVFtgde&hn1GBtSq}glwptb&v(-B@qZi~&^S<)*&hEpO(|Y@Xy09q zbLw+^)Tb&~K-THWe~8CGw_}qQ$liRcS$EtFJ!Ay0`3z7WA0bTu0Gv(qsm0XAwvmAP zc6u~WR=n;9k$_cIT4j0pPQ|pPNYqKzN&TKH<0{7Ovg|G5lT$r~>UjE!36hn%;~^=} z!|U4|QpHY+qO*d^Ij6~Z@x~Q;tI3bUZ~ZT*ALzoeWh@D?f0ijc$_ErG_fm*e8kW5N z-sDBH@A1S%2hfW*A}wn+D9jTlkmgS-D$}Jg#l^03OSy!^@AiEJT4UAJ4)U#Bw*X2l zzTS)P8o-P?YB>!S^W?SUR48dV*lOtw#JPq2I)eBZQnj9ZVv;{PJMKY?S6r* z3D!URizsL}A-Un_KQmax2X6BK<_@T0=%8q8JaVTFL)6N4(KBgfk2?gQuI{{Erj;m) zK5$N;DZ6}6rcsjXr(#@$V4NaqVt-nMXz2M9&fo6g5~<%X64AqeOrb@E%@8;^Seaps zaQ+-gF8S9C$X!rFutRUahr9hJcY=N2*_gVWg1I-d%*CMd7GlZ!OlbXp`Kc|RlZWaC z;8b=`zVv{3(@|&Xwt5SC_`Jpxy4|$~2IaiDTc9(!P{`{~0*6khPz;=w_@7 zcQa8vV25THf`fNCGCndNtS~}c93vV84bIx<&3LvkiLiPt7`ZR*2oqLc{%mNE{F|)Y zj^a`~Ov=TT#RnQM;uUZr6uYQT~hsu~yz8m3^OXymvj~~*H6P$hQB(}cuuF=YA zI8H|3<|9%--?e`ubnXvOh{S8lLTFq+ZmZt4#Th(iSHP6!NOs$+UQ5)2xBUb}5c3cX zc%h3Z=wcN>1a9^qP_;We!fQMiS!JuKt(7nbn)&HFKct;_H-3as1qj)9^^osN-;QMR zw;{|5+zboc{C*&SuPoQ+C90oQ__^0?-F3Amrdq8{VHx`PX}=9&bf(&$yf@^J`H&C? z+cpYuO(h-JFq2~tE2d0o<4qL&!F;BD9q|dkTERgLKcq3~$lHE>6P*IIZTVYTtpmUC z=d3mWn5d+FEm4|2ngmLhd2e4Gv$O~m8FcI4^&|#;yo42ZHD8?Ws{}PLC8a)*NPAKY zeJ2L&cOm?i#@nq%Eg(~uHzJ~Fm}``f3jeh&;zdvGcFDuOPHZ72z2aCeJ4sdZUzqTC_=>qu=TCu(z-U!?s3BYvm zz&Vov0+(q5skoSU-F5+#uCKJ45FttK`~)h^kD9f9e^QU)Ij2Yk)pF-bXmJ{NExxSclLBiPo7 z(P`dz46M%6EB1Pw$D*fq7fE*)7-B>}ZH=9Db)XYv=&S2F;2C#MIrj7H@oKdC-@|A1 z5gZPOM@~Rfn?Qj6?(Pz>-M!QElpVIaON%0?1eD67e*2~MdVB_%OMH3an;kyshMzwWLDyVkxcR0mtq9-HrC6 zB~<}k1U+VTkBtbKpE%ZYM~P=lv+n1u@8XXj>2~jc5CVfZBm&&u@o=j&G9zW~7g4Ov z7{ffSav}D0h`kh8kOxpA2nhP#FmrVuPs5!n76n_0I#WijdvY*CW=nc`d%=FJB>K;q zlztCV$KNhL)HD9sp0ZqSkCOV4ev)jy>W*NxPqZIXRprK)VHPp8^Nw%-B#8)7C>@bZ zBOiS2*qffeJ>8C-E8|iqF}#~@ydjL;2Y8YvwOikBiWTb2-jh2cx6u!<^|hx*?o&10 zicaVZ-;n4D+#UpD`4GsSsAOGtK-V47y9)4_UfvYG%IrP_h%){!y8w=8FB!xPReXR< zw-Elb_3bQpQsoDd3b~~ZklS$@ahuB9ZQ2Yt{qQWDi#;v+N z(Y~|q^Cr+L`PCe6v-fPzu_Hw6c?==EOm*}FyO?SP^GuAlG*QG*X0a)Dn$4^FPzZ1d zj=s?|SMpevbVaf&8d20lk>VI$FsBB+#*`r-h(}~X_mAYK?#1!jsH4U=zqLdMf|I6$u3{*1WZFAkB=vbJ>F`(NKW%rN3`Qe2S z8gP;$vOf4^3tf+@7WbUNZzP(%Oek5y^$#01Au|?;BG9hTV3z&I3kN&m72Dt7A_c4I z7|)MmTzD{$3sq;XCxVf_)0@L{_q(vlhA9I6PKTO;ld!`IQad#vT3ez}wbWZ1kG}G6 z30UwwtD@p1Oq&!DzB6r>-zr%`8BOn_hC_Eu7K4LN&(0m7Gl%MfM+?{;+xxu*avY9^ zQR-s4bY;AxdKxSk=v;JMx3f8<(@zuoRlHIB+eB4cliO(tDKH|q)dN^PvSHppI7&T0 zOHb#K%RE}bJbI-g+a~=_2!RQ5zHfBj{4wB9DVn_bbnDHlR%21yenApu1&?mD7ikn? zs1$_p`zj8b?mbENpLmH&5ZNmh)-hK%*^}`jj6yhU4Uwt)qw06NUyY_vvKWVKXs87 zBLU`Erwpa&I+S#p7CzA0PZWpPX+6b6j%rM%$6Z4&>UYNZnV~aX1~X--1mY^d8#6oO zD1Sg?a;vCziQFJ@kJEGL1!v9c@q1EH>o&hyI`c1QiG=bghRM~?x~UXHovjP9MP)Iv zoOi2@0@bRp#;al(m=kAs-)Ow~v{*)DIlYW-X$o|qCCbHry9Zv1^uv7H*XAs=uT$~c z>2j=309A2AN!`L8XvZwsz}&8)=bX823+Ku^ z8+ayxKqDx*!~9N)*tirHPSL%ms0a9Y1LrpOTj2Z=hcSvyO&k~l^kmhQJd)4>(Dsg` z=Urw!?Z=l0#C80@R?wdQ!GJz;x!929Wq)G3&F{V5k4=Pg``+drm&0u#`enf?!)>C- zU)p4(pf(rV30Y1vQ3iT_7^n?ce;QyxB~Gg9RbdvCRK(r59fl>9V*X|uFhYNMKq7{6 z>d({woaKgtKr8g`F)upL%OlZzpE)7TKA@`e_a9Yt@H-cFU656;<9@?s%(9&{gWYXu z(_nz=e!sq$DdK)vHCtH~Jj?xk5Dr0DV%h;^@p>#`D5R{KGl!q@%IlX zpG5GlH=U!s^Clnjk7O3Pp6Q%mB$tSSo`SjuzK5J zv6BMKs}T)`;~{)$Y-5`t^>L39IB2OC45FojqJ*v+Qrg^riKS}oJPIi)>ppIuWUH1i z5_16uX?~F1l3n5^)Qyz+!-(;flGf!76RMKutc1V^E1Id=zljUh@9PXsQ+ly+)GM2Pj6v$RcA18v@bfrq`JLp4Jfa~=9+tc z?4r&rYK?MKhDMLc#>{s~-stXtO3ElwPY?3$K)SM-xyDDJ9fkQema;7**B_4Jfv(2R zWbqSRzURP)sP_9CjWqorPlih@3!Wp40jz-KVlJcqOtPJ;uGWj!%fIPT zZV2tA8)Tj926|0shoNxF$U3;SV`$B-k~)A{fd&7oJESNU*UDpe0;ESjcuDp- z<*ap;qMpHGWOWJVj-Mg5YEE4>X1FVnS|ltM-tY4TO>RNcG~;un7}I;KU|9+31Su+a zJ3-zE@Dfa&Fz4n1uW1_gN=$%ns`e?53v~GY>sb(LY?^NYpR7X`Kh4G_>A5i8^L!Ny zJLd0x^a}14fwpZjJUgtcTE&xDK~&_)%rCP!4Kyt$Xg1K&{m_UGzl?5AFvYz3F_Tqt z-`3m*~)fwfYApG@(EHhqtKvPL+?+pc-uY zJ|#ylEh`q`O`;3?CX30LxA3BU4Vas0LW}XkKTbPXtN+T7c^tr^w&zK)`u{5p=M4+j zMGf!&_sxI5haU_}oIwZKT!tvpE(mQmG8DIb&OWf8roe^23zf}V+n5#C`2q`vzCYNo z03R`4P|PFNl3Iy@);4`0{jGi2dD>d9jS}z>Y#BBO(L_HGDW1XaAcgIQIJf+(jXKMq z1!9TCeE;3rPO;?7OryiuG6x7mnPuF-Jm(6$?4b1MlyFbzq+AOGXK?-TH~uu0R1CbE zt+@qA2% zrOq8NXNusS9OF9hh%yBDUgZ3JY$8wC?_8psJJh-dXcEAi9>+|lfdvc)--FyB z#n!~E!9@-Shsi1-{Q7-&>fcv|gNoVif;O;<>_F4d!4JQN`wZ(4JA^tZ0(7&Uq%Zei zJ;p=@Kf0IfO9y)`F7Uq50tgSl=SMO+fD1e2@u1@a3Tz_ii@C>0S~TkWK=X;98ta7e zaZG){_V1Gf>y+t%(1Em=?%JP0c=twd+6o1`6f``NEct#FIkCTIs5@d8awzN+{lb-BoAOz$`Cxh|D;te z*xuREEY`a(L^6na&+ZYdnH2aQ*nW+6;L32#N2F73u*8Uup$1}l2QXO;3~zWfFZ3=8-T^68H;7i|G5N>6%ioR-%75pf&kd~-=7~VDF{FFKAs(* z6#lhr{(Q`bUC5DbxA|YsR{%>O&TqK=-L;C?4FB;{n8q~l(0ywKo2kFC z^Z$5I84YYn@)LBB|L61H0+VA&BSRSWpZ%f)yD&<*RQ11}pA9yew{0f+|M7}s138G; zP*eWp2coEd?_+?>fOY@>AL9c3KMloDKD%@0Qou-7X0HZ~;e%`_wpVk7W-8)Dg3nXSYg{?~&3A7d5p*kc7$E`aRCN>@bS zr}?q5ijNyZ7e{NuZwf2}rK&?)1fKOacneG^8NYsLP0M?~2Dt53dw?E*L4AT$Tuwsuhfd6=fKw z{TlD<>jT_+;Ou{TU#RJy+s}7415kO*`EntiL^;HczddHU(Y-Nd4?ZS3ZBhr!SvQ#w zDV24m4j^i*!7*V1|4ThX@UafCTB!@{RG)Cl1e$k>> z)V4}2B4cWtEjbliLK2cz^HnJoo*+*L^?NeRy7S2>JtL5U42pB!1lg zY!j5vWx;V^Yqs!%(4hX2E zx`H4nFg~J6_pKB^9K*sUp7;&S9DOKe4%DPolO<}~-60040xe$Az#cI(5KuIAJmvxf z_abzUR30)X^?3nA&U__eExUJv>0iUK3Uf$7ihyM$!#I4_*+PON_}U;~5L?{0Tk}GV zN7>~M_UuNnM`xL6uJzr$B{?5Nhj}hMEgZFu&z`b>(aB0bqb9(f=rS0!^9Y0^a!Si- z?yIj9|6t%|XZN$S}p(`-%QKfR76VPq%t>96ei@Owy&ZpI>Y#EN&t`Xu&8GaLyT>}jQJ7jta9`D&l3#@vlNfgM60)jZRCSpChW4}2Q4smO-=h`P?%Q~4qv zlapUAllk|CNtWcF=Y1UGiwQ?1nM!wN?j0iX%=a(;8o5;~)+AXNa_i%GfC)UH4!LVc6lD$vI6|ejEl*BkD#03+Fb^P`U z+r6AVT59|fV{7UOE#+Z*o-gH*6Ii%0a7Ezpr+ndC=gd$4Tndq!;3K`?rZtnRCX&+a z3L>-2uq>&I5vnL3b2qqJO&Zmr&X_~?4jmWksR#I2Es9j8=vS2lYA)-a?xmP|2=1x=XRfRbD9ln!dZ^FVt z2DAPv&oPMo5z*Q5pI}V=3cY&Ku&zi(R(yGldD{FX>_{+c(=cJ%vVwCKZPf^=1u3Ma zD^q{L00$SpRvD4ht3vyIg}0{^SRe8%_<2@SW4COt}8^*BsnuhIF3BdYp9A z>yRYCgngf2F&X6kJfgk6Hp#j|(d(v%fb6vZGCS;*f>;Y+sI~hfaHs8R+l=U(m!a-V zRhx<#=j#@iJe}{N{d%b0dMG_q=d!VY?<0T5=eXZ*@&vbeSiVs?Aar*VaW-sRAv|%l zv)5{^@?@50SAe2h+0*v)Hk%PBROT30X>rnYBKK>6@SFRS1%W3LY5{K}qAmF5q~mfnre7cqbXzJKp8E?P&6UYV7r{HNib1TE@q)xd0yD%Zf(U< ziJiUBFQRkmdkFk$7Dm^ImHXdrHNzW5y~r+K#VtLSkR-|RgUU1<6AZ4+al9{j_uuXs zs8~c((=zLi1-($od)$6JmN@0!;Frq+Ni17*y>?6Cff*WWmNC*>_2pxUF1BRd+uqNe zyW+PY!`k5a;RvM}H#L8BXf0$~=?PJB1UKnwOjuR^CXr2<7UA;iTnN-beWYWQ34|#y zB^g#n5yM}wdVT8^NS4}saQ!w7otAk690;Q!-pI^Rx#tG4no+T81XlQ(s3mb{l7Gs2 zLG<=%7um>@eVxkNoumyFd`}->+;)LPMnvGm^BO|RVL*Pe2UQKJ+3&qi{(CTantZH0 zVH}IJDZG-1&1TwdK`5eCT_HcPXaD`yk7DLX5hU3xg3uT(e()*)@RAghGe8 zT<*w7t|l38m910Wknv<1L~Z4^toQ5qG;a|V?)8CA>$g%?H8aYLlrhU?o$IvlCK*6@ zL_NPC!SO;Ky}CMyEF3Mz;$Pss1OhOrgvM%M+@8F z?UgvH=M8u3o6!K%&lvOAh_rCnz`u29qBEdGC zh#>FtNp#32C}vn#kB;xRjRM@XkT#y0$%SP-10AbCPsTf^T9VW1%PmlWlU4?dClN9& z$+b@5UsE2o=$V#)h@Z6^)SV4M88XInZAQr-_dR$pJ4*giGUo=RM~slu33Aj=X9c|Y zG6sdw!B_6v{BUu&zY=TLT$E8ufT!1x-gZZ59SJmPnA+)LtuoJ#!cugkvJXfb0*4ZHzdNBAt11#fLLP(W9QnPt zs9<+f$C!-Ex9HJ7%E(WGUs<}O-_vNryZ@auEK3w-ITQp+x0~FX{XTW-cB`MfFT>PE zLRFv&OgAJHMfJUWgeUmU3g{5I?yL6PF@(yf8I*+^mh^G1cYgorJv*GQf-w(DSi01` zyNS^~eSaXUyCs#k?EC7b6u%EbPB%_|Me7nKzn(C?W>`&U&7; z6ON&}jDl1L`53;;k~qOJtVJE-#J#8ma3U83l!Z?2eRRYbq@Bbj79IT{J2dl6Y+!G>5EP-4VV4-Ru-_?g?W`Pfgr+BNhV4Bv6bMW@p(+gwOdF{4O(GNIO==xt~Z^kU9u zkch;*o?3&;0sh=3vXt;J!%;~yrDCM_NrQH#z>S%YFFafE2 zPc%L$%@mqTYQ=OPQi4~kw~w7g7kH8q;}Q<;r_FtkF~%oe-_ttA%G4_%*~eH=^P;sF z8}BJsI%6LXp`q{n!2Qy>|MZQ6pRCn-zztSW?P3pe>rdYn`jRESRAP@QYJ}>yMoJ$p zeYGOg+Nzb|YmeqpV=_ulpO10to4&*MdWR0{AszvA=dc@4k&fb2cDlnFi=9KWL zd*I~#Bt7etJ>NvXJ0<;@dhlCEnEoEy1EZvKr*;gL$HTtiJc387US$tQvo*Nc74oZ= z(!wnl28z65hMZ5QG$J0L3LnN=r=t8Wv%-tR8%=Q2DIa^<`QmnRW)AraUP8}E%#IuC zHr)O~kTxIcQq?U-KF09cQxtJ=@wt|$xai=Xa%Gv%e-9=}I;3XyH!}JihN(qdU8t<% zI;%gMd(y4-S{jbu__mURmRMIR(jBy?zk1O1MQXG>!uHGEh+Kz!uJq4+H`HTHQlG)l zC_FrHQ5KNx1?c2%q2L%c!t(O+ys*f6zU6eJ_d}m6CjYXs@fqM*u-z+LbBhcdQd`yz zS$i&Cj1tjG9Aa8f_51Z6@s7!Q$X7PXJ*=ddqZ>k%IQ&S+DC*B@a106Ac@;&$4>)L| zp5L=X>Tgut=g3R7u+C9(+#@&+&6Sf@^?yG>VJE&~R#0UdNBuDUTkK7eQA3N#@B#|? zFZZoe*SGrDzxdNGFeQyN#wj~xQ3d%D7!XT|9Na3_ zJFIUzC-NrUkA0Z3JI3-9{0R_(gq9y^rQ>rl9PAkh=8s3i*xW`Vnb!1MG4g)qZgymB zg$#R+B!)8aA?9t1$*N8ZVk(ICZ=kjU#>G34kjs&fb2UD&T!@1N!-7*#(&|r)GX#um z#=b>)wr;BF_%0!Epw^J3(U4`}i+BO;H2uClp~a@DYmuHDHC4J-$hyRzg6C6QD?zn4 zuNJ|^r$Dkdtd+~M#Q9S!eNN03`g^F$Ti`iQZVO6KWUJK2MO=o}ZrH}V4Hots7q@Rvd>9lYvWv49jUSIsh zWyz<7TJBoi;rI}UjYiQifr{oq?22pUdASd?19Tyw`zuk6L^m`>L!U)eS$6SBHGiRfoIi!)8K>?lM<9wN6x5yL{z zrF4^YZ*mc?$DbROG=3M~ROf_27v|}Lg61*W-Pcp_5JSkGcxJTf$3x8r{U5<*6r|#x z=~|(5TJ&bpT-wQ-bs)*^7>c?F0@by-UPu`CM){GKM-vrJ8|-K|c_D0V+|pbyn-m>lD@bcZlJTcjeV-i+doIykfmYI4y^) zb(;iNxyY7i+f(BRm%s2X8n@?rjWOT4ss-ihs%s_V@WL`-q`YQzAzW~N4H{=AZwp$D z{GtrQBr@!lZBNqCDFtlLT)crw!#FPYLXS8Bt=LoIP`^fDDxk160$>#m$MVOYA3+nu zB5BVZw`nzk*4kMOjyE!~#32d_^2!hA2kvwOmiq;AmTigWejKfmR7!@xo6PvwpCLxTRxZ{8RH z?b?a7-nz1+f0jY(Nku~bf4Ba>TOPWU^?!5yW4a0Yecq#5yY)7A9Z2TS=GBHul&wSsqk%_GAcd3s5wCfA0_zO`eDJdcB)#pD)XwIE_ z346J|{l3-^1u{(A{r0uusXeKy+vxwncxcH7xxT|LKw1kU7U2bwzUYMY7# zuYDvq%a)DwW@BXtD-;%Afhe#_jA?I5`;6fkqTo5|)smJK`~}k{uTg=#(1oFf*K9DP zwheAH`U)vS|YGyX?wWRY~P_3NwConS+D_89G( z>LI-FT@)**Ite=MWR}A3gn9@uwKT#CpXKsmLW6tT4a6&*IZf}f84o5aeM4;WZ!`ye zxYUP-1c(Zdy_lf96v`gP%-Zr!!7w8g zw3j|Av$j3oPFQu)v~#O%-3j5K);;AaBOoprW&Rh6>YrhZ2*iJ#8ogz$+ZNpNCpf$> zCg=kJ1@4tkHo(L|;x2bfCxsoO(GWT94H{UKEvAf&sGEo?DD-3%k2&v;I;e4)OZ0dM zv*Y-4ua$t8!<9bVx^p%cWg#aopG9)-DuT zVVayT8p$7Vh<5aYWCCnO*k1Gy(I zwe&N3de&{buwR-rjH5+nYIb*z^~hXS^4vKak3CJ*W6Kv$88(GAUEE#eX3z8I*J($K ze#Gk?KRWhIx)$*R|HrD}ckkZ)`SV9eRCHOx?Ul2zh)Co*QKcm$qS(yf z#pa{7ZS8#LCk5To@>9S-O4rJk-@E&`F!kcPAI^s5sOF0(l5yECljBk?WV@7RV$w#NSapP(YrEfPfJ3y!}E6~%Kpou zNRTHjnqjaPX9v{+k+33%C-YZ@KUC978RSHZwk;=8g^1j$=Rj6 z4lzkKs*E(KvR&-5ny&AiT6j3KO8;h!Uh7PBqb|DnCB8pf`%q}U>Df}kZ=K`x;IX0? z`=#9O@Qq`UYFD;vn}`KwyFC<41U-DigN!xadw_#VTkCZvXDra4LF4Y%-x|H;8s+ve zTy{*zcVFh=I~w+lxNvb;bTgi_;gszm#V ze-;*r{e!yW<^A+sO7S1F~=P2@Jb8wx)E>HN|IE*J8We2&#Ur%OPcUD8I7U`<(DT zCV8lb{P7kOPb*QXiT53sw~$L&L5XRTm&6L^Ki4Ief7V2pE2pgo4H;#}P>H9g!S>C- z-jGR-hUG8RT!l|{z7|;xq!FXl4kK1xJKw*5$194kA`0)l*Ks3ghv|;&^UN^k3Fvs0 zJrF+sYAoRmWvP{KXqH@Y7EiZ0-A-ZGo{+1$fHQoVo}10N8T!!BPK3&{x8=Df`1&F@ zK%+)U%bLCPg?YMdU}P%z2bD*=>{sD-=f*##1F1ye&-IZ_f`kk`^V@lkL)FYXmj)$5pLNa{``Pqiba4sEr?<`yX4VE4 z(*%F<@iy&;y7vWDM#IPszV$h_AAG9O-L~<;+}?j#N^8l;c@^b2_(6C@_Ir(wlU7t? z)j(Qo)cu6#uTnGN@~_uRYTZZ*Je4U!)Yg5-if@hjG9zd;6lRv+mY<&;8cfDg7Q)lu zy7z%6HNiF^7LNpfiBk-p^fm8QjK#(Qxf4H?94d-2O}x1zz23>MTjUFz{1`Ku&Wp)J zv5l%;pY&fCh|kZ?E_%v2dt^Pyq%|erfBW_ar&&mP&++-RWy_0(g-6b7veMH2b`aYP zJqB}UnaS2f5F8(G)nd;{Ng+P5Ar7p;%L732&d`}3nQI{2*9_=m*A_c=&i`x|V>1n)4ff?p~+$~j|) zQDG7<8U>CVzXZ8SHRofFcdr~)Z#Q)nTWCEsL^|AV=i@W%i0@1kjiQ-DvgVOmivNIZ zP1uc`mR0&KT&dWs5D}PBGxUR=;T-1!0iq4?@77@W|HpEihMO4D=wDnFe*77&Hd%5~gRr=5uy7ep| zWCiExpBrzV?vMAEA9ZotE==4jhNsVM%{I3ZW9{WfgbRMY-I=LPNAC1h!27V;9L?7~ zL<{4k9I9u2L>ND_H%tL{2iZ`V- zKlPe-7O3b|Gjp@z<7-~>cR$-jdbHX#m!296KU5`APAGeZj*bo;b;n75W;5IKC9FJN zD{n=fA=I!9oc@Td{ppERWKT78{h^lNGnO9%*>AW|nHCN4Mb zrOg^kf+hlZ_6B;DwN~$8xUibk00d`GHc_NCie1LTXPiaTq4qNtS1N3peaum?Xm7jx zd8PI*SQeJPlKOdFIGz5o!82Z7&4{C4^2jzhWR!Mw_{!l30}!CgjJi|4x3snOjhSSZ zitq*LzgQ-93K9r7hbk9a0-7p+iE^htVm0qdOaDX=PO}?aFQi=3rP$!^CsX>QB9k8O;gQHv@>-*SyHxJ63Nfve477LKWL>E+?A}-tNhHj+;}wZbu3| zXGE0Q^VDiCc90T2aY6>Y zjj=^4LpyBNwF_T^Yu{qRRL&R)i62Q!=#_$w+4rk(L-7pMnY9TKC9hGIMEM2ddofdA zLFA`LyZJKtnQ;iC=W%e2P~guwZRQ?PQ}3^hM!jV^?)E(*H>vZ%hi|LO%zQUUPPHy| zjc9P`9taSidx~Tp9c@fLqb>)pFkfE6rsr;`|MQ8rNWQwBx*MHj=*x9&DFbTD$wGAH zi;5N$9%g7StxorsmEV2hm4~d10#i^L*4<|;WUXFFyGy&8o=j*83X&&RqWdK<#tu|> z>EK<7AO8wn;RVuIIg-eSGG~UHR~`a|_TGJK*Lm?96BX}ADiTJbPh$GSR!Dy<>1!vH zc-ZB_6dPY%#9GTQNC+1U3UUQz^L_m3_hiIg$+~M- zX-Sup{UYqxqN{&$<*p}b_>oBbv+7wdV_S&^#nZ=YKac&nPP>rlhf`GuAn}01N6 zGzitK!hBq!3dPwHwN!1_hv!m6+a#sE@7Nj*C3LFdIyD9J1Hhy6vjlzD=IbD)>V+z-`68eLfUsXS8-lI3!DxAw#s_d%J@^ejD?|;lktZMHL5V^U&)V2Rnax@Q(o&g~B#rywx7{~H|TkQXv z)DtY86$u*BhU-F>SF!rMBJ0T$_xX=8U}jx0(YgT0)H8Iw}!b)JBOI>%%bWHw zk6%E&3%qJ`A#R-9X5k>Mk)~HD$lV6xCk&yWAh%INt^D+;H(UOuKjt%j>?=taE+l!I zD6e-Z$p*of04WmgnJMlz=WH>#ZXe^V=>$e58#W`0e33;c^0ZuM`!}OOC{1{ zjbPA#@2!0wJ05l-kK~*VD0P1~{-RIw+TJ(>`8~5}r*@rN_kaFmO5V+el#Pti8>Ty5 zj`vn0Zmjsu0mq@B#$S!8>AG15a(Hf5*21A%-1|s*;AcWA5#QHhV(1zYr$id1*0bLq zOV}>wYE`=*xe=9B4Dadd>CtPHDX^=k6&QAc+IOxsN|`nnL}ySaz2;?kvh}@(Qe~St zWxZwmE+KACDtRj$I<-L?V~uE5GSe_6;IJ4N_jVUl$-7KHfdY1rxU0O=DPX@)dCv}} zK_F){?lIh+YZVg{`-NG`xZgkyRjd{b-@A8@_x!}BQW+(_V;>Yst!-^Z7&|M2+nu81 zSuCbSP23zm;%FW)s1>znHjwc+gLYV6LOH#U(KrO1pN46&<_76H&ituA`eU|oXbDp8Umft|<2Q9=+H*)=%K6rXXg!fNxH2z)*rX$Z z7W&PPCcUcOCfvA%ef#cdHoR~t1CcGaGn^zA1fJOpmX{9v;mjQp5f)~^7lqkvGY_>@ z9!!13KdrB;BL&b!wz9J;S_?XeE9&FDE7(l?z0lHEk z^FnOnUUrM(dcqXD;;Aph+=hl6@81N9?ey)FL4!E6{x(9-+oW7ODN*KKlUe{kDV>ic zo>FO82bhw9m6eqjHfhiJaE2mXewBW8*=IpeX%^2%+xUO_78jROvJY%V-hYh)fV(EDzt^~Cy4>P zM z?3K_pcVB*=Aymy(WCs^Le(+B%EPa7;4zBeK^}@LASKj14gxQ_{tSR43{1z0HcqV3M zY;220V5e{V;~73Nn`yYyO1&R(_2C>beNv8hrb%C>ET3h6wnkQW+4Hxfgt`4ZJUni{ z-lHz}W#t>tzV1_4f^-VA7V1=uhEWh6OL-uGsfWc zH!^x%B2A#}MZ)TFGjTs0w8!ypr1BXQbw*08=DyeMkGbSH zKhtvC?S13L=@zHLdpLvJE0<{5s`!h=U%CCu(Gnu(BqLjNmqxT%E8@_n>4{A2NHw^B zy8fIZ?SgVCWarZkXi-ZV$_*tXWp=~dPK9O98gKcW=5B1G=fp+jjT)$RB1|&(6Ij~6 z-XPW(whnwTji+1xpnj#_NZ_7 ziNEz>ig}LVr}=?_fo^H;ta`l0;YIP6b?uT>E`3WpLG7#MnYO71U#yJuMk&R8gC9|i zIXKi0bq^LqpN+vr6;`}$Tzqg)=Y^EJ*VRD>$~gdB=#T8={RbSTvOAio;8_DpHz>5$^LLaT-$d^G|F&GUxr-#o>p{?dLG zxuS`UX*7vx17D!AQ>gM@DQXp8tGr(l3RPK8qvJqhr1?&?HXpOmRhW;a2Pw+RUa~#f z3e|If#MY#e8$BL#!zi`T1%-*H3||Hf65B04lcL<{6#%%fkn1804od=Ze-jz#>r00} ze?`^8dT{t2lOZiv9p9e9LR8$OM*!NJVObqXg+}A2eVHp~#~u^UNot(vou!a7ECrI> zeK1LfLtdO3p4#%|%k$tcob~3vbkD_kL;5vvsQ)O<$^REl!U3AeCG40p#Pd3}taki@)l z_{`wP*Af!)0*Eh*-i475N6H;6Y_O<#PL!tO3Y(v46WAY?FPN81-pt|}t8m%|<)aFw z@9G`2t&k;Q5urUJ_FS1LnD0qTv)r5ZyVoAu8vRlWDbsv1 zP0P3ShObhCqO&{3brS{TUj)CbuThST+B-=X1V)&N$a;K>KXm#Hs<9rXru|o9G zyCsKnQH6UUpTE)_ne}B3y30{$Dc1D13k$jUjkwk#_F-C3SdONi=D5qdq`TzH5{6+S zqRYKBfBWg9Hwz|r57?Zp($@)F;09yHe)rr#j^YQHJInpv&`Am7bZR?|l$4an&D?QK zc2in5%y*q|rKTPoWuNgDyB|^*Hs5p2DP6&3<8j{MIN7LeJz4Bd9mXvAMK45(e>!H{ zEmZ~;Q`U%*IVCBP`TDw|ZMfO%oodq*DUMr|if}g^P7Q;mjC_j46HDVn9;yU<^i+0M zaq)f0I}DA?N|2!~k3-yc?)8O`Ck9H2G}cf3%sxwaiRBNjWftZ9_tPY? zX1s(=Ip3WngZmo#j-BRX48~bq4R7Z(@zwiqO%I@enw zm|0Es^BTy8<3z~^cfS>zD1c%s?iY+~R*Xb7AQ--|vm!^&UtxjVlieIhqrfmwzxWc$96?NW%%Nzb)+?E=yo>y12jcwr zTuVeEWu&|t$OUhODnc&R?x&e2pyxFWlBgH#t)2@e{n?~1bUsGdG}9Lkhy@mp&`RQ& zGi_n|Won4nXLqI?#@=mQ!Y%44gM_oSHHER%lQ;a?$qD4EYg|7E&Mea;bc(bHRk@I(lt9 z3P}n=tGguLZlsu1@o|aY_@P`~QvB$e)e%jD^MjEb22x-P}96%H{g9!|ab$ zoQ^NaDov~j1mlS9Fd9$F|3GJ z$<8xVNwUU`R|ZNQoO219jEB2kTj+YYV|0lNy; zZawfD@Y9yQ*Qa8b^*uSvKBDs1s_6Py5O&A|sIWTFHe8lNH^3v*St%Itv}$fkSuNi+ zYKc;Mi04c-&~jTLQI$Q>N_pQ$*5)!GJD_#kSn;<{3B6RGIqrfTVsiA-Ai=D@&`a?E;7gqbOu5z;paasyP?I@ z6h+KgTJ<<5GmPMu+@s7No%;JZeN9b1EM+{}j|%gBzFh$&HR%8XkTz3Yy2R-xoIM-w z>vl+p?5p{jkqItqM=<)mmlk7!vyU^AaQ!HLv1LY87_giNu+R(h_=IHRq0!l*aPRW4 zDq&^;60C4?vrO0e#)!9g>r71&eg}rN#Ck%h#98euaMESX2gaAE&;&0qv;9I&R*}nf zqCCppmusySiOXwUOr2L zX}+n22dS0h|3miyP9_{p$m_42b;OlvmS{|rACkNAZtqf+2axn04`65A@%u8vP&5oZ zO1s1Z`Rz~-s`JZqg0HIfcy| z;M871!+waX-9*%c#w;`2u%&ki4(<23jI>C-u#j$cHmLXiwMr?&n^C*4O_`XWE+Sxe z1%;&*A@S7oKAA?k+WV5G_U7loqmDn}2hv7aAv6bO$?HT-6?eP)LdN%;>%9%=&-=5u znL`hmuJ5b|KPtE;kTQ}W8w?v?1yu4yX2b85vh9}pNV#m$%9=MLKru5=%6u>+&>G1q zAtQ4KZ^QBBZ}p$=#3Uspfzux`V|IuX2lGw;+QjW@fH@ zWvsgYLPrP?3Kza-hm7ay7QW+3P8Jmr3Jwb+Y#Z11+A@b){oGwd`dpxu`#o$^Nt2{9 zXM9{AS9!1dpwGcE9g6YSXutr$VjPiEMO4s+`$W=l;fL4zHEY*7lbp)E-F~fGS#xn` zJE<4tvPGD{IQW!}n|ruveK3C>RD*D%4gC-YOC5k26pz{u|I|CS72aFu)Sdd{oerg^ z<13!b$3aS-7iBl-W68XJot73JHOp>b@Fm$!oVn74$)*`o;sZ^(priBW7pJYhsl4L1c?QKgzqI6mvd9_)1_5~Ie8hLkm%?YaXW9DjBte7Hm?SRAK_-QfbZWM> z<*U1c{@yY44oksnBNsdML`%U|^2^rB6$S|CjVLt`gOOo|cMUHL6xq(RA?MzPsQ18 zzR0+@DRVJ^?<|e?Etc2W-mpbG=X`X{(pTxg{H=D5Y2TVkCI9AGObHC3yX2$@hiYhT zT=kH=&KAlKbhxK+Ck7hmGAZl z3FjFu_LZM#UO5Xf(1ywtq5FpmG+Kn&4a>U`LhIY(`yY3|CiuBoE4*`m)t2y^hqP{X zcuQyOm}Rr#rYYF zSU=Wiy54Wxb=waFd>e3wmRd%tWzdcj@f$K+MskSe1ay|6zO3!${*-zNgn^1T$YMl< zgir{c+kBJxB84aX)+lf+k*IF?2bp>Qd{2*Cs4?AEsGk>t45Ch(K&1x$8ANS<)q0RR9{C}o*u3g@>5U1X9N-k|L#ZPWeijY%9d zAB=1CBsW86H)0r(To)%HF3z&M{|8s5VE#Bc&?0g~?n#7G)ohdQ&`N&vKuyvUclFuN zR-(&fg2b%5&Ft*W#q**N2lxESva*)rWX7FXM!KiiaNp~`P4oq>UBQ+tf~LUmT({nr zx&39nZi7F(elfQeyZm%-m=&_f->Qw)6liDZBGKLzB!f;iq0?n8uofz+zI(`6m0P*> zjQ$)QZPZIA>+`eI0M5DlJa@z*oKFJAADU(a^sn5%qpmBtk9`3(-2MCV>EGgtAdxq5 zz+eFk5fVqdmDS}c^K|&zw2QCmI~`NWau&XXdpX4e%fzwq$^!48p70(Xo7~oDiuEyT z-M!CWAop)pCxgxFrEib7IA1k=yKY41qo|-XtFDTf;iN^@OpP+;XTE=1xw8^6?ta|r z%b#J7eJd1Reypb?`72iwq_&Hhdv@Nf2Yp0SCidr=j+39bXnA?73JQ9ByGhdW$rZbT zihX>1baZtg8SYh<>h6U_QMF=o#gxL6kRu;EwTBydEsYLR>r`pGoDrpUsD4xTaBtev zXjHe4hVJLHWivjlD7ACon-OPk&c{gLi_Bl1<}AlHpXS-zkk&mT!7pydSr%{Szlg6O zQvMe90L><&r`fokLwDbd578HoY&B8^(3Hs+6hXkRfE%Qq8p{Wr0S=uCcii321`l57 z{3)@TKHDpj4j#MRq%E9L8L?rCdI3ZEqJwgfB$-rN5Dqxzo2L4d)%A zm47p#mJt^AIM?-X3pfFlDEN7)p2RqX=5e$7nQ@H=atyZv+qTqOmj^CYQM2X6YlIN~ zV!0WQ#Wrmvb-==6YVbY$Ao;mG1I+^cw!JReJ8K=ei=4z%>*tokn0KD39%=Tq-9AqL z$INd7GdC!pD&&vPfJN#%jl1n@IE>l>23b#;l(XbAu(rg`RIW3CT_To1OI|u)yK<*X zVi$#qr&{z`cGgRkfY$^{K$&a!VmkT? zzS!ti$VzS3Arp{>^aeVA11_X^; z!S1CtUlmonA#-?D>oi|;<>mt~p(k}Aj^fp7n++#+-GrG@=6oNosqB*sx$Wn{lbR1M zdY;BlI+7&_xA{>aJ6mn|XS1P#7u}I=kvk*rSo}jM{wbSD-?KNhuFp2IHOfT-$X1K@XGa;aR62gXn`4-nwR}DQc2R1`Y_Rk! zNLW6Hb1UJ$L6meFY&QW82KqK_1@4F}BJ~NJCtGC_ymbfQN5D-(9l2 zr-zR;WoI9uKOcezd@tqDY0RSMim8hleD8{d9T!s8DcrBA~4x@uO0gbSX zkD*0BV;z&EY%((JjRtc;i@|WEK(%wRd*3!#)kd|JJbsS#&5ldA6#GRwh4{n+x)~Z! zxjmLMgK%9W{>nb^2y$;p(_D`;OdG#GW}>ui`7s?5UTAe#(ON|<&0g)SVC%dgyPrHe z<~kg#y?ZCXctqVxC5IRNY3E&+>YGA;MA)k*g(@xD+Yb#VWoX$d`WJSdm}PA}y2^bm zJwU>UZ77uC!Ox0PKpB{z&Rm}hVRuK$h~Ig@B-E{yC8_)v@J4#Zmm8S$n(!X(EOs}v zF}WUC3hT|iR0QY3t9(b6GGOtZ zXT`cX2Pw_7jWU1xHI)3ZxZ))fkY1+Nult)RiE;IPY!Edhs z6@U&5xGb}uEDK=a@W(0BiZi~vWMHHgq$Bk|9H?pYv7+`R(& z#>>_oKZPr*`p__L6;^!+RW2Wls01P1HV&O@NbsAek&8;?HF&Al)U3Ii{ z%IS1KhDffaq@p6EhbJ+JMi>$lJlTnqc(Ir+>wKuVngg98Fih+b1pa-{gl2jqt_S{o zwYK4^mE$v)&ECus;O&wj_^GWSmF4^i_4aoHQbmq3J@MvY8UN)q z%n)k&7&fQF+mA)|NFnBux}d*Ocprsu&R?q?!2n=h;{LWW3R*Pp~!Jz0aq%k zaJ1f6HNRj>XTA9}>!>xWzvzDx zokiI#6e>(5oMh7#nGAJQ5>sy6BSuUY|Kq0XT3yrQs06rKmKdKr5eXXE$+oa?R{fQWtpr~`5gn*e zi)0%}q_g zedU@*bMb3f7dRENrJ%V`Hr8b(;`s(9PvClVBoh$k#8ZZ9W7_{p7dj#tq%m)=jQXkZ zNf?toRR5im{mkLf$Hc^h$VY#QEQp{t#CCX5)V<0dER*;83O%RCpN6+=`t&SRBTLQo`krim75I4f zMZr9}0lAftv334X#gn$Hq!M76I1o~Q7JJ<1D{4n2#th*+Ae#k|6S|d}^`~U0zjig9 znj8(_v8v&OE0xjCKE0Zn;1>kLJLZj9wS`yEyk$I!lDTFHh3;IJpAEZy*59X%KOsqV zTi4|Re~s>Ak{N0nXDB1$AFc%Qt2)Rl}fzFx`y307rrvUPQr zFA$pRl5G>znf?|!v|lct`q!5UTnePQXY>E@;N^EU_~7YmLw(vymg~Q8914D0j51zzQ({79A#5#tR za-ra)z0n4#DgK)7t?Lz7o?ndA^iin$AEV%%o}I2k4qBDzFJRI*Z+4*LnIIXiA5X4E z1d)&(F5aFPldgAzU;@+jhB*ntm9bw)StEO~b7N^*+!WaDAGfcoJRAMdA3@UaRjP{eb6@I4XvquZaK3Zo)|eNS-CuB*&GR{!2R)6&FOq z|Hte9yXF7ImHKa5{~u-i&z6V&jeh=}{QqwKf44mJe^&h{(6w3o&-C-}pf z&;M@qBcT7I){lY%T{*S?Q|c#z{+Hh2zg_*p&_Dj@$`1ekbw1$oUcLXnU;PQS%hshA zu9-p|EM#Q^n{YNif7W3HpMcTUImUO({noCouIlRQF>YMspxcG@&)6>r?vwOy z)YVNzswXwDvdMriw=D2*mt7XVzp@~bVvVLi1NN`}5bL5n=$V0ubEGut^Bu^-FNi~N z+Z-*chLz&YJ^)A+_vc(GVQ3su9t-_O^x|$H6tTiEKJ0Rju=XY=piyXd+-SLj3fbD=x>|qlDj7=k||A_52Lr(UFazk8}b^o;RP>piJBx;ZP?6(q5)L zZ@fWVf6Tvf*&e#|I+jsLiBSB-ylp=Zkblj{#2Ao*3n^-vXbL?VpI*H9CS#4o@y&4| zbqW|OV4!9{B=G|O%7Ytq0oU@177Ny>Ui}}JxPIfsYfIpuVb#X*K@x{Tj^M!!M*DXvi-suYZG_2wEp+Q0U@BZG)>0kEB2aN-Ol9~aoiu)nH z+1fy!?r52vrwgEl0#LDfnF{6*c$L+Hx0Af_T)5$EFMZkW!x7+rINPrUktTSIXa5lN z+FR~#XM~s+Ql`eBlWB5PR8&7=c3v>%@gX#wW;<~-=b_-|5x@f2V*-yl6h?U;4!^KtkT|B$zt^>frwb18th4 zt!73lN=k6gX`dCic)^CYwxBJgEV$weq&{@~blS6%b?96z3rXcg{)3=^`!9aGi{
      1l?yt4*akAcRL*r6z?UGVrAC|YS#LAT8P(DaJM4|IMDsQiE*)5iVc z#@zD+qc$2gt*k#Vd3Jl`J>BXsm@GiECm@9f)TU!MeGrk#g z1F<<9XIke+VLYiyT^RlBrUSW-`*hsg;Zr?=PP(Wg{XlA1_t_g-k@HFKgR$5G$ta#X!hVS-o&5{-cMRf#kTMly0+FPVF_AN zr)HfAbpXUY25pH72n<11I#g%E+`UguT$$DR0CNm%{Z?K39?a)?VY(xeVO8bKS*neV z&3frP8ESQ3dQV7Jfpa716b=EJVSN)jE=Gu*%&Yvc)x(Px0p(%&dKEX9bKE(LgoFgS z(@bC-bT&w9n!;FhFx4%?H`?^*id+O7wWxL+blyzdrf2o|!dbYW;MtpxRdCw6o$3hZ zTf*T(fK^IzRAamfkYz1=dTMHFaxf&_=ZWEs|A%%@{#{yCcV=cLJ7@`2jpq21a>MIZ z(1oi%efqRyLRxaHH?F9lkTf<8D24#aXlINqAk6QgQ_AeXdjA2ND-Ak7Q_{zWaLc&k zjauNhpXFAxP)kRreI?;>E+|x%|7iiBdVsIPIh6!PE0*Z{3ykSR(LeR&8?+bAhcALb z@Vum?nP{6f^bz4}jyhUT4sbE2N85`RyZP~}o|PD8R_rn#yJZ)aFSzl9$ zA=O)mI02YSeM18jg^G6yh}PTUT2^)VKJFoJsB>X;fP*GXEt_iC9?R4Ey|0{dW`7*g zids5jWwz7bMUOH6f#(rz(Gt_J-w2w-tuH9Y=hW;}L zx|;f3b(s$o{CTs>kaKTZ7n=@lZ8nfAPdE>o71!0(Exx?y6N*?xk^fjTk0>ze7K!rF z2mi-Fe-7~hUf2N}8dBg#d}?ZOg|Om^804lCS|uyB09NKjY9D^jSbTd^+9$gD{LBTB ztN8tT7UDmjF7VTzRN!o4C=cg0Bl&?7QleyKWi9B>eOp@}K&~bGpw1M-75mY=KScVswOpi|6pI4>Yf*|$p{B>uCO@lGK4~& zHz~m}@)Nyp2FFNCJ_Q{BT{)T!d;|f>XX{f06s?QH>;> zsB&^xVd*)#MwZ>ZQIC!+6q|f7pP^L6N&x5F(^iR!EX!QZW5hM{zpp%>TUu3McTc#d zE3HXDtMB2Xf9lT(en7b;H+=3O&y!Ypd=hcH083>DH`>dC0A)$f0gr0 z^vps{UhO<=WP2aP{#6O~H!C? zAX_g{;Qye%+x5N{!=o2H{dvpBHx)@pDuJmfqeFtvxPxxeBEI%Izs?Z>@sGGqGk(b^ zt3pr2?MMhqL&?zKW)0VeKFRDOr_ArpwBP&uGYk{9&QHhB6Ww0LBZ5tTP+X zQ0Ylnp3Yz^1ut5o3Xiy8^%E2pH5~|7(}MqtP?MnaTT=>O-XTv3p(K>$g|F7Ebd1l; z_uc_m@_4J z=}@{6q+7Zhr8}g%yPNxN&-s4e`Mx{u{pXH*#yDqi*4}%qcdhlt^UPW`Y_}D(%7*`F04}$JEZ;9ZCzkZP-MjvYs7I?nKp%L4F9)ticsnI%9Cd$Gp zEvKla=OriMWJub^aQO|QkH%oK98M(Fu$@6eOGmG2w_!3rh$!t#hkMu@x8upEs;2&I zgS&_3CU3<{1{>=EBKsHF=8nt{1j5)jcYeq3STd*6&=3zasSOrgdKSE{#vaSf8rQh~ z?MWqNL6;8`L8F}D=Y6kP+^HWkM=P!Spj{ZpZbGlf0G!eI)reQeF4a!iR^{vdBxWEc ztp`I68h6LCfd>W+=J4%#8pbceQ(cc%)5XKaN?lax zCa3AZv&N{x5x*RaUz0{r`35Z>c3(gEF4L3XtL49+s(3)`Ag6bm_`)86-GYHeP*7JS zsbF1Ipi-l;hJIB3IL|1L%33?Xkw*9hsuko&&oHJO`um3O!==O4fdmK?OGBytCqfbh zlbSaNVhlLIgfp=8UY2J8vGfpCu9rm5UeVqs>uo{>aBg7C&36nKjd1OIv9>PxI!bEe zo2ciKJK%nZBMn7?Mm25EZUZlY`NGZBy8RZkqPjz=d3kTe_d7-$(59w*hIs+p53<55B$k7qDxl>O=&S38EW!zM?f zh`?p68*eJ&(nm{=mFO84-$QDVySi#Cl7GX*LiaELxc=->vk?f2-XM((U&STT zFy75t6jgJct-TWgjCq|u&2?REz zj{J63B>&Y>02~1K7aZW_Rf||=IRq?{^u^RQkS>9YU=Vo?WG9NRUX1_^1CQOZ#G_1Q z+N}eZ9uMLZFj<))J#Sp-^>zZ`uYsPiqrHQGv0nj#b-^#?nbv#V4A4mau3`B0QC#_~ z$^~+aFkR(Y*;q3m;MXqe;@<0pr+q;#$XnCR^?SgRgl$A?=&Q=xcR_pFwGYsD@QTQ z{P+hnrmv8H1FJj`wE}E7*1MmLq4o#5^j3|>7v*{CAvFQpB@jAi)cA7_ zDlyPlP!~sQ5ejD!(mzFqC)qQ%4&$-oKqZc)I zMteq^*o;HT--qyyAzgzy#azm+Zox~Vm*f&z+Lc$zgEWORH$y)D+ei-L^I)y5Y&nS+ z@RMXc0#d|nntYA|J~WLcC}dAic5B$cG$V{6*&_3~>t8kDo3o3UBj*ELmi`z%-^q ze#%clRVnyyi9JX?y^%wFhwIpSX@f#T$7-!ywlbLYS8EGp&Fa}>a%K|((f%X_sTsM1 zEk+~Foa@j7&!cf~c2Y2TJyH>JzV~#y+*Tjpc(kcSOkE?(Y)9G_IS_4ub3KQHOi=E+ zwtb{WGvnVhz-vT*&l{nMzY6vM3;}ovUn)k<-==K;0$6~<5Moo*Q~7@dfqyNSLQU}C z@E>Xh46FKg(Mzrx_>Oap7z8?kF6ICnGe|6S>UFHAUcIf}5@vsK{KeiqE*VFkwHeQr36RPGQ=}os~ z4NsP7M%24(oT^V9aYsesP<3#ak7f_QV)Wy9W2u~UBwsO!FgTlpamNSI4$+1@?>`fx zykquh`~%XV=L2HTgRz)W*!1s6EvKYZX3!pJr)m9l2w-FYUAVG;1cs0-CoB%VHoqoyFHMOvxM^n~~y|Jtm>yp42E<7p<$3a!wmiWo2M}&AJtwuE)LNZ_3BysfW z5_fgp5wJfP%Raoh#H%?|`uq*bvS01_4QQPL!_r%G^T3X+1^|RVe*9>vf50n#4rnbm z(Twhw_3Z5I<<;*xznXv8O?w@rgmfd5HztoQ2Jv*@Ae;ua^x_=W4;+@|4@^8h~XC;-qIl5v~nlP|58sv2@?hQm4Jz7LUjpa+bV*TPb>oQU z_8DDg$=lD4JQ=!|a*fxymQrf)*Vh+E;I_|z!Oq=L%H1|lcqyajC$RPNAN2q^8ekGT z0n*rLFU{xkNPK9oPr$uCL##8@|4<`HV$N-=;PK1zc>s-FPtDz~I>TSC!Oq2?c!zlW zxY^qJbpi|w1!isycXvzx(L!r41d!?nH@BLXZ|>G%)KtSTfeO_koiXt()N<~ZFK4?- zXdHZG8-E}3?Nlv=)`B%?r}huyaugG+0T3>pFX(ju=2rurV1OY`fPsO5gM)KfhblVi zJ)EnY7l@#Ta}J8+4wxU>D`kwFPDI7`E|iO`6T#97L;`X)L)r2ad20Tjn51qZ2|i=u;I#6Evn$!2>?ccb#-+xGO!hYH}m< z=Z)dWUN$(~Vp^}F_p*hU&#>NRts{}0n#io@`fg&SSuEv9%zd81H&f%rKv17c zaw7x0?m!Fz;PQf&4S>&r6_&;g(jZ>zSQ^?}~GL z7QC5Zzo|P66YdKp!YWU4+TOXhf~qq|3a}cIP--BI-d_XgVZwMSKh4$~7Ga3=96F9s zj(Zz#RL2edd!(kyX}fOVWSOf!w7IFID`#n$ugoU8cswk72mT#J$$w&Sygo=K1)0Zm z;BQF@N2-@z;goq@el!<=Q;{IR!b;bC=$%5F2x!0OVCb;4ay|0Cg-P(4GoS1NKSue` zwBZ|~Iswn?^C$4dR`0Vv;IPN0WLPnkD`lLCZpUoKjG>?p$;``P!3j{VP;ro9 z*Y(ljIHYnQI3@S;vH5IF!zCm~az%p2Pz_ucB; z)D!hf-j`-Wlrx-Fhg}T4(jOwmLhj{x#mVWGK%cM7^K(YO-2e=hc5}dG5Q9SO90z@H zD#!W=fH{r5x03C5n>LEYH$Z)HyF_{?XA(2#np>s5f35j?&y%Fg#!YFlU9vu2?EX_D z4V_&+dV02vp*u9UeBI1N25k=jTVw!-ils;;aQOjBk^WJ5k+)SJQ>JWJ>@ZB2|mi7D$CB8b_)7_A# zPfdB$_;{$1?#BLzPsNbw*nFx2+5w_`biQqto1yIWhA^?B*zPCSC08rX$xXe$vUCk7 z+>v`|U_LV8O`bP>ub;pMpxzzQv9IzRf=CLDs6*~OoIW%BTsH@h8Yx}5UL)x3NJ&Z# zB8&8LmbY+~)=`U@rxx8zG?f`xviG1*8=)_&H2ikW)@z;Z%uMfr;56rweVn>Kt=lQV zr9Va749H#Nw!SK-+a7Fs;~QxlX|dY{%nqF|!R?wUB3~XB6rBLi46ZYJOS%1=GK3eS zEj=R(;zYKe;wolwFlh_e#+X7LsD#!O=Mw?fD-_Of-ndbdLN(QNII&Qo-&wMx?N13M z3%8UcHn;=J(~h8tqi!xMIyV}ZV+&j~lAGH-Y+kP0WqJAc9$1_rjo4$MPr3V^8#?Je zU@VgQZDMI&oF_K_fKh!bu4d5wC$aPTTxg5-%%yx*SD%{R8q6(fN~o(h=0)+#nqgi*j@KMaZtP&y4)@N zCEn~cdXyioaNt!_!Bo4=Mx4>${Ccl)&a<}RN8Z*6s5Oim$Xx1pg1ry!3z#q(O94zqO(vmZ2~WSNr>6Al`ytCZ>XbUU_22{3;qEu@fI zK~sd^3iMeztAN$#cWQOeNZmkoA9 zv~1Nt0X#2OmfBX=wVl#C4vihHB}eXS<;bpsb*H-f@2b}p>$`*HZ4lNALQC(b zvMqGM?%BP?Bd_-syjZ?`2`*wH3?o1!K^%?i)^oat@>7>!sd*Dktzqb4auH%ET#wHa zJaZ4?42>BPhSi7DW8Up&IX-(kzijS)HRbj>RysO3IQ0tX?fw$V87Z&sv4K$Frw93_ z>x)NNWpvNhL-Y)ZzN3))!ihnT@q(xFi>bnKkV0QxnrdyO<9gUQO#nnsEm-?(svVCl znOZnry>wE(OFb10YUo*M*xl%Vf$(JCy`4kL&i+{-e5F?guW!y8o|oV2aUPXrPefZZ z9Kj3BuXB1{K7ov}bnqzB?g*&!W_SMeuTUgXKcJ)r8Jt+Q>F2V_dE7x&@jbCQl%L1^ zA7Q=NR%+w3s_A+oxcc_mFR%SARm)p?EeX+U9o${qLyN>i@}OSE#ouxd<*~g(!&BG8 z>&TfJ9zM18=R~1dcE~AKiRScf!xA%E@ax2t%bAG9%>F57Bsv`sc%1N1)SC*Zw}M5EOo4+`#cXMz)+l-Ook!>H za@;U(+4z-r9*gHj3Xng_Gf&JBIv|j`0(HHcN5Fl}d3C(qq`}qQUdv|A2KeAw+)LC~ zzCV!ILWpeJFecpP8>Kn)uBaa9!Zl=kmp6^|SI6wRw82H+5B~ZPdTPH%A!2`jSE9?Q zYGh`vUIZFjgKYtRV zkKt~YHMp*4N$8-&fHv{gFvPll%$g@*zIx`Qng(aPcmD3-C~5*TJc@)6{I;_Y0%o{S z9*Q1a2yJG5rlC(Ft0QSqK^?|nLtmGE4@I?0M|4y|DLDr^J>JeIL3U=}YRtTuJsw1s zN7Qp~tXLK`1|6T5zt&Ok8dtBd2qaEWdljf@7^1I-PNjrX*#jjUSDm2jP4i&35-FN* zqOE*RUGZNxh}5UF_E>sqJF*-?^hir?TmB2JLFXM7f!Dx?9ShxrmJbW_k8CzGIh*Pl z)@mD5AOHRsWh%rf?$t|BPt3=d;hllFYL%vt?m1}Y(Dp;Q=LElStEefzGDBrE%{;9H z*Jei6+3&@d7YHoSk45hI*G_gyJ839*EV)Y+O5|kxFH&Zl5vZe&J_(KF<#O05`{tgdAg)T!KV6Gh%W_z?6kzdYs^R-c zxqK`}P%X5?^r}86yent_J7pCywzYYnWJ#HDERWMQ`g5%+C_HZ=Vmejzb-v4*_n}3r zC}tKCh5cqI;?9!2H+k<2Ehu-a4p$Px2h))x^{|B;qjj_z%s#-|H4XXA-S(o?lgCuA z%6M7Y4`bw%z4SmFv7UU#6rHA*(P{Va;`I(h1K2u}cQ%2kh|J-)W zm)9;|h-mF~J{qp6%?8^Fz$91QTex;EWUI9ALQk*{5{qnJf~;UTQ1t%&Xl&$o<;d74 z3+nQ4isvu-U1g3*_~5?nD0WU{1+MGnNdI6L$3cL^m)PFM^DUlkO_m+-z0Ug9<ixeA^+V`-2=|5w~EEgQSkd_@`QoN!+ zLOAdJan7E62%Kfy0f%8EX{&iB(eGr18H!tLsU&6%-eF}FD3~$yEH^QIk=2?p%UOT* z*trktW&V;}zBu$&Ocr}@|56^lC;rrNdvREKGnsp!bjfBdQ8)@EIgS1Z_Z&kH0cod; z^x0EFR`FJ8)FZj?bSnO%iK;!rWL^OZedNBR*Ygi1CN92?+a#ig;b_c%Yb$zU*5S1$ zGHXdj?A@h64QV~Uzk0@agYcyGWjRrMtSAEyq#-_k@4KD(&rh(ogaD6Z1Mi=O8SaG` zFXQFRQ_;VmjH%rfq=EUcuB|jmCRy=4Ee3wTlb6Vk6ZsEl3)R?A<^#W2)2jqX&xW;r z6+;`8Xm3#yWmrwOw)GSnEw+hqr}SsI*EB}Bs*;-;J{U*)Zo0JORr!RL&tkhv=1}#AF)BnKZu}PpxzsX`xKE^vX$MrJC6PEMrS;Qpq@GokbT=6SBV^;2ErE z90-4P$1}ogUXjk>kK_E|jERD{-j~EZ89KL}%Vpp)`f=Z7MmuAuFk|=qo1@drMG3Qa zUh4x9&if{B3|$7rA39AxP!l6bzT57vYenaq|LPU_8jhXOHv^mEJ%t64nu&K(VsuIG zVf{)!!RuaT+4gn>-&+05fR@(Pn)`=#~uqi-;LBfiwZK-nJ)g#z%FE88`*_nALs8<%|?=Pa<>% zRK3~HgDFbO?cC%*j=f1O*O+Y^_^nDoD83H2qdvi^CTIV&hyGQt84r~mXx`{PM`(=Q zrd?Lm+aL3|6fDduYH2*beulPPLA)B+L8c$>W<8!f%KEbSTrFe~zYN7ow27r7z?oHi zR=TZ-oc*0h;Mb%WvJio2qYO$G$!|$4Tx>}gn(*IvStwP4G24!X~;hzWKzZPn*C^Q7we((K>(Q_?d_=J|b|!uNrG2913Xj4=S_n+qbI(YvF+8yR5t>vZ6{l})>rAX!hWtp}OqKF) z2#htSxrIX))k4z|NuHcjb3p4WeGd4IE~9P>&W4z+wtjGh=XuKS;a1-WA+U#dA-H4; z*zTz!V45-`#EKu5=dkkRGXUvuAzN$LQ918F95%6u_Bya$0 z$HqE?rEPps&*pAy5hexxb|Enm!~iIbLH zR@R8#owY7PIpxg6omeIq48kRUhY^aBt^OTj3Vq>fa-PNJ$f|fbS|Q)iW@Xxsd2@67 zd9UZDy56p~yP}!P&N>8jH)?9QXqlZ-4^D9(&)bMw3o`i8c(i?2wyS&m(@sT5G}!r; zKQ4a31YYp^{Hi^p+A75|4>#gf=WMqdyk}}L3OicIL-`q8+9qAykSJ`7irg=^VmH0NG9`*dq-3E$E{0kdkv=RKF^zp8$2*W| ztLU&Gx{ZTJhd=*DxcMFriAYZi|Xj=6kQ9{$a?0F-n13#&uLpWA{&0U zZ0?Sc>sYt3qR%ZZ4AWeiKf!|!mXfvAI^v>&maMSiCirp~31tXODt`35RJ<@%a)Yg~|HKXxF``3k}gm&Edi* z`}D-qJTd+5hgiI<%KKtI)n#^Ov1v={m&n^a59KK$R0buKQhw2(Q2lctGw)Gh zkl|xWb55v%gbkxPiu<7`U94hFBqo^`8q>h9-{0t3Y z-i2i}(y80|B60o>+EvYCiKir2btf?+Ur7K=x8Ag(#3A%l zJTZLOegzdm=HN23EzZ14tf5SwJ*Tg7Hye#IKV&mLw&nIXmQR{Ce=t3rV_Klh zF12>h)h}E5yp1NMh}U*78^?8+%d$BOuO4c=z?-BB=cGDL)dU32W zBV|zQrh{;P*0nhbS6gn$5}~jFS5B^qz{=9|QczTJAVg`fd!DJ69os;0&AIg))rddJ z3z0G$YvS5IdM!R0{Qb;(?1^6Ovsvoyt3`pwe3VSk1g3hbf2+QleD2P=rYZc%n@Cli zM|q4#tty3Yn$`RbUG z=oYbtVsNC^@$G$Mi}N~WO&^#q>uu5I8}O`V#d$f^SewVcig%*gZ+p9b=kTz)7=qZ| z4(nmB2ZmVN#%Wtv$CWPTB?$z*(UuL{xoe5IeJHGvr+}^rHy7@fh zbHU;|p?bo@wlC~sve9FTzAN{o+eBw<9``kVy2cR|h4Uaaf8G_cSry(EZ%#dJb=J!kRrq0osqpCA$!G35vc=l5hDV6z&&kBT<8YYg z{^C^&EYTT(NZd4Wi>(@>w36&!(*_chH!f$#Jh%{H*jbVcl&< z36~7xCYJ)5;)`gHGTf&WYnTks=Bf;;3+wWmfs$zMq1$LB<0@$E(E8M>syyBKD(jK^ zyQ+~py_^&}GAD#thleM-WyU|*#gP$vS&P#~N_!Pmxnf-DO)T#|qq!BbU$mzNyi24B zNewY+c5^(fHIApwSrImoeqVgWr0bH|2?FA(F1jhSQvO&UM(E;;q`NK@6GQ2@0>`-; zdnmVwlQ-Tgif^A#=F`Z%l~}@+J{$Ml{q`tDSIu9(k`7G*%rf3!mZ9c1+LH&fj4nbQ zU$VzxXE3t^La4`cWut_*JuNQcrKQ~jCW+0)b=X2WKi12>@aap^e|?w}mzdXWabVYT zWgyxssag^Pt5qdpLe=!0hYp-ni^PQe3xv$&*kT?(q{3ZZ)QK5JeB;{<)fB>l$+vj~ z4krVD6`2kNH0)b0pTu*JWBI(F39%nWrtsD?mbW5fPZCb%cAq_DRa&eh@?708Z%6zA z&;4dMKBI4=J)UUWY`uw}68|vSKoV2cvLGkUe)h74rh~}~${C%{E=EneV7(b#>9|G` z_vy8=ZLb-dd3iP1@91c)2gdC!HB9-hMcneQ@LDs)Y^ z?#q%YITE(Npw037_~a&E%8!EV2cK4=ea}Rnn~Y~4-pV!da1A5Oy~o54>F(Z7TFXMQ zhN8Lj_SdfNpt?1IqB^zZd2BgDU2;#-T%>wt4mCy%9;h2Bj~UCgCy8}R;ov@6uNyr) zN)HFXG2%|!>UB{h^fpn7e*yQH2`(<3!GXZeD?E5mQuYZX;T{**F$i2sR|$M8)v#2Y`G(Cym3X+X{&qf7o^iDebf z$z?GlarA>jGaoJPpc+Y!#FOjn%pj&3|5^%jjusN)_F2Z2g7#+=g5;NxF>w;;ftSGk zXGx|+f_n(v4q?L`*hCgnNz;cB5K!qN<3}&s(vK~Q_Lri+Z+L>>rlXe5lW|bToU`5JURt zmg|B|56if~`gJ9SC%k!CEB>aHPn+d4=jKz(knPc)$J*2RLEhad@h>pL;Xp{^`H1ov zKnLUDaFr~X2N|prEuVZux>wTmhD0;>M=17N-!UU2I%_+8{RuC`Fr!)1fT`oCA`hf$ z$lu=jbr9-kNyh+n(5~GQ4dXCzLvLNNL7b?Dq1NlZ9UzogHdOt__xTggLO~2$KBcrA z3z}i|3J!t3G!C{qkEX#rX(RIHRmlnW!TK^0bc%P06E59;Qty}}*D_*s0_kEkm%QM* zqijj~ZqmYd7Ln@+4ir|MI?Qhwg9|3d)pVp&N>q_cT1taHDfMq_ehx@Sx;1T57rz$)gRoOq}s!ezbQjWZ-7Qs zosTUi2TigK$K-z29R@yHEtdP(D2Lj(@z&aaFzEGz>zvOeF*a6+{UQS$yqXTi+q``= zSmyj_2Bn6ms}KBcI%8v><*JK%Wg#VN%t#ntGZyc#&yHM6r6yjixUTWd{hlwrs0|Y2 z=pa%yzn&p8IxyE~MbgJO_w5nU#H)dpWYp0^B;y2IkNwnXmjG75(uzXsWpa+!G!^58 znCS(F@i|~Wc=6Fpf&twTx&OzN8T2eI={8!1{3>LL?TBpk=>XRls%twn_g~DUZgoBe z2}TrS)1SKC>Em&C0(ak*7f*azdEoON(P`0<;6#&UX9ykMcoB(rw0%se;VBlB98o8$ zc;DhNh4@O^tYVb#M`Kqs8c)m$gLmvfiLORJGb7RT9Qf{~Tj=~m8>QKbbhbj^!MUci zzqc35+u|l$wZXrR_lB0iEj%>m_W{oCwE3+H>0MLqnTP4ScEfVbb+sz5uaQOCmiemc z0J zD-nF1@v~*+4@sXIC(9lUecnxqbI2JIyRoEhr*)XN{mClXMmZubcsZ!_VCGjFuC9c1 za}`6DAXCHXIh%+5QuA2~&J42Ns@FODccxMqj}WxSOy%kl`%^7#L`jPT&ComX1@jO^ zbJo3%<0r#n*sWzj?+R3sllpCC^dDzUq}6GZMD{b^kKPfhFqKl4hAlyUUNFHn5v9f2m($HamU>)bCyGEZ~5HB=HGyM}bIe#KMa*HAZCyR8VU zkIAdzRxNwq8Ef2dl&mJRLjN=HJoI6m(L*5KRoZU(Cqk{q8?(FNR|u zx0&~TfNNP7xzOOHh410oh%Iza?_)aubd^zEy2V8KA+Fr#U={%=@_MLhSi5$+tkTi9^zu5n(*J-iX;ydo?N~2=}+5ral_sI@spMBxt0f1{#B&@4QTRU;|ZEr z4VNrK{?xwEUb-%%!2&ggHuNt106-$kfb#TYmPRSgk-AL($B!)ahuG&9E%u)TWp6Rn zC7aIzGZ3%cup6#j?DbeX#JU_b5xqt3l~N`nO|_wWskJxI8y`lzw&9^JMix@0ZDPis zV37G#^891@%|oBOYf3gFmF$F+!%<#fS7#HwpchYG|5N7MgX$X*i^sq3sx!RBlWR{mFQ)2$ zjMPf*qDMiOT*upNuTJ<5YKwgd5f6VkaR$0df}VwifUGIjQm5&$s3#mR8yefT79n}f z+OuEY8S>&GK&AmI4WfUR6~xcRd#zBppY731BN5St;N|=hZvT{X@0ec!!z1U1C8y=3 zS=Rjug|5Q)?RWU$*}W5N9uy+8l| z_k~~|2_Zzh1(m4ZqVHw@y82%SVGWu5>V;6nNE+nx6?W1;-~H3RXWpIEAdI$5tDyPE z!9Rb#mlT4Zj)ub8UrGMQHNfM2hb0Fm%OyV*@!uz_paf0t{<)a?AJ+h<)B6D?O`3%4 zo&P?UkS3-aT;+o=lGp_VIPG=YEc2uTPa0Aj&GsHZ}oWCbt|?7|&V^MLDi2exN*-UTv3n8#_P?I-PdJlH`!1ynp&L~nUpgniUjMmQF=Z7JQ~CYRo0Db&c;ND38RwrqW~zwL+S-aE{u!yt zz%znP@Mc4nqO4=&9B}Ah)xoeFDNURPK>U!;y$FYG;Cjs=YdBaBm_gx@($Yi@1FuLg z2mI*G=ie~bM*6WuHyr8?R>0X;dw~Tipif9H)Jpx_}*dK;n`rchDU269|?c18cvY z@A!tbH8rS4i`dl2?n8|eE=tcMOoTaAvlh@m*bIT$xr&8Zg|D}CK3ipVyz%x#_jW~B zrPjRRPy5OqgVtX0qluIM8MG0SaMgC86KCP7b4pzTsg)<#R7H^*1^51uq|I~7QaVzC z3b3C=#_(hSV070%qfm71$udcDRN;M#A{~QV>=4+F11}v0-1*;iQ8x2VTtg1zX2ndF&+PsOt zmO6C11~mYjL@9R4Pf}J^wu|gl)pL*Ul6v?>nc<4A4fkA#RiAfgOsm#!D$9SBFy^Nl z^UeyS^dIqs_qe^j_;OJW6@AzNdmXsxJd;hIh@<{x-!%-~ok3xMgWCW?YcK%~NP(nB zWvGJrueV1GpYM}$(PM&oqa5Vmi%12hKp#AK$b7rVJY=?m7+CWxSJ72eLrV7j$0<7G zy2FEKJR&#L;<^u8{1u3t8~1&gi9q!RiBV%#ID{xME)KGo*OS}_L^%x|Oc*NwRd1ty ztFZRv?Lk;pC-TDrM3SYUJuoS$CaTkNTy@HN0s>XhbK1MQhuptnmfh#BNQ@-Ds|Uc; zVK;3wFH3s4rs}q|_k^ccmFY7Nrj1FyFJ?r(P#Hf{8iZ9?KrNaajBm=8GP=KR2ckeg zq~Zk%g&{B4W)#8RZ3M=zO}i*xNzex;*4Nkfd#ti6zI?;0SYx#awlxeg?O35QtKg3y zLf~03?i}cUSTz4mlR{0Y-Iyl!0<>YS%&Yf^c+W+gqh02;gxnC=pa>E75V$7076+5$riM0c$w*YZ4=$_WD6@E4~_`dzMc7lZ9!^~yZ~Kya5%dgE_~VJre?2dtd?lK8m8 z6p5FnjbgNA_z&7TO7P+HY*nIR3*Nv(@HUO*%HRIE{a7~$q3y}4#F9|!vyR!*ib|ZZ z^t9U9tJyPyEsA*?dj3qrK-RF55s8_z`n?Y;?VdFUwEeQeCD%jCtEp$E;p#q=eT^5r z);|nzKS=1&7lw+!VYLM2JlM`V$KR_yXeuRiUW8T5iHV6>Z-Jp)0;25Nc4>cT;<03G zq25(1=`Hj`){>IJ$@2NAZ~IUVe*hYD9ZRoxTSdPwi-wDj{Qz+qo}h_UG~|iWIxa+aV6{ZXVG4RA@kFvgt72W9Y_)*J`Rfgy>c2p^AZ+O&P0Vi5$jZ15i{7K>BmhJKcKL|49xLh$DGhmEzo$~ zZ8qkWs`N_+_ugL3R^g|D7DE0|&uR+(xav9nX%0gCR(HEjF}TtkX5P4~x3$W)<5O0( zjAP^Lkp!p@t3}bTeu=*nuA=kz&eNL=IaoVF(uZe4)@$Q`^}X>R#QKRO+7Vj;)J|{I zwhu&xqRt$l9mY!d-f>J96F*;mW{iJ5fU8s(6+WYrw_*Ug|KB;4)s zg?6cY`8z_;BSO4gAiX7H2KBmmdv zHHfg%Nh-M+{>-;altPil!O^~5B?OPh2A{}ZC`$+7v{F-)&_*YS9BJSTS4)-}c#E+a zeqg4mMpL4F%8bLsEp^E?Hf^xieu8&JLw^7k1!A0%BDV8o;u(o7Up8d3k9ztQjA~YB z?H}zgAnh>26U*m?#yeKCNRv@iZTaRM881H3PGP4PmaLNi{swfS3cdbbW({3Und((s zuaKp+mSD2$H;-at^K$yf@bKYh4U1ul?#Cl{h}9Ga|CwZzC{p1H#X3Cx46^VhV}uwT zH@ZAA?i7=pyYsNSUwvFuC|X+baDK*6Ax2D9T~2@+8tdAhH~1cNVgqc%-L^+~MPu+d zohrF=A~B*qhPHRmapDbg_3~GiyUc@BiGwRf|4xVUgEm;|_wnFGQ4quVmd;rXzX|!q zlP0=g74uDBW)J=EwtlNJh7g5ms^^#5=XgIY;yqM|VM2HOg~57jx8Vdx;p7mJ%KpPG zD3o9P=w@=?(wvKDe)@UMLgy&{ux9m7pe@7zqDxK5sfIs;C-pUAu}#Nrc}}C+v&%~8 zsuF2Q)1?#B9$$A(DYotD+__jqV6VMI<8cPF5vw^_sZHPxN17zg;SvXKr~yYGUS`K> zv6{GgLj1Ut%5R9@UfL{@E40})N(4CZ-XlG4f`OMIx{jmD+b-Cu2TY-e6dpi$5D*e9 zoxu{fuJdvsT9`w;^WejeD2%ea(f1zuJAf&uQ~Z-W`N+8X6}p|;i^R1o4tw}*ccRnx z9xd=u4Nt9IyESdF*XaExWYMIc{RdDuHJSn%9sH0I6w~wUv+X%-=2nceOK_@rC;TUt z(hvjDIopU6<)3a?K;gB)jBWj`+m3sc){BQOvPcb+Ov%}gvPDW2s|i^{I`kNy`e)0; zgbnQ}5&g1kjSYDjTT3jQ{A2!op-qMy(YB`@vUN#u2>yBA2rGgZnhu-DTc%R7lm`$9 zZnKU5=hh&d{cL@Ky8$;86h~TVR96h_XuF*9uf^r6JkA?1M7#}Iq-?$ zeBq0NHb!O`+y3fV(J%7Znk|<&=BB*34`0;;rLptsc+FNJv_pc3*i}7T>i)#zfZ!JV zKLws=-eSnKUQfThBlt6dCR&hFA)domrJFcerb?_GHSaLnCIg5TF}q*Vv^R3^mGFnG zQbtI$!vKU3xMb{Fi&^3g|LDXZk+BAY);8+kix`B?>!6vhLO++6 zEwmuCf{+btdy5^;rbiV{+a*6&#m1F_=0~e(T${s)_jctP^Uqg8Y3sU~YU`G%m?cNi zP_UVYaS?+$65?CC=sK8ycKEqcQ=v--N<0x>96ch zQ3y_R8U)#|PT>uHuK})jA|k{>7Rs`v-_QyN^B^cWu~2;AXYza}9WG(=%`6XVWi+#H zvUPQva-DrEo1|KP9gBP|kewLV6%V96Uc#(h`fTqq`IWnfEtEr3h^!({`QemVd0xme zMR3XNFnUR*?dht{ll|vC9W{MK4=`eF%~oHPws9*lxMQz<%SF}Ja))-x{ng@IhzXN= zv?Lpl6RpwjF9_qv{B{T&Fa@EZ1==B>lmde;i#|aOfdYQ=hB_=XU+*WuS)#sts{}w_eR%40I90Pa|78Xxm;N3d_18 zWO(VA%|LM$#I*ky+z=Quib7td9ik*H^8tDE!j;oucrV;Q8cGqYP8`Ta`HX#PR*7BS zbJsp4k8F1FGQh%?N6-@X9*)ogpiUuSal99+^*jx+?xP88jdhW;sUHSfd7RbGX&2+H)k{kez9o5+RPsXHhg0PxJEe+v3gGYe(CPi`5UifW z-*;*NI)m7+^O?CwuSIgmuky;nA9VF~L&Xhe08b##S{z1sY-06oQTaRHgUKonUh2IT zKvw`$7>5tYaS4>(EB<+PnXz!j{lJMHYt5vid5qI?OQYBcx8tWWuKl6_@HzPKC`BLl zVT$vtt1nw(vRxM)63xURo7!8HeC1z1ad3~A4S9HO zVhl!LJWASouJr0FSw9d*6xUc) zV(V$93zrC9L##j0QQp5X4zPZmPFs=_9*Hkg-Q~6vQ@?G*>9#vH|a546Kwo z+I>Nkmlx3E2Ue;FlBC}+@)rU)=$48xV6z4QDv|waUq2ju1(*^5;1WeH_SYjHEnt9$ zP|9M35XIkRMtNSeWzfE)AiD3VCLR0ZWG1`n1eSin7O}rDB-o$-WD@`TDC`UPRH<;M z?*I91aGd=kK&!?0jja_BFk_!1w28;&XIhH?=}ME)UX7>FUtAb!Ky~GR<)s2j4#v3N zgqo#2&!5Z|zyeaUw@tcNW;ZVN)dVo`FP*fJ8@$QjC@(JW63o)N|7oBpDM+kNU2#K2 z|D61z&itMSN4 zq9?rRm<-^JFZ+l1Kx&{NBGfJPkFy}m=a5@BVw%DOOatxNlrO+fp#tRMhc09J>cgAS zb$_k4E`eT+`?6p5by1{c!98tUXw@@-E94+@pmX39g}@NKSYd?Q7FjZn+Grs(?~0CV zI58UM@8vAjIB+{y%(2;O+orE$@{}+M4$hsWB+|dju_DOsy*Io|GRtt zH2^0+fe+r2d}{s2rT_fty$Tj8?wF#2zcJwdX@yV%=;@W6J~sIO`}MWJQ(HYOcl_s| zhYfFVGpO@iu20ZK{`>mzKpirz)ldP%A+Rt0yA|(+!3WfjTlD|)Fz9*qAVN;)9v=g* z7W$7LrM?9{cxw3-&%Y}Sf6pkU02a2fznHA~@8?p60zOFKNA@H8@9X!18Oe%CR}}W0n0)9|1}A$#VFUM% zR|rPb$dmQGJzb!U27^Mac5i)M4GdmD#y9&WSJ{yv+!>Hk@uMgptb$l$0AU(kwwd)m z-!@Ruf}%rA$t-kt1JqmY`U9LyI8rj#Wd{vnVq)Q2kcfx~aAizzY1DK;L!D>5Jb2;q z&n_X&@Mo(uu$7Ms@O%VoBg4!DD1AU+!L}?PRRQo`n;P>DAe{%{GD^KwmL9l;?GIzz z8xKsMv;lDj7|Qt@sD1uY1%$jjpT{na*7iW&R9$J`o@s7Us96bx-UnjwnbA?4N2jN! zV}&1!PTp6}e9q%KEU&F~2isZ$0V&O>#rWc8R}{lu{h5wcNFdR&+)Z}+|7z>X2&u%w%6CV^4NtjY5MN%VZk4BFk7}A|fJ9&5SL>knNi6`#K8Ul=Yetg%ncVT&0Li zU1Hj9y6Qdn^uD~^-`~GKo^zh(obx^3@AEt-eafp(k1>~C^M3fi4&sNTEx75XawqM> zAsM(v(BUuUxcVY^&Xen3*8y0m)zb43pSSy?XrUIT&aNq6>*2cUe~q1%&Sg(cG90^~ z#|ZD(VYj_r2kzIN@SHV4$UO^S((vF^Zz{eZdh%R!I~P>Ne*)$23mlHsI}7k6nDB)w z4<9wF&aJ9K)=WiTd^gaF?ygD;?IL}iVZQ-FHmuuX`5#a>?4umjVXHeCGo3a!3c%nh zM$Ms2l4^?5&AFH$Mwrw!YVTL@mUgAtP9dtbr@=0(^DX>shQ*R`XWm}E(f5tP4LlSN z9mYLdGH#?wyqIln3E1c=j86#f?ENAKz7Ozm4)BOlTFSHnEfl>s?c*Vo+gZ^dhY9+~ zF*zwyJwC#=9vufVEMu!2?4{rU{V486?;8fkcgaKj4y zj(9;{Lc}+G1@O;ts)20r4on_sBxy-m0CmxN?#opY5+Ops{!6Fm5=n6upb#>zQXpJ5 zgk_k#P}NZs{aiZRP`Boi{&R?kyU1pL$(H`35aV>A z-hf!}QVTOc0IEdceiec;?!VU1-=|_ybn5`rJaKV;{rdA`H;R#gCTMGjwb(8IsSW0d z(YZDWnpS0aO}B~-d?KAgosN54rI6ksS7$rEqCSHvexa>iD6wLzIHnoh4)_6U0-lNh z(qHVG2qnuGC?^rIf!8%|gP?3WDcIPS;`e5XC5ITxsncV0CR)p|OicBxoLf=9^KVPL z_Ls{Ba^=T*A5)`}U`~mnJ>Teh5+H}ze?-&pPITRQ=CAe%9H|>b|G;)HJhYnCvXi*C zH$|4NJ8G*FN$ZH{ebef7AfAoq%`8_WRt1&$_M7iyMNp)2d(sL&;cwwf`*gVyLL8~U z-j(vcCq88>xkVaOkEHSRAM>z&S}pTBxBWHbV5+>!_oBKzxv&1ol4pu`GjZw|<4ex3 zwf({#eyIKxsjVED-do=7zO-9aqN5E-B7Qo8$HVQ!-&WsiYJ?j}7tt-`#K_gG-4y&> zs?T79Hor`BV{LNi!Q936o>~Eopr#2XKcObG_D`R(f5wV6s5QCWU7HWcgGy9YVF#u1 zRCJ8|1!uX*sv!9#iSwNa*N^+lB68)F<^_b(bWn)ipa|uF1ZoPuU)r9`W;f|nN1H2Z znMao3?UE(_)>ulJ&j<_XVef+WOBn5+|5kE74k=mZNQ^Y0HAo4+C56KdUY|=jhfj(> zNtn<-zDvY$Zq}{ZBU(z_iU_Ud8z#n8^C5(mYM*8a4U(Vnmz+O9AXh_*r?&ch{^78- zoz@bkz({+QA@I?`>>gvfLoDq#q!y3(5e!A~T{{)ZG?m3|4bM zYg=+s!k)1zr+?C5w3#8-4s@`XEk!)PK70TTvGt2B6XpyDpZQ|#T^rDjNs&)oI!IY2 zg!H0waV^Iw!WI1LACzVnQa*cB+#Dmlhrg6YTzNs}j!k9r-fmUe{>guwx2rVFG;MiE zwnS@l2*86>XnLgkDBT=D;1h7gQijT|nO7faC#Da{))k~%B$T@qtT{{svAyOx6N-5A}=S+8&(gsgei@?G*+=|xlHAl0)e68-d z)OWWRHd?lB_z9U&8Eiw8%`4#5RSPeMbBq+b$4LXmKY>1YkTh-F-H`Mr1%rNxhaSbN z-zj}xj@J|qed_r%bJHZQnp$e9z^rYH97;`GP*D>KgR}8w1DOZ}0#L0%1IWx9L7R8% z)tw6Hu}Ft(d#Bv-yMkERX?o!hPisfV-m8CW<~WFBoRM!9vHh;k3n=IQKNW<^8wZI) z(H~-z>Gq1FWYs}!lD|%roff+dg3$Upc2gy5#H#WksqCUl-?~(~5lNL|d9AaP6sl51 z8|xY?-IVr!pU|X!U0&vHGaMbUT6XNJ{;Ai+*V&zop42_Uo3-dTg>uK$oKY0I(DY0>^1_A8 zE*EKWwuOa7S63Iu+RJP-2Rl?1S)8qpjoD}|2%A-4qnc`IGoKe|oBzNh%gLC2lvn2} zbBS?f%j_l4m=~l&6l-U*uijH*VutMl1Jz3UUz_SbBR#W|oH(`OaZG)%UjB%X)O2f#n6ZbCy);Ni1!=Nhopir@arQ1_ zfpF$uq7sYDaJVm8hAKd-(=&dbDN%n3u%pp!&BI25K6;1VzkcA|75kCRw!}=hD2f$guDDL~2L zRI^yAMRBk$xymof2J$XQwMI-nYj@3X2v|?pO_R0i(^{v}>+R^dLl$FUhcYo=*F|ILS|)Lr$H7+Wq0>3rT`qO4h?7O!NK(PB3ME%f|mM0<4_l1H;SLt|2fKsO=uA`=~#oxFme(koow`Z$ZsDr+QqwZba>}M^PAhTZt){* zhJrlG&P>LM&fRzKhvNIcosm&sIp$X#_5DPFHWH-w fQ^;7#!vFrh3~RRGm@@Z4z=yTr$DyxS`^5bRZuupj diff --git a/chapter_graph/graph/index.html b/chapter_graph/graph/index.html index 1821fbd97..b77129dc7 100644 --- a/chapter_graph/graph/index.html +++ b/chapter_graph/graph/index.html @@ -3480,7 +3480,7 @@

      9.1   图

      -

      「图 Graph」是一种非线性数据结构,由「顶点 Vertex」和「边 Edge」组成。我们可以将图 \(G\) 抽象地表示为一组顶点 \(V\) 和一组边 \(E\) 的集合。以下示例展示了一个包含 5 个顶点和 7 条边的图。

      +

      「图 graph」是一种非线性数据结构,由「顶点 vertex」和「边 edge」组成。我们可以将图 \(G\) 抽象地表示为一组顶点 \(V\) 和一组边 \(E\) 的集合。以下示例展示了一个包含 5 个顶点和 7 条边的图。

      \[ \begin{aligned} V & = \{ 1, 2, 3, 4, 5 \} \newline @@ -3491,9 +3491,9 @@ G & = \{ V, E \} \newline

      链表、树、图之间的关系

      图:链表、树、图之间的关系

      -

      那么,图与其他数据结构的关系是什么?如果我们把「顶点」看作节点,把「边」看作连接各个节点的指针,则可将「图」看作是一种从「链表」拓展而来的数据结构。相较于线性关系(链表)和分治关系(树),网络关系(图)的自由度更高,从而更为复杂

      +

      那么,图与其他数据结构的关系是什么?如果我们把顶点看作节点,把边看作连接各个节点的指针,则可将图看作是一种从链表拓展而来的数据结构。相较于线性关系(链表)和分治关系(树),网络关系(图)的自由度更高,从而更为复杂

      9.1.1   图常见类型

      -

      根据边是否具有方向,可分为「无向图 Undirected Graph」和「有向图 Directed Graph」。

      +

      根据边是否具有方向,可分为「无向图 undirected graph」和「有向图 directed graph」。

      • 在无向图中,边表示两顶点之间的“双向”连接关系,例如微信或 QQ 中的“好友关系”。
      • 在有向图中,边具有方向性,即 \(A \rightarrow B\)\(A \leftarrow B\) 两个方向的边是相互独立的,例如微博或抖音上的“关注”与“被关注”关系。
      • @@ -3501,7 +3501,7 @@ G & = \{ V, E \} \newline

        有向图与无向图

        图:有向图与无向图

        -

        根据所有顶点是否连通,可分为「连通图 Connected Graph」和「非连通图 Disconnected Graph」。

        +

        根据所有顶点是否连通,可分为「连通图 connected graph」和「非连通图 disconnected graph」。

        • 对于连通图,从某个顶点出发,可以到达其余任意顶点。
        • 对于非连通图,从某个顶点出发,至少有一个顶点无法到达。
        • @@ -3509,21 +3509,21 @@ G & = \{ V, E \} \newline

          连通图与非连通图

          图:连通图与非连通图

          -

          我们还可以为边添加“权重”变量,从而得到「有权图 Weighted Graph」。例如,在王者荣耀等手游中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以用有权图来表示。

          +

          我们还可以为边添加“权重”变量,从而得到「有权图 weighted graph」。例如,在王者荣耀等手游中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以用有权图来表示。

          有权图与无权图

          图:有权图与无权图

          9.1.2   图常用术语

            -
          • 「邻接 Adjacency」:当两顶点之间存在边相连时,称这两顶点“邻接”。在上图中,顶点 1 的邻接顶点为顶点 2、3、5。
          • -
          • 「路径 Path」:从顶点 A 到顶点 B 经过的边构成的序列被称为从 A 到 B 的“路径”。在上图中,边序列 1-5-2-4 是顶点 1 到顶点 4 的一条路径。
          • -
          • 「度 Degree」表示一个顶点拥有的边数。对于有向图,「入度 In-Degree」表示有多少条边指向该顶点,「出度 Out-Degree」表示有多少条边从该顶点指出。
          • +
          • 「邻接 adjacency」:当两顶点之间存在边相连时,称这两顶点“邻接”。在上图中,顶点 1 的邻接顶点为顶点 2、3、5。
          • +
          • 「路径 path」:从顶点 A 到顶点 B 经过的边构成的序列被称为从 A 到 B 的“路径”。在上图中,边序列 1-5-2-4 是顶点 1 到顶点 4 的一条路径。
          • +
          • 「度 degree」:一个顶点拥有的边数。对于有向图,「入度 In-Degree」表示有多少条边指向该顶点,「出度 Out-Degree」表示有多少条边从该顶点指出。

          9.1.3   图的表示

          -

          图的常用表示方法包括「邻接矩阵」和「邻接表」。以下使用无向图进行举例。

          +

          图的常用表示方法包括“邻接矩阵”和“邻接表”。以下使用无向图进行举例。

          1.   邻接矩阵

          -

          设图的顶点数量为 \(n\) ,「邻接矩阵 Adjacency Matrix」使用一个 \(n \times n\) 大小的矩阵来表示图,每一行(列)代表一个顶点,矩阵元素代表边,用 \(1\)\(0\) 表示两个顶点之间是否存在边。

          -

          如下图所示,设邻接矩阵为 \(M\) 、顶点列表为 \(V\) ,那么矩阵元素 \(M[i][j] = 1\) 表示顶点 \(V[i]\) 到顶点 \(V[j]\) 之间存在边,反之 \(M[i][j] = 0\) 表示两顶点之间无边。

          +

          设图的顶点数量为 \(n\) ,「邻接矩阵 adjacency matrix」使用一个 \(n \times n\) 大小的矩阵来表示图,每一行(列)代表一个顶点,矩阵元素代表边,用 \(1\)\(0\) 表示两个顶点之间是否存在边。

          +

          如下图所示,设邻接矩阵为 \(M\) 、顶点列表为 \(V\) ,那么矩阵元素 \(M[i, j] = 1\) 表示顶点 \(V[i]\) 到顶点 \(V[j]\) 之间存在边,反之 \(M[i, j] = 0\) 表示两顶点之间无边。

          图的邻接矩阵表示

          图:图的邻接矩阵表示

          @@ -3535,12 +3535,12 @@ G & = \{ V, E \} \newline

        使用邻接矩阵表示图时,我们可以直接访问矩阵元素以获取边,因此增删查操作的效率很高,时间复杂度均为 \(O(1)\) 。然而,矩阵的空间复杂度为 \(O(n^2)\) ,内存占用较多。

        2.   邻接表

        -

        「邻接表 Adjacency List」使用 \(n\) 个链表来表示图,链表节点表示顶点。第 \(i\) 条链表对应顶点 \(i\) ,其中存储了该顶点的所有邻接顶点(即与该顶点相连的顶点)。

        +

        「邻接表 adjacency list」使用 \(n\) 个链表来表示图,链表节点表示顶点。第 \(i\) 条链表对应顶点 \(i\) ,其中存储了该顶点的所有邻接顶点(即与该顶点相连的顶点)。

        图的邻接表表示

        图:图的邻接表表示

        邻接表仅存储实际存在的边,而边的总数通常远小于 \(n^2\) ,因此它更加节省空间。然而,在邻接表中需要通过遍历链表来查找边,因此其时间效率不如邻接矩阵。

        -

        观察上图可发现,邻接表结构与哈希表中的「链地址法」非常相似,因此我们也可以采用类似方法来优化效率。例如,当链表较长时,可以将链表转化为 AVL 树或红黑树,从而将时间效率从 \(O(n)\) 优化至 \(O(\log n)\) ,还可以通过中序遍历获取有序序列;此外,还可以将链表转换为哈希表,将时间复杂度降低至 \(O(1)\)

        +

        观察上图,邻接表结构与哈希表中的“链式地址”非常相似,因此我们也可以采用类似方法来优化效率。比如当链表较长时,可以将链表转化为 AVL 树或红黑树,从而将时间效率从 \(O(n)\) 优化至 \(O(\log n)\) ;还可以把链表转换为哈希表,从而将时间复杂度降低至 \(O(1)\)

        9.1.4   图常见应用

        实际应用中,许多系统都可以用图来建模,相应的待求解问题也可以约化为图计算问题。

        表:现实生活中常见的图

        diff --git a/chapter_graph/graph_operations/index.html b/chapter_graph/graph_operations/index.html index fe9a5998f..8f1d98f08 100644 --- a/chapter_graph/graph_operations/index.html +++ b/chapter_graph/graph_operations/index.html @@ -3426,7 +3426,7 @@

        9.2   图基础操作

        -

        图的基础操作可分为对「边」的操作和对「顶点」的操作。在「邻接矩阵」和「邻接表」两种表示方法下,实现方式有所不同。

        +

        图的基础操作可分为对“边”的操作和对“顶点”的操作。在“邻接矩阵”和“邻接表”两种表示方法下,实现方式有所不同。

        9.2.1   基于邻接矩阵的实现

        给定一个顶点数量为 \(n\) 的无向图,则有:

          diff --git a/chapter_graph/graph_traversal/index.html b/chapter_graph/graph_traversal/index.html index b45102a96..094b02d61 100644 --- a/chapter_graph/graph_traversal/index.html +++ b/chapter_graph/graph_traversal/index.html @@ -3496,15 +3496,15 @@

          图与树的关系

          树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以把树看作是图的一种特例。显然,树的遍历操作也是图的遍历操作的一种特例,建议你在学习本章节时融会贯通两者的概念与实现方法。

      -

      「图」和「树」都是非线性数据结构,都需要使用「搜索算法」来实现遍历操作。

      -

      与树类似,图的遍历方式也可分为两种,即「广度优先遍历 Breadth-First Traversal」和「深度优先遍历 Depth-First Traversal」,也称为「广度优先搜索 Breadth-First Search」和「深度优先搜索 Depth-First Search」,简称 BFS 和 DFS。

      +

      图和树都是非线性数据结构,都需要使用搜索算法来实现遍历操作。

      +

      与树类似,图的遍历方式也可分为两种,即「广度优先遍历 breadth-first traversal」和「深度优先遍历 depth-first traversal」。它们也被称为「广度优先搜索 breadth-first search」和「深度优先搜索 depth-first search」,简称 BFS 和 DFS 。

      9.3.1   广度优先遍历

      广度优先遍历是一种由近及远的遍历方式,从距离最近的顶点开始访问,并一层层向外扩张。具体来说,从某个顶点出发,先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接顶点,以此类推,直至所有顶点访问完毕。

      图的广度优先遍历

      图:图的广度优先遍历

      1.   算法实现

      -

      BFS 通常借助「队列」来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。

      +

      BFS 通常借助队列来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。

      1. 将遍历起始顶点 startVet 加入队列,并开启循环。
      2. 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。
      3. diff --git a/chapter_hashing/hash_collision/index.html b/chapter_hashing/hash_collision/index.html index 3035683e0..40ace06f0 100644 --- a/chapter_hashing/hash_collision/index.html +++ b/chapter_hashing/hash_collision/index.html @@ -3474,7 +3474,7 @@

      哈希表的结构改良方法主要包括链式地址和开放寻址。

      6.2.1   链式地址

      -

      在原始哈希表中,每个桶仅能存储一个键值对。「链式地址 Separate Chaining」将单个元素转换为链表,将键值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。

      +

      在原始哈希表中,每个桶仅能存储一个键值对。「链式地址 separate chaining」将单个元素转换为链表,将键值对作为链表节点,将所有发生冲突的键值对都存储在同一链表中。

      链式地址哈希表

      图:链式地址哈希表

      @@ -4587,10 +4587,10 @@

    Tip

    -

    当链表很长时,查询效率 \(O(n)\) 很差,此时可以将链表转换为「AVL 树」或「红黑树」,从而将查询操作的时间复杂度优化至 \(O(\log n)\)

    +

    当链表很长时,查询效率 \(O(n)\) 很差,此时可以将链表转换为“AVL 树”或“红黑树”,从而将查询操作的时间复杂度优化至 \(O(\log n)\)

    6.2.2   开放寻址

    -

    「开放寻址 Open Addressing」不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主要包括线性探测、平方探测、多次哈希等。

    +

    「开放寻址 open addressing」不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主要包括线性探测、平方探测、多次哈希等。

    1.   线性探测

    线性探测采用固定步长的线性查找来进行探测,对应的哈希表操作方法为:

      diff --git a/chapter_hashing/hash_map/index.html b/chapter_hashing/hash_map/index.html index d88598f79..34eb9bceb 100644 --- a/chapter_hashing/hash_map/index.html +++ b/chapter_hashing/hash_map/index.html @@ -3426,7 +3426,7 @@

      6.1   哈希表

      -

      散列表,又称「哈希表 Hash Table」,其通过建立键 key 与值 value 之间的映射,实现高效的元素查询。具体而言,我们向哈希表输入一个键 key ,则可以在 \(O(1)\) 时间内获取对应的值 value

      +

      「哈希表 hash table」,又称「散列表」,其通过建立键 key 与值 value 之间的映射,实现高效的元素查询。具体而言,我们向哈希表输入一个键 key ,则可以在 \(O(1)\) 时间内获取对应的值 value

      以一个包含 \(n\) 个学生的数据库为例,每个学生都有“姓名”和“学号”两项数据。假如我们希望实现“输入一个学号,返回对应的姓名”的查询功能,则可以采用哈希表来实现。

      哈希表的抽象表示

      图:哈希表的抽象表示

      @@ -3843,8 +3843,8 @@

    6.1.2   哈希表简单实现

    -

    我们先考虑最简单的情况,仅用一个数组来实现哈希表。在哈希表中,我们将数组中的每个空位称为「桶 Bucket」,每个桶可存储一个键值对。因此,查询操作就是找到 key 对应的桶,并在桶中获取 value

    -

    那么,如何基于 key 来定位对应的桶呢?这是通过「哈希函数 Hash Function」实现的。哈希函数的作用是将一个较大的输入空间映射到一个较小的输出空间。在哈希表中,输入空间是所有 key ,输出空间是所有桶(数组索引)。换句话说,输入一个 key我们可以通过哈希函数得到该 key 对应的键值对在数组中的存储位置

    +

    我们先考虑最简单的情况,仅用一个数组来实现哈希表。在哈希表中,我们将数组中的每个空位称为「桶 bucket」,每个桶可存储一个键值对。因此,查询操作就是找到 key 对应的桶,并在桶中获取 value

    +

    那么,如何基于 key 来定位对应的桶呢?这是通过「哈希函数 hash function」实现的。哈希函数的作用是将一个较大的输入空间映射到一个较小的输出空间。在哈希表中,输入空间是所有 key ,输出空间是所有桶(数组索引)。换句话说,输入一个 key我们可以通过哈希函数得到该 key 对应的键值对在数组中的存储位置

    输入一个 key ,哈希函数的计算过程分为两步:

    1. 通过某种哈希算法 hash() 计算得到哈希值。
    2. @@ -4862,7 +4862,7 @@
      12836 % 100 = 36
       20336 % 100 = 36
       
      -

      如下图所示,两个学号指向了同一个姓名,这显然是不对的。我们将这种多个输入对应同一输出的情况称为「哈希冲突 Hash Collision」。

      +

      如下图所示,两个学号指向了同一个姓名,这显然是不对的。我们将这种多个输入对应同一输出的情况称为「哈希冲突 hash collision」。

      哈希冲突示例

      图:哈希冲突示例

      @@ -4871,7 +4871,7 @@

      图:哈希表扩容

      类似于数组扩容,哈希表扩容需将所有键值对从原哈希表迁移至新哈希表,非常耗时。并且由于哈希表容量 capacity 改变,我们需要通过哈希函数来重新计算所有键值对的存储位置,这进一步提高了扩容过程的计算开销。为此,编程语言通常会预留足够大的哈希表容量,防止频繁扩容。

      -

      「负载因子 Load Factor」是哈希表的一个重要概念,其定义为哈希表的元素数量除以桶数量,用于衡量哈希冲突的严重程度,也常被作为哈希表扩容的触发条件。例如在 Java 中,当负载因子超过 \(0.75\) 时,系统会将哈希表容量扩展为原先的 \(2\) 倍。

      +

      「负载因子 load factor」是哈希表的一个重要概念,其定义为哈希表的元素数量除以桶数量,用于衡量哈希冲突的严重程度,也常被作为哈希表扩容的触发条件。例如在 Java 中,当负载因子超过 \(0.75\) 时,系统会将哈希表容量扩展为原先的 \(2\) 倍。

      diff --git a/chapter_heap/build_heap/index.html b/chapter_heap/build_heap/index.html index 099fb7313..e67034a4b 100644 --- a/chapter_heap/build_heap/index.html +++ b/chapter_heap/build_heap/index.html @@ -3426,7 +3426,7 @@

      8.2   建堆操作

      -

      在某些情况下,我们希望使用一个列表的所有元素来构建一个堆,这个过程被称为「建堆」。

      +

      在某些情况下,我们希望使用一个列表的所有元素来构建一个堆,这个过程被称为“建堆操作”。

      8.2.1   借助入堆方法实现

      最直接的方法是借助“元素入堆操作”实现。我们首先创建一个空堆,然后将列表元素依次执行“入堆”。

      设元素数量为 \(n\) ,入堆操作使用 \(O(\log{n})\) 时间,因此将所有元素入堆的时间复杂度为 \(O(n \log n)\)

      diff --git a/chapter_heap/heap/index.html b/chapter_heap/heap/index.html index 6e8343f9f..8cf121474 100644 --- a/chapter_heap/heap/index.html +++ b/chapter_heap/heap/index.html @@ -3494,10 +3494,10 @@

      8.1   堆

      -

      「堆 Heap」是一种满足特定条件的完全二叉树,可分为两种类型:

      +

      「堆 heap」是一种满足特定条件的完全二叉树,可分为两种类型:

        -
      • 「大顶堆 Max Heap」,任意节点的值 \(\geq\) 其子节点的值。
      • -
      • 「小顶堆 Min Heap」,任意节点的值 \(\leq\) 其子节点的值。
      • +
      • 「大顶堆 max heap」:任意节点的值 \(\geq\) 其子节点的值。
      • +
      • 「小顶堆 min heap」:任意节点的值 \(\leq\) 其子节点的值。

      小顶堆与大顶堆

      图:小顶堆与大顶堆

      @@ -3505,12 +3505,12 @@

      堆作为完全二叉树的一个特例,具有以下特性:

      • 最底层节点靠左填充,其他层的节点都被填满。
      • -
      • 我们将二叉树的根节点称为「堆顶」,将底层最靠右的节点称为「堆底」。
      • +
      • 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
      • 对于大顶堆(小顶堆),堆顶元素(即根节点)的值分别是最大(最小)的。

      8.1.1   堆常用操作

      -

      需要指出的是,许多编程语言提供的是「优先队列 Priority Queue」,这是一种抽象数据结构,定义为具有优先级排序的队列。

      -

      实际上,堆通常用作实现优先队列,大顶堆相当于元素按从大到小顺序出队的优先队列。从使用角度来看,我们可以将「优先队列」和「堆」看作等价的数据结构。因此,本书对两者不做特别区分,统一使用「堆」来命名。

      +

      需要指出的是,许多编程语言提供的是「优先队列 priority queue」,这是一种抽象数据结构,定义为具有优先级排序的队列。

      +

      实际上,堆通常用作实现优先队列,大顶堆相当于元素按从大到小顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。因此,本书对两者不做特别区分,统一使用“堆“来命名。

      堆的常用操作见下表,方法名需要根据编程语言来确定。

      表:堆的操作效率

      @@ -4118,7 +4118,7 @@

    3.   元素入堆

    -

    给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏。因此,需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 Heapify」。

    +

    给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏。因此,需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。

    考虑从入堆节点开始,从底至顶执行堆化。具体来说,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。

    diff --git a/chapter_heap/top_k/index.html b/chapter_heap/top_k/index.html index fcdeabd5c..4f9d428d7 100644 --- a/chapter_heap/top_k/index.html +++ b/chapter_heap/top_k/index.html @@ -3439,7 +3439,7 @@

    Tip

    -

    \(k = n\) 时,我们可以得到从大到小的序列,等价于「选择排序」算法。

    +

    \(k = n\) 时,我们可以得到从大到小的序列,等价于“选择排序”算法。

    8.3.2   方法二:排序

    我们可以对数组 nums 进行排序,并返回最右边的 \(k\) 个元素,时间复杂度为 \(O(n \log n)\)

    diff --git a/chapter_introduction/algorithms_are_everywhere.assets/binary_search_dictionary_step_1.png b/chapter_introduction/algorithms_are_everywhere.assets/binary_search_dictionary_step_1.png index a283003faf94ed3d722c97607db3a8957dcd2008..e1a2e19c7cf56514cf579ba43b98de940c508d65 100644 GIT binary patch literal 49543 zcmeGEbyStz_5cb4f^?^JcXxwyHv%HvNOx{P3F+=`ke2T5?(XjH`nJAt&QI_7{=MUl zada@A<>py)u9<7rHc&xM93BQ61_T5IUQ$9t2?PWJxC9%60s}q-38X-Q4^Vq0aUqb> z5!`*?KYWeUC5>feL8yUiC=dux6p%MRUjhCF0mc5c`R5iXP@I3)N}!Z~zXOCBUwOTAkHF{8Kf1u5pL_m#zR3Xn55x?xf8K@w$$0b68f*;sHi(zVdk^3P+D1ad9s~rT z>*o(>EDZt<@Z2DhBJWjPK#!Usm++=tcdb=PGs8rX388)V@-UP2%Wd1|dgk)5zS*YK zS+L7(#4JA>Mh_cD%ig3P<+&K}7%hXbzcpZ__YU2kc3{-<#{QN^KZWyJ<}lW&cj8&L z!fb!qg}E%uD?Pe=H=ZDYKj?i6jdesH|}4@$an-7s?7sW zKd*JY+*$7o2*>AhJDRIljLls{Zj)Hem5!gFh06qJLaj|X1dWHCr2CVR{pa|9Qz8q^ z3Nw_$A^aRA2yz*JK_Qdi4QFLeZRAv_25k?xo>n`5KzPSYI%Q4o&6OtmU5~+wD$?Aj zQZ)7?>i=-#C%7tdqyy$IV<|#st_X*R#qVCLV{OUomK``vhoy}u1j|z{_MlBp#|vuO zu6}P6S~Zti7GG+lmgxu#N$n*M^G5T~6R7@W??0U0BLUr_$C#i9+`6VS)ny)UJ6g7^ zT^0+$8do{s97%oD>BTGpD2ue>BR< z2H46&0LV`GQ-3r?CI5#^P*Kp3)7$NM9k~O{GF!W6@^`om9Dyq~U;*8q;PQ>T=}~_Z zJt?7&6^dyIePqKNG<=Go%|x>Yb2>*Z&U2eJa$AgMxh^PMri)_h`U}~6@}T(9D{&)I zrAbKz9Sib(oaAL*zTiK#3B~72sZ11$k&?HFR6e*{0(cfjN?WGS?UMbd2mhI-@!QG+ z^cuTs9PB#9=N%M|iOBNB|03@1r6*~Gua#0#CP(y1x1Cf(x<`j1p=wf`QyR08RMomH z=nzi0`epsvoh;GVKFfEwY*%77nxmxutJXh3T}2A+jYXu8_H8k2ix8K6({i!D7uh0q z++3EhhSGI9Ygt`dO_tWVs9jh^xs)M3${Q+RTSYgL`IGBzvV`#|RH-tVf|KOw_1H!% z&za`Pl@iNL20b}oKv=9y3{Ou4w`g5(ZU}}G$Jo0 zN9JCnbLTqhYmRK@IMj;mW>3W}JZO{MwiFy$cQU_0w8)b!$i5*filVrI+z~U;pE?EM zGuE&_N6ISZ6mz5e zy8|Fqfbsbhs$cFWVua~MWGuWz>=N0G+b9ZBrrpf#w3REFzr#*WoUXOcuzmNZUQ@=m zu`kzezb@HX>;%&J)%34LH1ugBETMokTP-)JWL=wl_h%-Zph(+}k!XC1`NP;$#0dk( zB61;QvF}M?y!y01R(HP{8jOT_oRgso15YlL8OTqHiDrNPf7mHYC^!AmxW9Qw0F6t!M?Qtni@`Yy|>O$@sr{55bIj>rku5y3YH_rJS;K}%@Xpc$m{NQqD{Wsph| z-flCUOjFCz8UH_B0--`g#kVD1lVA|JMTl$7IkenAuYebD7=3n2^7+R&uC{vS(pQan zp?~hDf8B#1ESTh$|CFaN2#3@b<#I(fd!EN+(N|LM${(J}M zT?|ig@YnbkE^PipG7L@W{dwg*yZrA=93aX7p%2LZ@H@ba9dNWZwo}4nir?*X8%Y5q zzEhFrcTG~T2ZLEla*h~|{`cH}z2ajBMd>}bUV#4lu?o0AA#8?u`gVTjt{@i>`L@ke z(C;jrO7RA(+rcxu{NuQ|K;(9u=AysTXD%lQ`sotkhwC55MF1k_!mTF$ojx{-43JV+ z$a&u1k4qTuW}CiRr2T%}7-1lC1o4vJJ+I*Z#PL6I{H>|~vyT5+ z$3LFtf6nTEcgH`D@qc&6|E}`Cs}ui=to}a}S;5iuhWr&vXIOy2V$yp!9j>-Kp15~F zQ(SdCp~~~xu6o|ut}U*<++>GwAH=slZBNPz4DaX#;5ltYir28;Z4$h?bo#@8eGBjQ z`nW3KcC{z84vFuw){Uw2slj3YYJYO|y3`r{Ca$I4bUaJbx*5F^l|s(rws95jhQo4! z_47<|ytZ4QOcM4z$BN5l1d%WT=bAU)%^V4Hqtueu>$CmNkVccs`Pq7>z-8j-mQw?F zju~L}v8Zrf+k{@T=IG(DOgEC&E_y(*M&-_V zFM)~uZmKi?UdGon_Y*F9cJ|vv>sBqNd9t8u?)G@A%bj7|5oepB1g7SiO`l(mPyquN zrE8E@lK`Xi3_~!1r**_}Ml4TY<;#_IG<~5_0~NC6Vt@v1#U$PH?o*40>jJPix9voi z0XG3dPKNob^3;N=`h44qMy zk^*^-nHSXBthW0xP(tjDeXEYMT8MmCV=6Ak3)R2{()Z03_tR8heZ&a@CI8)VBA+{Z zCw#x0yny?%PF3`{?}?i8)wp=JK&@t4>3iZl{SY*ZS`V}Y4(pX@dH#O#XFwlOfCzsE zmb_%19M3Up5^^Ik=#AIwt(S@YLY0}sa7=hLX}4mmEJGk?3V3|)etvq|E^8iv>lU&< zozlx7Lu=FHNh3!b)mGQ_CoJiY)#lT(9Lpl>nZf}Vbd8%~JQL2~&*`wb63p}p<@0s@ zV<;49yQ{9dseyA_{n6-cT<<1-vXxs@5Oj&^Vul9DRb5!nC$n=(9YSWOqd8JfqCtsS{|w<$oI4Ev*i<t#yI*HH2lvv_`DwSo|LYaUJN4% zo0P?o+w;91H!>{ggf2`nkX1`)a?4fF=5lna==)D@jX)$xQnpj>rMjDQD`XM#W(pbC z>u@q-H4gW-wmT!2Gms5xzwVX=F(4b*r#_JWR4!=Hvb(g*bUsa-0}sjPm-_TyyEbhnR6r6G9owWfxiDk-BMQ!9}7YLPlX4J<{SHp+TTH;bS#FdC3(FN~iFtGPojYecLCKji?s@ zu6PJ{f~5Yka@)c&dTNaQ7_S4kcY@6~0}JiG(kPZHfyY~pdBkI<(2Q@=1Xts8f>&wuY;_z3wNHy9BzO{5?%1T&Tu}nY^ zO;PSD%y#K+ddfarCK!YfH6?aJtF)~9<49!ewcK?xWW^M04C=ht{YU|4oDAvTVllG& zB2u6Pn8=abTC*XM;qETxe|@@y($!Ds^aX4n6SP z%>V#plA~A%heSVh;C7lT*Q-ZnM-AnTW_^w#hLYHf1GmluNxrA-%#GKUlCERSIxK5> zIB@7g7RPn7eQ zCGKLX?okJk)vuzFU^1|vvIw_y@Usx%An9E`VMR~dCCp2|P7i;r*BcJF$`;~08TERx zKia;as*=)1w4-4aOG^*KV>4HA2~^~KV#186+g6G4K1g+12xKK@-&XJz4U|xJ$A=7d zkE6<~BhZ+p>Sx)~=l0b|0)N<{=A%jho~^Q<^R2+^{irflV!)iV`1%&_c^9fOwmnUw z9C^SMn{gr~4w*dneooK&+XW5IL&{ZEV#jxv?y&aG8t}owd$(w@%hT&bAF67wG^dpP(ld))~gGPVm!?2M+R#L z^GD2n>>w~b|BjID7$ng<-`A7V7le7#i`eNjVa9+|ULQ?{9P0rFi>O39A#MGLx6z{% zDU;?hL!Tj3wAB#e`g8Xqnhqr5Cv@s}3?G=x8Dpr^EPWpe^V6ifAo$F!W4_oJY!PG6 zBuI=53GqL`S8McHG(aDJ^YT{>qfxQVHn%i~;UV%=2Boieh|L=Yy5v$@tZ(NCS=F$R z>z!rE!b?-=bY&t|J+Qj7uGraM?+>y+fy6vNSjtu9-62SB)SX0hEAnwt8FTDn|Ky&{3o(U|t1`kNG%C0Bk!dNf!3lje%O)B# zRYWYdVh(Kq&P+q%ngcOwlJJ<=#USDMG+>&{hyH9>N)tWuH&TOA|#khdfOJ;jWoIb4U2j$%aheApULIldsye}Sx> zt=eZ&M=JJBVH4uLT&u^vv<@}yM&6(N5d{&A$M2FPz9X9z=3i)vCl4x8IJLjTq<|0 z#Bvoc+pyqAWx{?@=Ir^xcjt*KjJU~>Z9YTEq57y^3|5yv9)cMcNc)7Xm5~*f3b_p# zv*O8y=L`dxoANR{``3|5QRNuHxtiOm4$jgkNMiKPD`SB1*$QUZc1)*<+9uQ;Z*DRLl?$wE4=x z_q|IrKY4-UuY$hR&%!T6w%AVxb`=GJcqozTU}G9MQf`PfI{JjsHKz8Jn3wS+;|^;ym$leO zo}fYh^*2iwp-xKctboV~@WZzSjIk?+oj7R??_5Ufl@sDNvEd`%Rm_LpWM}0;i^-U( zCdm(~nDkJ=fVJ36MT+Ame)<8oZNqnou8To$q<)1{W=$QUPr;v6?&8=kw?LZV?L%5R zofiyHe%og@Z~uW!{;iq0Ow|q#7DKOGHW#i^_w`KGx$$2vUI$pVeiRxt_}R{gkpzKm zHy5k7YUidVOFNzK0)4Cq_oQ`Y8!T?jrNe(tZjemgLG9Iad4xsL-x*3=eLitkj$omN zU?7fcraR~gpLJlshMx9?Am`$s8&f6ksN-oUDC+DVoeh@iJ{Z&4t3}eK!(RQuj#>^2 z$xOl#YE+)%w9qZ3D-vjrNAAVb!6RnrM(152W9S%U(c7qP`X>2a0)}to4%Vv}H!M26 z8Q2HsdqXpXfl$l!m9`6ZE!&DUc9&6}Q`R%wHpRm_$6&gG)m)h0jZ-U5hD^8rko84q z=t-^RBK9g(6$Fy+R}b|-23W4%U8%4{iD>gCiTIEtn?J0~w$f@dyT4L_#RFDv3uosd;<;HZ7tCd!2W1CVqFl^&uSfUYG*WOk$1x!}Zr{<1Nv18? zvHTs;m`iy-DWs@4l3hy_YNEq?b9SYO_egf%Ve5uhk!3}nY>#ti3CWJUMNRUc4v^Z+ z{9V;ZF#F}g`Rze*PmD?pDRYas$#V_ZOCI7x%nay0?T(kD&8%>?)}9yeLY9p5Ne_TR zsOFy-gb<1qqqT7{{R)oFrGZ>nEUnN3azT*7TM+&_Sc-Qugau}jK@&vis3HilQad_< z$ODZ6rwmPM#4v3w&}iGJ@@^74bWLSTi=l6%il%-L3BS*}N`q2H8#!jjCQm{UW>TW5 zI8^$MxaoX^EtJiO*}mA>4+1yjo>e-6DuJUR`QyET+_#|*+=9-Rbcr3WHS=Dh5V(g{ zv)C+vQQIeYStqcg{VLL=UQ_|^;W=USM(`%@bD#*!G`UC8$zvNNe?&)Lf4x*RGIzev8JrR z3UoC0BU!!sb)*xy7=VjWr$kzxxJ=!dsZ2|4M2~Qqe4O#QxxY)DzT!yeL45GLTgRw9 zEojHmV-HNG(IGXHkgq2a!a`L6vcAsdl3`h6>>R&Zs2LxCZLsPC1RP-Y3&#mY7q{N8 zA(CK}mN+3v@WTd8in%F+H=ZO{ANBNI@_LhOvMU;syW$60`Dv_U8B=-|mvjGh`{0a8 zk}ytU*B-k7OZnaH2|!a)f5p6u_LhREUJWBQTmXgen<@-MqFsD?PV7L7>`2Ko1!joC zyxb`4RDw;75$(}I$ZS+USyT`tSaD)ie2gVLnc;r>;4W(5*oarz|@Q+pgDE~tgh2J zhG}0;wt5ct7l81IKS-Ff72861O5OKl3t01U<$+H>U};G=g0-y ztY>JturpXcK&cWxsnCXwd|3ns`&rn)9h{|*g+sWOc7$026a2-(sW@QtRHJ3k`RkVR z1|g;>p@<1AeD>Z_eES&pgWVap0- z>D?i6E@n#kkp?1FEK#DIrYXksW0l6yg4GwYq;Gm+giO~QFeCvJjh1J^{vdg&rXQEa zomV|M$ZXH60eZ|Gd49VoZEJa8oC^w4#H2LX;Q|&HfwP$1kCo}qa22xOnE8YN4)mGh zifqCla0G;=!cIMnY+Hd7bYvB!lCKb^=jMX0CvF zQ__{w2HZW?a3J<2IK&+Zg-{n4QW-N>>&@p@r|np^od)a*S(3|6S?Qm}M_@x7Xs3&8 z>@q+*MFKyg)p8gYm6b;?`2r)=_>BX>T2mW~FA$;M{vmtlnHo9BCX{zY=_4Ul; z;a(AiJro4XEX9Je+{UQ?=rM&-9;iRKgM0N-ibebO*|-smGi;kWiy`X#i3OZ`BMy@d zePy}}9SbZ$jqLJRBBR_pMNTT#p-F+e7MQ3qpfNYr_t(F9#aX=*qYkIiM#Afzpz7CY z)&jHr2K_5@F{J=zE<9$M@xTbwhZqz;K03IpZqw2lmVmaAa#FRzf$-8=Fp;~`cGJcDkz9uMa{tM>@l%zkfu;}Dcf z%AO2;^H35~Ci2q(ZUDXAYVjoJz}z*HrzcmN_h`EH*A9woVmg8~FD%=xg90-Ni4`E#T{8OcZ9cIk%u)jBlS+W?iQy-C~w;`{Z*AVc^Q(4}DXi-g#! z2~kRkfkn!I)7o*A_@dqSA*z5k5>F*+LE(T^Duay=(rYs&Zv>r-q1ei*IN7alT#JHa z(?yqxc@xD>Y6fQo^?-BpqG1PcV3?+UB|wy2QGG|g;SX~7U54QDT+hF?YBtY?Wg}F? z9EBDy+PI=8#fI_XVRfsbH&?#RzK^{j4a-H0RehkY;#LE{X)FzEpK_}gZDa3NA#+RQ zbW1$f2jydwe2b_O^KM-2-NvA-A6Gn@&yextT)+~!S!w_3L&@p}Sa#uZ;GtLr#rR4r z4c1p#aXnM^Y&a%6p9JvIOS|NgyIm|XOaOv94KD9&#VHB^Rk8a-?Q2` z@W0EKFp3B!MN0QUdyk;UFN~8Pg_J#^{w?^88MGZHf(Xo6AbCD%yhg!Ep7pDF6aTx^ z{s12(M-O5RuI)A4T@;9h#5O1$dSb!}vH``q;&XNme7VIstM?-PEwhWJtGK@`bq^M3 zsXBYE#Xl`I3Yw54k}OoL7H6V=K)x$xM{x{GZ<(-4mh*=TvH0PS2!=2Xu$<^NK|luk zJn!WYOJe*W34dAbIy8SjX-J0CSvONV^Ne254p9j-YOV+M&?f(gFm5zW8x-@Z#H5&g4X^Og1u=6^3K9dk^sILwtA&~GG@`qCWa4=F+BFLc~#Kj=?`Ir|TrHs~L2AbcM&K%;f z=4Wg{JP_Shlqe=c%mTIvP5-S{yIUKjpC2&3HMt|TId!%)k$EJ03Qyb)B2G^j+1qC~ z#ozE9mzpy9OUK782a5NX<1ZW-?2-}7Y8DVM>;K-@CVn~-IN)IkTsL4bUYfW}I{Q_A?C6qi9-j$yQ1(|=C zR{x5E8C}`MHu|~h2#Jd*Gm$irR7&PlroBM|tSJLZ5uwZe8*eAF=P2K8&YN=+{dY`p zu)2BN%ADzO{ZD!hD&HHP)0ty&D^CzlH+1t|q&1;A!;#}0kX zQoI1Swx2$CZim1mWT-!?knsg;+|VDGK~%85w?ay`oj<}^ zM-O?OD)|+%!{~5_6nXbpc#zG47U8#*71;bPINcTTRD9FkQ!9&7%hyrK(LK3XD6tjo z=jD4~!1vtykG%h|o-v4-DijAy0Jxfb-sT25Nf8w{VUy*vc9Ei2JRD`>?pOwBdmIy8(jz`qTtD46s9F zDCF&ZJV#3kH7P4pL=zc3aNE!dGtFitM2^`;n8hGCuFh;H=<|s8@(GSpuCW1xlSGBg zMRD+xuI(3@bvdhPtbC}!NL@_$uW(YaZ}!nvK+vLf_vc|5n$CU<(n}+}at0Y+T2Zh^ zt`4E^9(>_F4#BX4KA+KlYNPT^i%Ne!GO=zt7ZX#32`;jQ_XQENwy#FLNuhZvU?nR6 z!yb~!gVRsQ+sUTz>nP!P$F85?U%7Mr5m|No3aO>!(`bPajBv;)+G^R_(iIZRU%|B{ zcuiCL7lOAZgHJ)1{fKY8mKrB1jwR%^&S|D=;xrs|^{Tl@B@E0%9q`64Pe!?iTE z!by_ih@#^tC`hxK*(O@9)YPh@eb8!c5&e$m^`E!mrJ&CM2Wa>TIQ*j6lQgNqBy!Tdt`U%LttfI6+;mK6W{c$^z>U~o2@z{2mB z>i>fuSX5E@S#My{9sU(+{?{%+K45luIF4BJ$H*r&IS@Hk`OYs1{!IuFkVFPPFjKnT zgVg+Eniw58o2Le+e)(S%{8}m?0tW`&uD+K17X`nTK0&~cm*#D;>mT$%0y)C>(Ej1S zDEPG$>;@u7e>2ncJAG4MfgHhq)}{GlT2UW}JP7o&_U~*zcn{=AIH3HGG2Q<^;$W=8 zAO5cmy1k_3z{apfrSb8PYinQwhG$38?ZZ!+AE1E*2<%fP|1<6^_)1#ta<0$H=v8w7j#05cM6YXu^ zhkrQV)<$Ln>~{O^4O8u5jF=_F{nRylu&>%)&)4^tyNJMVWbBP)dLYa{aJZc5zU)Se z<&3`n`nEd%{mg$xF`ZPvzG>rjJc)`pY$jrpEcbQ&y3ZHMyvuWkc7~HDck^VEB`*6{ zfz#mZR!e=mQ-#XcAlAUk^vtU_^ubH> z26G8G)t6WJ_b`8BtU<>_8Ku~hG-q(K^wI`>0l7$*P$KfX$hc*Jp#EPJh<{CP9H?S{Q?9*rvL{YHw{!mzsBK4D z&i^4m!5wUpLN1*ffIZA>w5n{rIyZn*074IH8`W~Kf}&vle_bwREC@H5WbFOmPV?uU z#yr^s?eF&hV;Rt;S%k*xdQBi6nh#hS>u$tMZ48AiVAn4HM}abU!Riio=o14TWTo!3 zSmfUImFhy+q?Z<#w5-w{)Y`mLMMIFKo0@)bD=9dzdMl@*;_fVm%lxM1CP=QSGIeEs z;n1spe&1tzFtoAIE8qEszE)Vzhl6y)kBxrn;A2Xz3W+>bOEoIa=lJ}1iXRWh!QX0x43q^ z`0FY1emWsXM=#vI`*>a(CVAbbFFnho&mUtR)jtpp&DNRi3E_OtBfIb4f&VOgtd+_+ zj8$G;yWYjKxSv|moED#wx)O;~e48j$@hEHkfE9EF9D8bHqpkquPm-JHHZ1k4XG#n2%Hm1;RjCfh$P9sumit!X1giI zpD&mC9puE5fkT_m!=0h!bz?>Is6P@D&t7r;_JYCd9Fvb}EdPh!!e-Yyig~y7>wcHX zubp<8<}ip`3(EPBDS3MX0~VyK?F+{aJk7HI)E@;~wz$77%LNEJ-p-Y$tm;N1GK?0k;ZK4_ z0|N+6kEWMvKf#ZRbQ%&xg16ltZ^P-P{IE}7Dm)o93i#M*lv-IiX~nf{F(Ofo^wl&1 z%W)n3w)+B^D~gIm)WaI0w)d_m6+VQ@9#4J0F_m%L#gEG_ZA0NwBzKC9g&I^;`(csa zNwgLt%5&tq4dw(RA{P^wJs{<~T|h%C4qR&)k#*Qj#nL+8LMEx(eGSV4v$o=ldfCU70P(edNAB89w$VWDFS z=B6os0rUQ%ydGaqkeQLd+R91TEgtR1wx%uau;$A6rM9E1k(F(3KtKE(u&a49>EgY3 z(b&-4DWipKx_mBo%Rl*&PsQU2!Y@{{&Rk@V4n%s3ATWgc>6`FLbA1}Y{JdVW&@off z)aB(~J91&1&@`?<#OG7c7JjtjAP)kWo3*jL>cxFN!nvX>*^1i%C2IupkB@>US0ice z)(z#my>t5z#_O4MTk(yF=8}gNv7hUCW|ExToDpbqWhNJR9<>fFj&l{3OC$5d zAd+TQG>-5J`S#;;j0W@|h>scasX|ni~ZDQ;YoC%TlGz z1`l{8c%Ixw*&w}S35VN0<^ji?iK#P$53+B}mE6UXkYmNNLZk~D*}0X>sN$FEkT>(> z6I$*qlhfU<3*nR59d3PVV}nt{yK4CO?!3Y)ly9&qA1|tDj2QqY*BtpTma9T4*n!6c z%G!ZpDoIJJ?cdD=WzA0|Sh$r6Q}IvL51?KPSW&i@MQf}JNn&RXq7I>afFCTLe!q}% z$e93|t}E?hE*XSP>rqV$t6Se1k%1F7i`(5^ytcd9DyXDV=v$U&M4+!pLAz0k{S9002R-YQ}mIqEQsVcVkQE%(d z3Us8cqcp1l)343XgE$=4wBrD0nbaSrg=Y1zFryzi4=(~34o4I{siIFf_sy^=FN0q)uskK`9r;UR3Y$cj9&x<5TZI_H0y3#sZR57``qw{p>*y7c? zmw<3BKlXyU5rkxuqs@@7BXggZR&3vm5&DDd&?b6rvT)FUR9#;rU-a6^KXE_c$xmf; z=!wH5 zN;x>o>_#F1nO<4kr zFElT0%fOv*!SaWBOBA2;CX;I&RytH+ol}%cCKHiNZ2PPN;P9J_y4z=GT6$R5ZfZ|j zFi+e^0jHAJ{MQH3sX=ec9=gyQR8ePIz|BRy6-ShB-EZrV4SGYd`B6`W#|FJ08?Nt zvIHi#-Kb7syfqeC{H+s)FIH{F5h5h{2fO_2W6{D_(#_e=*Z$L%2ry(*iGAu*5~>t6 ze2s7)tpT3)$??lcoaV%OE8|s<>8+7c{bCo1ZM6a0Kk0hWZ}~81F&o zL9*;mQ@yMgP2t=Y;{rh}Th%4{_IarljJ_5QO>x{(uGw2RsMdXrEh2O&KQRWP{?dywO!LT4Kcx))*?Y2%v5EXIM zSoibwu)2QVU$g$4()g>E|Cgkxyck9eA7zuc3^qcvoL2nuUsc){;6G#1dVz*7rI6VV zl>LAW&h`)GJ{$`_ZX9gc1I2FBFKJD<4pviZSr9#+_<=0Yd+ho2z7elWikCOzthn4^ zcmiS&bLnQOWN?O_rXX5i@dY| zt0BE+|tz9#{5rRCIWfa~n*nRg3Rb3sqf7qr|xs12oyz@YkM_$V4B++>k zb})T(Fh2HWSvU+gZCS-yo$+*?3|4-{b2MB&y?%GZV65$s!?M9`r7~Xa=7S!f3pkg( zxPPVPlomt&R0gaZ_aAgKl(-}Ubei03HB3I1+xPgGoMF77f8>1)c_ZMkRtlM$B6Vta zPgZLWk27&6 zyynmCtTb0=kHf8pX$=UopY*InlZR5E2U&G{=pVHmhGI^6Z6tH$dm2L)wkLaExLZ*b z*&YJ&!C&xxJQB_Fxmt4CWC>~nX5Vrr?Vgs4;UKM7XgF@HEhCIrYcF*x=s)o|9oVYz zUOY>wrSBAv1N`P&3Apz<*U{Wu+B=;`8;gj+#7`ZEAQA2avrj?~&XAEIk(1HM_D&%$F>OtQ_33&*=n0Es@(iGNG)jEkL;7o>d;$tUvBQBHp#F zD- zMQ@74I*__0Q@t8W) z+f)b0N3CtY49?Jsf&?6O@f*lYQkX0sF~M{7<@9q?el4ZW2|a#-er}2#9mVIAg)+S7!cWgT)r=vvr9a}& znfK0Ko&_S*W=B}*$HMXLJ`|KSnOm8pyFAWoLB}>3mQ60DzSE(6qQ8Jm>cP7!rkAqW z$$54?RD!)8G&o;fx_Ygq;H`^%y$YPX7d>TDM?B&OU1AOq6uozq-uXZ+k(Gr_j^(kA zTyx;ReZXw*ASUbe~Hqd-E!=`-W zRTiTIzefy6CmjvtX%?nnPP8fO61rmEuDFo$vhLxFJk=&;=kB|$ z7xF4dDt-n6Bc5C3iXLUJcU7+s6sOP1FVC}+FTTU6warG+`ni`BKh_o~%0k~pxXgwq z7sRwR^ci~GhjGR3jpnaD?D0E3C4U{PH%Y*xuVHDTms=8H0MFP4n39XO)K& zARYfaUSo%vKkQ-MgbX?8o1}~v8MHk!5nFAKD8ONE0=fe9l-C0~&)zPvDrs7$srM_T zVV1%G(RJ=B++FzNcrSUwxByI}A>uxIC6GPQr{;BJb9hOsoO604vwN8HnA>l=xYd>K@3` z(LtJq{rP0T(_Oe#x~Dse00XW2`boX>E`*efJxhRn>02g#=l)O3ldV8YP}g_7X1ea8 zu}-8%dxKODx0!g52m?lsVL~))s)d2^-iw?W&I##NfExBh^GDv$-LA@Dv7h{IWv)xx z-I|X{moiyvrGV!~KDw-vdWBVY@Zf4wR-W7(^P-=?(#!prwj*N2RQD|PYi;!lhk#4e zX&*|mbxlTVE}V~*b2xJMd8^ga;nHr+;@&d<>j;AgPl5#Mz7*LSQ%|8 zM_bIr&rjNeI`je`gWbX3XWELvfqFc)SSzw|-T4OU>g9bnqT@qGRVyF*O2r_(MlZ=Z zTt@JiIB`ggWw`PArRj0A*XwC%!-T4nWim0K>0AWr9YBJ*!Ip$400E!fIDdS6aB74^ zNCZapHbZdFU`*GLmFs!NO1+a)dLW(GjaeWo7ZF`NH*$^pb$nCpQY1|IAzB>3d=X%s z9EHtgM3&}pE%`$B*%u5Y{X^Wg)k3|=3qv-kz(f@h`(ol+$IDzM0b;;bT$szz0p2yA z4Cu{nB_M2%@3rqz86om!2!c?M$r7RTMPJb0^EC7HT=?s5bRkCJik@{UlhtX5_P%Vu$`iJKL29pgY=VgYpJ02q00*BGKb-8vdpa+FblG!f;E2DL zIe%r)vJmpfc-5AbR?F+m!r=wb|Bkb(FULa>yf=_7Pw?qXkUqj~D*QQ@5jKy}Z6wEk zYHc4iFTbCZ#c7^G4)i)%z)%c8fI8%a082}({4IThM$DMHEjFUjX``Tp0&p|sDB+pM zPO2<^?5Hy5VcPz+$)1Q^TK)_rfNC?3w34?r1fSn+`ytl%bi1~tx(%ZUVPzvE4mn-g8LKzDzdb>juCJ&cI#~msK$h%V*ySACe&JqIBJoK-R4*vmj{g0?~tt}knQeNWd-PqX3C1Q8mtzcyyTw`+C|F@!Rn|H&$3j5_a~>QA8wx^ zo6=45>ZNy)+{(#nKHK-sfSi&S06xNT7(69amQs%*J~fGn+bF4a2^hrbn71rDu$rYb zLs-LqMYb*4tx-nS1PplHTsamOD3!l1G|XDfag!_cG1y-2tECT6KyQHWuqX4ZEMmO! zI^|cS^IklCdS1CW8V+xHG7Y5QL6V{JUR)jwICAQ9zxC4TvZ!i&FupGNbo()l&+RV3 zqq3OQT!2IMo5-+pY+BmWjB0P3bub@&b5`El^U$q(0{6$>%VCLACgboRa2u8J7jW25 zm1xS}&_&BCCg_-CcI3Ow{7u5irjL=V*=lXRG$fK{EEgMW7z!R9F&mUjThHx{JJt#bB|%f z+WVJob1=A4B5w^z((gsAFI?vDZ_|KDd;K?Eq1EH*A&)RA=e{nS^+%qq`suTrJ5|Bg zElevsYz-UPErDG!b_SvGsNpRS`f&iPa_0|GW~vWb3Lhrfx2#t!KN1@CFo*{;KU>X~ zX+Nm)Lqw95xoW)!N4DjrMboHzdRXRKSi?tN+ZN=bwq6IkC%hHiQs%l~r4XV7@W=;n z4izA{Ds;;)mbY7<6IYq>edR1N4y4%~(OjQO+RP?mjK#Uk%dS!~7Bizr{X<`Ins)c~`p&Y@D0Tc=t&KN_eJ z8PSoQ#_!OYS8H5VU8AMsQ8$p;^TW~yrtpO#N%ALvcMj}rg*^ffg;y-xYRl)eC$p+{ zky~K>p>g!PZxn@$0MRQvx!h6mEnt(t`Z0jL$+K4U(12Z(T6sM95r#<5uc8xU`0%k* z-HJMKpfmH)%A*m(1y4uYe~wW<3g`8FrmJZ#EOJK`G+w~YRc%*@@@P6-Yk6Ax(isk{ z&g0U@^~C2s{5H%sEUkNjw%A{796TZcHNoy8|Ataoi`Y0#8A4T!=>Yo_Ox9$4haf(0 z52H+Lk+n5T##jq*+kWctoc0<}S$n>%?c1cPatgxn*fnTfiWP*)jM!D8;@{1!&O4A- zafBJimoAp1K2E}&8-!lo!C5rii?-LdWD@_*63en5f>FQ_^4Lv*cLJ4Q#s4~8!0s$D z#VmzwVI8uyA&YSY%U!mL{4B10a7J`_(HU&06OKeA@A>LH9Z9LsWDw^#y1Le=KKVsid z34-gslp4&4ZM^;1?S?LkGx;*~=7*6`;*qS5JsA>I=%IIAD!cpUqSpgkArl~HaTVWK zy&MjQ0aQ*Eb-&H79qvhWIm&}i#t`dPH67)a`(r>Q##P{BO2WV;SPrL+ z^wVXBMumpk7qe1`Wa$}NJSGc6@VEKRe!I;bM4t0oLEOOPUY4%O`t`Q*hh#2nxqabf zto(~fsndtLZ*eNDr`$);oQ|u?h{<;9TS#Fq%>neoz3~R|fhWLToO6JZnb8HZX$!9m zk$Q#GedDdWGk;QSncAn1-NSIHyqkt8&8+)do^m6%YF8O;Jd=^Gyg0cHE?mc40qI{C zqqosq!nrumRx)gMQ+O`oVq$j`6Ko&6hcfU;{0`YmchRejRL46IoMiwxn-w7(V#H19 z+MJ&+50h_}jaE1Fn+@)hwpSZYll=%TFy20n(~mri@vV3WKhupa|8SWmKADw4-dbrk zDAMr{=zNZ4c-!MB(S@Db_vI}1MP+xkzbn$(^>sLJ*xKKJr<+=8_3^1${K(ai6A&1) z3B3a>P<>F*Vji5OK0@8<2N&8x#EV}BdFCE9= zh)I|?JA!9EV86=HA%o$u(Q7ux=rnu*84>^gvG<-)O>SG*C{<8YP^1f}h^Pn=>4atj z6#)SODIq8V(mSCS*?>y3&>^5Az1IK%0@8c$5IUhIK!8vZ_};kpKF4#;cYoe-#~ow; zgCy@->s@88HRpVuXEl6(J;f|_THbL(`IRi&F=oBk?y%vdxj?%Yp@P%B`Sp~b3Z6|IJC{ywi6JkEqwC&q7M*M z*#t?b$2pv`Gs}8&Iinfsv)15^j`eDp6h$jsDAkRbJ~Ji`y;XyCuv26zn8|n=!IvN1`?cG?O<2#vgVgW zlP@iWc9VqMmVB`~WT)d{sQi3_b~=YC5}Uay@7&r z{Sl}mwvtFoYp<3TDRyME2ws!4Fe_5JJ#TlBz(w0$1uS)+%f%m5(R^2# zb%Y-_3c`t990oW??L=LzgyYqbFEH-?Cc&4Q{@uLgJG(_IrBlem#kAnaDEHcV>M!$r zOC&KP(_0WG-)$hI^Qq9vL zA`u44VBJSuTmjwlW9eC(BB@u5p0??)yN9{Qznr5M;ElyZ#@4v(=7xO(^N-otd>GRc zDt;KZ%sk~401bIXvSkDP(J-U)M#7e(>C&DFk5o-Oqcuag(1r0CNf_tB;`7!lb%}^i zDS1z#%=?|WHyTS+kCn0+ehXy>(^@08#FR+*OYF63v{p=wAR z2avq*|IYnhT4j;A{XUrq6sg-(zXancpU+axf0`dYogO*TQl542a%pA1r#MIETj0 zPM{Xqv%}szX>osZXiPd?_tsjzlUR~DrB1T?4 zwAH&?m)#Dv(7aH{%kur^%~Pf~KWR>>l4H8QHF&FSH7sPDPnp@R`4Tw}fa_Qr9^Ln-clnEBZ&;FDniu_AQfdlODV+#NX#}cW58Kn|)|i)%~MVCl9)hkUUm(*^$s+ zEZfcXL_Kb~n9X<|wlP*2C7Z1+S>?84qA(9dhZ4D9?M{+-(3F8~rQjNn>|i*GGSJl> zdQ;EnvqSw%9qm5+7>xVb&rWbfCyq)itJIexj`0xaxXBuivkbNHgW9q>xx=4Z7?fkP z!lwQOv%UP$@@NO`G%4@RA5+Vxp1xdAdpFXX_gB6# zKauSmN{hYIM>NtMF&Mgr<~tHEZ9-k+{*th${B0MQp>#rb7q^mGp2UbIG08Ka)o4!Ie(Z%sJ!4;~Dxb}Nvopja-tn^GAg1#*OUc+T$d-~pV1m$dqaFl5KyXsWM*RHv^ed+xb+2z4_sO)qAB zkpAcssY5|X=_<-Rzobs{j{5cY=WifCCkgCjbOIj_ub%vZ+-!#2lTFp-j`gFaWCS)|GW^RK)bzbwep9?2uhSDqqnw zv3t!cwpB3^!`zZ(7nZ@WWkc2{?rAUO-Z%YR+>We$%fi4^t7w+_6s=yrs_6F8Og-#{ z5f$le?V^O50jJHN68d2b+rY+(Ey+is0|rL9@s z@4+v4;&wi|Y28!j*HgEO2>CJbK)HpmjcgJ$Px9Dll@7t=pr3iYysvKI%<5@w#i+x* z<~-I@HwM;pQ3sQNX57**{n$vmr#oBp)>|5u=1H8hIlgU{UTD#Jzb4c{$VJp)>5s<| zLf&|PWP);(W)4UIy?SE1q~8;w(N7IF@D$7Bo7YLf4LT8}hLM%}mM2|A_wv-a``g@I~E+6`oZs+aR42J~z3@`7~ ztjV8Wy5y>lt{Xdqq!S8L@bzF%Eb#94nBDo+(MLwjK1eS{&Xr^@C6xc zbwSE5n>n`A2IW(jUh)f`wcOMcsbgw(y{kG~t-CEcdBS#G1y(1q60CCx5%Vh~y zH%%BP#=v=Ay!ER63y&4JP@%H8IU4e8qey>H4}AZK*nRA^zqN2b=ro6{oBhGnx+hc1 zUz$?2Q4ChTu(Dq9OmAX~LqydcJ;+1at8FIp@tksavb+PQG?4Sk&ifQPl<3|P7uvh1 z{mi8@p~IkZ;cXrkG^pm{&cZG05HDhEg>y^yY&}zJR|!WSsR2WjH%Ew5BW1a=f=h8S zjsxGAUEN*Q<8_C3U2cGLTy}zS1lU>Wx7}5W&EUzyr-wLER}bYR^gjA-4Iivx95c~m z8hu56EB_dXod~ff(kJgvE!z0b0Wv=g;lH7nzx#hVt(JT-^!%b0<;3>e@_GLdy?trM zGpdcY-dLUUh)(pD-VpSIrtwDFC2xjZtwDTDry%U{3eO<=6Lau=Ix^@<#R5XL>cF_dlq zJd*lb|FWstmxSZ=@S2Q`TpTWe-aw5qGvWV^Bh*r6R`lH@v6+0=peD5D(ft=p_j;6~ zCMvdSDKhF5Y{3YtYbP4`O1Oa?}{+`YSo)h#uwDuO;J9T@2?3| zuF{w(@*kL5;HeBj!10E7Ho5*!b2EX;Q)dVMNB?>t3fS86zH{bG!dd^v{oh+K(SrJRt)l;Mrzg%F} z89$hC){zjrha--(_PmrH<-aV_^GC*wA6PuR1?RJW z5k06sD{|^;Q!}=7`6f8|(V3wnldtNsQGfF!|liF@6GEOWDDPLoI&@0RIU{PkZj z&0em^KnCxwL2`T!1(sQ!k<8z@ME30+vb-t4)DoWie1kCv=}F@QwAH-={F1d z(dkEc*8J5_>b`@!0;3Q9v6H_b_?XOIgeD@R}V(4N1qanq}V>uO|vAZ5@FMHyu zVYaTVpZW2aZeFnKS}2F;7IF8-a2^B2OmhhgJa|;AHiCPZEnd;zTik z$R_5=l8@*2%4Qxr{N7M&K%fOS;7JXL_-mMBClyDshk`Zcv0O-A>DYzKhe7?_)AeJQ^ z?y3)KGf<+E_V2UBR%rZ^&jBWj4Ab}`{#}hC%K!^8z=1mm;UVJJ?)(aE*EhrMMUhAZvoQQh3sUiduR2G2_$=M*&XlNF@o0$ zP{elBgC7w0g(%d10*d1d)+Ci_ZwGqpaa=Ck!B*$a?t90f!JQM;x2;zEjx z_-=)6Kl=D}K)HZui(DVlE^J8#!?1u{5{og9bI;xD{w+A;S?JLM)V5+F`iq*(vH~gn zcmQr@5AV4_|C8w1z;wd6jbKt+-_675CvEA*ML{Qjj;Y&W+PXF>o`AXkuC1yaP z=jhwBa;SBl0U~@;-qvH{A)^9uqpA}SL+vE%3KFVu-caH!8=i>$!RxhAHvsmc^c1n} zgWtSWObw8yaJBH&%wGo%MMnBtFADt3JDaH8t~S;MCWJtyj*keveX7-uWtU?3`?e$u zfw_NuL)IL*42av35I(DjGJ{(zdy`Y7N!Exp*%aS7t|>rTw&=q*^V?B=d|JHT+Zu*N zvT}TD_?t{8uMf(mTO2SRO*1l8ms2uI&oe1qB$ND@-TObk&NHmo3RWOqKFQODzvDL3 zqj6e^=~*qWPkIRfP{@4{{dK$V+S`wpKND*oF>;E%0q$w?#Y_7359E3e>6xz=HuGqd zuQULfsec@#vWl5QS7woZ$rm}jKr;yyB07Zv*6Hzbp50lzgu4 zQAv;-z32IO@5;_ydid&_3j_4&yhwG>9b9J3LDFx zdbWrcH*1$#gXOos-Fum*s6<(A_;P0)MH&yRCOO~%LE5{dD?1E#q7GL8WyX3AZl?~B zYAMi(SLM%__-vn%MPa)M*=$O(uWJF*$2gKlX!vC|FVP&W(45r^OPo3;O?3yddiX&u9`PQ}`OZ7s zW=Ww)aG*a)v{2>U#@_*Z$u#y~qYORkf3jxicz5b(9GIua35q>Z-p*`4r6iC~C^+l{ z_{r9X`SrMVVPwSXS3v&2W#auik$YkqrthxPJodR%W7q@^A3I=MiJ@|n-+Z&c&tMT> z2fh5IQ%g-c)rKn8&BX7AgndoMySH~Ntc`S~0e5hJ&0Ilccv?aMP}u6JkDS+3XL`1C zWB&44feX<_?>d_rhEYd5O-~(}KD0EJgq&5KN-JrVe23%gXQnT@^hWxu`R!HDsY9NG zIsp!95jn+>*+4cpM zMr&Uo)`>H@mX!B#s^SK*Lr4N?c{P}6d056HTHweikzuA;bv%x9R6Fdk|AnMCc>Icr z%==(xVLs(>V!r~Z|9A^}#GoJfDI9f(L@~6>Y66R<*ZTWA9~{AlamE7>C-B+`;GK77 zV&8nOTH#G?Ot%e6v^K#)n~dzw2@sF4ol4i*r-vD!_DD7~ZM>IjC@ zcnF5xd+mRjdNJQsocitMlX;3)jyDDFQ-CiHZhN$kYazs9hVC=UJ;=62kzD2Dn$O)o zNfxBC-H$!d$8Pe|<);koawt>l`1-XxL|XbWATJ}?2}mHGGS2_ggISuQc@`wwgTd4m zyVU4CVlzvWP~&d6^d!yxxo$#(0O6jit7+~-`96ji{SYepgzbj7m^v7z7Tuf%&q@FK zKa^K|NyEPU*Cjzy@NGt)4S;b0Z(51!vP^5e$bfU&J(fonZSy zoq#4?VVkJj7j}c3hYv2A8LBlp_!^UZ#2KE7x)J@g8rj zGS;!QmX$w9IbNNrF#?P&Z_@urqM7-UTxDapk^z%AS!_OV(%~K_e*{GnXI7HxccHxo zhIln*!*c_*84oyPzn&q>e0_#{X^Kb_&%FqzF#8zz@s#1$8=~_29(OKFOWR+%QrV!{MVsF=eb36ET$m@xqCjtkvKkq?ZHFUA9Pt!izTHO8mFwCtCR5Abgx!-b8Mw*y^apUDc2tBnvOPsnj z$;62;2~($HPv`yGb3Wse%mqjtubS@J2ZhB;f;>N@5}odv6g;N)IDZm2%?ZC;+54bz zbmO|@Da4~`F*Sc=3rkX$y4=nHYhVI)R+bZUHN}W&{&8P=3RCUlzMi#XR5duHLP%&y zA(`sK%@5~kKGjh@2-3VjJl054pg$`XJ96!;)JMhbdmyp1n?G+{Q(^{fr-4Ph>jEXN z!Fw)?I85hXE4%Xj*}c#wq9KYRDNkwdFkB$zdMpJuqCM9Ma&~a1l|&bLa1_K!!Be%{ ze4Ug;GUzT&65sWT^aZR7PAh3EGQdh66d3l-sMs|D>lWqK9IFk#mhr{in{K6NT)9M) z9z5RWYj{Df%?iQ`vhvI?^%9#6L$q(g833)AQjWnYtG&+ zY58+%bN6_Y(_!PSfH3niA84m27Ge0qCD=k%12_lq>z%wLh)%oY~YS0+9YU2}T;I527UTq^PyX0ml)SX_I`J zD_{T~Ys&kcJJF$spxzw11&<>*P2WIx&RWM^U{DS)5E|h}pY=|8L4dqT@iz4s&>yGW z2+J{$Tr`cDyr)0e4w&6MX5N{|FXOLlhMh{X-r8obEG*d=RmWG%eu1t+1I!B$Ii z8r}0$c(r{m>CY=27I5R6^K3`;INalOb`P=h26*1nwQ!b$Y}7$^MH&3P{C8#ax}bd- z1+gmvy_E$+nb@w@5X!L}jHpdK0)5bzFtr84xvd@o^8QHlf^bARPM0+CCCPOs23iMZ zla}v|ac~#T)VfNFQgd`>Ui#79)%r=Ek&b#}q;1K~@pTBvB3Ioff)DQ&qDVzm5J5>v zMMH16OO=}D!?lBSCl=+%H+~y4<5G7S$X)!ZUtRgm*||N()5ru9`SCDtOxx8Y$)_&D zHjd6Ec(~Va5eg#*RVl(|=@)nxt)yI}?` z12l3Tv21;oSFoow91t%w=>{CyQX2LkQ#%lw)P82#>2S9?7weKy4>8ENneLn6ke7y! zCRoZq?yV{^ZQd2pNZq~B*3{gpe8tY4cB6$((VE8f4q`)D(yM*Pj``VFF=N8R3h4$b z(+1wP(F2p7WmfIVCMN0Bm5lv{^6BAzSZmlb8 z!}x{H>@JzZ3e%frcpm0d&al)U?92PqA(E&z-pk}xEryKoM0D$|B#D;vLP>*AI7sD5 zdrUD=R_%{xjaJ%%SGoozI8`qnTd!Xw)#Ss=3I;6O?-iT6{Pme7sHPR3tU5$B&z%HCUgc}O;6%C4Ekj1Vdr{o}0ms;37nR|IOr z-B+RZ$3@aZ*iYE74!#OjKZES@GX*1wEZ}##6Y_j0J*Bi*JQP4XSjTycG~V$$=&PS_B8U1$8}7ucuNg#a7CkiEcl^G%*-NTnIhq9>%`QE&r?cBEHAF41pS*Zf zW|yC2`M?ht$Ak+RLaE_(?Mee4*9f9-h&(q{!^|=`S({2jNSbTGM}YrWGBCoynvMA2 z3Z64&(Xryo8id^%@n{n=d62x2B|PD*+SyF~IEJBXa(pzbsQGioqh}FQZ=vR=%zW1> zStEu9^jpmYr(URswzIH4^th$c)$ZKuab(7={KM>f;Ueb*XA2@G?16T|?u6l|ue{AJ zHbMuxDHWgW+NwpbMV)EeZ&yN9Oan`}x3H=m3Rb<{GzYBok_Vlm@k`3C-3#@foTBXp zhe~7z@92L!j1_{pNFT>yja`mR6+XG9V%PWzPy-fEDt}hh>#MAdV3ZhFsFq2r?Qrcu z?#g=o#MN1}jQGH{iT!t3WuoJ8P>FC23rt4{$fVDaUm)q;%Gek)E>LTH%{mD#h!cG_ zxBm#`%_pN;Cfnvz=J6^5ObY$nPZ(gw{1|#mcwqoJsl;~RZfk1`dm6e~(sj{~_t1}y zv}AI0c#MzstzPI)<`nc=?nLr&%5EHZu3K-Pt;rE|J2MP-x0Wgt{$hKv#$nJoTh0is zW`(t@#A!%A%C1s(oAes`y36+5k)MISR(Gpc7xt%lCVj}tcFN5m$>#-|=kkXo4$L)t z7#u7Ml$Dt_WoJ9td=}j=={6*dk; zjaa6N*71%%5Duk}TyO*0@^I3!x)pZ<=Glv8>W$YN%(=PwMx=F5z2i^vm50!J_`|BJ zw`pjMlWBkvWGb(sZTslbwti($SnC#rZk&%Xca>3IZ`47xxTOJMjOSrKe6cft^~~s< zK07OHF658oU1JEJ}yK9m=(5n?A4ZIOCmF;?vTF1zw00nS}| z>xG!A@v%?z-GHG3_ zKFtwxh3|W*3<;C^Gqap?YQsj58adG6ZC%aijFW|i)z(*mqe?s~1m7t0xCHF(!b>KL5%E$m4IO z6D*l_4YKxgZD^Sbp-I_u9&-o&5toM!He#YNWAPbPuo!;jG?gUU1U}Kk5h}0OqooMT zOdbTC=b~uxXzN!vUrq6IzAyqiJ;^&Gz&Sbi1dAQhmT=B>Sy1qv<>+S2kA6CQU z7&>(STg;BwvdIu36=XeAp#Uou^4Lz3cigh7DAQ7#+S7)TtkiuMLyQg^8MbhbD6oRX zYo0|D{?EY=wUfi;8A%m90kzy!G9DEJj+IU#sZ(92k2<=E9TjN2bp=nq?pHqwFIpaF z?Q4pDwL>(nl~-aY&z_j38a!PaU>xUTbux!#`%))6It_8~&E1n4@6WpElbL+2naA+h z;uNw`C8EEhLR8%w1*6i2yyh~l=$a9~7Y-&wx^vFB3cr}XNZ7bViuO0(=T5%vHhibT znwWDEajltrk5l{Zy1t)^*2Ag1ytVSkOiM~G6H_6=w;pjW3T4F1dHqRmjI6j18I3^n za<_jq;c2n26LU@&8ounnJKdy~ZHGTX9`aA#AXun-j`{50T7J@!B?0YvFWe08haEh? zC_gd8yX|yl@%q^8aL2%vwnR>BP0Xk@hl<{D8r|2qoQ`Pw&^-RJxgz3RI;QB5c_#-A zGK_W>o-;;c^Xq)N-xW?oZ7kkWm{U0bHI9PB6CXp*K({;C_<~$!ox6ef2x8 zC6<;lB9bZ}C%fA~9-~XSoHozf37{6+Jw~@BixtG-nHKX|C9BQ7$o7@_sTdF8qD1zX zaDrr2{~5VxyRc<>;~89x;N?pcho=Fzhdgix%Z8Y4r(A7SF9G!9j45*~d?>m?+$21x zvp2F=zG^!av`(0Kb7HyTo448OtXsv?^ssU*E|XjiaEct9!c-~fZ!G{T$Rd&U=v;!q zOB7$T(V*F#6LMKlLaftv15bac_#me!l|9Tz8bw)NZs5&8{jmSDqH0K3hnR9@JQC7l zS-#wqX6d!~QxkN!Jb_Pq`Sf|psIB3AMgc~zul;d#@$^GCJba`zd7A>YD4s9vFpt?38X28+8(k0IrQTSo=s6vB>6xI%Om0G+ zOMHsDqrkJDYq{hbf8>&{QAGHkUWvG!Vf8pKv-pery7p9$$fG(bls)nJ&yg7|d4+>) z-i;}qJ@HOr%ON`dSgm3p&U|%1F`XOi*|#v{U7|DuIWbKU;j1;&XNMfvr>ETO2sRsM zz#bVCt&e4K|8hbuQ-S$P!}Zz1%mQX;9p8}fntg@uw`wPJ-oy57H?8-JMk`??q)^umU!gO7X(FBncK;Vk=y#`tYEoe9==^u#LlV2K+=;ukpe@Ju@durxcH~_ z`Rd}`nQ%KqtS*DS-2CC~TlvrPO`IZzrYusDtdiG+U-7Mm8?ku%oN9%6(Wx2U$ApG= z7fXD9@yW;L`HZ}ZNk>)RPTkSEjRVGUdvhmljz#i5?~aG|K6#xwXSh38JheS`{8-L<8WvAr(`A1txdJDW^Y$?_0)Q94LFbuYnq%`Sq{_6 z(+@htm;1VY&3-r(KF$6Wsi1S2ccLEeW;8v0z+zMboZc5a*Vd%T9ea^=NqMl&CyUf1 zbKY+?ln`nzJ2%bAP-r3+pO>9;yiw<_MttaLpV`kQady29`J+QT@`Oq#ej#>AxE#VZ zX}9SyFHCKZ8`6~Xu^qD3j+ry1z|z4KN|jG6&33~n46m>2x_N`RfNLz=*R2UH?WT{U z?u@Smjk(0)%boXR7z)`5hy?t(ltM>@hTqLuloUibJG`Mm;C?MrN)b*_E-m6pewQO4BW#ll)^eg%S+RAfp zx?EJmE3pVi=d{jobIJiA8`HrfRkNC z5cm$HX#Ldq%3u;`xL+M3QuI8K4y3(qPH3T+yV+1-oht&-2FJ%+8DZP1;o{xW-Lk#c zR_f%NM6LMSFFk)__d4^$Pi~Szg!Ol5pXq1)g7!pGP~PTo6%JFEJB+XJ$r67o&S|fg z8u5znrsR3eF}Pm_axtISmLHl|Q0gN|qaXIXl&PyQhcOSYDSYuv0hnzj*(?}*u3)HK zhE>7zJGN+KE@5@fxvZ`>Jl}QSR>0~&Mpu&)$}k`Hy2kLwr(}=kcMhaMQ!B{PCkG#* zs*zZjd()56gA8XDQY;E3l!7_t-nWhr@8DiqxE|Nph0kS>6j7?RB+X^{&zaK+PuRY| zNAX>vfJ!&(tDa=KRN&yx=@XIOAM)(D(mUF== zlgp%RtjDr1r+7i1$Wu((2T~qB)HpXQS>B5$(hx~NN<=t-5L;2rsW8f5jIX)dUMe?x zE+PZ$fclA)&4;EI6I@>UxRwaVyIx+{L^6Yh-Q$;ScgI^p9KN~429BIavAv$wdumc1 z(Mw8RTLPo3yd zE8+T_k9~0X>!~tbxJSn2lHD1q?i&W2-4^D;+a2CNJR_eYKOPz)2HoTEj%VywrE8Y+ zC~JBs%kj6;E7D+Vn7!A#)!ERdiyT%u-$IO$%7k*UuL^A7^rl5?lUHZ2doQw1qpJ6X zj>lDfk%sH-Q||coW887^=cyy;(QxyGKM;Njy7tGywN|>owU2;PX4X zP8*$fW>l!uqy(XQRGYsa&M^}5A|UM&YPR4BuGc)tC< zE$S7Qd{&E$&K>lM@{0B7Qn1}H6DyBLwv|Id#ifA)#WN?1d3Bm+N#TY^k%qR|z3naqNWe zLAr0HwU(779YSfqHnsm@x{E*dU1(i!+ee6i9(KJKw;0X2x-51VKd>V zg}biztOSE{q|ihcQ2}ka(Er1UL);LtBmD?xSfxYK_uv}IjChk3NbFN7WkA(gTW!i0 z@;l|NoR3?2`e6Nd{VDeV?h(U0cTU&Zje@eIuKT&wE;Vh3imvy^`g3xRHWUtv6~+_k zkZRkuy7l2GGZ#mnzAs76Uhuil5f0(|QZ-}vJzL*I&qT*SZ_q*6kiySWWcmfbd!(hA z7VX#j2)NZW!YBP@W}|t!s{|n}mArlo3Xo_Cryaw6eHpmu0KV*{%6Rgp7$tYre(?iw zVeA@SuY3MHWLWX2j+a?s=Z<8l(Adr$7S zBq69%Qf}8;D3yIQDCQD?|F!!B|tywcq5>7EFcZF2{!F6|;+n>|o1H)kv+` zZa|WNr<%IS5(LL^&VXM}ie*4JOW%A?tK!VdRw;dfym{otlI19%6W*b9xc>=;F~DTI zAe{R6Ajem4O4QTEieLs2-u{e9g1a~y=P%=KX*YorgGvJf~<~@X})OSc=pBztzJ>VgfH?K#o zRjn!2r3S|NFqqLMe8<(9jo9iKE-p7c66f7H%-3cKFnDbapEH#Ui;)x@OU5uBZ!k7L zl0CHJzO@WkKLj^DT;6X7;2MGTjz5W)k)qw3F$?G*+IW0u z;af1@v*AtGl)|@J%Wnd0lRV^O7_BJt_*OF@>+>d~d2riz`R6=TE;JWEfp^3NuqTh$ zl}TiTH%_$jF_T<*anXIE%j_(E%8#|PA*AVrrOweKNdwiT%fr)ERq0)yIw3^F6Frd6 zW=OLu_^IlJEpke)`nqO<*Ko>ioI<^k_JRZBc&RB&e|p#~AwVU!v&TVp(^Xl>fL*W; zltAD*^uUO_mWb*(wi_}aymF=I5<5#8WlXpJ2(TAlh^RiMS1e@}NXpF$@kB>&2 zj+h0Gn(y=MDkL9%5$JMVazl+L9TPExkm4N8;e~j9t4=AjOz)Eq_enmv zdMUe!KC!Ou>y8ilNx2us<8!YKu`cU6h82SOj9sKB*!9cCsiK|}hHtA_std+#ZyC}( zwvC+{i#!m~f0F-p5^0))fAmAvD6>L^PT7?8Mt~lq zLM;)iV~_$p;qhxSk@&=xI;oPx<0^H`Gqmu_E{I&w`=I-RsoQnfgge-*G0E?q$45uF zV;^ddb!cAPON`F0ffVMNOhu0-yd}e+;nqZQ#`|(Ev|1{h!x8JLQ7-2|GhN9tP%@IZ zzT5RA8noJsexDWp!oZ35^Gz_41TqH?FAojz`qw0o_#Y!tS6!r+`KnP#ZHLCsGrjwy z@p~R+Sy}z@^~3`(bX~^Zq zf&<<6Whdxn|55AUpM8KI7RZm#@IB*+T^&e4otvu&Y@Q0~C%%`h;m4f^d@Kroty5x= z*c+Ituf;pX*2Dm}JcAqWhPL`qS(wUcTA-%!-YgyBDs-QrQbFekKFF@!RQ>I9e?fIcikhwP3QlHn zv;X@2^oI*fe)%o+d42zW9Ejj-(a=l_;$pK!{-28VS239Gs0TsE28&?7+R}P*j}7w~ ze3i{Dm}Z*cwDrz!~SXweWz?$y&B2Lmt5SNO8J@3NS%(T~#@>)F8|5xGEJr7212MyvGe#U@6n2$jRti3zA;#<%N0 zw-_f-!A+uk5bkf(vj!*C;_D87y~VT|GdoI6e!o>6ZQ*HLPyVbxn$iZ90RDk_cA0YT zVnN3fa{Jk!Ur$fWX#pulb30!{B6q<~WZ@q-@*g+yA2;$JH}bFeEjifv zPgL^%+o0^k`m8Pnj`P9*0OtYMgz`NDL?bgmMi@w!=ysELFcbavSOGD3$8+T)lzR_B z9=*8$-{OaW+>Niid;YxThOv1WB(DWQ=zbERD*a}At?qz>?yrQzpYBltTlosWO+GnzCi&c$(@iBw)cPYS`FX$hp_o&x1N!lu>ZDdLc(Z#O{jfvPXGQP{r^jaT3@B` z1+b<21L^XmI*%9r-HKlsVcQtc-S-4C30{5=c-Lua-aUZDX!J0zdUxy)edN}_$Fo@w zEVs6mJ7%#<1mpmG@Cj407-E{;K^mRHUL8L5-9UAU^5Ag*XpL)QLv zB0x2ts@}=9gJ5k~&iTb$O8dRX3;68yPD~Hi?3R+r;l)~C;4yaY?FM8ygrhw`<^hl! zketeD-6m6rG3{g`g401!>>d%L08Jre8|`GZ+jfH(jKGh7n}21r!YGP~g_?Y~MnTu` zHaV6x2smR%HS-$oXr16)(cZ1<6su(Cm z9+wk`n*|}qTyC`&Ko(xVK}}{}9|I&_gtFX<#?-FOl*Fmk8zizAfaTg8VB zwKlMA^H;1GTurw~SQv^6xM@2NR=w)@$tm8pn=F8_L?+%z3z?ez-cqJma!Z9RyQ=NJ zKi@wywQ;6+-UvvE5xlwy7v!y&k~m5q5z{2AExJSnjJ7_3^r*q+hHWQ~Ycuc}*Nu=P!{WI`7#!HsN6_!PGI=tOrN%Sx9u zx90!=!l>^d*R&&1RV0#A8&owyp1IyO9J&y1wB{GI3rcZFtzLb6A#8 z(Y?OFq4Vm`?CD>N86f{)qR)e9(<+&9YfApby}3L`8^OaDCMF{+xhLah#6VU9kS?8a z5}Cl=>);VNTv%~!A+Cg>#Fq$M+flDTtd9b*$=-o9uOX_}ZPqcL+{3F}0D+9*QKX^~ zgOlg%t7$$R^naM1n%V_6ztwrep2_7tL$Lj3k@E18{BB`{&0cm;V|-~Y-X8XFWq}L5 z5p-qgmhUWcvfJ_Dly8-FX>ry2palIglB@J4S&>2KhyX|o6!SW&Hslrnt+?3ll5rG{ z+Y5J1+b8QebaPZH^v6-#3oeh%Rowg&1@iZFw^ySwx40#je#Y=!9J0<1p2(P2G2qd! zDp?Jnah7-iyORxt{7h6_ z81Z-jyNtahz0lC*9TWl5?vv;7gPmB&I-^G+ueJjDeT5m)`?nV{Y|B4jBgg~NCL}bD zgoY!~hiC#eGI4Riks?>b_p#@?gDk0R@1m4Pj-`1?ZvR?@`=6QHzjlb}a0bI@q1uOS z`Y-}6c)JvOSUTASbN57>25iU=jUmAV8lNR#kEB-Epgs&qPMa@ICRuwYVG>iPn5prJ zqcs1q(w;Kq8~^EM*JOE1&1g6%I$!4Zn^4-p}?6^oC}X z397QF>p>bZ5BwgTmqi~P{Fieo& z%g=P0&BViz3%D+bFLbvkrt~K%X(aa>&sf;q>IvumGtGkqgWy2ScG0{7%)-1bh;miq zUq-6j9_90upkf+>Rc6l}J(3+Q`D@+JUc-h8hDKaWmvzaHsdwA?u*F{ z7;hlk>05R)VDkiK8&g-8q(J3s0BzSC;?yawY_`GrAH!}a<==jbg6`LT?%wTbgpePr z_zGiZ(X#{A8SlY2UXKnF9;auyw5yd>$<~6I?yjSW;~(|A-MgGt7^tBUeCRHULSiwfTBECR3-QU*wInm+xbS($*azt!vexZ&{AeL5$fOT&!Zu~+P2hH z(<<_T0N`fyqX82&d}91|yNd=^?Gfaq=d5bb%H@ebB<%pB_tJgDgrkaX-_VFBU>A^r z{)9Qx;nOgy)S;=MmB9%YR4&RtXKcvlrjd_f5+HIgG%zvv6Jj#ahP<#}HE~D~@ZA!K zF%bD30YgcZ&IXvHjSM4=T}p(48gyLR9P)`FRnDyS)B7T;&Msv$sXd*Uism}RgAOvr16lawxaMIFU8 zdD{i8x2O@}G2r-PoX-yKLrPD?zp`D8L^>~br_t{9DJbp!LRbC;*kHKQqpCy}NRas6 zQ;}D_D#E3<6u?WIKC*cdQRR|nAnkAzQjyCHTP%vb%doL8{nTV_AqiNc0E3dWr%G2pp)Y0mA3UH{914NaM%Zja((PRIojBAf)djJ1xaT2Kq6qb&};?RMbLlyI?cwq>O24hM8*&bE{!4;rH1&kMk}4 z{`>s({=DCx&+GDhJ|FMrD?^l02h<(QVab%p@ zsHh?W`P=_a9pocZD|DN}_5u~G1uznDfl&@GgULP^0NrurU8<#a5L6FP zB|_tRXP%ja`?bXi2x80W>suwM9IK=r0NvUycFl zth1#ADe-c%DWhN!(qpMBWOR8dZZ&YQ>l?sYUQ1>*7_vyJ#gCPyBm=G>Jsaa6o#E!- zi*TrThvGp8&q?~Lsw0GN(C6&UmAQ)I)rOWw((?_St_J@`EN~Wq)`#u!kn`^Qq5Kdg ztv;0jv^>)c(VoqE15U=!!{H34AqjN$9+Q$25DXP>7$8h(!bE z04qXox6%&<(Ny=~A&0w>b6+8~+p*CuI{wUTA-r(35`pf?N9*ibEwXA-xoMOLgNn~tKDOZM3kQbmIYp2%PWEEut zqRYH9KK3t+0`BuYmy)f1`r)H%XfJ?i_l0ezHN|q>BHh@+P3UCr=ohHC1zR7!>==dT zMK_p=H3YzjJtPz3J_FUV&MbbmC5o{=!qLdrKXDbXv~`y|{C>-wb#XmZr03D@x&lD? zni9T|3OOL=0c^|Iuvxh((`ek5yWjo2>9JR$_D)Ai#h;0D7eI9XPsV@yp8sKZjQ3z8 zNc!_LSm4I*4mjw*-UxPpP3}bTeG`m-3Ofuz?!O|yt$Kp9r!?|*pbD!7Qtq-(K}jFA z#!7HOU#i^;*$jL6J)9fzIvkbFEUNBH2aKUEKJasK-S6hUrvGdLzib{=S5#3PKZZffVoBt;TFBQgvw~X+-R>UFx{M!h8IMJ5 z7}cyuUirAeuLFaW8ZEi4o=iJidCBN7Wn5Qnf+(MbV7;_3zn3eh3BBS6mnU^|{(5XQ z=OCBP^Rt=1TNAwXs(%<2t&^>)uBcrSi zi8gyWaNqM^12D6I1_2Z9QZ|lrS+4tLB~P^)@;#7X@?QsN+iYdHLLQ2}fy^komatE!!K|S#SO^T)gF)hN(3YeWN4`>c2^>l z`quc|57D((_n?X@uU^Y~5rs800Dhr8H}DkvC`8G)?BbFvVeg>N<1c0Sn1IORFE&=I zc96zd9n1+^Hu-$lR!18AXif`tL+}0*v27+X7hmrtvxd>R==s}de;wx8sdLJDa*U@f z*3J88jBkXc)<9V49XEMbtBk_Pyqser_OOvT5zw@4uIG%_FPV48j+Q}vn zQ@M_&)mNR`d{e@T=0eiOxibT42+nAN_2T9t*!ob11dWOAD2=5qk$NvvnKojT+zSDD zWDjE9Nne|s=;i0EOqiB>$ckUTch1O?qxP>57eAU6^7p+9R|x43JxR&&f%`2d%Uxe0 zxdwq2)i6{q(5aMRv(0?ME9JS zDh~wgAt$Z0HFCdw*4AU5^~eOPKmS-d+-oBm>CpN9g;D6i*Drl$_v~cwVo7yBcYc_`oTS1bo>vB6GG~`N~Ov! z;hunz3%oa{8bV8Dsmwq1sz7-6K@0qFZ*Eq&r7L}us5a`J*n=G@4SK)yxhHW$ue5uo zmC~|@w0>j{Kqs(LG|hGJBdIHT4fDX$^^eRWux7%CC>D-=)#pcz5&(~$FwdR#1a`O? z?;Y(yQbyg5YmMDr^k+5y`B?7VeAp(_xrF__{L->LM9vwlwi z2azpRtSqLQO_crfrQaU1FcJLqG7F`!mM8yqes@lPm~Hc&t~U=SF{E*0w{cV_&-EH% z-8>1ix(Y)ZnHe8^CSc~EnlZND-zQn*y4>#v4~@z^L0!4Ur50y6!xp|S*sPn+M3%VF zgT1i@?*pzupYrTff`_4WU|>Kwyn;69Z3pA{;arZPxkd~7O*VQwOfOPv zn3-b+qxyXhZb_sB(WQK+v-`tdV(19Fqzu@r3xIJk;$~ zjTs&ro+NKr|PP;S>PK3+H!s)GvMQ>xWJmtl*U=E$0`6gz3Kdu z5T=FLQL%VPB0#lPw2Jm+>!Cdw3Gtup2QvQ6hkqgl;LEAD(SbP@_`9j@uqVadw#@|T zp0f4iDv+4MrA=}~*;69&k+cD56K$eRn0}iJx~>z>s-tL1yW@Ir9G)FU}V> zzY4|b8iCOwT$wb5)GZMj0bHAq<)4w;=rtJzVLX@#Da5@jX((GTtNS@3-KEk~LvMX> zgr4wM)LfiALbwG0%B7TpygeS97-#=h2_;_oR$#=H<^aoVcrxW{S%yBXd-@?N?m3n6 z^Ky1z&2ZMZS^C7#zMYB|ts_ugY}N>yQ&+J-_Nm);jaeeD18}t{S8Ui8k}!;gX-+56 z4TQ#Q^TDAGTw-e^fp};w(UP*;w!ulCKrgA=sBdP_oQPkR03~j9v2=C+dIH*}c91<2Wq58c zDx_9T(JOENPNdj&ZCzsRKG-(2Da$KAjn|c_fzODIcHyB5+{5{3u1KSM;3`N1`K_bT zGJ**q8@fH?Z)9i=O?va)Nt~PT3#ZmDWvBOQ*Fjj18avV)4>E76p-zP~3zp?`vYp`U zxD`QMM8Xr-n@q+;J+89)S>qYOn-$}8E(ymQ@X8k~xJ#>C27y3Pr%xWcv=77` zi(a1PD#x5ldaAvlkDAEeGcQqE{VYWpSeSSRPgT`9(AUo7HKKj3_O#VBnNfe<4D8!V z;}zJkEJ~=unShgHa*SAN*>W{Ypa!1)gX?d+=Iibb+9>-i4*JypqG#)EWnd4W(^hsT JOOAWq_&>QcHS7QY literal 50511 zcmeFZWmKKb(l)p^?(XjHP9Q*nyC=A7aCZyt?jAgXySuvtcZVH3IAk_?&N=V*CNsZh z&8(9w*1iMXeRow|Rb6#;g>WSWNn`{91ONblEG;Fb0sugRA0Z~;Aiy6Yq%uJ82hd4H z@-3izoahkzk04VGX)}3w00a0L4gd|r06@MB0sjR634Tw0nIZ!u{LixrknUe&z-xwD z0-%162LQCdpD%w5z+W$O{`rK=1OCs7c@X~|4GqYH{P#1&BzQEyPwb61_ygWvO4A7d zKyiJ_4N4R-m5(=5Z#T4&iH;VmCG zT6wi?f^uFz*xX)Q-#=#(xn_@-+q5q9!&pZ}17RJx_-TPMWC_(u3Xh~^g{dm*0&XXx zS8WaEdrju!*+)l54WDyApDcHHe)$~QdNIscaZU+@mlA=%i1UY{BKzkN?*J-<*YD%; ze1(49hqB8I8h65*)3&X{wFT^9^T z)7U8`qAU`Y<7`bC;8R%j+l~4nT#mmZ6TeEz+Dc4~8l!n)DoxynHff!<8U+;$MT0&sdm2R~Od|x-(Q9}SgL7WzU*W#H=j{YwhN@erj8PK%h zAEg2y(i9_d`5Y)X8q3SD7K`*u(=KIM+k)oZ7Ag(%eVu@#=hg|xUU!8e!^vYXn$5ER zOBXMDnoJWZ9YM>a_g~o+={~Fx|7APZNyuy4OV~QX(!wUxTz-BJ;XanZ&DwrT0h{N` z+v3yUQ!lkTrY}b2Bz;_b+Ki9)_XZCrfjcZX)4TyYKbb8ID5g3=t1k1plF$38Xha+`2jz|?fI@TX>8(MG{WoRff1BvvsuF=H!i2-mDr8-khPQJC+TD@)-=PVc z4r6^EV8F_w^FM!TKkG)6e%j(zC|{=v6uqIDB2?I@OpDx9`?_HIzs>$zRH}gfBaE`h z?8#1P7~0hl-b)YF#_y=D*#Mf=$GgiR_`b+{tKR32HjJlsK)3Z&iAsoi&e# zCr#r2VCY{Pq=JCfO{X%CpaKS9DFCn7fMRxh0iuwnRRbh<-Wxy6U}}!A>m7d*5;VSh z+QZ=OMz37@TSOnKxFB1VjC|h2lRifTv|R7*crw$B6xWhILN(@ZHe@Udw^H;lqXBgqR*1c7nz}1Zz3?|^iiq{(=0q` zbl6t;_zeP2J_`O*!U;8cE?kN3p#X6|FAil^^^Nvl$Wmenpb|_RL(7Mo#!5`0U$+=++$s4_amLfB#h@AivOk#?2Zd3>6klL4p#^W46DS1@iy&*xy11=%K-V z%Z!ol=G>tTD0G?OwNxS7VJ5)q%7i*oa;?zs$O)LL%G|!IOo#AJr16;_V~v$F?4bTj zPeo{hb969-QfjW}@a%*XxLuK;-Gwm-_qosNRg{YIeAo>>t5v^He^V#p2|5Yn{?E*Nd}aXU5<9_j$vH<_ephbmJ& zMlzW6%l1ZQpP>}*9#4F0NjVbLEYG*a!@ z*#9!y92MF$cQ4a!ls$qqPUkr}LmvjF@6LkN-%hTi2_ZePC&Pzj%W(M)s3SGdUT(zT z^%+O*Pkh1<2Iy>kzjr`n7e}@Kn4BrKDQH#+{OSECX7Z|`K8RbvEx;9acQE)bqUUVY zR>aj-n_G4L?aXL&gBoJCBsH3Vk{=)MnXMyK{(LKyk`DwldnQjJXw??QzC7xS-@6p0 zzXnbEi(oX7yEGtdXoVBe6D&BU{tZSID72b71m0x(8UPFEi`o=()Zb%bp%Or=N5GQ; zX4KTb!k1c>KSbjew#oUQa^w*~AZ$4DeGvb1UknN&K%H}hYWF{_uY>}Gw&y3RqxjRv z*tB_oa(8G=!9NdFx=`@TiDIV=@?HDch(G1~uQ~o}j(;Qdzuxg*@Ay|>%=>S! z`ZKov*E{~}9sl)?|7KSIAIYpb&m2cB{>h~|AdbI(%Y5y1t*ZF?XE!2imeV-Daevg1 zD-ZTct>sKns$R3%7=cQz-}9Z-e0keWg6wp>H45=k=|h4ysrv>HLorwA>7XE%Wv9Vn z>XX-Lo7+$V^++nK@Xd;omva5bE?Zu^=EGtzxe^B|OjKC1X;`Ir+UkoW^*kU)Xu4VR zlBA-yYrorjYVekbCcr*-fz0XykLkxZJhHL#T7Cmdtj4QpL*?#wU6UJ4D(t(}8$MGk zzigVSOMwjCxE&)XL-9S%hizW#1(ApJx?QKOa9R?FUi3Q4jPOG*0c)C6lA@-c-?jHAawo_iPFn12 zwn6b_Dj0$Hhb6f=oaW;zO-`0?xk7Bm`hSWW7fbISvWsU@gL>*k2t?g_8QZ z=X`ZDY*dztS+y+5M&aLyTf;x6`+Zy}0hVE2vZ*A+jUn3H7cwwWcZU@9`|B~|?f&RP z!&FFpk6mmYeed%=nrJ5N`Y2cjj7xj{FYIhC>pnNsswNI+U9j^RyUGu|9e46Jf{Krz zw-<9K!^TSJr|ts+6njnkIhnk6B$*FC8uZ~d2yGiT#|2KQ9QQ`kb02qTMW=-?1}Wi? zggTyoRtP_CqMm}s8cFVP`pR9*AfsnBpZCqe^xp#R_(P&dX*CCA zb501>IIzM*-$gK%=V7or&g;5yQ~DR2+Z*Ck7mJ2o%Tc|@hi*UbCxpkOgEL@ZX|6>W zz~Ql!f-am8yc}h2Sb58l@dcvMe?`uC% z?tr>XKHo$@zp?ADryEk2S>?h2!V6An39`+QXh^@CmUZ%dBTk60N38zE=Z;?w9pr_S zK-)F9j)&E%bO=OT7CGQFu89){8z`IISYoqup>;3AD(=9Nv%;$Ns!0V|3F|_8{r(-% zcoXjl=9^7W-Mk(g3CbIga$)lv7L2T2DBalxS`!!CEYCLS(}85!qb{*{(Pi1HY@6R6 zXRh=)Is z6pUrYC!*-Z{vlcn=_ZJ(iL#id^Df8ps0_^jcb+)2&NAwEH4LV@lmIsn8KEzg?t+Xz z`)9ZsTL(5!jV*z*8B)HOq|c$O{^v{(qyC)?i6V!$5j_n4*;K4ASC+9ywcz8=3cuIA zc;`c=G8>y<7XiB+1@+O^Oz!hl7&;|Iu^SM|wE>m_;=G=Ef=%XjkTP~hCyw+mJh#W= zo|XngW^i=PEd~MMlD!jFBq)!toumMS+1eA*eoVB4WAwUNG|yF zTPJV07{nT%DOn3$;_^W1$q^OV!nR}bm$eS9D;krXQ|C*4(k-&&AZhThkzqI&{&guF z?zc_2uF=wvj@RpYWN(>udojXVk-2f>_v_|Rx~%1kOMI;GGv78@rDDn4>C@V29SbG1 zELazKYT(j2@N@HPO?auiX()U9Ic9xwp&Q~V#w2D6-~cg>lEV-RyEGRDokdd;V2;=* z4X>MO1o~`eC=ow2Dv&*>i}cqyX<~vm7%IO6!sq6}&RLS>h!7w3!3>Q)ATEjTfX>Dw z;07-`B2Eh7F3mVb8Uk-sYG^2OsDWr4cAXVcN3}6_y@^NEKvfDUM5XV`Xm}wLUO4fy zxe;D3$@YROgv`(QSZ}J}hiBvz{pX8R-9>l{Dv?Kh*F{qo)f|U@{BLMxvueXJ{c#dC zoYpzRuYT0dT;z`+DJyWNHKaRl1i@n-9eKZk*qSXpUrPKe@Q%W*W`LaZwiA|u1lCJs z{ECj)@9{jIrs63K$MA zgtrw4hb7e9k7pYf>qh3Fi&EDg{SVG^Fu*uVN;`aEyk^PSTtN$FW~jxK_^$~G@?yTN zNwAY%&6PhIEM;9VFOn9_Kj^EcK$8feQH%P2>IvRjjc%5J%Ls~P@mP<=n&O6_K%`?Me+b> z!U8AZ>#A66n6C-OcwLquY$KR?ifD-*@oGKew;8qgx~NfQd)}&4>US^rp_elU zPP4-c2T=rksc6s8jmmifnG0u57s|I+p>3BMzh4DJFp9k=2WniTRWBLde&I*-q_EE| z#y|Y3=nASD$g%H+mp-pndH)_FZK%Q76>6D|%7=(cmIog~$<3hx5>=25gBL|<(Cefr zlq)VuMl!xw2xTiism{stFuRPna+Qzr+L1g?SIt=_HuAY;{fR||6y#E5mloYtHa7FK zhlOPUt&_|&$)!*+pf=J9ehDuB>w z>*ZwJ`r{sNV%LPvi4zm-Sb^)(Y#N`!O!#`+hMiR+;CXq^^xd5mu(zOMP6cvK( zhJr3&yd!&Qsz+qL?%jde%7B)!~Xv-j&uAOqXLxIcago zy?H%%Xna?bqN0F;_DN&<*Xv0PL1>&__brv0W3grHMLVi03gY!!$C zy_b7QuDN-+@AtgV-rZ68rBb@34_Y^DH1tZfRSPJWX)bPi)NF5H$f^EH)?V_dUtLLR zh$it-mE%^dK_Q1JYNsS+!g62dllqL^N9R+^FzH6v>F`2|29TgNg0lxr z$oejz1?M}S53TpguZW0~WxsYOY4KbR91NnPC+KJ&^cO;UfcB<{4zWG4rTqa4(^$M} z4SH5;2f?^{c$yn&(R1P9JNVhbAI_T`PU1thHdl-}hkJT_5-{mB9;@2UIyTu+POYE@ zKcbJ^h3OQ!V?m;mKm;ZfQuOJmU4c)L@3li`vrtq-wxiEaVDRIGS0#?WGLZvO_&dB} zQjyccGdeJmYC+&m!!V9kFHprB&&MuHTJn731R+daJVXADr=0kgj*LLzu!`Pcl*Xqh z=;bprT46SBg^xObePgKU0PJ51BlK?CQk5^RxKBYr-G&#=)As)G$wUmJXJ7Z!^F2qO zT)U!mix`x3%|GxeMQyTc@4;7BhiPe&@ zknH5E?R=rBI$wCnwbNmZWr#g6t&C_rQ{@{^FaEwu^u&v;cy7KVm=&p ze+`-7{bMU&c4%B+VY=(lD5%}F>bktD97qfyt(XU@~CQY zr6Q?DafwD`e36_bR2&K+6v^-+w!UK2qP)_P522ev$f#`X_hE%6VFTz9=7fC;-e14S zeKAY)oDd+05jbgF!ckC_>-V_hRJh>lf}8!Z65i$l$&``ZaS~}8?;fnNdNn3FO=HPG z|N3KYQ6=2KPiWUYa$Y-TMQL4Ld-_C-MWR)-yMU12*9dvB;1kOS>R=Nit}~COQ~SfV zc-@$w)201HqUUB&UL90L$Me15#pf^O!@P)$oVzVYA<9PNB|SsZGR0&es_YmWt8deS ziEG)LGuYGVshcCaFGDocxQZRE9N-cKJ$!6Wx?*(ErFsO6Khk}QscLDmN-gm-qVVy8 z$YLs)AW|Fdd24j;xPjIgd^pn^y7G;gJfqsPVFCjpEPT5DX2yMz)aFJ7!wp<%h@ zEY_#0JYVT|?*tz2Cj3a!ivcy>cUTnY*U&bxS+WDw5(Idbox1W`C~1QoE5@XnXwvJj zUu?wX8i0bejlDD8T1t7cEp2$h=i!P5IFc+CJG&Y<Ui_h!s3B`nP=Z#C*wp4xqsSlQqvH>;<^5 zpw5mtoO#x}_)OM}60+KQDRakP9e+*3%_y<9#0$mFnOzk9P&O+@8q|8CDbZ2sy zy9imv3fJeozUK1(Y~s&?!E)uAh?6#i-(5B&dSSBJ8!08zEw@*T&*C74Uf?|?+^UEt z-$$S&{TLK8)&kRw1%z?}$uJrewdJc-P1@X{uN{=m(u>SZro6S=uUH!17u+`uv&UXC ze1A$E^Ar7}6=XcQ$`OS7-de-q%ME~AJ;Q(-*o3x*qGa?`!H{Tb3 zqx0;!^m{XO-be^%pR|J0XGWhHWhz-OQQ1VH?}X;PVx>N6>`sIH5yvb9imP9vlU^8) z06p;S$PGa@tjtSl7z0pj*c>v1jh*F7-BKn=rKw1?RC&GC_m<*t``3&2<`vfz)RJ-?2 zvJ_$kMk>mE5%fzJ!vtE!9rczWw3X(!A4vk16o3*s9f$IE_iH!pp~MkmGV{(FXei3F z$wb{Agn=oVt^zn+Mr3Xb7_uz8qSdMmO&qul3wd9!4BmqEp|<*p{Q97=fveJT!c6&HDtTu{w7^8t z*`03q5Q<%_(wlOef?`Taq8ewU^ZbXv&6Q}UiJOG?tN*=gkB{yha+o zZ-zYOMSv?-&Lni;@+1!(*sBL8-0CXlxBI4P3b-gl<8dMKxXbFt-&eK8;@fBEy-ipZ zzFXn*!)g&-J5X?DTgS-SX{mp}Wk1^uqrYrKaCy=otd#2s!!)>3I$Zyzd4BUb+M$D< z1KGEHE&|lI@c>p&Qj}eg*jLqT3iPTSlI<)?YQ~#SK%+#!?r3&aFPpUhwUn_cB|E3D z=#ZF6U?=~6Ru9?<3_L;$UZ%V$wM8kq8d?S?lszZ+0`6GIe7u<`vI+x)b1EAGE^!V* zxJHC{4MLx7g(R_VR50&z0m zW414H(Z8n7lcanVQW@(`Lt;3TJ`LN&A2N#4;8FU0@KZ^Eg`=8MElUvNSXwpZjPA6qYi^*<9eF4AgaH%{jh%uq)b=_8j zEy9&6*yJ+O+crtW#KcXmIM{Sjr1ZhM(5{wQo8BzCj4;A993Xo=@TOG?+%XYSV!SE5rvDqZfVuAjz~vzU@DdXQg=p*WFn@YzD$J(~nY z#dZKk7QNNg{3UTfe^#9!=Yc;WJ&sS-X@dN@VP!FFpC<|CFrA(NlVEX2ns^;uac*!# z5WmG8WCq75TI?b5Ye>=eEfOh7#SD|a+PkmJSrdHnL(Nac3$2rlZ#X!ZL4AIMGTn{Y zGZ-=lpJwGd4>Y|U{67_t5x-4Olx5BefL7%*YavjKDX2a<(rF5oPNXUNSsE^uzbiO& z9>qB>)mX~65ekSY8oa)tAWtX=ql#>XNb4;nbCg8JC|08@G68m2 z9o5j`$z>MR_Ebj6C>qkCZ@6eO`OERX`OweTKUKb;<7Jx^%~iKOIu%hX$M8ywX$X%l zCu?Crj$BQX#1S^!X7?Nj|J-iBQ>WVg%K=Y^z9FY09H6O zne9vLwcrKrs2T#;Jo#9~nD8?MQqmRH*CO9x}?VC&+ ze_fcJi;@)7x_j&w%u21a#R~wJ{UwfY39Q8r2^dvlp@626@b*&8mCPo9&}I-O-jnvc zbwsaM2*a05vYYxj`AHk9#Bz^p)SnR2S1RtFq5wCmd{%h8>=@f9kB+oYc1lkQP=-BlQm%o)Lv2N+*bub3K^K%;Q5XezN)(7+K3u`W77krv{nJ z)($nf4qXhR#7hEe`Xb1;kB+{mD{#_MaHGJI$hb zO$Y~AWbB^YV>D!=79SkF_XXC&oujNc1#87ZT1O+*;0Dl;Ldc2SRvd!cg5_CM*3y!- z(0iJC772&wB%A~0ShmLCVk{yGM|GcWd+vgW|7kN*LI9_k^myDa%`15~Q0{|!i81^9 zBm>4_Xx@dlW;536g>MB@DY?;&k=V+!&6o3t!Z2HVzgDT)8|JG|eyXBVtM-rNDc))u3_4nw%CbbU zA)oQa915D@h&^PG(+#TO^?*R6=XZdaoF+yavaeUI4?;X2-CA&#V=Ha>GS!3xZNA97 za6_U!H_vx>q1Ejx_2PxrDS`b(R&A zUYT#`M~H=?1)XSD;!e+UNQ&&Sb^bA5wuTygK47ZC_ve>0C!E%G<AFt5ICNLgE# zxU!lL;5mvR#=L{VQ&m?bNRoE<58o^-g%~FmPbGYVn13u4MauE5FSv_YG~`qiucWTU z9geQ!praiB?{JiM)-WN>C#S zO!I#z!cY|)qeOl^h%MB{4BBPLL+;(YbJnM@ylgE&Sd|@-vjlX9a(=?I6ak)d@o1r} z2O-jqltOv$O%>wH#MQE#?8>q$5?UimFRdrw6TJX=9hO4WnwYcn~_8 zwfh#$@_I{6!EjD*rijsov)p0c%@Q+ot4p-+V2j)**kN`4Hpv@V5ul*Omo-dq6POH* zf4MRHg16;L(whbr;zBIF>h4-aH7>@J4W6j;ayUTBnz+KoX@sOf`3iC zgy| z5PnJw|HC+kWfM=ahtqx8gMV+WcY+Vdm~;eD)C){c_+{yHBasvf_CI!av>Y`k zNu=PGMVTNZoQHm|`uS=$SrmeSeWD1>jK)=HtYulY#opbz`bgbylTl0I{UvVWmtM3J zlYCrC8Vaj_;>_fM1S|3H%PET-03{xJK=51%Ulw_Lbo9piQQcR9@db2j!BSsdqxFS3 zc0z~MN)1O`4cW*7-GG7uMI{2doA;z=gCM6nWf7Ss6CdD6p6~kVII@Iu=%EGDH)m^0hlc zw863a^!9?>C*GbthiBTDR9G0(KOp=fR=v!j?fW?T4;O(bP&0xO=m002t5KRzZWBgJ zt4OeD0OIO)=TkP#8#ll{3Y~vkLV8ym=>~+YG1=5EyOtToi6eV z>jpmAPhty-ZVQVwR=ct&Uen`eaKalnN+#qxhVSPK_g$_;xfcs=ZWUxjxluoZuggSw zRgj#S)&z3~X9(UmvJat9x^u_l3x1_cNDRdUWW_G>hHh(ZhSDVfGS|E*f5f@AJB~$5|9ooO-Qa)m5SaKZn2<4bF4*;i9sw4dz8W z4_L;cJ2R;#Dh*Tx1AK*>#c$cV@$pA_o2%kzY_7|RzjG%`zV*LHh-E2>i)nr;LAtcg`IFigHa^$vRiccf-a`8w&{mJX9`4^Z1 z;jcc5G~bmxu&p2FjPjCtD%`!^%2Y51b6yLcFPzsu>GQvO{MEul5+NFQ+BXq^m2`jh zr;-Ik`9tsp8vfNu48sD1KI{CZJ@HrjGY7b%6)EJ+pS@LhjbPt_Y_NUJ`R7jt!K6DU z9?YNZ(FPk}Mj3Ub`RC{#8Kzo|67QFO~{*B z!T-_gBskT>Wy#`q+8fsvN~Bdh@eW`Lcp>@T$bl6U#<;Hf0`?aavSwCOH}2w)#3*L@3~=dPddt2Q64@eBVYLI}3s zGGLME-)6#Vg;Eea??r3lhhFXGNA7u9Zb{T&5bVetc5AKZloCj!LRqJV+CrkCD7(Vz zSQI{}_#B0=p*e8>0}VDMcrs51xXW<#sXFr`yhAOT{@=uH3ZOfME0f1YW*vO#Pc_P$ z`}26-ZlN;Z)N-cy5O|VO2>k zR{wYH{W88bUgYEuc`9@N6z?!A#PDSoMQHYL&i~5Y|0&XC$R>Z_S*~_dD}4_FGb3p5 zd{CZb-#_nD0pZpB0WldnU&=%@nLhp|O@g%Xs7Eif0#6=a|6a|9veF}+QTT7~0xE(n zvhigB^Di)uLFqt^xc)YhIg~~N4YTe{O^+P&|KNSn62jA8Ko@e4^?$zik7wI}+tY0k z%{c#RfmZ;Nyl%}fqyHoMi&9_A^A^lt;*6U8)n=bflLt6)Mo#PaGiuZZgKKZ*v@x;& zDDhuQy?P--4++@({$tC3Hicn<2(E^-*)qfbT*^5EywnW0!SkQ$nZyByl6nIk%s-bp z-~umIV%7QhXUxcB2AkHV%bMn|r7XcqDa`xd{bsoSh5i@WMYLbg`*Bh3Ke+j~Ys`R` z$}R_9{@Yjn(G(ay_24dw2I!jfe+m4bi6SN70_FcjgLIzN?{Ls@q_>!i%h%X$sqHi6 zaMCF(B>rz`F(?|`7aq>IE@c|!)Sp@=vs#ZJmI7FS4hii?YZyu&-u^Fx(j^04QA;O# z$nNL7+MaErRbZX-7UnDloLB{~-d;uXjy0n*UVWX+fkV2WnR}l{^1rc|Bnfa^&FXVf z?vRGheYIWN1wwcSxG6KWIe)T!*AZ+s`)PA>=dE7!vQ=cYt>cDRq@&$lFFB`$ligIf zTm7^^rq|ERtmJWO{gcMbqxYWXr;d=-Lq8*B{7ibc(p zw>2yzQVM&HN+Nco{yJOkI1LXFDq`Ltp;ZtbN(q^#-F87m843O>Etuw{m`q}S^ofzN zI>j5-sbTutRW*UDEp6%dde=;y&Y|#R5|%j9(S@ltKd%WJwEka}cLC+lxs{JMlDQg_ zoy4tePM?TJeb{)LP>dR;$tRn=tTo2%Du+T-2WmG+W`K$E2peNUdcr>BaqrY*ai$q2 zeX71cRt2{zZI6*I-y{XE7}tm&r9y=64l<5Y7*WWB7#Pt~C@U(7*yCwjld<7O;@?*j zC6mAp4_B3E%j}W_Tdp>}46YQDD-72)h3)kg6n+->kA8GhH_ zuu>CKlb@CPJvVqaES#(A%U2PNnAU{daide~lK_g1Byj;y5O^!D;{Vx7@NTWGGKuOt z*Qf3nh{l__UO`6`Gk_0A*WB_nkTdvW0`5~%yo*-Ym$+h=%;1&9La#DpQpcehnt>o6 zw7v20hMH-_9f6#O4Qof@fwe^%UOvXQ8n>nx-ljL&hqx1-5UBRrzVCUx(uNpewA@;! z+a_v%Sq{sP2F1qPSeU7gzXh&5ENzCS2O@6AdD)fkOS;xC7sq)yv;KS(^t2ZnE{fwG zK;2vM@~=RZZlPF*O?=H)YkTs}6BX{7!BQ90Ry~^;c(f;!27c@QS|$VNj{TiyfTp_z z;`y#^vCi}>?OiR~eyvp*yS+}8>DjTint3gAC)VH(4H8F2r`M&`7%$&j5J>QvW|baE z>Z>PRR0gEJ)BFLdVZwTK_X#oHW*M{*?i3Tqb2I+V(;SSqWmlJde9c4tXx9*dg^h1l zuJ4?4=BaCP26>n9PppgFcy3U@jS>#9PNz)Q<9lmwK-u6iYw8SXsTFTN8x(PA7ar7y zi_}P_#Fta17k_kPvqDgcUlCA=8svg7ai*G4$yf(#wH-4`xtu$)8kxbE{fyE^cr-g@jpGcw0_cdpEDRXa?Ma`K6Nx9C8sxa^jAGy_77 z>Lv!OfHGa{@I0m{<}6l@QfW=M&`Xwhs8&V3oDzy+2F_Vu{r80A&sP^3*Rrw*8@`%0 zKJ-_W`91wV*la^()GG>_xL;1uP+ zSB-~@>bVh~b`AsW?$XVI{u4IWu@G*?@8uRbisAG(>9rFcl0H;z(zd(J$-g`<-}728 zDSdh}lgq9@C7gD|rOIhC*z3Fb)tFvzpFp!}-XFDa-n4u9U^HO-pYu?p34D6(UVN?P zPU_rOyzfqnH&&sq@B|He<+PPdQ`-Ai8upC^#qTXXe)FZtAp(_t$(F=7_ReXRo;a6gxa)^Fl#j(5H|RN^BeBpWcl+<(1wh2M+j*SRT8_59&Z}%B{p3hdAQ5#mdx+JqS;#wE z*TmMxab*JMtQe`)I00hw4$aXzaJiqNlu#t%thzn}3U=mSoBY$n22QH-*uiOrvCv6! zXD7M+{d39u=XGaKr_@p1O2@8F{yBzh_-!VX)t{63qP!J+w-*_y=`btL)2ly0x^_#a z^7QKi`kr4^3%ay@wh&g|VSaCiVi5P&8|MYx^urhQE8^8*Zd@kNt0MFxTz6YrIY#q%&r@#}S=o9kdkoG4Om-=*F*Qs3wNgiEV#qQp4-%HfZ4 z4WsQv;X6;`>7ci|bZ+ZV_lh%l^!%pP@p&xpE&kEypvJ7!7lp3^EzVkY zo~EjqsjC@WW*9xK1r~0?PV?E9CsLU=!ft-O4O}A8GYhxNmRAZ7iu@a$^sv(aylk)i zR)J*+<3TGPMJNlWK-!j;+_sh?>lW^qP`^%ryLme;(&+S)oEXH7?r$!)lbb*Ee?^fW ztQai2`iKjx2o{(O?)`+OC>{$i6b+feo;KT1V}I=#j1OxgbUqk!xo)^nsZO}mutVaL zAvouJ*1$c!`jYSk{KM=db)=eCKhc~D8&5}NyRD>`{7UM|_-VDr>V*@#0_v+7nW#pL zG?s|+m@qtDb=&uug2eLg)AAFzY+(K7UKY7iBu?oYvwVCT==M4-+1*`aQ`2zhi25>h ztmE*IFtuD$ON-|xQWeouxL0nP8T=>dJ?8ZHtm~tD+7uV8N-W`&Nu>4N?}9yK z_c+L0*QQ;uAU9KUH3V9QZqh3EmA#1SmTy*7|&f?;F7*L7+DZoxDf`b<6l+QsI$+NxuByO?-jPQLxi_itK_j$P6-iX^-rh(wt+ zU_h0tC;}!8qU0hI^A)7O<{&48l|0Wa=FExj%S}>r%Dt~r?UsIBU5SeBOwY+y_*`W0 za0!lM#jeee)FWKlc$^4?sh#0c;?9>qT>tg&Vb%;O4w9RRt23a1j&+&UGP z+b&Pr&JPIi?*BzrnrS`Z!J?(ZoT^!gOeX06%J{EJ*4_U3tjjIVh649@#@@_vL z5smy*)NOE|+sd1|>CC~r7W6%x4<(LDgw9-f-}G~;Eywjdr{iI79d~FL;p}RVQb(i3 zY|k$Bn`R1+Aw>E@-)gb=ad`V_-RZt#WE4Vxb0Vu)^P)evdIDypfIRof&3|yXrhc@1 zcd&Vr+3|(6gJ53A&@PfEogXuWzB4NO=IMZ4)z5z7M*H5R^)fA6*cCKzmmT(XN?4Hk z%cR8f4LDNOb^B2PPR%YqeCGIce!fn4LSAuL%}TarF(7bAl!8T#o| z68BY-3a+$vK76*;B= zjeT_|EUCQwp2~>;iEN1ztYYls@d}<-aV;{R-q?*q*Vsx?qTpSe-M8tJzK(*{DYCwJ z#G!3;{)qu)Kd1nj8Q}7n7K%5x{-n8!U?9Qvqi#lzPhm?(V`A%WcY;#>&@FNhnh{5= zvA465Ty%SuZDbV`uwQ>|e8Cid+HCrLjCwCKb1R-3Hs@4kb9sNIKW%u)-S`M&VaZg* zEjRufS*KhpjM=((XQtKZA@X!;OC)Tu27QUn$Phuvb$r3Z#GG9Y;;Orq_BDszE8;cB zPVGz35`I7Q{fX#0<`LsW#`5BW{zE`{kW5bXyy40C6)To6?j5xJ6N-0(ZPLbbBI?FB zS>##P*uGzmtH0)RHoNK`OB6H4Sv@PdJPj_P>_;Xcu@CoIa%NQCVBo8>iR>fBR(@mA zDEFmg)x*TzoQ6d5petP;{MfPri}DLV423?k*E#f%)g4_fp6-b1aU5W06@Q+S;WIO9 zx&K2OwBY05@+Bu+vo}A__Y%TsM0dIAPlMq2$M?@u zI7pwnt4Q~SJbUrVk2?gPem&0N`;D#t;(w}GSaDd^=8=B)%1;7E=jVdDG614voG)4q zUjsM(iglf%h5G(7{0Hf3$&afK`;I60d%=-Ei1cu2ZS!!!30a%}_Y%=*Ms|El@A*~% zzo*`cQ=e;+{=r~zTXP$Co(PaVl(N5fH-_)VclxuM*hl*-9TgauI5w5tDqK?8%ic3l z4o~LcceWc>PZMFhTL$U*dnN-?eU46t!%Lwtw@N$X5UspIKHG|8*JceA~WjmHQbGDX$@UhiqAQ;+k*G|IXTe&dJ857oTN-A@g+S@P(w6L#%<4MHad)V7=uSqM8OKmyJ>*tqj{s7PYq*o9WVEcm$(S zmLqF#d*E5`&;uKZg}K~?(m%vs5LZ0~4bj=G zL#on(;`OeQ<=7|qS0_AZA{|cMW$=kIPwspssu&Sh#95nu8PSk9%|CTZ`{7O3o*;f| z;g~MCeRPY~UPNtpYy|NeR;&w@?+UXdUDDQ=lW-YM6PDQe5GhjYcUaD_?g{;T_Nl)X zt{;aK6wLG;Et2m*)kS4G^5~hFce>oCEp~a*8MWLuLD#)InDN?QPed#vnKSm29{osv zmBU#^j_rQmduYiq1U^H=3B8#pcpIYm%~`QbjpXuF>#u)9dbA#U!PwEq=Sl zGH*9ocfb(0<#(Tm)~$H`+WQlNCRFgnMI+=-DcZ5F7Lw|R##L~o={rE|O4R&xB!=7{ znWFtJMSlwyF*CO9%AFNqu>aGdmq z`h9xuquXz8qiQ)*%QW=SW5v}Qcl-1ai%iOU7?7=@I93N|ttsh(m$ThtuUd<8y?4J^ zENmhvYI1JnAw#5vvk#Hh6+*90Gn+1~N9S^E&w77{tQpH44*^`=)Es|)yt>#yB;(xX zT?ZYNVr+Y$$SQU+vExBBiakK9-s#5VCZ9c3t0=%3c)m}^jo@G<(mtUnRqj~WxmK9h z8)aFvyy|u2l=-d!@+?u-E`no!{9H_$ntc4OmZF8m=6PZpb*<&BPY%#94B2YGOL4@N z9C7b65@2V@HIqeMgYQ}CVLe|Q^9{I0RqC68#B2PRQB%$^f%@1gA#Sho4ewW!rf*qO zbD2dqpBLg9!7IwGcM~=x;?{TczveLC*L;%cdLFUTZ#R?8l_GEN9i!Fr6wIXx!%SPY zK5@5OzTH0;i28MQJU%pcima&nYZ4JP*}XcjD+!`;wa)vXJT%9lGt+ofqNS!Hbv>ev zb$`lOGG>H#1fk&CNi{gW^saomN3~wx#d@*6YM{tmZJw+>UhuiC!biUye-q46tWf}o zG;4)BA?BI-k}iq{?rmV(qt&JDgTyWfTjseyZN<}>vRjlq*T>i! zkNmJaQ*Gc+r$@rz!dYNs0x4F%L)^&fj{yDjWzJaQ^Z+Fl!m6~}JUa|2@^oLmFE>!) zYG1Sy^c0TI)blVM>yNH#Sn1TASP6#YdBw{f!y5$@dSvIp&c{H6PR=|fYq*x8@ei2L z;E{OMYq5h9?H9uTn&4pc>b7|ivel;VP>r}Hdik~1TOsYntKsfYhtZsYezF~tUv5r* zxI)R(PI55#f`j^BX+-u3Akvb>C|Xit{9<$_+xCfEY*{GMCf%H@%!DM1Avr2tZlC=H z8xV4^IuH(WTQ}e3$3f4FJv-?cog2|zloHtqOZJmnyqb5r?&GLj5KDH!&^TNO6+SGP? z&+q$B*Ds$mBhBVAwnJn2g*Jax$Q#I2z_ZnoyH#-@c;-rTc56lU3)4R2TQ}{vEjpwQ zCW$<+{p|aqwF{)74AGqx5*4r)x^qUSxY}_Ag1E&Y9Ba({6Sx*>| z;2E!odFb@k-TE9=ht!0Knos*%>N<~aFSw$RjpZDFklM+QCL%|%RUkCp21K^J!VT%x zdp_IM{lV>PfY!O2={D+wI_lR7+t2TbBU^3A-5NpT-<#Eml_*>%neiRkXpdhr&V|ua zcUw2_kZI|0TLpLZ6Svh-e*;~DW~y-O4eWaRwx9j=_x6=Yay#Z>x42B7tKj$Vk^11% zQG0F5kRn|w-IL^f7AIJIXnt~4eUkjY*n9JEsK56QSW1dYr3j%?N%nmiODm#CLiQwN z-ndhy~cj@!{{{1}H^<3BIKW5%@&Uv5Z zKIh!`>-D;ytMThLG0YW7acgJtxMZYRRepuuU~M}1%nA4~HdTA~Hl&KEz9Uz0vybPB z`p+nVHwNx0nXgIqB{q4aB}By3LUG3uL)errCG8?qATL!lO!jC;cRb4`zz!fU5y-_I5oD-x;Jl z1>D>srG_6@{l>pPdug`eunP|2)-11<%6@16+rcz~z*ET~=z}yBC$!Jfw zcno{vby?w08WU6R7g+GFgNb)4QWK6F5DyqHg2~W2C-A^?!CY^bIK<9fV>VbgSdfHzXl@>E2r{LA z!Yg)7oZTe0I(sgo;pB<~^9t%$nN12k#%oSPK8l2J6 zqVYu!aUH6#jklM^&rRF2tpu|T#w!%k^mN3YZ$l$|LjYf4Mv>^HE#`K=td~inEiUV< z*9^-#IN%JzceH`Q~EuPz)#R7;GV7N@s|H5B>o zM>)V7u~#h~a>*=YUf;j8?JrkSjyBkzOtRwqxn7MxO{0FiOD=;PyWb}bn3ND>f}#%& zFASZZVo-;gF31Fw@{umoRqDO*;xjI^c(Hy#)>~m~l=|#cI+#KGXsvt*7xvDP#iPY+ zhCgw?LJ=8ZW`21;Lvk*k{l@6?rZIoMUh2j%r^`((j|Sn5$Dnt_S#$t6_J6WFBu1ni!R$tB;LdJ3olE^V>d*6&5b=}U^A-a$s} z2WnrP;zGc|v(l$c1lnUmK!*E}y0%on-8eC#z>1Q7j%w_dMLC&#?yU5HL5z#Q>ne(T5<~3f5lA!Z$q;lUu#vA^qG)JQ=}7wDxvCrj#8X z(ZyVO>#?bpLy|*%hT?XNE}^eNm*i+g$?=%ym4130VnlUI*pd;p5&jYWg}Bd?u+&RN z3T&K|huZnSK%kS(MO)B$`GAhrGwMV+AFPjd9SHJ&jE&P8UNZt*c21F_Swk#Q1h#OS zhzmuAU*EW}-@ow9A$e>vp$P~FkX*b%+qtURwYI}T?n2(_5_D8dz;8X$(I&eY72LjboWB6l7$wof`zoWXlb!CDsu**l+K%Wh1m^`tbQ>vuSYyw+u` z5|N^WNJr$ZdpbWcUCW$Npm4JyM5xeyayvjYt9Y}l0TmX4Uu}nUCa~pZPsx#V7c)O} zkC1D=3)Dog*6vJRK_nIGJk^(JVH8!@6+Uy~#_^51tuMtQA4$@|R>J9VaH9ybj(wc* zcVYfJ4||PXq*@qHvT5mhbWhHl|CM2%tmM>}<95QWt}vbM^K#XM{Q)*cS#w@L)klKq zwYAuF;Yf7(s|N(3S=2@L;vFV9nRM`i>rQTDMrXZ|fA+>ul@Rh zuiElOBGKPAwm-9$7l}muFoo~f`m9UX&n~CcXp2}fQ7qUT+s?$K>Yqy}lbchCxW6T6 z++f$-nc(sS6&`Jp`&BRdDXBqfcs_7@GzWZFQ`mPk5(b}>7CXsg@~fk3X)kn^H^NN5 zs<->e;=q-0!3xL4lFx4or!z{(x%Xc4OO<#Z+@=_q!N4g-697mcw0Ug*Dw8~Pe?7C9 zG=#ExX2L&Gyf=!WX1ni?7%WzMG^e30eqAnP62nd}RPlT1+8PsP7nrEw@cK*p7d?R+ zGd=+)D2=?hi|#oP3|Lqkj+5-%h@lUlUF8E|#lY=pVD>pwPm1{DO+UU%gk49}Zp2hO zP9uA8=EsRKsT!*c9h7p+!&XRSt%$+UjZ! zkFZ+>Dkbw5pNejzTOp*j`S3IyreQsAoRW2DJTp=K#@l+`;O@11sAWymt*0ODR&Ht@ zxA&6CQ=sdK<^5n~YWzJ%>XG`Z<-DAV(q9cX^oOO@j!YP}?jZW($NYG4of1+e!-@oNunQz@$a^=%9z8R@{4B2R|s{utOezG zFQ4bZYHxUSrh4h(Q9*@oixGoC=zOctTi1n$ z?!4P#6}3Mh(pHx}_+-+F!Lpx+wnpfMVLCyiH97J!Dr?x#=eYY@2 z3WS{K`+D$|r^nI(oc{KR1Ee7F=!%LNos&|5K-ld-%7eGgZy(1p6eFAnQz~mcC+8I( zedsXW8H-!zmL18E*{v_CnSRmd@MF0s!E7)GhTrbsIwyFs9HUU64fD%c?!vlF6GanGBg1FkaX>`r#jS;o^UwNP0W~5D-keRCVyd%|+HQk+e0LY~b)6Ya4q{RFNwq?VXVl5%OALPDBCgq5ETqiUEP$ghL zB~%Wux%%`sC|wqR)ird|C!9?*nUyNy{c#~$pD9%O#`g0sI}(I9*B6e<-D}JpWiLqu zA7r;%3MV(%_-zKCR>~%gd<$|{CRnA{!HLuLRc{Jon>cPerJ?@$m`GVNjezKb;teLrSC`|Y&*Vs7nn=0qk z3>ToZv{uw0lFeWzh1b7ZIud=JReSBk{u`GdSpeJDUKOw!J}CEsXboDQ%145HW`kr2 zC>=TWQ@pRyhUz#MoKNG6WzV>D%_b~Q;F(vs^PF7`XdQ2EemSLj07x>ZX7%P;$$SR_ zjd2R)O+U8ps=(%@^$Oc?W#cOw{Vo93IkRG&oe<|(KG=->3oI2hmQOI5_g8r&EdCq# zVSR`-P^^`R(^V5FSLRLWSz9$O&G}~`hY4R!LnX1 z(1CBe#oH5YXPwke4J{66Yy~4HliUScJQhu4oEZkkkxCMCG@YeW-k_?tYM=P#2YQ%G z6oQ&#e6o{~)6D?3$y7g()r&`vw zQ1QT$e#NQoHOuZC*Z!qkK16X+2YPVk=yr5`RoA0&_I=w1;}G3jtIt0-Dy@VG{R z+-~^Xi0pQ7jXJil7*W^Ps zdw?~TgsDE2DaECj!FC_>+#J|esCyR-V5=U!tANS`jw5$5tUhXthnT1&h~Q&ueajEC z$hv}U0sH;t!+NuqIOA<)RUUu0HpE7|ugESQpQ|t0ZaP1IRO2t$m#{#uzI+1CUzTV##dL0!J}VsSy58G?}`SeUSq#>pRRS!hy{%==(}zF+XXN=A_sbZ&I4<4aHSjU&V2k^b8R}hg=tf$Als)NjqKMfE z&|-Ir^sApAXIet=5yv&eWc*x3)DnU5ojSfr_7Qr$u;lyZjhe^Yp!E3~>ybqOv1lDj znUErTq(zSNT_VdV;+)tC05GX|>2{jIq6BO|BVb#FQO_>` z{b0<6L3L`o!Ff*khc8|q?oa-3nqx0r%08L4M)P7f4UrMoc$T?}y++eR;V(^t|Dsy+ zk9{Gw&Z|W2zcJ4>$RDrnco9Q8HhN_zU-6B!s;QjTUJKg~Rqqd?r|R2=c$K;SF30W` zdBmu+Pr z8N@Js-sU}5EIuk7m8H*oBUY37Z_wVRmpA(6U6_K7MbXw&e$ohIiMQ0a|FPJ7JpO;OSE$_pF0&VN+y2uH|3(ED0AW0xVm8E${|ma#2G|M- zpR~>Yr*a)&2Pqf{U--=+`r}uD&w$F+Tk}Q#FSbS9YUcC9?aSHbe@GeyYJleXaB`W^|1|fo@_ZS|n}4+Q_n$gI zk3ej?UkLr*=H5E2{CO(-|Bx;U4i$l_ECv2YVm|h;@_&ZokHPw9IR5{#Is#|14F>GCmUyZvx31#hQRh?RZ@us9T1{{m)aUOT2+V$xtU zT=3~a+pFL7fjiV2pXHwIKVcKM3>T}Rj+k?+Lujx(cmB$%5Xf@=MWZjw1kJKFTzQC6 zyZh+MPGLbHy~P5&O|~hh0;OPkSSk4}O{3|sqf#Dk*l!IQ?(=t!4z^D)F*-z(fVGCy zd-pG3e({y*UrV}AhjV^gkYh)PFZPQ=pBxQ(55O%yKd;O^6xhtnIOl|NR4Nn+<3Ie5 z`}{Pt?W;1m6h(agn$9U>1AHj=1#o8Gy*1t{&Mf##f(|f57n-X7ZZlqfK3|G(FV(51 z^(q~%S^BHAvrcyml=80sZYRK~SPlVxM=l)@C_j9?Kp+i-e4p(Y{?L{@y+})$eV%=D zLgx&fQ=Mu`)bDElAYHh{0)6{!uiNNvjDfPr&4g#$mq&(M%xC^JfOg9)aWbQo({IbOZ7q9J!N0DCoZ>c_5FdC)$B2bfDO%r@(_A|F z)@8#ST)#>xlD7v#I6YoK`Ly3fa7a_Io^TFXm)Gm=+ko0-6o)kAiZjTr`rpbfF+#irSinTzlOFh{Gyc(&A?b6IScL8~w zASAzr5_#KlAVry0HgLcJ3)A{d`~pVx_Sxx~JtC$g_j=u0x%zsLPt1*aKx>5pbeQ6e z#)B<{(q1!@6!>NOT26|?Y^b0D)qbM#q+l}&NQQM)Q(HRxfl=ifttn&UhZ<>eRaf}5 zI{|SMEd-M*(Gni&kpBkrUveJ2hE?vazo}Lfs5;X;oI|Sr(K-2>~W40fl%t+ZW zrS1S7Kn)4lqkk}=89*G=^xulnnpU)A2s~67Qq2J*Y%?MG{E(ViKw`2PkRslUaPVmKY#h90w;3m!JTx$bcC}(_eEbC((cwbiPLojZeShz+;vi zwkBY`9<6avko;}zmX8GPW>!Gm`FPZt{I>u=YQuWqxqe5Vc%oWUbUu^9_E{nQ^z?JP zV3v=^Vr{szr4Mogh`Aq4kZ(h{yl*L-;gGVM4y|`ky9VTV+N{VRhtn`EfZ6MvmT$@N zTzc9>57(X`ApwOV^{3v}%y(5;ANjw0A99MV++nIVU_T)sA2Z_L>w~HQv>jDub?G5> zSh*o#Sf(uL3+pJYzsnmZfK1?Yc%Mlm z)sGxQ360w~ASEW3Hb4KVws2kK&WVFTB{H*OOD%7Zc@0ILB$?VmfySkgpT|((? z8#jlaFh{?+#8v%DoM}4yX9c@xz!q=77e>KtnmU;S*9_9-s31PJlVjocPfTkTk}@-L z**0b*(xpzmbUX2Qql(gvKIn#%C*h)JB{aCFf<+>`A+&eeCLeVkYG9lyU%##YNky!m zv#CW6`{3uL`x06fA8#FdA>QC)_e9g7 zQ0au~tFxbewN{2PJkishm}i(ZF!!bn61Y@(Ib<+t=NmWqWB1|0e*T7?)O3?;@wtU? z!}b80JcWKptUaQJ_!&51e5qO82m^1u8A_ORginahz|LI&E#!mR(vNO-P}k8E!8x9% zAG)UAh}_|U>W_;AQTaH`PrnfaUtLi(05a&Ejg;T|CEs}V(CCJ#*Pl(2f+0^l-N^uC zVlhAF%jE#uis7=IzXAyCaLu1?8a&)+`fw+&y#MmT#_8rQO+|O+X_tHsbi1m&@m091 z_FfW)orjL<8ME)EbNvoUe}i$0k&%i})w&nn`7!I-Q{-I-Iv3Vki-uK+ z3yY~0z4-cGpM1g;Zt1&=O@{lfz2B~EuaCb^al`H{eOHwJ#)0X`WxZAPq7TcjZSE9u zTjyTlqVBb4*e~onFERDB%CsSJu~iw2GS_Hd*sEwF!xTLiln(PhOrcHk&5pMePt81?;_h@H48dY zqZZNoIIuovX9R7PS=g8WQX1*w3xb#$*U@HapZBB1?3?2>nE0 zT@LQ90%FPTy~gdLnm2sW1V7X6Exg!gvf@oY4ffoZLwTQlXU$ge9;HMa(9dV$`LAE0 zA)PvV<<8rtIKii4YxLyuGvsQMMr0BSHtR+mXx4r4WnAB8-GUs`dloc0;_-NZuZIw|rr#ZxY%v-jy75me>WvJ9e+6ITsU4BhIZXp5oPT z^J`xFS(XYDclLWlI#n4Gx75d5Agpd0qtPv(bkwgp#Y~Wfpt~OLH@50GCI3x%?pq@g zX`wh3QhZ9uvz#KS(1rkx+?eV~2aLs1u?;4@A|h0SyNgC%jkZYE)2fhHDra5dDgCIA z${+CM9W{U~Ykjk2j349Ju44HP^K$1i-!2zg=DF@mB?JUa4cYPw?MG?ATo-wmCE24Q z>ssUd)07CXUIj6HGqj+cBH59hK)e5O+dQ9k&ac((xIN%_P>fF|ErGU|2$TOHJ zKoR_LgpmQAZ)$v%Xk=CFuDG|v(B&duR{lt>cV`+6%|vsKx0R1foT{kLc%{%5wK(fJ z$U~L5AKYMM(kGKJk+E#G%}tr%#wPTB(cjc}@x7MX7ObeKiK~w31^2iro2*)hI>J;N zUi3=RjNb5i4rBQWVG@`R&-k@tUgTE}`O-Sozy4b}J7JQ25JCCuE?10jj!<2nxm1*Q zvvY#Wv0-QAj3+d`Ai!~v#6QlLzfg*4YBzCz;DJ(DKq#IE$;@TqG9uX)K;pQiCT$18 z&v7w6mdN8!gHrW+PNH%dwysZ^)VZBkRn0ifp$~QF0@A$(SJozY$`ly$D*oW(g|<#W zmfq;lP3aCJ`X}qXC0$!gBXFa3l&SGv*7|8Wy6NMFkOoiLdVL=dty6L4Q5&n~&GP%` z)-I4^#4lrZyEKsFPPywXTka2yAW{Rb$4FoMxAYFW#k8$`m+QkxgL2K!e+eIipwTfJ zqT6q-S1&4EdJE#;_JI?8T_g)_mmiE9hLoMu6_GlvhF}{m3M6<>g!zY zI_2O-S&|Flq&rKoj(wMuNhGogKCSUctD;?FCRCVFey7E*y7sK6cAjVeIUe(LYTKID zw_^B`WZb8^Z{X^!=S{A+K$h z9_{;RnaBAaYn{eCvQccS{>bUa=pAFUGE>M(1TEQqf3CB8=waui!O*Hq)f8?~y7hc0LS2LK~k-L%h&nXvyP% z!N{LmY5SfgjXN#eL?u%y)BVT8JF~J;-fL8E5)Qo^86X4ONRRT{&Ze$iuI0wry`ox- z3P@BNE$PP7yLCwsKL`|RdqxRGUds4PE(~UZ)aPumtdz8CcoN7-aYj|Nv>Q4;%Q~rm ztuQ>htYXE}9bUHGjavOj}7o{=W3u7*gcIH1*d|FqRshyPm7uoU}~t5m!7 z>*U6gwCd6!8^pZ|3opn)7xSY$6MtRfZIo0r=k1ZQyd^cNLW~v97_>`c&!gHq z2oBTbrR}`gg9OK zarOdlCE*>c%lwio-X%+zR8Mr%N6}mE%HrzI{@9w5onm{xWhIQs6;a-w7=QIEZQkZX z5A8NmHjUEL)tbOu;p^MATHlwDhhh-+?hi{YzU9AhjoN72Fqx4IUVH=V5dzYa_X_{m zDi(k2IZmchYW0K%9r?k_M;+>WB}Y@u>}|us!>EVZa`YB@S_RtAb2OO0Nc`|$VQ%QkvTUJu`7!w(|b@=6%i3{jDUR?KRYrb7HqWruN_o8$s*0AlPB0|Tw zekD0MivEibYib>|g2N)}hE{YY7n}~>bD@he<}S!poL}{&Teq<+{ZazIz^CmO@kXCl zvUU!-Aa;gcMQ3NwGQL38{`G z--$PV0tpFfT;oQ3d3I9e78O-7t*~07$cM_Tv-{ZSouSh;jH{7dPs2tg>PW0igci9< zf0>@z(OEfObzd%~Z70&-!WYkYz$1(+}QA}@1C|u_mI-py0XwrUz)P$!w7PLIfi18lcR;nm9 zT2Dl2CX(=}Utf<`%}meYFZ4EhjxvB$cKP93{A9m8>AQ38p0J-2sgjJ+Kkx7+*4EU5 ziLMevJ~u@R*)6D<+t$F z5A^kW+)4}NjJ-V#tRIob0Y>p3Z3HreS!1N9yxIz94Xgc3BDbX=Ecw{9+RoexC9-v~ zIsP&O#)~Fhz&xvJXSfjVCyY@VQ1PVN)>M2<_~W>xSAB=Ayr3u6{oh&u8ZhJU6BeK7 zrf&~26$OnVBx|3+q006clgV$(RfF~5zO1W;%0&BaV`;t zE|}_my$USrRG%=3w#gUs?s4VTfSuBUO8XFa3b*GhFC}X57Sm|RZ)9YST$w0DKv`dN zFRFE(m%JKZm>^h|HgT!A#M{#Hlq)l(rw4)asR4Rc-wq`dcA;rw;MMCf3nF> ztUdoT?Na@5io|3ZejEJepme`HEkC+gqd)F~L7Q_dmh zsS?0%o^Bq$iu>{D2j1mlNjzu3BRM~jl0vlp%$9}11#f-L7)47zQ{oSnbdsy|WR{BK zDi1F_-WIg5U2M8DtVBp%g0G!6t-nI`rFAk*vOvcyocTV%S3q>z1~2#STsnrG9_~kE z#}B53@sT|&H`)UZ+Ix2Z2-Z$wBg5hH+{i2x1D0p?&C`4Q!k{X!vRSE7$nS=Cu30b@LeuxdGtXZekX^jyzWc*W6fC1PO4;&Y83X}mVklxjC@Q674{ za^gLRUX-L3P9slp?jp-(geDxsxo1eiMQ37XZh6YWeG8|qz^bniuHH`KK&^b>LO|QxxJx$(h`6(7-})Ut0XQ>W z+R~EUAowNNNWslUX5955TtyXF8HY?3RcTp#)A@$mWWQ5y*T+F3XdBt5SmEwmZIZ-wCQFW-*Zc-CT* z$0Ds|VYj=gJJVL(C>G&-RoaTC9(-HPXO>()h&s>iGyvz~OK+(_I+?Yf(HZT~msVkO z7EsUxQ`5Jld*TxB?i4QvLmg^ItRodW((atBfGQIEqjr6hY2=TKI0pT})Y&5mzbRJeB-^^$c_Oihx3BZDpwn}Dp>jpzwoBIl91$SOp2kx){hugNE* zQw`#HgTEocyrB)+kMjo0Zc{vZ^S_@poO4xLu)T%hbv)u_zj@xJ%&hX-2-bjOhmuOg zqRDmoVjBGn6&+#*&i3X^@u{R}aO@b7UVEP7 z(D&RfSjKCsDpEORoKL5T%PICwe0=qgSfv$A5{MARtBul=pwQMdM1T9JRiqyBl;03W zM{D$hx3=_C-CUP8zhae?-B3N2p~2TiQxkNo6#@Q!47L2vP9uz^LCXH@>mBVNYi`0g zm~fQpcDKnROI=$-jnEagS8uM?B-G&nE_qvy52aH2^M zTUN0I-0iM7y~yO&p(o|-4qK zbY`c)?pXf#d{xC1k8r}(nO}Al95$n7J#zyy7=fnpIbyUV($LY}6Ir=5g1JoMrnCes zTln4O$Sj1w@x^WVCbn17@JI}EyRZ)D(JP+bvqt>SdOtdYQmYua90@7v!`I|;d#$tl zu+C1=&ldJJ2oZ+W%3P`73oOnlV^li=-O8zZJU+dp3L0#esjmIN*5ztuXz4D}58Cv3|Fa))-fX z?!HUUc}jK>j#i1O-dMp=C&j@VlaSJ4ll6TU1+p6#kGhW6#RUc+aRGvy)W-v^U1s|%t~GP{3f=Nk_kwqo<87`W`>FU}H;FflZ|2k0b&WeNvr~ol z{JD_c3K^JOgP7;vjwI+1Z%Jjj@LbKFI{C5ImeSRG(6!89i1ECiIjpL~ICB|6oR$+_ z`q58Q=X#D}?NP&g#5SVPd{g`8s!*6hBTP}lisRJUo=pPIqdcd?^+xt))g6@TBH|(Y ze!j|$ZyETl;>MKX?oEQaR*#d5qtx{JqxMOYV&0UDUMrs>GwdB4-wM} zmJTItn!B`P^^Scm_ECU{HAVwjvLV!q(OX&bGfvFlEDp;tRs|nmemk~I##_O9a3V4GBTY`bD!su${o*kP0mHA)%Df( ztgpY$uj91c>KYsqe$;a$6DLB!X7kOd4x4&g_9(!nB<3BO%PRSOV(MwHiqq25IViw+uD;~ zCOes!cvLL|Mz=@6dEu!pB%H9G&m@qVYn@6|y1lM00Yn}r4_TVp-T)$1K=P_cLj7p|)q>Q((qyM45wCicgdh_DX zer;z7csS#FWQo(h1N;?-V!hrFI zZK2YE=D|-*iKS);bHn6t>0F6^S}Kq+G?&|SNruPc1LACC$u4c z+=vDXQTit7WoKJ`bNGZ­Q2eXHeOo8v)SvJgj2)o$T4=aYCNf=E`mDWCI!7}rYW z?`5SsP;f z3wSO?xw3s@-ilUmq*qp->XAoq%tu0B+0o4B6yCGKcLPth&HvtfaBlBEskRlf;_Y}KWabUSz z%YZTf5)G)dr4XRQyt$EFycERve&k7QX*eU~ZJuhm?mjo1ozm)8OB3&ssh zMmNuxiYXNA)$k8*j-lyGn3NxoL%F(J$yenTdJ-d=E^K^Fx^VOG0Qk0vmClA*q`4)0 z@I!d*qx^n{CW>zyJRb2*ol%_3(#0V45FONAI#pEDH5d_Xqqs^iExdgk`m0B-9pTL` z?5JC*)LTL&mPAE+?V{yg4B!_1od~-5cHoReFyn&5+o7{XAjIw<{tzO-7_#tw|GtM+ z`kXML;WVSf5}P@lr*bA_Ze7`&PG_*6VM>0-SBQIr)<|VUt8SvBz1$cyb=H(;JN{Or zRh(RsFukZ^8QRYNDQ6fgM&%}PT@fXiZ8acznhK8PT6oL3XT8?z<0Z27@)z zcv9-N9plRVmpuKg?4T_}53W+t2PpyC7xJGpVzfwI8D=E~TQwo;6XhVm4cm(D=Ijy6 zWtnuZx^MA<;TKmDx=9g!4X*4K_RK1sj16gXm(W<*$%FS@UvAP`bIXx0SQBUr8zpl| zEn-ovx7I*40Rd~W)KF&XT67czZo19G+vBmwMr4rqaWFBv>G8@U^~hzso8{`SJiYG0 zL|;%#J?>OLv|4cCSUg~{p0!B)-fh9O5$BPb!{Ru?-V-?73qI+;$r?~*nrabOD>N#g zZ`-yx5~};`@+!f$o4smjyQLCgo4}Kdb<7?cv6C#TR)v4D4WD8=Qizyo>nopP$@^Xl z|DgZO$DreT!jhb-OUuDX&QMhUGw+LQC_(cym1_%|YTd?iGFnYS0o7anb%Z&0DIb55 zLKOL7t-1Em29_3^OpFQ0^%vwGZe@}S!P|B*Vq2kK|f>`F6Rd91;1R3(Zv&Vso81Heft=dt^#90PB8o&xaGS(of z;!1M26ff!6WVrRnH>MXCtX3{M5#>_H(#(YX`FQ0vN1^UZCF7JcZXTJGE1cf~2f5$R zkuykR66a0CM~|Ddk`R5|ZRFwGSDlQelPL!~9T@W=)0T9S+|IJ&PcMfV0309@a4pKQ zqwes?d1pG7_H?#Sr>yX*9a(^bdLiTJYb^LBWk3aNd_S~KBI$1r2 zoV#4@_Q+Bp!*Wu+JV@%^VOZ;!P;HY1p%?$Kr0n$J3P1elucfZTcZJ3@F2pz+sO~?X zJMEkVPReLeJ@bD(_WOCGxI^bRcuXhxKR*Zl(93vB!@g{9_sV-A{M^J_7H1#T3zrVoR2g-e)a%wqE*fkmZ z9mTaXYJy90C^dx?@X~NU(^5Wsj8J_iciuR`-I4p)BrnkRcsezBasbr#t={TQnv$kl zhc6cBV>lhiIoBlaT|8tS}=W_PX-Sod+ zk$>({|9B?;am@Vbg8IiV^^aTbAFt$}E8_pldsHCFn7DdKaIGQlPEI;7C-`Hky|S7r z(szm$*?M_+XubVyEnJ*{VZR|OFGpGkkDOgzhA#l&- zO)nJbg2=8rUb9Wwg~E-A3cYjQ9V|H2ozVU#w;rhzBebIAh zP2`X7ZGnhMa=6Q%{djgP_AO0)eoMaC-yQEauh5iq+ydec|D6tjPk=B?id^dL`+t0R zg!ccXLOD)09kS&Wck(rhb)L!o@fJWsYtV7(PiF!C8+nk)e(Bs*N z_Y5F-Ds6^p3SjUn02Nq)AWt~}$oS4tK1ir90*dsSi$JhZ08(BxoziYu6hI9o8}|at z2DCRYaKctK*K#KJmG**^yby+{a^&RgYc#@lA2a_qn04o+%JipGO^#kI9F%tI9ydsG z9K63M4d3U)d9^bE>~<6oAi@_XKc>!WQeHP605elMx8!4JZvX`^=?%xam((>LDphJO*;0E8WOr33KNhx!8W{S-L( z!iY8z2Pg}qK%%x?n!WF$!Aoi1<`Io+2(FE{^a5zkK~F&DU=p=k4Uur@K9s^p0GRV= zx4|b-zVkdOCOybH$==8>z|w_GPsMdS9AR1OoDY$ozY0ZpV}MnLUbwa-F_lhTbfhe@ zHf{vF8gzF3@xEuTh|odmX^e(aeb5i`w=j)ZjAh4BU>e}|B5}8TN3O_=+eGh`P*zJ8 zz>pDco{OFGeHSr^O2pLaN{F(0J0BjaK8)^GMB-B`98Nnis|2{=h_J) zF!b)k%CJ$LEt`9;HK7n-QsO+}u83Vyf2G&HDG+_0(uAM%pXcGuSMabp0pTMZb`NL; z3hi7k@g6Q*l($L*3{Sdf+cq(|WIy>3P1PXZq9*WH`1CJx5Ll=?jeIt{(DdAMHf`#b zlT_`nITt=L`CT1JtN0s8Jay3`q82gE06iq&E68a?ZOKWEewUB&2;7DGW1y5)_#SJV zFsry&d*hK$@0(y83oL3<}q%&e7neHG}$eU zmhVK2RUPjIADW>aYv#XAUMD_a_6qgg&lQEF12&E_7(mplquDz|sVtr78iX7pp{b+* z>I}fr)OR6R&EsHkGa z`fEmtqR`z!>53hwXjp_cqS(ZxdbT-qUvW&0x@GViuO3f~`ng7k#nvov>4++vV<__d z+|~94@Jteub)RpkKJCWgu8IE!15@&mQ0ByJ3{L)~=wdLBJF2vt149Ubsa&qO<($*P za90A!q6^j816)cQ(;4zDOzYjH-X4^44}vF^0^_(|m=;~nXT8-cz^m}f#aD_UX!b<- zgQ*EfqUPG%4SnB_P^PdG-6$HfUC%%bh zxbrMopmqOj1E6=12;fk@<5FLIZ$1M+F5~{6Mo-iH`pk~$+aeLwlQQ0(K^9Xd6fQN) zJb!m5UG0M~MRWD?lKBdOCnO-;`*uKvGH*^&T_ucRO)`ir*)qN3k0&*gcVtF`di_{P z5edm5G|`khr$0v!z~j3aQJO5bq2>jDJKBPi16j@J05%VOe@zn*YcK|1L`J@zmw*=` zJk?)oqhI!Gg{E#{aYG{7G|+FFoGReNYTETtp^MVFn0BYyP_*0mUc|d7|5rT=Fm6mn z48U#%SE&lC)Liag?~fYhrv^uHa~h#&aeRNNXTR(c#)o`8_NuYWr*Poh>aI;Lyq^fY zwCwfKhxjdOGG(@@)_gpjmj+YDs_S`qP*KIY0|b2xjq z@oKny1vGWhkGzg2|A0_p&TBBA)u-|b;0~3yhx=o8f%AZX;~5Hs4UN1PurJ0ec?g{c z)&{9J1Nt0O64{rrm8z8eK{ue z@rDKe9w69Mp&J-HBbJ1fa%lz@=V35PynQKAt;7|$frzvw^E?P9`Zrn_7PGck=;efR zl|yHS>GIBhkPGKAHH9}d-4HFGo2|YeUxBBDHWbBL58oJDG>M0^3nH!cZV7Vt*=o0! z8$p5D0~Rcm4c^K;|1B8cJX!4=src#4keeINBz+WU=OKfTmR`ym$Yr(477KvXPyk;+ z@C(cTJSIj&H1)*<$``oHXx_oUzWzI z;wjtXBY&P`*9ywpLQL*SIGTujzFGmrLpZ3bFg2{a~&{8WFo)^ak#4;E_dnU4eZG{t%SqGsNt_us% zRyl}GsB&cFc+UjIfo+CUBCZ1i7+tl=cI4Qai5wUhfD|k`SXJ-6By3L?CoE;fjE;lJ zGqd&XO$UmP13b0rC0D;U-nmWoTzy(#Jdp`d&VJ{*<&iOGwE(hO6=^vQCZS!cS?Kzr zlB&ztN#wj_sK0+=N8RD0gWWN}zFdpYKSb{7Dv1;fyig`}A72|k4z?vqGwi*g&mnYB zQ?YvHa!tOGgg3DHZ^O+g(hFPwVI)YN@N&jqC5ZuK*Fgl3smu9f*3X0An}EteCY4 ze%vC0AY<&((I@vl?ule;{ptntcIHGY=ho?m%y#WtcL=K7Ok_8U8>0=bZfb}o4QzO& zPp#P=VeKt<3)k*|X2b;aKCA}Y-%_JFuvZ2yzMIGIhYjGXLk5a$I`3SAm0V})%|k2` z#Dj_P>5ZR=NXUY+mo4E~!^;%jF85%Oc;tzAq;)jtdU#~NX;^A1qZmjjd{e8c8403U zzlEq}mbU*piO(*uiDZVEfHX_G02%5CC5=5cC3nC4?J1LQ&+I$%mm&h_!jz>^;M|+o zxGVMp-lRUI!sTWe?ytfwaXnv2YVM&i*?NQJ{vele*7-f25+{dDWq1zAjvN8DA7};{ z%qLIL+ie>;cMS8(6|30YvBS+n&wPY=n?scY&8rNSj%mwMl}RrbK1x`WqeWri>IWUH zU6fruUheVxhi_vE36lned5dNC8Qv6|^$(MQzcdXv8DVEyM@D`{{=4f5YWZRSNA>4% zB4LSRBsDjs1Is8>vL%IYXY5SU-}K!63#0(R`fKtv#DU7nfl;8JO)TeO4O|%^Z#?=t z->eCyHB1Pidzm@8k*}F?1-ZO8b($U7z2`2Z`x8{eS!p-@OQ)N_f~R=rOx2P1g{!X% zD?^mG-@`5TQ9D;@xT>5+jt8$K7@gS)fq6}Ir_{z|&9sKgLwl?Kay{bk<4k=dNts*r zA)E43lD=w{yy6$a@N?*MOZ#-cl5Ee}LZjAQNp@)-hV<+J4CjMA_>Qlk#vr_U$dq|J z7sRe>)3Kok603cE412POm1(uQn(p=GgMo&j7gA1FU2giV>Us)FPcGOQEKe&^i{a>R z$EyDSCVY=8Fo3p4-BGvoeV79vuOmTf8)z=;O7eNc(j>g$7ccK8j<;gLt`x#7@!9K< zLmYqi#X#5lo&G~w7=t>^!4oU5LW&ysFI1x#drs7rdfWOUl_1WUKj=Z_Y(+s$+Bkz? z1?+vckXtY`?2-aOM}}R^jPJiTAsF77@E)Q5$DTbNT)HgVrmZ6QwL(ST>PnmAf*uL6;;PX%2=$ZOncE#l@}sColn zfsH03GS;>>)G{tdaC_Q zU&Bkk*U@fQ<9hxf^x^*wy2h0uLFx!RvfoFuE{*F z!)@KurvxOjg8B-O-?E_MAF1)64^_%p_YC zskWs?@1$N_);4lQ2&b$uY;R~{RWP!OU_TX%)xfzg+>EtzTY=MLfygOaeYUIOifOmm zpi7-#;MFtQ?E({X?p{NGm_yeVG|9Or%)Y9ncF#i^JJJKu*?NbtXdHIMcp#|nJP~C- z{z?`{r%3mv4vYVQl0+?_WAC|J6ezUX{w=ji%J^tWzWVH-aeRzy!~;pks(x3I?~||G zLS1oxTqLJRGBZ)I*k@IzNMzGW1AKHoGRAsfIt!h@@OR74n=kDz6TI>}#*>~hz)&WQ zo=i(|YYFKu0*=-{mW#qi0eLgWb1+PzEEw%b_M7+`_qMtJC)o^S?Bha7ltX`FT69nc zRRYiHbp+YI#e3WhSZBvtU_IYDMtHK)A=FtXxtRx};_OA{r{Vj{a*cCx?8c+P)hwxa z?Mv*>b&fQ-h6LRW^cMID`|kEHU&LLu!qK&Db`mhouRL;At>osWjDUNN*Jf+n*hLfh zgy6&9rW4Y7Tay*TFa)gWwgK}ZuQ9RVrKCm^270lIN&BD&3dl9J0^-W!%zz4Avkz!-R8L+6qJvfi3)+1`xQq& zlXKi{YDW3il-d2OJ|J#Ow7HJIJs^HTb3=TaSZ#AZl05Df=}$j=*uMb^(%jMRTa2s7 z8lHTED|0z|>We9Teu$FJQH)gez*S_9!d~YJ(>F!GF`o>s&DVz5wU$*pNSoMWzX1g# zXRgE|Qy>_$+}sfm)10@yK1I}SlWFD0)l_7fVz+<$x1l$sZL~F# zEA2Dp%*aMcoc&%F>sFu!ZY?JVsh$T`%k4syqA>qAV)BI}MiB(?1Fpts)y)y0)| zk)&)vAZg1pr%qfLqQ60tK}?`JXC#lcMHwDut3k(T_%va7K&K-&@5>UOAKdpRs~!t5 z(Fi8!hcx3Yk`vp`ZRn^dFKv_&kw>F=2KdwnqEWy=4okur>O zGkJsoV}~C>tq{rNA^O^AyhbQi4Ou_0r73(BSC@7v2g4<5U!noElR`p3A=}Z!i&2rK zzx{Plv%weY`}v_dNlGhEFlvSYD``=(P6PkCTz$EE->qE4Chj~?Kz+(KWwLoO88!Lp z$V_&fYvYtQJ8;C*Y$YMq8))`NN8Z2rX{X~v|`M=lgzqY(Qx#bWiH zf^qi|b8Oq_^ra--=?MqnMUPb9MO4DKbr4I|wQUEr*xT+AqprWzw&9N@>TQ=Oxq`h( z)(yLp@>c+j(*;S*QKF7$+l)uO8Pk~XHSmqCd3Tt;b{-Y>{c;7;HXjRyQ3vTX$0ORY zgl;rRe6+i$G%;WiNn5i5>D2)|Pa%G(jyZOgrg4X(kx4aJ=`5q4TFk)tEz zsS4FOh2A6E_L{qzXhP1v4uA0ogU*>Li^|FW&OO_uryrsH_lmDvZQ3+OhE_S z2JnZYA2Ah^^1T~p(FY?=_B^7VZ9*^Ky-D`jKf zS(`};^(@XHBrEMaA~-nqnE%SGAG|R$wm-7bqYD$7Ub-o|Y#vaQ9m1m-!x4E=Iw0(= zx_=@u!!8PlGkd=^ToVd4fvO&ZI>nqnCN;O8H`zctT)1Q$5$*}M2CDUmgBsaE@_L)e zTNk@O-T~|4l|=O4zlP?|kkxtc&;mRin?_(4f!s@ZnZ}HZeDlLO1ob4gUQ{|uBIGN1 z+wf6i%r^uXa=9kYbZiI8?R)bwl-g=Fu`Snp34t{;U8)A4L?YKKac9F)I03bdTI^ml k{59lBfSu~Me{Ox#_}zI!eH)b

    图:查字典步骤

    -

    查阅字典这个小学生必备技能,实际上就是著名的二分查找算法。从数据结构的角度,我们可以把字典视为一个已排序的「数组」;从算法的角度,我们可以将上述查字典的一系列操作看作是「二分查找」。

    +

    查阅字典这个小学生必备技能,实际上就是著名的二分查找算法。从数据结构的角度,我们可以把字典视为一个已排序的“数组”;从算法的角度,我们可以将上述查字典的一系列操作看作是“二分查找”。

    例二:整理扑克。我们在打牌时,每局都需要整理扑克牌,使其从小到大排列,实现流程如下图所示。

    1. 将扑克牌划分为“有序”和“无序”两部分,并假设初始状态下最左 1 张扑克牌已经有序。
    2. @@ -3385,7 +3385,7 @@

      扑克排序步骤

      图:扑克排序步骤

      -

      上述整理扑克牌的方法本质上是「插入排序」算法,它在处理小型数据集时非常高效。许多编程语言的排序库函数中都存在插入排序的身影。

      +

      上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序库函数中都存在插入排序的身影。

      例三:货币找零。假设我们在超市购买了 \(69\) 元的商品,给收银员付了 \(100\) 元,则收银员需要找我们 \(31\) 元。他会很自然地完成如下图所示的思考。

      1. 可选项是比 \(31\) 元面值更小的货币,包括 \(1\) 元、\(5\) 元、\(10\) 元、\(20\) 元。
      2. @@ -3397,7 +3397,7 @@

        货币找零过程

        图:货币找零过程

        -

        在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方案。从数据结构与算法的角度看,这种方法本质上是「贪心算法」。

        +

        在以上步骤中,我们每一步都采取当前看来最好的选择(尽可能用大面额的货币),最终得到了可行的找零方案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。

        小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使我们能够通过编程将数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题转移到计算机上,以更高效的方式解决各种复杂问题。

        Tip

        diff --git a/chapter_introduction/what_is_dsa/index.html b/chapter_introduction/what_is_dsa/index.html index d3235dfa7..71bfbb45d 100644 --- a/chapter_introduction/what_is_dsa/index.html +++ b/chapter_introduction/what_is_dsa/index.html @@ -3493,7 +3493,7 @@

        值得说明的是,数据结构与算法是独立于编程语言的。正因如此,本书得以提供多种编程语言的实现。

        约定俗成的简称

        -

        在实际讨论时,我们通常会将「数据结构与算法」简称为「算法」。比如众所周知的 LeetCode 算法题目,实际上同时考察了数据结构和算法两方面的知识。

        +

        在实际讨论时,我们通常会将“数据结构与算法”简称为“算法”。比如众所周知的 LeetCode 算法题目,实际上同时考察了数据结构和算法两方面的知识。

        diff --git a/chapter_preface/suggestions/index.html b/chapter_preface/suggestions/index.html index 4034bd4ae..e96cf8a5b 100644 --- a/chapter_preface/suggestions/index.html +++ b/chapter_preface/suggestions/index.html @@ -3461,10 +3461,10 @@

        0.2.1   行文风格约定

        • 标题后标注 * 的是选读章节,内容相对困难。如果你的时间有限,建议可以先跳过。
        • -
        • 文章中的重要名词会用 「 」 括号标注,例如 「数组 Array」 。请务必记住这些名词,包括英文翻译,以便后续阅读文献时使用。
        • -
        • 加粗的文字 表示重点内容或总结性语句,这类文字值得特别关注。
        • 专有名词和有特指含义的词句会使用 “双引号” 标注,以避免歧义。
        • -
        • 涉及到编程语言之间不一致的名词,本书均以 Python 为准,例如使用 \(\text{None}\) 来表示“空”。
        • +
        • 重要专有名词及其英文翻译会用 「 」 括号标注,例如 「数组 array」 。建议记住它们,以便阅读文献。
        • +
        • 加粗的文字 表示重点内容或总结性语句,这类文字值得特别关注。
        • +
        • 当涉及到编程语言之间不一致的名词时,本书均以 Python 为准,例如使用 \(\text{None}\) 来表示“空”。
        • 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注释、内容注释、多行注释。
        diff --git a/chapter_searching/binary_search/index.html b/chapter_searching/binary_search/index.html index b4dac2392..a4be21cb0 100644 --- a/chapter_searching/binary_search/index.html +++ b/chapter_searching/binary_search/index.html @@ -3412,7 +3412,7 @@

        10.1   二分查找

        -

        「二分查找 Binary Search」是一种基于分治思想的高效搜索算法。它利用数据的有序性,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。

        +

        「二分查找 binary search」是一种基于分治思想的高效搜索算法。它利用数据的有序性,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。

        Question

        给定一个长度为 \(n\) 的数组 nums ,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素 target 在该数组中的索引。若数组不包含该元素,则返回 \(-1\)

        diff --git a/chapter_searching/searching_algorithm_revisited/index.html b/chapter_searching/searching_algorithm_revisited/index.html index 2804d05c3..402802d8b 100644 --- a/chapter_searching/searching_algorithm_revisited/index.html +++ b/chapter_searching/searching_algorithm_revisited/index.html @@ -3426,7 +3426,7 @@

        10.5   重识搜索算法

        -

        「搜索算法 Searching Algorithm」用于在数据结构(例如数组、链表、树或图)中搜索一个或一组满足特定条件的元素。

        +

        「搜索算法 searching algorithm」用于在数据结构(例如数组、链表、树或图)中搜索一个或一组满足特定条件的元素。

        根据实现思路,搜索算法总体可分为两种:

        • 通过遍历数据结构来定位目标元素,例如数组、链表、树和图的遍历等。
        • @@ -3436,17 +3436,17 @@

          10.5.1   暴力搜索

          暴力搜索通过遍历数据结构的每个元素来定位目标元素。

            -
          • 「线性搜索」适用于数组和链表等线性数据结构。它从数据结构的一端开始,逐个访问元素,直到找到目标元素或到达另一端仍没有找到目标元素为止。
          • -
          • 「广度优先搜索」和「深度优先搜索」是图和树的两种遍历策略。广度优先搜索从初始节点开始逐层搜索,由近及远地访问各个节点。深度优先搜索是从初始节点开始,沿着一条路径走到头为止,再回溯并尝试其他路径,直到遍历完整个数据结构。
          • +
          • “线性搜索”适用于数组和链表等线性数据结构。它从数据结构的一端开始,逐个访问元素,直到找到目标元素或到达另一端仍没有找到目标元素为止。
          • +
          • “广度优先搜索”和“深度优先搜索”是图和树的两种遍历策略。广度优先搜索从初始节点开始逐层搜索,由近及远地访问各个节点。深度优先搜索是从初始节点开始,沿着一条路径走到头为止,再回溯并尝试其他路径,直到遍历完整个数据结构。

          暴力搜索的优点是简单且通用性好,无须对数据做预处理和借助额外的数据结构

          然而,此类算法的时间复杂度为 \(O(n)\) ,其中 \(n\) 为元素数量,因此在数据量较大的情况下性能较差。

          10.5.2   自适应搜索

          自适应搜索利用数据的特有属性(例如有序性)来优化搜索过程,从而更高效地定位目标元素。

            -
          • 「二分查找」利用数据的有序性实现高效查找,仅适用于数组。
          • -
          • 「哈希查找」利用哈希表将搜索数据和目标数据建立为键值对映射,从而实现查询操作。
          • -
          • 「树查找」在特定的树结构(例如二叉搜索树)中,基于比较节点值来快速排除节点,从而定位目标元素。
          • +
          • “二分查找”利用数据的有序性实现高效查找,仅适用于数组。
          • +
          • “哈希查找”利用哈希表将搜索数据和目标数据建立为键值对映射,从而实现查询操作。
          • +
          • “树查找”在特定的树结构(例如二叉搜索树)中,基于比较节点值来快速排除节点,从而定位目标元素。

          此类算法的优点是效率高,时间复杂度可达到 \(O(\log n)\) 甚至 \(O(1)\)

          然而,使用这些算法往往需要对数据进行预处理。例如,二分查找需要预先对数组进行排序,哈希查找和树查找都需要借助额外的数据结构,维护这些数据结构也需要额外的时间和空间开支。

          diff --git a/chapter_sorting/bubble_sort/index.html b/chapter_sorting/bubble_sort/index.html index 0d9fb5aa9..46e5f6aac 100644 --- a/chapter_sorting/bubble_sort/index.html +++ b/chapter_sorting/bubble_sort/index.html @@ -3426,7 +3426,7 @@

          11.3   冒泡排序

          -

          「冒泡排序 Bubble Sort」通过连续地比较与交换相邻元素实现排序。这个过程就像气泡从底部升到顶部一样,因此得名冒泡排序。

          +

          「冒泡排序 bubble sort」通过连续地比较与交换相邻元素实现排序。这个过程就像气泡从底部升到顶部一样,因此得名冒泡排序。

          我们可以利用元素交换操作模拟上述过程:从数组最左端开始向右遍历,依次比较相邻元素大小,如果“左元素 > 右元素”就交换它俩。遍历完成后,最大的元素会被移动到数组的最右端。

          diff --git a/chapter_sorting/bucket_sort/index.html b/chapter_sorting/bucket_sort/index.html index 183761ed8..22b33732d 100644 --- a/chapter_sorting/bucket_sort/index.html +++ b/chapter_sorting/bucket_sort/index.html @@ -3427,7 +3427,7 @@

          11.8   桶排序

          前述的几种排序算法都属于“基于比较的排序算法”,它们通过比较元素间的大小来实现排序。此类排序算法的时间复杂度无法超越 \(O(n \log n)\) 。接下来,我们将探讨几种“非比较排序算法”,它们的时间复杂度可以达到线性阶。

          -

          「桶排序 Bucket Sort」是分治思想的一个典型应用。它通过设置一些具有大小顺序的桶,每个桶对应一个数据范围,将数据平均分配到各个桶中;然后,在每个桶内部分别执行排序;最终按照桶的顺序将所有数据合并。

          +

          「桶排序 bucket sort」是分治思想的一个典型应用。它通过设置一些具有大小顺序的桶,每个桶对应一个数据范围,将数据平均分配到各个桶中;然后,在每个桶内部分别执行排序;最终按照桶的顺序将所有数据合并。

          11.8.1   算法流程

          考虑一个长度为 \(n\) 的数组,元素是范围 \([0, 1)\) 的浮点数。桶排序的流程如下:

            diff --git a/chapter_sorting/counting_sort/index.html b/chapter_sorting/counting_sort/index.html index 94982ee64..7a3f1ed13 100644 --- a/chapter_sorting/counting_sort/index.html +++ b/chapter_sorting/counting_sort/index.html @@ -3440,7 +3440,7 @@

            11.9   计数排序

            -

            「计数排序 Counting Sort」通过统计元素数量来实现排序,通常应用于整数数组。

            +

            「计数排序 counting sort」通过统计元素数量来实现排序,通常应用于整数数组。

            11.9.1   简单实现

            先来看一个简单的例子。给定一个长度为 \(n\) 的数组 nums ,其中的元素都是“非负整数”。计数排序的整体流程如下:

              @@ -3736,7 +3736,7 @@

          11.9.2   完整实现

          细心的同学可能发现,如果输入数据是对象,上述步骤 3. 就失效了。例如,输入数据是商品对象,我们想要按照商品价格(类的成员变量)对商品进行排序,而上述算法只能给出价格的排序结果。

          -

          那么如何才能得到原数据的排序结果呢?我们首先计算 counter 的「前缀和」。顾名思义,索引 i 处的前缀和 prefix[i] 等于数组前 i 个元素之和,即

          +

          那么如何才能得到原数据的排序结果呢?我们首先计算 counter 的“前缀和”。顾名思义,索引 i 处的前缀和 prefix[i] 等于数组前 i 个元素之和,即:

          \[ \text{prefix}[i] = \sum_{j=0}^i \text{counter[j]} \]
          diff --git a/chapter_sorting/heap_sort/index.html b/chapter_sorting/heap_sort/index.html index 755b25b0b..2254070da 100644 --- a/chapter_sorting/heap_sort/index.html +++ b/chapter_sorting/heap_sort/index.html @@ -3414,9 +3414,9 @@

          11.7   堆排序

          Tip

          -

          阅读本节前,请确保已学完「堆」章节。

          +

          阅读本节前,请确保已学完“堆“章节。

          -

          「堆排序 Heap Sort」是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序:

          +

          「堆排序 heap sort」是一种基于堆数据结构实现的高效排序算法。我们可以利用已经学过的“建堆操作”和“元素出堆操作”实现堆排序:

          1. 输入数组并建立小顶堆,此时最小元素位于堆顶。
          2. 不断执行出堆操作,依次记录出堆元素,即可得到从小到大排序的序列。
          3. diff --git a/chapter_sorting/insertion_sort/index.html b/chapter_sorting/insertion_sort/index.html index ecd12908c..9a0ce1237 100644 --- a/chapter_sorting/insertion_sort/index.html +++ b/chapter_sorting/insertion_sort/index.html @@ -3426,7 +3426,7 @@

            11.4   插入排序

            -

            「插入排序 Insertion Sort」是一种简单的排序算法,它的工作原理与手动整理一副牌的过程非常相似。

            +

            「插入排序 insertion sort」是一种简单的排序算法,它的工作原理与手动整理一副牌的过程非常相似。

            具体来说,我们在未排序区间选择一个基准元素,将该元素与其左侧已排序区间的元素逐一比较大小,并将该元素插入到正确的位置。

            回忆数组的元素插入操作,设基准元素为 base ,我们需要将从目标索引到 base 之间的所有元素向右移动一位,然后再将 base 赋值给目标索引。

            单次插入操作

            diff --git a/chapter_sorting/merge_sort/index.html b/chapter_sorting/merge_sort/index.html index 8bb601f84..7dce27bb9 100644 --- a/chapter_sorting/merge_sort/index.html +++ b/chapter_sorting/merge_sort/index.html @@ -3426,7 +3426,7 @@

            11.6   归并排序

            -

            「归并排序 Merge Sort」基于分治思想实现排序,包含“划分”和“合并”两个阶段:

            +

            「归并排序 merge sort」基于分治思想实现排序,包含“划分”和“合并”两个阶段:

            1. 划分阶段:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题。
            2. 合并阶段:当子数组长度为 1 时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束。
            3. diff --git a/chapter_sorting/quick_sort/index.html b/chapter_sorting/quick_sort/index.html index c25205861..e48e0306a 100644 --- a/chapter_sorting/quick_sort/index.html +++ b/chapter_sorting/quick_sort/index.html @@ -3454,8 +3454,8 @@

              11.5   快速排序

              -

              「快速排序 Quick Sort」是一种基于分治思想的排序算法,运行高效,应用广泛。

              -

              快速排序的核心操作是「哨兵划分」,其目标是:选择数组中的某个元素作为“基准数”,将所有小于基准数的元素移到其左侧,而大于基准数的元素移到其右侧。具体来说,哨兵划分的流程为:

              +

              「快速排序 quick sort」是一种基于分治思想的排序算法,运行高效,应用广泛。

              +

              快速排序的核心操作是“哨兵划分”,其目标是:选择数组中的某个元素作为“基准数”,将所有小于基准数的元素移到其左侧,而大于基准数的元素移到其右侧。具体来说,哨兵划分的流程为:

              1. 选取数组最左端元素作为基准数,初始化两个指针 ij 分别指向数组的两端。
              2. 设置一个循环,在每轮中使用 ij)分别寻找第一个比基准数大(小)的元素,然后交换这两个元素。
              3. @@ -3794,8 +3794,8 @@

          11.5.1   算法流程

            -
          1. 首先,对原数组执行一次「哨兵划分」,得到未排序的左子数组和右子数组。
          2. -
          3. 然后,对左子数组和右子数组分别递归执行「哨兵划分」。
          4. +
          5. 首先,对原数组执行一次“哨兵划分”,得到未排序的左子数组和右子数组。
          6. +
          7. 然后,对左子数组和右子数组分别递归执行“哨兵划分”。
          8. 持续递归,直至子数组长度为 1 时终止,从而完成整个数组的排序。

          快速排序流程

          @@ -4004,14 +4004,14 @@
        • 非稳定排序:在哨兵划分的最后一步,基准数可能会被交换至相等元素的右侧。

        11.5.3   快排为什么快?

        -

        从名称上就能看出,快速排序在效率方面应该具有一定的优势。尽管快速排序的平均时间复杂度与「归并排序」和「堆排序」相同,但通常快速排序的效率更高,原因如下:

        +

        从名称上就能看出,快速排序在效率方面应该具有一定的优势。尽管快速排序的平均时间复杂度与“归并排序”和“堆排序”相同,但通常快速排序的效率更高,原因如下:

        • 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 \(O(n^2)\) ,没有归并排序稳定,但在绝大多数情况下,快速排序能在 \(O(n \log n)\) 的时间复杂度下运行。
        • -
        • 缓存使用效率高:在执行哨兵划分操作时,系统可将整个子数组加载到缓存,因此访问元素的效率较高。而像「堆排序」这类算法需要跳跃式访问元素,从而缺乏这一特性。
        • -
        • 复杂度的常数系数低:在上述三种算法中,快速排序的比较、赋值、交换等操作的总数量最少。这与「插入排序」比「冒泡排序」更快的原因类似。
        • +
        • 缓存使用效率高:在执行哨兵划分操作时,系统可将整个子数组加载到缓存,因此访问元素的效率较高。而像“堆排序”这类算法需要跳跃式访问元素,从而缺乏这一特性。
        • +
        • 复杂度的常数系数低:在上述三种算法中,快速排序的比较、赋值、交换等操作的总数量最少。这与“插入排序”比“冒泡排序”更快的原因类似。

        11.5.4   基准数优化

        -

        快速排序在某些输入下的时间效率可能降低。举一个极端例子,假设输入数组是完全倒序的,由于我们选择最左端元素作为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,导致左子数组长度为 \(n - 1\) 、右子数组长度为 \(0\) 。如此递归下去,每轮哨兵划分后的右子数组长度都为 \(0\) ,分治策略失效,快速排序退化为「冒泡排序」。

        +

        快速排序在某些输入下的时间效率可能降低。举一个极端例子,假设输入数组是完全倒序的,由于我们选择最左端元素作为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,导致左子数组长度为 \(n - 1\) 、右子数组长度为 \(0\) 。如此递归下去,每轮哨兵划分后的右子数组长度都为 \(0\) ,分治策略失效,快速排序退化为“冒泡排序”。

        为了尽量避免这种情况发生,我们可以优化哨兵划分中的基准数的选取策略。例如,我们可以随机选取一个元素作为基准数。然而,如果运气不佳,每次都选到不理想的基准数,效率仍然不尽如人意。

        需要注意的是,编程语言通常生成的是“伪随机数”。如果我们针对伪随机数序列构建一个特定的测试样例,那么快速排序的效率仍然可能劣化。

        为了进一步改进,我们可以在数组中选取三个候选元素(通常为数组的首、尾、中点元素),并将这三个候选元素的中位数作为基准数。这样一来,基准数“既不太小也不太大”的概率将大幅提升。当然,我们还可以选取更多候选元素,以进一步提高算法的稳健性。采用这种方法后,时间复杂度劣化至 \(O(n^2)\) 的概率大大降低。

        diff --git a/chapter_sorting/radix_sort/index.html b/chapter_sorting/radix_sort/index.html index f6ccf7e08..618309a5d 100644 --- a/chapter_sorting/radix_sort/index.html +++ b/chapter_sorting/radix_sort/index.html @@ -3413,12 +3413,12 @@

        11.10   基数排序

        上一节我们介绍了计数排序,它适用于数据量 \(n\) 较大但数据范围 \(m\) 较小的情况。假设我们需要对 \(n = 10^6\) 个学号进行排序,而学号是一个 \(8\) 位数字,这意味着数据范围 \(m = 10^8\) 非常大,使用计数排序需要分配大量内存空间,而基数排序可以避免这种情况。

        -

        「基数排序 Radix Sort」的核心思想与计数排序一致,也通过统计个数来实现排序。在此基础上,基数排序利用数字各位之间的递进关系,依次对每一位进行排序,从而得到最终的排序结果。

        +

        「基数排序 radix sort」的核心思想与计数排序一致,也通过统计个数来实现排序。在此基础上,基数排序利用数字各位之间的递进关系,依次对每一位进行排序,从而得到最终的排序结果。

        11.10.1   算法流程

        以学号数据为例,假设数字的最低位是第 \(1\) 位,最高位是第 \(8\) 位,基数排序的步骤如下:

        1. 初始化位数 \(k = 1\)
        2. -
        3. 对学号的第 \(k\) 位执行「计数排序」。完成后,数据会根据第 \(k\) 位从小到大排序。
        4. +
        5. 对学号的第 \(k\) 位执行“计数排序”。完成后,数据会根据第 \(k\) 位从小到大排序。
        6. \(k\) 增加 \(1\) ,然后返回步骤 2. 继续迭代,直到所有位都排序完成后结束。

        基数排序算法流程

        diff --git a/chapter_sorting/selection_sort/index.html b/chapter_sorting/selection_sort/index.html index 5054cf69f..2315892c5 100644 --- a/chapter_sorting/selection_sort/index.html +++ b/chapter_sorting/selection_sort/index.html @@ -3398,7 +3398,7 @@

        11.2   选择排序

        -

        「选择排序 Selection Sort」的工作原理非常直接:开启一个循环,每轮从未排序区间选择最小的元素,将其放到已排序区间的末尾。

        +

        「选择排序 selection sort」的工作原理非常直接:开启一个循环,每轮从未排序区间选择最小的元素,将其放到已排序区间的末尾。

        设数组的长度为 \(n\) ,选择排序的算法流程如下:

        1. 初始状态下,所有元素未排序,即未排序(索引)区间为 \([0, n-1]\)
        2. diff --git a/chapter_sorting/sorting_algorithm/index.html b/chapter_sorting/sorting_algorithm/index.html index 067a27a96..b59e3d95c 100644 --- a/chapter_sorting/sorting_algorithm/index.html +++ b/chapter_sorting/sorting_algorithm/index.html @@ -3412,7 +3412,7 @@

          11.1   排序算法

          -

          「排序算法 Sorting Algorithm」用于对一组数据按照特定顺序进行排列。排序算法有着广泛的应用,因为有序数据通常能够被更有效地查找、分析和处理。

          +

          「排序算法 sorting algorithm」用于对一组数据按照特定顺序进行排列。排序算法有着广泛的应用,因为有序数据通常能够被更有效地查找、分析和处理。

          在排序算法中,数据类型可以是整数、浮点数、字符或字符串等;顺序的判断规则可根据需求设定,如数字大小、字符 ASCII 码顺序或自定义规则。

          数据类型和判断规则示例

          图:数据类型和判断规则示例

          @@ -3420,8 +3420,8 @@

          11.1.1   评价维度

          运行效率:我们期望排序算法的时间复杂度尽量低,且总体操作数量较少(即时间复杂度中的常数项降低)。对于大数据量情况,运行效率显得尤为重要。

          就地性:顾名思义,「原地排序」通过在原数组上直接操作实现排序,无须借助额外的辅助数组,从而节省内存。通常情况下,原地排序的数据搬运操作较少,运行速度也更快。

          -

          稳定性:「稳定排序」在完成排序后,相等元素在数组中的相对顺序不发生改变。稳定排序是优良特性,也是多级排序场景的必要条件。

          -

          假设我们有一个存储学生信息的表格,第 1, 2 列分别是姓名和年龄。在这种情况下,「非稳定排序」可能导致输入数据的有序性丧失。

          +

          稳定性:「稳定排序」在完成排序后,相等元素在数组中的相对顺序不发生改变。

          +

          稳定排序是多级排序场景的必要条件。假设我们有一个存储学生信息的表格,第 1 列和第 2 列分别是姓名和年龄。在这种情况下,「非稳定排序」可能导致输入数据的有序性丧失。

          # 输入数据是按照姓名排序好的
           # (name, age)
             ('A', 19)
          diff --git a/chapter_stack_and_queue/deque/index.html b/chapter_stack_and_queue/deque/index.html
          index 0e023dfcb..c765872d8 100644
          --- a/chapter_stack_and_queue/deque/index.html
          +++ b/chapter_stack_and_queue/deque/index.html
          @@ -3466,7 +3466,7 @@
           
           
           

          5.3   双向队列

          -

          对于队列,我们仅能在头部删除或在尾部添加元素。然而,「双向队列 Deque」提供了更高的灵活性,允许在头部和尾部执行元素的添加或删除操作。

          +

          对于队列,我们仅能在头部删除或在尾部添加元素。然而,「双向队列 deque」提供了更高的灵活性,允许在头部和尾部执行元素的添加或删除操作。

          双向队列的操作

          图:双向队列的操作

          @@ -3797,7 +3797,7 @@

          双向队列的实现与队列类似,可以选择链表或数组作为底层数据结构。

          1.   基于双向链表的实现

          回顾上一节内容,我们使用普通单向链表来实现队列,因为它可以方便地删除头节点(对应出队操作)和在尾节点后添加新节点(对应入队操作)。

          -

          对于双向队列而言,头部和尾部都可以执行入队和出队操作。换句话说,双向队列需要实现另一个对称方向的操作。为此,我们采用「双向链表」作为双向队列的底层数据结构。

          +

          对于双向队列而言,头部和尾部都可以执行入队和出队操作。换句话说,双向队列需要实现另一个对称方向的操作。为此,我们采用“双向链表”作为双向队列的底层数据结构。

          我们将双向链表的头节点和尾节点视为双向队列的队首和队尾,同时实现在两端添加和删除节点的功能。

          diff --git a/chapter_stack_and_queue/queue/index.html b/chapter_stack_and_queue/queue/index.html index 99d453055..a36d5fa43 100644 --- a/chapter_stack_and_queue/queue/index.html +++ b/chapter_stack_and_queue/queue/index.html @@ -3466,8 +3466,8 @@

          5.2   队列

          -

          「队列 Queue」是一种遵循先入先出(First In, First Out)规则的线性数据结构。顾名思义,队列模拟了排队现象,即新来的人不断加入队列的尾部,而位于队列头部的人逐个离开。

          -

          我们把队列的头部称为「队首」,尾部称为「队尾」,把将元素加入队尾的操作称为「入队」,删除队首元素的操作称为「出队」。

          +

          「队列 queue」是一种遵循先入先出规则的线性数据结构。顾名思义,队列模拟了排队现象,即新来的人不断加入队列的尾部,而位于队列头部的人逐个离开。

          +

          我们把队列的头部称为“队首”,尾部称为“队尾”,把将元素加入队尾的操作称为“入队”,删除队首元素的操作称为“出队”。

          队列的先入先出规则

          图:队列的先入先出规则

          @@ -3750,7 +3750,7 @@

          5.2.2   队列实现

          为了实现队列,我们需要一种数据结构,可以在一端添加元素,并在另一端删除元素。因此,链表和数组都可以用来实现队列。

          1.   基于链表的实现

          -

          对于链表实现,我们可以将链表的「头节点」和「尾节点」分别视为队首和队尾,规定队尾仅可添加节点,而队首仅可删除节点。

          +

          对于链表实现,我们可以将链表的“头节点”和“尾节点”分别视为“队首”和“队尾”,规定队尾仅可添加节点,队首仅可删除节点。

          @@ -4639,7 +4639,7 @@

          图:基于数组实现队列的入队出队操作

          -

          你可能会发现一个问题:在不断进行入队和出队的过程中,frontrear 都在向右移动,当它们到达数组尾部时就无法继续移动了。为解决此问题,我们可以将数组视为首尾相接的「环形数组」。

          +

          你可能会发现一个问题:在不断进行入队和出队的过程中,frontrear 都在向右移动,当它们到达数组尾部时就无法继续移动了。为解决此问题,我们可以将数组视为首尾相接的“环形数组”。

          对于环形数组,我们需要让 frontrear 在越过数组尾部时,直接回到数组头部继续遍历。这种周期性规律可以通过“取余操作”来实现,代码如下所示。

          diff --git a/chapter_stack_and_queue/stack/index.html b/chapter_stack_and_queue/stack/index.html index 626768618..5286b83da 100644 --- a/chapter_stack_and_queue/stack/index.html +++ b/chapter_stack_and_queue/stack/index.html @@ -3534,9 +3534,9 @@

          5.1   栈

          -

          「栈 Stack」是一种遵循先入后出(First In, Last Out)原则的线性数据结构。

          +

          「栈 stack」是一种遵循先入后出的逻辑的线性数据结构。

          我们可以将栈类比为桌面上的一摞盘子,如果需要拿出底部的盘子,则需要先将上面的盘子依次取出。我们将盘子替换为各种类型的元素(如整数、字符、对象等),就得到了栈数据结构。

          -

          在栈中,我们把堆叠元素的顶部称为「栈顶」,底部称为「栈底」。将把元素添加到栈顶的操作叫做「入栈」,而删除栈顶元素的操作叫做「出栈」。

          +

          在栈中,我们把堆叠元素的顶部称为“栈顶”,底部称为“栈底”。将把元素添加到栈顶的操作叫做“入栈”,而删除栈顶元素的操作叫做“出栈”。

          栈的先入后出规则

          图:栈的先入后出规则

          @@ -3572,7 +3572,7 @@
          -

          通常情况下,我们可以直接使用编程语言内置的栈类。然而,某些语言可能没有专门提供栈类,这时我们可以将该语言的「数组」或「链表」视作栈来使用,并通过“脑补”来忽略与栈无关的操作。

          +

          通常情况下,我们可以直接使用编程语言内置的栈类。然而,某些语言可能没有专门提供栈类,这时我们可以将该语言的“数组”或“链表”视作栈来使用,并在程序逻辑上忽略与栈无关的操作。

          @@ -4567,7 +4567,7 @@

          2.   基于数组的实现

          -

          在基于「数组」实现栈时,我们可以将数组的尾部作为栈顶。在这样的设计下,入栈与出栈操作就分别对应在数组尾部添加元素与删除元素,时间复杂度都为 \(O(1)\)

          +

          使用数组实现栈时,我们可以将数组的尾部作为栈顶。在这样的设计下,入栈与出栈操作就分别对应在数组尾部添加元素与删除元素,时间复杂度都为 \(O(1)\)

          @@ -5169,7 +5169,7 @@

          综上,我们不能简单地确定哪种实现更加节省内存,需要针对具体情况进行分析。

          5.1.4   栈典型应用

            -
          • 浏览器中的后退与前进、软件中的撤销与反撤销。每当我们打开新的网页,浏览器就会将上一个网页执行入栈,这样我们就可以通过「后退」操作回到上一页面。后退操作实际上是在执行出栈。如果要同时支持后退和前进,那么需要两个栈来配合实现。
          • +
          • 浏览器中的后退与前进、软件中的撤销与反撤销。每当我们打开新的网页,浏览器就会将上一个网页执行入栈,这样我们就可以通过后退操作回到上一页面。后退操作实际上是在执行出栈。如果要同时支持后退和前进,那么需要两个栈来配合实现。
          • 程序内存管理。每次调用函数时,系统都会在栈顶添加一个栈帧,用于记录函数的上下文信息。在递归函数中,向下递推阶段会不断执行入栈操作,而向上回溯阶段则会执行出栈操作。
          diff --git a/chapter_tree/array_representation_of_tree/index.html b/chapter_tree/array_representation_of_tree/index.html index fe094ebf5..6b27871a1 100644 --- a/chapter_tree/array_representation_of_tree/index.html +++ b/chapter_tree/array_representation_of_tree/index.html @@ -3427,7 +3427,7 @@

          7.3   二叉树数组表示

          在链表表示下,二叉树的存储单元为节点 TreeNode ,节点之间通过指针相连接。在上节中,我们学习了在链表表示下的二叉树的各项基本操作。

          -

          那么,能否用「数组」来表示二叉树呢?答案是肯定的。

          +

          那么,我们能否用数组来表示二叉树呢?答案是肯定的。

          7.3.1   表示完美二叉树

          先分析一个简单案例。给定一个完美二叉树,我们将所有节点按照层序遍历的顺序存储在一个数组中,则每个节点都对应唯一的数组索引。

          根据层序遍历的特性,我们可以推导出父节点索引与子节点索引之间的“映射公式”:若节点的索引为 \(i\) ,则该节点的左子节点索引为 \(2i + 1\) ,右子节点索引为 \(2i + 2\)

          diff --git a/chapter_tree/avl_tree/index.html b/chapter_tree/avl_tree/index.html index 68cdaaabb..99cf97c3b 100644 --- a/chapter_tree/avl_tree/index.html +++ b/chapter_tree/avl_tree/index.html @@ -3627,7 +3627,7 @@

          G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「AVL 树」。论文中详细描述了一系列操作,确保在持续添加和删除节点后,AVL 树不会退化,从而使得各种操作的时间复杂度保持在 \(O(\log n)\) 级别。换句话说,在需要频繁进行增删查改操作的场景中,AVL 树能始终保持高效的数据操作性能,具有很好的应用价值。

          7.5.1   AVL 树常见术语

          -

          「AVL 树」既是二叉搜索树也是平衡二叉树,同时满足这两类二叉树的所有性质,因此也被称为「平衡二叉搜索树」。

          +

          AVL 树既是二叉搜索树也是平衡二叉树,同时满足这两类二叉树的所有性质,因此也被称为「平衡二叉搜索树 balanced binary search tree」。

          1.   节点高度

          在操作 AVL 树时,我们需要获取节点的高度,因此需要为 AVL 树的节点类添加 height 变量。

          @@ -3778,7 +3778,7 @@
          -

          「节点高度」是指从该节点到最远叶节点的距离,即所经过的“边”的数量。需要特别注意的是,叶节点的高度为 0 ,而空节点的高度为 -1 。我们将创建两个工具函数,分别用于获取和更新节点的高度。

          +

          “节点高度”是指从该节点到最远叶节点的距离,即所经过的“边”的数量。需要特别注意的是,叶节点的高度为 0 ,而空节点的高度为 -1 。我们将创建两个工具函数,分别用于获取和更新节点的高度。

          @@ -3980,7 +3980,7 @@

          2.   节点平衡因子

          -

          节点的「平衡因子 Balance Factor」定义为节点左子树的高度减去右子树的高度,同时规定空节点的平衡因子为 0 。我们同样将获取节点平衡因子的功能封装成函数,方便后续使用。

          +

          节点的「平衡因子 balance factor」定义为节点左子树的高度减去右子树的高度,同时规定空节点的平衡因子为 0 。我们同样将获取节点平衡因子的功能封装成函数,方便后续使用。

          @@ -4120,10 +4120,10 @@

          设平衡因子为 \(f\) ,则一棵 AVL 树的任意节点的平衡因子皆满足 \(-1 \le f \le 1\)

          7.5.2   AVL 树旋转

          -

          AVL 树的特点在于「旋转 Rotation」操作,它能够在不影响二叉树的中序遍历序列的前提下,使失衡节点重新恢复平衡。换句话说,旋转操作既能保持树的「二叉搜索树」属性,也能使树重新变为「平衡二叉树」

          -

          我们将平衡因子绝对值 \(> 1\) 的节点称为「失衡节点」。根据节点失衡情况的不同,旋转操作分为四种:右旋、左旋、先右旋后左旋、先左旋后右旋。下面我们将详细介绍这些旋转操作。

          +

          AVL 树的特点在于“旋转”操作,它能够在不影响二叉树的中序遍历序列的前提下,使失衡节点重新恢复平衡。换句话说,旋转操作既能保持“二叉搜索树”的性质,也能使树重新变为“平衡二叉树”

          +

          我们将平衡因子绝对值 \(> 1\) 的节点称为“失衡节点”。根据节点失衡情况的不同,旋转操作分为四种:右旋、左旋、先右旋后左旋、先左旋后右旋。下面我们将详细介绍这些旋转操作。

          1.   右旋

          -

          如下图所示,节点下方为平衡因子。从底至顶看,二叉树中首个失衡节点是“节点 3”。我们关注以该失衡节点为根节点的子树,将该节点记为 node ,其左子节点记为 child ,执行「右旋」操作。完成右旋后,子树已经恢复平衡,并且仍然保持二叉搜索树的特性。

          +

          如下图所示,节点下方为平衡因子。从底至顶看,二叉树中首个失衡节点是“节点 3”。我们关注以该失衡节点为根节点的子树,将该节点记为 node ,其左子节点记为 child ,执行“右旋”操作。完成右旋后,子树已经恢复平衡,并且仍然保持二叉搜索树的特性。

          @@ -4142,7 +4142,7 @@

          图:右旋操作步骤

          -

          此外,如果节点 child 本身有右子节点(记为 grandChild ),则需要在「右旋」中添加一步:将 grandChild 作为 node 的左子节点。

          +

          此外,如果节点 child 本身有右子节点(记为 grandChild ),则需要在右旋中添加一步:将 grandChild 作为 node 的左子节点。

          有 grandChild 的右旋操作

          图:有 grandChild 的右旋操作

          @@ -4349,15 +4349,15 @@

          2.   左旋

          -

          相应的,如果考虑上述失衡二叉树的“镜像”,则需要执行「左旋」操作。

          +

          相应的,如果考虑上述失衡二叉树的“镜像”,则需要执行“左旋”操作。

          左旋操作

          图:左旋操作

          -

          同理,若节点 child 本身有左子节点(记为 grandChild ),则需要在「左旋」中添加一步:将 grandChild 作为 node 的右子节点。

          +

          同理,若节点 child 本身有左子节点(记为 grandChild ),则需要在左旋中添加一步:将 grandChild 作为 node 的右子节点。

          有 grandChild 的左旋操作

          图:有 grandChild 的左旋操作

          -

          可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称性,我们可以轻松地从右旋的代码推导出左旋的代码。具体地,只需将「右旋」代码中的把所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到「左旋」代码。

          +

          可以观察到,右旋和左旋操作在逻辑上是镜像对称的,它们分别解决的两种失衡情况也是对称的。基于对称性,我们只需将右旋的实现代码中的所有的 left 替换为 right ,将所有的 right 替换为 left ,即可得到左旋的实现代码。

          @@ -4560,12 +4560,12 @@

          3.   先左旋后右旋

          -

          对于下图中的失衡节点 3,仅使用左旋或右旋都无法使子树恢复平衡。此时需要先左旋后右旋,即先对 child 执行「左旋」,再对 node 执行「右旋」。

          +

          对于下图中的失衡节点 3,仅使用左旋或右旋都无法使子树恢复平衡。此时需要先左旋后右旋,即先对 child 执行“左旋”,再对 node 执行“右旋”。

          先左旋后右旋

          图:先左旋后右旋

          4.   先右旋后左旋

          -

          同理,对于上述失衡二叉树的镜像情况,需要先右旋后左旋,即先对 child 执行「右旋」,然后对 node 执行「左旋」。

          +

          同理,对于上述失衡二叉树的镜像情况,需要先右旋后左旋,即先对 child 执行“右旋”,然后对 node 执行“左旋”。

          先右旋后左旋

          图:先右旋后左旋

          @@ -5002,7 +5002,7 @@

          7.5.3   AVL 树常用操作

          1.   插入节点

          -

          「AVL 树」的节点插入操作与「二叉搜索树」在主体上类似。唯一的区别在于,在 AVL 树中插入节点后,从该节点到根节点的路径上可能会出现一系列失衡节点。因此,我们需要从这个节点开始,自底向上执行旋转操作,使所有失衡节点恢复平衡

          +

          AVL 树的节点插入操作与二叉搜索树在主体上类似。唯一的区别在于,在 AVL 树中插入节点后,从该节点到根节点的路径上可能会出现一系列失衡节点。因此,我们需要从这个节点开始,自底向上执行旋转操作,使所有失衡节点恢复平衡

          diff --git a/chapter_tree/binary_search_tree/index.html b/chapter_tree/binary_search_tree/index.html index 5d1a8a2da..0e09215b4 100644 --- a/chapter_tree/binary_search_tree/index.html +++ b/chapter_tree/binary_search_tree/index.html @@ -3494,7 +3494,7 @@

          7.4   二叉搜索树

          -

          「二叉搜索树 Binary Search Tree」满足以下条件:

          +

          「二叉搜索树 binary search tree」满足以下条件:

          1. 对于根节点,左子树中所有节点的值 \(<\) 根节点的值 \(<\) 右子树中所有节点的值。
          2. 任意节点的左、右子树也是二叉搜索树,即同样满足条件 1.
          3. diff --git a/chapter_tree/binary_tree/index.html b/chapter_tree/binary_tree/index.html index 8ae42155f..ea84332d8 100644 --- a/chapter_tree/binary_tree/index.html +++ b/chapter_tree/binary_tree/index.html @@ -3508,7 +3508,7 @@

            7.1   二叉树

            -

            「二叉树 Binary Tree」是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着“一分为二”的分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含:值、左子节点引用、右子节点引用。

            +

            「二叉树 binary tree」是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着“一分为二”的分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含:值、左子节点引用、右子节点引用。

            @@ -3648,29 +3648,29 @@
            -

            节点的两个指针分别指向「左子节点」和「右子节点」,同时该节点被称为这两个子节点的「父节点」。当给定一个二叉树的节点时,我们将该节点的左子节点及其以下节点形成的树称为该节点的「左子树」,同理可得「右子树」。

            -

            在二叉树中,除叶节点外,其他所有节点都包含子节点和非空子树。例如,在以下示例中,若将“节点 2”视为父节点,则其左子节点和右子节点分别是“节点 4”和“节点 5”,左子树是“节点 4 及其以下节点形成的树”,右子树是“节点 5 及其以下节点形成的树”。

            +

            每个节点都有两个引用(指针),分别指向「左子节点 left-child node」和「右子节点 right-child node」,该节点被称为这两个子节点的「父节点 parent node」。当给定一个二叉树的节点时,我们将该节点的左子节点及其以下节点形成的树称为该节点的「左子树 left subtree」,同理可得「右子树 right subtree」。

            +

            在二叉树中,除叶节点外,其他所有节点都包含子节点和非空子树。在以下示例中,若将“节点 2”视为父节点,则其左子节点和右子节点分别是“节点 4”和“节点 5”,左子树是“节点 4 及其以下节点形成的树”,右子树是“节点 5 及其以下节点形成的树”。

            父节点、子节点、子树

            图:父节点、子节点、子树

            7.1.1   二叉树常见术语

            二叉树涉及的术语较多,建议尽量理解并记住。

              -
            • 「根节点 Root Node」:位于二叉树顶层的节点,没有父节点。
            • -
            • 「叶节点 Leaf Node」:没有子节点的节点,其两个指针均指向 \(\text{None}\)
            • -
            • 节点的「层 Level」:从顶至底递增,根节点所在层为 1 。
            • -
            • 节点的「度 Degree」:节点的子节点的数量。在二叉树中,度的范围是 0, 1, 2 。
            • -
            • 「边 Edge」:连接两个节点的线段,即节点指针。
            • -
            • 二叉树的「高度」:从根节点到最远叶节点所经过的边的数量。
            • -
            • 节点的「深度 Depth」 :从根节点到该节点所经过的边的数量。
            • -
            • 节点的「高度 Height」:从最远叶节点到该节点所经过的边的数量。
            • +
            • 「根节点 root node」:位于二叉树顶层的节点,没有父节点。
            • +
            • 「叶节点 leaf node」:没有子节点的节点,其两个指针均指向 \(\text{None}\)
            • +
            • 「边 edge」:连接两个节点的线段,即节点引用(指针)。
            • +
            • 节点所在的「层 level」:从顶至底递增,根节点所在层为 1 。
            • +
            • 节点的「度 degree」:节点的子节点的数量。在二叉树中,度的取值范围是 0, 1, 2 。
            • +
            • 二叉树的「高度 height」:从根节点到最远叶节点所经过的边的数量。
            • +
            • 节点的「深度 depth」 :从根节点到该节点所经过的边的数量。
            • +
            • 节点的「高度 height」:从最远叶节点到该节点所经过的边的数量。

            二叉树的常用术语

            图:二叉树的常用术语

            高度与深度的定义

            -

            请注意,我们通常将「高度」和「深度」定义为“走过边的数量”,但有些题目或教材可能会将其定义为“走过节点的数量”。在这种情况下,高度和深度都需要加 1 。

            +

            请注意,我们通常将“高度”和“深度”定义为“走过边的数量”,但有些题目或教材可能会将其定义为“走过节点的数量”。在这种情况下,高度和深度都需要加 1 。

            7.1.2   二叉树基本操作

            初始化二叉树。与链表类似,首先初始化节点,然后构建引用指向(即指针)。

            @@ -3954,31 +3954,31 @@

          7.1.3   常见二叉树类型

          1.   完美二叉树

          -

          「完美二叉树 Perfect Binary Tree」除了最底层外,其余所有层的节点都被完全填满。在完美二叉树中,叶节点的度为 \(0\) ,其余所有节点的度都为 \(2\) ;若树高度为 \(h\) ,则节点总数为 \(2^{h+1} - 1\) ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。

          +

          「完美二叉树 perfect binary tree」除了最底层外,其余所有层的节点都被完全填满。在完美二叉树中,叶节点的度为 \(0\) ,其余所有节点的度都为 \(2\) ;若树高度为 \(h\) ,则节点总数为 \(2^{h+1} - 1\) ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。

          Tip

          -

          在中文社区中,完美二叉树常被称为「满二叉树」,请注意区分。

          +

          请注意,在中文社区中,完美二叉树常被称为「满二叉树」。

          完美二叉树

          图:完美二叉树

          2.   完全二叉树

          -

          「完全二叉树 Complete Binary Tree」只有最底层的节点未被填满,且最底层节点尽量靠左填充。

          +

          「完全二叉树 complete binary tree」只有最底层的节点未被填满,且最底层节点尽量靠左填充。

          完全二叉树

          图:完全二叉树

          3.   完满二叉树

          -

          「完满二叉树 Full Binary Tree」除了叶节点之外,其余所有节点都有两个子节点。

          +

          「完满二叉树 full binary tree」除了叶节点之外,其余所有节点都有两个子节点。

          完满二叉树

          图:完满二叉树

          4.   平衡二叉树

          -

          「平衡二叉树 Balanced Binary Tree」中任意节点的左子树和右子树的高度之差的绝对值不超过 1 。

          +

          「平衡二叉树 balanced binary tree」中任意节点的左子树和右子树的高度之差的绝对值不超过 1 。

          平衡二叉树

          图:平衡二叉树

          7.1.4   二叉树的退化

          -

          当二叉树的每层节点都被填满时,达到「完美二叉树」;而当所有节点都偏向一侧时,二叉树退化为「链表」。

          +

          当二叉树的每层节点都被填满时,达到“完美二叉树”;而当所有节点都偏向一侧时,二叉树退化为“链表”。

          • 完美二叉树是理想情况,可以充分发挥二叉树“分治”的优势。
          • 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 \(O(n)\)
          • diff --git a/chapter_tree/binary_tree_traversal/index.html b/chapter_tree/binary_tree_traversal/index.html index 98b6ad939..0f5d5f90e 100644 --- a/chapter_tree/binary_tree_traversal/index.html +++ b/chapter_tree/binary_tree_traversal/index.html @@ -3415,12 +3415,12 @@

            从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。

            二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。

            7.2.1   层序遍历

            -

            「层序遍历 Level-Order Traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。

            -

            层序遍历本质上属于「广度优先搜索 Breadth-First Traversal」,它体现了一种“一圈一圈向外扩展”的逐层搜索方式。

            +

            「层序遍历 level-order traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。

            +

            层序遍历本质上属于「广度优先遍历 breadth-first traversal」,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。

            二叉树的层序遍历

            图:二叉树的层序遍历

            -

            广度优先遍历通常借助「队列」来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。

            +

            广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。

            @@ -3706,7 +3706,7 @@

            时间复杂度:所有节点被访问一次,使用 \(O(n)\) 时间,其中 \(n\) 为节点数量。

            空间复杂度:在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 \(\frac{n + 1}{2}\) 个节点,占用 \(O(n)\) 空间。

            7.2.2   前序、中序、后序遍历

            -

            相应地,前序、中序和后序遍历都属于「深度优先遍历 Depth-First Traversal」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。

            +

            相应地,前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。

            如下图所示,左侧是深度优先遍历的示意图,右上方是对应的递归代码。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,在这个过程中,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。

            二叉搜索树的前、中、后序遍历

            图:二叉搜索树的前、中、后序遍历

            diff --git a/search/search_index.json b/search/search_index.json index 7765f384a..60429a842 100644 --- a/search/search_index.json +++ b/search/search_index.json @@ -1 +1 @@ -{"config":{"lang":["en"],"separator":"[\\s\\u200b\\u3000\\-\u3001\u3002\uff0c\uff0e\uff1f\uff01\uff1b]+","pipeline":["stemmer"]},"docs":[{"location":"","title":"Home","text":"\u300a Hello \u7b97\u6cd5 \u300b

            \u52a8\u753b\u56fe\u89e3\u3001\u4e00\u952e\u8fd0\u884c\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u6559\u7a0b

            \u63a8\u8350\u8bed

            Quote

            \u201c\u4e00\u672c\u901a\u4fd7\u6613\u61c2\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5165\u95e8\u4e66\uff0c\u5f15\u5bfc\u8bfb\u8005\u624b\u8111\u5e76\u7528\u5730\u5b66\u4e60\uff0c\u5f3a\u70c8\u63a8\u8350\u7b97\u6cd5\u521d\u5b66\u8005\u9605\u8bfb\u3002\u201d

            \u2014\u2014 \u9093\u4fca\u8f89\uff0c\u6e05\u534e\u5927\u5b66\u8ba1\u7b97\u673a\u7cfb\u6559\u6388

            Quote

            \u201c\u5982\u679c\u6211\u5f53\u5e74\u5b66\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u65f6\u5019\u6709\u300aHello \u7b97\u6cd5\u300b\uff0c\u5b66\u8d77\u6765\u5e94\u8be5\u4f1a\u7b80\u5355 10 \u500d\uff01\u201d

            \u2014\u2014 \u674e\u6c90\uff0c\u4e9a\u9a6c\u900a\u8d44\u6df1\u9996\u5e2d\u79d1\u5b66\u5bb6

            \u5168\u4e66\u52a8\u753b\u56fe\u89e3

            \u5185\u5bb9\u6e05\u6670\u6613\u61c2\u3001\u5b66\u4e60\u66f2\u7ebf\u5e73\u6ed1\u7535\u8111\u3001\u5e73\u677f\u3001\u624b\u673a\u5168\u7ec8\u7aef\u9605\u8bfb

            \"A picture is worth a thousand words.\"

            \u201c\u4e00\u56fe\u80dc\u5343\u8a00\u201d

            \u4ee3\u7801\u4e00\u952e\u8fd0\u884c

            \u63d0\u4f9b\u5404\u4e2a\u7b97\u6cd5\u4e0e\u6570\u636e\u7ed3\u6784\u7684\u7b80\u6d01\u5b9e\u73b0\u4e0e\u6d4b\u8bd5\u6837\u4f8b\uff0c\u7686\u53ef\u76f4\u63a5\u8fd0\u884c\u652f\u6301 Java, C++, Python, Go, JS, TS, C#, Swift, Zig \u7b49\u8bed\u8a00

            \"Talk is cheap. Show me the code.\"

            \u201c\u5c11\u5439\u725b\uff0c\u770b\u4ee3\u7801\u201d

            \u53ef\u8ba8\u8bba\u4e0e\u63d0\u95ee

            \u9f13\u52b1\u5c0f\u4f19\u4f34\u4eec\u4e92\u5e2e\u4e92\u52a9\u3001\u5171\u540c\u6210\u957f\u63d0\u95ee\u4e0e\u8bc4\u8bba\u4e00\u822c\u80fd\u5728\u4e24\u65e5\u5185\u5f97\u5230\u56de\u590d

            \u201c\u8ffd\u98ce\u8d76\u6708\u83ab\u505c\u7559\uff0c\u5e73\u829c\u5c3d\u5904\u662f\u6625\u5c71\u201d

            \u4e00\u8d77\u52a0\u6cb9\uff01

            \u5e8f

            \u4e24\u5e74\u524d\uff0c\u6211\u5728\u529b\u6263\u4e0a\u5206\u4eab\u4e86\u300a\u5251\u6307 Offer\u300b\u7cfb\u5217\u9898\u89e3\uff0c\u53d7\u5230\u4e86\u8bb8\u591a\u540c\u5b66\u7684\u559c\u7231\u548c\u652f\u6301\u3002\u5728\u4e0e\u8bfb\u8005\u7684\u4ea4\u6d41\u671f\u95f4\uff0c\u6700\u5e38\u6536\u5230\u7684\u4e00\u4e2a\u95ee\u9898\u662f\u201c\u5982\u4f55\u5165\u95e8\u5b66\u4e60\u7b97\u6cd5\u201d\u3002\u9010\u6e10\u5730\uff0c\u6211\u5bf9\u8fd9\u4e2a\u95ee\u9898\u4ea7\u751f\u4e86\u6d53\u539a\u7684\u5174\u8da3\u3002

            \u4e24\u773c\u4e00\u62b9\u9ed1\u5730\u5237\u9898\u4f3c\u4e4e\u662f\u6700\u53d7\u6b22\u8fce\u7684\u65b9\u6cd5\uff0c\u7b80\u5355\u76f4\u63a5\u4e14\u6709\u6548\u3002\u7136\u800c\u5237\u9898\u5c31\u5982\u540c\u73a9\u201c\u626b\u96f7\u201d\u6e38\u620f\uff0c\u81ea\u5b66\u80fd\u529b\u5f3a\u7684\u540c\u5b66\u80fd\u591f\u987a\u5229\u5730\u5c06\u5730\u96f7\u9010\u4e2a\u6392\u6389\uff0c\u800c\u57fa\u7840\u4e0d\u8db3\u7684\u540c\u5b66\u5f88\u53ef\u80fd\u88ab\u70b8\u7684\u6ee1\u5934\u662f\u5305\uff0c\u5e76\u5728\u632b\u6298\u4e2d\u6b65\u6b65\u9000\u7f29\u3002\u901a\u8bfb\u6559\u6750\u4e66\u7c4d\u4e5f\u662f\u4e00\u79cd\u5e38\u89c1\u505a\u6cd5\uff0c\u4f46\u5bf9\u4e8e\u9762\u5411\u6c42\u804c\u7684\u540c\u5b66\u6765\u8bf4\uff0c\u6bd5\u4e1a\u5b63\u3001\u6295\u9012\u7b80\u5386\u3001\u51c6\u5907\u7b14\u8bd5\u9762\u8bd5\u5df2\u7ecf\u5360\u636e\u4e86\u5927\u90e8\u5206\u7cbe\u529b\uff0c\u539a\u91cd\u7684\u4e66\u7c4d\u5f80\u5f80\u53d8\u6210\u4e86\u4e00\u9879\u8270\u5de8\u7684\u6311\u6218\u3002

            \u5982\u679c\u4f60\u4e5f\u9762\u4e34\u7c7b\u4f3c\u7684\u56f0\u6270\uff0c\u90a3\u4e48\u5f88\u5e78\u8fd0\u8fd9\u672c\u4e66\u627e\u5230\u4e86\u4f60\u3002\u672c\u4e66\u662f\u6211\u5bf9\u6b64\u95ee\u9898\u7684\u7ed9\u51fa\u7684\u7b54\u6848\uff0c\u5373\u4f7f\u4e0d\u662f\u6700\u4f18\u89e3\uff0c\u4e5f\u81f3\u5c11\u662f\u4e00\u6b21\u79ef\u6781\u7684\u5c1d\u8bd5\u3002\u8fd9\u672c\u4e66\u867d\u7136\u4e0d\u8db3\u4ee5\u8ba9\u4f60\u76f4\u63a5\u62ff\u5230 Offer \uff0c\u4f46\u4f1a\u5f15\u5bfc\u4f60\u63a2\u7d22\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u201c\u77e5\u8bc6\u5730\u56fe\u201d\uff0c\u5e26\u4f60\u4e86\u89e3\u4e0d\u540c\u201c\u5730\u96f7\u201d\u7684\u5f62\u72b6\u5927\u5c0f\u548c\u5206\u5e03\u4f4d\u7f6e\uff0c\u8ba9\u4f60\u638c\u63e1\u5404\u79cd\u201c\u6392\u96f7\u65b9\u6cd5\u201d\u3002\u6709\u4e86\u8fd9\u4e9b\u672c\u9886\uff0c\u76f8\u4fe1\u4f60\u53ef\u4ee5\u66f4\u52a0\u81ea\u5982\u5730\u5e94\u5bf9\u5237\u9898\u548c\u9605\u8bfb\u6587\u732e\uff0c\u9010\u6b65\u6784\u5efa\u8d77\u5b8c\u6574\u7684\u77e5\u8bc6\u4f53\u7cfb\u3002

            \u4f5c\u8005\u7b80\u4ecb

            \u9773\u5b87\u680b (Krahets)\uff0c\u5927\u5382\u9ad8\u7ea7\u7b97\u6cd5\u5de5\u7a0b\u5e08\uff0c\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\u7855\u58eb\u3002\u529b\u6263\uff08LeetCode\uff09\u5168\u7f51\u9605\u8bfb\u91cf\u6700\u9ad8\u535a\u4e3b\uff0c\u5176 LeetBook\u300a\u56fe\u89e3\u7b97\u6cd5\u6570\u636e\u7ed3\u6784\u300b\u5df2\u88ab\u8ba2\u9605 24 \u4e07\u672c\u3002

            \u81f4\u8c22

            \u672c\u4e66\u5728\u5f00\u6e90\u793e\u533a\u4f17\u591a\u8d21\u732e\u8005\u7684\u5171\u540c\u52aa\u529b\u4e0b\u4e0d\u65ad\u6210\u957f\u3002\u611f\u8c22\u6bcf\u4e00\u4f4d\u6295\u5165\u65f6\u95f4\u4e0e\u7cbe\u529b\u7684\u64b0\u7a3f\u4eba\uff0c\u662f\u4ed6\u4eec\u7684\u65e0\u79c1\u5949\u732e\u4f7f\u8fd9\u672c\u4e66\u53d8\u5f97\u66f4\u597d\uff0c\u4ed6\u4eec\u662f\uff08\u6309\u7167 GitHub \u81ea\u52a8\u751f\u6210\u7684\u987a\u5e8f\uff09\uff1a

            \u672c\u4e66\u7684\u4ee3\u7801\u5ba1\u9605\u5de5\u4f5c\u7531 Gonglja, gvenusleo, justin\u2010tse, krahets, nuomi1, Reanon, sjinzh \u5b8c\u6210\uff08\u6309\u7167\u9996\u5b57\u6bcd\u987a\u5e8f\u6392\u5217\uff09\u3002\u611f\u8c22\u4ed6\u4eec\u4ed8\u51fa\u7684\u65f6\u95f4\u4e0e\u7cbe\u529b\uff0c\u6b63\u662f\u4ed6\u4eec\u786e\u4fdd\u4e86\u5404\u8bed\u8a00\u4ee3\u7801\u7684\u89c4\u8303\u4e0e\u7edf\u4e00\u3002

            GongljaC / C++ gvenusleoDart hpstoryC# justin-tseJS / TS krahetsJava / Python nuomi1Swift ReanonGo / C sjinzhRust / Zig"},{"location":"chapter_appendix/","title":"\u7b2c 16 \u7ae0 \u00a0 \u9644\u5f55","text":""},{"location":"chapter_appendix/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 16.1 \u00a0 \u7f16\u7a0b\u73af\u5883\u5b89\u88c5
            • 16.2 \u00a0 \u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c
            "},{"location":"chapter_appendix/contribution/","title":"16.2 \u00a0 \u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c","text":"

            \u7531\u4e8e\u4f5c\u8005\u80fd\u529b\u6709\u9650\uff0c\u4e66\u4e2d\u96be\u514d\u5b58\u5728\u4e00\u4e9b\u9057\u6f0f\u548c\u9519\u8bef\uff0c\u8bf7\u60a8\u8c05\u89e3\u3002\u5982\u679c\u60a8\u53d1\u73b0\u4e86\u7b14\u8bef\u3001\u5931\u6548\u94fe\u63a5\u3001\u5185\u5bb9\u7f3a\u5931\u3001\u6587\u5b57\u6b67\u4e49\u3001\u89e3\u91ca\u4e0d\u6e05\u6670\u6216\u884c\u6587\u7ed3\u6784\u4e0d\u5408\u7406\u7b49\u95ee\u9898\uff0c\u8bf7\u534f\u52a9\u6211\u4eec\u8fdb\u884c\u4fee\u6b63\uff0c\u4ee5\u5e2e\u52a9\u5176\u4ed6\u8bfb\u8005\u83b7\u5f97\u66f4\u4f18\u8d28\u7684\u5b66\u4e60\u8d44\u6e90\u3002

            \u6240\u6709\u64b0\u7a3f\u4eba\u7684 GitHub ID \u5c06\u5728\u4ed3\u5e93\u3001\u7f51\u9875\u7248\u548c PDF \u7248\u7684\u4e3b\u9875\u4e0a\u8fdb\u884c\u5c55\u793a\uff0c\u4ee5\u611f\u8c22\u4ed6\u4eec\u5bf9\u5f00\u6e90\u793e\u533a\u7684\u65e0\u79c1\u5949\u732e\u3002

            \u5f00\u6e90\u7684\u9b45\u529b

            \u7eb8\u8d28\u4e66\u7c4d\u7684\u4e24\u6b21\u5370\u5237\u7684\u95f4\u9694\u65f6\u95f4\u5f80\u5f80\u9700\u8981\u6570\u5e74\uff0c\u5185\u5bb9\u66f4\u65b0\u975e\u5e38\u4e0d\u65b9\u4fbf\u3002

            \u7136\u800c\u5728\u672c\u5f00\u6e90\u4e66\u4e2d\uff0c\u5185\u5bb9\u66f4\u8fed\u7684\u65f6\u95f4\u88ab\u7f29\u77ed\u81f3\u6570\u65e5\u751a\u81f3\u51e0\u4e2a\u5c0f\u65f6\u3002

            "},{"location":"chapter_appendix/contribution/#1621","title":"16.2.1 \u00a0 \u5185\u5bb9\u5fae\u8c03","text":"

            \u5728\u6bcf\u4e2a\u9875\u9762\u7684\u53f3\u4e0a\u89d2\u6709\u4e00\u4e2a\u300c\u7f16\u8f91\u300d\u56fe\u6807\uff0c\u60a8\u53ef\u4ee5\u6309\u7167\u4ee5\u4e0b\u6b65\u9aa4\u4fee\u6539\u6587\u672c\u6216\u4ee3\u7801\uff1a

            1. \u70b9\u51fb\u7f16\u8f91\u6309\u94ae\uff0c\u5982\u679c\u9047\u5230\u201c\u9700\u8981 Fork \u6b64\u4ed3\u5e93\u201d\u7684\u63d0\u793a\uff0c\u8bf7\u540c\u610f\u8be5\u64cd\u4f5c\u3002
            2. \u4fee\u6539 Markdown \u6e90\u6587\u4ef6\u5185\u5bb9\uff0c\u68c0\u67e5\u5185\u5bb9\u7684\u6b63\u786e\u6027\uff0c\u5e76\u5c3d\u91cf\u4fdd\u6301\u6392\u7248\u683c\u5f0f\u7684\u7edf\u4e00\u3002
            3. \u5728\u9875\u9762\u5e95\u90e8\u586b\u5199\u4fee\u6539\u8bf4\u660e\uff0c\u7136\u540e\u70b9\u51fb\u201cPropose file change\u201d\u6309\u94ae\u3002\u9875\u9762\u8df3\u8f6c\u540e\uff0c\u70b9\u51fb\u201cCreate pull request\u201d\u6309\u94ae\u5373\u53ef\u53d1\u8d77\u62c9\u53d6\u8bf7\u6c42\u3002

            \u56fe\uff1a\u9875\u9762\u7f16\u8f91\u6309\u952e

            \u56fe\u7247\u65e0\u6cd5\u76f4\u63a5\u4fee\u6539\uff0c\u9700\u8981\u901a\u8fc7\u65b0\u5efa Issue \u6216\u8bc4\u8bba\u7559\u8a00\u6765\u63cf\u8ff0\u95ee\u9898\uff0c\u6211\u4eec\u4f1a\u5c3d\u5feb\u91cd\u65b0\u7ed8\u5236\u5e76\u66ff\u6362\u56fe\u7247\u3002

            "},{"location":"chapter_appendix/contribution/#1622","title":"16.2.2 \u00a0 \u5185\u5bb9\u521b\u4f5c","text":"

            \u5982\u679c\u60a8\u6709\u5174\u8da3\u53c2\u4e0e\u6b64\u5f00\u6e90\u9879\u76ee\uff0c\u5305\u62ec\u5c06\u4ee3\u7801\u7ffb\u8bd1\u6210\u5176\u4ed6\u7f16\u7a0b\u8bed\u8a00\u3001\u6269\u5c55\u6587\u7ae0\u5185\u5bb9\u7b49\uff0c\u90a3\u4e48\u9700\u8981\u5b9e\u65bd Pull Request \u5de5\u4f5c\u6d41\u7a0b\uff1a

            1. \u767b\u5f55 GitHub \uff0c\u5c06\u672c\u4ed3\u5e93 Fork \u5230\u4e2a\u4eba\u8d26\u53f7\u4e0b\u3002
            2. \u8fdb\u5165\u60a8\u7684 Fork \u4ed3\u5e93\u7f51\u9875\uff0c\u4f7f\u7528 git clone \u547d\u4ee4\u5c06\u4ed3\u5e93\u514b\u9686\u81f3\u672c\u5730\u3002
            3. \u5728\u672c\u5730\u8fdb\u884c\u5185\u5bb9\u521b\u4f5c\uff0c\u5e76\u8fdb\u884c\u5b8c\u6574\u6d4b\u8bd5\uff0c\u9a8c\u8bc1\u4ee3\u7801\u7684\u6b63\u786e\u6027\u3002
            4. \u5c06\u672c\u5730\u6240\u505a\u66f4\u6539 Commit \uff0c\u7136\u540e Push \u81f3\u8fdc\u7a0b\u4ed3\u5e93\u3002
            5. \u5237\u65b0\u4ed3\u5e93\u7f51\u9875\uff0c\u70b9\u51fb\u201cCreate pull request\u201d\u6309\u94ae\u5373\u53ef\u53d1\u8d77\u62c9\u53d6\u8bf7\u6c42\u3002
            "},{"location":"chapter_appendix/contribution/#1623-docker","title":"16.2.3 \u00a0 Docker \u90e8\u7f72","text":"

            \u6267\u884c\u4ee5\u4e0b Docker \u811a\u672c\uff0c\u7a0d\u7b49\u7247\u523b\uff0c\u5373\u53ef\u5728\u7f51\u9875 http://localhost:8000 \u8bbf\u95ee\u672c\u9879\u76ee\u3002

            git clone https://github.com/krahets/hello-algo.git\ncd hello-algo\ndocker-compose up -d\n

            \u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4\u5373\u53ef\u5220\u9664\u90e8\u7f72\u3002

            docker-compose down\n
            "},{"location":"chapter_appendix/installation/","title":"16.1 \u00a0 \u7f16\u7a0b\u73af\u5883\u5b89\u88c5","text":""},{"location":"chapter_appendix/installation/#1611-vscode","title":"16.1.1 \u00a0 VSCode","text":"

            \u672c\u4e66\u63a8\u8350\u4f7f\u7528\u5f00\u6e90\u8f7b\u91cf\u7684 VSCode \u4f5c\u4e3a\u672c\u5730 IDE \uff0c\u4e0b\u8f7d\u5e76\u5b89\u88c5 VSCode \u3002

            "},{"location":"chapter_appendix/installation/#1612-java","title":"16.1.2 \u00a0 Java \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 OpenJDK\uff08\u7248\u672c\u9700\u6ee1\u8db3 > JDK 9\uff09\u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 java \uff0c\u5b89\u88c5 Extension Pack for Java \u3002
            "},{"location":"chapter_appendix/installation/#1613-cc","title":"16.1.3 \u00a0 C/C++ \u73af\u5883","text":"
            1. Windows \u7cfb\u7edf\u9700\u8981\u5b89\u88c5 MinGW\uff08\u914d\u7f6e\u6559\u7a0b\uff09\uff0cMacOS \u81ea\u5e26 Clang \u65e0\u987b\u5b89\u88c5\u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 c++ \uff0c\u5b89\u88c5 C/C++ Extension Pack \u3002
            3. \uff08\u53ef\u9009\uff09\u6253\u5f00 Settings \u9875\u9762\uff0c\u641c\u7d22 Clang_format_fallback Style \u4ee3\u7801\u683c\u5f0f\u5316\u9009\u9879\uff0c\u8bbe\u7f6e\u4e3a { BasedOnStyle: Microsoft, BreakBeforeBraces: Attach } \u3002
            "},{"location":"chapter_appendix/installation/#1614-python","title":"16.1.4 \u00a0 Python \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 Miniconda3 \u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 python \uff0c\u5b89\u88c5 Python Extension Pack \u3002
            3. \uff08\u53ef\u9009\uff09\u5728\u547d\u4ee4\u884c\u8f93\u5165 pip install black \uff0c\u5b89\u88c5\u4ee3\u7801\u683c\u5f0f\u5316\u5de5\u5177\u3002
            "},{"location":"chapter_appendix/installation/#1615-go","title":"16.1.5 \u00a0 Go \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 go \u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 go \uff0c\u5b89\u88c5 Go \u3002
            3. \u5feb\u6377\u952e Ctrl + Shift + P \u547c\u51fa\u547d\u4ee4\u680f\uff0c\u8f93\u5165 go \uff0c\u9009\u62e9 Go: Install/Update Tools \uff0c\u5168\u90e8\u52fe\u9009\u5e76\u5b89\u88c5\u5373\u53ef\u3002
            "},{"location":"chapter_appendix/installation/#1616-javascript","title":"16.1.6 \u00a0 JavaScript \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 node.js \u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 javascript \uff0c\u5b89\u88c5 JavaScript (ES6) code snippets \u3002
            3. \uff08\u53ef\u9009\uff09\u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 Prettier \uff0c\u5b89\u88c5\u4ee3\u7801\u683c\u5f0f\u5316\u5de5\u5177\u3002
            "},{"location":"chapter_appendix/installation/#1617-c","title":"16.1.7 \u00a0 C# \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 .Net 6.0 \u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 C# Dev Kit \uff0c\u5b89\u88c5 C# Dev Kit \uff08\u914d\u7f6e\u6559\u7a0b\uff09\u3002
            3. \u4e5f\u53ef\u4f7f\u7528 Visual Studio\uff08\u5b89\u88c5\u6559\u7a0b\uff09\u3002
            "},{"location":"chapter_appendix/installation/#1618-swift","title":"16.1.8 \u00a0 Swift \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 Swift\u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 swift \uff0c\u5b89\u88c5 Swift for Visual Studio Code\u3002
            "},{"location":"chapter_appendix/installation/#1619-dart","title":"16.1.9 \u00a0 Dart \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 Dart \u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 dart \uff0c\u5b89\u88c5 Dart \u3002
            "},{"location":"chapter_appendix/installation/#16110-rust","title":"16.1.10 \u00a0 Rust \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 Rust\u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 rust \uff0c\u5b89\u88c5 rust-analyzer\u3002
            "},{"location":"chapter_array_and_linkedlist/","title":"\u7b2c 4 \u7ae0 \u00a0 \u6570\u7ec4\u4e0e\u94fe\u8868","text":"

            Abstract

            \u6570\u636e\u7ed3\u6784\u7684\u4e16\u754c\u5982\u540c\u4e00\u7779\u539a\u5b9e\u7684\u7816\u5899\u3002

            \u6570\u7ec4\u7684\u7816\u5757\u6574\u9f50\u6392\u5217\uff0c\u9010\u4e2a\u7d27\u8d34\u3002\u94fe\u8868\u7684\u7816\u5757\u5206\u6563\u5404\u5904\uff0c\u8fde\u63a5\u7684\u85e4\u8513\u81ea\u7531\u5730\u7a7f\u68ad\u4e8e\u7816\u7f1d\u4e4b\u95f4\u3002

            "},{"location":"chapter_array_and_linkedlist/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 4.1 \u00a0 \u6570\u7ec4
            • 4.2 \u00a0 \u94fe\u8868
            • 4.3 \u00a0 \u5217\u8868
            • 4.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_array_and_linkedlist/array/","title":"4.1 \u00a0 \u6570\u7ec4","text":"

            \u300c\u6570\u7ec4 Array\u300d\u662f\u4e00\u79cd\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u5176\u5c06\u76f8\u540c\u7c7b\u578b\u5143\u7d20\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\u3002\u6211\u4eec\u5c06\u67d0\u4e2a\u5143\u7d20\u5728\u6570\u7ec4\u4e2d\u7684\u4f4d\u7f6e\u79f0\u4e3a\u8be5\u5143\u7d20\u7684\u300c\u7d22\u5f15 Index\u300d\u3002

            \u56fe\uff1a\u6570\u7ec4\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f

            "},{"location":"chapter_array_and_linkedlist/array/#411","title":"4.1.1 \u00a0 \u6570\u7ec4\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/array/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u6570\u7ec4","text":"

            \u6211\u4eec\u53ef\u4ee5\u6839\u636e\u9700\u6c42\u9009\u7528\u6570\u7ec4\u7684\u4e24\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\uff1a\u65e0\u521d\u59cb\u503c\u3001\u7ed9\u5b9a\u521d\u59cb\u503c\u3002\u5728\u672a\u6307\u5b9a\u521d\u59cb\u503c\u7684\u60c5\u51b5\u4e0b\uff0c\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4f1a\u5c06\u6570\u7ec4\u5143\u7d20\u521d\u59cb\u5316\u4e3a \\(0\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = { 1, 3, 2, 5, 4 };\n
            array.cpp
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\n// \u5b58\u50a8\u5728\u6808\u4e0a\nint arr[5];\nint nums[5] { 1, 3, 2, 5, 4 };\n// \u5b58\u50a8\u5728\u5806\u4e0a\uff08\u9700\u8981\u624b\u52a8\u91ca\u653e\u7a7a\u95f4\uff09\nint* arr1 = new int[5];\nint* nums1 = new int[5] { 1, 3, 2, 5, 4 };\n
            array.py
            # \u521d\u59cb\u5316\u6570\u7ec4\narr: list[int] = [0] * 5  # [ 0, 0, 0, 0, 0 ]\nnums: list[int] = [1, 3, 2, 5, 4]  \n
            array.go
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nvar arr [5]int\n// \u5728 Go \u4e2d\uff0c\u6307\u5b9a\u957f\u5ea6\u65f6\uff08[5]int\uff09\u4e3a\u6570\u7ec4\uff0c\u4e0d\u6307\u5b9a\u957f\u5ea6\u65f6\uff08[]int\uff09\u4e3a\u5207\u7247\n// \u7531\u4e8e Go \u7684\u6570\u7ec4\u88ab\u8bbe\u8ba1\u4e3a\u5728\u7f16\u8bd1\u671f\u786e\u5b9a\u957f\u5ea6\uff0c\u56e0\u6b64\u53ea\u80fd\u4f7f\u7528\u5e38\u91cf\u6765\u6307\u5b9a\u957f\u5ea6\n// \u4e3a\u4e86\u65b9\u4fbf\u5b9e\u73b0\u6269\u5bb9 extend() \u65b9\u6cd5\uff0c\u4ee5\u4e0b\u5c06\u5207\u7247\uff08Slice\uff09\u770b\u4f5c\u6570\u7ec4\uff08Array\uff09\nnums := []int{1, 3, 2, 5, 4}\n
            array.js
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nvar arr = new Array(5).fill(0);\nvar nums = [1, 3, 2, 5, 4];\n
            array.ts
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr: number[] = new Array(5).fill(0);\nlet nums: number[] = [1, 3, 2, 5, 4];\n
            array.c
            int arr[5] = { 0 }; // { 0, 0, 0, 0, 0 }\nint nums[5] = { 1, 3, 2, 5, 4 };\n
            array.cs
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = { 1, 3, 2, 5, 4 };\n
            array.swift
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr = Array(repeating: 0, count: 5) // [0, 0, 0, 0, 0]\nlet nums = [1, 3, 2, 5, 4]\n
            array.zig
            // \u521d\u59cb\u5316\u6570\u7ec4\nvar arr = [_]i32{0} ** 5; // { 0, 0, 0, 0, 0 }\nvar nums = [_]i32{ 1, 3, 2, 5, 4 };\n
            array.dart
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nList<int> arr = List.filled(5, 0); // [0, 0, 0, 0, 0]\nList<int> nums = [1, 3, 2, 5, 4];\n
            array.rs
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr: Vec<i32> = vec![0; 5]; // [0, 0, 0, 0, 0]\nlet nums: Vec<i32> = vec![1, 3, 2, 5, 4];\n
            "},{"location":"chapter_array_and_linkedlist/array/#2","title":"2. \u00a0 \u8bbf\u95ee\u5143\u7d20","text":"

            \u6570\u7ec4\u5143\u7d20\u88ab\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\uff0c\u8fd9\u610f\u5473\u7740\u8ba1\u7b97\u6570\u7ec4\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\u975e\u5e38\u5bb9\u6613\u3002\u7ed9\u5b9a\u6570\u7ec4\u5185\u5b58\u5730\u5740\uff08\u5373\u9996\u5143\u7d20\u5185\u5b58\u5730\u5740\uff09\u548c\u67d0\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4ee5\u4e0b\u516c\u5f0f\u8ba1\u7b97\u5f97\u5230\u8be5\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\uff0c\u4ece\u800c\u76f4\u63a5\u8bbf\u95ee\u6b64\u5143\u7d20\u3002

            # \u5143\u7d20\u5185\u5b58\u5730\u5740 = \u6570\u7ec4\u5185\u5b58\u5730\u5740\uff08\u9996\u5143\u7d20\u5185\u5b58\u5730\u5740\uff09 + \u5143\u7d20\u957f\u5ea6 * \u5143\u7d20\u7d22\u5f15\nelementAddr = firtstElementAddr + elementLength * elementIndex\n

            \u56fe\uff1a\u6570\u7ec4\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\u8ba1\u7b97

            \u89c2\u5bdf\u4e0a\u56fe\uff0c\u6211\u4eec\u53d1\u73b0\u6570\u7ec4\u9996\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\u4e3a \\(0\\) \uff0c\u8fd9\u4f3c\u4e4e\u6709\u4e9b\u53cd\u76f4\u89c9\uff0c\u56e0\u4e3a\u4ece \\(1\\) \u5f00\u59cb\u8ba1\u6570\u4f1a\u66f4\u81ea\u7136\u3002\u4f46\u4ece\u5730\u5740\u8ba1\u7b97\u516c\u5f0f\u7684\u89d2\u5ea6\u770b\uff0c\u7d22\u5f15\u7684\u542b\u4e49\u672c\u8d28\u4e0a\u662f\u5185\u5b58\u5730\u5740\u7684\u504f\u79fb\u91cf\u3002\u9996\u4e2a\u5143\u7d20\u7684\u5730\u5740\u504f\u79fb\u91cf\u662f \\(0\\) \uff0c\u56e0\u6b64\u5b83\u7684\u7d22\u5f15\u4e3a \\(0\\) \u4e5f\u662f\u5408\u7406\u7684\u3002

            \u5728\u6570\u7ec4\u4e2d\u8bbf\u95ee\u5143\u7d20\u662f\u975e\u5e38\u9ad8\u6548\u7684\uff0c\u6211\u4eec\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u968f\u673a\u8bbf\u95ee\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e00\u4e2a\u5143\u7d20\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int[] nums) {\n// \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nint randomIndex = ThreadLocalRandom.current().nextInt(0, nums.length);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nint randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.cpp
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n// \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nint randomIndex = rand() % size;\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nint randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.py
            def random_access(nums: list[int]) -> int:\n\"\"\"\u968f\u673a\u8bbf\u95ee\u5143\u7d20\"\"\"\n# \u5728\u533a\u95f4 [0, len(nums)-1] \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nrandom_index = random.randint(0, len(nums) - 1)\n# \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nrandom_num = nums[random_index]\nreturn random_num\n
            array.go
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums []int) (randomNum int) {\n// \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nrandomIndex := rand.Intn(len(nums))\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nrandomNum = nums[randomIndex]\nreturn\n}\n
            array.js
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums) {\n// \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nconst random_index = Math.floor(Math.random() * nums.length);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nconst random_num = nums[random_index];\nreturn random_num;\n}\n
            array.ts
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums: number[]): number {\n// \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nconst random_index = Math.floor(Math.random() * nums.length);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nconst random_num = nums[random_index];\nreturn random_num;\n}\n
            array.c
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n// \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nint randomIndex = rand() % size;\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nint randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.cs
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int[] nums) {\nRandom random = new();\n// \u5728\u533a\u95f4 [0, nums.Length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nint randomIndex = random.Next(nums.Length);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nint randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.swift
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums: [Int]) -> Int {\n// \u5728\u533a\u95f4 [0, nums.count) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nlet randomIndex = nums.indices.randomElement()!\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nlet randomNum = nums[randomIndex]\nreturn randomNum\n}\n
            array.zig
            // \u968f\u673a\u8bbf\u95ee\u5143\u7d20\nfn randomAccess(nums: []i32) i32 {\n// \u5728\u533a\u95f4 [0, nums.len) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6574\u6570\nvar randomIndex = std.crypto.random.intRangeLessThan(usize, 0, nums.len);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nvar randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.dart
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(List nums) {\n// \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nint randomIndex = Random().nextInt(nums.length);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nint randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.rs
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfn random_access(nums: &[i32]) -> i32 {\n// \u5728\u533a\u95f4 [0, nums.len()) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nlet random_index = rand::thread_rng().gen_range(0..nums.len());\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nlet random_num = nums[random_index];\nrandom_num\n}\n
            "},{"location":"chapter_array_and_linkedlist/array/#3","title":"3. \u00a0 \u63d2\u5165\u5143\u7d20","text":"

            \u6570\u7ec4\u5143\u7d20\u5728\u5185\u5b58\u4e2d\u662f\u201c\u7d27\u6328\u7740\u7684\u201d\uff0c\u5b83\u4eec\u4e4b\u95f4\u6ca1\u6709\u7a7a\u95f4\u518d\u5b58\u653e\u4efb\u4f55\u6570\u636e\u3002\u8fd9\u610f\u5473\u7740\u5982\u679c\u60f3\u8981\u5728\u6570\u7ec4\u4e2d\u95f4\u63d2\u5165\u4e00\u4e2a\u5143\u7d20\uff0c\u5219\u9700\u8981\u5c06\u8be5\u5143\u7d20\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u4e4b\u540e\u518d\u628a\u5143\u7d20\u8d4b\u503c\u7ed9\u8be5\u7d22\u5f15\u3002

            \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e\u6570\u7ec4\u7684\u957f\u5ea6\u662f\u56fa\u5b9a\u7684\uff0c\u56e0\u6b64\u63d2\u5165\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u4f1a\u5bfc\u81f4\u6570\u7ec4\u5c3e\u90e8\u5143\u7d20\u7684\u201c\u4e22\u5931\u201d\u3002\u6211\u4eec\u5c06\u8fd9\u4e2a\u95ee\u9898\u7684\u89e3\u51b3\u65b9\u6848\u7559\u5728\u5217\u8868\u7ae0\u8282\u4e2d\u8ba8\u8bba\u3002

            \u56fe\uff1a\u6570\u7ec4\u63d2\u5165\u5143\u7d20

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int[] nums, int num, int index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int i = nums.length - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.cpp
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int i = size - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.py
            def insert(nums: list[int], num: int, index: int):\n\"\"\"\u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\"\"\"\n# \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor i in range(len(nums) - 1, index, -1):\nnums[i] = nums[i - 1]\n# \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num\n
            array.go
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums []int, num int, index int) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor i := len(nums) - 1; i > index; i-- {\nnums[i] = nums[i-1]\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num\n}\n
            array.js
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums, num, index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (let i = nums.length - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.ts
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums: number[], num: number, index: number): void {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (let i = nums.length - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.c
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int i = size - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.cs
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int[] nums, int num, int index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int i = nums.Length - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.swift
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums: inout [Int], num: Int, index: Int) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor i in sequence(first: nums.count - 1, next: { $0 > index + 1 ? $0 - 1 : nil }) {\nnums[i] = nums[i - 1]\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num\n}\n
            array.zig
            // \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\nfn insert(nums: []i32, num: i32, index: usize) void {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nvar i = nums.len - 1;\nwhile (i > index) : (i -= 1) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.dart
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(List nums, int num, int index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (var i = nums.length - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.rs
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfn insert(nums: &mut Vec<i32>, num: i32, index: usize) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor i in (index + 1..nums.len()).rev() {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            "},{"location":"chapter_array_and_linkedlist/array/#4","title":"4. \u00a0 \u5220\u9664\u5143\u7d20","text":"

            \u540c\u7406\uff0c\u5982\u679c\u6211\u4eec\u60f3\u8981\u5220\u9664\u7d22\u5f15 \\(i\\) \u5904\u7684\u5143\u7d20\uff0c\u5219\u9700\u8981\u628a\u7d22\u5f15 \\(i\\) \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\u3002

            \u8bf7\u6ce8\u610f\uff0c\u5220\u9664\u5143\u7d20\u5b8c\u6210\u540e\uff0c\u539f\u5148\u672b\u5c3e\u7684\u5143\u7d20\u53d8\u5f97\u201c\u65e0\u610f\u4e49\u201d\u4e86\uff0c\u6240\u4ee5\u6211\u4eec\u65e0\u987b\u7279\u610f\u53bb\u4fee\u6539\u5b83\u3002

            \u56fe\uff1a\u6570\u7ec4\u5220\u9664\u5143\u7d20

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nvoid remove(int[] nums, int index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int i = index; i < nums.length - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.cpp
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nvoid remove(int *nums, int size, int index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int i = index; i < size - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.py
            def remove(nums: list[int], index: int):\n\"\"\"\u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20\"\"\"\n# \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor i in range(index, len(nums) - 1):\nnums[i] = nums[i + 1]\n
            array.go
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nfunc remove(nums []int, index int) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor i := index; i < len(nums)-1; i++ {\nnums[i] = nums[i+1]\n}\n}\n
            array.js
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nfunction remove(nums, index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (let i = index; i < nums.length - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.ts
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nfunction remove(nums: number[], index: number): void {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (let i = index; i < nums.length - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.c
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeItem(int *nums, int size, int index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int i = index; i < size - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.cs
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nvoid remove(int[] nums, int index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int i = index; i < nums.Length - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.swift
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nfunc remove(nums: inout [Int], index: Int) {\nlet count = nums.count\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor i in sequence(first: index, next: { $0 < count - 1 - 1 ? $0 + 1 : nil }) {\nnums[i] = nums[i + 1]\n}\n}\n
            array.zig
            // \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20\nfn remove(nums: []i32, index: usize) void {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nvar i = index;\nwhile (i < nums.len - 1) : (i += 1) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.dart
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nvoid remove(List nums, int index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (var i = index; i < nums.length - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.rs
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nfn remove(nums: &mut Vec<i32>, index: usize) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor i in index..nums.len() - 1 {\nnums[i] = nums[i + 1];\n}\n}\n

            \u603b\u7684\u6765\u770b\uff0c\u6570\u7ec4\u7684\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u6709\u4ee5\u4e0b\u7f3a\u70b9\uff1a

            • \u65f6\u95f4\u590d\u6742\u5ea6\u9ad8\uff1a\u6570\u7ec4\u7684\u63d2\u5165\u548c\u5220\u9664\u7684\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u6570\u7ec4\u957f\u5ea6\u3002
            • \u4e22\u5931\u5143\u7d20\uff1a\u7531\u4e8e\u6570\u7ec4\u7684\u957f\u5ea6\u4e0d\u53ef\u53d8\uff0c\u56e0\u6b64\u5728\u63d2\u5165\u5143\u7d20\u540e\uff0c\u8d85\u51fa\u6570\u7ec4\u957f\u5ea6\u8303\u56f4\u7684\u5143\u7d20\u4f1a\u4e22\u5931\u3002
            • \u5185\u5b58\u6d6a\u8d39\uff1a\u6211\u4eec\u53ef\u4ee5\u521d\u59cb\u5316\u4e00\u4e2a\u6bd4\u8f83\u957f\u7684\u6570\u7ec4\uff0c\u53ea\u7528\u524d\u9762\u4e00\u90e8\u5206\uff0c\u8fd9\u6837\u5728\u63d2\u5165\u6570\u636e\u65f6\uff0c\u4e22\u5931\u7684\u672b\u5c3e\u5143\u7d20\u90fd\u662f\u201c\u65e0\u610f\u4e49\u201d\u7684\uff0c\u4f46\u8fd9\u6837\u505a\u4e5f\u4f1a\u9020\u6210\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u7684\u6d6a\u8d39\u3002
            "},{"location":"chapter_array_and_linkedlist/array/#5","title":"5. \u00a0 \u904d\u5386\u6570\u7ec4","text":"

            \u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u6211\u4eec\u65e2\u53ef\u4ee5\u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\uff0c\u4e5f\u53ef\u4ee5\u76f4\u63a5\u904d\u5386\u83b7\u53d6\u6570\u7ec4\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int[] nums) {\nint count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < nums.length; i++) {\ncount++;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (int num : nums) {\ncount++;\n}\n}\n
            array.cpp
            /* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\nint count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size; i++) {\ncount++;\n}\n}\n
            array.py
            def traverse(nums: list[int]):\n\"\"\"\u904d\u5386\u6570\u7ec4\"\"\"\ncount = 0\n# \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor i in range(len(nums)):\ncount += 1\n# \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor num in nums:\ncount += 1\n# \u540c\u65f6\u904d\u5386\u6570\u636e\u7d22\u5f15\u548c\u5143\u7d20\nfor i, num in enumerate(nums):\ncount += 1\n
            array.go
            /* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums []int) {\ncount := 0\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor i := 0; i < len(nums); i++ {\ncount++\n}\ncount = 0\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor range nums {\ncount++\n}\n}\n
            array.js
            /* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums) {\nlet count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (let i = 0; i < nums.length; i++) {\ncount++;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (const num of nums) {\ncount += 1;\n}\n}\n
            array.ts
            /* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums: number[]): void {\nlet count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (let i = 0; i < nums.length; i++) {\ncount++;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (const num of nums) {\ncount += 1;\n}\n}\n
            array.c
            /* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\nint count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size; i++) {\ncount++;\n}\n}\n
            array.cs
            /* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int[] nums) {\nint count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < nums.Length; i++) {\ncount++;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nforeach (int num in nums) {\ncount++;\n}\n}\n
            array.swift
            /* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums: [Int]) {\nvar count = 0\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor _ in nums.indices {\ncount += 1\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor _ in nums {\ncount += 1\n}\n}\n
            array.zig
            // \u904d\u5386\u6570\u7ec4\nfn traverse(nums: []i32) void {\nvar count: i32 = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nvar i: i32 = 0;\nwhile (i < nums.len) : (i += 1) {\ncount += 1;\n}\ncount = 0;\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (nums) |_| {\ncount += 1;\n}\n}\n
            array.dart
            /* \u904d\u5386\u6570\u7ec4\u5143\u7d20 */\nvoid traverse(List nums) {\nvar count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (var i = 0; i < nums.length; i++) {\ncount++;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (var num in nums) {\ncount++;\n}\n// \u901a\u8fc7 forEach \u65b9\u6cd5\u904d\u5386\u6570\u7ec4\nnums.forEach((element) {\ncount++;\n});\n}\n
            array.rs
            /* \u904d\u5386\u6570\u7ec4 */\nfn traverse(nums: &[i32]) {\nlet mut _count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor _ in 0..nums.len() {\n_count += 1;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor _ in nums {\n_count += 1;\n}\n}\n
            "},{"location":"chapter_array_and_linkedlist/array/#6","title":"6. \u00a0 \u67e5\u627e\u5143\u7d20","text":"

            \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\u9700\u8981\u904d\u5386\u6570\u7ec4\uff0c\u6bcf\u8f6e\u5224\u65ad\u5143\u7d20\u503c\u662f\u5426\u5339\u914d\uff0c\u82e5\u5339\u914d\u5219\u8f93\u51fa\u5bf9\u5e94\u7d22\u5f15\u3002

            \u56e0\u4e3a\u6570\u7ec4\u662f\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u6240\u4ee5\u4e0a\u8ff0\u67e5\u627e\u64cd\u4f5c\u88ab\u79f0\u4e3a\u300c\u7ebf\u6027\u67e5\u627e\u300d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int[] nums, int target) {\nfor (int i = 0; i < nums.length; i++) {\nif (nums[i] == target)\nreturn i;\n}\nreturn -1;\n}\n
            array.cpp
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\nfor (int i = 0; i < size; i++) {\nif (nums[i] == target)\nreturn i;\n}\nreturn -1;\n}\n
            array.py
            def find(nums: list[int], target: int) -> int:\n\"\"\"\u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\"\"\"\nfor i in range(len(nums)):\nif nums[i] == target:\nreturn i\nreturn -1\n
            array.go
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums []int, target int) (index int) {\nindex = -1\nfor i := 0; i < len(nums); i++ {\nif nums[i] == target {\nindex = i\nbreak\n}\n}\nreturn\n}\n
            array.js
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums, target) {\nfor (let i = 0; i < nums.length; i++) {\nif (nums[i] === target) return i;\n}\nreturn -1;\n}\n
            array.ts
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums: number[], target: number): number {\nfor (let i = 0; i < nums.length; i++) {\nif (nums[i] === target) {\nreturn i;\n}\n}\nreturn -1;\n}\n
            array.c
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\nfor (int i = 0; i < size; i++) {\nif (nums[i] == target)\nreturn i;\n}\nreturn -1;\n}\n
            array.cs
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int[] nums, int target) {\nfor (int i = 0; i < nums.Length; i++) {\nif (nums[i] == target)\nreturn i;\n}\nreturn -1;\n}\n
            array.swift
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums: [Int], target: Int) -> Int {\nfor i in nums.indices {\nif nums[i] == target {\nreturn i\n}\n}\nreturn -1\n}\n
            array.zig
            // \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\nfn find(nums: []i32, target: i32) i32 {\nfor (nums, 0..) |num, i| {\nif (num == target) return @intCast(i);\n}\nreturn -1;\n}\n
            array.dart
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(List nums, int target) {\nfor (var i = 0; i < nums.length; i++) {\nif (nums[i] == target) return i;\n}\nreturn -1;\n}\n
            array.rs
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfn find(nums: &[i32], target: i32) -> Option<usize> {\nfor i in 0..nums.len() {\nif nums[i] == target {\nreturn Some(i);\n}\n}\nNone\n}\n
            "},{"location":"chapter_array_and_linkedlist/array/#7","title":"7. \u00a0 \u6269\u5bb9\u6570\u7ec4","text":"

            \u5728\u590d\u6742\u7684\u7cfb\u7edf\u73af\u5883\u4e2d\uff0c\u7a0b\u5e8f\u96be\u4ee5\u4fdd\u8bc1\u6570\u7ec4\u4e4b\u540e\u7684\u5185\u5b58\u7a7a\u95f4\u662f\u53ef\u7528\u7684\uff0c\u4ece\u800c\u65e0\u6cd5\u5b89\u5168\u5730\u6269\u5c55\u6570\u7ec4\u5bb9\u91cf\u3002\u56e0\u6b64\u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u6570\u7ec4\u7684\u957f\u5ea6\u662f\u4e0d\u53ef\u53d8\u7684\u3002

            \u5982\u679c\u6211\u4eec\u5e0c\u671b\u6269\u5bb9\u6570\u7ec4\uff0c\u5219\u9700\u91cd\u65b0\u5efa\u7acb\u4e00\u4e2a\u66f4\u5927\u7684\u6570\u7ec4\uff0c\u7136\u540e\u628a\u539f\u6570\u7ec4\u5143\u7d20\u4f9d\u6b21\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\u3002\u8fd9\u662f\u4e00\u4e2a \\(O(n)\\) \u7684\u64cd\u4f5c\uff0c\u5728\u6570\u7ec4\u5f88\u5927\u7684\u60c5\u51b5\u4e0b\u662f\u975e\u5e38\u8017\u65f6\u7684\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] extend(int[] nums, int enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nint[] res = new int[nums.length + enlarge];\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (int i = 0; i < nums.length; i++) {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.cpp
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nint *res = new int[size + enlarge];\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (int i = 0; i < size; i++) {\nres[i] = nums[i];\n}\n// \u91ca\u653e\u5185\u5b58\ndelete[] nums;\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.py
            def extend(nums: list[int], enlarge: int) -> list[int]:\n\"\"\"\u6269\u5c55\u6570\u7ec4\u957f\u5ea6\"\"\"\n# \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nres = [0] * (len(nums) + enlarge)\n# \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor i in range(len(nums)):\nres[i] = nums[i]\n# \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res\n
            array.go
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums []int, enlarge int) []int {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nres := make([]int, len(nums)+enlarge)\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor i, num := range nums {\nres[i] = num\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res\n}\n
            array.js
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cJavaScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u662f\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums, enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nconst res = new Array(nums.length + enlarge).fill(0);\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (let i = 0; i < nums.length; i++) {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.ts
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cTypeScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u662f\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums: number[], enlarge: number): number[] {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nconst res = new Array(nums.length + enlarge).fill(0);\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (let i = 0; i < nums.length; i++) {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.c
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nint *res = (int *)malloc(sizeof(int) * (size + enlarge));\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (int i = 0; i < size; i++) {\nres[i] = nums[i];\n}\n// \u521d\u59cb\u5316\u6269\u5c55\u540e\u7684\u7a7a\u95f4\nfor (int i = size; i < size + enlarge; i++) {\nres[i] = 0;\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.cs
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] extend(int[] nums, int enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nint[] res = new int[nums.Length + enlarge];\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (int i = 0; i < nums.Length; i++) {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.swift
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums: [Int], enlarge: Int) -> [Int] {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nvar res = Array(repeating: 0, count: nums.count + enlarge)\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor i in nums.indices {\nres[i] = nums[i]\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res\n}\n
            array.zig
            // \u6269\u5c55\u6570\u7ec4\u957f\u5ea6\nfn extend(mem_allocator: std.mem.Allocator, nums: []i32, enlarge: usize) ![]i32 {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nvar res = try mem_allocator.alloc(i32, nums.len + enlarge);\n@memset(res, 0);\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nstd.mem.copy(i32, res, nums);\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.dart
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nList extend(List nums, int enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nList<int> res = List.filled(nums.length + enlarge, 0);\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (var i = 0; i < nums.length; i++) {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.rs
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfn extend(nums: Vec<i32>, enlarge: usize) -> Vec<i32> {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nlet mut res: Vec<i32> = vec![0; nums.len() + enlarge];\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\nfor i in 0..nums.len() {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nres\n}\n
            "},{"location":"chapter_array_and_linkedlist/array/#412","title":"4.1.2 \u00a0 \u6570\u7ec4\u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"

            \u6570\u7ec4\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u5185\uff0c\u4e14\u5143\u7d20\u7c7b\u578b\u76f8\u540c\u3002\u8fd9\u5305\u542b\u4e30\u5bcc\u7684\u5148\u9a8c\u4fe1\u606f\uff0c\u7cfb\u7edf\u53ef\u4ee5\u5229\u7528\u8fd9\u4e9b\u4fe1\u606f\u6765\u4f18\u5316\u64cd\u4f5c\u548c\u8fd0\u884c\u6548\u7387\uff0c\u5305\u62ec\uff1a

            • \u7a7a\u95f4\u6548\u7387\u9ad8: \u6570\u7ec4\u4e3a\u6570\u636e\u5206\u914d\u4e86\u8fde\u7eed\u7684\u5185\u5b58\u5757\uff0c\u65e0\u987b\u989d\u5916\u7684\u7ed3\u6784\u5f00\u9500\u3002
            • \u652f\u6301\u968f\u673a\u8bbf\u95ee: \u6570\u7ec4\u5141\u8bb8\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u8bbf\u95ee\u4efb\u4f55\u5143\u7d20\u3002
            • \u7f13\u5b58\u5c40\u90e8\u6027: \u5f53\u8bbf\u95ee\u6570\u7ec4\u5143\u7d20\u65f6\uff0c\u8ba1\u7b97\u673a\u4e0d\u4ec5\u4f1a\u52a0\u8f7d\u5b83\uff0c\u8fd8\u4f1a\u7f13\u5b58\u5176\u5468\u56f4\u7684\u5176\u4ed6\u6570\u636e\uff0c\u4ece\u800c\u501f\u52a9\u9ad8\u901f\u7f13\u5b58\u6765\u63d0\u5347\u540e\u7eed\u64cd\u4f5c\u7684\u6267\u884c\u901f\u5ea6\u3002

            \u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u662f\u4e00\u628a\u53cc\u5203\u5251\uff0c\u5b83\u5bfc\u81f4\u7684\u7f3a\u70b9\u6709\uff1a

            • \u63d2\u5165\u4e0e\u5220\u9664\u6548\u7387\u4f4e:\u5f53\u6570\u7ec4\u4e2d\u5143\u7d20\u8f83\u591a\u65f6\uff0c\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u9700\u8981\u79fb\u52a8\u5927\u91cf\u7684\u5143\u7d20\u3002
            • \u957f\u5ea6\u4e0d\u53ef\u53d8: \u6570\u7ec4\u5728\u521d\u59cb\u5316\u540e\u957f\u5ea6\u5c31\u56fa\u5b9a\u4e86\uff0c\u6269\u5bb9\u6570\u7ec4\u9700\u8981\u5c06\u6240\u6709\u6570\u636e\u590d\u5236\u5230\u65b0\u6570\u7ec4\uff0c\u5f00\u9500\u5f88\u5927\u3002
            • \u7a7a\u95f4\u6d6a\u8d39: \u5982\u679c\u6570\u7ec4\u5206\u914d\u7684\u5927\u5c0f\u8d85\u8fc7\u4e86\u5b9e\u9645\u6240\u9700\uff0c\u90a3\u4e48\u591a\u4f59\u7684\u7a7a\u95f4\u5c31\u88ab\u6d6a\u8d39\u4e86\u3002
            "},{"location":"chapter_array_and_linkedlist/array/#413","title":"4.1.3 \u00a0 \u6570\u7ec4\u5178\u578b\u5e94\u7528","text":"

            \u6570\u7ec4\u662f\u4e00\u79cd\u57fa\u7840\u4e14\u5e38\u89c1\u7684\u6570\u636e\u7ed3\u6784\uff0c\u65e2\u9891\u7e41\u5e94\u7528\u5728\u5404\u7c7b\u7b97\u6cd5\u4e4b\u4e2d\uff0c\u4e5f\u53ef\u7528\u4e8e\u5b9e\u73b0\u5404\u79cd\u590d\u6742\u6570\u636e\u7ed3\u6784\uff0c\u4e3b\u8981\u5305\u62ec\uff1a

            • \u968f\u673a\u8bbf\u95ee\uff1a\u5982\u679c\u6211\u4eec\u60f3\u8981\u968f\u673a\u62bd\u53d6\u4e00\u4e9b\u6837\u672c\uff0c\u90a3\u4e48\u53ef\u4ee5\u7528\u6570\u7ec4\u5b58\u50a8\uff0c\u5e76\u751f\u6210\u4e00\u4e2a\u968f\u673a\u5e8f\u5217\uff0c\u6839\u636e\u7d22\u5f15\u5b9e\u73b0\u6837\u672c\u7684\u968f\u673a\u62bd\u53d6\u3002
            • \u6392\u5e8f\u548c\u641c\u7d22\uff1a\u6570\u7ec4\u662f\u6392\u5e8f\u548c\u641c\u7d22\u7b97\u6cd5\u6700\u5e38\u7528\u7684\u6570\u636e\u7ed3\u6784\u3002\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u4e8c\u5206\u67e5\u627e\u7b49\u90fd\u4e3b\u8981\u5728\u6570\u7ec4\u4e0a\u8fdb\u884c\u3002
            • \u67e5\u627e\u8868\uff1a\u5f53\u6211\u4eec\u9700\u8981\u5feb\u901f\u67e5\u627e\u4e00\u4e2a\u5143\u7d20\u6216\u8005\u9700\u8981\u67e5\u627e\u4e00\u4e2a\u5143\u7d20\u7684\u5bf9\u5e94\u5173\u7cfb\u65f6\uff0c\u53ef\u4ee5\u4f7f\u7528\u6570\u7ec4\u4f5c\u4e3a\u67e5\u627e\u8868\u3002\u5047\u5982\u6211\u4eec\u60f3\u8981\u5b9e\u73b0\u5b57\u7b26\u5230 ASCII \u7801\u7684\u6620\u5c04\uff0c\u5219\u53ef\u4ee5\u5c06\u5b57\u7b26\u7684 ASCII \u7801\u503c\u4f5c\u4e3a\u7d22\u5f15\uff0c\u5bf9\u5e94\u7684\u5143\u7d20\u5b58\u653e\u5728\u6570\u7ec4\u4e2d\u7684\u5bf9\u5e94\u4f4d\u7f6e\u3002
            • \u673a\u5668\u5b66\u4e60\uff1a\u795e\u7ecf\u7f51\u7edc\u4e2d\u5927\u91cf\u4f7f\u7528\u4e86\u5411\u91cf\u3001\u77e9\u9635\u3001\u5f20\u91cf\u4e4b\u95f4\u7684\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97\uff0c\u8fd9\u4e9b\u6570\u636e\u90fd\u662f\u4ee5\u6570\u7ec4\u7684\u5f62\u5f0f\u6784\u5efa\u7684\u3002\u6570\u7ec4\u662f\u795e\u7ecf\u7f51\u7edc\u7f16\u7a0b\u4e2d\u6700\u5e38\u4f7f\u7528\u7684\u6570\u636e\u7ed3\u6784\u3002
            • \u6570\u636e\u7ed3\u6784\u5b9e\u73b0\uff1a\u6570\u7ec4\u53ef\u4ee5\u7528\u4e8e\u5b9e\u73b0\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u5806\u3001\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u3002\u4f8b\u5982\uff0c\u56fe\u7684\u90bb\u63a5\u77e9\u9635\u8868\u793a\u5b9e\u9645\u4e0a\u662f\u4e00\u4e2a\u4e8c\u7ef4\u6570\u7ec4\u3002
            "},{"location":"chapter_array_and_linkedlist/linked_list/","title":"4.2 \u00a0 \u94fe\u8868","text":"

            \u5185\u5b58\u7a7a\u95f4\u662f\u6240\u6709\u7a0b\u5e8f\u7684\u516c\u5171\u8d44\u6e90\uff0c\u5728\u4e00\u4e2a\u590d\u6742\u7684\u7cfb\u7edf\u8fd0\u884c\u73af\u5883\u4e0b\uff0c\u7a7a\u95f2\u7684\u5185\u5b58\u7a7a\u95f4\u53ef\u80fd\u6563\u843d\u5728\u5185\u5b58\u5404\u5904\u3002\u6211\u4eec\u77e5\u9053\uff0c\u5b58\u50a8\u6570\u7ec4\u7684\u5185\u5b58\u7a7a\u95f4\u5fc5\u987b\u662f\u8fde\u7eed\u7684\uff0c\u800c\u5f53\u6570\u7ec4\u975e\u5e38\u5927\u65f6\uff0c\u5185\u5b58\u53ef\u80fd\u65e0\u6cd5\u63d0\u4f9b\u5982\u6b64\u5927\u7684\u8fde\u7eed\u7a7a\u95f4\u3002\u6b64\u65f6\u94fe\u8868\u7684\u7075\u6d3b\u6027\u4f18\u52bf\u5c31\u4f53\u73b0\u51fa\u6765\u4e86\u3002

            \u300c\u94fe\u8868 Linked List\u300d\u662f\u4e00\u79cd\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u5176\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u90fd\u662f\u4e00\u4e2a\u8282\u70b9\u5bf9\u8c61\uff0c\u5404\u4e2a\u8282\u70b9\u901a\u8fc7\u201c\u5f15\u7528\u201d\u76f8\u8fde\u63a5\u3002\u5f15\u7528\u8bb0\u5f55\u4e86\u4e0b\u4e00\u4e2a\u8282\u70b9\u7684\u5185\u5b58\u5730\u5740\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5b83\u4ece\u5f53\u524d\u8282\u70b9\u8bbf\u95ee\u5230\u4e0b\u4e00\u4e2a\u8282\u70b9\u3002\u8fd9\u610f\u5473\u7740\u94fe\u8868\u7684\u5404\u4e2a\u8282\u70b9\u53ef\u4ee5\u88ab\u5206\u6563\u5b58\u50a8\u5728\u5185\u5b58\u5404\u5904\uff0c\u5b83\u4eec\u7684\u5185\u5b58\u5730\u5740\u662f\u65e0\u987b\u8fde\u7eed\u7684\u3002

            \u56fe\uff1a\u94fe\u8868\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f

            \u89c2\u5bdf\u4e0a\u56fe\uff0c\u94fe\u8868\u4e2d\u7684\u6bcf\u4e2a\u300c\u8282\u70b9 Node\u300d\u5bf9\u8c61\u90fd\u5305\u542b\u4e24\u9879\u6570\u636e\uff1a\u8282\u70b9\u7684\u201c\u503c\u201d\u3001\u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u201c\u5f15\u7528\u201d\u3002

            • \u94fe\u8868\u7684\u9996\u4e2a\u8282\u70b9\u88ab\u79f0\u4e3a\u201c\u5934\u8282\u70b9\u201d\uff0c\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u88ab\u79f0\u4e3a\u201c\u5c3e\u8282\u70b9\u201d\u3002
            • \u5c3e\u8282\u70b9\u6307\u5411\u7684\u662f\u201c\u7a7a\u201d\uff0c\u5b83\u5728 Java, C++, Python \u4e2d\u5206\u522b\u88ab\u8bb0\u4e3a \\(\\text{null}\\) , \\(\\text{nullptr}\\) , \\(\\text{None}\\) \u3002
            • \u5728 C, C++, Go, Rust \u7b49\u652f\u6301\u6307\u9488\u7684\u8bed\u8a00\u4e2d\uff0c\u4e0a\u8ff0\u7684\u201c\u5f15\u7528\u201d\u5e94\u88ab\u66ff\u6362\u4e3a\u201c\u6307\u9488\u201d\u3002

            \u5982\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\uff0c\u94fe\u8868\u4ee5\u8282\u70b9\u5bf9\u8c61 ListNode \u4e3a\u5355\u4f4d\uff0c\u6bcf\u4e2a\u8282\u70b9\u9664\u4e86\u5305\u542b\u503c\uff0c\u8fd8\u9700\u989d\u5916\u4fdd\u5b58\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\u3002\u56e0\u6b64\u5728\u76f8\u540c\u6570\u636e\u91cf\u4e0b\uff0c\u94fe\u8868\u901a\u5e38\u6bd4\u6570\u7ec4\u5360\u7528\u66f4\u591a\u7684\u5185\u5b58\u7a7a\u95f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val;        // \u8282\u70b9\u503c\nListNode next;  // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\nListNode(int x) { val = x; }  // \u6784\u9020\u51fd\u6570\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\nint val;         // \u8282\u70b9\u503c\nListNode *next;  // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\nListNode(int x) : val(x), next(nullptr) {}  // \u6784\u9020\u51fd\u6570\n};\n
            class ListNode:\n\"\"\"\u94fe\u8868\u8282\u70b9\u7c7b\"\"\"\ndef __init__(self, val: int):\nself.val: int = val                  # \u8282\u70b9\u503c\nself.next: Optional[ListNode] = None # \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n
            /* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype ListNode struct {\nVal  int       // \u8282\u70b9\u503c\nNext *ListNode // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n}\n// NewListNode \u6784\u9020\u51fd\u6570\uff0c\u521b\u5efa\u4e00\u4e2a\u65b0\u7684\u94fe\u8868\nfunc NewListNode(val int) *ListNode {\nreturn &ListNode{\nVal:  val,\nNext: nil,\n}\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nval;\nnext;\nconstructor(val, next) {\nthis.val = (val === undefined ? 0 : val);       // \u8282\u70b9\u503c\nthis.next = (next === undefined ? null : next); // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nval: number;\nnext: ListNode | null;\nconstructor(val?: number, next?: ListNode | null) {\nthis.val = val === undefined ? 0 : val;        // \u8282\u70b9\u503c\nthis.next = next === undefined ? null : next;  // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\nint val;               // \u8282\u70b9\u503c\nstruct ListNode *next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n};\ntypedef struct ListNode ListNode;\n/* \u6784\u9020\u51fd\u6570 */\nListNode *newListNode(int val) {\nListNode *node, *next;\nnode = (ListNode *) malloc(sizeof(ListNode));\nnode->val = val;\nnode->next = NULL;\nreturn node;\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val;         // \u8282\u70b9\u503c\nListNode next;   // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\nListNode(int x) => val = x;  //\u6784\u9020\u51fd\u6570\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nvar val: Int // \u8282\u70b9\u503c\nvar next: ListNode? // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\ninit(x: Int) { // \u6784\u9020\u51fd\u6570\nval = x\n}\n}\n
            // \u94fe\u8868\u8282\u70b9\u7c7b\npub fn ListNode(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nval: T = 0, // \u8282\u70b9\u503c\nnext: ?*Self = null, // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n// \u6784\u9020\u51fd\u6570\npub fn init(self: *Self, x: i32) void {\nself.val = x;\nself.next = null;\n}\n};\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val; // \u8282\u70b9\u503c\nListNode? next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\nListNode(this.val, [this.next]); // \u6784\u9020\u51fd\u6570\n}\n
            use std::rc::Rc;\nuse std::cell::RefCell;\n/* \u94fe\u8868\u8282\u70b9\u7c7b */\n#[derive(Debug)]\nstruct ListNode {\nval: i32, // \u8282\u70b9\u503c\nnext: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n}\n
            "},{"location":"chapter_array_and_linkedlist/linked_list/#421","title":"4.2.1 \u00a0 \u94fe\u8868\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/linked_list/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u94fe\u8868","text":"

            \u5efa\u7acb\u94fe\u8868\u5206\u4e3a\u4e24\u6b65\uff0c\u7b2c\u4e00\u6b65\u662f\u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\u5bf9\u8c61\uff0c\u7b2c\u4e8c\u6b65\u662f\u6784\u5efa\u5f15\u7528\u6307\u5411\u5173\u7cfb\u3002\u521d\u59cb\u5316\u5b8c\u6210\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u4ece\u94fe\u8868\u7684\u5934\u8282\u70b9\u51fa\u53d1\uff0c\u901a\u8fc7\u5f15\u7528\u6307\u5411 next \u4f9d\u6b21\u8bbf\u95ee\u6240\u6709\u8282\u70b9\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linked_list.java
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = new ListNode(1);\nListNode n1 = new ListNode(3);\nListNode n2 = new ListNode(2);\nListNode n3 = new ListNode(5);\nListNode n4 = new ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
            linked_list.cpp
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode* n0 = new ListNode(1);\nListNode* n1 = new ListNode(3);\nListNode* n2 = new ListNode(2);\nListNode* n3 = new ListNode(5);\nListNode* n4 = new ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
            linked_list.py
            # \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4\n# \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nn0 = ListNode(1)\nn1 = ListNode(3)\nn2 = ListNode(2)\nn3 = ListNode(5)\nn4 = ListNode(4)\n# \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
            linked_list.go
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nn0 := NewListNode(1)\nn1 := NewListNode(3)\nn2 := NewListNode(2)\nn3 := NewListNode(5)\nn4 := NewListNode(4)\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.Next = n1\nn1.Next = n2\nn2.Next = n3\nn3.Next = n4\n
            linked_list.js
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
            linked_list.ts
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
            linked_list.c
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode* n0 = newListNode(1);\nListNode* n1 = newListNode(3);\nListNode* n2 = newListNode(2);\nListNode* n3 = newListNode(5);\nListNode* n4 = newListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
            linked_list.cs
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = new ListNode(1);\nListNode n1 = new ListNode(3);\nListNode n2 = new ListNode(2);\nListNode n3 = new ListNode(5);\nListNode n4 = new ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
            linked_list.swift
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nlet n0 = ListNode(x: 1)\nlet n1 = ListNode(x: 3)\nlet n2 = ListNode(x: 2)\nlet n3 = ListNode(x: 5)\nlet n4 = ListNode(x: 4)\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
            linked_list.zig
            // \u521d\u59cb\u5316\u94fe\u8868\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nvar n0 = inc.ListNode(i32){.val = 1};\nvar n1 = inc.ListNode(i32){.val = 3};\nvar n2 = inc.ListNode(i32){.val = 2};\nvar n3 = inc.ListNode(i32){.val = 5};\nvar n4 = inc.ListNode(i32){.val = 4};\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = &n1;\nn1.next = &n2;\nn2.next = &n3;\nn3.next = &n4;\n
            linked_list.dart
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\\\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = ListNode(1);\nListNode n1 = ListNode(3);\nListNode n2 = ListNode(2);\nListNode n3 = ListNode(5);\nListNode n4 = ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
            linked_list.rs
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nlet n0 = Rc::new(RefCell::new(ListNode { val: 1, next: None }));\nlet n1 = Rc::new(RefCell::new(ListNode { val: 3, next: None }));\nlet n2 = Rc::new(RefCell::new(ListNode { val: 2, next: None }));\nlet n3 = Rc::new(RefCell::new(ListNode { val: 5, next: None }));\nlet n4 = Rc::new(RefCell::new(ListNode { val: 4, next: None }));\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.borrow_mut().next = Some(n1.clone());\nn1.borrow_mut().next = Some(n2.clone());\nn2.borrow_mut().next = Some(n3.clone());\nn3.borrow_mut().next = Some(n4.clone());\n

            \u6570\u7ec4\u6574\u4f53\u662f\u4e00\u4e2a\u53d8\u91cf\uff0c\u6bd4\u5982\u6570\u7ec4 nums \u5305\u542b\u5143\u7d20 nums[0] , nums[1] \u7b49\uff0c\u800c\u94fe\u8868\u662f\u7531\u591a\u4e2a\u72ec\u7acb\u7684\u8282\u70b9\u5bf9\u8c61\u7ec4\u6210\u7684\u3002\u6211\u4eec\u901a\u5e38\u5c06\u5934\u8282\u70b9\u5f53\u4f5c\u94fe\u8868\u7684\u4ee3\u79f0\uff0c\u6bd4\u5982\u4ee5\u4e0a\u4ee3\u7801\u4e2d\u7684\u94fe\u8868\u53ef\u88ab\u8bb0\u505a\u94fe\u8868 n0 \u3002

            "},{"location":"chapter_array_and_linkedlist/linked_list/#2","title":"2. \u00a0 \u63d2\u5165\u8282\u70b9","text":"

            \u5728\u94fe\u8868\u4e2d\u63d2\u5165\u8282\u70b9\u975e\u5e38\u5bb9\u6613\u3002\u5047\u8bbe\u6211\u4eec\u60f3\u5728\u76f8\u90bb\u7684\u4e24\u4e2a\u8282\u70b9 n0 , n1 \u4e4b\u95f4\u63d2\u5165\u4e00\u4e2a\u65b0\u8282\u70b9 P \uff0c\u5219\u53ea\u9700\u8981\u6539\u53d8\u4e24\u4e2a\u8282\u70b9\u5f15\u7528\uff08\u6307\u9488\uff09\u5373\u53ef\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002

            \u76f8\u6bd4\u4e4b\u4e0b\uff0c\u5728\u6570\u7ec4\u4e2d\u63d2\u5165\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5728\u5927\u6570\u636e\u91cf\u4e0b\u7684\u6548\u7387\u8f83\u4f4e\u3002

            \u56fe\uff1a\u94fe\u8868\u63d2\u5165\u8282\u70b9

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linked_list.java
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\nListNode n1 = n0.next;\nP.next = n1;\nn0.next = P;\n}\n
            linked_list.cpp
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\nListNode *n1 = n0->next;\nP->next = n1;\nn0->next = P;\n}\n
            linked_list.py
            def insert(n0: ListNode, P: ListNode):\n\"\"\"\u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\"\"\"\nn1 = n0.next\nP.next = n1\nn0.next = P\n
            linked_list.go
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insertNode(n0 *ListNode, P *ListNode) {\nn1 := n0.Next\nP.Next = n1\nn0.Next = P\n}\n
            linked_list.js
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0, P) {\nconst n1 = n0.next;\nP.next = n1;\nn0.next = P;\n}\n
            linked_list.ts
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0: ListNode, P: ListNode): void {\nconst n1 = n0.next;\nP.next = n1;\nn0.next = P;\n}\n
            linked_list.c
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\nListNode *n1 = n0->next;\nP->next = n1;\nn0->next = P;\n}\n
            linked_list.cs
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\nListNode? n1 = n0.next;\nP.next = n1;\nn0.next = P;\n}\n
            linked_list.swift
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insert(n0: ListNode, P: ListNode) {\nlet n1 = n0.next\nP.next = n1\nn0.next = P\n}\n
            linked_list.zig
            // \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\nfn insert(n0: ?*inc.ListNode(i32), P: ?*inc.ListNode(i32)) void {\nvar n1 = n0.?.next;\nP.?.next = n1;\nn0.?.next = P;\n}\n
            linked_list.dart
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\nListNode? n1 = n0.next;\nP.next = n1;\nn0.next = P;\n}\n
            linked_list.rs
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\n#[allow(non_snake_case)]\npub fn insert<T>(n0: &Rc<RefCell<ListNode<T>>>, P: Rc<RefCell<ListNode<T>>>) {\nlet n1 =  n0.borrow_mut().next.take();\nP.borrow_mut().next = n1;\nn0.borrow_mut().next = Some(P);\n}\n
            "},{"location":"chapter_array_and_linkedlist/linked_list/#3","title":"3. \u00a0 \u5220\u9664\u8282\u70b9","text":"

            \u5728\u94fe\u8868\u4e2d\u5220\u9664\u8282\u70b9\u4e5f\u975e\u5e38\u7b80\u4fbf\uff0c\u53ea\u9700\u6539\u53d8\u4e00\u4e2a\u8282\u70b9\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\u5373\u53ef\u3002

            \u8bf7\u6ce8\u610f\uff0c\u5c3d\u7ba1\u5728\u5220\u9664\u64cd\u4f5c\u5b8c\u6210\u540e\u8282\u70b9 P \u4ecd\u7136\u6307\u5411 n1 \uff0c\u4f46\u5b9e\u9645\u4e0a\u904d\u5386\u6b64\u94fe\u8868\u5df2\u7ecf\u65e0\u6cd5\u8bbf\u95ee\u5230 P \uff0c\u8fd9\u610f\u5473\u7740 P \u5df2\u7ecf\u4e0d\u518d\u5c5e\u4e8e\u8be5\u94fe\u8868\u4e86\u3002

            \u56fe\uff1a\u94fe\u8868\u5220\u9664\u8282\u70b9

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linked_list.java
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\nif (n0.next == null)\nreturn;\n// n0 -> P -> n1\nListNode P = n0.next;\nListNode n1 = P.next;\nn0.next = n1;\n}\n
            linked_list.cpp
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode *n0) {\nif (n0->next == nullptr)\nreturn;\n// n0 -> P -> n1\nListNode *P = n0->next;\nListNode *n1 = P->next;\nn0->next = n1;\n// \u91ca\u653e\u5185\u5b58\ndelete P;\n}\n
            linked_list.py
            def remove(n0: ListNode):\n\"\"\"\u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\"\"\"\nif not n0.next:\nreturn\n# n0 -> P -> n1\nP = n0.next\nn1 = P.next\nn0.next = n1\n
            linked_list.go
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc removeNode(n0 *ListNode) {\nif n0.Next == nil {\nreturn\n}\n// n0 -> P -> n1\nP := n0.Next\nn1 := P.Next\nn0.Next = n1\n}\n
            linked_list.js
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0) {\nif (!n0.next) return;\n// n0 -> P -> n1\nconst P = n0.next;\nconst n1 = P.next;\nn0.next = n1;\n}\n
            linked_list.ts
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0: ListNode): void {\nif (!n0.next) {\nreturn;\n}\n// n0 -> P -> n1\nconst P = n0.next;\nconst n1 = P.next;\nn0.next = n1;\n}\n
            linked_list.c
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeNode(ListNode *n0) {\nif (!n0->next)\nreturn;\n// n0 -> P -> n1\nListNode *P = n0->next;\nListNode *n1 = P->next;\nn0->next = n1;\n// \u91ca\u653e\u5185\u5b58\nfree(P);\n}\n
            linked_list.cs
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\nif (n0.next == null)\nreturn;\n// n0 -> P -> n1\nListNode P = n0.next;\nListNode? n1 = P.next;\nn0.next = n1;\n}\n
            linked_list.swift
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc remove(n0: ListNode) {\nif n0.next == nil {\nreturn\n}\n// n0 -> P -> n1\nlet P = n0.next\nlet n1 = P?.next\nn0.next = n1\nP?.next = nil\n}\n
            linked_list.zig
            // \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\nfn remove(n0: ?*inc.ListNode(i32)) void {\nif (n0.?.next == null) return;\n// n0 -> P -> n1\nvar P = n0.?.next;\nvar n1 = P.?.next;\nn0.?.next = n1;\n}\n
            linked_list.dart
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\nif (n0.next == null) return;\n// n0 -> P -> n1\nListNode P = n0.next!;\nListNode? n1 = P.next;\nn0.next = n1;\n}\n
            linked_list.rs
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n#[allow(non_snake_case)]\npub fn remove<T>(n0: &Rc<RefCell<ListNode<T>>>) {\nif n0.borrow().next.is_none() {return};\n// n0 -> P -> n1\nlet P = n0.borrow_mut().next.take();\nif let Some(node) = P {\nlet n1 = node.borrow_mut().next.take();\nn0.borrow_mut().next = n1;\n}\n}\n
            "},{"location":"chapter_array_and_linkedlist/linked_list/#4","title":"4. \u00a0 \u8bbf\u95ee\u8282\u70b9","text":"

            \u5728\u94fe\u8868\u8bbf\u95ee\u8282\u70b9\u7684\u6548\u7387\u8f83\u4f4e\u3002\u5982\u4e0a\u8282\u6240\u8ff0\uff0c\u6211\u4eec\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u4e0b\u8bbf\u95ee\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u5143\u7d20\u3002\u94fe\u8868\u5219\u4e0d\u7136\uff0c\u7a0b\u5e8f\u9700\u8981\u4ece\u5934\u8282\u70b9\u51fa\u53d1\uff0c\u9010\u4e2a\u5411\u540e\u904d\u5386\uff0c\u76f4\u81f3\u627e\u5230\u76ee\u6807\u8282\u70b9\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u8bbf\u95ee\u94fe\u8868\u7684\u7b2c \\(i\\) \u4e2a\u8282\u70b9\u9700\u8981\u5faa\u73af \\(i - 1\\) \u8f6e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linked_list.java
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode access(ListNode head, int index) {\nfor (int i = 0; i < index; i++) {\nif (head == null)\nreturn null;\nhead = head.next;\n}\nreturn head;\n}\n
            linked_list.cpp
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\nfor (int i = 0; i < index; i++) {\nif (head == nullptr)\nreturn nullptr;\nhead = head->next;\n}\nreturn head;\n}\n
            linked_list.py
            def access(head: ListNode, index: int) -> ListNode | None:\n\"\"\"\u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\"\"\"\nfor _ in range(index):\nif not head:\nreturn None\nhead = head.next\nreturn head\n
            linked_list.go
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head *ListNode, index int) *ListNode {\nfor i := 0; i < index; i++ {\nif head == nil {\nreturn nil\n}\nhead = head.Next\n}\nreturn head\n}\n
            linked_list.js
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head, index) {\nfor (let i = 0; i < index; i++) {\nif (!head) {\nreturn null;\n}\nhead = head.next;\n}\nreturn head;\n}\n
            linked_list.ts
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head: ListNode | null, index: number): ListNode | null {\nfor (let i = 0; i < index; i++) {\nif (!head) {\nreturn null;\n}\nhead = head.next;\n}\nreturn head;\n}\n
            linked_list.c
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\nwhile (head && head->next && index) {\nhead = head->next;\nindex--;\n}\nreturn head;\n}\n
            linked_list.cs
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? access(ListNode head, int index) {\nfor (int i = 0; i < index; i++) {\nif (head == null)\nreturn null;\nhead = head.next;\n}\nreturn head;\n}\n
            linked_list.swift
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head: ListNode, index: Int) -> ListNode? {\nvar head: ListNode? = head\nfor _ in 0 ..< index {\nif head == nil {\nreturn nil\n}\nhead = head?.next\n}\nreturn head\n}\n
            linked_list.zig
            // \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\nfn access(node: ?*inc.ListNode(i32), index: i32) ?*inc.ListNode(i32) {\nvar head = node;\nvar i: i32 = 0;\nwhile (i < index) : (i += 1) {\nhead = head.?.next;\nif (head == null) return null;\n}\nreturn head;\n}\n
            linked_list.dart
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? access(ListNode? head, int index) {\nfor (var i = 0; i < index; i++) {\nif (head == null) return null;\nhead = head.next;\n}\nreturn head;\n}\n
            linked_list.rs
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\npub fn access<T>(head: Rc<RefCell<ListNode<T>>>, index: i32) -> Rc<RefCell<ListNode<T>>> {\nif index <= 0 {return head};\nif let Some(node) = &head.borrow_mut().next {\nreturn access(node.clone(), index - 1);\n}\nreturn head;\n}\n
            "},{"location":"chapter_array_and_linkedlist/linked_list/#5","title":"5. \u00a0 \u67e5\u627e\u8282\u70b9","text":"

            \u904d\u5386\u94fe\u8868\uff0c\u67e5\u627e\u94fe\u8868\u5185\u503c\u4e3a target \u7684\u8282\u70b9\uff0c\u8f93\u51fa\u8282\u70b9\u5728\u94fe\u8868\u4e2d\u7684\u7d22\u5f15\u3002\u6b64\u8fc7\u7a0b\u4e5f\u5c5e\u4e8e\u300c\u7ebf\u6027\u67e5\u627e\u300d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linked_list.java
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode head, int target) {\nint index = 0;\nwhile (head != null) {\nif (head.val == target)\nreturn index;\nhead = head.next;\nindex++;\n}\nreturn -1;\n}\n
            linked_list.cpp
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\nint index = 0;\nwhile (head != nullptr) {\nif (head->val == target)\nreturn index;\nhead = head->next;\nindex++;\n}\nreturn -1;\n}\n
            linked_list.py
            def find(head: ListNode, target: int) -> int:\n\"\"\"\u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\"\"\"\nindex = 0\nwhile head:\nif head.val == target:\nreturn index\nhead = head.next\nindex += 1\nreturn -1\n
            linked_list.go
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc findNode(head *ListNode, target int) int {\nindex := 0\nfor head != nil {\nif head.Val == target {\nreturn index\n}\nhead = head.Next\nindex++\n}\nreturn -1\n}\n
            linked_list.js
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head, target) {\nlet index = 0;\nwhile (head !== null) {\nif (head.val === target) {\nreturn index;\n}\nhead = head.next;\nindex += 1;\n}\nreturn -1;\n}\n
            linked_list.ts
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head: ListNode | null, target: number): number {\nlet index = 0;\nwhile (head !== null) {\nif (head.val === target) {\nreturn index;\n}\nhead = head.next;\nindex += 1;\n}\nreturn -1;\n}\n
            linked_list.c
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\nint index = 0;\nwhile (head) {\nif (head->val == target)\nreturn index;\nhead = head->next;\nindex++;\n}\nreturn -1;\n}\n
            linked_list.cs
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode head, int target) {\nint index = 0;\nwhile (head != null) {\nif (head.val == target)\nreturn index;\nhead = head.next;\nindex++;\n}\nreturn -1;\n}\n
            linked_list.swift
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc find(head: ListNode, target: Int) -> Int {\nvar head: ListNode? = head\nvar index = 0\nwhile head != nil {\nif head?.val == target {\nreturn index\n}\nhead = head?.next\nindex += 1\n}\nreturn -1\n}\n
            linked_list.zig
            // \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\nfn find(node: ?*inc.ListNode(i32), target: i32) i32 {\nvar head = node;\nvar index: i32 = 0;\nwhile (head != null) {\nif (head.?.val == target) return index;\nhead = head.?.next;\nindex += 1;\n}\nreturn -1;\n}\n
            linked_list.dart
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode? head, int target) {\nint index = 0;\nwhile (head != null) {\nif (head.val == target) {\nreturn index;\n}\nhead = head.next;\nindex++;\n}\nreturn -1;\n}\n
            linked_list.rs
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\npub fn find<T: PartialEq>(head: Rc<RefCell<ListNode<T>>>, target: T, index: i32) -> i32 {\nif head.borrow().val == target {return index};\nif let Some(node) = &head.borrow_mut().next {\nreturn find(node.clone(), target, index + 1);\n}\nreturn -1;\n}\n
            "},{"location":"chapter_array_and_linkedlist/linked_list/#422-vs","title":"4.2.2 \u00a0 \u6570\u7ec4 VS \u94fe\u8868","text":"

            \u4e0b\u8868\u603b\u7ed3\u5bf9\u6bd4\u4e86\u6570\u7ec4\u548c\u94fe\u8868\u7684\u5404\u9879\u7279\u70b9\u4e0e\u64cd\u4f5c\u6548\u7387\u3002\u7531\u4e8e\u5b83\u4eec\u91c7\u7528\u4e24\u79cd\u76f8\u53cd\u7684\u5b58\u50a8\u7b56\u7565\uff0c\u56e0\u6b64\u5404\u79cd\u6027\u8d28\u548c\u64cd\u4f5c\u6548\u7387\u4e5f\u5448\u73b0\u5bf9\u7acb\u7684\u7279\u70b9\u3002

            \u8868\uff1a\u6570\u7ec4\u4e0e\u94fe\u8868\u7684\u6548\u7387\u5bf9\u6bd4

            \u6570\u7ec4 \u94fe\u8868 \u5b58\u50a8\u65b9\u5f0f \u8fde\u7eed\u5185\u5b58\u7a7a\u95f4 \u79bb\u6563\u5185\u5b58\u7a7a\u95f4 \u7f13\u5b58\u5c40\u90e8\u6027 \u53cb\u597d \u4e0d\u53cb\u597d \u5bb9\u91cf\u6269\u5c55 \u957f\u5ea6\u4e0d\u53ef\u53d8 \u53ef\u7075\u6d3b\u6269\u5c55 \u5185\u5b58\u6548\u7387 \u5360\u7528\u5185\u5b58\u5c11\u3001\u6d6a\u8d39\u90e8\u5206\u7a7a\u95f4 \u5360\u7528\u5185\u5b58\u591a \u8bbf\u95ee\u5143\u7d20 \\(O(1)\\) \\(O(n)\\) \u6dfb\u52a0\u5143\u7d20 \\(O(n)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(1)\\)"},{"location":"chapter_array_and_linkedlist/linked_list/#423","title":"4.2.3 \u00a0 \u5e38\u89c1\u94fe\u8868\u7c7b\u578b","text":"

            \u5355\u5411\u94fe\u8868\u3002\u5373\u4e0a\u8ff0\u4ecb\u7ecd\u7684\u666e\u901a\u94fe\u8868\u3002\u5355\u5411\u94fe\u8868\u7684\u8282\u70b9\u5305\u542b\u503c\u548c\u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\u4e24\u9879\u6570\u636e\u3002\u6211\u4eec\u5c06\u9996\u4e2a\u8282\u70b9\u79f0\u4e3a\u5934\u8282\u70b9\uff0c\u5c06\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u6210\u4e3a\u5c3e\u8282\u70b9\uff0c\u5c3e\u8282\u70b9\u6307\u5411\u7a7a \\(\\text{None}\\) \u3002

            \u73af\u5f62\u94fe\u8868\u3002\u5982\u679c\u6211\u4eec\u4ee4\u5355\u5411\u94fe\u8868\u7684\u5c3e\u8282\u70b9\u6307\u5411\u5934\u8282\u70b9\uff08\u5373\u9996\u5c3e\u76f8\u63a5\uff09\uff0c\u5219\u5f97\u5230\u4e00\u4e2a\u73af\u5f62\u94fe\u8868\u3002\u5728\u73af\u5f62\u94fe\u8868\u4e2d\uff0c\u4efb\u610f\u8282\u70b9\u90fd\u53ef\u4ee5\u89c6\u4f5c\u5934\u8282\u70b9\u3002

            \u53cc\u5411\u94fe\u8868\u3002\u4e0e\u5355\u5411\u94fe\u8868\u76f8\u6bd4\uff0c\u53cc\u5411\u94fe\u8868\u8bb0\u5f55\u4e86\u4e24\u4e2a\u65b9\u5411\u7684\u5f15\u7528\u3002\u53cc\u5411\u94fe\u8868\u7684\u8282\u70b9\u5b9a\u4e49\u540c\u65f6\u5305\u542b\u6307\u5411\u540e\u7ee7\u8282\u70b9\uff08\u4e0b\u4e00\u4e2a\u8282\u70b9\uff09\u548c\u524d\u9a71\u8282\u70b9\uff08\u4e0a\u4e00\u4e2a\u8282\u70b9\uff09\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\u3002\u76f8\u8f83\u4e8e\u5355\u5411\u94fe\u8868\uff0c\u53cc\u5411\u94fe\u8868\u66f4\u5177\u7075\u6d3b\u6027\uff0c\u53ef\u4ee5\u671d\u4e24\u4e2a\u65b9\u5411\u904d\u5386\u94fe\u8868\uff0c\u4f46\u76f8\u5e94\u5730\u4e5f\u9700\u8981\u5360\u7528\u66f4\u591a\u7684\u5185\u5b58\u7a7a\u95f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val;        // \u8282\u70b9\u503c\nListNode next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nListNode prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\nListNode(int x) { val = x; }  // \u6784\u9020\u51fd\u6570\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\nint val;         // \u8282\u70b9\u503c\nListNode *next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\nListNode *prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\nListNode(int x) : val(x), next(nullptr), prev(nullptr) {}  // \u6784\u9020\u51fd\u6570\n};\n
            class ListNode:\n\"\"\"\u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\"\"\"\ndef __init__(self, val: int):\nself.val: int = val                   # \u8282\u70b9\u503c\nself.next: Optional[ListNode] = None  # \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nself.prev: Optional[ListNode] = None  # \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype DoublyListNode struct {\nVal  int             // \u8282\u70b9\u503c\nNext *DoublyListNode // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\nPrev *DoublyListNode // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n}\n// NewDoublyListNode \u521d\u59cb\u5316\nfunc NewDoublyListNode(val int) *DoublyListNode {\nreturn &DoublyListNode{\nVal:  val,\nNext: nil,\nPrev: nil,\n}\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nval;\nnext;\nprev;\nconstructor(val, next, prev) {\nthis.val = val  ===  undefined ? 0 : val;        // \u8282\u70b9\u503c\nthis.next = next  ===  undefined ? null : next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nthis.prev = prev  ===  undefined ? null : prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nval: number;\nnext: ListNode | null;\nprev: ListNode | null;\nconstructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {\nthis.val = val  ===  undefined ? 0 : val;        // \u8282\u70b9\u503c\nthis.next = next  ===  undefined ? null : next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nthis.prev = prev  ===  undefined ? null : prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\nint val;               // \u8282\u70b9\u503c\nstruct ListNode *next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\nstruct ListNode *prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n};\ntypedef struct ListNode ListNode;\n/* \u6784\u9020\u51fd\u6570 */\nListNode *newListNode(int val) {\nListNode *node, *next;\nnode = (ListNode *) malloc(sizeof(ListNode));\nnode->val = val;\nnode->next = NULL;\nnode->prev = NULL;\nreturn node;\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val;        // \u8282\u70b9\u503c\nListNode next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nListNode prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\nListNode(int x) => val = x;  // \u6784\u9020\u51fd\u6570\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nvar val: Int // \u8282\u70b9\u503c\nvar next: ListNode? // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nvar prev: ListNode? // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\ninit(x: Int) { // \u6784\u9020\u51fd\u6570\nval = x\n}\n}\n
            // \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\npub fn ListNode(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nval: T = 0, // \u8282\u70b9\u503c\nnext: ?*Self = null, // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\nprev: ?*Self = null, // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n// \u6784\u9020\u51fd\u6570\npub fn init(self: *Self, x: i32) void {\nself.val = x;\nself.next = null;\nself.prev = null;\n}\n};\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val;        // \u8282\u70b9\u503c\nListNode next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nListNode prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\nListNode(this.val, [this.next, this.prev]);  // \u6784\u9020\u51fd\u6570\n}\n
            use std::rc::Rc;\nuse std::cell::RefCell;\n/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\u578b */\n#[derive(Debug)]\nstruct ListNode {\nval: i32, // \u8282\u70b9\u503c\nnext: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\nprev: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n}\n/* \u6784\u9020\u51fd\u6570 */\nimpl ListNode {\nfn new(val: i32) -> Self {\nListNode {\nval,\nnext: None,\nprev: None,\n}\n}\n}\n

            \u56fe\uff1a\u5e38\u89c1\u94fe\u8868\u79cd\u7c7b

            "},{"location":"chapter_array_and_linkedlist/linked_list/#424","title":"4.2.4 \u00a0 \u94fe\u8868\u5178\u578b\u5e94\u7528","text":"

            \u5355\u5411\u94fe\u8868\u901a\u5e38\u7528\u4e8e\u5b9e\u73b0\u6808\u3001\u961f\u5217\u3001\u6563\u5217\u8868\u548c\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u3002

            • \u6808\u4e0e\u961f\u5217\uff1a\u5f53\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u90fd\u5728\u94fe\u8868\u7684\u4e00\u7aef\u8fdb\u884c\u65f6\uff0c\u5b83\u8868\u73b0\u51fa\u5148\u8fdb\u540e\u51fa\u7684\u7684\u7279\u6027\uff0c\u5bf9\u5e94\u6808\uff1b\u5f53\u63d2\u5165\u64cd\u4f5c\u5728\u94fe\u8868\u7684\u4e00\u7aef\u8fdb\u884c\uff0c\u5220\u9664\u64cd\u4f5c\u5728\u94fe\u8868\u7684\u53e6\u4e00\u7aef\u8fdb\u884c\uff0c\u5b83\u8868\u73b0\u51fa\u5148\u8fdb\u5148\u51fa\u7684\u7279\u6027\uff0c\u5bf9\u5e94\u961f\u5217\u3002
            • \u6563\u5217\u8868\uff1a\u94fe\u5730\u5740\u6cd5\u662f\u89e3\u51b3\u54c8\u5e0c\u51b2\u7a81\u7684\u4e3b\u6d41\u65b9\u6848\u4e4b\u4e00\uff0c\u5728\u8be5\u65b9\u6848\u4e2d\uff0c\u6240\u6709\u51b2\u7a81\u7684\u5143\u7d20\u90fd\u4f1a\u88ab\u653e\u5230\u4e00\u4e2a\u94fe\u8868\u4e2d\u3002
            • \u56fe\uff1a\u90bb\u63a5\u8868\u662f\u8868\u793a\u56fe\u7684\u4e00\u79cd\u5e38\u7528\u65b9\u5f0f\uff0c\u5728\u5176\u4e2d\uff0c\u56fe\u7684\u6bcf\u4e2a\u9876\u70b9\u90fd\u4e0e\u4e00\u4e2a\u94fe\u8868\u76f8\u5173\u8054\uff0c\u94fe\u8868\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u90fd\u4ee3\u8868\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u5176\u4ed6\u9876\u70b9\u3002

            \u53cc\u5411\u94fe\u8868\u5e38\u88ab\u7528\u4e8e\u9700\u8981\u5feb\u901f\u67e5\u627e\u524d\u4e00\u4e2a\u548c\u4e0b\u4e00\u4e2a\u5143\u7d20\u7684\u573a\u666f\u3002

            • \u9ad8\u7ea7\u6570\u636e\u7ed3\u6784\uff1a\u6bd4\u5982\u5728\u7ea2\u9ed1\u6811\u3001B \u6811\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u8bbf\u95ee\u8282\u70b9\u7684\u7236\u8282\u70b9\uff0c\u8fd9\u53ef\u4ee5\u901a\u8fc7\u5728\u8282\u70b9\u4e2d\u4fdd\u5b58\u4e00\u4e2a\u6307\u5411\u7236\u8282\u70b9\u7684\u5f15\u7528\u6765\u5b9e\u73b0\uff0c\u7c7b\u4f3c\u4e8e\u53cc\u5411\u94fe\u8868\u3002
            • \u6d4f\u89c8\u5668\u5386\u53f2\uff1a\u5728\u7f51\u9875\u6d4f\u89c8\u5668\u4e2d\uff0c\u5f53\u7528\u6237\u70b9\u51fb\u524d\u8fdb\u6216\u540e\u9000\u6309\u94ae\u65f6\uff0c\u6d4f\u89c8\u5668\u9700\u8981\u77e5\u9053\u7528\u6237\u8bbf\u95ee\u8fc7\u7684\u524d\u4e00\u4e2a\u548c\u540e\u4e00\u4e2a\u7f51\u9875\u3002\u53cc\u5411\u94fe\u8868\u7684\u7279\u6027\u4f7f\u5f97\u8fd9\u79cd\u64cd\u4f5c\u53d8\u5f97\u7b80\u5355\u3002
            • LRU \u7b97\u6cd5\uff1a\u5728\u7f13\u5b58\u6dd8\u6c70\u7b97\u6cd5\uff08LRU\uff09\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u5feb\u901f\u627e\u5230\u6700\u8fd1\u6700\u5c11\u4f7f\u7528\u7684\u6570\u636e\uff0c\u4ee5\u53ca\u652f\u6301\u5feb\u901f\u5730\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u3002\u8fd9\u65f6\u5019\u4f7f\u7528\u53cc\u5411\u94fe\u8868\u5c31\u975e\u5e38\u5408\u9002\u3002

            \u5faa\u73af\u94fe\u8868\u5e38\u88ab\u7528\u4e8e\u9700\u8981\u5468\u671f\u6027\u64cd\u4f5c\u7684\u573a\u666f\uff0c\u6bd4\u5982\u64cd\u4f5c\u7cfb\u7edf\u7684\u8d44\u6e90\u8c03\u5ea6\u3002

            • \u65f6\u95f4\u7247\u8f6e\u8f6c\u8c03\u5ea6\u7b97\u6cd5\uff1a\u5728\u64cd\u4f5c\u7cfb\u7edf\u4e2d\uff0c\u65f6\u95f4\u7247\u8f6e\u8f6c\u8c03\u5ea6\u7b97\u6cd5\u662f\u4e00\u79cd\u5e38\u89c1\u7684 CPU \u8c03\u5ea6\u7b97\u6cd5\uff0c\u5b83\u9700\u8981\u5bf9\u4e00\u7ec4\u8fdb\u7a0b\u8fdb\u884c\u5faa\u73af\u3002\u6bcf\u4e2a\u8fdb\u7a0b\u88ab\u8d4b\u4e88\u4e00\u4e2a\u65f6\u95f4\u7247\uff0c\u5f53\u65f6\u95f4\u7247\u7528\u5b8c\u65f6\uff0cCPU \u5c06\u5207\u6362\u5230\u4e0b\u4e00\u4e2a\u8fdb\u7a0b\u3002\u8fd9\u79cd\u5faa\u73af\u7684\u64cd\u4f5c\u5c31\u53ef\u4ee5\u901a\u8fc7\u5faa\u73af\u94fe\u8868\u6765\u5b9e\u73b0\u3002
            • \u6570\u636e\u7f13\u51b2\u533a\uff1a\u5728\u67d0\u4e9b\u6570\u636e\u7f13\u51b2\u533a\u7684\u5b9e\u73b0\u4e2d\uff0c\u4e5f\u53ef\u80fd\u4f1a\u4f7f\u7528\u5230\u5faa\u73af\u94fe\u8868\u3002\u6bd4\u5982\u5728\u97f3\u9891\u3001\u89c6\u9891\u64ad\u653e\u5668\u4e2d\uff0c\u6570\u636e\u6d41\u53ef\u80fd\u4f1a\u88ab\u5206\u6210\u591a\u4e2a\u7f13\u51b2\u5757\u5e76\u653e\u5165\u4e00\u4e2a\u5faa\u73af\u94fe\u8868\uff0c\u4ee5\u4fbf\u5b9e\u73b0\u65e0\u7f1d\u64ad\u653e\u3002
            "},{"location":"chapter_array_and_linkedlist/list/","title":"4.3 \u00a0 \u5217\u8868","text":"

            \u6570\u7ec4\u957f\u5ea6\u4e0d\u53ef\u53d8\u5bfc\u81f4\u5b9e\u7528\u6027\u964d\u4f4e\u3002\u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u53ef\u80fd\u4e8b\u5148\u65e0\u6cd5\u786e\u5b9a\u9700\u8981\u5b58\u50a8\u591a\u5c11\u6570\u636e\uff0c\u8fd9\u4f7f\u6570\u7ec4\u957f\u5ea6\u7684\u9009\u62e9\u53d8\u5f97\u56f0\u96be\u3002\u82e5\u957f\u5ea6\u8fc7\u5c0f\uff0c\u9700\u8981\u5728\u6301\u7eed\u6dfb\u52a0\u6570\u636e\u65f6\u9891\u7e41\u6269\u5bb9\u6570\u7ec4\uff1b\u82e5\u957f\u5ea6\u8fc7\u5927\uff0c\u5219\u4f1a\u9020\u6210\u5185\u5b58\u7a7a\u95f4\u7684\u6d6a\u8d39\u3002

            \u4e3a\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u51fa\u73b0\u4e86\u4e00\u79cd\u88ab\u79f0\u4e3a\u300c\u52a8\u6001\u6570\u7ec4 Dynamic Array\u300d\u7684\u6570\u636e\u7ed3\u6784\uff0c\u5373\u957f\u5ea6\u53ef\u53d8\u7684\u6570\u7ec4\uff0c\u4e5f\u5e38\u88ab\u79f0\u4e3a\u300c\u5217\u8868 List\u300d\u3002\u5217\u8868\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\uff0c\u7ee7\u627f\u4e86\u6570\u7ec4\u7684\u4f18\u70b9\uff0c\u5e76\u4e14\u53ef\u4ee5\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u52a8\u6001\u6269\u5bb9\u3002\u6211\u4eec\u53ef\u4ee5\u5728\u5217\u8868\u4e2d\u81ea\u7531\u5730\u6dfb\u52a0\u5143\u7d20\uff0c\u800c\u65e0\u987b\u62c5\u5fc3\u8d85\u8fc7\u5bb9\u91cf\u9650\u5236\u3002

            "},{"location":"chapter_array_and_linkedlist/list/#431","title":"4.3.1 \u00a0 \u5217\u8868\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/list/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u5217\u8868","text":"

            \u6211\u4eec\u901a\u5e38\u4f7f\u7528\u201c\u65e0\u521d\u59cb\u503c\u201d\u548c\u201c\u6709\u521d\u59cb\u503c\u201d\u8fd9\u4e24\u79cd\u521d\u59cb\u5316\u65b9\u6cd5\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<Integer> list1 = new ArrayList<>();\n// \u6709\u521d\u59cb\u503c\uff08\u6ce8\u610f\u6570\u7ec4\u7684\u5143\u7d20\u7c7b\u578b\u9700\u4e3a int[] \u7684\u5305\u88c5\u7c7b Integer[]\uff09\nInteger[] numbers = new Integer[] { 1, 3, 2, 5, 4 };\nList<Integer> list = new ArrayList<>(Arrays.asList(numbers));\n
            list.cpp
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u9700\u6ce8\u610f\uff0cC++ \u4e2d vector \u5373\u662f\u672c\u6587\u63cf\u8ff0\u7684 list\n// \u65e0\u521d\u59cb\u503c\nvector<int> list1;\n// \u6709\u521d\u59cb\u503c\nvector<int> list = { 1, 3, 2, 5, 4 };\n
            list.py
            # \u521d\u59cb\u5316\u5217\u8868\n# \u65e0\u521d\u59cb\u503c\nlist1: list[int] = []\n# \u6709\u521d\u59cb\u503c\nlist: list[int] = [1, 3, 2, 5, 4]\n
            list_test.go
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nlist1 := []int\n// \u6709\u521d\u59cb\u503c\nlist := []int{1, 3, 2, 5, 4}\n
            list.js
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nconst list1 = [];\n// \u6709\u521d\u59cb\u503c\nconst list = [1, 3, 2, 5, 4];\n
            list.ts
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nconst list1: number[] = [];\n// \u6709\u521d\u59cb\u503c\nconst list: number[] = [1, 3, 2, 5, 4];\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<int> list1 = new ();\n// \u6709\u521d\u59cb\u503c\nint[] numbers = new int[] { 1, 3, 2, 5, 4 };\nList<int> list = numbers.ToList();\n
            list.swift
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nlet list1: [Int] = []\n// \u6709\u521d\u59cb\u503c\nvar list = [1, 3, 2, 5, 4]\n
            list.zig
            // \u521d\u59cb\u5316\u5217\u8868\nvar list = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer list.deinit();\ntry list.appendSlice(&[_]i32{ 1, 3, 2, 5, 4 });\n
            list.dart
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<int> list1 = [];\n// \u6709\u521d\u59cb\u503c\nList<int> list = [1, 3, 2, 5, 4];\n
            list.rs
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nlet list1: Vec<i32> = Vec::new();\n// \u6709\u521d\u59cb\u503c\nlet list2: Vec<i32> = vec![1, 3, 2, 5, 4];\n
            "},{"location":"chapter_array_and_linkedlist/list/#2","title":"2. \u00a0 \u8bbf\u95ee\u5143\u7d20","text":"

            \u5217\u8868\u672c\u8d28\u4e0a\u662f\u6570\u7ec4\uff0c\u56e0\u6b64\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u8bbf\u95ee\u548c\u66f4\u65b0\u5143\u7d20\uff0c\u6548\u7387\u5f88\u9ad8\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u8bbf\u95ee\u5143\u7d20 */\nint num = list.get(1);  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist.set(1, 0);  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.cpp
            /* \u8bbf\u95ee\u5143\u7d20 */\nint num = list[1];  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.py
            # \u8bbf\u95ee\u5143\u7d20\nnum: int = list[1]  # \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n# \u66f4\u65b0\u5143\u7d20\nlist[1] = 0    # \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list_test.go
            /* \u8bbf\u95ee\u5143\u7d20 */\nnum := list[1]  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0     // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.js
            /* \u8bbf\u95ee\u5143\u7d20 */\nconst num = list[1];  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.ts
            /* \u8bbf\u95ee\u5143\u7d20 */\nconst num: number = list[1];  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u8bbf\u95ee\u5143\u7d20 */\nint num = list[1];  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.swift
            /* \u8bbf\u95ee\u5143\u7d20 */\nlet num = list[1] // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0 // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.zig
            // \u8bbf\u95ee\u5143\u7d20\nvar num = list.items[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n// \u66f4\u65b0\u5143\u7d20\nlist.items[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0  \n
            list.dart
            /* \u8bbf\u95ee\u5143\u7d20 */\nint num = list[1];  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.rs
            /* \u8bbf\u95ee\u5143\u7d20 */\nlet num: i32 = list[1];    // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;               // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            "},{"location":"chapter_array_and_linkedlist/list/#3","title":"3. \u00a0 \u63d2\u5165\u4e0e\u5220\u9664\u5143\u7d20","text":"

            \u76f8\u8f83\u4e8e\u6570\u7ec4\uff0c\u5217\u8868\u53ef\u4ee5\u81ea\u7531\u5730\u6dfb\u52a0\u4e0e\u5220\u9664\u5143\u7d20\u3002\u5728\u5217\u8868\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff0c\u4f46\u63d2\u5165\u548c\u5220\u9664\u5143\u7d20\u7684\u6548\u7387\u4ecd\u4e0e\u6570\u7ec4\u76f8\u540c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.clear();\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.add(1);\nlist.add(3);\nlist.add(2);\nlist.add(5);\nlist.add(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.add(3, 6);  // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist.remove(3);  // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.cpp
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.clear();\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.push_back(1);\nlist.push_back(3);\nlist.push_back(2);\nlist.push_back(5);\nlist.push_back(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.insert(list.begin() + 3, 6);  // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist.erase(list.begin() + 3);      // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.py
            # \u6e05\u7a7a\u5217\u8868\nlist.clear()\n# \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\nlist.append(1)\nlist.append(3)\nlist.append(2)\nlist.append(5)\nlist.append(4)\n# \u4e2d\u95f4\u63d2\u5165\u5143\u7d20\nlist.insert(3, 6)  # \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n# \u5220\u9664\u5143\u7d20\nlist.pop(3)        # \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list_test.go
            /* \u6e05\u7a7a\u5217\u8868 */\nlist = nil\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist = append(list, 1)\nlist = append(list, 3)\nlist = append(list, 2)\nlist = append(list, 5)\nlist = append(list, 4)\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist = append(list[:3], append([]int{6}, list[3:]...)...) // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist = append(list[:3], list[4:]...) // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.js
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.length = 0;\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.push(1);\nlist.push(3);\nlist.push(2);\nlist.push(5);\nlist.push(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.splice(3, 0, 6);\n/* \u5220\u9664\u5143\u7d20 */\nlist.splice(3, 1);\n
            list.ts
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.length = 0;\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.push(1);\nlist.push(3);\nlist.push(2);\nlist.push(5);\nlist.push(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.splice(3, 0, 6);\n/* \u5220\u9664\u5143\u7d20 */\nlist.splice(3, 1);\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.Clear();\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.Add(1);\nlist.Add(3);\nlist.Add(2);\nlist.Add(5);\nlist.Add(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.Insert(3, 6);\n/* \u5220\u9664\u5143\u7d20 */\nlist.RemoveAt(3);\n
            list.swift
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.removeAll()\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.append(1)\nlist.append(3)\nlist.append(2)\nlist.append(5)\nlist.append(4)\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.insert(6, at: 3) // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist.remove(at: 3) // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.zig
            // \u6e05\u7a7a\u5217\u8868\nlist.clearRetainingCapacity();\n// \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\ntry list.append(1);\ntry list.append(3);\ntry list.append(2);\ntry list.append(5);\ntry list.append(4);\n// \u4e2d\u95f4\u63d2\u5165\u5143\u7d20\ntry list.insert(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n// \u5220\u9664\u5143\u7d20\n_ = list.orderedRemove(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.dart
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.clear();\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.add(1);\nlist.add(3);\nlist.add(2);\nlist.add(5);\nlist.add(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.insert(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist.removeAt(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.rs
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.clear();\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.push(1);\nlist.push(3);\nlist.push(2);\nlist.push(5);\nlist.push(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.insert(3, 6);  // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist.remove(3);    // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            "},{"location":"chapter_array_and_linkedlist/list/#4","title":"4. \u00a0 \u904d\u5386\u5217\u8868","text":"

            \u4e0e\u6570\u7ec4\u4e00\u6837\uff0c\u5217\u8868\u53ef\u4ee5\u6839\u636e\u7d22\u5f15\u904d\u5386\uff0c\u4e5f\u53ef\u4ee5\u76f4\u63a5\u904d\u5386\u5404\u5143\u7d20\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < list.size(); i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (int n : list) {\ncount++;\n}\n
            list.cpp
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < list.size(); i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (int n : list) {\ncount++;\n}\n
            list.py
            # \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868\ncount = 0\nfor i in range(len(list)):\ncount += 1\n# \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20\ncount = 0\nfor n in list:\ncount += 1\n
            list_test.go
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\ncount := 0\nfor i := 0; i < len(list); i++ {\ncount++\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0\nfor range list {\ncount++\n}\n
            list.js
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nlet count = 0;\nfor (let i = 0; i < list.length; i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (const n of list) {\ncount++;\n}\n
            list.ts
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nlet count = 0;\nfor (let i = 0; i < list.length; i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (const n of list) {\ncount++;\n}\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < list.Count; i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nforeach (int n in list) {\ncount++;\n}\n
            list.swift
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nvar count = 0\nfor _ in list.indices {\ncount += 1\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0\nfor _ in list {\ncount += 1\n}\n
            list.zig
            // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868\nvar count: i32 = 0;\nvar i: i32 = 0;\nwhile (i < list.items.len) : (i += 1) {\ncount += 1;\n}\n// \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20\ncount = 0;\nfor (list.items) |_| {\ncount += 1;\n}\n
            list.dart
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < list.length; i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (int n in list) {\ncount++;\n}\n
            list.rs
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nlet mut count = 0;\nfor (index, value) in list.iter().enumerate() {\ncount += 1;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\nlet mut count = 0;\nfor value in list.iter() {\ncount += 1;\n}\n
            "},{"location":"chapter_array_and_linkedlist/list/#5","title":"5. \u00a0 \u62fc\u63a5\u5217\u8868","text":"

            \u7ed9\u5b9a\u4e00\u4e2a\u65b0\u5217\u8868 list1 \uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u8be5\u5217\u8868\u62fc\u63a5\u5230\u539f\u5217\u8868\u7684\u5c3e\u90e8\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<Integer> list1 = new ArrayList<>(Arrays.asList(new Integer[] { 6, 8, 7, 10, 9 }));\nlist.addAll(list1);  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.cpp
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nvector<int> list1 = { 6, 8, 7, 10, 9 };\n// \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\nlist.insert(list.end(), list1.begin(), list1.end());\n
            list.py
            # \u62fc\u63a5\u4e24\u4e2a\u5217\u8868\nlist1: list[int] = [6, 8, 7, 10, 9]\nlist += list1  # \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list_test.go
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nlist1 := []int{6, 8, 7, 10, 9}\nlist = append(list, list1...)  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.js
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nconst list1 = [6, 8, 7, 10, 9];\nlist.push(...list1);  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.ts
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nconst list1: number[] = [6, 8, 7, 10, 9];\nlist.push(...list1);  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<int> list1 = new() { 6, 8, 7, 10, 9 };\nlist.AddRange(list1);  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.swift
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nlet list1 = [6, 8, 7, 10, 9]\nlist.append(contentsOf: list1) // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.zig
            // \u62fc\u63a5\u4e24\u4e2a\u5217\u8868\nvar list1 = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer list1.deinit();\ntry list1.appendSlice(&[_]i32{ 6, 8, 7, 10, 9 });\ntry list.insertSlice(list.items.len, list1.items); // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.dart
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<int> list1 = [6, 8, 7, 10, 9];\nlist.addAll(list1);  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.rs
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nlet list1: Vec<i32> = vec![6, 8, 7, 10, 9];\nlist.extend(list1);\n
            "},{"location":"chapter_array_and_linkedlist/list/#6","title":"6. \u00a0 \u6392\u5e8f\u5217\u8868","text":"

            \u5b8c\u6210\u5217\u8868\u6392\u5e8f\u540e\uff0c\u6211\u4eec\u4fbf\u53ef\u4ee5\u4f7f\u7528\u5728\u6570\u7ec4\u7c7b\u7b97\u6cd5\u9898\u4e2d\u7ecf\u5e38\u8003\u5bdf\u7684\u201c\u4e8c\u5206\u67e5\u627e\u201d\u548c\u201c\u53cc\u6307\u9488\u201d\u7b97\u6cd5\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u6392\u5e8f\u5217\u8868 */\nCollections.sort(list);  // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.cpp
            /* \u6392\u5e8f\u5217\u8868 */\nsort(list.begin(), list.end());  // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.py
            # \u6392\u5e8f\u5217\u8868\nlist.sort()  # \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list_test.go
            /* \u6392\u5e8f\u5217\u8868 */\nsort.Ints(list)  // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.js
            /* \u6392\u5e8f\u5217\u8868 */  list.sort((a, b) => a - b);  // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.ts
            /* \u6392\u5e8f\u5217\u8868 */\nlist.sort((a, b) => a - b);  // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u6392\u5e8f\u5217\u8868 */\nlist.Sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.swift
            /* \u6392\u5e8f\u5217\u8868 */\nlist.sort() // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.zig
            // \u6392\u5e8f\u5217\u8868\nstd.sort.sort(i32, list.items, {}, comptime std.sort.asc(i32));\n
            list.dart
            /* \u6392\u5e8f\u5217\u8868 */\nlist.sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.rs
            /* \u6392\u5e8f\u5217\u8868 */\nlist.sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            "},{"location":"chapter_array_and_linkedlist/list/#432","title":"4.3.2 \u00a0 \u5217\u8868\u5b9e\u73b0","text":"

            \u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u90fd\u63d0\u4f9b\u5185\u7f6e\u7684\u5217\u8868\uff0c\u4f8b\u5982 Java, C++, Python \u7b49\u3002\u5b83\u4eec\u7684\u5b9e\u73b0\u6bd4\u8f83\u590d\u6742\uff0c\u5404\u4e2a\u53c2\u6570\u7684\u8bbe\u5b9a\u4e5f\u975e\u5e38\u6709\u8003\u7a76\uff0c\u4f8b\u5982\u521d\u59cb\u5bb9\u91cf\u3001\u6269\u5bb9\u500d\u6570\u7b49\u3002\u611f\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u67e5\u9605\u6e90\u7801\u8fdb\u884c\u5b66\u4e60\u3002

            \u4e3a\u4e86\u5e2e\u52a9\u4f60\u7406\u89e3\u5217\u8868\u7684\u5de5\u4f5c\u539f\u7406\uff0c\u6211\u4eec\u5728\u6b64\u63d0\u4f9b\u4e00\u4e2a\u7b80\u6613\u7248\u5217\u8868\u5b9e\u73b0\uff0c\u91cd\u70b9\u5305\u62ec\uff1a

            • \u521d\u59cb\u5bb9\u91cf\uff1a\u9009\u53d6\u4e00\u4e2a\u5408\u7406\u7684\u6570\u7ec4\u521d\u59cb\u5bb9\u91cf\u3002\u5728\u672c\u793a\u4f8b\u4e2d\uff0c\u6211\u4eec\u9009\u62e9 10 \u4f5c\u4e3a\u521d\u59cb\u5bb9\u91cf\u3002
            • \u6570\u91cf\u8bb0\u5f55\uff1a\u58f0\u660e\u4e00\u4e2a\u53d8\u91cf size\uff0c\u7528\u4e8e\u8bb0\u5f55\u5217\u8868\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff0c\u5e76\u968f\u7740\u5143\u7d20\u63d2\u5165\u548c\u5220\u9664\u5b9e\u65f6\u66f4\u65b0\u3002\u6839\u636e\u6b64\u53d8\u91cf\uff0c\u6211\u4eec\u53ef\u4ee5\u5b9a\u4f4d\u5217\u8868\u5c3e\u90e8\uff0c\u4ee5\u53ca\u5224\u65ad\u662f\u5426\u9700\u8981\u6269\u5bb9\u3002
            • \u6269\u5bb9\u673a\u5236\uff1a\u82e5\u63d2\u5165\u5143\u7d20\u65f6\u5217\u8868\u5bb9\u91cf\u5df2\u6ee1\uff0c\u5219\u9700\u8981\u8fdb\u884c\u6269\u5bb9\u3002\u9996\u5148\u6839\u636e\u6269\u5bb9\u500d\u6570\u521b\u5efa\u4e00\u4e2a\u66f4\u5927\u7684\u6570\u7ec4\uff0c\u518d\u5c06\u5f53\u524d\u6570\u7ec4\u7684\u6240\u6709\u5143\u7d20\u4f9d\u6b21\u79fb\u52a8\u81f3\u65b0\u6570\u7ec4\u3002\u5728\u672c\u793a\u4f8b\u4e2d\uff0c\u6211\u4eec\u89c4\u5b9a\u6bcf\u6b21\u5c06\u6570\u7ec4\u6269\u5bb9\u81f3\u4e4b\u524d\u7684 2 \u500d\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_list.java
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nprivate int[] nums; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nprivate int capacity = 10; // \u5217\u8868\u5bb9\u91cf\nprivate int size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nprivate int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\npublic MyList() {\nnums = new int[capacity];\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\npublic int size() {\nreturn size;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\npublic int capacity() {\nreturn capacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\npublic int get(int index) {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 || index >= size)\nthrow new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\nreturn nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\npublic void set(int index, int num) {\nif (index < 0 || index >= size)\nthrow new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\nnums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\npublic void add(int num) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (size == capacity())\nextendCapacity();\nnums[size] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nsize++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\npublic void insert(int index, int num) {\nif (index < 0 || index >= size)\nthrow new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (size == capacity())\nextendCapacity();\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int j = size - 1; j >= index; j--) {\nnums[j + 1] = nums[j];\n}\nnums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nsize++;\n}\n/* \u5220\u9664\u5143\u7d20 */\npublic int remove(int index) {\nif (index < 0 || index >= size)\nthrow new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\nint num = nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int j = index; j < size - 1; j++) {\nnums[j] = nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nsize--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\npublic void extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nnums = Arrays.copyOf(nums, capacity() * extendRatio);\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\ncapacity = nums.length;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\npublic int[] toArray() {\nint size = size();\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] nums = new int[size];\nfor (int i = 0; i < size; i++) {\nnums[i] = get(i);\n}\nreturn nums;\n}\n}\n
            my_list.cpp
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nprivate:\nint *nums;             // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nint numsCapacity = 10; // \u5217\u8868\u5bb9\u91cf\nint numsSize = 0;      // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nint extendRatio = 2;   // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nMyList() {\nnums = new int[numsCapacity];\n}\n/* \u6790\u6784\u65b9\u6cd5 */\n~MyList() {\ndelete[] nums;\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\nint size() {\nreturn numsSize;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nint capacity() {\nreturn numsCapacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\nint get(int index) {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 || index >= size())\nthrow out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\nreturn nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nvoid set(int index, int num) {\nif (index < 0 || index >= size())\nthrow out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\nnums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nvoid add(int num) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (size() == capacity())\nextendCapacity();\nnums[size()] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nvoid insert(int index, int num) {\nif (index < 0 || index >= size())\nthrow out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (size() == capacity())\nextendCapacity();\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int j = size() - 1; j >= index; j--) {\nnums[j + 1] = nums[j];\n}\nnums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize++;\n}\n/* \u5220\u9664\u5143\u7d20 */\nint remove(int index) {\nif (index < 0 || index >= size())\nthrow out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\nint num = nums[index];\n// \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int j = index; j < size() - 1; j++) {\nnums[j] = nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\nvoid extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\nint newCapacity = capacity() * extendRatio;\nint *tmp = nums;\nnums = new int[newCapacity];\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (int i = 0; i < size(); i++) {\nnums[i] = tmp[i];\n}\n// \u91ca\u653e\u5185\u5b58\ndelete[] tmp;\nnumsCapacity = newCapacity;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Vector \u7528\u4e8e\u6253\u5370 */\nvector<int> toVector() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvector<int> vec(size());\nfor (int i = 0; i < size(); i++) {\nvec[i] = nums[i];\n}\nreturn vec;\n}\n};\n
            my_list.py
            class MyList:\n\"\"\"\u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__capacity: int = 10  # \u5217\u8868\u5bb9\u91cf\nself.__nums: list[int] = [0] * self.__capacity  # \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nself.__size: int = 0  # \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nself.__extend_ratio: int = 2  # \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\"\"\"\nreturn self.__size\ndef capacity(self) -> int:\n\"\"\"\u83b7\u53d6\u5217\u8868\u5bb9\u91cf\"\"\"\nreturn self.__capacity\ndef get(self, index: int) -> int:\n\"\"\"\u8bbf\u95ee\u5143\u7d20\"\"\"\n# \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif index < 0 or index >= self.__size:\nraise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\nreturn self.__nums[index]\ndef set(self, num: int, index: int):\n\"\"\"\u66f4\u65b0\u5143\u7d20\"\"\"\nif index < 0 or index >= self.__size:\nraise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\nself.__nums[index] = num\ndef add(self, num: int):\n\"\"\"\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\"\"\"\n# \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif self.size() == self.capacity():\nself.extend_capacity()\nself.__nums[self.__size] = num\nself.__size += 1\ndef insert(self, num: int, index: int):\n\"\"\"\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\"\"\"\nif index < 0 or index >= self.__size:\nraise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n# \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif self.__size == self.capacity():\nself.extend_capacity()\n# \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor j in range(self.__size - 1, index - 1, -1):\nself.__nums[j + 1] = self.__nums[j]\nself.__nums[index] = num\n# \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.__size += 1\ndef remove(self, index: int) -> int:\n\"\"\"\u5220\u9664\u5143\u7d20\"\"\"\nif index < 0 or index >= self.__size:\nraise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\nnum = self.__nums[index]\n# \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor j in range(index, self.__size - 1):\nself.__nums[j] = self.__nums[j + 1]\n# \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.__size -= 1\n# \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num\ndef extend_capacity(self):\n\"\"\"\u5217\u8868\u6269\u5bb9\"\"\"\n# \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 __extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nself.__nums = self.__nums + [0] * self.capacity() * (self.__extend_ratio - 1)\n# \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nself.__capacity = len(self.__nums)\ndef to_array(self) -> list[int]:\n\"\"\"\u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868\"\"\"\nreturn self.__nums[: self.__size]\n
            my_list.go
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\ntype myList struct {\nnumsCapacity int\nnums         []int\nnumsSize     int\nextendRatio  int\n}\n/* \u6784\u9020\u51fd\u6570 */\nfunc newMyList() *myList {\nreturn &myList{\nnumsCapacity: 10,              // \u5217\u8868\u5bb9\u91cf\nnums:         make([]int, 10), // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nnumsSize:     0,               // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nextendRatio:  2,               // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n}\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\nfunc (l *myList) size() int {\nreturn l.numsSize\n}\n/*  \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nfunc (l *myList) capacity() int {\nreturn l.numsCapacity\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\nfunc (l *myList) get(index int) int {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif index < 0 || index >= l.numsSize {\npanic(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nreturn l.nums[index]\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nfunc (l *myList) set(num, index int) {\nif index < 0 || index >= l.numsSize {\npanic(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nl.nums[index] = num\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nfunc (l *myList) add(num int) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif l.numsSize == l.numsCapacity {\nl.extendCapacity()\n}\nl.nums[l.numsSize] = num\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nl.numsSize++\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nfunc (l *myList) insert(num, index int) {\nif index < 0 || index >= l.numsSize {\npanic(\"\u7d22\u5f15\u8d8a\u754c\")\n}\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif l.numsSize == l.numsCapacity {\nl.extendCapacity()\n}\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor j := l.numsSize - 1; j >= index; j-- {\nl.nums[j+1] = l.nums[j]\n}\nl.nums[index] = num\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nl.numsSize++\n}\n/* \u5220\u9664\u5143\u7d20 */\nfunc (l *myList) remove(index int) int {\nif index < 0 || index >= l.numsSize {\npanic(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nnum := l.nums[index]\n// \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor j := index; j < l.numsSize-1; j++ {\nl.nums[j] = l.nums[j+1]\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nl.numsSize--\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num\n}\n/* \u5217\u8868\u6269\u5bb9 */\nfunc (l *myList) extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nl.nums = append(l.nums, make([]int, l.numsCapacity*(l.extendRatio-1))...)\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nl.numsCapacity = len(l.nums)\n}\n/* \u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868 */\nfunc (l *myList) toArray() []int {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nreturn l.nums[:l.numsSize]\n}\n
            my_list.js
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\n#nums = new Array(); // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n#capacity = 10; // \u5217\u8868\u5bb9\u91cf\n#size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n#extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.#nums = new Array(this.#capacity);\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\nsize() {\nreturn this.#size;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\ncapacity() {\nreturn this.#capacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\nget(index) {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nreturn this.#nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nset(index, num) {\nif (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nthis.#nums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nadd(num) {\n// \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\nif (this.#size === this.#capacity) {\nthis.extendCapacity();\n}\n// \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\nthis.#nums[this.#size] = num;\nthis.#size++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\ninsert(index, num) {\nif (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (this.#size === this.#capacity) {\nthis.extendCapacity();\n}\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (let j = this.#size - 1; j >= index; j--) {\nthis.#nums[j + 1] = this.#nums[j];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nthis.#nums[index] = num;\nthis.#size++;\n}\n/* \u5220\u9664\u5143\u7d20 */\nremove(index) {\nif (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nlet num = this.#nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (let j = index; j < this.#size - 1; j++) {\nthis.#nums[j] = this.#nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nthis.#size--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\nextendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nthis.#nums = this.#nums.concat(\nnew Array(this.capacity() * (this.#extendRatio - 1))\n);\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nthis.#capacity = this.#nums.length;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\ntoArray() {\nlet size = this.size();\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst nums = new Array(size);\nfor (let i = 0; i < size; i++) {\nnums[i] = this.get(i);\n}\nreturn nums;\n}\n}\n
            my_list.ts
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nprivate nums: Array<number>; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nprivate _capacity: number = 10; // \u5217\u8868\u5bb9\u91cf\nprivate _size: number = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nprivate extendRatio: number = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.nums = new Array(this._capacity);\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\npublic size(): number {\nreturn this._size;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\npublic capacity(): number {\nreturn this._capacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\npublic get(index: number): number {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nreturn this.nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\npublic set(index: number, num: number): void {\nif (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nthis.nums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\npublic add(num: number): void {\n// \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\nif (this._size === this._capacity) this.extendCapacity();\n// \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\nthis.nums[this._size] = num;\nthis._size++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\npublic insert(index: number, num: number): void {\nif (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (this._size === this._capacity) {\nthis.extendCapacity();\n}\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (let j = this._size - 1; j >= index; j--) {\nthis.nums[j + 1] = this.nums[j];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nthis.nums[index] = num;\nthis._size++;\n}\n/* \u5220\u9664\u5143\u7d20 */\npublic remove(index: number): number {\nif (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nlet num = this.nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (let j = index; j < this._size - 1; j++) {\nthis.nums[j] = this.nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nthis._size--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\npublic extendCapacity(): void {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nthis.nums = this.nums.concat(\nnew Array(this.capacity() * (this.extendRatio - 1))\n);\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nthis._capacity = this.nums.length;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\npublic toArray(): number[] {\nlet size = this.size();\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst nums = new Array(size);\nfor (let i = 0; i < size; i++) {\nnums[i] = this.get(i);\n}\nreturn nums;\n}\n}\n
            my_list.c
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nstruct myList {\nint *nums;       // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nint capacity;    // \u5217\u8868\u5bb9\u91cf\nint size;        // \u5217\u8868\u5927\u5c0f\nint extendRatio; // \u5217\u8868\u6bcf\u6b21\u6269\u5bb9\u7684\u500d\u6570\n};\ntypedef struct myList myList;\n/* \u6784\u9020\u51fd\u6570 */\nmyList *newMyList() {\nmyList *list = malloc(sizeof(myList));\nlist->capacity = 10;\nlist->nums = malloc(sizeof(int) * list->capacity);\nlist->size = 0;\nlist->extendRatio = 2;\nreturn list;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delMyList(myList *list) {\nfree(list->nums);\nfree(list);\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6 */\nint size(myList *list) {\nreturn list->size;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nint capacity(myList *list) {\nreturn list->capacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\nint get(myList *list, int index) {\nassert(index >= 0 && index < list->size);\nreturn list->nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nvoid set(myList *list, int index, int num) {\nassert(index >= 0 && index < list->size);\nlist->nums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nvoid add(myList *list, int num) {\nif (size(list) == capacity(list)) {\nextendCapacity(list); // \u6269\u5bb9\n}\nlist->nums[size(list)] = num;\nlist->size++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nvoid insert(myList *list, int index, int num) {\nassert(index >= 0 && index < size(list));\nfor (int i = size(list); i > index; --i) {\nlist->nums[i] = list->nums[i - 1];\n}\nlist->nums[index] = num;\nlist->size++;\n}\n/* \u5220\u9664\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nint removeNum(myList *list, int index) {\nassert(index >= 0 && index < size(list));\nint num = list->nums[index];\nfor (int i = index; i < size(list) - 1; i++) {\nlist->nums[i] = list->nums[i + 1];\n}\nlist->size--;\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\nvoid extendCapacity(myList *list) {\n// \u5148\u5206\u914d\u7a7a\u95f4\nint newCapacity = capacity(list) * list->extendRatio;\nint *extend = (int *)malloc(sizeof(int) * newCapacity);\nint *temp = list->nums;\n// \u62f7\u8d1d\u65e7\u6570\u636e\u5230\u65b0\u6570\u636e\nfor (int i = 0; i < size(list); i++)\nextend[i] = list->nums[i];\n// \u91ca\u653e\u65e7\u6570\u636e\nfree(temp);\n// \u66f4\u65b0\u65b0\u6570\u636e\nlist->nums = extend;\nlist->capacity = newCapacity;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Array \u7528\u4e8e\u6253\u5370 */\nint *toArray(myList *list) {\nreturn list->nums;\n}\n
            my_list.cs
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nprivate int[] nums;           // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nprivate int numsCapacity = 10;    // \u5217\u8868\u5bb9\u91cf\nprivate int numsSize = 0;         // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nprivate int extendRatio = 2;  // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\npublic MyList() {\nnums = new int[numsCapacity];\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\npublic int size() {\nreturn numsSize;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\npublic int capacity() {\nreturn numsCapacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\npublic int get(int index) {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 || index >= numsSize)\nthrow new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\nreturn nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\npublic void set(int index, int num) {\nif (index < 0 || index >= numsSize)\nthrow new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\nnums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\npublic void add(int num) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (numsSize == numsCapacity)\nextendCapacity();\nnums[numsSize] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\npublic void insert(int index, int num) {\nif (index < 0 || index >= numsSize)\nthrow new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (numsSize == numsCapacity)\nextendCapacity();\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int j = numsSize - 1; j >= index; j--) {\nnums[j + 1] = nums[j];\n}\nnums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize++;\n}\n/* \u5220\u9664\u5143\u7d20 */\npublic int remove(int index) {\nif (index < 0 || index >= numsSize)\nthrow new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\nint num = nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int j = index; j < numsSize - 1; j++) {\nnums[j] = nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\npublic void extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a numsCapacity * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nArray.Resize(ref nums, numsCapacity * extendRatio);\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nnumsCapacity = nums.Length;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\npublic int[] toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] nums = new int[numsSize];\nfor (int i = 0; i < numsSize; i++) {\nnums[i] = get(i);\n}\nreturn nums;\n}\n}\n
            my_list.swift
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nprivate var nums: [Int] // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nprivate var _capacity = 10 // \u5217\u8868\u5bb9\u91cf\nprivate var _size = 0 // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nprivate let extendRatio = 2 // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\ninit() {\nnums = Array(repeating: 0, count: _capacity)\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\nfunc size() -> Int {\n_size\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nfunc capacity() -> Int {\n_capacity\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\nfunc get(index: Int) -> Int {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u9519\u8bef\uff0c\u4e0b\u540c\nif index < 0 || index >= _size {\nfatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nreturn nums[index]\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nfunc set(index: Int, num: Int) {\nif index < 0 || index >= _size {\nfatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nnums[index] = num\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nfunc add(num: Int) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif _size == _capacity {\nextendCapacity()\n}\nnums[_size] = num\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size += 1\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nfunc insert(index: Int, num: Int) {\nif index < 0 || index >= _size {\nfatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n}\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif _size == _capacity {\nextendCapacity()\n}\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor j in sequence(first: _size - 1, next: { $0 >= index + 1 ? $0 - 1 : nil }) {\nnums[j + 1] = nums[j]\n}\nnums[index] = num\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size += 1\n}\n/* \u5220\u9664\u5143\u7d20 */\n@discardableResult\nfunc remove(index: Int) -> Int {\nif index < 0 || index >= _size {\nfatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nlet num = nums[index]\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor j in index ..< (_size - 1) {\nnums[j] = nums[j + 1]\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size -= 1\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num\n}\n/* \u5217\u8868\u6269\u5bb9 */\nfunc extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nnums = nums + Array(repeating: 0, count: _capacity * (extendRatio - 1))\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n_capacity = nums.count\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\nfunc toArray() -> [Int] {\nvar nums = Array(repeating: 0, count: _size)\nfor i in 0 ..< _size {\nnums[i] = get(index: i)\n}\nreturn nums\n}\n}\n
            my_list.zig
            // \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0\nfn MyList(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nnums: []T = undefined,                        // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nnumsCapacity: usize = 10,                     // \u5217\u8868\u5bb9\u91cf\nnumSize: usize = 0,                           // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nextendRatio: usize = 2,                       // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\nmem_arena: ?std.heap.ArenaAllocator = null,\nmem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n// \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u5217\u8868\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator) !void {\nif (self.mem_arena == null) {\nself.mem_arena = std.heap.ArenaAllocator.init(allocator);\nself.mem_allocator = self.mem_arena.?.allocator();\n}\nself.nums = try self.mem_allocator.alloc(T, self.numsCapacity);\n@memset(self.nums, @as(T, 0));\n}\n// \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.mem_arena == null) return;\nself.mem_arena.?.deinit();\n}\n// \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\npub fn size(self: *Self) usize {\nreturn self.numSize;\n}\n// \u83b7\u53d6\u5217\u8868\u5bb9\u91cf\npub fn capacity(self: *Self) usize {\nreturn self.numsCapacity;\n}\n// \u8bbf\u95ee\u5143\u7d20\npub fn get(self: *Self, index: usize) T {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\nreturn self.nums[index];\n}  // \u66f4\u65b0\u5143\u7d20\npub fn set(self: *Self, index: usize, num: T) void {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\nself.nums[index] = num;\n}  // \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\npub fn add(self: *Self, num: T) !void {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (self.size() == self.capacity()) try self.extendCapacity();\nself.nums[self.size()] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.numSize += 1;\n}  // \u4e2d\u95f4\u63d2\u5165\u5143\u7d20\npub fn insert(self: *Self, index: usize, num: T) !void {\nif (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (self.size() == self.capacity()) try self.extendCapacity();\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nvar j = self.size() - 1;\nwhile (j >= index) : (j -= 1) {\nself.nums[j + 1] = self.nums[j];\n}\nself.nums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.numSize += 1;\n}\n// \u5220\u9664\u5143\u7d20\npub fn remove(self: *Self, index: usize) T {\nif (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\nvar num = self.nums[index];\n// \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nvar j = index;\nwhile (j < self.size() - 1) : (j += 1) {\nself.nums[j] = self.nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.numSize -= 1;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n// \u5217\u8868\u6269\u5bb9\npub fn extendCapacity(self: *Self) !void {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nvar newCapacity = self.capacity() * self.extendRatio;\nvar extend = try self.mem_allocator.alloc(T, newCapacity);\n@memset(extend, @as(T, 0));\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nstd.mem.copy(T, extend, self.nums);\nself.nums = extend;\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nself.numsCapacity = newCapacity;\n}\n// \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4\npub fn toArray(self: *Self) ![]T {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvar nums = try self.mem_allocator.alloc(T, self.size());\n@memset(nums, @as(T, 0));\nfor (nums, 0..) |*num, i| {\nnum.* = self.get(i);\n}\nreturn nums;\n}\n};\n}\n
            my_list.dart
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nlate List<int> _nums; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nint _capacity = 10; // \u5217\u8868\u5bb9\u91cf\nint _size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nint _extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\nMyList() {\n_nums = List.filled(_capacity, 0);\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\nint size() => _size;\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nint capacity() => _capacity;\n/* \u8bbf\u95ee\u5143\u7d20 */\nint get(int index) {\nif (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\nreturn _nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nvoid set(int index, int num) {\nif (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n_nums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nvoid add(int num) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (_size == _capacity) extendCapacity();\n_nums[_size] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nvoid insert(int index, int num) {\nif (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (_size == _capacity) extendCapacity();\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (var j = _size - 1; j >= index; j--) {\n_nums[j + 1] = _nums[j];\n}\n_nums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size++;\n}\n/* \u5220\u9664\u5143\u7d20 */\nint remove(int index) {\nif (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\nint num = _nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (var j = index; j < _size - 1; j++) {\n_nums[j] = _nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\nvoid extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 _extendRatio \u500d\u7684\u65b0\u6570\u7ec4\nfinal _newNums = List.filled(_capacity * _extendRatio, 0);\n// \u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nList.copyRange(_newNums, 0, _nums);\n// \u66f4\u65b0 _nums \u7684\u5f15\u7528\n_nums = _newNums;\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n_capacity = _nums.length;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\nList<int> toArray() {\nList<int> nums = [];\nfor (var i = 0; i < _size; i++) {\nnums.add(get(i));\n}\nreturn nums;\n}\n}\n
            my_list.rs
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\n#[allow(dead_code)]\nstruct MyList {\nnums: Vec<i32>,       // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\ncapacity: usize,      // \u5217\u8868\u5bb9\u91cf\nsize: usize,          // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nextend_ratio: usize,  // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n}\n#[allow(unused,unused_comparisons)]\nimpl MyList {\n/* \u6784\u9020\u65b9\u6cd5 */\npub fn new(capacity: usize) -> Self {\nlet mut vec = Vec::new(); vec.resize(capacity, 0);\nSelf {\nnums: vec,\ncapacity,\nsize: 0,\nextend_ratio: 2,\n}\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\npub fn size(&self) -> usize {\nreturn self.size;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\npub fn capacity(&self) -> usize {\nreturn self.capacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\npub fn get(&self, index: usize) -> i32 {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif index < 0 || index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\nreturn self.nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\npub fn set(&mut self, index: usize, num: i32) {\nif index < 0 || index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\nself.nums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\npub fn add(&mut self, num: i32) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif self.size == self.capacity() {\nself.extend_capacity();\n}\nself.nums[self.size] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.size += 1;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\npub fn insert(&mut self, index: usize, num: i32) {\nif index < 0 || index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif self.size == self.capacity() {\nself.extend_capacity();\n}\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor j in (index..self.size).rev() {\nself.nums[j + 1] = self.nums[j];\n}\nself.nums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.size += 1;\n}\n/* \u5220\u9664\u5143\u7d20 */\npub fn remove(&mut self, index: usize) -> i32 {\nif index < 0 || index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\nlet num = self.nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor j in (index..self.size - 1) {\nself.nums[j] = self.nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.size -= 1;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\npub fn extend_capacity(&mut self) {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nlet new_capacity = self.capacity * self.extend_ratio;\nself.nums.resize(new_capacity, 0);\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nself.capacity = new_capacity;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\npub fn to_array(&mut self) -> Vec<i32> {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nlet mut nums = Vec::new();\nfor i in 0..self.size {\nnums.push(self.get(i));\n}\nnums\n}\n}\n
            "},{"location":"chapter_array_and_linkedlist/summary/","title":"4.4 \u00a0 \u5c0f\u7ed3","text":"
            • \u6570\u7ec4\u548c\u94fe\u8868\u662f\u4e24\u79cd\u57fa\u672c\u7684\u6570\u636e\u7ed3\u6784\uff0c\u5206\u522b\u4ee3\u8868\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u4e24\u79cd\u5b58\u50a8\u65b9\u5f0f\uff1a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u548c\u79bb\u6563\u7a7a\u95f4\u5b58\u50a8\u3002\u4e24\u8005\u7684\u7279\u70b9\u5448\u73b0\u51fa\u4e92\u8865\u7684\u7279\u6027\u3002
            • \u6570\u7ec4\u652f\u6301\u968f\u673a\u8bbf\u95ee\u3001\u5360\u7528\u5185\u5b58\u8f83\u5c11\uff1b\u4f46\u63d2\u5165\u548c\u5220\u9664\u5143\u7d20\u6548\u7387\u4f4e\uff0c\u4e14\u521d\u59cb\u5316\u540e\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002
            • \u94fe\u8868\u901a\u8fc7\u66f4\u6539\u5f15\u7528\uff08\u6307\u9488\uff09\u5b9e\u73b0\u9ad8\u6548\u7684\u8282\u70b9\u63d2\u5165\u4e0e\u5220\u9664\uff0c\u4e14\u53ef\u4ee5\u7075\u6d3b\u8c03\u6574\u957f\u5ea6\uff1b\u4f46\u8282\u70b9\u8bbf\u95ee\u6548\u7387\u4f4e\u3001\u5360\u7528\u5185\u5b58\u8f83\u591a\u3002\u5e38\u89c1\u7684\u94fe\u8868\u7c7b\u578b\u5305\u62ec\u5355\u5411\u94fe\u8868\u3001\u5faa\u73af\u94fe\u8868\u3001\u53cc\u5411\u94fe\u8868\u3002
            • \u52a8\u6001\u6570\u7ec4\uff0c\u53c8\u79f0\u5217\u8868\uff0c\u662f\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u4e00\u79cd\u6570\u636e\u7ed3\u6784\u3002\u5b83\u4fdd\u7559\u4e86\u6570\u7ec4\u7684\u4f18\u52bf\uff0c\u540c\u65f6\u53ef\u4ee5\u7075\u6d3b\u8c03\u6574\u957f\u5ea6\u3002\u5217\u8868\u7684\u51fa\u73b0\u6781\u5927\u5730\u63d0\u9ad8\u4e86\u6570\u7ec4\u7684\u6613\u7528\u6027\uff0c\u4f46\u53ef\u80fd\u5bfc\u81f4\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u3002
            "},{"location":"chapter_array_and_linkedlist/summary/#441-q-a","title":"4.4.1 \u00a0 Q & A","text":"

            \u6570\u7ec4\u5b58\u50a8\u5728\u6808\u4e0a\u548c\u5b58\u50a8\u5728\u5806\u4e0a\uff0c\u5bf9\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u662f\u5426\u6709\u5f71\u54cd\uff1f

            \u6808\u5185\u5b58\u5206\u914d\u7531\u7f16\u8bd1\u5668\u81ea\u52a8\u5b8c\u6210\uff0c\u800c\u5806\u5185\u5b58\u7531\u7a0b\u5e8f\u5458\u5728\u4ee3\u7801\u4e2d\u5206\u914d\uff08\u6ce8\u610f\uff0c\u8fd9\u91cc\u7684\u6808\u548c\u5806\u548c\u6570\u636e\u7ed3\u6784\u4e2d\u7684\u6808\u548c\u5806\u4e0d\u662f\u540c\u4e00\u6982\u5ff5\uff09\u3002

            1. \u6808\u4e0d\u7075\u6d3b\uff0c\u5206\u914d\u7684\u5185\u5b58\u5927\u5c0f\u4e0d\u53ef\u66f4\u6539\uff1b\u5806\u76f8\u5bf9\u7075\u6d3b\uff0c\u53ef\u4ee5\u52a8\u6001\u5206\u914d\u5185\u5b58\u3002
            2. \u6808\u662f\u4e00\u5757\u6bd4\u8f83\u5c0f\u7684\u5185\u5b58\uff0c\u5bb9\u6613\u51fa\u73b0\u5185\u5b58\u4e0d\u8db3\uff1b\u5806\u5185\u5b58\u5f88\u5927\uff0c\u4f46\u662f\u7531\u4e8e\u662f\u52a8\u6001\u5206\u914d\uff0c\u5bb9\u6613\u788e\u7247\u5316\uff0c\u7ba1\u7406\u5806\u5185\u5b58\u7684\u96be\u5ea6\u66f4\u5927\u3001\u6210\u672c\u66f4\u9ad8\u3002
            3. \u8bbf\u95ee\u6808\u6bd4\u8bbf\u95ee\u5806\u66f4\u5feb\uff0c\u56e0\u4e3a\u6808\u5185\u5b58\u8f83\u5c0f\u3001\u5bf9\u7f13\u5b58\u53cb\u597d\uff0c\u5806\u5e27\u5206\u6563\u5728\u5f88\u5927\u7684\u7a7a\u95f4\u5185\uff0c\u4f1a\u51fa\u73b0\u66f4\u591a\u7684\u7f13\u5b58\u672a\u547d\u4e2d\u3002

            \u4e3a\u4ec0\u4e48\u6570\u7ec4\u8981\u6c42\u76f8\u540c\u7c7b\u578b\u7684\u5143\u7d20\uff0c\u800c\u5728\u94fe\u8868\u4e2d\u5374\u6ca1\u6709\u5f3a\u8c03\u540c\u7c7b\u578b\u5462\uff1f

            \u94fe\u8868\u7531\u7ed3\u70b9\u7ec4\u6210\uff0c\u7ed3\u70b9\u4e4b\u95f4\u901a\u8fc7\u5f15\u7528\uff08\u6307\u9488\uff09\u8fde\u63a5\uff0c\u5404\u4e2a\u7ed3\u70b9\u53ef\u4ee5\u5b58\u50a8\u4e0d\u540c\u7c7b\u578b\u7684\u6570\u636e\uff0c\u4f8b\u5982 int, double, string, object \u7b49\u3002

            \u76f8\u5bf9\u5730\uff0c\u6570\u7ec4\u5143\u7d20\u5219\u5fc5\u987b\u662f\u76f8\u540c\u7c7b\u578b\u7684\uff0c\u8fd9\u6837\u624d\u80fd\u901a\u8fc7\u8ba1\u7b97\u504f\u79fb\u91cf\u6765\u83b7\u53d6\u5bf9\u5e94\u5143\u7d20\u4f4d\u7f6e\u3002\u4f8b\u5982\uff0c\u5982\u679c\u6570\u7ec4\u540c\u65f6\u5305\u542b int \u548c long \u4e24\u79cd\u7c7b\u578b\uff0c\u5355\u4e2a\u5143\u7d20\u5206\u522b\u5360\u7528 4 bytes \u548c 8 bytes \uff0c\u90a3\u4e48\u6b64\u65f6\u5c31\u4e0d\u80fd\u7528\u4ee5\u4e0b\u516c\u5f0f\u8ba1\u7b97\u504f\u79fb\u91cf\u4e86\uff0c\u56e0\u4e3a\u6570\u7ec4\u4e2d\u5305\u542b\u4e86\u4e24\u79cd elementLength \u3002

            // \u5143\u7d20\u5185\u5b58\u5730\u5740 = \u6570\u7ec4\u5185\u5b58\u5730\u5740 + \u5143\u7d20\u957f\u5ea6 * \u5143\u7d20\u7d22\u5f15\nelementAddr = firtstElementAddr + elementLength * elementIndex\n

            \u5220\u9664\u8282\u70b9\u540e\uff0c\u662f\u5426\u9700\u8981\u628a P.next \u8bbe\u4e3a \\(\\text{None}\\) \u5462\uff1f

            \u4e0d\u4fee\u6539 P.next \u4e5f\u53ef\u4ee5\u3002\u4ece\u8be5\u94fe\u8868\u7684\u89d2\u5ea6\u770b\uff0c\u4ece\u5934\u7ed3\u70b9\u904d\u5386\u5230\u5c3e\u7ed3\u70b9\u5df2\u7ecf\u9047\u4e0d\u5230 P \u4e86\u3002\u8fd9\u610f\u5473\u7740\u7ed3\u70b9 P \u5df2\u7ecf\u4ece\u94fe\u8868\u4e2d\u5220\u9664\u4e86\uff0c\u6b64\u65f6\u7ed3\u70b9 P \u6307\u5411\u54ea\u91cc\u90fd\u4e0d\u4f1a\u5bf9\u8fd9\u6761\u94fe\u8868\u4ea7\u751f\u5f71\u54cd\u4e86\u3002

            \u4ece\u5783\u573e\u56de\u6536\u7684\u89d2\u5ea6\u770b\uff0c\u5bf9\u4e8e Java, Python, Go \u7b49\u62e5\u6709\u81ea\u52a8\u5783\u573e\u56de\u6536\u7684\u8bed\u8a00\u6765\u8bf4\uff0c\u8282\u70b9 P \u662f\u5426\u88ab\u56de\u6536\u53d6\u51b3\u4e8e\u662f\u5426\u6709\u4ecd\u5b58\u5728\u6307\u5411\u5b83\u7684\u5f15\u7528\uff0c\u800c\u4e0d\u662f P.next \u7684\u503c\u3002\u5728 C, C++ \u7b49\u8bed\u8a00\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u624b\u52a8\u91ca\u653e\u8282\u70b9\u5185\u5b58\u3002

            \u5728\u94fe\u8868\u4e2d\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002\u4f46\u662f\u589e\u5220\u4e4b\u524d\u90fd\u9700\u8981 \\(O(n)\\) \u67e5\u627e\u5143\u7d20\uff0c\u90a3\u4e3a\u4ec0\u4e48\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u662f \\(O(n)\\) \u5462\uff1f

            \u5982\u679c\u662f\u5148\u67e5\u627e\u5143\u7d20\u3001\u518d\u5220\u9664\u5143\u7d20\uff0c\u786e\u5b9e\u662f \\(O(n)\\) \u3002\u7136\u800c\uff0c\u94fe\u8868\u7684 \\(O(1)\\) \u589e\u5220\u7684\u4f18\u52bf\u53ef\u4ee5\u5728\u5176\u4ed6\u5e94\u7528\u4e0a\u5f97\u5230\u4f53\u73b0\u3002\u4f8b\u5982\uff0c\u53cc\u5411\u961f\u5217\u9002\u5408\u4f7f\u7528\u94fe\u8868\u5b9e\u73b0\uff0c\u6211\u4eec\u7ef4\u62a4\u4e00\u4e2a\u6307\u9488\u53d8\u91cf\u59cb\u7ec8\u6307\u5411\u5934\u7ed3\u70b9\u3001\u5c3e\u7ed3\u70b9\uff0c\u6bcf\u6b21\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u90fd\u662f \\(O(1)\\) \u3002

            \u56fe\u7247\u201c\u94fe\u8868\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f\u201d\u4e2d\uff0c\u6d45\u84dd\u8272\u7684\u5b58\u50a8\u7ed3\u70b9\u6307\u9488\u662f\u5360\u7528\u4e00\u5757\u5185\u5b58\u5730\u5740\u5417\uff1f\u8fd8\u662f\u548c\u7ed3\u70b9\u503c\u5404\u5360\u4e00\u534a\u5462\uff1f

            \u6587\u4e2d\u53ea\u662f\u4e00\u4e2a\u793a\u610f\u56fe\uff0c\u53ea\u662f\u5b9a\u6027\u8868\u793a\u3002\u5b9a\u91cf\u7684\u8bdd\u9700\u8981\u6839\u636e\u5177\u4f53\u60c5\u51b5\u5206\u6790\uff1a

            • \u4e0d\u540c\u7c7b\u578b\u7684\u7ed3\u70b9\u503c\u5360\u7528\u7684\u7a7a\u95f4\u662f\u4e0d\u540c\u7684\uff0c\u6bd4\u5982 int, long, double, \u6216\u8005\u662f\u7c7b\u7684\u5b9e\u4f8b\u7b49\u7b49\u3002
            • \u6307\u9488\u53d8\u91cf\u5360\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u5927\u5c0f\u6839\u636e\u6240\u4f7f\u7528\u7684\u64cd\u4f5c\u7cfb\u7edf\u53ca\u7f16\u8bd1\u73af\u5883\u800c\u5b9a\uff0c\u5927\u591a\u4e3a 8 \u5b57\u8282\u6216 4 \u5b57\u8282\u3002

            \u5728\u5217\u8868\u672b\u5c3e\u6dfb\u52a0\u5143\u7d20\u662f\u5426\u65f6\u65f6\u523b\u523b\u90fd\u4e3a \\(O(1)\\) \uff1f

            \u5982\u679c\u6dfb\u52a0\u5143\u7d20\u65f6\u8d85\u51fa\u5217\u8868\u957f\u5ea6\uff0c\u5219\u9700\u8981\u5148\u6269\u5bb9\u5217\u8868\u518d\u6dfb\u52a0\u3002\u7cfb\u7edf\u4f1a\u7533\u8bf7\u4e00\u5757\u65b0\u7684\u5185\u5b58\uff0c\u5e76\u5c06\u539f\u5217\u8868\u7684\u6240\u6709\u5143\u7d20\u642c\u8fd0\u8fc7\u53bb\uff0c\u8fd9\u65f6\u5019\u65f6\u95f4\u590d\u6742\u5ea6\u5c31\u4f1a\u662f \\(O(n)\\) \u3002

            \u201c\u5217\u8868\u7684\u51fa\u73b0\u5927\u5927\u63d0\u5347\u4e86\u6570\u7ec4\u7684\u5b9e\u7528\u6027\uff0c\u4f46\u526f\u4f5c\u7528\u662f\u4f1a\u9020\u6210\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u201d\uff0c\u8fd9\u91cc\u7684\u7a7a\u95f4\u6d6a\u8d39\u662f\u6307\u989d\u5916\u589e\u52a0\u7684\u53d8\u91cf\u5982\u5bb9\u91cf\u3001\u957f\u5ea6\u3001\u6269\u5bb9\u500d\u6570\u6240\u5360\u7684\u5185\u5b58\u5417\uff1f

            \u8fd9\u91cc\u7684\u7a7a\u95f4\u6d6a\u8d39\u4e3b\u8981\u6709\u4e24\u65b9\u9762\u542b\u4e49\uff1a\u4e00\u65b9\u9762\uff0c\u5217\u8868\u90fd\u4f1a\u8bbe\u5b9a\u4e00\u4e2a\u521d\u59cb\u957f\u5ea6\uff0c\u6211\u4eec\u4e0d\u4e00\u5b9a\u9700\u8981\u7528\u8fd9\u4e48\u591a\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u4e3a\u4e86\u9632\u6b62\u9891\u7e41\u6269\u5bb9\uff0c\u6269\u5bb9\u4e00\u822c\u90fd\u4f1a\u4e58\u4ee5\u4e00\u4e2a\u7cfb\u6570\uff0c\u6bd4\u5982 \\(\\times 1.5\\) \u3002\u8fd9\u6837\u4e00\u6765\uff0c\u4e5f\u4f1a\u51fa\u73b0\u5f88\u591a\u7a7a\u4f4d\uff0c\u6211\u4eec\u901a\u5e38\u4e0d\u80fd\u5b8c\u5168\u586b\u6ee1\u5b83\u4eec\u3002

            \u5728 Python \u4e2d\u521d\u59cb\u5316 n = [1, 2, 3] \u540e\uff0c\u8fd9 3 \u4e2a\u5143\u7d20\u7684\u5730\u5740\u662f\u76f8\u8fde\u7684\uff0c\u4f46\u662f\u521d\u59cb\u5316 m = [2, 1, 3] \u4f1a\u53d1\u73b0\u5b83\u4eec\u6bcf\u4e2a\u5143\u7d20\u7684 id \u5e76\u4e0d\u662f\u8fde\u7eed\u7684\uff0c\u800c\u662f\u5206\u522b\u8ddf n \u4e2d\u7684\u76f8\u540c\u3002\u8fd9\u4e9b\u5143\u7d20\u5730\u5740\u4e0d\u8fde\u7eed\uff0c\u90a3\u4e48 m \u8fd8\u662f\u6570\u7ec4\u5417\uff1f

            \u5047\u5982\u628a\u5217\u8868\u5143\u7d20\u6362\u6210\u94fe\u8868\u8282\u70b9 n = [n1, n2, n3, n4, n5] \uff0c\u901a\u5e38\u60c5\u51b5\u4e0b\u8fd9\u4e94\u4e2a\u8282\u70b9\u5bf9\u8c61\u4e5f\u662f\u88ab\u5206\u6563\u5b58\u50a8\u5728\u5185\u5b58\u5404\u5904\u7684\u3002\u7136\u800c\uff0c\u7ed9\u5b9a\u4e00\u4e2a\u5217\u8868\u7d22\u5f15\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u83b7\u53d6\u5230\u8282\u70b9\u5185\u5b58\u5730\u5740\uff0c\u4ece\u800c\u8bbf\u95ee\u5230\u5bf9\u5e94\u7684\u8282\u70b9\u3002\u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u4e2d\u5b58\u50a8\u7684\u662f\u8282\u70b9\u7684\u5f15\u7528\uff0c\u800c\u975e\u8282\u70b9\u672c\u8eab\u3002

            \u4e0e\u8bb8\u591a\u8bed\u8a00\u4e0d\u540c\u7684\u662f\uff0c\u5728 Python \u4e2d\u6570\u5b57\u4e5f\u88ab\u5305\u88c5\u4e3a\u5bf9\u8c61\uff0c\u5217\u8868\u4e2d\u5b58\u50a8\u7684\u4e0d\u662f\u6570\u5b57\u672c\u8eab\uff0c\u800c\u662f\u5bf9\u6570\u5b57\u7684\u5f15\u7528\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u4f1a\u53d1\u73b0\u4e24\u4e2a\u6570\u7ec4\u4e2d\u7684\u76f8\u540c\u6570\u5b57\u62e5\u6709\u540c\u4e00\u4e2a id \uff0c\u5e76\u4e14\u8fd9\u4e9b\u6570\u5b57\u7684\u5185\u5b58\u5730\u5740\u662f\u65e0\u987b\u8fde\u7eed\u7684\u3002

            C++ STL \u91cc\u9762\u7684 std::list \u5df2\u7ecf\u5b9e\u73b0\u4e86\u53cc\u5411\u94fe\u8868\uff0c\u4f46\u597d\u50cf\u4e00\u4e9b\u7b97\u6cd5\u7684\u4e66\u4e0a\u90fd\u4e0d\u600e\u4e48\u76f4\u63a5\u7528\u8fd9\u4e2a\uff0c\u662f\u4e0d\u662f\u6709\u4ec0\u4e48\u5c40\u9650\u6027\u5462?

            \u4e00\u65b9\u9762\uff0c\u6211\u4eec\u5f80\u5f80\u66f4\u9752\u7750\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\u7b97\u6cd5\uff0c\u800c\u53ea\u6709\u5728\u5fc5\u8981\u65f6\u624d\u4f7f\u7528\u94fe\u8868\u3002\u8fd9\u662f\u56e0\u4e3a\uff1a

            1. \u7a7a\u95f4\u5f00\u9500\uff1a\u7531\u4e8e\u6bcf\u4e2a\u5143\u7d20\u9700\u8981\u4e24\u4e2a\u989d\u5916\u7684\u6307\u9488\uff08\u4e00\u4e2a\u7528\u4e8e\u524d\u4e00\u4e2a\u5143\u7d20\uff0c\u4e00\u4e2a\u7528\u4e8e\u540e\u4e00\u4e2a\u5143\u7d20\uff09\uff0c\u6240\u4ee5 std::list \u901a\u5e38\u6bd4 std::vector \u66f4\u5360\u7528\u7a7a\u95f4\u3002
            2. \u7f13\u5b58\u4e0d\u53cb\u597d\uff1a\u7531\u4e8e\u6570\u636e\u4e0d\u662f\u8fde\u7eed\u5b58\u653e\u7684\uff0cstd::list \u5bf9\u7f13\u5b58\u7684\u5229\u7528\u7387\u8f83\u4f4e\u3002\u4e00\u822c\u60c5\u51b5\u4e0b\uff0cstd::vector \u7684\u6027\u80fd\u4f1a\u66f4\u597d\u3002

            \u53e6\u4e00\u65b9\u9762\uff0c\u5fc5\u8981\u4f7f\u7528\u94fe\u8868\u7684\u60c5\u51b5\u4e3b\u8981\u662f\u4e8c\u53c9\u6811\u548c\u56fe\u3002\u6808\u548c\u961f\u5217\u5f80\u5f80\u4f1a\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684 stack \u548c queue \uff0c\u800c\u975e\u94fe\u8868\u3002

            "},{"location":"chapter_backtracking/","title":"\u7b2c 13 \u7ae0 \u00a0 \u56de\u6eaf","text":"

            Abstract

            \u6211\u4eec\u5982\u540c\u8ff7\u5bab\u4e2d\u7684\u63a2\u7d22\u8005\uff0c\u5728\u524d\u8fdb\u7684\u9053\u8def\u4e0a\u53ef\u80fd\u4f1a\u9047\u5230\u56f0\u96be\u3002

            \u56de\u6eaf\u7684\u529b\u91cf\u8ba9\u6211\u4eec\u80fd\u591f\u91cd\u65b0\u5f00\u59cb\uff0c\u4e0d\u65ad\u5c1d\u8bd5\uff0c\u6700\u7ec8\u627e\u5230\u901a\u5f80\u5149\u660e\u7684\u51fa\u53e3\u3002

            "},{"location":"chapter_backtracking/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 13.1 \u00a0 \u56de\u6eaf\u7b97\u6cd5
            • 13.2 \u00a0 \u5168\u6392\u5217\u95ee\u9898
            • 13.3 \u00a0 \u5b50\u96c6\u548c\u95ee\u9898
            • 13.4 \u00a0 N \u7687\u540e\u95ee\u9898
            • 13.5 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_backtracking/backtracking_algorithm/","title":"13.1 \u00a0 \u56de\u6eaf\u7b97\u6cd5","text":"

            \u300c\u56de\u6eaf\u7b97\u6cd5 Backtracking Algorithm\u300d\u662f\u4e00\u79cd\u901a\u8fc7\u7a77\u4e3e\u6765\u89e3\u51b3\u95ee\u9898\u7684\u65b9\u6cd5\uff0c\u5b83\u7684\u6838\u5fc3\u601d\u60f3\u662f\u4ece\u4e00\u4e2a\u521d\u59cb\u72b6\u6001\u51fa\u53d1\uff0c\u66b4\u529b\u641c\u7d22\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u5f53\u9047\u5230\u6b63\u786e\u7684\u89e3\u5219\u5c06\u5176\u8bb0\u5f55\uff0c\u76f4\u5230\u627e\u5230\u89e3\u6216\u8005\u5c1d\u8bd5\u4e86\u6240\u6709\u53ef\u80fd\u7684\u9009\u62e9\u90fd\u65e0\u6cd5\u627e\u5230\u89e3\u4e3a\u6b62\u3002

            \u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u91c7\u7528\u300c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u300d\u6765\u904d\u5386\u89e3\u7a7a\u95f4\u3002\u5728\u4e8c\u53c9\u6811\u7ae0\u8282\u4e2d\uff0c\u6211\u4eec\u63d0\u5230\u524d\u5e8f\u3001\u4e2d\u5e8f\u548c\u540e\u5e8f\u904d\u5386\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5229\u7528\u524d\u5e8f\u904d\u5386\u6784\u9020\u4e00\u4e2a\u56de\u6eaf\u95ee\u9898\uff0c\u9010\u6b65\u4e86\u89e3\u56de\u6eaf\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u3002

            \u4f8b\u9898\u4e00

            \u7ed9\u5b9a\u4e00\u4e2a\u4e8c\u53c9\u6811\uff0c\u641c\u7d22\u5e76\u8bb0\u5f55\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u8282\u70b9\u5217\u8868\u3002

            \u5bf9\u4e8e\u6b64\u9898\uff0c\u6211\u4eec\u524d\u5e8f\u904d\u5386\u8fd9\u9897\u6811\uff0c\u5e76\u5224\u65ad\u5f53\u524d\u8282\u70b9\u7684\u503c\u662f\u5426\u4e3a \\(7\\) \uff0c\u82e5\u662f\u5219\u5c06\u8be5\u8282\u70b9\u7684\u503c\u52a0\u5165\u5230\u7ed3\u679c\u5217\u8868 res \u4e4b\u4e2d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust preorder_traversal_i_compact.java
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode root) {\nif (root == null) {\nreturn;\n}\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(root);\n}\npreOrder(root.left);\npreOrder(root.right);\n}\n
            preorder_traversal_i_compact.cpp
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode *root) {\nif (root == nullptr) {\nreturn;\n}\nif (root->val == 7) {\n// \u8bb0\u5f55\u89e3\nres.push_back(root);\n}\npreOrder(root->left);\npreOrder(root->right);\n}\n
            preorder_traversal_i_compact.py
            def pre_order(root: TreeNode):\n\"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00\"\"\"\nif root is None:\nreturn\nif root.val == 7:\n# \u8bb0\u5f55\u89e3\nres.append(root)\npre_order(root.left)\npre_order(root.right)\n
            preorder_traversal_i_compact.go
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunc preOrderI(root *TreeNode, res *[]*TreeNode) {\nif root == nil {\nreturn\n}\nif (root.Val).(int) == 7 {\n// \u8bb0\u5f55\u89e3\n*res = append(*res, root)\n}\npreOrderI(root.Left, res)\npreOrderI(root.Right, res)\n}\n
            preorder_traversal_i_compact.js
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunction preOrder(root, res) {\nif (root === null) {\nreturn;\n}\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push(root);\n}\npreOrder(root.left, res);\npreOrder(root.right, res);\n}\n
            preorder_traversal_i_compact.ts
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunction preOrder(root: TreeNode | null, res: TreeNode[]): void {\nif (root === null) {\nreturn;\n}\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push(root);\n}\npreOrder(root.left, res);\npreOrder(root.right, res);\n}\n
            preorder_traversal_i_compact.c
            [class]{}-[func]{preOrder}\n
            preorder_traversal_i_compact.cs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode root) {\nif (root == null) {\nreturn;\n}\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.Add(root);\n}\npreOrder(root.left);\npreOrder(root.right);\n}\n
            preorder_traversal_i_compact.swift
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunc preOrder(root: TreeNode?) {\nguard let root = root else {\nreturn\n}\nif root.val == 7 {\n// \u8bb0\u5f55\u89e3\nres.append(root)\n}\npreOrder(root: root.left)\npreOrder(root: root.right)\n}\n
            preorder_traversal_i_compact.zig
            [class]{}-[func]{preOrder}\n
            preorder_traversal_i_compact.dart
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode? root, List<TreeNode> res) {\nif (root == null) {\nreturn;\n}\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(root);\n}\npreOrder(root.left, res);\npreOrder(root.right, res);\n}\n
            preorder_traversal_i_compact.rs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfn pre_order(res: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\nif root.is_none() {\nreturn;\n}\nif let Some(node) = root {\nif node.borrow().val == 7 {\n// \u8bb0\u5f55\u89e3\nres.push(node.clone());\n}\npre_order(res, node.borrow().left.clone());\npre_order(res, node.borrow().right.clone());\n}\n}\n

            \u56fe\uff1a\u5728\u524d\u5e8f\u904d\u5386\u4e2d\u641c\u7d22\u8282\u70b9

            "},{"location":"chapter_backtracking/backtracking_algorithm/#1311","title":"13.1.1 \u00a0 \u5c1d\u8bd5\u4e0e\u56de\u9000","text":"

            \u4e4b\u6240\u4ee5\u79f0\u4e4b\u4e3a\u56de\u6eaf\u7b97\u6cd5\uff0c\u662f\u56e0\u4e3a\u8be5\u7b97\u6cd5\u5728\u641c\u7d22\u89e3\u7a7a\u95f4\u65f6\u4f1a\u91c7\u7528\u201c\u5c1d\u8bd5\u201d\u4e0e\u201c\u56de\u9000\u201d\u7684\u7b56\u7565\u3002\u5f53\u7b97\u6cd5\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u9047\u5230\u67d0\u4e2a\u72b6\u6001\u65e0\u6cd5\u7ee7\u7eed\u524d\u8fdb\u6216\u65e0\u6cd5\u5f97\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u65f6\uff0c\u5b83\u4f1a\u64a4\u9500\u4e0a\u4e00\u6b65\u7684\u9009\u62e9\uff0c\u9000\u56de\u5230\u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5e76\u5c1d\u8bd5\u5176\u4ed6\u53ef\u80fd\u7684\u9009\u62e9\u3002

            \u5bf9\u4e8e\u4f8b\u9898\u4e00\uff0c\u8bbf\u95ee\u6bcf\u4e2a\u8282\u70b9\u90fd\u4ee3\u8868\u4e00\u6b21\u201c\u5c1d\u8bd5\u201d\uff0c\u800c\u8d8a\u8fc7\u53f6\u7ed3\u70b9\u6216\u8fd4\u56de\u7236\u8282\u70b9\u7684 return \u5219\u8868\u793a\u201c\u56de\u9000\u201d\u3002

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u56de\u9000\u5e76\u4e0d\u4ec5\u4ec5\u5305\u62ec\u51fd\u6570\u8fd4\u56de\u3002\u4e3a\u89e3\u91ca\u8fd9\u4e00\u70b9\uff0c\u6211\u4eec\u5bf9\u4f8b\u9898\u4e00\u7a0d\u4f5c\u62d3\u5c55\u3002

            \u4f8b\u9898\u4e8c

            \u5728\u4e8c\u53c9\u6811\u4e2d\u641c\u7d22\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u6839\u8282\u70b9\u5230\u8fd9\u4e9b\u8282\u70b9\u7684\u8def\u5f84\u3002

            \u5728\u4f8b\u9898\u4e00\u4ee3\u7801\u7684\u57fa\u7840\u4e0a\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u5217\u8868 path \u8bb0\u5f55\u8bbf\u95ee\u8fc7\u7684\u8282\u70b9\u8def\u5f84\u3002\u5f53\u8bbf\u95ee\u5230\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\u65f6\uff0c\u5219\u590d\u5236 path \u5e76\u6dfb\u52a0\u8fdb\u7ed3\u679c\u5217\u8868 res \u3002\u904d\u5386\u5b8c\u6210\u540e\uff0cres \u4e2d\u4fdd\u5b58\u7684\u5c31\u662f\u6240\u6709\u7684\u89e3\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust preorder_traversal_ii_compact.java
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode root) {\nif (root == null) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(new ArrayList<>(path));\n}\npreOrder(root.left);\npreOrder(root.right);\n// \u56de\u9000\npath.remove(path.size() - 1);\n}\n
            preorder_traversal_ii_compact.cpp
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode *root) {\nif (root == nullptr) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push_back(root);\nif (root->val == 7) {\n// \u8bb0\u5f55\u89e3\nres.push_back(path);\n}\npreOrder(root->left);\npreOrder(root->right);\n// \u56de\u9000\npath.pop_back();\n}\n
            preorder_traversal_ii_compact.py
            def pre_order(root: TreeNode):\n\"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c\"\"\"\nif root is None:\nreturn\n# \u5c1d\u8bd5\npath.append(root)\nif root.val == 7:\n# \u8bb0\u5f55\u89e3\nres.append(list(path))\npre_order(root.left)\npre_order(root.right)\n# \u56de\u9000\npath.pop()\n
            preorder_traversal_ii_compact.go
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunc preOrderII(root *TreeNode, res *[][]*TreeNode, path *[]*TreeNode) {\nif root == nil {\nreturn\n}\n// \u5c1d\u8bd5\n*path = append(*path, root)\nif root.Val.(int) == 7 {\n// \u8bb0\u5f55\u89e3\n*res = append(*res, *path)\n}\npreOrderII(root.Left, res, path)\npreOrderII(root.Right, res, path)\n// \u56de\u9000\n*path = (*path)[:len(*path)-1]\n}\n
            preorder_traversal_ii_compact.js
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunction preOrder(root, path, res) {\nif (root === null) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push(root);\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push([...path]);\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.pop();\n}\n
            preorder_traversal_ii_compact.ts
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunction preOrder(\nroot: TreeNode | null,\npath: TreeNode[],\nres: TreeNode[][]\n): void {\nif (root === null) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push(root);\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push([...path]);\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.pop();\n}\n
            preorder_traversal_ii_compact.c
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode *root, vector *path, vector *res) {\nif (root == NULL) {\nreturn;\n}\n// \u5c1d\u8bd5\nvectorPushback(path, root, sizeof(TreeNode));\nif (root->val == 7) {\n// \u8bb0\u5f55\u89e3\nvector *newPath = newVector();\nfor (int i = 0; i < path->size; i++) {\nvectorPushback(newPath, path->data[i], sizeof(int));\n}\nvectorPushback(res, newPath, sizeof(vector));\n}\npreOrder(root->left, path, res);\npreOrder(root->right, path, res);\n// \u56de\u9000\nvectorPopback(path);\n}\n
            preorder_traversal_ii_compact.cs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode root) {\nif (root == null) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.Add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.Add(new List<TreeNode>(path));\n}\npreOrder(root.left);\npreOrder(root.right);\n// \u56de\u9000\npath.RemoveAt(path.Count - 1);\n}\n
            preorder_traversal_ii_compact.swift
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunc preOrder(root: TreeNode?) {\nguard let root = root else {\nreturn\n}\n// \u5c1d\u8bd5\npath.append(root)\nif root.val == 7 {\n// \u8bb0\u5f55\u89e3\nres.append(path)\n}\npreOrder(root: root.left)\npreOrder(root: root.right)\n// \u56de\u9000\npath.removeLast()\n}\n
            preorder_traversal_ii_compact.zig
            [class]{}-[func]{preOrder}\n
            preorder_traversal_ii_compact.dart
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(\nTreeNode? root,\nList<TreeNode> path,\nList<List<TreeNode>> res,\n) {\nif (root == null) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(List.from(path));\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.removeLast();\n}\n
            preorder_traversal_ii_compact.rs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfn pre_order(res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>, path: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\nif root.is_none() {\nreturn;\n}\nif let Some(node) = root {\n// \u5c1d\u8bd5\npath.push(node.clone());\nif node.borrow().val == 7 {\n// \u8bb0\u5f55\u89e3\nres.push(path.clone());\n}\npre_order(res, path, node.borrow().left.clone());\npre_order(res, path, node.borrow().right.clone());\n// \u56de\u9000\npath.remove(path.len() -  1);\n}\n}\n

            \u5728\u6bcf\u6b21\u201c\u5c1d\u8bd5\u201d\u4e2d\uff0c\u6211\u4eec\u901a\u8fc7\u5c06\u5f53\u524d\u8282\u70b9\u6dfb\u52a0\u8fdb path \u6765\u8bb0\u5f55\u8def\u5f84\uff1b\u800c\u5728\u201c\u56de\u9000\u201d\u524d\uff0c\u6211\u4eec\u9700\u8981\u5c06\u8be5\u8282\u70b9\u4ece path \u4e2d\u5f39\u51fa\uff0c\u4ee5\u6062\u590d\u672c\u6b21\u5c1d\u8bd5\u4e4b\u524d\u7684\u72b6\u6001\u3002

            \u89c2\u5bdf\u8be5\u8fc7\u7a0b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5c1d\u8bd5\u548c\u56de\u9000\u7406\u89e3\u4e3a\u201c\u524d\u8fdb\u201d\u4e0e\u201c\u64a4\u9500\u201d\uff0c\u4e24\u4e2a\u64cd\u4f5c\u662f\u4e92\u4e3a\u9006\u5411\u7684\u3002

            <1><2><3><4><5><6><7><8><9><10><11>

            \u56fe\uff1a\u5c1d\u8bd5\u4e0e\u56de\u9000

            "},{"location":"chapter_backtracking/backtracking_algorithm/#1312","title":"13.1.2 \u00a0 \u526a\u679d","text":"

            \u590d\u6742\u7684\u56de\u6eaf\u95ee\u9898\u901a\u5e38\u5305\u542b\u4e00\u4e2a\u6216\u591a\u4e2a\u7ea6\u675f\u6761\u4ef6\uff0c\u7ea6\u675f\u6761\u4ef6\u901a\u5e38\u53ef\u7528\u4e8e\u201c\u526a\u679d\u201d\u3002

            \u4f8b\u9898\u4e09

            \u5728\u4e8c\u53c9\u6811\u4e2d\u641c\u7d22\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u6839\u8282\u70b9\u5230\u8fd9\u4e9b\u8282\u70b9\u7684\u8def\u5f84\uff0c\u5e76\u8981\u6c42\u8def\u5f84\u4e2d\u4e0d\u5305\u542b\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u3002

            \u4e3a\u4e86\u6ee1\u8db3\u4ee5\u4e0a\u7ea6\u675f\u6761\u4ef6\uff0c\u6211\u4eec\u9700\u8981\u6dfb\u52a0\u526a\u679d\u64cd\u4f5c\uff1a\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u82e5\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\uff0c\u5219\u63d0\u524d\u8fd4\u56de\uff0c\u505c\u6b62\u7ee7\u7eed\u641c\u7d22\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust preorder_traversal_iii_compact.java
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode root) {\n// \u526a\u679d\nif (root == null || root.val == 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(new ArrayList<>(path));\npath.remove(path.size() - 1);\nreturn;\n}\npreOrder(root.left);\npreOrder(root.right);\n// \u56de\u9000\npath.remove(path.size() - 1);\n}\n
            preorder_traversal_iii_compact.cpp
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode *root) {\n// \u526a\u679d\nif (root == nullptr || root->val == 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push_back(root);\nif (root->val == 7) {\n// \u8bb0\u5f55\u89e3\nres.push_back(path);\npath.pop_back();\nreturn;\n}\npreOrder(root->left);\npreOrder(root->right);\n// \u56de\u9000\npath.pop_back();\n}\n
            preorder_traversal_iii_compact.py
            def pre_order(root: TreeNode):\n\"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09\"\"\"\n# \u526a\u679d\nif root is None or root.val == 3:\nreturn\n# \u5c1d\u8bd5\npath.append(root)\nif root.val == 7:\n# \u8bb0\u5f55\u89e3\nres.append(list(path))\npath.pop()\nreturn\npre_order(root.left)\npre_order(root.right)\n# \u56de\u9000\npath.pop()\n
            preorder_traversal_iii_compact.go
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunc preOrderIII(root *TreeNode, res *[][]*TreeNode, path *[]*TreeNode) {\n// \u526a\u679d\nif root == nil || root.Val == 3 {\nreturn\n}\n// \u5c1d\u8bd5\n*path = append(*path, root)\nif root.Val.(int) == 7 {\n// \u8bb0\u5f55\u89e3\n*res = append(*res, *path)\n*path = (*path)[:len(*path)-1]\nreturn\n}\npreOrderIII(root.Left, res, path)\npreOrderIII(root.Right, res, path)\n// \u56de\u9000\n*path = (*path)[:len(*path)-1]\n}\n
            preorder_traversal_iii_compact.js
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunction preOrder(root, path, res) {\n// \u526a\u679d\nif (root === null || root.val === 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push(root);\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push([...path]);\npath.pop();\nreturn;\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.pop();\n}\n
            preorder_traversal_iii_compact.ts
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunction preOrder(\nroot: TreeNode | null,\npath: TreeNode[],\nres: TreeNode[][]\n): void {\n// \u526a\u679d\nif (root === null || root.val === 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push(root);\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push([...path]);\npath.pop();\nreturn;\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.pop();\n}\n
            preorder_traversal_iii_compact.c
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode *root, vector *path, vector *res) {\n// \u526a\u679d\nif (root == NULL || root->val == 3) {\nreturn;\n}\n// \u5c1d\u8bd5\nvectorPushback(path, root, sizeof(TreeNode));\nif (root->val == 7) {\n// \u8bb0\u5f55\u89e3\nvector *newPath = newVector();\nfor (int i = 0; i < path->size; i++) {\nvectorPushback(newPath, path->data[i], sizeof(int));\n}\nvectorPushback(res, newPath, sizeof(vector));\nres->depth++;\n}\npreOrder(root->left, path, res);\npreOrder(root->right, path, res);\n// \u56de\u9000\nvectorPopback(path);\n}\n
            preorder_traversal_iii_compact.cs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode root) {\n// \u526a\u679d\nif (root == null || root.val == 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.Add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.Add(new List<TreeNode>(path));\npath.RemoveAt(path.Count - 1);\nreturn;\n}\npreOrder(root.left);\npreOrder(root.right);\n// \u56de\u9000\npath.RemoveAt(path.Count - 1);\n}\n
            preorder_traversal_iii_compact.swift
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunc preOrder(root: TreeNode?) {\n// \u526a\u679d\nguard let root = root, root.val != 3 else {\nreturn\n}\n// \u5c1d\u8bd5\npath.append(root)\nif root.val == 7 {\n// \u8bb0\u5f55\u89e3\nres.append(path)\npath.removeLast()\nreturn\n}\npreOrder(root: root.left)\npreOrder(root: root.right)\n// \u56de\u9000\npath.removeLast()\n}\n
            preorder_traversal_iii_compact.zig
            [class]{}-[func]{preOrder}\n
            preorder_traversal_iii_compact.dart
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(\nTreeNode? root,\nList<TreeNode> path,\nList<List<TreeNode>> res,\n) {\nif (root == null || root.val == 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(List.from(path));\npath.removeLast();\nreturn;\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.removeLast();\n}\n
            preorder_traversal_iii_compact.rs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfn pre_order(res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>, path: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\n// \u526a\u679d\nif root.is_none() || root.as_ref().unwrap().borrow().val == 3 {\nreturn;\n}\nif let Some(node) = root {\n// \u5c1d\u8bd5\npath.push(node.clone());\nif node.borrow().val == 7 {\n// \u8bb0\u5f55\u89e3\nres.push(path.clone());\npath.remove(path.len() -  1);\nreturn;\n}\npre_order(res, path, node.borrow().left.clone());\npre_order(res, path, node.borrow().right.clone());\n// \u56de\u9000\npath.remove(path.len() -  1);\n}\n}\n

            \u526a\u679d\u662f\u4e00\u4e2a\u975e\u5e38\u5f62\u8c61\u7684\u540d\u8bcd\u3002\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u6211\u4eec\u201c\u526a\u6389\u201d\u4e86\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u641c\u7d22\u5206\u652f\uff0c\u907f\u514d\u8bb8\u591a\u65e0\u610f\u4e49\u7684\u5c1d\u8bd5\uff0c\u4ece\u800c\u5b9e\u73b0\u641c\u7d22\u6548\u7387\u7684\u63d0\u9ad8\u3002

            \u56fe\uff1a\u6839\u636e\u7ea6\u675f\u6761\u4ef6\u526a\u679d

            "},{"location":"chapter_backtracking/backtracking_algorithm/#1313","title":"13.1.3 \u00a0 \u6846\u67b6\u4ee3\u7801","text":"

            \u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c1d\u8bd5\u5c06\u56de\u6eaf\u7684\u201c\u5c1d\u8bd5\u3001\u56de\u9000\u3001\u526a\u679d\u201d\u7684\u4e3b\u4f53\u6846\u67b6\u63d0\u70bc\u51fa\u6765\uff0c\u63d0\u5347\u4ee3\u7801\u7684\u901a\u7528\u6027\u3002

            \u5728\u4ee5\u4e0b\u6846\u67b6\u4ee3\u7801\u4e2d\uff0cstate \u8868\u793a\u95ee\u9898\u7684\u5f53\u524d\u72b6\u6001\uff0cchoices \u8868\u793a\u5f53\u524d\u72b6\u6001\u4e0b\u53ef\u4ee5\u505a\u51fa\u7684\u9009\u62e9\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State state, List<Choice> choices, List<State> res) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (Choice choice : choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State *state, vector<Choice *> &choices, vector<State *> &res) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (Choice choice : choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            def backtrack(state: State, choices: list[choice], res: list[state]):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\u6846\u67b6\"\"\"\n# \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif is_solution(state):\n# \u8bb0\u5f55\u89e3\nrecord_solution(state, res)\n# \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices:\n# \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif is_valid(state, choice):\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmake_choice(state, choice)\nbacktrack(state, choices, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundo_choice(state, choice)\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunc backtrack(state *State, choices []Choice, res *[]State) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif isSolution(state) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res)\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor _, choice := range choices {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif isValid(state, choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice)\nbacktrack(state, choices, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice)\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunction backtrack(state, choices, res) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (let choice of choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunction backtrack(state: State, choices: Choice[], res: State[]): void {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (let choice of choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State *state, Choice *choices, int numChoices, State *res, int numRes) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res, numRes);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < numChoices; i++) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, &choices[i])) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, &choices[i]);\nbacktrack(state, choices, numChoices, res, numRes);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, &choices[i]);\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State state, List<Choice> choices, List<State> res) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nforeach (Choice choice in choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunc backtrack(state: inout State, choices: [Choice], res: inout [State]) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif isSolution(state: state) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state: state, res: &res)\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif isValid(state: state, choice: choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state: &state, choice: choice)\nbacktrack(state: &state, choices: choices, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state: &state, choice: choice)\n}\n}\n}\n
            \n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State state, List<Choice>, List<State> res) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (Choice choice in choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            \n

            \u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u57fa\u4e8e\u6846\u67b6\u4ee3\u7801\u6765\u89e3\u51b3\u4f8b\u9898\u4e09\u3002\u72b6\u6001 state \u4e3a\u8282\u70b9\u904d\u5386\u8def\u5f84\uff0c\u9009\u62e9 choices \u4e3a\u5f53\u524d\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\uff0c\u7ed3\u679c res \u662f\u8def\u5f84\u5217\u8868\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust preorder_traversal_iii_template.java
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nboolean isSolution(List<TreeNode> state) {\nreturn !state.isEmpty() && state.get(state.size() - 1).val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\nres.add(new ArrayList<>(state));\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nboolean isValid(List<TreeNode> state, TreeNode choice) {\nreturn choice != null && choice.val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(List<TreeNode> state, TreeNode choice) {\nstate.add(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(List<TreeNode> state, TreeNode choice) {\nstate.remove(state.size() - 1);\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(List<TreeNode> state, List<TreeNode> choices, List<List<TreeNode>> res) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (TreeNode choice : choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, Arrays.asList(choice.left, choice.right), res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            preorder_traversal_iii_template.cpp
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(vector<TreeNode *> &state) {\nreturn !state.empty() && state.back()->val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(vector<TreeNode *> &state, vector<vector<TreeNode *>> &res) {\nres.push_back(state);\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(vector<TreeNode *> &state, TreeNode *choice) {\nreturn choice != nullptr && choice->val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(vector<TreeNode *> &state, TreeNode *choice) {\nstate.push_back(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(vector<TreeNode *> &state, TreeNode *choice) {\nstate.pop_back();\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(vector<TreeNode *> &state, vector<TreeNode *> &choices, vector<vector<TreeNode *>> &res) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (TreeNode *choice : choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nvector<TreeNode *> nextChoices{choice->left, choice->right};\nbacktrack(state, nextChoices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            preorder_traversal_iii_template.py
            def is_solution(state: list[TreeNode]) -> bool:\n\"\"\"\u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3\"\"\"\nreturn state and state[-1].val == 7\ndef record_solution(state: list[TreeNode], res: list[list[TreeNode]]):\n\"\"\"\u8bb0\u5f55\u89e3\"\"\"\nres.append(list(state))\ndef is_valid(state: list[TreeNode], choice: TreeNode) -> bool:\n\"\"\"\u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5\"\"\"\nreturn choice is not None and choice.val != 3\ndef make_choice(state: list[TreeNode], choice: TreeNode):\n\"\"\"\u66f4\u65b0\u72b6\u6001\"\"\"\nstate.append(choice)\ndef undo_choice(state: list[TreeNode], choice: TreeNode):\n\"\"\"\u6062\u590d\u72b6\u6001\"\"\"\nstate.pop()\ndef backtrack(\nstate: list[TreeNode], choices: list[TreeNode], res: list[list[TreeNode]]\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09\"\"\"\n# \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif is_solution(state):\n# \u8bb0\u5f55\u89e3\nrecord_solution(state, res)\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices:\n# \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif is_valid(state, choice):\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmake_choice(state, choice)\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, [choice.left, choice.right], res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundo_choice(state, choice)\n
            preorder_traversal_iii_template.go
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunc isSolution(state *[]*TreeNode) bool {\nreturn len(*state) != 0 && (*state)[len(*state)-1].Val == 7\n}\n/* \u8bb0\u5f55\u89e3 */\nfunc recordSolution(state *[]*TreeNode, res *[][]*TreeNode) {\n*res = append(*res, *state)\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunc isValid(state *[]*TreeNode, choice *TreeNode) bool {\nreturn choice != nil && choice.Val != 3\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nfunc makeChoice(state *[]*TreeNode, choice *TreeNode) {\n*state = append(*state, choice)\n}\n/* \u6062\u590d\u72b6\u6001 */\nfunc undoChoice(state *[]*TreeNode, choice *TreeNode) {\n*state = (*state)[:len(*state)-1]\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunc backtrackIII(state *[]*TreeNode, choices *[]*TreeNode, res *[][]*TreeNode) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif isSolution(state) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res)\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor _, choice := range *choices {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif isValid(state, choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\ntemp := make([]*TreeNode, 0)\ntemp = append(temp, choice.Left, choice.Right)\nbacktrackIII(state, &temp, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice)\n}\n}\n}\n
            preorder_traversal_iii_template.js
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunction isSolution(state) {\nreturn state && state[state.length - 1]?.val === 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nfunction recordSolution(state, res) {\nres.push([...state]);\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunction isValid(state, choice) {\nreturn choice !== null && choice.val !== 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nfunction makeChoice(state, choice) {\nstate.push(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nfunction undoChoice(state) {\nstate.pop();\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunction backtrack(state, choices, res) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (const choice of choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, [choice.left, choice.right], res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state);\n}\n}\n}\n
            preorder_traversal_iii_template.ts
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunction isSolution(state: TreeNode[]): boolean {\nreturn state && state[state.length - 1]?.val === 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nfunction recordSolution(state: TreeNode[], res: TreeNode[][]): void {\nres.push([...state]);\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunction isValid(state: TreeNode[], choice: TreeNode): boolean {\nreturn choice !== null && choice.val !== 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nfunction makeChoice(state: TreeNode[], choice: TreeNode): void {\nstate.push(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nfunction undoChoice(state: TreeNode[]): void {\nstate.pop();\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunction backtrack(\nstate: TreeNode[],\nchoices: TreeNode[],\nres: TreeNode[][]\n): void {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (const choice of choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, [choice.left, choice.right], res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state);\n}\n}\n}\n
            preorder_traversal_iii_template.c
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(vector *state) {\nreturn state->size != 0 && ((TreeNode *)(state->data[state->size - 1]))->val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(vector *state, vector *res) {\nvector *newPath = newVector();\nfor (int i = 0; i < state->size; i++) {\nvectorPushback(newPath, state->data[i], sizeof(int));\n}\nvectorPushback(res, newPath, sizeof(vector));\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(vector *state, TreeNode *choice) {\nreturn choice != NULL && choice->val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(vector *state, TreeNode *choice) {\nvectorPushback(state, choice, sizeof(TreeNode));\n}\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(vector *state, TreeNode *choice) {\nvectorPopback(state);\n}\n/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(vector *state, vector *choices, vector *res) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices->size; i++) {\nTreeNode *choice = choices->data[i];\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nvector *nextChoices = newVector();\nvectorPushback(nextChoices, choice->left, sizeof(TreeNode));\nvectorPushback(nextChoices, choice->right, sizeof(TreeNode));\nbacktrack(state, nextChoices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            preorder_traversal_iii_template.cs
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(List<TreeNode> state) {\nreturn state.Count != 0 && state[^1].val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\nres.Add(new List<TreeNode>(state));\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(List<TreeNode> state, TreeNode choice) {\nreturn choice != null && choice.val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(List<TreeNode> state, TreeNode choice) {\nstate.Add(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(List<TreeNode> state, TreeNode choice) {\nstate.RemoveAt(state.Count - 1);\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(List<TreeNode> state, List<TreeNode> choices, List<List<TreeNode>> res) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nforeach (TreeNode choice in choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, new List<TreeNode> { choice.left, choice.right }, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            preorder_traversal_iii_template.swift
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunc isSolution(state: [TreeNode]) -> Bool {\n!state.isEmpty && state.last!.val == 7\n}\n/* \u8bb0\u5f55\u89e3 */\nfunc recordSolution(state: [TreeNode], res: inout [[TreeNode]]) {\nres.append(state)\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunc isValid(state: [TreeNode], choice: TreeNode?) -> Bool {\nchoice != nil && choice!.val != 3\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nfunc makeChoice(state: inout [TreeNode], choice: TreeNode) {\nstate.append(choice)\n}\n/* \u6062\u590d\u72b6\u6001 */\nfunc undoChoice(state: inout [TreeNode], choice: TreeNode) {\nstate.removeLast()\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunc backtrack(state: inout [TreeNode], choices: [TreeNode], res: inout [[TreeNode]]) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif isSolution(state: state) {\nrecordSolution(state: state, res: &res)\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif isValid(state: state, choice: choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state: &state, choice: choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, choices: [choice.left, choice.right].compactMap { $0 }, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state: &state, choice: choice)\n}\n}\n}\n
            preorder_traversal_iii_template.zig
            [class]{}-[func]{isSolution}\n[class]{}-[func]{recordSolution}\n[class]{}-[func]{isValid}\n[class]{}-[func]{makeChoice}\n[class]{}-[func]{undoChoice}\n[class]{}-[func]{backtrack}\n
            preorder_traversal_iii_template.dart
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(List<TreeNode> state) {\nreturn state.isNotEmpty && state.last.val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\nres.add(List.from(state));\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(List<TreeNode> state, TreeNode? choice) {\nreturn choice != null && choice.val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(List<TreeNode> state, TreeNode? choice) {\nstate.add(choice!);\n}\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(List<TreeNode> state, TreeNode? choice) {\nstate.removeLast();\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(\nList<TreeNode> state,\nList<TreeNode?> choices,\nList<List<TreeNode>> res,\n) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (TreeNode? choice in choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, [choice!.left, choice.right], res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            preorder_traversal_iii_template.rs
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfn is_solution(state: &mut Vec<Rc<RefCell<TreeNode>>>) -> bool {\nreturn !state.is_empty() && state.get(state.len() - 1).unwrap().borrow().val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nfn record_solution(state: &mut Vec<Rc<RefCell<TreeNode>>>, res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>) {\nres.push(state.clone());\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfn is_valid(_: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Rc<RefCell<TreeNode>>) -> bool {\nreturn choice.borrow().val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nfn make_choice(state: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Rc<RefCell<TreeNode>>) {\nstate.push(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nfn undo_choice(state: &mut Vec<Rc<RefCell<TreeNode>>>, _: Rc<RefCell<TreeNode>>) {\nstate.remove(state.len() - 1);\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfn backtrack(state: &mut Vec<Rc<RefCell<TreeNode>>>, choices: &mut Vec<Rc<RefCell<TreeNode>>>, res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif is_solution(state) {\n// \u8bb0\u5f55\u89e3\nrecord_solution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif is_valid(state, choice.clone()) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmake_choice(state, choice.clone());\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, &mut vec![choice.borrow().left.clone().unwrap(), choice.borrow().right.clone().unwrap()], res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundo_choice(state, choice.clone());\n}\n}\n}\n

            \u6839\u636e\u9898\u610f\uff0c\u5f53\u627e\u5230\u503c\u4e3a 7 \u7684\u8282\u70b9\u540e\u5e94\u8be5\u7ee7\u7eed\u641c\u7d22\uff0c\u56e0\u6b64\u6211\u4eec\u9700\u8981\u5c06\u8bb0\u5f55\u89e3\u4e4b\u540e\u7684 return \u8bed\u53e5\u5220\u9664\u3002\u4e0b\u56fe\u5bf9\u6bd4\u4e86\u4fdd\u7559\u6216\u5220\u9664 return \u8bed\u53e5\u7684\u641c\u7d22\u8fc7\u7a0b\u3002

            \u56fe\uff1a\u4fdd\u7559\u4e0e\u5220\u9664 return \u7684\u641c\u7d22\u8fc7\u7a0b\u5bf9\u6bd4

            \u76f8\u6bd4\u57fa\u4e8e\u524d\u5e8f\u904d\u5386\u7684\u4ee3\u7801\u5b9e\u73b0\uff0c\u57fa\u4e8e\u56de\u6eaf\u7b97\u6cd5\u6846\u67b6\u7684\u4ee3\u7801\u5b9e\u73b0\u867d\u7136\u663e\u5f97\u5570\u55e6\uff0c\u4f46\u901a\u7528\u6027\u66f4\u597d\u3002\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u56de\u6eaf\u95ee\u9898\u90fd\u53ef\u4ee5\u5728\u8be5\u6846\u67b6\u4e0b\u89e3\u51b3\u3002\u6211\u4eec\u53ea\u9700\u6839\u636e\u5177\u4f53\u95ee\u9898\u6765\u5b9a\u4e49 state \u548c choices \uff0c\u5e76\u5b9e\u73b0\u6846\u67b6\u4e2d\u7684\u5404\u4e2a\u65b9\u6cd5\u5373\u53ef\u3002

            "},{"location":"chapter_backtracking/backtracking_algorithm/#1314","title":"13.1.4 \u00a0 \u5e38\u7528\u672f\u8bed","text":"

            \u4e3a\u4e86\u66f4\u6e05\u6670\u5730\u5206\u6790\u7b97\u6cd5\u95ee\u9898\uff0c\u6211\u4eec\u603b\u7ed3\u4e00\u4e0b\u56de\u6eaf\u7b97\u6cd5\u4e2d\u5e38\u7528\u672f\u8bed\u7684\u542b\u4e49\uff0c\u5e76\u5bf9\u7167\u4f8b\u9898\u4e09\u7ed9\u51fa\u5bf9\u5e94\u793a\u4f8b\u3002

            \u540d\u8bcd \u5b9a\u4e49 \u4f8b\u9898\u4e09 \u89e3 Solution \u89e3\u662f\u6ee1\u8db3\u95ee\u9898\u7279\u5b9a\u6761\u4ef6\u7684\u7b54\u6848\uff0c\u53ef\u80fd\u6709\u4e00\u4e2a\u6216\u591a\u4e2a \u6839\u8282\u70b9\u5230\u8282\u70b9 \\(7\\) \u7684\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u6240\u6709\u8def\u5f84 \u7ea6\u675f\u6761\u4ef6 Constraint \u7ea6\u675f\u6761\u4ef6\u662f\u95ee\u9898\u4e2d\u9650\u5236\u89e3\u7684\u53ef\u884c\u6027\u7684\u6761\u4ef6\uff0c\u901a\u5e38\u7528\u4e8e\u526a\u679d \u8def\u5f84\u4e2d\u4e0d\u5305\u542b\u8282\u70b9 \\(3\\) \uff0c\u53ea\u5305\u542b\u4e00\u4e2a\u8282\u70b9 \\(7\\) \u72b6\u6001 State \u72b6\u6001\u8868\u793a\u95ee\u9898\u5728\u67d0\u4e00\u65f6\u523b\u7684\u60c5\u51b5\uff0c\u5305\u62ec\u5df2\u7ecf\u505a\u51fa\u7684\u9009\u62e9 \u5f53\u524d\u5df2\u8bbf\u95ee\u7684\u8282\u70b9\u8def\u5f84\uff0c\u5373 path \u8282\u70b9\u5217\u8868 \u5c1d\u8bd5 Attempt \u5c1d\u8bd5\u662f\u6839\u636e\u53ef\u7528\u9009\u62e9\u6765\u63a2\u7d22\u89e3\u7a7a\u95f4\u7684\u8fc7\u7a0b\uff0c\u5305\u62ec\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\uff0c\u68c0\u67e5\u662f\u5426\u4e3a\u89e3 \u9012\u5f52\u8bbf\u95ee\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\uff0c\u5c06\u8282\u70b9\u6dfb\u52a0\u8fdb path \uff0c\u5224\u65ad\u8282\u70b9\u7684\u503c\u662f\u5426\u4e3a \\(7\\) \u56de\u9000 Backtracking \u56de\u9000\u6307\u9047\u5230\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u72b6\u6001\u65f6\uff0c\u64a4\u9500\u524d\u9762\u505a\u51fa\u7684\u9009\u62e9\uff0c\u56de\u5230\u4e0a\u4e00\u4e2a\u72b6\u6001 \u5f53\u8d8a\u8fc7\u53f6\u7ed3\u70b9\u3001\u7ed3\u675f\u7ed3\u70b9\u8bbf\u95ee\u3001\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u65f6\u7ec8\u6b62\u641c\u7d22\uff0c\u51fd\u6570\u8fd4\u56de \u526a\u679d Pruning \u526a\u679d\u662f\u6839\u636e\u95ee\u9898\u7279\u6027\u548c\u7ea6\u675f\u6761\u4ef6\u907f\u514d\u65e0\u610f\u4e49\u7684\u641c\u7d22\u8def\u5f84\u7684\u65b9\u6cd5\uff0c\u53ef\u63d0\u9ad8\u641c\u7d22\u6548\u7387 \u5f53\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u65f6\uff0c\u5219\u7ec8\u6b62\u7ee7\u7eed\u641c\u7d22

            Tip

            \u95ee\u9898\u3001\u89e3\u3001\u72b6\u6001\u7b49\u6982\u5ff5\u662f\u901a\u7528\u7684\uff0c\u5728\u5206\u6cbb\u3001\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u3001\u8d2a\u5fc3\u7b49\u7b97\u6cd5\u4e2d\u90fd\u6709\u6d89\u53ca\u3002

            "},{"location":"chapter_backtracking/backtracking_algorithm/#1315","title":"13.1.5 \u00a0 \u4f18\u52bf\u4e0e\u5c40\u9650\u6027","text":"

            \u56de\u6eaf\u7b97\u6cd5\u672c\u8d28\u4e0a\u662f\u4e00\u79cd\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u7b97\u6cd5\uff0c\u5b83\u5c1d\u8bd5\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\u76f4\u5230\u627e\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u3002\u8fd9\u79cd\u65b9\u6cd5\u7684\u4f18\u52bf\u5728\u4e8e\u5b83\u80fd\u591f\u627e\u5230\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u800c\u4e14\u5728\u5408\u7406\u7684\u526a\u679d\u64cd\u4f5c\u4e0b\uff0c\u5177\u6709\u5f88\u9ad8\u7684\u6548\u7387\u3002

            \u7136\u800c\uff0c\u5728\u5904\u7406\u5927\u89c4\u6a21\u6216\u8005\u590d\u6742\u95ee\u9898\u65f6\uff0c\u56de\u6eaf\u7b97\u6cd5\u7684\u8fd0\u884c\u6548\u7387\u53ef\u80fd\u96be\u4ee5\u63a5\u53d7\u3002

            • \u65f6\u95f4\uff1a\u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u9700\u8981\u904d\u5386\u72b6\u6001\u7a7a\u95f4\u7684\u6240\u6709\u53ef\u80fd\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230\u6307\u6570\u9636\u6216\u9636\u4e58\u9636\u3002
            • \u7a7a\u95f4\uff1a\u5728\u9012\u5f52\u8c03\u7528\u4e2d\u9700\u8981\u4fdd\u5b58\u5f53\u524d\u7684\u72b6\u6001\uff08\u4f8b\u5982\u8def\u5f84\u3001\u7528\u4e8e\u526a\u679d\u7684\u8f85\u52a9\u53d8\u91cf\u7b49\uff09\uff0c\u5f53\u6df1\u5ea6\u5f88\u5927\u65f6\uff0c\u7a7a\u95f4\u9700\u6c42\u53ef\u80fd\u4f1a\u53d8\u5f97\u5f88\u5927\u3002

            \u5373\u4fbf\u5982\u6b64\uff0c\u56de\u6eaf\u7b97\u6cd5\u4ecd\u7136\u662f\u67d0\u4e9b\u641c\u7d22\u95ee\u9898\u548c\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u7684\u6700\u4f73\u89e3\u51b3\u65b9\u6848\u3002\u5bf9\u4e8e\u8fd9\u4e9b\u95ee\u9898\uff0c\u7531\u4e8e\u65e0\u6cd5\u9884\u6d4b\u54ea\u4e9b\u9009\u62e9\u53ef\u751f\u6210\u6709\u6548\u7684\u89e3\uff0c\u56e0\u6b64\u6211\u4eec\u5fc5\u987b\u5bf9\u6240\u6709\u53ef\u80fd\u7684\u9009\u62e9\u8fdb\u884c\u904d\u5386\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u5173\u952e\u662f\u5982\u4f55\u8fdb\u884c\u6548\u7387\u4f18\u5316\uff0c\u5e38\u89c1\u65b9\u6cd5\u6709\uff1a

            • \u526a\u679d\uff1a\u907f\u514d\u641c\u7d22\u90a3\u4e9b\u80af\u5b9a\u4e0d\u4f1a\u4ea7\u751f\u89e3\u7684\u8def\u5f84\uff0c\u4ece\u800c\u8282\u7701\u65f6\u95f4\u548c\u7a7a\u95f4\u3002
            • \u542f\u53d1\u5f0f\u641c\u7d22\uff1a\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u5f15\u5165\u4e00\u4e9b\u7b56\u7565\u6216\u8005\u4f30\u8ba1\u503c\uff0c\u4ece\u800c\u4f18\u5148\u641c\u7d22\u6700\u6709\u53ef\u80fd\u4ea7\u751f\u6709\u6548\u89e3\u7684\u8def\u5f84\u3002
            "},{"location":"chapter_backtracking/backtracking_algorithm/#1316","title":"13.1.6 \u00a0 \u56de\u6eaf\u5178\u578b\u4f8b\u9898","text":"

            \u56de\u6eaf\u7b97\u6cd5\u53ef\u7528\u4e8e\u89e3\u51b3\u8bb8\u591a\u641c\u7d22\u95ee\u9898\u3001\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u548c\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u3002

            \u641c\u7d22\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u5230\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u89e3\u51b3\u65b9\u6848\u3002

            • \u5168\u6392\u5217\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\uff0c\u6c42\u51fa\u5176\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u7ec4\u5408\u3002
            • \u5b50\u96c6\u548c\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\u548c\u4e00\u4e2a\u76ee\u6807\u548c\uff0c\u627e\u5230\u96c6\u5408\u4e2d\u6240\u6709\u548c\u4e3a\u76ee\u6807\u548c\u7684\u5b50\u96c6\u3002
            • \u6c49\u8bfa\u5854\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e09\u4e2a\u67f1\u5b50\u548c\u4e00\u7cfb\u5217\u5927\u5c0f\u4e0d\u540c\u7684\u5706\u76d8\uff0c\u8981\u6c42\u5c06\u6240\u6709\u5706\u76d8\u4ece\u4e00\u4e2a\u67f1\u5b50\u79fb\u52a8\u5230\u53e6\u4e00\u4e2a\u67f1\u5b50\uff0c\u6bcf\u6b21\u53ea\u80fd\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\uff0c\u4e14\u4e0d\u80fd\u5c06\u5927\u5706\u76d8\u653e\u5728\u5c0f\u5706\u76d8\u4e0a\u3002

            \u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u5230\u6ee1\u8db3\u6240\u6709\u7ea6\u675f\u6761\u4ef6\u7684\u89e3\u3002

            • \\(n\\) \u7687\u540e\uff1a\u5728 \\(n \\times n\\) \u7684\u68cb\u76d8\u4e0a\u653e\u7f6e \\(n\\) \u4e2a\u7687\u540e\uff0c\u4f7f\u5f97\u5b83\u4eec\u4e92\u4e0d\u653b\u51fb\u3002
            • \u6570\u72ec\uff1a\u5728 \\(9 \\times 9\\) \u7684\u7f51\u683c\u4e2d\u586b\u5165\u6570\u5b57 \\(1\\) ~ \\(9\\) \uff0c\u4f7f\u5f97\u6bcf\u884c\u3001\u6bcf\u5217\u548c\u6bcf\u4e2a \\(3 \\times 3\\) \u5b50\u7f51\u683c\u4e2d\u7684\u6570\u5b57\u4e0d\u91cd\u590d\u3002
            • \u56fe\u7740\u8272\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u65e0\u5411\u56fe\uff0c\u7528\u6700\u5c11\u7684\u989c\u8272\u7ed9\u56fe\u7684\u6bcf\u4e2a\u9876\u70b9\u7740\u8272\uff0c\u4f7f\u5f97\u76f8\u90bb\u9876\u70b9\u989c\u8272\u4e0d\u540c\u3002

            \u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u5728\u4e00\u4e2a\u7ec4\u5408\u7a7a\u95f4\u4e2d\u627e\u5230\u6ee1\u8db3\u67d0\u4e9b\u6761\u4ef6\u7684\u6700\u4f18\u89e3\u3002

            • 0-1 \u80cc\u5305\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u7269\u54c1\u548c\u4e00\u4e2a\u80cc\u5305\uff0c\u6bcf\u4e2a\u7269\u54c1\u6709\u4e00\u5b9a\u7684\u4ef7\u503c\u548c\u91cd\u91cf\uff0c\u8981\u6c42\u5728\u80cc\u5305\u5bb9\u91cf\u9650\u5236\u5185\uff0c\u9009\u62e9\u7269\u54c1\u4f7f\u5f97\u603b\u4ef7\u503c\u6700\u5927\u3002
            • \u65c5\u884c\u5546\u95ee\u9898\uff1a\u5728\u4e00\u4e2a\u56fe\u4e2d\uff0c\u4ece\u4e00\u4e2a\u70b9\u51fa\u53d1\uff0c\u8bbf\u95ee\u6240\u6709\u5176\u4ed6\u70b9\u6070\u597d\u4e00\u6b21\u540e\u8fd4\u56de\u8d77\u70b9\uff0c\u6c42\u6700\u77ed\u8def\u5f84\u3002
            • \u6700\u5927\u56e2\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u65e0\u5411\u56fe\uff0c\u627e\u5230\u6700\u5927\u7684\u5b8c\u5168\u5b50\u56fe\uff0c\u5373\u5b50\u56fe\u4e2d\u7684\u4efb\u610f\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u90fd\u6709\u8fb9\u76f8\u8fde\u3002

            \u8bf7\u6ce8\u610f\uff0c\u5bf9\u4e8e\u8bb8\u591a\u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff0c\u56de\u6eaf\u90fd\u4e0d\u662f\u6700\u4f18\u89e3\u51b3\u65b9\u6848\uff0c\u4f8b\u5982\uff1a

            • 0-1 \u80cc\u5305\u95ee\u9898\u901a\u5e38\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u89e3\u51b3\uff0c\u4ee5\u8fbe\u5230\u66f4\u9ad8\u7684\u65f6\u95f4\u6548\u7387\u3002
            • \u65c5\u884c\u5546\u662f\u4e00\u4e2a\u8457\u540d\u7684 NP-Hard \u95ee\u9898\uff0c\u5e38\u7528\u89e3\u6cd5\u6709\u9057\u4f20\u7b97\u6cd5\u548c\u8681\u7fa4\u7b97\u6cd5\u7b49\u3002
            • \u6700\u5927\u56e2\u95ee\u9898\u662f\u56fe\u8bba\u4e2d\u7684\u4e00\u4e2a\u7ecf\u5178\u95ee\u9898\uff0c\u53ef\u7528\u8d2a\u5fc3\u7b49\u542f\u53d1\u5f0f\u7b97\u6cd5\u6765\u89e3\u51b3\u3002
            "},{"location":"chapter_backtracking/n_queens_problem/","title":"13.4 \u00a0 N \u7687\u540e\u95ee\u9898","text":"

            Question

            \u6839\u636e\u56fd\u9645\u8c61\u68cb\u7684\u89c4\u5219\uff0c\u7687\u540e\u53ef\u4ee5\u653b\u51fb\u4e0e\u4e4b\u5904\u5728\u540c\u4e00\u884c\u6216\u540c\u4e00\u5217\u6216\u540c\u4e00\u659c\u7ebf\u4e0a\u7684\u68cb\u5b50\u3002\u7ed9\u5b9a \\(n\\) \u4e2a\u7687\u540e\u548c\u4e00\u4e2a \\(n \\times n\\) \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5bfb\u627e\u4f7f\u5f97\u6240\u6709\u7687\u540e\u4e4b\u95f4\u65e0\u6cd5\u76f8\u4e92\u653b\u51fb\u7684\u6446\u653e\u65b9\u6848\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5f53 \\(n = 4\\) \u65f6\uff0c\u5171\u53ef\u4ee5\u627e\u5230\u4e24\u4e2a\u89e3\u3002\u4ece\u56de\u6eaf\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\\(n \\times n\\) \u5927\u5c0f\u7684\u68cb\u76d8\u5171\u6709 \\(n^2\\) \u4e2a\u683c\u5b50\uff0c\u7ed9\u51fa\u4e86\u6240\u6709\u7684\u9009\u62e9 choices \u3002\u5728\u9010\u4e2a\u653e\u7f6e\u7687\u540e\u7684\u8fc7\u7a0b\u4e2d\uff0c\u68cb\u76d8\u72b6\u6001\u5728\u4e0d\u65ad\u5730\u53d8\u5316\uff0c\u6bcf\u4e2a\u65f6\u523b\u7684\u68cb\u76d8\u5c31\u662f\u72b6\u6001 state \u3002

            \u56fe\uff1a4 \u7687\u540e\u95ee\u9898\u7684\u89e3

            \u672c\u9898\u5171\u5305\u542b\u4e09\u4e2a\u7ea6\u675f\u6761\u4ef6\uff1a\u591a\u4e2a\u7687\u540e\u4e0d\u80fd\u5728\u540c\u4e00\u884c\u3001\u540c\u4e00\u5217\u3001\u540c\u4e00\u5bf9\u89d2\u7ebf\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u5bf9\u89d2\u7ebf\u5206\u4e3a\u4e3b\u5bf9\u89d2\u7ebf \\ \u548c\u6b21\u5bf9\u89d2\u7ebf / \u4e24\u79cd\u3002

            \u56fe\uff1an \u7687\u540e\u95ee\u9898\u7684\u7ea6\u675f\u6761\u4ef6

            "},{"location":"chapter_backtracking/n_queens_problem/#1","title":"1. \u00a0 \u9010\u884c\u653e\u7f6e\u7b56\u7565","text":"

            \u7687\u540e\u7684\u6570\u91cf\u548c\u68cb\u76d8\u7684\u884c\u6570\u90fd\u4e3a \\(n\\) \uff0c\u56e0\u6b64\u6211\u4eec\u5bb9\u6613\u5f97\u5230\u4e00\u4e2a\u63a8\u8bba\uff1a\u68cb\u76d8\u6bcf\u884c\u90fd\u5141\u8bb8\u4e14\u53ea\u5141\u8bb8\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\u3002

            \u4e5f\u5c31\u662f\u8bf4\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u53d6\u9010\u884c\u653e\u7f6e\u7b56\u7565\uff1a\u4ece\u7b2c\u4e00\u884c\u5f00\u59cb\uff0c\u5728\u6bcf\u884c\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\uff0c\u76f4\u81f3\u6700\u540e\u4e00\u884c\u7ed3\u675f\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u4e3a \\(4\\) \u7687\u540e\u95ee\u9898\u7684\u9010\u884c\u653e\u7f6e\u8fc7\u7a0b\u3002\u53d7\u753b\u5e45\u9650\u5236\uff0c\u4e0b\u56fe\u4ec5\u5c55\u5f00\u4e86\u7b2c\u4e00\u884c\u7684\u5176\u4e2d\u4e00\u4e2a\u641c\u7d22\u5206\u652f\uff0c\u5e76\u4e14\u5c06\u4e0d\u6ee1\u8db3\u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u65b9\u6848\u90fd\u8fdb\u884c\u4e86\u526a\u679d\u3002

            \u56fe\uff1a\u9010\u884c\u653e\u7f6e\u7b56\u7565

            \u672c\u8d28\u4e0a\u770b\uff0c\u9010\u884c\u653e\u7f6e\u7b56\u7565\u8d77\u5230\u4e86\u526a\u679d\u7684\u4f5c\u7528\uff0c\u5b83\u907f\u514d\u4e86\u540c\u4e00\u884c\u51fa\u73b0\u591a\u4e2a\u7687\u540e\u7684\u6240\u6709\u641c\u7d22\u5206\u652f\u3002

            "},{"location":"chapter_backtracking/n_queens_problem/#2","title":"2. \u00a0 \u5217\u4e0e\u5bf9\u89d2\u7ebf\u526a\u679d","text":"

            \u4e3a\u4e86\u6ee1\u8db3\u5217\u7ea6\u675f\uff0c\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u5e03\u5c14\u578b\u6570\u7ec4 cols \u8bb0\u5f55\u6bcf\u4e00\u5217\u662f\u5426\u6709\u7687\u540e\u3002\u5728\u6bcf\u6b21\u51b3\u5b9a\u653e\u7f6e\u524d\uff0c\u6211\u4eec\u901a\u8fc7 cols \u5c06\u5df2\u6709\u7687\u540e\u7684\u5217\u8fdb\u884c\u526a\u679d\uff0c\u5e76\u5728\u56de\u6eaf\u4e2d\u52a8\u6001\u66f4\u65b0 cols \u7684\u72b6\u6001\u3002

            \u90a3\u4e48\uff0c\u5982\u4f55\u5904\u7406\u5bf9\u89d2\u7ebf\u7ea6\u675f\u5462\uff1f\u8bbe\u68cb\u76d8\u4e2d\u67d0\u4e2a\u683c\u5b50\u7684\u884c\u5217\u7d22\u5f15\u4e3a \\((row, col)\\) \uff0c\u9009\u5b9a\u77e9\u9635\u4e2d\u7684\u67d0\u6761\u4e3b\u5bf9\u89d2\u7ebf\uff0c\u6211\u4eec\u53d1\u73b0\u8be5\u5bf9\u89d2\u7ebf\u4e0a\u6240\u6709\u683c\u5b50\u7684\u884c\u7d22\u5f15\u51cf\u5217\u7d22\u5f15\u90fd\u76f8\u7b49\uff0c\u5373\u5bf9\u89d2\u7ebf\u4e0a\u6240\u6709\u683c\u5b50\u7684 \\(row - col\\) \u4e3a\u6052\u5b9a\u503c\u3002

            \u4e5f\u5c31\u662f\u8bf4\uff0c\u5982\u679c\u4e24\u4e2a\u683c\u5b50\u6ee1\u8db3 \\(row_1 - col_1 = row_2 - col_2\\) \uff0c\u5219\u5b83\u4eec\u4e00\u5b9a\u5904\u5728\u540c\u4e00\u6761\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u3002\u5229\u7528\u8be5\u89c4\u5f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u501f\u52a9\u4e00\u4e2a\u6570\u7ec4 diag1 \u6765\u8bb0\u5f55\u6bcf\u6761\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\u3002

            \u540c\u7406\uff0c\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u7684\u6240\u6709\u683c\u5b50\u7684 \\(row + col\\) \u662f\u6052\u5b9a\u503c\u3002\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u76f8\u540c\u65b9\u6cd5\uff0c\u501f\u52a9\u6570\u7ec4 diag2 \u6765\u5904\u7406\u6b21\u5bf9\u89d2\u7ebf\u7ea6\u675f\u3002

            \u56fe\uff1a\u5904\u7406\u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f

            "},{"location":"chapter_backtracking/n_queens_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u8bf7\u6ce8\u610f\uff0c\\(n\\) \u7ef4\u65b9\u9635\u4e2d \\(row - col\\) \u7684\u8303\u56f4\u662f \\([-n + 1, n - 1]\\) \uff0c\\(row + col\\) \u7684\u8303\u56f4\u662f \\([0, 2n - 2]\\) \uff0c\u6240\u4ee5\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\u7684\u6570\u91cf\u90fd\u4e3a \\(2n - 1\\) \uff0c\u5373\u6570\u7ec4 diag1 \u548c diag2 \u7684\u957f\u5ea6\u90fd\u4e3a \\(2n - 1\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust n_queens.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, List<List<String>> state, List<List<List<String>>> res,\nboolean[] cols, boolean[] diags1, boolean[] diags2) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row == n) {\nList<List<String>> copyState = new ArrayList<>();\nfor (List<String> sRow : state) {\ncopyState.add(new ArrayList<>(sRow));\n}\nres.add(copyState);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (int col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nint diag1 = row - col + n - 1;\nint diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate.get(row).set(col, \"Q\");\ncols[col] = diags1[diag1] = diags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate.get(row).set(col, \"#\");\ncols[col] = diags1[diag1] = diags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<String>>> nQueens(int n) {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nList<List<String>> state = new ArrayList<>();\nfor (int i = 0; i < n; i++) {\nList<String> row = new ArrayList<>();\nfor (int j = 0; j < n; j++) {\nrow.add(\"#\");\n}\nstate.add(row);\n}\nboolean[] cols = new boolean[n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nboolean[] diags1 = new boolean[2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nboolean[] diags2 = new boolean[2 * n - 1]; // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nList<List<List<String>>> res = new ArrayList<>();\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, vector<vector<string>> &state, vector<vector<vector<string>>> &res, vector<bool> &cols,\nvector<bool> &diags1, vector<bool> &diags2) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row == n) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (int col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nint diag1 = row - col + n - 1;\nint diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = \"Q\";\ncols[col] = diags1[diag1] = diags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = \"#\";\ncols[col] = diags1[diag1] = diags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nvector<vector<vector<string>>> nQueens(int n) {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nvector<vector<string>> state(n, vector<string>(n, \"#\"));\nvector<bool> cols(n, false);           // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nvector<bool> diags1(2 * n - 1, false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nvector<bool> diags2(2 * n - 1, false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nvector<vector<vector<string>>> res;\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.py
            def backtrack(\nrow: int,\nn: int,\nstate: list[list[str]],\nres: list[list[list[str]]],\ncols: list[bool],\ndiags1: list[bool],\ndiags2: list[bool],\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e\"\"\"\n# \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif row == n:\nres.append([list(row) for row in state])\nreturn\n# \u904d\u5386\u6240\u6709\u5217\nfor col in range(n):\n# \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\ndiag1 = row - col + n - 1\ndiag2 = row + col\n# \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif not cols[col] and not diags1[diag1] and not diags2[diag2]:\n# \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = \"Q\"\ncols[col] = diags1[diag1] = diags2[diag2] = True\n# \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2)\n# \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = \"#\"\ncols[col] = diags1[diag1] = diags2[diag2] = False\ndef n_queens(n: int) -> list[list[list[str]]]:\n\"\"\"\u6c42\u89e3 N \u7687\u540e\"\"\"\n# \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nstate = [[\"#\" for _ in range(n)] for _ in range(n)]\ncols = [False] * n  # \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\ndiags1 = [False] * (2 * n - 1)  # \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\ndiags2 = [False] * (2 * n - 1)  # \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nres = []\nbacktrack(0, n, state, res, cols, diags1, diags2)\nreturn res\n
            n_queens.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif row == n {\nnewState := make([][]string, len(*state))\nfor i, _ := range newState {\nnewState[i] = make([]string, len((*state)[0]))\ncopy(newState[i], (*state)[i])\n}\n*res = append(*res, newState)\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor col := 0; col < n; col++ {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\ndiag1 := row - col + n - 1\ndiag2 := row + col\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n(*state)[row][col] = \"Q\"\n(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row+1, n, state, res, cols, diags1, diags2)\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n(*state)[row][col] = \"#\"\n(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false\n}\n}\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif row == n {\nnewState := make([][]string, len(*state))\nfor i, _ := range newState {\nnewState[i] = make([]string, len((*state)[0]))\ncopy(newState[i], (*state)[i])\n}\n*res = append(*res, newState)\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor col := 0; col < n; col++ {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\ndiag1 := row - col + n - 1\ndiag2 := row + col\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n(*state)[row][col] = \"Q\"\n(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row+1, n, state, res, cols, diags1, diags2)\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n(*state)[row][col] = \"#\"\n(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false\n}\n}\n}\nfunc nQueens(n int) [][][]string {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nstate := make([][]string, n)\nfor i := 0; i < n; i++ {\nrow := make([]string, n)\nfor i := 0; i < n; i++ {\nrow[i] = \"#\"\n}\nstate[i] = row\n}\n// \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\ncols := make([]bool, n)\ndiags1 := make([]bool, 2*n-1)\ndiags2 := make([]bool, 2*n-1)\nres := make([][][]string, 0)\nbacktrack(0, n, &state, &res, &cols, &diags1, &diags2)\nreturn res\n}\n
            n_queens.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunction backtrack(row, n, state, res, cols, diags1, diags2) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row === n) {\nres.push(state.map((row) => row.slice()));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (let col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nconst diag1 = row - col + n - 1;\nconst diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = 'Q';\ncols[col] = diags1[diag1] = diags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = '#';\ncols[col] = diags1[diag1] = diags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nfunction nQueens(n) {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nconst state = Array.from({ length: n }, () => Array(n).fill('#'));\nconst cols = Array(n).fill(false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nconst diags1 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nconst diags2 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nconst res = [];\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunction backtrack(\nrow: number,\nn: number,\nstate: string[][],\nres: string[][][],\ncols: boolean[],\ndiags1: boolean[],\ndiags2: boolean[]\n): void {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row === n) {\nres.push(state.map((row) => row.slice()));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (let col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nconst diag1 = row - col + n - 1;\nconst diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = 'Q';\ncols[col] = diags1[diag1] = diags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = '#';\ncols[col] = diags1[diag1] = diags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nfunction nQueens(n: number): string[][][] {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nconst state = Array.from({ length: n }, () => Array(n).fill('#'));\nconst cols = Array(n).fill(false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nconst diags1 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nconst diags2 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nconst res: string[][][] = [];\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.c
            [class]{}-[func]{backtrack}\n[class]{}-[func]{nQueens}\n
            n_queens.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,\nbool[] cols, bool[] diags1, bool[] diags2) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row == n) {\nList<List<string>> copyState = new List<List<string>>();\nforeach (List<string> sRow in state) {\ncopyState.Add(new List<string>(sRow));\n}\nres.Add(copyState);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (int col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nint diag1 = row - col + n - 1;\nint diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = \"Q\";\ncols[col] = diags1[diag1] = diags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = \"#\";\ncols[col] = diags1[diag1] = diags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<string>>> nQueens(int n) {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nList<List<string>> state = new List<List<string>>();\nfor (int i = 0; i < n; i++) {\nList<string> row = new List<string>();\nfor (int j = 0; j < n; j++) {\nrow.Add(\"#\");\n}\nstate.Add(row);\n}\nbool[] cols = new bool[n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nbool[] diags1 = new bool[2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nbool[] diags2 = new bool[2 * n - 1]; // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nList<List<List<string>>> res = new List<List<List<string>>>();\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row: Int, n: Int, state: inout [[String]], res: inout [[[String]]], cols: inout [Bool], diags1: inout [Bool], diags2: inout [Bool]) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif row == n {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor col in 0 ..< n {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nlet diag1 = row - col + n - 1\nlet diag2 = row + col\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif !cols[col] && !diags1[diag1] && !diags2[diag2] {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = \"Q\"\ncols[col] = true\ndiags1[diag1] = true\ndiags2[diag2] = true\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row: row + 1, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = \"#\"\ncols[col] = false\ndiags1[diag1] = false\ndiags2[diag2] = false\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nfunc nQueens(n: Int) -> [[[String]]] {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nvar state = Array(repeating: Array(repeating: \"#\", count: n), count: n)\nvar cols = Array(repeating: false, count: n) // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nvar diags1 = Array(repeating: false, count: 2 * n - 1) // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nvar diags2 = Array(repeating: false, count: 2 * n - 1) // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nvar res: [[[String]]] = []\nbacktrack(row: 0, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)\nreturn res\n}\n
            n_queens.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{nQueens}\n
            n_queens.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(\nint row,\nint n,\nList<List<String>> state,\nList<List<List<String>>> res,\nList<bool> cols,\nList<bool> diags1,\nList<bool> diags2,\n) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row == n) {\nList<List<String>> copyState = [];\nfor (List<String> sRow in state) {\ncopyState.add(List.from(sRow));\n}\nres.add(copyState);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (int col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nint diag1 = row - col + n - 1;\nint diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = \"Q\";\ncols[col] = true;\ndiags1[diag1] = true;\ndiags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = \"#\";\ncols[col] = false;\ndiags1[diag1] = false;\ndiags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<String>>> nQueens(int n) {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nList<List<String>> state = List.generate(n, (index) => List.filled(n, \"#\"));\nList<bool> cols = List.filled(n, false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nList<bool> diags1 = List.filled(2 * n - 1, false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nList<bool> diags2 = List.filled(2 * n - 1, false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nList<List<List<String>>> res = [];\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfn backtrack(row: usize, n: usize, state: &mut Vec<Vec<String>>, res: &mut Vec<Vec<Vec<String>>>,\ncols: &mut [bool], diags1: &mut [bool], diags2: &mut [bool]) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif row == n {\nlet mut copy_state: Vec<Vec<String>> = Vec::new();\nfor s_row in state.clone() {\ncopy_state.push(s_row);\n}\nres.push(copy_state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor col in 0..n {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nlet diag1 = row + n - 1 - col;\nlet diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif !cols[col] && !diags1[diag1] && !diags2[diag2] {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate.get_mut(row).unwrap()[col] = \"Q\".into();\n(cols[col], diags1[diag1], diags2[diag2]) = (true, true, true);\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate.get_mut(row).unwrap()[col] = \"#\".into();\n(cols[col], diags1[diag1], diags2[diag2]) = (false, false, false);\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nfn n_queens(n: usize) -> Vec<Vec<Vec<String>>> {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nlet mut state: Vec<Vec<String>> = Vec::new();\nfor _ in 0..n {\nlet mut row: Vec<String> = Vec::new();\nfor _ in 0..n {\nrow.push(\"#\".into());\n}\nstate.push(row);\n}\nlet mut cols = vec![false; n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nlet mut diags1 = vec![false; 2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nlet mut diags2 = vec![false; 2 * n - 1]; // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nlet mut res: Vec<Vec<Vec<String>>> = Vec::new();\nbacktrack(0, n, &mut state, &mut res, &mut cols, &mut diags1, &mut diags2);\nres\n}\n

            \u9010\u884c\u653e\u7f6e \\(n\\) \u6b21\uff0c\u8003\u8651\u5217\u7ea6\u675f\uff0c\u5219\u4ece\u7b2c\u4e00\u884c\u5230\u6700\u540e\u4e00\u884c\u5206\u522b\u6709 \\(n, n-1, \\cdots, 2, 1\\) \u4e2a\u9009\u62e9\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n!)\\) \u3002\u5b9e\u9645\u4e0a\uff0c\u6839\u636e\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u526a\u679d\u4e5f\u80fd\u591f\u5927\u5e45\u5730\u7f29\u5c0f\u641c\u7d22\u7a7a\u95f4\uff0c\u56e0\u800c\u641c\u7d22\u6548\u7387\u5f80\u5f80\u4f18\u4e8e\u4ee5\u4e0a\u65f6\u95f4\u590d\u6742\u5ea6\u3002

            \u6570\u7ec4 state \u4f7f\u7528 \\(O(n^2)\\) \u7a7a\u95f4\uff0c\u6570\u7ec4 cols , diags1 , diags2 \u7686\u4f7f\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002\u6700\u5927\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002

            "},{"location":"chapter_backtracking/permutations_problem/","title":"13.2 \u00a0 \u5168\u6392\u5217\u95ee\u9898","text":"

            \u5168\u6392\u5217\u95ee\u9898\u662f\u56de\u6eaf\u7b97\u6cd5\u7684\u4e00\u4e2a\u5178\u578b\u5e94\u7528\u3002\u5b83\u7684\u5b9a\u4e49\u662f\u5728\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\uff08\u5982\u4e00\u4e2a\u6570\u7ec4\u6216\u5b57\u7b26\u4e32\uff09\u7684\u60c5\u51b5\u4e0b\uff0c\u627e\u51fa\u8fd9\u4e2a\u96c6\u5408\u4e2d\u5143\u7d20\u7684\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002

            \u4e0b\u8868\u5217\u4e3e\u4e86\u51e0\u4e2a\u793a\u4f8b\u6570\u636e\uff0c\u5305\u62ec\u8f93\u5165\u6570\u7ec4\u548c\u5bf9\u5e94\u7684\u6240\u6709\u6392\u5217\u3002

            \u8868\uff1a\u6570\u7ec4\u4e0e\u94fe\u8868\u7684\u6548\u7387\u5bf9\u6bd4

            \u8f93\u5165\u6570\u7ec4 \u6240\u6709\u6392\u5217 \\([1]\\) \\([1]\\) \\([1, 2]\\) \\([1, 2], [2, 1]\\) \\([1, 2, 3]\\) \\([1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]\\)"},{"location":"chapter_backtracking/permutations_problem/#1321","title":"13.2.1 \u00a0 \u65e0\u76f8\u7b49\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u8f93\u5165\u4e00\u4e2a\u6574\u6570\u6570\u7ec4\uff0c\u6570\u7ec4\u4e2d\u4e0d\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd4\u56de\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002

            \u4ece\u56de\u6eaf\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u751f\u6210\u6392\u5217\u7684\u8fc7\u7a0b\u60f3\u8c61\u6210\u4e00\u7cfb\u5217\u9009\u62e9\u7684\u7ed3\u679c\u3002\u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u4e3a \\([1, 2, 3]\\) \uff0c\u5982\u679c\u6211\u4eec\u5148\u9009\u62e9 \\(1\\) \u3001\u518d\u9009\u62e9 \\(3\\) \u3001\u6700\u540e\u9009\u62e9 \\(2\\) \uff0c\u5219\u83b7\u5f97\u6392\u5217 \\([1, 3, 2]\\) \u3002\u56de\u9000\u8868\u793a\u64a4\u9500\u4e00\u4e2a\u9009\u62e9\uff0c\u4e4b\u540e\u7ee7\u7eed\u5c1d\u8bd5\u5176\u4ed6\u9009\u62e9\u3002

            \u4ece\u56de\u6eaf\u4ee3\u7801\u7684\u89d2\u5ea6\u770b\uff0c\u5019\u9009\u96c6\u5408 choices \u662f\u8f93\u5165\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\uff0c\u72b6\u6001 state \u662f\u76f4\u81f3\u76ee\u524d\u5df2\u88ab\u9009\u62e9\u7684\u5143\u7d20\u3002\u8bf7\u6ce8\u610f\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ea\u5141\u8bb8\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u56e0\u6b64 state \u4e2d\u7684\u6240\u6709\u5143\u7d20\u90fd\u5e94\u8be5\u662f\u552f\u4e00\u7684\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u641c\u7d22\u8fc7\u7a0b\u5c55\u5f00\u6210\u4e00\u4e2a\u9012\u5f52\u6811\uff0c\u6811\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u5f53\u524d\u72b6\u6001 state \u3002\u4ece\u6839\u8282\u70b9\u5f00\u59cb\uff0c\u7ecf\u8fc7\u4e09\u8f6e\u9009\u62e9\u540e\u5230\u8fbe\u53f6\u8282\u70b9\uff0c\u6bcf\u4e2a\u53f6\u8282\u70b9\u90fd\u5bf9\u5e94\u4e00\u4e2a\u6392\u5217\u3002

            \u56fe\uff1a\u5168\u6392\u5217\u7684\u9012\u5f52\u6811

            "},{"location":"chapter_backtracking/permutations_problem/#1","title":"1. \u00a0 \u91cd\u590d\u9009\u62e9\u526a\u679d","text":"

            \u4e3a\u4e86\u5b9e\u73b0\u6bcf\u4e2a\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u6211\u4eec\u8003\u8651\u5f15\u5165\u4e00\u4e2a\u5e03\u5c14\u578b\u6570\u7ec4 selected \uff0c\u5176\u4e2d selected[i] \u8868\u793a choices[i] \u662f\u5426\u5df2\u88ab\u9009\u62e9\u3002\u526a\u679d\u7684\u5b9e\u73b0\u539f\u7406\u4e3a\uff1a

            • \u5728\u505a\u51fa\u9009\u62e9 choice[i] \u540e\uff0c\u6211\u4eec\u5c31\u5c06 selected[i] \u8d4b\u503c\u4e3a \\(\\text{True}\\) \uff0c\u4ee3\u8868\u5b83\u5df2\u88ab\u9009\u62e9\u3002
            • \u904d\u5386\u9009\u62e9\u5217\u8868 choices \u65f6\uff0c\u8df3\u8fc7\u6240\u6709\u5df2\u88ab\u9009\u62e9\u8fc7\u7684\u8282\u70b9\uff0c\u5373\u526a\u679d\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5047\u8bbe\u6211\u4eec\u7b2c\u4e00\u8f6e\u9009\u62e9 1 \uff0c\u7b2c\u4e8c\u8f6e\u9009\u62e9 3 \uff0c\u7b2c\u4e09\u8f6e\u9009\u62e9 2 \uff0c\u5219\u9700\u8981\u5728\u7b2c\u4e8c\u8f6e\u526a\u6389\u5143\u7d20 1 \u7684\u5206\u652f\uff0c\u5728\u7b2c\u4e09\u8f6e\u526a\u6389\u5143\u7d20 1, 3 \u7684\u5206\u652f\u3002

            \u56fe\uff1a\u5168\u6392\u5217\u526a\u679d\u793a\u4f8b

            \u89c2\u5bdf\u4e0a\u56fe\u53d1\u73b0\uff0c\u8be5\u526a\u679d\u64cd\u4f5c\u5c06\u641c\u7d22\u7a7a\u95f4\u5927\u5c0f\u4ece \\(O(n^n)\\) \u964d\u4f4e\u81f3 \\(O(n!)\\) \u3002

            "},{"location":"chapter_backtracking/permutations_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u60f3\u6e05\u695a\u4ee5\u4e0a\u4fe1\u606f\u4e4b\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5728\u6846\u67b6\u4ee3\u7801\u4e2d\u505a\u201c\u5b8c\u5f62\u586b\u7a7a\u201d\u4e86\u3002\u4e3a\u4e86\u7f29\u77ed\u4ee3\u7801\u884c\u6570\uff0c\u6211\u4eec\u4e0d\u5355\u72ec\u5b9e\u73b0\u6846\u67b6\u4ee3\u7801\u4e2d\u7684\u5404\u4e2a\u51fd\u6570\uff0c\u800c\u662f\u5c06\u4ed6\u4eec\u5c55\u5f00\u5728 backtrack() \u51fd\u6570\u4e2d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust permutations_i.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.size() == choices.length) {\nres.add(new ArrayList<Integer>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.remove(state.size() - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nList<List<Integer>> permutationsI(int[] nums) {\nList<List<Integer>> res = new ArrayList<List<Integer>>();\nbacktrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);\nreturn res;\n}\n
            permutations_i.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.size() == choices.size()) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.size(); i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.push_back(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop_back();\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nvector<vector<int>> permutationsI(vector<int> nums) {\nvector<int> state;\nvector<bool> selected(nums.size(), false);\nvector<vector<int>> res;\nbacktrack(state, nums, selected, res);\nreturn res;\n}\n
            permutations_i.py
            def backtrack(\nstate: list[int], choices: list[int], selected: list[bool], res: list[list[int]]\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I\"\"\"\n# \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif len(state) == len(choices):\nres.append(list(state))\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i, choice in enumerate(choices):\n# \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\nif not selected[i]:\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = True\nstate.append(choice)\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = False\nstate.pop()\ndef permutations_i(nums: list[int]) -> list[list[int]]:\n\"\"\"\u5168\u6392\u5217 I\"\"\"\nres = []\nbacktrack(state=[], choices=nums, selected=[False] * len(nums), res=res)\nreturn res\n
            permutations_i.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunc backtrackI(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif len(*state) == len(*choices) {\nnewState := append([]int{}, *state...)\n*res = append(*res, newState)\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i := 0; i < len(*choices); i++ {\nchoice := (*choices)[i]\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif !(*selected)[i] {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n(*selected)[i] = true\n*state = append(*state, choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrackI(state, choices, selected, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n(*selected)[i] = false\n*state = (*state)[:len(*state)-1]\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nfunc permutationsI(nums []int) [][]int {\nres := make([][]int, 0)\nstate := make([]int, 0)\nselected := make([]bool, len(nums))\nbacktrackI(&state, &nums, &selected, &res)\nreturn res\n}\n
            permutations_i.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunction backtrack(state, choices, selected, res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length === choices.length) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nchoices.forEach((choice, i) => {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop();\n}\n});\n}\n/* \u5168\u6392\u5217 I */\nfunction permutationsI(nums) {\nconst res = [];\nbacktrack([], nums, Array(nums.length).fill(false), res);\nreturn res;\n}\n
            permutations_i.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunction backtrack(\nstate: number[],\nchoices: number[],\nselected: boolean[],\nres: number[][]\n): void {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length === choices.length) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nchoices.forEach((choice, i) => {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop();\n}\n});\n}\n/* \u5168\u6392\u5217 I */\nfunction permutationsI(nums: number[]): number[][] {\nconst res: number[][] = [];\nbacktrack([], nums, Array(nums.length).fill(false), res);\nreturn res;\n}\n
            permutations_i.c
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(vector *state, vector *choices, vector *selected, vector *res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state->size == choices->size) {\nvector *newState = newVector();\nfor (int i = 0; i < state->size; i++) {\nvectorPushback(newState, state->data[i], sizeof(int));\n}\nvectorPushback(res, newState, sizeof(vector));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices->size; i++) {\nint *choice = malloc(sizeof(int));\n*choice = *((int *)(choices->data[i]));\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nbool select = *((bool *)(selected->data[i]));\nif (!select) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n*((bool *)selected->data[i]) = true;\nvectorPushback(state, choice, sizeof(int));\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n*((bool *)selected->data[i]) = false;\nvectorPopback(state);\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nvector *permutationsI(vector *nums) {\nvector *iState = newVector();\nint select[3] = {false, false, false};\nvector *bSelected = newVector();\nfor (int i = 0; i < nums->size; i++) {\nvectorPushback(bSelected, &select[i], sizeof(int));\n}\nvector *res = newVector();\n// \u524d\u5e8f\u904d\u5386\nbacktrack(iState, nums, bSelected, res);\nreturn res;\n}\n
            permutations_i.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.Count == choices.Length) {\nres.Add(new List<int>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.Length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.Add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.RemoveAt(state.Count - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nList<List<int>> permutationsI(int[] nums) {\nList<List<int>> res = new List<List<int>>();\nbacktrack(new List<int>(), nums, new bool[nums.Length], res);\nreturn res;\n}\n
            permutations_i.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunc backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif state.count == choices.count {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (i, choice) in choices.enumerated() {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif !selected[i] {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true\nstate.append(choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, choices: choices, selected: &selected, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false\nstate.removeLast()\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nfunc permutationsI(nums: [Int]) -> [[Int]] {\nvar state: [Int] = []\nvar selected = Array(repeating: false, count: nums.count)\nvar res: [[Int]] = []\nbacktrack(state: &state, choices: nums, selected: &selected, res: &res)\nreturn res\n}\n
            permutations_i.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{permutationsI}\n
            permutations_i.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(\nList<int> state,\nList<int> choices,\nList<bool> selected,\nList<List<int>> res,\n) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length == choices.length) {\nres.add(List.from(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.removeLast();\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nList<List<int>> permutationsI(List<int> nums) {\nList<List<int>> res = [];\nbacktrack([], nums, List.filled(nums.length, false), res);\nreturn res;\n}\n
            permutations_i.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif state.len() == choices.len() {\nres.push(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i in 0..choices.len() {\nlet choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif !selected[i] {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state.clone(), choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.remove(state.len() - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nfn permutations_i(nums: &mut [i32]) -> Vec<Vec<i32>> {\nlet mut res = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nbacktrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);\nres\n}\n
            "},{"location":"chapter_backtracking/permutations_problem/#1322","title":"13.2.2 \u00a0 \u8003\u8651\u76f8\u7b49\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u8f93\u5165\u4e00\u4e2a\u6574\u6570\u6570\u7ec4\uff0c\u6570\u7ec4\u4e2d\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd4\u56de\u6240\u6709\u4e0d\u91cd\u590d\u7684\u6392\u5217\u3002

            \u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u4e3a \\([1, 1, 2]\\) \u3002\u4e3a\u4e86\u65b9\u4fbf\u533a\u5206\u4e24\u4e2a\u91cd\u590d\u5143\u7d20 \\(1\\) \uff0c\u6211\u4eec\u5c06\u7b2c\u4e8c\u4e2a \\(1\\) \u8bb0\u4e3a \\(\\hat{1}\\) \u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u4e0a\u8ff0\u65b9\u6cd5\u751f\u6210\u7684\u6392\u5217\u6709\u4e00\u534a\u90fd\u662f\u91cd\u590d\u7684\u3002

            \u56fe\uff1a\u91cd\u590d\u6392\u5217

            \u90a3\u4e48\u5982\u4f55\u53bb\u9664\u91cd\u590d\u7684\u6392\u5217\u5462\uff1f\u6700\u76f4\u63a5\u5730\uff0c\u8003\u8651\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\uff0c\u76f4\u63a5\u5bf9\u6392\u5217\u7ed3\u679c\u8fdb\u884c\u53bb\u91cd\u3002\u7136\u800c\u8fd9\u6837\u505a\u4e0d\u591f\u4f18\u96c5\uff0c\u56e0\u4e3a\u751f\u6210\u91cd\u590d\u6392\u5217\u7684\u641c\u7d22\u5206\u652f\u662f\u6ca1\u6709\u5fc5\u8981\u7684\uff0c\u5e94\u5f53\u88ab\u63d0\u524d\u8bc6\u522b\u5e76\u526a\u679d\uff0c\u8fd9\u6837\u53ef\u4ee5\u8fdb\u4e00\u6b65\u63d0\u5347\u7b97\u6cd5\u6548\u7387\u3002

            "},{"location":"chapter_backtracking/permutations_problem/#1_1","title":"1. \u00a0 \u76f8\u7b49\u5143\u7d20\u526a\u679d","text":"

            \u89c2\u5bdf\u53d1\u73b0\uff0c\u5728\u7b2c\u4e00\u8f6e\u4e2d\uff0c\u9009\u62e9 \\(1\\) \u6216\u9009\u62e9 \\(\\hat{1}\\) \u662f\u7b49\u4ef7\u7684\uff0c\u5728\u8fd9\u4e24\u4e2a\u9009\u62e9\u4e4b\u4e0b\u751f\u6210\u7684\u6240\u6709\u6392\u5217\u90fd\u662f\u91cd\u590d\u7684\u3002\u56e0\u6b64\u5e94\u8be5\u628a \\(\\hat{1}\\) \u526a\u679d\u6389\u3002

            \u540c\u7406\uff0c\u5728\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(2\\) \u540e\uff0c\u7b2c\u4e8c\u8f6e\u9009\u62e9\u4e2d\u7684 \\(1\\) \u548c \\(\\hat{1}\\) \u4e5f\u4f1a\u4ea7\u751f\u91cd\u590d\u5206\u652f\uff0c\u56e0\u6b64\u4e5f\u5e94\u5c06\u7b2c\u4e8c\u8f6e\u7684 \\(\\hat{1}\\) \u526a\u679d\u3002

            \u672c\u8d28\u4e0a\u770b\uff0c\u6211\u4eec\u7684\u76ee\u6807\u662f\u5728\u67d0\u4e00\u8f6e\u9009\u62e9\u4e2d\uff0c\u4fdd\u8bc1\u591a\u4e2a\u76f8\u7b49\u7684\u5143\u7d20\u4ec5\u88ab\u9009\u62e9\u4e00\u6b21\u3002

            \u56fe\uff1a\u91cd\u590d\u6392\u5217\u526a\u679d

            "},{"location":"chapter_backtracking/permutations_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u5728\u4e0a\u4e00\u9898\u7684\u4ee3\u7801\u7684\u57fa\u7840\u4e0a\uff0c\u6211\u4eec\u8003\u8651\u5728\u6bcf\u4e00\u8f6e\u9009\u62e9\u4e2d\u5f00\u542f\u4e00\u4e2a\u54c8\u5e0c\u8868 duplicated \uff0c\u7528\u4e8e\u8bb0\u5f55\u8be5\u8f6e\u4e2d\u5df2\u7ecf\u5c1d\u8bd5\u8fc7\u7684\u5143\u7d20\uff0c\u5e76\u5c06\u91cd\u590d\u5143\u7d20\u526a\u679d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust permutations_ii.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.size() == choices.length) {\nres.add(new ArrayList<Integer>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nSet<Integer> duplicated = new HashSet<Integer>();\nfor (int i = 0; i < choices.length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && !duplicated.contains(choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.remove(state.size() - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nList<List<Integer>> permutationsII(int[] nums) {\nList<List<Integer>> res = new ArrayList<List<Integer>>();\nbacktrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);\nreturn res;\n}\n
            permutations_ii.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.size() == choices.size()) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nunordered_set<int> duplicated;\nfor (int i = 0; i < choices.size(); i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && duplicated.find(choice) == duplicated.end()) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.emplace(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.push_back(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop_back();\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nvector<vector<int>> permutationsII(vector<int> nums) {\nvector<int> state;\nvector<bool> selected(nums.size(), false);\nvector<vector<int>> res;\nbacktrack(state, nums, selected, res);\nreturn res;\n}\n
            permutations_ii.py
            def backtrack(\nstate: list[int], choices: list[int], selected: list[bool], res: list[list[int]]\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II\"\"\"\n# \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif len(state) == len(choices):\nres.append(list(state))\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nduplicated = set[int]()\nfor i, choice in enumerate(choices):\n# \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif not selected[i] and choice not in duplicated:\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.add(choice)  # \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = True\nstate.append(choice)\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = False\nstate.pop()\ndef permutations_ii(nums: list[int]) -> list[list[int]]:\n\"\"\"\u5168\u6392\u5217 II\"\"\"\nres = []\nbacktrack(state=[], choices=nums, selected=[False] * len(nums), res=res)\nreturn res\n
            permutations_ii.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunc backtrackII(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif len(*state) == len(*choices) {\nnewState := append([]int{}, *state...)\n*res = append(*res, newState)\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nduplicated := make(map[int]struct{}, 0)\nfor i := 0; i < len(*choices); i++ {\nchoice := (*choices)[i]\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif _, ok := duplicated[choice]; !ok && !(*selected)[i] {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n// \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nduplicated[choice] = struct{}{}\n(*selected)[i] = true\n*state = append(*state, choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrackI(state, choices, selected, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n(*selected)[i] = false\n*state = (*state)[:len(*state)-1]\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nfunc permutationsII(nums []int) [][]int {\nres := make([][]int, 0)\nstate := make([]int, 0)\nselected := make([]bool, len(nums))\nbacktrackII(&state, &nums, &selected, &res)\nreturn res\n}\n
            permutations_ii.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunction backtrack(state, choices, selected, res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length === choices.length) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nconst duplicated = new Set();\nchoices.forEach((choice, i) => {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && !duplicated.has(choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop();\n}\n});\n}\n/* \u5168\u6392\u5217 II */\nfunction permutationsII(nums) {\nconst res = [];\nbacktrack([], nums, Array(nums.length).fill(false), res);\nreturn res;\n}\n
            permutations_ii.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunction backtrack(\nstate: number[],\nchoices: number[],\nselected: boolean[],\nres: number[][]\n): void {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length === choices.length) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nconst duplicated = new Set();\nchoices.forEach((choice, i) => {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && !duplicated.has(choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop();\n}\n});\n}\n/* \u5168\u6392\u5217 II */\nfunction permutationsII(nums: number[]): number[][] {\nconst res: number[][] = [];\nbacktrack([], nums, Array(nums.length).fill(false), res);\nreturn res;\n}\n
            permutations_ii.c
            [class]{}-[func]{backtrack}\n[class]{}-[func]{permutationsII}\n
            permutations_ii.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.Count == choices.Length) {\nres.Add(new List<int>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nISet<int> duplicated = new HashSet<int>();\nfor (int i = 0; i < choices.Length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && !duplicated.Contains(choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.Add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.Add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.RemoveAt(state.Count - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nList<List<int>> permutationsII(int[] nums) {\nList<List<int>> res = new List<List<int>>();\nbacktrack(new List<int>(), nums, new bool[nums.Length], res);\nreturn res;\n}\n
            permutations_ii.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunc backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif state.count == choices.count {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nvar duplicated: Set<Int> = []\nfor (i, choice) in choices.enumerated() {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif !selected[i], !duplicated.contains(choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.insert(choice) // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true\nstate.append(choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, choices: choices, selected: &selected, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false\nstate.removeLast()\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nfunc permutationsII(nums: [Int]) -> [[Int]] {\nvar state: [Int] = []\nvar selected = Array(repeating: false, count: nums.count)\nvar res: [[Int]] = []\nbacktrack(state: &state, choices: nums, selected: &selected, res: &res)\nreturn res\n}\n
            permutations_ii.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{permutationsII}\n
            permutations_ii.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(\nList<int> state,\nList<int> choices,\nList<bool> selected,\nList<List<int>> res,\n) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length == choices.length) {\nres.add(List.from(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nSet<int> duplicated = {};\nfor (int i = 0; i < choices.length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && !duplicated.contains(choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.removeLast();\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nList<List<int>> permutationsII(List<int> nums) {\nList<List<int>> res = [];\nbacktrack([], nums, List.filled(nums.length, false), res);\nreturn res;\n}\n
            permutations_ii.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif state.len() == choices.len() {\nres.push(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nlet mut duplicated = HashSet::<i32>::new();\nfor i in 0..choices.len() {\nlet choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif !selected[i] && !duplicated.contains(&choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.insert(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state.clone(), choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.remove(state.len() - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nfn permutations_ii(nums: &mut [i32]) -> Vec<Vec<i32>> {\nlet mut res = Vec::new();\nbacktrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);\nres\n}\n

            \u5047\u8bbe\u5143\u7d20\u4e24\u4e24\u4e4b\u95f4\u4e92\u4e0d\u76f8\u540c\uff0c\u5219 \\(n\\) \u4e2a\u5143\u7d20\u5171\u6709 \\(n!\\) \u79cd\u6392\u5217\uff08\u9636\u4e58\uff09\uff1b\u5728\u8bb0\u5f55\u7ed3\u679c\u65f6\uff0c\u9700\u8981\u590d\u5236\u957f\u5ea6\u4e3a \\(n\\) \u7684\u5217\u8868\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002\u56e0\u6b64\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n!n)\\) \u3002

            \u6700\u5927\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002selected \u4f7f\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002\u540c\u4e00\u65f6\u523b\u6700\u591a\u5171\u6709 \\(n\\) \u4e2a duplicated \uff0c\u4f7f\u7528 \\(O(n^2)\\) \u7a7a\u95f4\u3002\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002

            "},{"location":"chapter_backtracking/permutations_problem/#3","title":"3. \u00a0 \u4e24\u79cd\u526a\u679d\u5bf9\u6bd4","text":"

            \u8bf7\u6ce8\u610f\uff0c\u867d\u7136 selected \u548c duplicated \u90fd\u7528\u4f5c\u526a\u679d\uff0c\u4f46\u4e24\u8005\u7684\u76ee\u6807\u4e0d\u540c\uff1a

            • \u91cd\u590d\u9009\u62e9\u526a\u679d\uff1a\u6574\u4e2a\u641c\u7d22\u8fc7\u7a0b\u4e2d\u53ea\u6709\u4e00\u4e2a selected \u3002\u5b83\u8bb0\u5f55\u7684\u662f\u5f53\u524d\u72b6\u6001\u4e2d\u5305\u542b\u54ea\u4e9b\u5143\u7d20\uff0c\u4f5c\u7528\u662f\u907f\u514d\u67d0\u4e2a\u5143\u7d20\u5728 state \u4e2d\u91cd\u590d\u51fa\u73b0\u3002
            • \u76f8\u7b49\u5143\u7d20\u526a\u679d\uff1a\u6bcf\u8f6e\u9009\u62e9\uff08\u5373\u6bcf\u4e2a\u5f00\u542f\u7684 backtrack \u51fd\u6570\uff09\u90fd\u5305\u542b\u4e00\u4e2a duplicated \u3002\u5b83\u8bb0\u5f55\u7684\u662f\u5728\u904d\u5386\u4e2d\u54ea\u4e9b\u5143\u7d20\u5df2\u88ab\u9009\u62e9\u8fc7\uff0c\u4f5c\u7528\u662f\u4fdd\u8bc1\u76f8\u7b49\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\u3002

            \u4e0b\u56fe\u5c55\u793a\u4e86\u4e24\u4e2a\u526a\u679d\u6761\u4ef6\u7684\u751f\u6548\u8303\u56f4\u3002\u6ce8\u610f\uff0c\u6811\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u9009\u62e9\uff0c\u4ece\u6839\u8282\u70b9\u5230\u53f6\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u7684\u5404\u4e2a\u8282\u70b9\u6784\u6210\u4e00\u4e2a\u6392\u5217\u3002

            \u56fe\uff1a\u4e24\u79cd\u526a\u679d\u6761\u4ef6\u7684\u4f5c\u7528\u8303\u56f4

            "},{"location":"chapter_backtracking/subset_sum_problem/","title":"13.3 \u00a0 \u5b50\u96c6\u548c\u95ee\u9898","text":""},{"location":"chapter_backtracking/subset_sum_problem/#1331","title":"13.3.1 \u00a0 \u65e0\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u6b63\u6574\u6570 target \uff0c\u8bf7\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\uff0c\u4f7f\u5f97\u7ec4\u5408\u4e2d\u7684\u5143\u7d20\u548c\u7b49\u4e8e target \u3002\u7ed9\u5b9a\u6570\u7ec4\u65e0\u91cd\u590d\u5143\u7d20\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ef\u4ee5\u88ab\u9009\u53d6\u591a\u6b21\u3002\u8bf7\u4ee5\u5217\u8868\u5f62\u5f0f\u8fd4\u56de\u8fd9\u4e9b\u7ec4\u5408\uff0c\u5217\u8868\u4e2d\u4e0d\u5e94\u5305\u542b\u91cd\u590d\u7ec4\u5408\u3002

            \u4f8b\u5982\uff0c\u8f93\u5165\u96c6\u5408 \\(\\{3, 4, 5\\}\\) \u548c\u76ee\u6807\u6574\u6570 \\(9\\) \uff0c\u89e3\u4e3a \\(\\{3, 3, 3\\}, \\{4, 5\\}\\) \u3002\u9700\u8981\u6ce8\u610f\u4e24\u70b9\uff1a

            • \u8f93\u5165\u96c6\u5408\u4e2d\u7684\u5143\u7d20\u53ef\u4ee5\u88ab\u65e0\u9650\u6b21\u91cd\u590d\u9009\u53d6\u3002
            • \u5b50\u96c6\u662f\u4e0d\u533a\u5206\u5143\u7d20\u987a\u5e8f\u7684\uff0c\u6bd4\u5982 \\(\\{4, 5\\}\\) \u548c \\(\\{5, 4\\}\\) \u662f\u540c\u4e00\u4e2a\u5b50\u96c6\u3002
            "},{"location":"chapter_backtracking/subset_sum_problem/#1","title":"1. \u00a0 \u53c2\u8003\u5168\u6392\u5217\u89e3\u6cd5","text":"

            \u7c7b\u4f3c\u4e8e\u5168\u6392\u5217\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u5b50\u96c6\u7684\u751f\u6210\u8fc7\u7a0b\u60f3\u8c61\u6210\u4e00\u7cfb\u5217\u9009\u62e9\u7684\u7ed3\u679c\uff0c\u5e76\u5728\u9009\u62e9\u8fc7\u7a0b\u4e2d\u5b9e\u65f6\u66f4\u65b0\u201c\u5143\u7d20\u548c\u201d\uff0c\u5f53\u5143\u7d20\u548c\u7b49\u4e8e target \u65f6\uff0c\u5c31\u5c06\u5b50\u96c6\u8bb0\u5f55\u81f3\u7ed3\u679c\u5217\u8868\u3002

            \u800c\u4e0e\u5168\u6392\u5217\u95ee\u9898\u4e0d\u540c\u7684\u662f\uff0c\u672c\u9898\u96c6\u5408\u4e2d\u7684\u5143\u7d20\u53ef\u4ee5\u88ab\u65e0\u9650\u6b21\u9009\u53d6\uff0c\u56e0\u6b64\u65e0\u987b\u501f\u52a9 selected \u5e03\u5c14\u5217\u8868\u6765\u8bb0\u5f55\u5143\u7d20\u662f\u5426\u5df2\u88ab\u9009\u62e9\u3002\u6211\u4eec\u53ef\u4ee5\u5bf9\u5168\u6392\u5217\u4ee3\u7801\u8fdb\u884c\u5c0f\u5e45\u4fee\u6539\uff0c\u521d\u6b65\u5f97\u5230\u89e3\u9898\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust subset_sum_i_naive.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<Integer> state, int target, int total, int[] choices, List<List<Integer>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total == target) {\nres.add(new ArrayList<>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.length; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.remove(state.size() - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<Integer>> subsetSumINaive(int[] nums, int target) {\nList<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nint total = 0; // \u5b50\u96c6\u548c\nList<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector<int> &state, int target, int total, vector<int> &choices, vector<vector<int>> &res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total == target) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (size_t i = 0; i < choices.size(); i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.push_back(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop_back();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nvector<vector<int>> subsetSumINaive(vector<int> &nums, int target) {\nvector<int> state;       // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nint total = 0;           // \u5b50\u96c6\u548c\nvector<vector<int>> res; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.py
            def backtrack(\nstate: list[int],\ntarget: int,\ntotal: int,\nchoices: list[int],\nres: list[list[int]],\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I\"\"\"\n# \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif total == target:\nres.append(list(state))\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i in range(len(choices)):\n# \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif total + choices[i] > target:\ncontinue\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.append(choices[i])\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop()\ndef subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]:\n\"\"\"\u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09\"\"\"\nstate = []  # \u72b6\u6001\uff08\u5b50\u96c6\uff09\ntotal = 0  # \u5b50\u96c6\u548c\nres = []  # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res)\nreturn res\n
            subset_sum_i_naive.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrackSubsetSumINaive(total, target int, state, choices *[]int, res *[][]int) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == total {\nnewState := append([]int{}, *state...)\n*res = append(*res, newState)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i := 0; i < len(*choices); i++ {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif total+(*choices)[i] > target {\ncontinue\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n*state = append(*state, (*choices)[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrackSubsetSumINaive(total+(*choices)[i], target, state, choices, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n*state = (*state)[:len(*state)-1]\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunc subsetSumINaive(nums []int, target int) [][]int {\nstate := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\ntotal := 0              // \u5b50\u96c6\u548c\nres := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrackSubsetSumINaive(total, target, &state, &nums, &res)\nreturn res\n}\n
            subset_sum_i_naive.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(state, target, total, choices, res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total === target) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (let i = 0; i < choices.length; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunction subsetSumINaive(nums, target) {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nconst total = 0; // \u5b50\u96c6\u548c\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(\nstate: number[],\ntarget: number,\ntotal: number,\nchoices: number[],\nres: number[][]\n): void {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total === target) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (let i = 0; i < choices.length; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunction subsetSumINaive(nums: number[], target: number): number[][] {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nconst total = 0; // \u5b50\u96c6\u548c\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.c
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector *state, int target, int total, vector *choices, vector *res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total == target) {\nvector *tmpVector = newVector();\nfor (int i = 0; i < state->size; i++) {\nvectorPushback(tmpVector, state->data[i], sizeof(int));\n}\nvectorPushback(res, tmpVector, sizeof(vector));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (size_t i = 0; i < choices->size; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + *(int *)(choices->data[i]) > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nvectorPushback(state, choices->data[i], sizeof(int));\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + *(int *)(choices->data[i]), choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nvectorPopback(state);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nvector *subsetSumINaive(vector *nums, int target) {\nvector *state = newVector(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nint total = 0;               // \u5b50\u96c6\u548c\nvector *res = newVector();   // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<int> state, int target, int total, int[] choices, List<List<int>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total == target) {\nres.Add(new List<int>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.Length; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.Add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.RemoveAt(state.Count - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<int>> subsetSumINaive(int[] nums, int target) {\nList<int> state = new List<int>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nint total = 0; // \u5b50\u96c6\u548c\nList<List<int>> res = new List<List<int>>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrack(state: inout [Int], target: Int, total: Int, choices: [Int], res: inout [[Int]]) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif total == target {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i in stride(from: 0, to: choices.count, by: 1) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif total + choices[i] > target {\ncontinue\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.append(choices[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, target: target, total: total + choices[i], choices: choices, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast()\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunc subsetSumINaive(nums: [Int], target: Int) -> [[Int]] {\nvar state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nlet total = 0 // \u5b50\u96c6\u548c\nvar res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state: &state, target: target, total: total, choices: nums, res: &res)\nreturn res\n}\n
            subset_sum_i_naive.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{subsetSumINaive}\n
            subset_sum_i_naive.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(\nList<int> state,\nint target,\nint total,\nList<int> choices,\nList<List<int>> res,\n) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total == target) {\nres.add(List.from(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.length; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<int>> subsetSumINaive(List<int> nums, int target) {\nList<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nint total = 0; // \u5143\u7d20\u548c\nList<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfn backtrack(mut state: Vec<i32>, target: i32, total: i32, choices: &[i32], res: &mut Vec<Vec<i32>>) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif total == target {\nres.push(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i in 0..choices.len() {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif total + choices[i] > target {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state.clone(), target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfn subset_sum_i_naive(nums: &[i32], target: i32) -> Vec<Vec<i32>> {\nlet state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nlet total = 0; // \u5b50\u96c6\u548c\nlet mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, &mut res);\nres\n}\n

            \u5411\u4ee5\u4e0a\u4ee3\u7801\u8f93\u5165\u6570\u7ec4 \\([3, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \uff0c\u8f93\u51fa\u7ed3\u679c\u4e3a \\([3, 3, 3], [4, 5], [5, 4]\\) \u3002\u867d\u7136\u6210\u529f\u627e\u51fa\u4e86\u6240\u6709\u548c\u4e3a \\(9\\) \u7684\u5b50\u96c6\uff0c\u4f46\u5176\u4e2d\u5b58\u5728\u91cd\u590d\u7684\u5b50\u96c6 \\([4, 5]\\) \u548c \\([5, 4]\\) \u3002

            \u8fd9\u662f\u56e0\u4e3a\u641c\u7d22\u8fc7\u7a0b\u662f\u533a\u5206\u9009\u62e9\u987a\u5e8f\u7684\uff0c\u7136\u800c\u5b50\u96c6\u4e0d\u533a\u5206\u9009\u62e9\u987a\u5e8f\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5148\u9009 \\(4\\) \u540e\u9009 \\(5\\) \u4e0e\u5148\u9009 \\(5\\) \u540e\u9009 \\(4\\) \u662f\u4e24\u4e2a\u4e0d\u540c\u7684\u5206\u652f\uff0c\u4f46\u4e24\u8005\u5bf9\u5e94\u540c\u4e00\u4e2a\u5b50\u96c6\u3002

            \u56fe\uff1a\u5b50\u96c6\u641c\u7d22\u4e0e\u8d8a\u754c\u526a\u679d

            \u4e3a\u4e86\u53bb\u9664\u91cd\u590d\u5b50\u96c6\uff0c\u4e00\u79cd\u76f4\u63a5\u7684\u601d\u8def\u662f\u5bf9\u7ed3\u679c\u5217\u8868\u8fdb\u884c\u53bb\u91cd\u3002\u4f46\u8fd9\u4e2a\u65b9\u6cd5\u6548\u7387\u5f88\u4f4e\uff0c\u56e0\u4e3a\uff1a

            • \u5f53\u6570\u7ec4\u5143\u7d20\u8f83\u591a\uff0c\u5c24\u5176\u662f\u5f53 target \u8f83\u5927\u65f6\uff0c\u641c\u7d22\u8fc7\u7a0b\u4f1a\u4ea7\u751f\u5927\u91cf\u7684\u91cd\u590d\u5b50\u96c6\u3002
            • \u6bd4\u8f83\u5b50\u96c6\uff08\u6570\u7ec4\uff09\u7684\u5f02\u540c\u975e\u5e38\u8017\u65f6\uff0c\u9700\u8981\u5148\u6392\u5e8f\u6570\u7ec4\uff0c\u518d\u6bd4\u8f83\u6570\u7ec4\u4e2d\u6bcf\u4e2a\u5143\u7d20\u7684\u5f02\u540c\u3002
            "},{"location":"chapter_backtracking/subset_sum_problem/#2","title":"2. \u00a0 \u91cd\u590d\u5b50\u96c6\u526a\u679d","text":"

            \u6211\u4eec\u8003\u8651\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u901a\u8fc7\u526a\u679d\u8fdb\u884c\u53bb\u91cd\u3002\u89c2\u5bdf\u4e0b\u56fe\uff0c\u91cd\u590d\u5b50\u96c6\u662f\u5728\u4ee5\u4e0d\u540c\u987a\u5e8f\u9009\u62e9\u6570\u7ec4\u5143\u7d20\u65f6\u4ea7\u751f\u7684\uff0c\u5177\u4f53\u6765\u770b\uff1a

            1. \u7b2c\u4e00\u8f6e\u548c\u7b2c\u4e8c\u8f6e\u5206\u522b\u9009\u62e9 \\(3\\) , \\(4\\) \uff0c\u4f1a\u751f\u6210\u5305\u542b\u8fd9\u4e24\u4e2a\u5143\u7d20\u7684\u6240\u6709\u5b50\u96c6\uff0c\u8bb0\u4e3a \\([3, 4, \\cdots]\\) \u3002
            2. \u82e5\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(4\\) \uff0c\u5219\u7b2c\u4e8c\u8f6e\u5e94\u8be5\u8df3\u8fc7 \\(3\\) \uff0c\u56e0\u4e3a\u8be5\u9009\u62e9\u4ea7\u751f\u7684\u5b50\u96c6 \\([4, 3, \\cdots]\\) \u548c 1. \u4e2d\u751f\u6210\u7684\u5b50\u96c6\u5b8c\u5168\u91cd\u590d\u3002

            \u5206\u652f\u8d8a\u9760\u53f3\uff0c\u9700\u8981\u6392\u9664\u7684\u5206\u652f\u4e5f\u8d8a\u591a\uff0c\u4f8b\u5982\uff1a

            1. \u524d\u4e24\u8f6e\u9009\u62e9 \\(3\\) , \\(5\\) \uff0c\u751f\u6210\u5b50\u96c6 \\([3, 5, \\cdots]\\) \u3002
            2. \u524d\u4e24\u8f6e\u9009\u62e9 \\(4\\) , \\(5\\) \uff0c\u751f\u6210\u5b50\u96c6 \\([4, 5, \\cdots]\\) \u3002
            3. \u82e5\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(5\\) \uff0c\u5219\u7b2c\u4e8c\u8f6e\u5e94\u8be5\u8df3\u8fc7 \\(3\\) \u548c \\(4\\) \uff0c\u56e0\u4e3a\u5b50\u96c6 \\([5, 3, \\cdots]\\) \u548c\u5b50\u96c6 \\([5, 4, \\cdots]\\) \u548c 1. , 2. \u4e2d\u751f\u6210\u7684\u5b50\u96c6\u5b8c\u5168\u91cd\u590d\u3002

            \u56fe\uff1a\u4e0d\u540c\u9009\u62e9\u987a\u5e8f\u5bfc\u81f4\u7684\u91cd\u590d\u5b50\u96c6

            \u603b\u7ed3\u6765\u770b\uff0c\u7ed9\u5b9a\u8f93\u5165\u6570\u7ec4 \\([x_1, x_2, \\cdots, x_n]\\) \uff0c\u8bbe\u641c\u7d22\u8fc7\u7a0b\u4e2d\u7684\u9009\u62e9\u5e8f\u5217\u4e3a \\([x_{i_1}, x_{i_2}, \\cdots , x_{i_m}]\\) \uff0c\u5219\u8be5\u9009\u62e9\u5e8f\u5217\u9700\u8981\u6ee1\u8db3 \\(i_1 \\leq i_2 \\leq \\cdots \\leq i_m\\) \uff0c\u4e0d\u6ee1\u8db3\u8be5\u6761\u4ef6\u7684\u9009\u62e9\u5e8f\u5217\u90fd\u4f1a\u9020\u6210\u91cd\u590d\uff0c\u5e94\u5f53\u526a\u679d\u3002

            "},{"location":"chapter_backtracking/subset_sum_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u4e3a\u5b9e\u73b0\u8be5\u526a\u679d\uff0c\u6211\u4eec\u521d\u59cb\u5316\u53d8\u91cf start \uff0c\u7528\u4e8e\u6307\u793a\u904d\u5386\u8d77\u70b9\u3002\u5f53\u505a\u51fa\u9009\u62e9 \\(x_{i}\\) \u540e\uff0c\u8bbe\u5b9a\u4e0b\u4e00\u8f6e\u4ece\u7d22\u5f15 \\(i\\) \u5f00\u59cb\u904d\u5386\u3002\u8fd9\u6837\u505a\u5c31\u53ef\u4ee5\u8ba9\u9009\u62e9\u5e8f\u5217\u6ee1\u8db3 \\(i_1 \\leq i_2 \\leq \\cdots \\leq i_m\\) \uff0c\u4ece\u800c\u4fdd\u8bc1\u5b50\u96c6\u552f\u4e00\u3002

            \u9664\u6b64\u4e4b\u5916\uff0c\u6211\u4eec\u8fd8\u5bf9\u4ee3\u7801\u8fdb\u884c\u4e86\u4e24\u9879\u4f18\u5316\uff1a

            • \u5728\u5f00\u542f\u641c\u7d22\u524d\uff0c\u5148\u5c06\u6570\u7ec4 nums \u6392\u5e8f\u3002\u5728\u904d\u5386\u6240\u6709\u9009\u62e9\u65f6\uff0c\u5f53\u5b50\u96c6\u548c\u8d85\u8fc7 target \u65f6\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\uff0c\u56e0\u4e3a\u540e\u8fb9\u7684\u5143\u7d20\u66f4\u5927\uff0c\u5176\u5b50\u96c6\u548c\u90fd\u4e00\u5b9a\u4f1a\u8d85\u8fc7 target \u3002
            • \u7701\u53bb\u5143\u7d20\u548c\u53d8\u91cf total\uff0c\u901a\u8fc7\u5728 target \u4e0a\u6267\u884c\u51cf\u6cd5\u6765\u7edf\u8ba1\u5143\u7d20\u548c\uff0c\u5f53 target \u7b49\u4e8e \\(0\\) \u65f6\u8bb0\u5f55\u89e3\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust subset_sum_i.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.add(new ArrayList<>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (int i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.remove(state.size() - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<Integer>> subsetSumI(int[] nums, int target) {\nList<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nArrays.sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (int i = start; i < choices.size(); i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push_back(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop_back();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nvector<vector<int>> subsetSumI(vector<int> &nums, int target) {\nvector<int> state;              // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nsort(nums.begin(), nums.end()); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0;                  // \u904d\u5386\u8d77\u59cb\u70b9\nvector<vector<int>> res;        // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.py
            def backtrack(\nstate: list[int], target: int, choices: list[int], start: int, res: list[list[int]]\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I\"\"\"\n# \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0:\nres.append(list(state))\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\n# \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor i in range(start, len(choices)):\n# \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n# \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0:\nbreak\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.append(choices[i])\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop()\ndef subset_sum_i(nums: list[int], target: int) -> list[list[int]]:\n\"\"\"\u6c42\u89e3\u5b50\u96c6\u548c I\"\"\"\nstate = []  # \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort()  # \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nstart = 0  # \u904d\u5386\u8d77\u59cb\u70b9\nres = []  # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res)\nreturn res\n
            subset_sum_i.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrackSubsetSumI(start, target int, state, choices *[]int, res *[][]int) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nnewState := append([]int{}, *state...)\n*res = append(*res, newState)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor i := start; i < len(*choices); i++ {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target-(*choices)[i] < 0 {\nbreak\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n*state = append(*state, (*choices)[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrackSubsetSumI(i, target-(*choices)[i], state, choices, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n*state = (*state)[:len(*state)-1]\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunc subsetSumI(nums []int, target int) [][]int {\nstate := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nsort.Ints(nums)         // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nstart := 0              // \u904d\u5386\u8d77\u59cb\u70b9\nres := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrackSubsetSumI(start, target, &state, &nums, &res)\nreturn res\n}\n
            subset_sum_i.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(state, target, choices, start, res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target === 0) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (let i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunction subsetSumI(nums, target) {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nconst start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(\nstate: number[],\ntarget: number,\nchoices: number[],\nstart: number,\nres: number[][]\n): void {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target === 0) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (let i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunction subsetSumI(nums: number[], target: number): number[][] {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nconst start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.c
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector *state, int target, vector *choices, int start, vector *res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nvector *tmpVector = newVector();\nfor (int i = 0; i < state->size; i++) {\nvectorPushback(tmpVector, state->data[i], sizeof(int));\n}\nvectorPushback(res, tmpVector, sizeof(vector));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (int i = start; i < choices->size; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (target - *(int *)(choices->data[i]) < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nvectorPushback(state, choices->data[i], sizeof(int));\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - *(int *)(choices->data[i]), choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nvectorPopback(state);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nvector *subsetSumI(vector *nums, int target) {\nvector *state = newVector();                        // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nqsort(nums->data, nums->size, sizeof(int *), comp); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0;                                      // \u5b50\u96c6\u548c\nvector *res = newVector();                          // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.Add(new List<int>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (int i = start; i < choices.Length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.Add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.RemoveAt(state.Count - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<int>> subsetSumI(int[] nums, int target) {\nList<int> state = new List<int>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nArray.Sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<int>> res = new List<List<int>>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor i in stride(from: start, to: choices.count, by: 1) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0 {\nbreak\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.append(choices[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, target: target - choices[i], choices: choices, start: i, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast()\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunc subsetSumI(nums: [Int], target: Int) -> [[Int]] {\nvar state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nlet nums = nums.sorted() // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nlet start = 0 // \u904d\u5386\u8d77\u59cb\u70b9\nvar res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state: &state, target: target, choices: nums, start: start, res: &res)\nreturn res\n}\n
            subset_sum_i.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{subsetSumI}\n
            subset_sum_i.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(\nList<int> state,\nint target,\nList<int> choices,\nint start,\nList<List<int>> res,\n) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.add(List.from(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (int i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<int>> subsetSumI(List<int> nums, int target) {\nList<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfn backtrack(mut state: Vec<i32>, target: i32, choices: &[i32], start: usize, res: &mut Vec<Vec<i32>>) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nres.push(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor i in start..choices.len() {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0 {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state.clone(), target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfn subset_sum_i(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {\nlet state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nlet start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nlet mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, &mut res);\nres\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u4e3a\u5c06\u6570\u7ec4 \\([3, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \u8f93\u5165\u5230\u4ee5\u4e0a\u4ee3\u7801\u540e\u7684\u6574\u4f53\u56de\u6eaf\u8fc7\u7a0b\u3002

            \u56fe\uff1a\u5b50\u96c6\u548c I \u56de\u6eaf\u8fc7\u7a0b

            "},{"location":"chapter_backtracking/subset_sum_problem/#1332","title":"13.3.2 \u00a0 \u8003\u8651\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u6b63\u6574\u6570 target \uff0c\u8bf7\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\uff0c\u4f7f\u5f97\u7ec4\u5408\u4e2d\u7684\u5143\u7d20\u548c\u7b49\u4e8e target \u3002\u7ed9\u5b9a\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ea\u53ef\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u8bf7\u4ee5\u5217\u8868\u5f62\u5f0f\u8fd4\u56de\u8fd9\u4e9b\u7ec4\u5408\uff0c\u5217\u8868\u4e2d\u4e0d\u5e94\u5305\u542b\u91cd\u590d\u7ec4\u5408\u3002

            \u76f8\u6bd4\u4e8e\u4e0a\u9898\uff0c\u672c\u9898\u7684\u8f93\u5165\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd9\u5f15\u5165\u4e86\u65b0\u7684\u95ee\u9898\u3002\u4f8b\u5982\uff0c\u7ed9\u5b9a\u6570\u7ec4 \\([4, \\hat{4}, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \uff0c\u5219\u73b0\u6709\u4ee3\u7801\u7684\u8f93\u51fa\u7ed3\u679c\u4e3a \\([4, 5], [\\hat{4}, 5]\\) \uff0c\u51fa\u73b0\u4e86\u91cd\u590d\u5b50\u96c6\u3002

            \u9020\u6210\u8fd9\u79cd\u91cd\u590d\u7684\u539f\u56e0\u662f\u76f8\u7b49\u5143\u7d20\u5728\u67d0\u8f6e\u4e2d\u88ab\u591a\u6b21\u9009\u62e9\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u7b2c\u4e00\u8f6e\u5171\u6709\u4e09\u4e2a\u9009\u62e9\uff0c\u5176\u4e2d\u4e24\u4e2a\u90fd\u4e3a \\(4\\) \uff0c\u4f1a\u4ea7\u751f\u4e24\u4e2a\u91cd\u590d\u7684\u641c\u7d22\u5206\u652f\uff0c\u4ece\u800c\u8f93\u51fa\u91cd\u590d\u5b50\u96c6\uff1b\u540c\u7406\uff0c\u7b2c\u4e8c\u8f6e\u7684\u4e24\u4e2a \\(4\\) \u4e5f\u4f1a\u4ea7\u751f\u91cd\u590d\u5b50\u96c6\u3002

            \u56fe\uff1a\u76f8\u7b49\u5143\u7d20\u5bfc\u81f4\u7684\u91cd\u590d\u5b50\u96c6

            "},{"location":"chapter_backtracking/subset_sum_problem/#1_1","title":"1. \u00a0 \u76f8\u7b49\u5143\u7d20\u526a\u679d","text":"

            \u4e3a\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u9700\u8981\u9650\u5236\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u4e00\u8f6e\u4e2d\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u8f83\u5de7\u5999\uff1a\u7531\u4e8e\u6570\u7ec4\u662f\u5df2\u6392\u5e8f\u7684\uff0c\u56e0\u6b64\u76f8\u7b49\u5143\u7d20\u90fd\u662f\u76f8\u90bb\u7684\u3002\u8fd9\u610f\u5473\u7740\u5728\u67d0\u8f6e\u9009\u62e9\u4e2d\uff0c\u82e5\u5f53\u524d\u5143\u7d20\u4e0e\u5176\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u5219\u8bf4\u660e\u5b83\u5df2\u7ecf\u88ab\u9009\u62e9\u8fc7\uff0c\u56e0\u6b64\u76f4\u63a5\u8df3\u8fc7\u5f53\u524d\u5143\u7d20\u3002

            \u4e0e\u6b64\u540c\u65f6\uff0c\u672c\u9898\u89c4\u5b9a\u4e2d\u7684\u6bcf\u4e2a\u6570\u7ec4\u5143\u7d20\u53ea\u80fd\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u5e78\u8fd0\u7684\u662f\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u5229\u7528\u53d8\u91cf start \u6765\u6ee1\u8db3\u8be5\u7ea6\u675f\uff1a\u5f53\u505a\u51fa\u9009\u62e9 \\(x_{i}\\) \u540e\uff0c\u8bbe\u5b9a\u4e0b\u4e00\u8f6e\u4ece\u7d22\u5f15 \\(i + 1\\) \u5f00\u59cb\u5411\u540e\u904d\u5386\u3002\u8fd9\u6837\u5373\u80fd\u53bb\u9664\u91cd\u590d\u5b50\u96c6\uff0c\u4e5f\u80fd\u907f\u514d\u91cd\u590d\u9009\u62e9\u5143\u7d20\u3002

            "},{"location":"chapter_backtracking/subset_sum_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"JavaC++PythonGoJSTSCC#SwiftZigDartRust subset_sum_ii.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.add(new ArrayList<>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (int i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] == choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.remove(state.size() - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<Integer>> subsetSumII(int[] nums, int target) {\nList<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nArrays.sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (int i = start; i < choices.size(); i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] == choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push_back(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop_back();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nvector<vector<int>> subsetSumII(vector<int> &nums, int target) {\nvector<int> state;              // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nsort(nums.begin(), nums.end()); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0;                  // \u904d\u5386\u8d77\u59cb\u70b9\nvector<vector<int>> res;        // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.py
            def backtrack(\nstate: list[int], target: int, choices: list[int], start: int, res: list[list[int]]\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II\"\"\"\n# \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0:\nres.append(list(state))\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\n# \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n# \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor i in range(start, len(choices)):\n# \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n# \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0:\nbreak\n# \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif i > start and choices[i] == choices[i - 1]:\ncontinue\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.append(choices[i])\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop()\ndef subset_sum_ii(nums: list[int], target: int) -> list[list[int]]:\n\"\"\"\u6c42\u89e3\u5b50\u96c6\u548c II\"\"\"\nstate = []  # \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort()  # \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nstart = 0  # \u904d\u5386\u8d77\u59cb\u70b9\nres = []  # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res)\nreturn res\n
            subset_sum_ii.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunc backtrackSubsetSumII(start, target int, state, choices *[]int, res *[][]int) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nnewState := append([]int{}, *state...)\n*res = append(*res, newState)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor i := start; i < len(*choices); i++ {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target-(*choices)[i] < 0 {\nbreak\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif i > start && (*choices)[i] == (*choices)[i-1] {\ncontinue\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n*state = append(*state, (*choices)[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrackSubsetSumII(i+1, target-(*choices)[i], state, choices, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n*state = (*state)[:len(*state)-1]\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunc subsetSumII(nums []int, target int) [][]int {\nstate := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nsort.Ints(nums)         // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nstart := 0              // \u904d\u5386\u8d77\u59cb\u70b9\nres := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrackSubsetSumII(start, target, &state, &nums, &res)\nreturn res\n}\n
            subset_sum_ii.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunction backtrack(state, target, choices, start, res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target === 0) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (let i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] === choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunction subsetSumII(nums, target) {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nconst start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunction backtrack(\nstate: number[],\ntarget: number,\nchoices: number[],\nstart: number,\nres: number[][]\n): void {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target === 0) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (let i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] === choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunction subsetSumII(nums: number[], target: number): number[][] {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nconst start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.c
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(vector *state, int target, vector *choices, int start, vector *res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nvector *tmpVector = newVector();\nfor (int i = 0; i < state->size; i++) {\nvectorPushback(tmpVector, state->data[i], sizeof(int));\n}\nvectorPushback(res, tmpVector, sizeof(vector));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (int i = start; i < choices->size; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - *(int *)(choices->data[i]) < 0) {\ncontinue;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && *(int *)(choices->data[i]) == *(int *)(choices->data[i - 1])) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nvectorPushback(state, choices->data[i], sizeof(int));\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - *(int *)(choices->data[i]), choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nvectorPopback(state);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nvector *subsetSumII(vector *nums, int target) {\nvector *state = newVector();                         // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nqsort(nums->data, nums->size, sizeof(int *), comp); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0;                                       // \u5b50\u96c6\u548c\nvector *res = newVector();                           // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.Add(new List<int>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (int i = start; i < choices.Length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] == choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.Add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.RemoveAt(state.Count - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<int>> subsetSumII(int[] nums, int target) {\nList<int> state = new List<int>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nArray.Sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<int>> res = new List<List<int>>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunc backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor i in stride(from: start, to: choices.count, by: 1) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0 {\nbreak\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif i > start, choices[i] == choices[i - 1] {\ncontinue\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.append(choices[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, target: target - choices[i], choices: choices, start: i + 1, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast()\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunc subsetSumII(nums: [Int], target: Int) -> [[Int]] {\nvar state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nlet nums = nums.sorted() // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nlet start = 0 // \u904d\u5386\u8d77\u59cb\u70b9\nvar res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state: &state, target: target, choices: nums, start: start, res: &res)\nreturn res\n}\n
            subset_sum_ii.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{subsetSumII}\n
            subset_sum_ii.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(\nList<int> state,\nint target,\nList<int> choices,\nint start,\nList<List<int>> res,\n) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.add(List.from(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (int i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] == choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<int>> subsetSumII(List<int> nums, int target) {\nList<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfn backtrack(mut state: Vec<i32>, target: i32, choices: &[i32], start: usize, res: &mut Vec<Vec<i32>>) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nres.push(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor i in start..choices.len() {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0 {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif i > start && choices[i] == choices[i - 1] {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state.clone(), target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfn subset_sum_ii(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {\nlet state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nlet start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nlet mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, &mut res);\nres\n}\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u6570\u7ec4 \\([4, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \u7684\u56de\u6eaf\u8fc7\u7a0b\uff0c\u5171\u5305\u542b\u56db\u79cd\u526a\u679d\u64cd\u4f5c\u3002\u8bf7\u4f60\u5c06\u56fe\u793a\u4e0e\u4ee3\u7801\u6ce8\u91ca\u76f8\u7ed3\u5408\uff0c\u7406\u89e3\u6574\u4e2a\u641c\u7d22\u8fc7\u7a0b\uff0c\u4ee5\u53ca\u6bcf\u79cd\u526a\u679d\u64cd\u4f5c\u662f\u5982\u4f55\u5de5\u4f5c\u7684\u3002

            \u56fe\uff1a\u5b50\u96c6\u548c II \u56de\u6eaf\u8fc7\u7a0b

            "},{"location":"chapter_backtracking/summary/","title":"13.5 \u00a0 \u5c0f\u7ed3","text":"
            • \u56de\u6eaf\u7b97\u6cd5\u672c\u8d28\u662f\u7a77\u4e3e\u6cd5\uff0c\u901a\u8fc7\u5bf9\u89e3\u7a7a\u95f4\u8fdb\u884c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u6765\u5bfb\u627e\u7b26\u5408\u6761\u4ef6\u7684\u89e3\u3002\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u9047\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u5219\u8bb0\u5f55\uff0c\u76f4\u81f3\u627e\u5230\u6240\u6709\u89e3\u6216\u904d\u5386\u5b8c\u6210\u540e\u7ed3\u675f\u3002
            • \u56de\u6eaf\u7b97\u6cd5\u7684\u641c\u7d22\u8fc7\u7a0b\u5305\u62ec\u5c1d\u8bd5\u4e0e\u56de\u9000\u4e24\u4e2a\u90e8\u5206\u3002\u5b83\u901a\u8fc7\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u6765\u5c1d\u8bd5\u5404\u79cd\u9009\u62e9\uff0c\u5f53\u9047\u5230\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u60c5\u51b5\u65f6\uff0c\u5219\u64a4\u9500\u4e0a\u4e00\u6b65\u7684\u9009\u62e9\uff0c\u9000\u56de\u5230\u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5e76\u7ee7\u7eed\u5c1d\u8bd5\u5176\u4ed6\u9009\u62e9\u3002\u5c1d\u8bd5\u4e0e\u56de\u9000\u662f\u4e24\u4e2a\u65b9\u5411\u76f8\u53cd\u7684\u64cd\u4f5c\u3002
            • \u56de\u6eaf\u95ee\u9898\u901a\u5e38\u5305\u542b\u591a\u4e2a\u7ea6\u675f\u6761\u4ef6\uff0c\u5b83\u4eec\u53ef\u7528\u4e8e\u5b9e\u73b0\u526a\u679d\u64cd\u4f5c\u3002\u526a\u679d\u53ef\u4ee5\u63d0\u524d\u7ed3\u675f\u4e0d\u5fc5\u8981\u7684\u641c\u7d22\u5206\u652f\uff0c\u5927\u5e45\u63d0\u5347\u641c\u7d22\u6548\u7387\u3002
            • \u56de\u6eaf\u7b97\u6cd5\u4e3b\u8981\u53ef\u7528\u4e8e\u89e3\u51b3\u641c\u7d22\u95ee\u9898\u548c\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u3002\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u867d\u7136\u53ef\u4ee5\u7528\u56de\u6eaf\u7b97\u6cd5\u89e3\u51b3\uff0c\u4f46\u5f80\u5f80\u5b58\u5728\u66f4\u9ad8\u6548\u7387\u6216\u66f4\u597d\u6548\u679c\u7684\u89e3\u6cd5\u3002
            • \u5168\u6392\u5217\u95ee\u9898\u65e8\u5728\u641c\u7d22\u7ed9\u5b9a\u96c6\u5408\u7684\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u6570\u7ec4\u6765\u8bb0\u5f55\u6bcf\u4e2a\u5143\u7d20\u662f\u5426\u88ab\u9009\u62e9\uff0c\u526a\u679d\u6389\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\u7684\u641c\u7d22\u5206\u652f\uff0c\u786e\u4fdd\u6bcf\u4e2a\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\u3002
            • \u5728\u5168\u6392\u5217\u95ee\u9898\u4e2d\uff0c\u5982\u679c\u96c6\u5408\u4e2d\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff0c\u5219\u6700\u7ec8\u7ed3\u679c\u4f1a\u51fa\u73b0\u91cd\u590d\u6392\u5217\u3002\u6211\u4eec\u9700\u8981\u7ea6\u675f\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u8f6e\u4e2d\u53ea\u80fd\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u8fd9\u901a\u5e38\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\u6765\u5b9e\u73b0\u3002
            • \u5b50\u96c6\u548c\u95ee\u9898\u7684\u76ee\u6807\u662f\u5728\u7ed9\u5b9a\u96c6\u5408\u4e2d\u627e\u5230\u548c\u4e3a\u76ee\u6807\u503c\u7684\u6240\u6709\u5b50\u96c6\u3002\u96c6\u5408\u4e0d\u533a\u5206\u5143\u7d20\u987a\u5e8f\uff0c\u800c\u641c\u7d22\u8fc7\u7a0b\u4f1a\u8f93\u51fa\u6240\u6709\u987a\u5e8f\u7684\u7ed3\u679c\uff0c\u4ea7\u751f\u91cd\u590d\u5b50\u96c6\u3002\u6211\u4eec\u5728\u56de\u6eaf\u524d\u5c06\u6570\u636e\u8fdb\u884c\u6392\u5e8f\uff0c\u5e76\u8bbe\u7f6e\u4e00\u4e2a\u53d8\u91cf\u6765\u6307\u793a\u6bcf\u4e00\u8f6e\u7684\u904d\u5386\u8d77\u70b9\uff0c\u4ece\u800c\u5c06\u751f\u6210\u91cd\u590d\u5b50\u96c6\u7684\u641c\u7d22\u5206\u652f\u8fdb\u884c\u526a\u679d\u3002
            • \u5bf9\u4e8e\u5b50\u96c6\u548c\u95ee\u9898\uff0c\u6570\u7ec4\u4e2d\u7684\u76f8\u7b49\u5143\u7d20\u4f1a\u4ea7\u751f\u91cd\u590d\u96c6\u5408\u3002\u6211\u4eec\u5229\u7528\u6570\u7ec4\u5df2\u6392\u5e8f\u7684\u524d\u7f6e\u6761\u4ef6\uff0c\u901a\u8fc7\u5224\u65ad\u76f8\u90bb\u5143\u7d20\u662f\u5426\u76f8\u7b49\u5b9e\u73b0\u526a\u679d\uff0c\u4ece\u800c\u786e\u4fdd\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u8f6e\u4e2d\u53ea\u80fd\u88ab\u9009\u4e2d\u4e00\u6b21\u3002
            • \\(n\\) \u7687\u540e\u65e8\u5728\u5bfb\u627e\u5c06 \\(n\\) \u4e2a\u7687\u540e\u653e\u7f6e\u5230 \\(n \\times n\\) \u5c3a\u5bf8\u68cb\u76d8\u4e0a\u7684\u65b9\u6848\uff0c\u8981\u6c42\u6240\u6709\u7687\u540e\u4e24\u4e24\u4e4b\u95f4\u65e0\u6cd5\u653b\u51fb\u5bf9\u65b9\u3002\u8be5\u95ee\u9898\u7684\u7ea6\u675f\u6761\u4ef6\u6709\u884c\u7ea6\u675f\u3001\u5217\u7ea6\u675f\u3001\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\u7ea6\u675f\u3002\u4e3a\u6ee1\u8db3\u884c\u7ea6\u675f\uff0c\u6211\u4eec\u91c7\u7528\u6309\u884c\u653e\u7f6e\u7684\u7b56\u7565\uff0c\u4fdd\u8bc1\u6bcf\u4e00\u884c\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\u3002
            • \u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u5904\u7406\u65b9\u5f0f\u7c7b\u4f3c\u3002\u5bf9\u4e8e\u5217\u7ea6\u675f\uff0c\u6211\u4eec\u5229\u7528\u4e00\u4e2a\u6570\u7ec4\u6765\u8bb0\u5f55\u6bcf\u4e00\u5217\u662f\u5426\u6709\u7687\u540e\uff0c\u4ece\u800c\u6307\u793a\u9009\u4e2d\u7684\u683c\u5b50\u662f\u5426\u5408\u6cd5\u3002\u5bf9\u4e8e\u5bf9\u89d2\u7ebf\u7ea6\u675f\uff0c\u6211\u4eec\u501f\u52a9\u4e24\u4e2a\u6570\u7ec4\u6765\u5206\u522b\u8bb0\u5f55\u8be5\u4e3b\u3001\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u5b58\u5728\u7687\u540e\uff1b\u96be\u70b9\u5728\u4e8e\u627e\u5904\u5728\u5230\u540c\u4e00\u4e3b\uff08\u526f\uff09\u5bf9\u89d2\u7ebf\u4e0a\u683c\u5b50\u6ee1\u8db3\u7684\u884c\u5217\u7d22\u5f15\u89c4\u5f8b\u3002
            "},{"location":"chapter_computational_complexity/","title":"\u7b2c 2 \u7ae0 \u00a0 \u590d\u6742\u5ea6","text":"

            Abstract

            \u590d\u6742\u5ea6\u72b9\u5982\u6d69\u701a\u7684\u7b97\u6cd5\u5b87\u5b99\u4e2d\u7684\u65f6\u7a7a\u5411\u5bfc\u3002

            \u5b83\u5e26\u9886\u6211\u4eec\u5728\u65f6\u95f4\u4e0e\u7a7a\u95f4\u8fd9\u4e24\u4e2a\u7ef4\u5ea6\u4e0a\u6df1\u5165\u63a2\u7d22\uff0c\u5bfb\u627e\u66f4\u4f18\u96c5\u7684\u89e3\u51b3\u65b9\u6848\u3002

            "},{"location":"chapter_computational_complexity/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 2.1 \u00a0 \u7b97\u6cd5\u6548\u7387\u8bc4\u4f30
            • 2.2 \u00a0 \u65f6\u95f4\u590d\u6742\u5ea6
            • 2.3 \u00a0 \u7a7a\u95f4\u590d\u6742\u5ea6
            • 2.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_computational_complexity/performance_evaluation/","title":"2.1 \u00a0 \u7b97\u6cd5\u6548\u7387\u8bc4\u4f30","text":"

            \u5728\u7b97\u6cd5\u8bbe\u8ba1\u4e2d\uff0c\u6211\u4eec\u5148\u540e\u8ffd\u6c42\u4ee5\u4e0b\u4e24\u4e2a\u5c42\u9762\u7684\u76ee\u6807\u3002

            1. \u627e\u5230\u95ee\u9898\u89e3\u6cd5\uff1a\u7b97\u6cd5\u9700\u8981\u5728\u89c4\u5b9a\u7684\u8f93\u5165\u8303\u56f4\u5185\uff0c\u53ef\u9760\u5730\u6c42\u5f97\u95ee\u9898\u7684\u6b63\u786e\u89e3\u3002
            2. \u5bfb\u6c42\u6700\u4f18\u89e3\u6cd5\uff1a\u540c\u4e00\u4e2a\u95ee\u9898\u53ef\u80fd\u5b58\u5728\u591a\u79cd\u89e3\u6cd5\uff0c\u6211\u4eec\u5e0c\u671b\u627e\u5230\u5c3d\u53ef\u80fd\u9ad8\u6548\u7684\u7b97\u6cd5\u3002

            \u56e0\u6b64\uff0c\u5728\u80fd\u591f\u89e3\u51b3\u95ee\u9898\u7684\u524d\u63d0\u4e0b\uff0c\u7b97\u6cd5\u6548\u7387\u5df2\u6210\u4e3a\u8861\u91cf\u7b97\u6cd5\u4f18\u52a3\u7684\u4e3b\u8981\u8bc4\u4ef7\u6307\u6807\uff0c\u5b83\u5305\u62ec\u4ee5\u4e0b\u4e24\u4e2a\u7ef4\u5ea6\u3002

            • \u65f6\u95f4\u6548\u7387\uff1a\u7b97\u6cd5\u8fd0\u884c\u901f\u5ea6\u7684\u5feb\u6162\u3002
            • \u7a7a\u95f4\u6548\u7387\uff1a\u7b97\u6cd5\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u7684\u5927\u5c0f\u3002

            \u7b80\u800c\u8a00\u4e4b\uff0c\u6211\u4eec\u7684\u76ee\u6807\u662f\u8bbe\u8ba1\u201c\u65e2\u5feb\u53c8\u7701\u201d\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u3002\u800c\u6709\u6548\u5730\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u81f3\u5173\u91cd\u8981\uff0c\u56e0\u4e3a\u53ea\u6709\u8fd9\u6837\u6211\u4eec\u624d\u80fd\u5c06\u5404\u79cd\u7b97\u6cd5\u8fdb\u884c\u5bf9\u6bd4\uff0c\u4ece\u800c\u6307\u5bfc\u7b97\u6cd5\u8bbe\u8ba1\u4e0e\u4f18\u5316\u8fc7\u7a0b\u3002

            \u6548\u7387\u8bc4\u4f30\u65b9\u6cd5\u4e3b\u8981\u5206\u4e3a\u4e24\u79cd\uff1a\u5b9e\u9645\u6d4b\u8bd5\u548c\u7406\u8bba\u4f30\u7b97\u3002

            "},{"location":"chapter_computational_complexity/performance_evaluation/#211","title":"2.1.1 \u00a0 \u5b9e\u9645\u6d4b\u8bd5","text":"

            \u5047\u8bbe\u6211\u4eec\u73b0\u5728\u6709\u7b97\u6cd5 A \u548c\u7b97\u6cd5 B \uff0c\u5b83\u4eec\u90fd\u80fd\u89e3\u51b3\u540c\u4e00\u95ee\u9898\uff0c\u73b0\u5728\u9700\u8981\u5bf9\u6bd4\u8fd9\u4e24\u4e2a\u7b97\u6cd5\u7684\u6548\u7387\u3002\u6700\u76f4\u63a5\u7684\u65b9\u6cd5\u662f\u627e\u4e00\u53f0\u8ba1\u7b97\u673a\uff0c\u8fd0\u884c\u8fd9\u4e24\u4e2a\u7b97\u6cd5\uff0c\u5e76\u76d1\u63a7\u8bb0\u5f55\u5b83\u4eec\u7684\u8fd0\u884c\u65f6\u95f4\u548c\u5185\u5b58\u5360\u7528\u60c5\u51b5\u3002\u8fd9\u79cd\u8bc4\u4f30\u65b9\u5f0f\u80fd\u591f\u53cd\u6620\u771f\u5b9e\u60c5\u51b5\uff0c\u4f46\u4e5f\u5b58\u5728\u8f83\u5927\u5c40\u9650\u6027\u3002

            \u4e00\u65b9\u9762\uff0c\u96be\u4ee5\u6392\u9664\u6d4b\u8bd5\u73af\u5883\u7684\u5e72\u6270\u56e0\u7d20\u3002\u786c\u4ef6\u914d\u7f6e\u4f1a\u5f71\u54cd\u7b97\u6cd5\u7684\u6027\u80fd\u8868\u73b0\u3002\u6bd4\u5982\u5728\u67d0\u53f0\u8ba1\u7b97\u673a\u4e2d\uff0c\u7b97\u6cd5 A \u7684\u8fd0\u884c\u65f6\u95f4\u6bd4\u7b97\u6cd5 B \u77ed\uff1b\u4f46\u5728\u53e6\u4e00\u53f0\u914d\u7f6e\u4e0d\u540c\u7684\u8ba1\u7b97\u673a\u4e2d\uff0c\u6211\u4eec\u53ef\u80fd\u5f97\u5230\u76f8\u53cd\u7684\u6d4b\u8bd5\u7ed3\u679c\u3002\u8fd9\u610f\u5473\u7740\u6211\u4eec\u9700\u8981\u5728\u5404\u79cd\u673a\u5668\u4e0a\u8fdb\u884c\u6d4b\u8bd5\uff0c\u7edf\u8ba1\u5e73\u5747\u6548\u7387\uff0c\u800c\u8fd9\u662f\u4e0d\u73b0\u5b9e\u7684\u3002

            \u53e6\u4e00\u65b9\u9762\uff0c\u5c55\u5f00\u5b8c\u6574\u6d4b\u8bd5\u975e\u5e38\u8017\u8d39\u8d44\u6e90\u3002\u968f\u7740\u8f93\u5165\u6570\u636e\u91cf\u7684\u53d8\u5316\uff0c\u7b97\u6cd5\u4f1a\u8868\u73b0\u51fa\u4e0d\u540c\u7684\u6548\u7387\u3002\u4f8b\u5982\uff0c\u5728\u8f93\u5165\u6570\u636e\u91cf\u8f83\u5c0f\u65f6\uff0c\u7b97\u6cd5 A \u7684\u8fd0\u884c\u65f6\u95f4\u6bd4\u7b97\u6cd5 B \u66f4\u5c11\uff1b\u800c\u8f93\u5165\u6570\u636e\u91cf\u8f83\u5927\u65f6\uff0c\u6d4b\u8bd5\u7ed3\u679c\u53ef\u80fd\u6070\u6070\u76f8\u53cd\u3002\u56e0\u6b64\uff0c\u4e3a\u4e86\u5f97\u5230\u6709\u8bf4\u670d\u529b\u7684\u7ed3\u8bba\uff0c\u6211\u4eec\u9700\u8981\u6d4b\u8bd5\u5404\u79cd\u89c4\u6a21\u7684\u8f93\u5165\u6570\u636e\uff0c\u800c\u8fd9\u6837\u9700\u8981\u8017\u8d39\u5927\u91cf\u7684\u8ba1\u7b97\u8d44\u6e90\u3002

            "},{"location":"chapter_computational_complexity/performance_evaluation/#212","title":"2.1.2 \u00a0 \u7406\u8bba\u4f30\u7b97","text":"

            \u7531\u4e8e\u5b9e\u9645\u6d4b\u8bd5\u5177\u6709\u8f83\u5927\u7684\u5c40\u9650\u6027\uff0c\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u4ec5\u901a\u8fc7\u4e00\u4e9b\u8ba1\u7b97\u6765\u8bc4\u4f30\u7b97\u6cd5\u7684\u6548\u7387\u3002\u8fd9\u79cd\u4f30\u7b97\u65b9\u6cd5\u88ab\u79f0\u4e3a\u300c\u6e10\u8fd1\u590d\u6742\u5ea6\u5206\u6790 asymptotic complexity analysis\u300d\uff0c\u7b80\u79f0\u300c\u590d\u6742\u5ea6\u5206\u6790\u300d\u3002

            \u590d\u6742\u5ea6\u5206\u6790\u8bc4\u4f30\u7684\u662f\u7b97\u6cd5\u8fd0\u884c\u6240\u9700\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\uff0c\u5b83\u63cf\u8ff0\u4e86\u968f\u7740\u8f93\u5165\u6570\u636e\u5927\u5c0f\u7684\u589e\u52a0\uff0c\u7b97\u6cd5\u6240\u9700\u65f6\u95f4\uff08\u7a7a\u95f4\uff09\u7684\u589e\u957f\u8d8b\u52bf\u3002\u8fd9\u4e2a\u5b9a\u4e49\u6709\u4e9b\u62d7\u53e3\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5176\u5206\u4e3a\u4e09\u4e2a\u91cd\u70b9\u6765\u7406\u89e3\u3002

            1. \u201c\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\u201d\u5206\u522b\u5bf9\u5e94\u300c\u65f6\u95f4\u590d\u6742\u5ea6 time complexity\u300d\u548c\u300c\u7a7a\u95f4\u590d\u6742\u5ea6 space complexity\u300d\u3002
            2. \u201c\u968f\u7740\u8f93\u5165\u6570\u636e\u5927\u5c0f\u7684\u589e\u52a0\u201d\u610f\u5473\u7740\u590d\u6742\u5ea6\u53cd\u6620\u4e86\u7b97\u6cd5\u8fd0\u884c\u6548\u7387\u4e0e\u8f93\u5165\u6570\u636e\u4f53\u91cf\u4e4b\u95f4\u7684\u5173\u7cfb\u3002
            3. \u201c\u589e\u957f\u8d8b\u52bf\u201d\u8868\u793a\u590d\u6742\u5ea6\u5206\u6790\u5173\u6ce8\u7684\u662f\u7b97\u6cd5\u65f6\u95f4\u4e0e\u7a7a\u95f4\u7684\u589e\u957f\u8d8b\u52bf\uff0c\u800c\u975e\u5177\u4f53\u7684\u8fd0\u884c\u65f6\u95f4\u6216\u5360\u7528\u7a7a\u95f4\u3002

            \u590d\u6742\u5ea6\u5206\u6790\u514b\u670d\u4e86\u5b9e\u9645\u6d4b\u8bd5\u65b9\u6cd5\u7684\u5f0a\u7aef\u3002\u9996\u5148\uff0c\u5b83\u72ec\u7acb\u4e8e\u6d4b\u8bd5\u73af\u5883\uff0c\u5206\u6790\u7ed3\u679c\u9002\u7528\u4e8e\u6240\u6709\u8fd0\u884c\u5e73\u53f0\u3002\u5176\u6b21\uff0c\u5b83\u53ef\u4ee5\u4f53\u73b0\u4e0d\u540c\u6570\u636e\u91cf\u4e0b\u7684\u7b97\u6cd5\u6548\u7387\uff0c\u5c24\u5176\u662f\u5728\u5927\u6570\u636e\u91cf\u4e0b\u7684\u7b97\u6cd5\u6027\u80fd\u3002

            \u5982\u679c\u4f60\u5bf9\u590d\u6742\u5ea6\u5206\u6790\u7684\u6982\u5ff5\u4ecd\u611f\u5230\u56f0\u60d1\uff0c\u65e0\u987b\u62c5\u5fc3\uff0c\u6211\u4eec\u4f1a\u5728\u540e\u7eed\u7ae0\u8282\u4e2d\u8be6\u7ec6\u4ecb\u7ecd\u3002

            "},{"location":"chapter_computational_complexity/performance_evaluation/#213","title":"2.1.3 \u00a0 \u590d\u6742\u5ea6\u7684\u91cd\u8981\u6027","text":"

            \u590d\u6742\u5ea6\u5206\u6790\u4e3a\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u628a\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u7684\u201c\u6807\u5c3a\u201d\uff0c\u5e2e\u52a9\u6211\u4eec\u8861\u91cf\u4e86\u6267\u884c\u67d0\u4e2a\u7b97\u6cd5\u6240\u9700\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\uff0c\u5e76\u4f7f\u6211\u4eec\u80fd\u591f\u5bf9\u6bd4\u4e0d\u540c\u7b97\u6cd5\u4e4b\u95f4\u7684\u6548\u7387\u3002

            \u590d\u6742\u5ea6\u662f\u4e2a\u6570\u5b66\u6982\u5ff5\uff0c\u5bf9\u4e8e\u521d\u5b66\u8005\u53ef\u80fd\u6bd4\u8f83\u62bd\u8c61\uff0c\u5b66\u4e60\u96be\u5ea6\u76f8\u5bf9\u8f83\u9ad8\u3002\u4ece\u8fd9\u4e2a\u89d2\u5ea6\u770b\uff0c\u590d\u6742\u5ea6\u5206\u6790\u53ef\u80fd\u4e0d\u592a\u9002\u5408\u4f5c\u4e3a\u7b2c 1 \u7ae0\u7684\u5185\u5bb9\u3002

            \u7136\u800c\uff0c\u5f53\u6211\u4eec\u8ba8\u8bba\u67d0\u4e2a\u6570\u636e\u7ed3\u6784\u6216\u7b97\u6cd5\u7684\u7279\u70b9\u65f6\uff0c\u96be\u4ee5\u907f\u514d\u8981\u5206\u6790\u5176\u8fd0\u884c\u901f\u5ea6\u548c\u7a7a\u95f4\u4f7f\u7528\u60c5\u51b5\u3002\u56e0\u6b64\uff0c\u5728\u6df1\u5165\u5b66\u4e60\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u4e4b\u524d\uff0c\u5efa\u8bae\u4f60\u5148\u5bf9\u590d\u6742\u5ea6\u5efa\u7acb\u521d\u6b65\u7684\u4e86\u89e3\uff0c\u4ee5\u4fbf\u80fd\u591f\u5b8c\u6210\u7b80\u5355\u7b97\u6cd5\u7684\u590d\u6742\u5ea6\u5206\u6790\u3002

            "},{"location":"chapter_computational_complexity/space_complexity/","title":"2.3 \u00a0 \u7a7a\u95f4\u590d\u6742\u5ea6","text":"

            \u300c\u7a7a\u95f4\u590d\u6742\u5ea6 space complexity\u300d\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u968f\u7740\u6570\u636e\u91cf\u53d8\u5927\u65f6\u7684\u589e\u957f\u8d8b\u52bf\u3002\u8fd9\u4e2a\u6982\u5ff5\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u975e\u5e38\u7c7b\u4f3c\uff0c\u53ea\u9700\u5c06\u201c\u8fd0\u884c\u65f6\u95f4\u201d\u66ff\u6362\u4e3a\u201c\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u201d\u3002

            "},{"location":"chapter_computational_complexity/space_complexity/#231","title":"2.3.1 \u00a0 \u7b97\u6cd5\u76f8\u5173\u7a7a\u95f4","text":"

            \u7b97\u6cd5\u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u4f7f\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u4e3b\u8981\u5305\u62ec\u4ee5\u4e0b\u51e0\u79cd\u3002

            • \u8f93\u5165\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u7684\u8f93\u5165\u6570\u636e\u3002
            • \u6682\u5b58\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u53d8\u91cf\u3001\u5bf9\u8c61\u3001\u51fd\u6570\u4e0a\u4e0b\u6587\u7b49\u6570\u636e\u3002
            • \u8f93\u51fa\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u7684\u8f93\u51fa\u6570\u636e\u3002

            \u4e00\u822c\u60c5\u51b5\u4e0b\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u7edf\u8ba1\u8303\u56f4\u662f\u201c\u6682\u5b58\u7a7a\u95f4\u201d\u52a0\u4e0a\u201c\u8f93\u51fa\u7a7a\u95f4\u201d\u3002

            \u6682\u5b58\u7a7a\u95f4\u53ef\u4ee5\u8fdb\u4e00\u6b65\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\u3002

            • \u6682\u5b58\u6570\u636e\uff1a\u7528\u4e8e\u4fdd\u5b58\u7b97\u6cd5\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u5404\u79cd\u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u7b49\u3002
            • \u6808\u5e27\u7a7a\u95f4\uff1a\u7528\u4e8e\u4fdd\u5b58\u8c03\u7528\u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u6570\u636e\u3002\u7cfb\u7edf\u5728\u6bcf\u6b21\u8c03\u7528\u51fd\u6570\u65f6\u90fd\u4f1a\u5728\u6808\u9876\u90e8\u521b\u5efa\u4e00\u4e2a\u6808\u5e27\uff0c\u51fd\u6570\u8fd4\u56de\u540e\uff0c\u6808\u5e27\u7a7a\u95f4\u4f1a\u88ab\u91ca\u653e\u3002
            • \u6307\u4ee4\u7a7a\u95f4\uff1a\u7528\u4e8e\u4fdd\u5b58\u7f16\u8bd1\u540e\u7684\u7a0b\u5e8f\u6307\u4ee4\uff0c\u5728\u5b9e\u9645\u7edf\u8ba1\u4e2d\u901a\u5e38\u5ffd\u7565\u4e0d\u8ba1\u3002

            \u5728\u5206\u6790\u4e00\u6bb5\u7a0b\u5e8f\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u65f6\uff0c\u6211\u4eec\u901a\u5e38\u7edf\u8ba1\u6682\u5b58\u6570\u636e\u3001\u6808\u5e27\u7a7a\u95f4\u548c\u8f93\u51fa\u6570\u636e\u4e09\u90e8\u5206\u3002

            \u56fe\uff1a\u7b97\u6cd5\u4f7f\u7528\u7684\u76f8\u5173\u7a7a\u95f4

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u7c7b */\nclass Node {\nint val;\nNode next;\nNode(int x) { val = x; }\n}\n/* \u51fd\u6570 */\nint function() {\n// do something...\nreturn 0;\n}\nint algorithm(int n) {        // \u8f93\u5165\u6570\u636e\nfinal int a = 0;          // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nint b = 0;                // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nNode node = new Node(0);  // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nint c = function();       // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;         // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u7ed3\u6784\u4f53 */\nstruct Node {\nint val;\nNode *next;\nNode(int x) : val(x), next(nullptr) {}\n};\n/* \u51fd\u6570 */\nint func() {\n// do something...\nreturn 0;\n}\nint algorithm(int n) {        // \u8f93\u5165\u6570\u636e\nconst int a = 0;          // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nint b = 0;                // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nNode* node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nint c = func();           // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;         // \u8f93\u51fa\u6570\u636e\n}\n
            class Node:\n\"\"\"\u7c7b\"\"\"\ndef __init__(self, x: int):\nself.val: int = x                 # \u8282\u70b9\u503c\nself.next: Optional[Node] = None  # \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\ndef function() -> int:\n\"\"\"\u51fd\u6570\"\"\"\n# do something...\nreturn 0\ndef algorithm(n) -> int:  # \u8f93\u5165\u6570\u636e\nA = 0                 # \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff0c\u4e00\u822c\u7528\u5927\u5199\u5b57\u6bcd\u8868\u793a\uff09\nb = 0                 # \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nnode = Node(0)        # \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nc = function()        # \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn A + b + c      # \u8f93\u51fa\u6570\u636e\n
            /* \u7ed3\u6784\u4f53 */\ntype node struct {\nval  int\nnext *node\n}\n/* \u521b\u5efa node \u7ed3\u6784\u4f53  */\nfunc newNode(val int) *node {\nreturn &node{val: val}\n}\n/* \u51fd\u6570 */\nfunc function() int {\n// do something...\nreturn 0\n}\nfunc algorithm(n int) int { // \u8f93\u5165\u6570\u636e\nconst a = 0             // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nb := 0                  // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nnewNode(0)              // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nc := function()         // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c        // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u7c7b */\nclass Node {\nval;\nnext;\nconstructor(val) {\nthis.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\nthis.next = null;                       // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n/* \u51fd\u6570 */\nfunction constFunc() {\n// do something\nreturn 0;\n}\nfunction algorithm(n) {       // \u8f93\u5165\u6570\u636e\nconst a = 0;              // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nlet b = 0;                // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nconst node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nconst c = constFunc();    // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;         // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u7c7b */\nclass Node {\nval: number;\nnext: Node | null;\nconstructor(val?: number) {\nthis.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\nthis.next = null;                       // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n/* \u51fd\u6570 */\nfunction constFunc(): number {\n// do something\nreturn 0;\n}\nfunction algorithm(n: number): number { // \u8f93\u5165\u6570\u636e\nconst a = 0;                        // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nlet b = 0;                          // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nconst node = new Node(0);           // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nconst c = constFunc();              // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;                   // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u51fd\u6570 */\nint func() {\n// do something...\nreturn 0;\n}\nint algorithm(int n) { // \u8f93\u5165\u6570\u636e\nconst int a = 0;   // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nint b = 0;         // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nint c = func();    // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;  // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u7c7b */\nclass Node {\nint val;\nNode next;\nNode(int x) { val = x; }\n}\n/* \u51fd\u6570 */\nint function() {\n// do something...\nreturn 0;\n}\nint algorithm(int n) {        // \u8f93\u5165\u6570\u636e\nconst int a = 0;          // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nint b = 0;                // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nNode node = new Node(0);  // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nint c = function();       // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;         // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u7c7b */\nclass Node {\nvar val: Int\nvar next: Node?\ninit(x: Int) {\nval = x\n}\n}\n/* \u51fd\u6570 */\nfunc function() -> Int {\n// do something...\nreturn 0\n}\nfunc algorithm(n: Int) -> Int { // \u8f93\u5165\u6570\u636e\nlet a = 0             // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nvar b = 0             // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nlet node = Node(x: 0) // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nlet c = function()    // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c      // \u8f93\u51fa\u6570\u636e\n}\n
            \n
            /* \u7c7b */\nclass Node {\nint val;\nNode next;\nNode(this.val, [this.next]);\n}\n/* \u51fd\u6570 */\nint function() {\n// do something...\nreturn 0;\n}\nint algorithm(int n) {  // \u8f93\u5165\u6570\u636e\nconst int a = 0;      // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nint b = 0;            // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nNode node = Node(0);  // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nint c = function();   // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;     // \u8f93\u51fa\u6570\u636e\n}\n
            \n
            "},{"location":"chapter_computational_complexity/space_complexity/#232","title":"2.3.2 \u00a0 \u63a8\u7b97\u65b9\u6cd5","text":"

            \u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u5927\u81f4\u76f8\u540c\uff0c\u53ea\u9700\u5c06\u7edf\u8ba1\u5bf9\u8c61\u4ece\u201c\u64cd\u4f5c\u6570\u91cf\u201d\u8f6c\u4e3a\u201c\u4f7f\u7528\u7a7a\u95f4\u5927\u5c0f\u201d\u3002

            \u800c\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u540c\u7684\u662f\uff0c\u6211\u4eec\u901a\u5e38\u53ea\u5173\u6ce8\u300c\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u300d\u3002\u8fd9\u662f\u56e0\u4e3a\u5185\u5b58\u7a7a\u95f4\u662f\u4e00\u9879\u786c\u6027\u8981\u6c42\uff0c\u6211\u4eec\u5fc5\u987b\u786e\u4fdd\u5728\u6240\u6709\u8f93\u5165\u6570\u636e\u4e0b\u90fd\u6709\u8db3\u591f\u7684\u5185\u5b58\u7a7a\u95f4\u9884\u7559\u3002

            \u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e2d\u7684\u201c\u6700\u5dee\u201d\u6709\u4e24\u5c42\u542b\u4e49\u3002

            1. \u4ee5\u6700\u5dee\u8f93\u5165\u6570\u636e\u4e3a\u51c6\uff1a\u5f53 \\(n < 10\\) \u65f6\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff1b\u4f46\u5f53 \\(n > 10\\) \u65f6\uff0c\u521d\u59cb\u5316\u7684\u6570\u7ec4 nums \u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\uff1b\u56e0\u6b64\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
            2. \u4ee5\u7b97\u6cd5\u8fd0\u884c\u4e2d\u7684\u5cf0\u503c\u5185\u5b58\u4e3a\u51c6\uff1a\u4f8b\u5982\uff0c\u7a0b\u5e8f\u5728\u6267\u884c\u6700\u540e\u4e00\u884c\u4e4b\u524d\uff0c\u5360\u7528 \\(O(1)\\) \u7a7a\u95f4\uff1b\u5f53\u521d\u59cb\u5316\u6570\u7ec4 nums \u65f6\uff0c\u7a0b\u5e8f\u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\uff1b\u56e0\u6b64\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            void algorithm(int n) {\nint a = 0;                   // O(1)\nint[] b = new int[10000];    // O(1)\nif (n > 10)\nint[] nums = new int[n]; // O(n)\n}\n
            void algorithm(int n) {\nint a = 0;               // O(1)\nvector<int> b(10000);    // O(1)\nif (n > 10)\nvector<int> nums(n); // O(n)\n}\n
            def algorithm(n: int):\na = 0               # O(1)\nb = [0] * 10000     # O(1)\nif n > 10:\nnums = [0] * n  # O(n)\n
            func algorithm(n int) {\na := 0                      // O(1)\nb := make([]int, 10000)     // O(1)\nvar nums []int\nif n > 10 {\nnums := make([]int, n)  // O(n)\n}\nfmt.Println(a, b, nums)\n}\n
            function algorithm(n) {\nconst a = 0;                   // O(1)\nconst b = new Array(10000);    // O(1)\nif (n > 10) {\nconst nums = new Array(n); // O(n)\n}\n}\n
            function algorithm(n: number): void {\nconst a = 0;                   // O(1)\nconst b = new Array(10000);    // O(1)\nif (n > 10) {\nconst nums = new Array(n); // O(n)\n}\n}\n
            void algorithm(int n) {\nint a = 0;               // O(1)\nint b[10000];            // O(1)\nif (n > 10)\nint nums[n] = {0};   // O(n)\n}\n
            void algorithm(int n) {\nint a = 0;                   // O(1)\nint[] b = new int[10000];    // O(1)\nif (n > 10) {\nint[] nums = new int[n]; // O(n)\n}\n}\n
            func algorithm(n: Int) {\nlet a = 0 // O(1)\nlet b = Array(repeating: 0, count: 10000) // O(1)\nif n > 10 {\nlet nums = Array(repeating: 0, count: n) // O(n)\n}\n}\n
            \n
            void algorithm(int n) {\nint a = 0;                            // O(1)\nList<int> b = List.filled(10000, 0);  // O(1)\nif (n > 10) {\nList<int> nums = List.filled(n, 0); // O(n)\n}\n}\n
            \n

            \u5728\u9012\u5f52\u51fd\u6570\u4e2d\uff0c\u9700\u8981\u6ce8\u610f\u7edf\u8ba1\u6808\u5e27\u7a7a\u95f4\u3002\u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff1a

            • \u51fd\u6570 loop() \u5728\u5faa\u73af\u4e2d\u8c03\u7528\u4e86 \\(n\\) \u6b21 function() \uff0c\u6bcf\u8f6e\u4e2d\u7684 function() \u90fd\u8fd4\u56de\u5e76\u91ca\u653e\u4e86\u6808\u5e27\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \u3002
            • \u9012\u5f52\u51fd\u6570 recur() \u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u4f1a\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684 recur() \uff0c\u4ece\u800c\u5360\u7528 \\(O(n)\\) \u7684\u6808\u5e27\u7a7a\u95f4\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            int function() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\nfor (int i = 0; i < n; i++) {\nfunction();\n}\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\nif (n == 1) return;\nreturn recur(n - 1);\n}\n
            int func() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\nfor (int i = 0; i < n; i++) {\nfunc();\n}\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\nif (n == 1) return;\nreturn recur(n - 1);\n}\n
            def function() -> int:\n# do something\nreturn 0\ndef loop(n: int):\n\"\"\"\u5faa\u73af O(1)\"\"\"\nfor _ in range(n):\nfunction()\ndef recur(n: int) -> int:\n\"\"\"\u9012\u5f52 O(n)\"\"\"\nif n == 1: return\nreturn recur(n - 1)\n
            func function() int {\n// do something\nreturn 0\n}\n/* \u5faa\u73af O(1) */\nfunc loop(n int) {\nfor i := 0; i < n; i++ {\nfunction()\n}\n}\n/* \u9012\u5f52 O(n) */\nfunc recur(n int) {\nif n == 1 {\nreturn\n}\nrecur(n - 1)\n}\n
            function constFunc() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nfunction loop(n) {\nfor (let i = 0; i < n; i++) {\nconstFunc();\n}\n}\n/* \u9012\u5f52 O(n) */\nfunction recur(n) {\nif (n === 1) return;\nreturn recur(n - 1);\n}\n
            function constFunc(): number {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nfunction loop(n: number): void {\nfor (let i = 0; i < n; i++) {\nconstFunc();\n}\n}\n/* \u9012\u5f52 O(n) */\nfunction recur(n: number): void {\nif (n === 1) return;\nreturn recur(n - 1);\n}\n
            int func() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\nfor (int i = 0; i < n; i++) {\nfunc();\n}\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\nif (n == 1) return;\nreturn recur(n - 1);\n}\n
            int function() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\nfor (int i = 0; i < n; i++) {\nfunction();\n}\n}\n/* \u9012\u5f52 O(n) */\nint recur(int n) {\nif (n == 1) return 1;\nreturn recur(n - 1);\n}\n
            @discardableResult\nfunc function() -> Int {\n// do something\nreturn 0\n}\n/* \u5faa\u73af O(1) */\nfunc loop(n: Int) {\nfor _ in 0 ..< n {\nfunction()\n}\n}\n/* \u9012\u5f52 O(n) */\nfunc recur(n: Int) {\nif n == 1 {\nreturn\n}\nrecur(n: n - 1)\n}\n
            \n
            int function() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\nfor (int i = 0; i < n; i++) {\nfunction();\n}\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\nif (n == 1) return;\nreturn recur(n - 1);\n}\n
            \n
            "},{"location":"chapter_computational_complexity/space_complexity/#233","title":"2.3.3 \u00a0 \u5e38\u89c1\u7c7b\u578b","text":"

            \u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u4e0b\u56fe\u5c55\u793a\u4e86\u5e38\u89c1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u7c7b\u578b\uff08\u4ece\u4f4e\u5230\u9ad8\u6392\u5217\uff09\u3002

            \\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n^2) < O(2^n) \\newline \\text{\u5e38\u6570\u9636} < \\text{\u5bf9\u6570\u9636} < \\text{\u7ebf\u6027\u9636} < \\text{\u5e73\u65b9\u9636} < \\text{\u6307\u6570\u9636} \\end{aligned} \\]

            \u56fe\uff1a\u5e38\u89c1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u7c7b\u578b

            Tip

            \u90e8\u5206\u793a\u4f8b\u4ee3\u7801\u9700\u8981\u4e00\u4e9b\u524d\u7f6e\u77e5\u8bc6\uff0c\u5305\u62ec\u6570\u7ec4\u3001\u94fe\u8868\u3001\u4e8c\u53c9\u6811\u3001\u9012\u5f52\u7b97\u6cd5\u7b49\u3002\u5982\u679c\u4f60\u9047\u5230\u770b\u4e0d\u61c2\u7684\u5730\u65b9\uff0c\u53ef\u4ee5\u5728\u5b66\u5b8c\u540e\u9762\u7ae0\u8282\u540e\u518d\u6765\u590d\u4e60\u3002

            "},{"location":"chapter_computational_complexity/space_complexity/#1-o1","title":"1. \u00a0 \u5e38\u6570\u9636 \\(O(1)\\)","text":"

            \u5e38\u6570\u9636\u5e38\u89c1\u4e8e\u6570\u91cf\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\u7684\u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u3002

            \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u5728\u5faa\u73af\u4e2d\u521d\u59cb\u5316\u53d8\u91cf\u6216\u8c03\u7528\u51fd\u6570\u800c\u5360\u7528\u7684\u5185\u5b58\uff0c\u5728\u8fdb\u5165\u4e0b\u4e00\u5faa\u73af\u540e\u5c31\u4f1a\u88ab\u91ca\u653e\uff0c\u5373\u4e0d\u4f1a\u7d2f\u79ef\u5360\u7528\u7a7a\u95f4\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u51fd\u6570 */\nint function() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nfinal int a = 0;\nint b = 0;\nint[] nums = new int[10000];\nListNode node = new ListNode(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nint c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nfunction();\n}\n}\n
            space_complexity.cpp
            /* \u51fd\u6570 */\nint func() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst int a = 0;\nint b = 0;\nvector<int> nums(10000);\nListNode node(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nint c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nfunc();\n}\n}\n
            space_complexity.py
            def function() -> int:\n\"\"\"\u51fd\u6570\"\"\"\n# do something\nreturn 0\ndef constant(n: int):\n\"\"\"\u5e38\u6570\u9636\"\"\"\n# \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\na = 0\nnums = [0] * 10000\nnode = ListNode(0)\n# \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor _ in range(n):\nc = 0\n# \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor _ in range(n):\nfunction()\n
            space_complexity.go
            /* \u51fd\u6570 */\nfunc function() int {\n// do something...\nreturn 0\n}\n/* \u5e38\u6570\u9636 */\nfunc spaceConstant(n int) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst a = 0\nb := 0\nnums := make([]int, 10000)\nListNode := newNode(0)\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nvar c int\nfor i := 0; i < n; i++ {\nc = 0\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor i := 0; i < n; i++ {\nfunction()\n}\nfmt.Println(a, b, nums, c, ListNode)\n}\n
            space_complexity.js
            /* \u51fd\u6570 */\nfunction constFunc() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nfunction constant(n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst a = 0;\nconst b = 0;\nconst nums = new Array(10000);\nconst node = new ListNode(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (let i = 0; i < n; i++) {\nconst c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (let i = 0; i < n; i++) {\nconstFunc();\n}\n}\n
            space_complexity.ts
            /* \u51fd\u6570 */\nfunction constFunc(): number {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nfunction constant(n: number): void {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst a = 0;\nconst b = 0;\nconst nums = new Array(10000);\nconst node = new ListNode(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (let i = 0; i < n; i++) {\nconst c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (let i = 0; i < n; i++) {\nconstFunc();\n}\n}\n
            space_complexity.c
            /* \u51fd\u6570 */\nint func() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst int a = 0;\nint b = 0;\nint nums[1000];\nListNode *node = newListNode(0);\nfree(node);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nint c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nfunc();\n}\n}\n
            space_complexity.cs
            /* \u51fd\u6570 */\nint function() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nint a = 0;\nint b = 0;\nint[] nums = new int[10000];\nListNode node = new ListNode(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nint c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nfunction();\n}\n}\n
            space_complexity.swift
            /* \u51fd\u6570 */\n@discardableResult\nfunc function() -> Int {\n// do something\nreturn 0\n}\n/* \u5e38\u6570\u9636 */\nfunc constant(n: Int) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nlet a = 0\nvar b = 0\nlet nums = Array(repeating: 0, count: 10000)\nlet node = ListNode(x: 0)\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor _ in 0 ..< n {\nlet c = 0\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor _ in 0 ..< n {\nfunction()\n}\n}\n
            space_complexity.zig
            [class]{}-[func]{function}\n// \u5e38\u6570\u9636\nfn constant(n: i32) void {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst a: i32 = 0;\nvar b: i32 = 0;\nvar nums = [_]i32{0}**10000;\nvar node = inc.ListNode(i32){.val = 0};\nvar i: i32 = 0;\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nwhile (i < n) : (i += 1) {\nvar c: i32 = 0;\n_ = c;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\ni = 0;\nwhile (i < n) : (i += 1) {\n_ = function();\n}\n_ = a;\n_ = b;\n_ = nums;\n_ = node;\n}\n
            space_complexity.dart
            /* \u51fd\u6570 */\nint function() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nfinal int a = 0;\nint b = 0;\nList<int> nums = List.filled(10000, 0);\nListNode node = ListNode(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (var i = 0; i < n; i++) {\nint c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (var i = 0; i < n; i++) {\nfunction();\n}\n}\n
            space_complexity.rs
            /* \u51fd\u6570 */\nfn function() ->i32 {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\n#[allow(unused)]\nfn constant(n: i32) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst A: i32 = 0;\nlet b = 0;\nlet nums = vec![0; 10000];\nlet node = ListNode::new(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor i in 0..n {\nlet c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor i in 0..n {\nfunction();\n}\n}\n
            "},{"location":"chapter_computational_complexity/space_complexity/#2-on","title":"2. \u00a0 \u7ebf\u6027\u9636 \\(O(n)\\)","text":"

            \u7ebf\u6027\u9636\u5e38\u89c1\u4e8e\u5143\u7d20\u6570\u91cf\u4e0e \\(n\\) \u6210\u6b63\u6bd4\u7684\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u7b49\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nint[] nums = new int[n];\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nList<ListNode> nodes = new ArrayList<>();\nfor (int i = 0; i < n; i++) {\nnodes.add(new ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nMap<Integer, String> map = new HashMap<>();\nfor (int i = 0; i < n; i++) {\nmap.put(i, String.valueOf(i));\n}\n}\n
            space_complexity.cpp
            /* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nvector<int> nums(n);\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nvector<ListNode> nodes;\nfor (int i = 0; i < n; i++) {\nnodes.push_back(ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nunordered_map<int, string> map;\nfor (int i = 0; i < n; i++) {\nmap[i] = to_string(i);\n}\n}\n
            space_complexity.py
            def linear(n: int):\n\"\"\"\u7ebf\u6027\u9636\"\"\"\n# \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nnums = [0] * n\n# \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nhmap = dict[int, str]()\nfor i in range(n):\nhmap[i] = str(i)\n
            space_complexity.go
            /* \u7ebf\u6027\u9636 */\nfunc spaceLinear(n int) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n_ = make([]int, n)\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nvar nodes []*node\nfor i := 0; i < n; i++ {\nnodes = append(nodes, newNode(i))\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nm := make(map[int]string, n)\nfor i := 0; i < n; i++ {\nm[i] = strconv.Itoa(i)\n}\n}\n
            space_complexity.js
            /* \u7ebf\u6027\u9636 */\nfunction linear(n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nconst nums = new Array(n);\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nconst nodes = [];\nfor (let i = 0; i < n; i++) {\nnodes.push(new ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nconst map = new Map();\nfor (let i = 0; i < n; i++) {\nmap.set(i, i.toString());\n}\n}\n
            space_complexity.ts
            /* \u7ebf\u6027\u9636 */\nfunction linear(n: number): void {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nconst nums = new Array(n);\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nconst nodes: ListNode[] = [];\nfor (let i = 0; i < n; i++) {\nnodes.push(new ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nconst map = new Map();\nfor (let i = 0; i < n; i++) {\nmap.set(i, i.toString());\n}\n}\n
            space_complexity.c
            /* \u54c8\u5e0c\u8868 */\nstruct hashTable {\nint key;\nint val;\nUT_hash_handle hh; // \u57fa\u4e8e uthash.h \u5b9e\u73b0\n};\ntypedef struct hashTable hashTable;\n/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nint *nums = malloc(sizeof(int) * n);\nfree(nums);\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nListNode **nodes = malloc(sizeof(ListNode *) * n);\nfor (int i = 0; i < n; i++) {\nnodes[i] = newListNode(i);\n}\n// \u5185\u5b58\u91ca\u653e\nfor (int i = 0; i < n; i++) {\nfree(nodes[i]);\n}\nfree(nodes);\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nhashTable *h = NULL;\nfor (int i = 0; i < n; i++) {\nhashTable *tmp = malloc(sizeof(hashTable));\ntmp->key = i;\ntmp->val = i;\nHASH_ADD_INT(h, key, tmp);\n}\n// \u5185\u5b58\u91ca\u653e\nhashTable *curr, *tmp;\nHASH_ITER(hh, h, curr, tmp) {\nHASH_DEL(h, curr);\nfree(curr);\n}\n}\n
            space_complexity.cs
            /* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nint[] nums = new int[n];\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nList<ListNode> nodes = new();\nfor (int i = 0; i < n; i++) {\nnodes.Add(new ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nDictionary<int, string> map = new();\nfor (int i = 0; i < n; i++) {\nmap.Add(i, i.ToString());\n}\n}\n
            space_complexity.swift
            /* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nlet nums = Array(repeating: 0, count: n)\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nlet nodes = (0 ..< n).map { ListNode(x: $0) }\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nlet map = Dictionary(uniqueKeysWithValues: (0 ..< n).map { ($0, \"\\($0)\") })\n}\n
            space_complexity.zig
            // \u7ebf\u6027\u9636\nfn linear(comptime n: i32) !void {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nvar nums = [_]i32{0}**n;\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nvar nodes = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer nodes.deinit();\nvar i: i32 = 0;\nwhile (i < n) : (i += 1) {\ntry nodes.append(i);\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nvar map = std.AutoArrayHashMap(i32, []const u8).init(std.heap.page_allocator);\ndefer map.deinit();\nvar j: i32 = 0;\nwhile (j < n) : (j += 1) {\nconst string = try std.fmt.allocPrint(std.heap.page_allocator, \"{d}\", .{j});\ndefer std.heap.page_allocator.free(string);\ntry map.put(i, string);\n}\n_ = nums;\n}\n
            space_complexity.dart
            /* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nList<int> nums = List.filled(n, 0);\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nList<ListNode> nodes = [];\nfor (var i = 0; i < n; i++) {\nnodes.add(ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nMap<int, String> map = HashMap();\nfor (var i = 0; i < n; i++) {\nmap.putIfAbsent(i, () => i.toString());\n}\n}\n
            space_complexity.rs
            /* \u7ebf\u6027\u9636 */\n#[allow(unused)]\nfn linear(n: i32) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nlet mut nums = vec![0; n as usize];\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nlet mut nodes = Vec::new();\nfor i in 0..n {\nnodes.push(ListNode::new(i))\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nlet mut map = HashMap::new();\nfor i in 0..n {\nmap.insert(i, i.to_string());\n}\n}\n

            \u4ee5\u4e0b\u9012\u5f52\u51fd\u6570\u4f1a\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684 algorithm() \u51fd\u6570\uff0c\u4f7f\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\nSystem.out.println(\"\u9012\u5f52 n = \" + n);\nif (n == 1)\nreturn;\nlinearRecur(n - 1);\n}\n
            space_complexity.cpp
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\ncout << \"\u9012\u5f52 n = \" << n << endl;\nif (n == 1)\nreturn;\nlinearRecur(n - 1);\n}\n
            space_complexity.py
            def linear_recur(n: int):\n\"\"\"\u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\nprint(\"\u9012\u5f52 n =\", n)\nif n == 1:\nreturn\nlinear_recur(n - 1)\n
            space_complexity.go
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceLinearRecur(n int) {\nfmt.Println(\"\u9012\u5f52 n =\", n)\nif n == 1 {\nreturn\n}\nspaceLinearRecur(n - 1)\n}\n
            space_complexity.js
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n) {\nconsole.log(`\u9012\u5f52 n = ${n}`);\nif (n === 1) return;\nlinearRecur(n - 1);\n}\n
            space_complexity.ts
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n: number): void {\nconsole.log(`\u9012\u5f52 n = ${n}`);\nif (n === 1) return;\nlinearRecur(n - 1);\n}\n
            space_complexity.c
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\nprintf(\"\u9012\u5f52 n = %d\\r\\n\", n);\nif (n == 1)\nreturn;\nlinearRecur(n - 1);\n}\n
            space_complexity.cs
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\nConsole.WriteLine(\"\u9012\u5f52 n = \" + n);\nif (n == 1) return;\nlinearRecur(n - 1);\n}\n
            space_complexity.swift
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc linearRecur(n: Int) {\nprint(\"\u9012\u5f52 n = \\(n)\")\nif n == 1 {\nreturn\n}\nlinearRecur(n: n - 1)\n}\n
            space_complexity.zig
            // \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn linearRecur(comptime n: i32) void {\nstd.debug.print(\"\u9012\u5f52 n = {}\\n\", .{n});\nif (n == 1) return;\nlinearRecur(n - 1);\n}\n
            space_complexity.dart
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\nprint('\u9012\u5f52 n = $n');\nif (n == 1) return;\nlinearRecur(n - 1);\n}\n
            space_complexity.rs
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn linear_recur(n: i32) {\nprintln!(\"\u9012\u5f52 n = {}\", n);\nif n == 1 {return};\nlinear_recur(n - 1);\n}\n

            \u56fe\uff1a\u9012\u5f52\u51fd\u6570\u4ea7\u751f\u7684\u7ebf\u6027\u9636\u7a7a\u95f4\u590d\u6742\u5ea6

            "},{"location":"chapter_computational_complexity/space_complexity/#3-on2","title":"3. \u00a0 \u5e73\u65b9\u9636 \\(O(n^2)\\)","text":"

            \u5e73\u65b9\u9636\u5e38\u89c1\u4e8e\u77e9\u9635\u548c\u56fe\uff0c\u5143\u7d20\u6570\u91cf\u4e0e \\(n\\) \u6210\u5e73\u65b9\u5173\u7cfb\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nint[][] numMatrix = new int[n][n];\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nList<List<Integer>> numList = new ArrayList<>();\nfor (int i = 0; i < n; i++) {\nList<Integer> tmp = new ArrayList<>();\nfor (int j = 0; j < n; j++) {\ntmp.add(0);\n}\nnumList.add(tmp);\n}\n}\n
            space_complexity.cpp
            /* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nvector<vector<int>> numMatrix;\nfor (int i = 0; i < n; i++) {\nvector<int> tmp;\nfor (int j = 0; j < n; j++) {\ntmp.push_back(0);\n}\nnumMatrix.push_back(tmp);\n}\n}\n
            space_complexity.py
            def quadratic(n: int):\n\"\"\"\u5e73\u65b9\u9636\"\"\"\n# \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nnum_matrix = [[0] * n for _ in range(n)]\n
            space_complexity.go
            /* \u5e73\u65b9\u9636 */\nfunc spaceQuadratic(n int) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nnumMatrix := make([][]int, n)\nfor i := 0; i < n; i++ {\nnumMatrix[i] = make([]int, n)\n}\n}\n
            space_complexity.js
            /* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nconst numMatrix = Array(n)\n.fill(null)\n.map(() => Array(n).fill(null));\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nconst numList = [];\nfor (let i = 0; i < n; i++) {\nconst tmp = [];\nfor (let j = 0; j < n; j++) {\ntmp.push(0);\n}\nnumList.push(tmp);\n}\n}\n
            space_complexity.ts
            /* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): void {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nconst numMatrix = Array(n)\n.fill(null)\n.map(() => Array(n).fill(null));\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nconst numList = [];\nfor (let i = 0; i < n; i++) {\nconst tmp = [];\nfor (let j = 0; j < n; j++) {\ntmp.push(0);\n}\nnumList.push(tmp);\n}\n}\n
            space_complexity.c
            /* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nint **numMatrix = malloc(sizeof(int *) * n);\nfor (int i = 0; i < n; i++) {\nint *tmp = malloc(sizeof(int) * n);\nfor (int j = 0; j < n; j++) {\ntmp[j] = 0;\n}\nnumMatrix[i] = tmp;\n}\n// \u5185\u5b58\u91ca\u653e\nfor (int i = 0; i < n; i++) {\nfree(numMatrix[i]);\n}\nfree(numMatrix);\n}\n
            space_complexity.cs
            /* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nint[,] numMatrix = new int[n, n];\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nList<List<int>> numList = new();\nfor (int i = 0; i < n; i++) {\nList<int> tmp = new();\nfor (int j = 0; j < n; j++) {\ntmp.Add(0);\n}\nnumList.Add(tmp);\n}\n}\n
            space_complexity.swift
            /* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) {\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nlet numList = Array(repeating: Array(repeating: 0, count: n), count: n)\n}\n
            space_complexity.zig
            // \u5e73\u65b9\u9636\nfn quadratic(n: i32) !void {\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nvar nodes = std.ArrayList(std.ArrayList(i32)).init(std.heap.page_allocator);\ndefer nodes.deinit();\nvar i: i32 = 0;\nwhile (i < n) : (i += 1) {\nvar tmp = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer tmp.deinit();\nvar j: i32 = 0;\nwhile (j < n) : (j += 1) {\ntry tmp.append(0);\n}\ntry nodes.append(tmp);\n}\n}\n
            space_complexity.dart
            /* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nList<List<int>> numMatrix = List.generate(n, (_) => List.filled(n, 0));\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nList<List<int>> numList = [];\nfor (var i = 0; i < n; i++) {\nList<int> tmp = [];\nfor (int j = 0; j < n; j++) {\ntmp.add(0);\n}\nnumList.add(tmp);\n}\n}\n
            space_complexity.rs
            /* \u5e73\u65b9\u9636 */\n#[allow(unused)]\nfn quadratic(n: i32) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nlet num_matrix = vec![vec![0; n as usize]; n as usize];\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nlet mut num_list = Vec::new();\nfor i in 0..n {\nlet mut tmp = Vec::new();\nfor j in 0..n {\ntmp.push(0);\n}\nnum_list.push(tmp);\n}\n}\n

            \u5728\u4ee5\u4e0b\u9012\u5f52\u51fd\u6570\u4e2d\uff0c\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684 algorithm() \uff0c\u5e76\u4e14\u6bcf\u4e2a\u51fd\u6570\u4e2d\u90fd\u521d\u59cb\u5316\u4e86\u4e00\u4e2a\u6570\u7ec4\uff0c\u957f\u5ea6\u5206\u522b\u4e3a \\(n, n-1, n-2, ..., 2, 1\\) \uff0c\u5e73\u5747\u957f\u5ea6\u4e3a \\(\\frac{n}{2}\\) \uff0c\u56e0\u6b64\u603b\u4f53\u5360\u7528 \\(O(n^2)\\) \u7a7a\u95f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\nif (n <= 0)\nreturn 0;\n// \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\nint[] nums = new int[n];\nSystem.out.println(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.length);\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.cpp
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\nif (n <= 0)\nreturn 0;\nvector<int> nums(n);\ncout << \"\u9012\u5f52 n = \" << n << \" \u4e2d\u7684 nums \u957f\u5ea6 = \" << nums.size() << endl;\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.py
            def quadratic_recur(n: int) -> int:\n\"\"\"\u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\nif n <= 0:\nreturn 0\n# \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\nnums = [0] * n\nreturn quadratic_recur(n - 1)\n
            space_complexity.go
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceQuadraticRecur(n int) int {\nif n <= 0 {\nreturn 0\n}\nnums := make([]int, n)\nfmt.Printf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d \\n\", n, len(nums))\nreturn spaceQuadraticRecur(n - 1)\n}\n
            space_complexity.js
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n) {\nif (n <= 0) return 0;\nconst nums = new Array(n);\nconsole.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.ts
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n: number): number {\nif (n <= 0) return 0;\nconst nums = new Array(n);\nconsole.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.c
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\nif (n <= 0)\nreturn 0;\nint *nums = malloc(sizeof(int) * n);\nprintf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d\\r\\n\", n, n);\nint res = quadraticRecur(n - 1);\nfree(nums);\nreturn res;\n}\n
            space_complexity.cs
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\nif (n <= 0) return 0;\nint[] nums = new int[n];\nConsole.WriteLine(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.Length);\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.swift
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\n@discardableResult\nfunc quadraticRecur(n: Int) -> Int {\nif n <= 0 {\nreturn 0\n}\n// \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\nlet nums = Array(repeating: 0, count: n)\nprint(\"\u9012\u5f52 n = \\(n) \u4e2d\u7684 nums \u957f\u5ea6 = \\(nums.count)\")\nreturn quadraticRecur(n: n - 1)\n}\n
            space_complexity.zig
            // \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn quadraticRecur(comptime n: i32) i32 {\nif (n <= 0) return 0;\nvar nums = [_]i32{0}**n;\nstd.debug.print(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\\n\", .{n, nums.len});\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.dart
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\nif (n <= 0) return 0;\nList<int> nums = List.filled(n, 0);\nprint('\u9012\u5f52 n = $n \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}');\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.rs
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn quadratic_recur(n: i32) -> i32 {\nif n <= 0 {return 0};\n// \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\nlet nums = vec![0; n as usize];\nprintln!(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\", n, nums.len());\nreturn quadratic_recur(n - 1);\n}\n

            \u56fe\uff1a\u9012\u5f52\u51fd\u6570\u4ea7\u751f\u7684\u5e73\u65b9\u9636\u7a7a\u95f4\u590d\u6742\u5ea6

            "},{"location":"chapter_computational_complexity/space_complexity/#4-o2n","title":"4. \u00a0 \u6307\u6570\u9636 \\(O(2^n)\\)","text":"

            \u6307\u6570\u9636\u5e38\u89c1\u4e8e\u4e8c\u53c9\u6811\u3002\u9ad8\u5ea6\u4e3a \\(n\\) \u7684\u300c\u6ee1\u4e8c\u53c9\u6811\u300d\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(2^n - 1\\) \uff0c\u5360\u7528 \\(O(2^n)\\) \u7a7a\u95f4\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode buildTree(int n) {\nif (n == 0)\nreturn null;\nTreeNode root = new TreeNode(0);\nroot.left = buildTree(n - 1);\nroot.right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.cpp
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\nif (n == 0)\nreturn nullptr;\nTreeNode *root = new TreeNode(0);\nroot->left = buildTree(n - 1);\nroot->right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.py
            def build_tree(n: int) -> TreeNode | None:\n\"\"\"\u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\"\"\"\nif n == 0:\nreturn None\nroot = TreeNode(0)\nroot.left = build_tree(n - 1)\nroot.right = build_tree(n - 1)\nreturn root\n
            space_complexity.go
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n int) *treeNode {\nif n == 0 {\nreturn nil\n}\nroot := newTreeNode(0)\nroot.left = buildTree(n - 1)\nroot.right = buildTree(n - 1)\nreturn root\n}\n
            space_complexity.js
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n) {\nif (n === 0) return null;\nconst root = new TreeNode(0);\nroot.left = buildTree(n - 1);\nroot.right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.ts
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n: number): TreeNode | null {\nif (n === 0) return null;\nconst root = new TreeNode(0);\nroot.left = buildTree(n - 1);\nroot.right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.c
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\nif (n == 0)\nreturn NULL;\nTreeNode *root = newTreeNode(0);\nroot->left = buildTree(n - 1);\nroot->right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.cs
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? buildTree(int n) {\nif (n == 0) return null;\nTreeNode root = new TreeNode(0);\nroot.left = buildTree(n - 1);\nroot.right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.swift
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n: Int) -> TreeNode? {\nif n == 0 {\nreturn nil\n}\nlet root = TreeNode(x: 0)\nroot.left = buildTree(n: n - 1)\nroot.right = buildTree(n: n - 1)\nreturn root\n}\n
            space_complexity.zig
            // \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\nfn buildTree(mem_allocator: std.mem.Allocator, n: i32) !?*inc.TreeNode(i32) {\nif (n == 0) return null;\nconst root = try mem_allocator.create(inc.TreeNode(i32));\nroot.init(0);\nroot.left = try buildTree(mem_allocator, n - 1);\nroot.right = try buildTree(mem_allocator, n - 1);\nreturn root;\n}\n
            space_complexity.dart
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? buildTree(int n) {\nif (n == 0) return null;\nTreeNode root = TreeNode(0);\nroot.left = buildTree(n - 1);\nroot.right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.rs
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfn build_tree(n: i32) -> Option<Rc<RefCell<TreeNode>>> {\nif n == 0 {return None};\nlet root = TreeNode::new(0);\nroot.borrow_mut().left = build_tree(n - 1);\nroot.borrow_mut().right = build_tree(n - 1);\nreturn Some(root);\n}\n

            \u56fe\uff1a\u6ee1\u4e8c\u53c9\u6811\u4ea7\u751f\u7684\u6307\u6570\u9636\u7a7a\u95f4\u590d\u6742\u5ea6

            "},{"location":"chapter_computational_complexity/space_complexity/#5-olog-n","title":"5. \u00a0 \u5bf9\u6570\u9636 \\(O(\\log n)\\)","text":"

            \u5bf9\u6570\u9636\u5e38\u89c1\u4e8e\u5206\u6cbb\u7b97\u6cd5\u548c\u6570\u636e\u7c7b\u578b\u8f6c\u6362\u7b49\u3002

            \u4f8b\u5982\u5f52\u5e76\u6392\u5e8f\u7b97\u6cd5\uff0c\u8f93\u5165\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\uff0c\u6bcf\u8f6e\u9012\u5f52\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5212\u5206\u4e3a\u4e24\u534a\uff0c\u5f62\u6210\u9ad8\u5ea6\u4e3a \\(\\log n\\) \u7684\u9012\u5f52\u6811\uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u6808\u5e27\u7a7a\u95f4\u3002

            \u518d\u4f8b\u5982\u5c06\u6570\u5b57\u8f6c\u5316\u4e3a\u5b57\u7b26\u4e32\uff0c\u8f93\u5165\u4efb\u610f\u6b63\u6574\u6570 \\(n\\) \uff0c\u5b83\u7684\u4f4d\u6570\u4e3a \\(\\log_{10} n + 1\\) \uff0c\u5373\u5bf9\u5e94\u5b57\u7b26\u4e32\u957f\u5ea6\u4e3a \\(\\log_{10} n + 1\\) \uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log_{10} n + 1) = O(\\log n)\\) \u3002

            "},{"location":"chapter_computational_complexity/space_complexity/#234","title":"2.3.4 \u00a0 \u6743\u8861\u65f6\u95f4\u4e0e\u7a7a\u95f4","text":"

            \u7406\u60f3\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5e0c\u671b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u90fd\u80fd\u8fbe\u5230\u6700\u4f18\u3002\u7136\u800c\u5728\u5b9e\u9645\u60c5\u51b5\u4e2d\uff0c\u540c\u65f6\u4f18\u5316\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u662f\u975e\u5e38\u56f0\u96be\u7684\u3002

            \u964d\u4f4e\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u9700\u8981\u4ee5\u63d0\u5347\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a\u4ee3\u4ef7\uff0c\u53cd\u4e4b\u4ea6\u7136\u3002\u6211\u4eec\u5c06\u727a\u7272\u5185\u5b58\u7a7a\u95f4\u6765\u63d0\u5347\u7b97\u6cd5\u8fd0\u884c\u901f\u5ea6\u7684\u601d\u8def\u79f0\u4e3a\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\uff1b\u53cd\u4e4b\uff0c\u5219\u79f0\u4e3a\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u3002

            \u9009\u62e9\u54ea\u79cd\u601d\u8def\u53d6\u51b3\u4e8e\u6211\u4eec\u66f4\u770b\u91cd\u54ea\u4e2a\u65b9\u9762\u3002\u5728\u5927\u591a\u6570\u60c5\u51b5\u4e0b\uff0c\u65f6\u95f4\u6bd4\u7a7a\u95f4\u66f4\u5b9d\u8d35\uff0c\u56e0\u6b64\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\u901a\u5e38\u662f\u66f4\u5e38\u7528\u7684\u7b56\u7565\u3002\u5f53\u7136\uff0c\u5728\u6570\u636e\u91cf\u5f88\u5927\u7684\u60c5\u51b5\u4e0b\uff0c\u63a7\u5236\u7a7a\u95f4\u590d\u6742\u5ea6\u4e5f\u662f\u975e\u5e38\u91cd\u8981\u7684\u3002

            "},{"location":"chapter_computational_complexity/summary/","title":"2.4 \u00a0 \u5c0f\u7ed3","text":"

            \u7b97\u6cd5\u6548\u7387\u8bc4\u4f30

            • \u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u662f\u8861\u91cf\u7b97\u6cd5\u4f18\u52a3\u7684\u4e24\u4e2a\u4e3b\u8981\u8bc4\u4ef7\u6307\u6807\u3002
            • \u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5b9e\u9645\u6d4b\u8bd5\u6765\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\uff0c\u4f46\u96be\u4ee5\u6d88\u9664\u6d4b\u8bd5\u73af\u5883\u7684\u5f71\u54cd\uff0c\u4e14\u4f1a\u8017\u8d39\u5927\u91cf\u8ba1\u7b97\u8d44\u6e90\u3002
            • \u590d\u6742\u5ea6\u5206\u6790\u53ef\u4ee5\u514b\u670d\u5b9e\u9645\u6d4b\u8bd5\u7684\u5f0a\u7aef\uff0c\u5206\u6790\u7ed3\u679c\u9002\u7528\u4e8e\u6240\u6709\u8fd0\u884c\u5e73\u53f0\uff0c\u5e76\u4e14\u80fd\u591f\u63ed\u793a\u7b97\u6cd5\u5728\u4e0d\u540c\u6570\u636e\u89c4\u6a21\u4e0b\u7684\u6548\u7387\u3002

            \u65f6\u95f4\u590d\u6742\u5ea6

            • \u65f6\u95f4\u590d\u6742\u5ea6\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u6570\u636e\u91cf\u589e\u957f\u7684\u8d8b\u52bf\uff0c\u53ef\u4ee5\u6709\u6548\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\uff0c\u4f46\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\u53ef\u80fd\u5931\u6548\uff0c\u5982\u5728\u8f93\u5165\u7684\u6570\u636e\u91cf\u8f83\u5c0f\u6216\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u540c\u65f6\uff0c\u65e0\u6cd5\u7cbe\u786e\u5bf9\u6bd4\u7b97\u6cd5\u6548\u7387\u7684\u4f18\u52a3\u3002
            • \u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4f7f\u7528\u5927 \\(O\\) \u7b26\u53f7\u8868\u793a\uff0c\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c\uff0c\u53cd\u6620\u5f53 \\(n\\) \u8d8b\u5411\u6b63\u65e0\u7a77\u65f6\uff0c\u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u7684\u589e\u957f\u7ea7\u522b\u3002
            • \u63a8\u7b97\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u4e3a\u4e24\u6b65\uff0c\u9996\u5148\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf\uff0c\u7136\u540e\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c\u3002
            • \u5e38\u89c1\u65f6\u95f4\u590d\u6742\u5ea6\u4ece\u5c0f\u5230\u5927\u6392\u5217\u6709 \\(O(1)\\) \u3001\\(O(\\log n)\\) \u3001\\(O(n)\\) \u3001\\(O(n \\log n)\\) \u3001\\(O(n^2)\\) \u3001\\(O(2^n)\\) \u3001\\(O(n!)\\) \u7b49\u3002
            • \u67d0\u4e9b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u975e\u56fa\u5b9a\uff0c\u800c\u662f\u4e0e\u8f93\u5165\u6570\u636e\u7684\u5206\u5e03\u6709\u5173\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u4e3a\u6700\u5dee\u3001\u6700\u4f73\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u51e0\u4e4e\u4e0d\u7528\uff0c\u56e0\u4e3a\u8f93\u5165\u6570\u636e\u4e00\u822c\u9700\u8981\u6ee1\u8db3\u4e25\u683c\u6761\u4ef6\u624d\u80fd\u8fbe\u5230\u6700\u4f73\u60c5\u51b5\u3002
            • \u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u53cd\u6620\u7b97\u6cd5\u5728\u968f\u673a\u6570\u636e\u8f93\u5165\u4e0b\u7684\u8fd0\u884c\u6548\u7387\uff0c\u6700\u63a5\u8fd1\u5b9e\u9645\u5e94\u7528\u4e2d\u7684\u7b97\u6cd5\u6027\u80fd\u3002\u8ba1\u7b97\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u9700\u8981\u7edf\u8ba1\u8f93\u5165\u6570\u636e\u5206\u5e03\u4ee5\u53ca\u7efc\u5408\u540e\u7684\u6570\u5b66\u671f\u671b\u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6

            • \u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u4f5c\u7528\u7c7b\u4f3c\u4e8e\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u5360\u7528\u7a7a\u95f4\u968f\u6570\u636e\u91cf\u589e\u957f\u7684\u8d8b\u52bf\u3002
            • \u7b97\u6cd5\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u76f8\u5173\u5185\u5b58\u7a7a\u95f4\u53ef\u5206\u4e3a\u8f93\u5165\u7a7a\u95f4\u3001\u6682\u5b58\u7a7a\u95f4\u3001\u8f93\u51fa\u7a7a\u95f4\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u8f93\u5165\u7a7a\u95f4\u4e0d\u8ba1\u5165\u7a7a\u95f4\u590d\u6742\u5ea6\u8ba1\u7b97\u3002\u6682\u5b58\u7a7a\u95f4\u53ef\u5206\u4e3a\u6307\u4ee4\u7a7a\u95f4\u3001\u6570\u636e\u7a7a\u95f4\u3001\u6808\u5e27\u7a7a\u95f4\uff0c\u5176\u4e2d\u6808\u5e27\u7a7a\u95f4\u901a\u5e38\u4ec5\u5728\u9012\u5f52\u51fd\u6570\u4e2d\u5f71\u54cd\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
            • \u6211\u4eec\u901a\u5e38\u53ea\u5173\u6ce8\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\uff0c\u5373\u7edf\u8ba1\u7b97\u6cd5\u5728\u6700\u5dee\u8f93\u5165\u6570\u636e\u548c\u6700\u5dee\u8fd0\u884c\u65f6\u95f4\u70b9\u4e0b\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
            • \u5e38\u89c1\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece\u5c0f\u5230\u5927\u6392\u5217\u6709 \\(O(1)\\) \u3001\\(O(\\log n)\\) \u3001\\(O(n)\\) \u3001\\(O(n^2)\\) \u3001\\(O(2^n)\\) \u7b49\u3002
            "},{"location":"chapter_computational_complexity/summary/#241-q-a","title":"2.4.1 \u00a0 Q & A","text":"

            \u5c3e\u9012\u5f52\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u5417\uff1f

            \u7406\u8bba\u4e0a\uff0c\u5c3e\u9012\u5f52\u51fd\u6570\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u88ab\u4f18\u5316\u81f3 \\(O(1)\\) \u3002\u4e0d\u8fc7\u7edd\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\uff08\u4f8b\u5982 Java \u3001Python \u3001C++ \u3001Go \u3001C# \u7b49\uff09\u90fd\u4e0d\u652f\u6301\u81ea\u52a8\u4f18\u5316\u5c3e\u9012\u5f52\uff0c\u56e0\u6b64\u901a\u5e38\u8ba4\u4e3a\u7a7a\u95f4\u590d\u6742\u5ea6\u662f \\(O(n)\\) \u3002

            \u51fd\u6570\u548c\u65b9\u6cd5\u8fd9\u4e24\u4e2a\u672f\u8bed\u7684\u533a\u522b\u662f\u4ec0\u4e48\uff1f

            \u51fd\u6570\uff08function\uff09\u53ef\u4ee5\u88ab\u72ec\u7acb\u6267\u884c\uff0c\u6240\u6709\u53c2\u6570\u90fd\u4ee5\u663e\u5f0f\u4f20\u9012\u3002\u65b9\u6cd5\uff08method\uff09\u4e0e\u4e00\u4e2a\u5bf9\u8c61\u5173\u8054\uff0c\u88ab\u9690\u5f0f\u4f20\u9012\u7ed9\u8c03\u7528\u5b83\u7684\u5bf9\u8c61\uff0c\u80fd\u591f\u5bf9\u7c7b\u7684\u5b9e\u4f8b\u4e2d\u5305\u542b\u7684\u6570\u636e\u8fdb\u884c\u64cd\u4f5c\u3002

            \u4e0b\u9762\u4ee5\u51e0\u4e2a\u5e38\u89c1\u7684\u7f16\u7a0b\u8bed\u8a00\u6765\u8bf4\u660e\u3002

            • C \u8bed\u8a00\u662f\u8fc7\u7a0b\u5f0f\u7f16\u7a0b\u8bed\u8a00\uff0c\u6ca1\u6709\u9762\u5411\u5bf9\u8c61\u7684\u6982\u5ff5\uff0c\u6240\u4ee5\u53ea\u6709\u51fd\u6570\u3002\u4f46\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u521b\u5efa\u7ed3\u6784\u4f53\uff08struct\uff09\u6765\u6a21\u62df\u9762\u5411\u5bf9\u8c61\u7f16\u7a0b\uff0c\u4e0e\u7ed3\u6784\u4f53\u76f8\u5173\u8054\u7684\u51fd\u6570\u5c31\u76f8\u5f53\u4e8e\u5176\u4ed6\u8bed\u8a00\u4e2d\u7684\u65b9\u6cd5\u3002
            • Java \u548c C# \u662f\u9762\u5411\u5bf9\u8c61\u7684\u7f16\u7a0b\u8bed\u8a00\uff0c\u4ee3\u7801\u5757\uff08\u65b9\u6cd5\uff09\u901a\u5e38\u90fd\u662f\u4f5c\u4e3a\u67d0\u4e2a\u7c7b\u7684\u4e00\u90e8\u5206\u3002\u9759\u6001\u65b9\u6cd5\u7684\u884c\u4e3a\u7c7b\u4f3c\u4e8e\u51fd\u6570\uff0c\u56e0\u4e3a\u5b83\u88ab\u7ed1\u5b9a\u5728\u7c7b\u4e0a\uff0c\u4e0d\u80fd\u8bbf\u95ee\u7279\u5b9a\u7684\u5b9e\u4f8b\u53d8\u91cf\u3002
            • C++ \u548c Python \u65e2\u652f\u6301\u8fc7\u7a0b\u5f0f\u7f16\u7a0b\uff08\u51fd\u6570\uff09\uff0c\u4e5f\u652f\u6301\u9762\u5411\u5bf9\u8c61\u7f16\u7a0b\uff08\u65b9\u6cd5\uff09\u3002

            \u56fe\u201c\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u5e38\u89c1\u7c7b\u578b\u201d\u53cd\u6620\u7684\u662f\u5426\u662f\u5360\u7528\u7a7a\u95f4\u7684\u7edd\u5bf9\u5927\u5c0f\uff1f

            \u4e0d\u662f\uff0c\u8be5\u56fe\u7247\u5c55\u793a\u7684\u662f\u7a7a\u95f4\u590d\u6742\u5ea6\uff0c\u5176\u53cd\u6620\u7684\u662f\u589e\u957f\u8d8b\u52bf\uff0c\u800c\u4e0d\u662f\u5360\u7528\u7a7a\u95f4\u7684\u7edd\u5bf9\u5927\u5c0f\u3002

            \u5047\u8bbe\u53d6 \\(n = 8\\) \uff0c\u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\u6bcf\u6761\u66f2\u7ebf\u7684\u503c\u4e0e\u51fd\u6570\u5bf9\u5e94\u4e0d\u4e0a\u3002\u8fd9\u662f\u56e0\u4e3a\u6bcf\u6761\u66f2\u7ebf\u90fd\u5305\u542b\u4e00\u4e2a\u5e38\u6570\u9879\uff0c\u7528\u4e8e\u5c06\u53d6\u503c\u8303\u56f4\u538b\u7f29\u5230\u4e00\u4e2a\u89c6\u89c9\u8212\u9002\u7684\u8303\u56f4\u5185\u3002

            \u5728\u5b9e\u9645\u4e2d\uff0c\u56e0\u4e3a\u6211\u4eec\u901a\u5e38\u4e0d\u77e5\u9053\u6bcf\u4e2a\u65b9\u6cd5\u7684\u201c\u5e38\u6570\u9879\u201d\u590d\u6742\u5ea6\u662f\u591a\u5c11\uff0c\u6240\u4ee5\u4e00\u822c\u65e0\u6cd5\u4ec5\u51ed\u590d\u6742\u5ea6\u6765\u9009\u62e9 \\(n = 8\\) \u4e4b\u4e0b\u7684\u6700\u4f18\u89e3\u6cd5\u3002\u4f46\u5bf9\u4e8e \\(n = 8^5\\) \u5c31\u5f88\u597d\u9009\u4e86\uff0c\u8fd9\u65f6\u589e\u957f\u8d8b\u52bf\u5df2\u7ecf\u5360\u4e3b\u5bfc\u4e86\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/","title":"2.2 \u00a0 \u65f6\u95f4\u590d\u6742\u5ea6","text":"

            \u8fd0\u884c\u65f6\u95f4\u53ef\u4ee5\u76f4\u89c2\u4e14\u51c6\u786e\u5730\u53cd\u6620\u7b97\u6cd5\u7684\u6548\u7387\u3002\u5982\u679c\u6211\u4eec\u60f3\u8981\u51c6\u786e\u9884\u4f30\u4e00\u6bb5\u4ee3\u7801\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u5e94\u8be5\u5982\u4f55\u64cd\u4f5c\u5462\uff1f

            1. \u786e\u5b9a\u8fd0\u884c\u5e73\u53f0\uff0c\u5305\u62ec\u786c\u4ef6\u914d\u7f6e\u3001\u7f16\u7a0b\u8bed\u8a00\u3001\u7cfb\u7edf\u73af\u5883\u7b49\uff0c\u8fd9\u4e9b\u56e0\u7d20\u90fd\u4f1a\u5f71\u54cd\u4ee3\u7801\u7684\u8fd0\u884c\u6548\u7387\u3002
            2. \u8bc4\u4f30\u5404\u79cd\u8ba1\u7b97\u64cd\u4f5c\u6240\u9700\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u4f8b\u5982\u52a0\u6cd5\u64cd\u4f5c + \u9700\u8981 1 ns\uff0c\u4e58\u6cd5\u64cd\u4f5c * \u9700\u8981 10 ns\uff0c\u6253\u5370\u64cd\u4f5c print() \u9700\u8981 5 ns \u7b49\u3002
            3. \u7edf\u8ba1\u4ee3\u7801\u4e2d\u6240\u6709\u7684\u8ba1\u7b97\u64cd\u4f5c\uff0c\u5e76\u5c06\u6240\u6709\u64cd\u4f5c\u7684\u6267\u884c\u65f6\u95f4\u6c42\u548c\uff0c\u4ece\u800c\u5f97\u5230\u8fd0\u884c\u65f6\u95f4\u3002

            \u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\nint a = 2;  // 1 ns\na = a + 1;  // 1 ns\na = a * 2;  // 10 ns\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {  // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nSystem.out.println(0);     // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\nint a = 2;  // 1 ns\na = a + 1;  // 1 ns\na = a * 2;  // 10 ns\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {  // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\ncout << 0 << endl;         // 5 ns\n}\n}\n
            # \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\ndef algorithm(n: int):\na = 2      # 1 ns\na = a + 1  # 1 ns\na = a * 2  # 10 ns\n# \u5faa\u73af n \u6b21\nfor _ in range(n):  # 1 ns\nprint(0)        # 5 ns\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunc algorithm(n int) {\na := 2     // 1 ns\na = a + 1  // 1 ns\na = a * 2  // 10 ns\n// \u5faa\u73af n \u6b21\nfor i := 0; i < n; i++ {  // 1 ns\nfmt.Println(a)        // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunction algorithm(n) {\nvar a = 2; // 1 ns\na = a + 1; // 1 ns\na = a * 2; // 10 ns\n// \u5faa\u73af n \u6b21\nfor(let i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nconsole.log(0); // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunction algorithm(n: number): void {\nvar a: number = 2; // 1 ns\na = a + 1; // 1 ns\na = a * 2; // 10 ns\n// \u5faa\u73af n \u6b21\nfor(let i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nconsole.log(0); // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\nint a = 2;  // 1 ns\na = a + 1;  // 1 ns\na = a * 2;  // 10 ns\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {   // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nprintf(\"%d\", 0);            // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\nint a = 2;  // 1 ns\na = a + 1;  // 1 ns\na = a * 2;  // 10 ns\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {  // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nConsole.WriteLine(0);      // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunc algorithm(n: Int) {\nvar a = 2 // 1 ns\na = a + 1 // 1 ns\na = a * 2 // 10 ns\n// \u5faa\u73af n \u6b21\nfor _ in 0 ..< n { // 1 ns\nprint(0) // 5 ns\n}\n}\n
            \n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\nint a = 2; // 1 ns\na = a + 1; // 1 ns\na = a * 2; // 10 ns\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nprint(0); // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfn algorithm(n: i32) {\nlet mut a = 2;      // 1 ns\na = a + 1;          // 1 ns\na = a * 2;          // 10 ns\n// \u5faa\u73af n \u6b21\nfor _ in 0..n {     // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nprintln!(\"{}\", 0);  // 5 ns\n}\n}\n

            \u6839\u636e\u4ee5\u4e0a\u65b9\u6cd5\uff0c\u53ef\u4ee5\u5f97\u5230\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u4e3a \\(6n + 12\\) ns \uff1a

            \\[ 1 + 1 + 10 + (1 + 5) \\times n = 6n + 12 \\]

            \u4f46\u5b9e\u9645\u4e0a\uff0c\u7edf\u8ba1\u7b97\u6cd5\u7684\u8fd0\u884c\u65f6\u95f4\u65e2\u4e0d\u5408\u7406\u4e5f\u4e0d\u73b0\u5b9e\u3002\u9996\u5148\uff0c\u6211\u4eec\u4e0d\u5e0c\u671b\u5c06\u9884\u4f30\u65f6\u95f4\u548c\u8fd0\u884c\u5e73\u53f0\u7ed1\u5b9a\uff0c\u56e0\u4e3a\u7b97\u6cd5\u9700\u8981\u5728\u5404\u79cd\u4e0d\u540c\u7684\u5e73\u53f0\u4e0a\u8fd0\u884c\u3002\u5176\u6b21\uff0c\u6211\u4eec\u5f88\u96be\u83b7\u77e5\u6bcf\u79cd\u64cd\u4f5c\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u8fd9\u7ed9\u9884\u4f30\u8fc7\u7a0b\u5e26\u6765\u4e86\u6781\u5927\u7684\u96be\u5ea6\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#221","title":"2.2.1 \u00a0 \u7edf\u8ba1\u65f6\u95f4\u589e\u957f\u8d8b\u52bf","text":"

            \u300c\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u300d\u91c7\u53d6\u4e86\u4e00\u79cd\u4e0d\u540c\u7684\u65b9\u6cd5\uff0c\u5176\u7edf\u8ba1\u7684\u4e0d\u662f\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\uff0c\u800c\u662f\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u7740\u6570\u636e\u91cf\u53d8\u5927\u65f6\u7684\u589e\u957f\u8d8b\u52bf\u3002

            \u201c\u65f6\u95f4\u589e\u957f\u8d8b\u52bf\u201d\u8fd9\u4e2a\u6982\u5ff5\u6bd4\u8f83\u62bd\u8c61\uff0c\u6211\u4eec\u901a\u8fc7\u4e00\u4e2a\u4f8b\u5b50\u6765\u52a0\u4ee5\u7406\u89e3\u3002\u5047\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u7ed9\u5b9a\u4e09\u4e2a\u7b97\u6cd5\u51fd\u6570 A \u3001 B \u548c C \uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\nSystem.out.println(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\nfor (int i = 0; i < n; i++) {\nSystem.out.println(0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\nfor (int i = 0; i < 1000000; i++) {\nSystem.out.println(0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\ncout << 0 << endl;\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\nfor (int i = 0; i < n; i++) {\ncout << 0 << endl;\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\nfor (int i = 0; i < 1000000; i++) {\ncout << 0 << endl;\n}\n}\n
            # \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\ndef algorithm_A(n: int):\nprint(0)\n# \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\ndef algorithm_B(n: int):\nfor _ in range(n):\nprint(0)\n# \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\ndef algorithm_C(n: int):\nfor _ in range(1000000):\nprint(0)\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithm_A(n int) {\nfmt.Println(0)\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunc algorithm_B(n int) {\nfor i := 0; i < n; i++ {\nfmt.Println(0)\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithm_C(n int) {\nfor i := 0; i < 1000000; i++ {\nfmt.Println(0)\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_A(n) {\nconsole.log(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunction algorithm_B(n) {\nfor (let i = 0; i < n; i++) {\nconsole.log(0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_C(n) {\nfor (let i = 0; i < 1000000; i++) {\nconsole.log(0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_A(n: number): void {\nconsole.log(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunction algorithm_B(n: number): void {\nfor (let i = 0; i < n; i++) {\nconsole.log(0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_C(n: number): void {\nfor (let i = 0; i < 1000000; i++) {\nconsole.log(0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\nprintf(\"%d\", 0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\nfor (int i = 0; i < n; i++) {\nprintf(\"%d\", 0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\nfor (int i = 0; i < 1000000; i++) {\nprintf(\"%d\", 0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\nConsole.WriteLine(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\nfor (int i = 0; i < n; i++) {\nConsole.WriteLine(0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\nfor (int i = 0; i < 1000000; i++) {\nConsole.WriteLine(0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithmA(n: Int) {\nprint(0)\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunc algorithmB(n: Int) {\nfor _ in 0 ..< n {\nprint(0)\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithmC(n: Int) {\nfor _ in 0 ..< 1000000 {\nprint(0)\n}\n}\n
            \n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithmA(int n) {\nprint(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithmB(int n) {\nfor (int i = 0; i < n; i++) {\nprint(0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithmC(int n) {\nfor (int i = 0; i < 1000000; i++) {\nprint(0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_A(n: i32) {\nprintln!(\"{}\", 0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfn algorithm_B(n: i32) {\nfor _ in 0..n {\nprintln!(\"{}\", 0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_C(n: i32) {\nfor _ in 0..1000000 {\nprintln!(\"{}\", 0);\n}\n}\n

            \u7b97\u6cd5 A \u53ea\u6709 \\(1\\) \u4e2a\u6253\u5370\u64cd\u4f5c\uff0c\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u4e0d\u968f\u7740 \\(n\\) \u589e\u5927\u800c\u589e\u957f\u3002\u6211\u4eec\u79f0\u6b64\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\u300c\u5e38\u6570\u9636\u300d\u3002

            \u7b97\u6cd5 B \u4e2d\u7684\u6253\u5370\u64cd\u4f5c\u9700\u8981\u5faa\u73af \\(n\\) \u6b21\uff0c\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u7740 \\(n\\) \u589e\u5927\u5448\u7ebf\u6027\u589e\u957f\u3002\u6b64\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u88ab\u79f0\u4e3a\u300c\u7ebf\u6027\u9636\u300d\u3002

            \u7b97\u6cd5 C \u4e2d\u7684\u6253\u5370\u64cd\u4f5c\u9700\u8981\u5faa\u73af \\(1000000\\) \u6b21\uff0c\u867d\u7136\u8fd0\u884c\u65f6\u95f4\u5f88\u957f\uff0c\u4f46\u5b83\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\u3002\u56e0\u6b64 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u548c A \u76f8\u540c\uff0c\u4ecd\u4e3a\u300c\u5e38\u6570\u9636\u300d\u3002

            \u56fe\uff1a\u7b97\u6cd5 A \u3001B \u548c C \u7684\u65f6\u95f4\u589e\u957f\u8d8b\u52bf

            \u76f8\u8f83\u4e8e\u76f4\u63a5\u7edf\u8ba1\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u6709\u54ea\u4e9b\u7279\u70b9\u5462\uff1f

            • \u65f6\u95f4\u590d\u6742\u5ea6\u80fd\u591f\u6709\u6548\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u3002\u4f8b\u5982\uff0c\u7b97\u6cd5 B \u7684\u8fd0\u884c\u65f6\u95f4\u5448\u7ebf\u6027\u589e\u957f\uff0c\u5728 \\(n > 1\\) \u65f6\u6bd4\u7b97\u6cd5 A \u66f4\u6162\uff0c\u5728 \\(n > 1000000\\) \u65f6\u6bd4\u7b97\u6cd5 C \u66f4\u6162\u3002\u4e8b\u5b9e\u4e0a\uff0c\u53ea\u8981\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u8db3\u591f\u5927\uff0c\u590d\u6742\u5ea6\u4e3a\u201c\u5e38\u6570\u9636\u201d\u7684\u7b97\u6cd5\u4e00\u5b9a\u4f18\u4e8e\u201c\u7ebf\u6027\u9636\u201d\u7684\u7b97\u6cd5\uff0c\u8fd9\u6b63\u662f\u65f6\u95f4\u589e\u957f\u8d8b\u52bf\u6240\u8868\u8fbe\u7684\u542b\u4e49\u3002
            • \u65f6\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u66f4\u7b80\u4fbf\u3002\u663e\u7136\uff0c\u8fd0\u884c\u5e73\u53f0\u548c\u8ba1\u7b97\u64cd\u4f5c\u7c7b\u578b\u90fd\u4e0e\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u65e0\u5173\u3002\u56e0\u6b64\u5728\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u7b80\u5355\u5730\u5c06\u6240\u6709\u8ba1\u7b97\u64cd\u4f5c\u7684\u6267\u884c\u65f6\u95f4\u89c6\u4e3a\u76f8\u540c\u7684\u201c\u5355\u4f4d\u65f6\u95f4\u201d\uff0c\u4ece\u800c\u5c06\u201c\u8ba1\u7b97\u64cd\u4f5c\u7684\u8fd0\u884c\u65f6\u95f4\u7684\u7edf\u8ba1\u201d\u7b80\u5316\u4e3a\u201c\u8ba1\u7b97\u64cd\u4f5c\u7684\u6570\u91cf\u7684\u7edf\u8ba1\u201d\uff0c\u8fd9\u6837\u4ee5\u6765\u4f30\u7b97\u96be\u5ea6\u5c31\u5927\u5927\u964d\u4f4e\u4e86\u3002
            • \u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u5b58\u5728\u4e00\u5b9a\u7684\u5c40\u9650\u6027\u3002\u4f8b\u5982\uff0c\u5c3d\u7ba1\u7b97\u6cd5 A \u548c C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u540c\uff0c\u4f46\u5b9e\u9645\u8fd0\u884c\u65f6\u95f4\u5dee\u522b\u5f88\u5927\u3002\u540c\u6837\uff0c\u5c3d\u7ba1\u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u6bd4 C \u9ad8\uff0c\u4f46\u5728\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u8f83\u5c0f\u65f6\uff0c\u7b97\u6cd5 B \u660e\u663e\u4f18\u4e8e\u7b97\u6cd5 C \u3002\u5728\u8fd9\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5f88\u96be\u4ec5\u51ed\u65f6\u95f4\u590d\u6742\u5ea6\u5224\u65ad\u7b97\u6cd5\u6548\u7387\u7684\u9ad8\u4f4e\u3002\u5f53\u7136\uff0c\u5c3d\u7ba1\u5b58\u5728\u4e0a\u8ff0\u95ee\u9898\uff0c\u590d\u6742\u5ea6\u5206\u6790\u4ecd\u7136\u662f\u8bc4\u5224\u7b97\u6cd5\u6548\u7387\u6700\u6709\u6548\u4e14\u5e38\u7528\u7684\u65b9\u6cd5\u3002
            "},{"location":"chapter_computational_complexity/time_complexity/#222","title":"2.2.2 \u00a0 \u51fd\u6570\u6e10\u8fd1\u4e0a\u754c","text":"

            \u7ed9\u5b9a\u4e00\u4e2a\u8f93\u5165\u5927\u5c0f\u4e3a \\(n\\) \u7684\u51fd\u6570\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            void algorithm(int n) {\nint a = 1;  // +1\na = a + 1;  // +1\na = a * 2;  // +1\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nSystem.out.println(0);    // +1\n}\n}\n
            void algorithm(int n) {\nint a = 1;  // +1\na = a + 1;  // +1\na = a * 2;  // +1\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\ncout << 0 << endl;    // +1\n}\n}\n
            def algorithm(n: int):\na = 1      # +1\na = a + 1  # +1\na = a * 2  # +1\n# \u5faa\u73af n \u6b21\nfor i in range(n):  # +1\nprint(0)        # +1\n
            func algorithm(n int) {\na := 1      // +1\na = a + 1   // +1\na = a * 2   // +1\n// \u5faa\u73af n \u6b21\nfor i := 0; i < n; i++ {   // +1\nfmt.Println(a)         // +1\n}\n}\n
            function algorithm(n) {\nvar a = 1; // +1\na += 1; // +1\na *= 2; // +1\n// \u5faa\u73af n \u6b21\nfor(let i = 0; i < n; i++){ // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nconsole.log(0); // +1\n}\n}\n
            function algorithm(n: number): void{\nvar a: number = 1; // +1\na += 1; // +1\na *= 2; // +1\n// \u5faa\u73af n \u6b21\nfor(let i = 0; i < n; i++){ // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nconsole.log(0); // +1\n}\n}\n
            void algorithm(int n) {\nint a = 1;  // +1\na = a + 1;  // +1\na = a * 2;  // +1\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {   // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nprintf(\"%d\", 0);            // +1\n}\n}  
            void algorithm(int n) {\nint a = 1;  // +1\na = a + 1;  // +1\na = a * 2;  // +1\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {   // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nConsole.WriteLine(0);   // +1\n}\n}\n
            func algorithm(n: Int) {\nvar a = 1 // +1\na = a + 1 // +1\na = a * 2 // +1\n// \u5faa\u73af n \u6b21\nfor _ in 0 ..< n { // +1\nprint(0) // +1\n}\n}\n
            \n
            void algorithm(int n) {\nint a = 1; // +1\na = a + 1; // +1\na = a * 2; // +1\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nprint(0); // +1\n}\n}\n
            fn algorithm(n: i32) {\nlet mut a = 1;   // +1\na = a + 1;      // +1\na = a * 2;      // +1\n// \u5faa\u73af n \u6b21\nfor _ in 0..n { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nprintln!(\"{}\", 0); // +1\n}\n}\n

            \u8bbe\u7b97\u6cd5\u7684\u64cd\u4f5c\u6570\u91cf\u662f\u4e00\u4e2a\u5173\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u7684\u51fd\u6570\uff0c\u8bb0\u4e3a \\(T(n)\\) \uff0c\u5219\u4ee5\u4e0a\u51fd\u6570\u7684\u7684\u64cd\u4f5c\u6570\u91cf\u4e3a\uff1a

            \\[ T(n) = 3 + 2n \\]

            \\(T(n)\\) \u662f\u4e00\u6b21\u51fd\u6570\uff0c\u8bf4\u660e\u5176\u8fd0\u884c\u65f6\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u662f\u7ebf\u6027\u7684\uff0c\u56e0\u6b64\u5b83\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f\u7ebf\u6027\u9636\u3002

            \u6211\u4eec\u5c06\u7ebf\u6027\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u8bb0\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4e2a\u6570\u5b66\u7b26\u53f7\u79f0\u4e3a\u300c\u5927 \\(O\\) \u8bb0\u53f7 big-\\(O\\) notation\u300d\uff0c\u8868\u793a\u51fd\u6570 \\(T(n)\\) \u7684\u300c\u6e10\u8fd1\u4e0a\u754c asymptotic upper bound\u300d\u3002

            \u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u672c\u8d28\u4e0a\u662f\u8ba1\u7b97\u201c\u64cd\u4f5c\u6570\u91cf\u51fd\u6570 \\(T(n)\\)\u201d\u7684\u6e10\u8fd1\u4e0a\u754c\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u6765\u770b\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c\u7684\u6570\u5b66\u5b9a\u4e49\u3002

            \u51fd\u6570\u6e10\u8fd1\u4e0a\u754c

            \u82e5\u5b58\u5728\u6b63\u5b9e\u6570 \\(c\\) \u548c\u5b9e\u6570 \\(n_0\\) \uff0c\u4f7f\u5f97\u5bf9\u4e8e\u6240\u6709\u7684 \\(n > n_0\\) \uff0c\u5747\u6709 $$ T(n) \\leq c \\cdot f(n) $$ \u5219\u53ef\u8ba4\u4e3a \\(f(n)\\) \u7ed9\u51fa\u4e86 \\(T(n)\\) \u7684\u4e00\u4e2a\u6e10\u8fd1\u4e0a\u754c\uff0c\u8bb0\u4e3a $$ T(n) = O(f(n)) $$

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u8ba1\u7b97\u6e10\u8fd1\u4e0a\u754c\u5c31\u662f\u5bfb\u627e\u4e00\u4e2a\u51fd\u6570 \\(f(n)\\) \uff0c\u4f7f\u5f97\u5f53 \\(n\\) \u8d8b\u5411\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\\(T(n)\\) \u548c \\(f(n)\\) \u5904\u4e8e\u76f8\u540c\u7684\u589e\u957f\u7ea7\u522b\uff0c\u4ec5\u76f8\u5dee\u4e00\u4e2a\u5e38\u6570\u9879 \\(c\\) \u7684\u500d\u6570\u3002

            \u56fe\uff1a\u51fd\u6570\u7684\u6e10\u8fd1\u4e0a\u754c

            "},{"location":"chapter_computational_complexity/time_complexity/#223","title":"2.2.3 \u00a0 \u63a8\u7b97\u65b9\u6cd5","text":"

            \u6e10\u8fd1\u4e0a\u754c\u7684\u6570\u5b66\u5473\u513f\u6709\u70b9\u91cd\uff0c\u5982\u679c\u4f60\u611f\u89c9\u6ca1\u6709\u5b8c\u5168\u7406\u89e3\uff0c\u4e5f\u65e0\u987b\u62c5\u5fc3\u3002\u56e0\u4e3a\u5728\u5b9e\u9645\u4f7f\u7528\u4e2d\uff0c\u6211\u4eec\u53ea\u9700\u8981\u638c\u63e1\u63a8\u7b97\u65b9\u6cd5\uff0c\u6570\u5b66\u610f\u4e49\u5c31\u53ef\u4ee5\u9010\u6e10\u9886\u609f\u3002

            \u6839\u636e\u5b9a\u4e49\uff0c\u786e\u5b9a \\(f(n)\\) \u4e4b\u540e\uff0c\u6211\u4eec\u4fbf\u53ef\u5f97\u5230\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(f(n))\\) \u3002\u90a3\u4e48\u5982\u4f55\u786e\u5b9a\u6e10\u8fd1\u4e0a\u754c \\(f(n)\\) \u5462\uff1f\u603b\u4f53\u5206\u4e3a\u4e24\u6b65\uff1a\u9996\u5148\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf\uff0c\u7136\u540e\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#1","title":"1. \u00a0 \u7b2c\u4e00\u6b65\uff1a\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf","text":"

            \u9488\u5bf9\u4ee3\u7801\uff0c\u9010\u884c\u4ece\u4e0a\u5230\u4e0b\u8ba1\u7b97\u5373\u53ef\u3002\u7136\u800c\uff0c\u7531\u4e8e\u4e0a\u8ff0 \\(c \\cdot f(n)\\) \u4e2d\u7684\u5e38\u6570\u9879 \\(c\\) \u53ef\u4ee5\u53d6\u4efb\u610f\u5927\u5c0f\uff0c\u56e0\u6b64\u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u4e2d\u7684\u5404\u79cd\u7cfb\u6570\u3001\u5e38\u6570\u9879\u90fd\u53ef\u4ee5\u88ab\u5ffd\u7565\u3002\u6839\u636e\u6b64\u539f\u5219\uff0c\u53ef\u4ee5\u603b\u7ed3\u51fa\u4ee5\u4e0b\u8ba1\u6570\u7b80\u5316\u6280\u5de7\u3002

            1. \u5ffd\u7565 \\(T(n)\\) \u4e2d\u7684\u5e38\u6570\u9879\u3002\u56e0\u4e3a\u5b83\u4eec\u90fd\u4e0e \\(n\\) \u65e0\u5173\uff0c\u6240\u4ee5\u5bf9\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u4ea7\u751f\u5f71\u54cd\u3002
            2. \u7701\u7565\u6240\u6709\u7cfb\u6570\u3002\u4f8b\u5982\uff0c\u5faa\u73af \\(2n\\) \u6b21\u3001\\(5n + 1\\) \u6b21\u7b49\uff0c\u90fd\u53ef\u4ee5\u7b80\u5316\u8bb0\u4e3a \\(n\\) \u6b21\uff0c\u56e0\u4e3a \\(n\\) \u524d\u9762\u7684\u7cfb\u6570\u5bf9\u65f6\u95f4\u590d\u6742\u5ea6\u6ca1\u6709\u5f71\u54cd\u3002
            3. \u5faa\u73af\u5d4c\u5957\u65f6\u4f7f\u7528\u4e58\u6cd5\u3002\u603b\u64cd\u4f5c\u6570\u91cf\u7b49\u4e8e\u5916\u5c42\u5faa\u73af\u548c\u5185\u5c42\u5faa\u73af\u64cd\u4f5c\u6570\u91cf\u4e4b\u79ef\uff0c\u6bcf\u4e00\u5c42\u5faa\u73af\u4f9d\u7136\u53ef\u4ee5\u5206\u522b\u5957\u7528\u4e0a\u8ff0 1. \u548c 2. \u6280\u5de7\u3002

            \u4ee5\u4e0b\u4ee3\u7801\u4e0e\u516c\u5f0f\u5206\u522b\u5c55\u793a\u4e86\u4f7f\u7528\u4e0a\u8ff0\u6280\u5de7\u524d\u540e\u7684\u7edf\u8ba1\u7ed3\u679c\u3002\u4e24\u8005\u63a8\u51fa\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u540c\uff0c\u90fd\u4e3a \\(O(n^2)\\) \u3002

            \\[ \\begin{aligned} T(n) & = 2n(n + 1) + (5n + 1) + 2 & \\text{\u5b8c\u6574\u7edf\u8ba1 (-.-|||)} \\newline & = 2n^2 + 7n + 3 \\newline T(n) & = n^2 + n & \\text{\u5077\u61d2\u7edf\u8ba1 (o.O)} \\end{aligned} \\] JavaC++PythonGoJSTSCC#SwiftZigDartRust
            void algorithm(int n) {\nint a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (int i = 0; i < 5 * n + 1; i++) {\nSystem.out.println(0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (int i = 0; i < 2 * n; i++) {\nfor (int j = 0; j < n + 1; j++) {\nSystem.out.println(0);\n}\n}\n}\n
            void algorithm(int n) {\nint a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (int i = 0; i < 5 * n + 1; i++) {\ncout << 0 << endl;\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (int i = 0; i < 2 * n; i++) {\nfor (int j = 0; j < n + 1; j++) {\ncout << 0 << endl;\n}\n}\n}\n
            def algorithm(n: int):\na = 1      # +0\uff08\u6280\u5de7 1\uff09\na = a + n  # +0\uff08\u6280\u5de7 1\uff09\n# +n\uff08\u6280\u5de7 2\uff09\nfor i in range(5 * n + 1):\nprint(0)\n# +n*n\uff08\u6280\u5de7 3\uff09\nfor i in range(2 * n):\nfor j in range(n + 1):\nprint(0)\n
            func algorithm(n int) {\na := 1     // +0\uff08\u6280\u5de7 1\uff09\na = a + n  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor i := 0; i < 5 * n + 1; i++ {\nfmt.Println(0)\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor i := 0; i < 2 * n; i++ {\nfor j := 0; j < n + 1; j++ {\nfmt.Println(0)\n}\n}\n}\n
            function algorithm(n) {\nlet a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (let i = 0; i < 5 * n + 1; i++) {\nconsole.log(0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (let i = 0; i < 2 * n; i++) {\nfor (let j = 0; j < n + 1; j++) {\nconsole.log(0);\n}\n}\n}\n
            function algorithm(n: number): void {\nlet a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (let i = 0; i < 5 * n + 1; i++) {\nconsole.log(0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (let i = 0; i < 2 * n; i++) {\nfor (let j = 0; j < n + 1; j++) {\nconsole.log(0);\n}\n}\n}\n
            void algorithm(int n) {\nint a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (int i = 0; i < 5 * n + 1; i++) {\nprintf(\"%d\", 0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (int i = 0; i < 2 * n; i++) {\nfor (int j = 0; j < n + 1; j++) {\nprintf(\"%d\", 0);\n}\n}\n}\n
            void algorithm(int n) {\nint a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (int i = 0; i < 5 * n + 1; i++) {\nConsole.WriteLine(0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (int i = 0; i < 2 * n; i++) {\nfor (int j = 0; j < n + 1; j++) {\nConsole.WriteLine(0);\n}\n}\n}\n
            func algorithm(n: Int) {\nvar a = 1 // +0\uff08\u6280\u5de7 1\uff09\na = a + n // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor _ in 0 ..< (5 * n + 1) {\nprint(0)\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor _ in 0 ..< (2 * n) {\nfor _ in 0 ..< (n + 1) {\nprint(0)\n}\n}\n}\n
            \n
            void algorithm(int n) {\nint a = 1; // +0\uff08\u6280\u5de7 1\uff09\na = a + n; // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (int i = 0; i < 5 * n + 1; i++) {\nprint(0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (int i = 0; i < 2 * n; i++) {\nfor (int j = 0; j < n + 1; j++) {\nprint(0);\n}\n}\n}\n
            fn algorithm(n: i32) {\nlet mut a = 1;     // +0\uff08\u6280\u5de7 1\uff09\na = a + n;        // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor i in 0..(5 * n + 1) {\nprintln!(\"{}\", 0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor i in 0..(2 * n) {\nfor j in 0..(n + 1) {\nprintln!(\"{}\", 0);\n}\n}\n}\n
            "},{"location":"chapter_computational_complexity/time_complexity/#2","title":"2. \u00a0 \u7b2c\u4e8c\u6b65\uff1a\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c","text":"

            \u65f6\u95f4\u590d\u6742\u5ea6\u7531\u591a\u9879\u5f0f \\(T(n)\\) \u4e2d\u6700\u9ad8\u9636\u7684\u9879\u6765\u51b3\u5b9a\u3002\u8fd9\u662f\u56e0\u4e3a\u5728 \\(n\\) \u8d8b\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\u6700\u9ad8\u9636\u7684\u9879\u5c06\u53d1\u6325\u4e3b\u5bfc\u4f5c\u7528\uff0c\u5176\u4ed6\u9879\u7684\u5f71\u54cd\u90fd\u53ef\u4ee5\u88ab\u5ffd\u7565\u3002

            \u4ee5\u4e0b\u8868\u683c\u5c55\u793a\u4e86\u4e00\u4e9b\u4f8b\u5b50\uff0c\u5176\u4e2d\u4e00\u4e9b\u5938\u5f20\u7684\u503c\u662f\u4e3a\u4e86\u5f3a\u8c03\u201c\u7cfb\u6570\u65e0\u6cd5\u64bc\u52a8\u9636\u6570\u201d\u8fd9\u4e00\u7ed3\u8bba\u3002\u5f53 \\(n\\) \u8d8b\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\u8fd9\u4e9b\u5e38\u6570\u53d8\u5f97\u65e0\u8db3\u8f7b\u91cd\u3002

            \u8868\uff1a\u4e0d\u540c\u64cd\u4f5c\u6570\u91cf\u5bf9\u5e94\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(f(n))\\) \\(100000\\) \\(O(1)\\) \\(3n + 2\\) \\(O(n)\\) \\(2n^2 + 3n + 2\\) \\(O(n^2)\\) \\(n^3 + 10000n^2\\) \\(O(n^3)\\) \\(2^n + 10000n^{10000}\\) \\(O(2^n)\\)"},{"location":"chapter_computational_complexity/time_complexity/#224","title":"2.2.4 \u00a0 \u5e38\u89c1\u7c7b\u578b","text":"

            \u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u5e38\u89c1\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7c7b\u578b\u5305\u62ec\uff08\u6309\u7167\u4ece\u4f4e\u5230\u9ad8\u7684\u987a\u5e8f\u6392\u5217\uff09\uff1a

            \\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n \\log n) < O(n^2) < O(2^n) < O(n!) \\newline \\text{\u5e38\u6570\u9636} < \\text{\u5bf9\u6570\u9636} < \\text{\u7ebf\u6027\u9636} < \\text{\u7ebf\u6027\u5bf9\u6570\u9636} < \\text{\u5e73\u65b9\u9636} < \\text{\u6307\u6570\u9636} < \\text{\u9636\u4e58\u9636} \\end{aligned} \\]

            \u56fe\uff1a\u5e38\u89c1\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7c7b\u578b

            Tip

            \u90e8\u5206\u793a\u4f8b\u4ee3\u7801\u9700\u8981\u4e00\u4e9b\u9884\u5907\u77e5\u8bc6\uff0c\u5305\u62ec\u6570\u7ec4\u3001\u9012\u5f52\u7b49\u3002\u5982\u679c\u4f60\u9047\u5230\u4e0d\u7406\u89e3\u7684\u90e8\u5206\uff0c\u53ef\u4ee5\u5728\u5b66\u5b8c\u540e\u9762\u7ae0\u8282\u540e\u518d\u56de\u987e\u3002\u73b0\u9636\u6bb5\uff0c\u8bf7\u5148\u4e13\u6ce8\u4e8e\u7406\u89e3\u65f6\u95f4\u590d\u6742\u5ea6\u7684\u542b\u4e49\u548c\u63a8\u7b97\u65b9\u6cd5\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#1-o1","title":"1. \u00a0 \u5e38\u6570\u9636 \\(O(1)\\)","text":"

            \u5e38\u6570\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\uff0c\u5373\u4e0d\u968f\u7740 \\(n\\) \u7684\u53d8\u5316\u800c\u53d8\u5316\u3002

            \u5bf9\u4e8e\u4ee5\u4e0b\u7b97\u6cd5\uff0c\u5c3d\u7ba1\u64cd\u4f5c\u6570\u91cf size \u53ef\u80fd\u5f88\u5927\uff0c\u4f46\u7531\u4e8e\u5176\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u5e38\u6570\u9636 */\nint constant(int n) {\nint count = 0;\nint size = 100000;\nfor (int i = 0; i < size; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.cpp
            /* \u5e38\u6570\u9636 */\nint constant(int n) {\nint count = 0;\nint size = 100000;\nfor (int i = 0; i < size; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.py
            def constant(n: int) -> int:\n\"\"\"\u5e38\u6570\u9636\"\"\"\ncount = 0\nsize = 100000\nfor _ in range(size):\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u5e38\u6570\u9636 */\nfunc constant(n int) int {\ncount := 0\nsize := 100000\nfor i := 0; i < size; i++ {\ncount++\n}\nreturn count\n}\n
            time_complexity.js
            /* \u5e38\u6570\u9636 */\nfunction constant(n) {\nlet count = 0;\nconst size = 100000;\nfor (let i = 0; i < size; i++) count++;\nreturn count;\n}\n
            time_complexity.ts
            /* \u5e38\u6570\u9636 */\nfunction constant(n: number): number {\nlet count = 0;\nconst size = 100000;\nfor (let i = 0; i < size; i++) count++;\nreturn count;\n}\n
            time_complexity.c
            /* \u5e38\u6570\u9636 */\nint constant(int n) {\nint count = 0;\nint size = 100000;\nint i = 0;\nfor (int i = 0; i < size; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u5e38\u6570\u9636 */\nint constant(int n) {\nint count = 0;\nint size = 100000;\nfor (int i = 0; i < size; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.swift
            /* \u5e38\u6570\u9636 */\nfunc constant(n: Int) -> Int {\nvar count = 0\nlet size = 100_000\nfor _ in 0 ..< size {\ncount += 1\n}\nreturn count\n}\n
            time_complexity.zig
            // \u5e38\u6570\u9636\nfn constant(n: i32) i32 {\n_ = n;\nvar count: i32 = 0;\nconst size: i32 = 100_000;\nvar i: i32 = 0;\nwhile(i<size) : (i += 1) {\ncount += 1;\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u5e38\u6570\u9636 */\nint constant(int n) {\nint count = 0;\nint size = 100000;\nfor (var i = 0; i < size; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u5e38\u6570\u9636 */\nfn constant(n: i32) -> i32 {\n_ = n;\nlet mut count = 0;\nlet size = 100_000;\nfor _ in 0..size {\ncount += 1;\n}\ncount\n}\n
            "},{"location":"chapter_computational_complexity/time_complexity/#2-on","title":"2. \u00a0 \u7ebf\u6027\u9636 \\(O(n)\\)","text":"

            \u7ebf\u6027\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u76f8\u5bf9\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u4ee5\u7ebf\u6027\u7ea7\u522b\u589e\u957f\u3002\u7ebf\u6027\u9636\u901a\u5e38\u51fa\u73b0\u5728\u5355\u5c42\u5faa\u73af\u4e2d\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u7ebf\u6027\u9636 */\nint linear(int n) {\nint count = 0;\nfor (int i = 0; i < n; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.cpp
            /* \u7ebf\u6027\u9636 */\nint linear(int n) {\nint count = 0;\nfor (int i = 0; i < n; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.py
            def linear(n: int) -> int:\n\"\"\"\u7ebf\u6027\u9636\"\"\"\ncount = 0\nfor _ in range(n):\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u7ebf\u6027\u9636 */\nfunc linear(n int) int {\ncount := 0\nfor i := 0; i < n; i++ {\ncount++\n}\nreturn count\n}\n
            time_complexity.js
            /* \u7ebf\u6027\u9636 */\nfunction linear(n) {\nlet count = 0;\nfor (let i = 0; i < n; i++) count++;\nreturn count;\n}\n
            time_complexity.ts
            /* \u7ebf\u6027\u9636 */\nfunction linear(n: number): number {\nlet count = 0;\nfor (let i = 0; i < n; i++) count++;\nreturn count;\n}\n
            time_complexity.c
            /* \u7ebf\u6027\u9636 */\nint linear(int n) {\nint count = 0;\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u7ebf\u6027\u9636 */\nint linear(int n) {\nint count = 0;\nfor (int i = 0; i < n; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.swift
            /* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) -> Int {\nvar count = 0\nfor _ in 0 ..< n {\ncount += 1\n}\nreturn count\n}\n
            time_complexity.zig
            // \u7ebf\u6027\u9636\nfn linear(n: i32) i32 {\nvar count: i32 = 0;\nvar i: i32 = 0;\nwhile (i < n) : (i += 1) {\ncount += 1;\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u7ebf\u6027\u9636 */\nint linear(int n) {\nint count = 0;\nfor (var i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u7ebf\u6027\u9636 */\nfn linear(n: i32) -> i32 {\nlet mut count = 0;\nfor _ in 0..n {\ncount += 1;\n}\ncount\n}\n

            \u904d\u5386\u6570\u7ec4\u548c\u904d\u5386\u94fe\u8868\u7b49\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u6570\u7ec4\u6216\u94fe\u8868\u7684\u957f\u5ea6\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int[] nums) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (int num : nums) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(vector<int> &nums) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (int num : nums) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.py
            def array_traversal(nums: list[int]) -> int:\n\"\"\"\u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\"\"\"\ncount = 0\n# \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor num in nums:\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums []int) int {\ncount := 0\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor range nums {\ncount++\n}\nreturn count\n}\n
            time_complexity.js
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums) {\nlet count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (let i = 0; i < nums.length; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums: number[]): number {\nlet count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (let i = 0; i < nums.length; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int *nums, int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int[] nums) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nforeach (int num in nums) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums: [Int]) -> Int {\nvar count = 0\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor _ in nums {\ncount += 1\n}\nreturn count\n}\n
            time_complexity.zig
            // \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\nfn arrayTraversal(nums: []i32) i32 {\nvar count: i32 = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (nums) |_| {\ncount += 1;\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(List<int> nums) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (var num in nums) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfn array_traversal(nums: &[i32]) -> i32 {\nlet mut count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor _ in nums {\ncount += 1;\n}\ncount\n}\n

            \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u9700\u6839\u636e\u8f93\u5165\u6570\u636e\u7684\u7c7b\u578b\u6765\u5177\u4f53\u786e\u5b9a\u3002\u6bd4\u5982\u5728\u7b2c\u4e00\u4e2a\u793a\u4f8b\u4e2d\uff0c\u53d8\u91cf \\(n\\) \u4e3a\u8f93\u5165\u6570\u636e\u5927\u5c0f\uff1b\u5728\u7b2c\u4e8c\u4e2a\u793a\u4f8b\u4e2d\uff0c\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u4e3a\u6570\u636e\u5927\u5c0f\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#3-on2","title":"3. \u00a0 \u5e73\u65b9\u9636 \\(O(n^2)\\)","text":"

            \u5e73\u65b9\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u76f8\u5bf9\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4ee5\u5e73\u65b9\u7ea7\u522b\u589e\u957f\u3002\u5e73\u65b9\u9636\u901a\u5e38\u51fa\u73b0\u5728\u5d4c\u5957\u5faa\u73af\u4e2d\uff0c\u5916\u5c42\u5faa\u73af\u548c\u5185\u5c42\u5faa\u73af\u90fd\u4e3a \\(O(n)\\) \uff0c\u56e0\u6b64\u603b\u4f53\u4e3a \\(O(n^2)\\) \uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.py
            def quadratic(n: int) -> int:\n\"\"\"\u5e73\u65b9\u9636\"\"\"\ncount = 0\n# \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor i in range(n):\nfor j in range(n):\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u5e73\u65b9\u9636 */\nfunc quadratic(n int) int {\ncount := 0\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor i := 0; i < n; i++ {\nfor j := 0; j < n; j++ {\ncount++\n}\n}\nreturn count\n}\n
            time_complexity.js
            /* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\nlet count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (let i = 0; i < n; i++) {\nfor (let j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): number {\nlet count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (let i = 0; i < n; i++) {\nfor (let j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) -> Int {\nvar count = 0\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor _ in 0 ..< n {\nfor _ in 0 ..< n {\ncount += 1\n}\n}\nreturn count\n}\n
            time_complexity.zig
            // \u5e73\u65b9\u9636\nfn quadratic(n: i32) i32 {\nvar count: i32 = 0;\nvar i: i32 = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nwhile (i < n) : (i += 1) {\nvar j: i32 = 0;\nwhile (j < n) : (j += 1) {\ncount += 1;\n}\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u5e73\u65b9\u9636 */\nfn quadratic(n: i32) -> i32 {\nlet mut count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor _ in 0..n {\nfor _ in 0..n {\ncount += 1;\n}\n}\ncount\n}\n

            \u4e0b\u56fe\u5bf9\u6bd4\u4e86\u5e38\u6570\u9636\u3001\u7ebf\u6027\u9636\u548c\u5e73\u65b9\u9636\u4e09\u79cd\u65f6\u95f4\u590d\u6742\u5ea6\u3002

            \u56fe\uff1a\u5e38\u6570\u9636\u3001\u7ebf\u6027\u9636\u548c\u5e73\u65b9\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u4ee5\u5192\u6ce1\u6392\u5e8f\u4e3a\u4f8b\uff0c\u5916\u5c42\u5faa\u73af\u6267\u884c \\(n - 1\\) \u6b21\uff0c\u5185\u5c42\u5faa\u73af\u6267\u884c \\(n-1, n-2, \\cdots, 2, 1\\) \u6b21\uff0c\u5e73\u5747\u4e3a \\(\\frac{n}{2}\\) \u6b21\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff1a

            \\[ O((n - 1) \\frac{n}{2}) = O(n^2) \\] JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int[] nums) {\nint count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(vector<int> &nums) {\nint count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.size() - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.py
            def bubble_sort(nums: list[int]) -> int:\n\"\"\"\u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\"\"\"\ncount = 0  # \u8ba1\u6570\u5668\n# \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in range(len(nums) - 1, 0, -1):\n# \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in range(i):\nif nums[j] > nums[j + 1]:\n# \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\ntmp: int = nums[j]\nnums[j] = nums[j + 1]\nnums[j + 1] = tmp\ncount += 3  # \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\nreturn count\n
            time_complexity.go
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums []int) int {\ncount := 0 // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i := len(nums) - 1; i > 0; i-- {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor j := 0; j < i; j++ {\nif nums[j] > nums[j+1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\ntmp := nums[j]\nnums[j] = nums[j+1]\nnums[j+1] = tmp\ncount += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count\n}\n
            time_complexity.js
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums) {\nlet count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums: number[]): number {\nlet count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int *nums, int n) {\nint count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = n - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int[] nums) {\nint count = 0;  // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.Length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);\ncount += 3;  // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums: inout [Int]) -> Int {\nvar count = 0 // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in stride(from: nums.count - 1, to: 0, by: -1) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in 0 ..< i {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j]\nnums[j] = nums[j + 1]\nnums[j + 1] = tmp\ncount += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count\n}\n
            time_complexity.zig
            // \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\nfn bubbleSort(nums: []i32) i32 {\nvar count: i32 = 0;  // \u8ba1\u6570\u5668 \n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nvar i: i32 = @as(i32, @intCast(nums.len)) - 1;\nwhile (i > 0) : (i -= 1) {\nvar j: usize = 0;\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nwhile (j < i) : (j += 1) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nvar tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3;  // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(List<int> nums) {\nint count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (var i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor (var j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfn bubble_sort(nums: &mut [i32]) -> i32 {\nlet mut count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in (1..nums.len()).rev() {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in 0..i {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\ncount\n}\n
            "},{"location":"chapter_computational_complexity/time_complexity/#4-o2n","title":"4. \u00a0 \u6307\u6570\u9636 \\(O(2^n)\\)","text":"

            \u751f\u7269\u5b66\u7684\u201c\u7ec6\u80de\u5206\u88c2\u201d\u662f\u6307\u6570\u9636\u589e\u957f\u7684\u5178\u578b\u4f8b\u5b50\uff1a\u521d\u59cb\u72b6\u6001\u4e3a \\(1\\) \u4e2a\u7ec6\u80de\uff0c\u5206\u88c2\u4e00\u8f6e\u540e\u53d8\u4e3a \\(2\\) \u4e2a\uff0c\u5206\u88c2\u4e24\u8f6e\u540e\u53d8\u4e3a \\(4\\) \u4e2a\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u5206\u88c2 \\(n\\) \u8f6e\u540e\u6709 \\(2^n\\) \u4e2a\u7ec6\u80de\u3002\u76f8\u5173\u4ee3\u7801\u5982\u4e0b\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\nint count = 0, base = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < base; j++) {\ncount++;\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.cpp
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\nint count = 0, base = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < base; j++) {\ncount++;\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.py
            def exponential(n: int) -> int:\n\"\"\"\u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\ncount = 0\nbase = 1\n# \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor _ in range(n):\nfor _ in range(base):\ncount += 1\nbase *= 2\n# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count\n
            time_complexity.go
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc exponential(n int) int {\ncount, base := 0, 1\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor i := 0; i < n; i++ {\nfor j := 0; j < base; j++ {\ncount++\n}\nbase *= 2\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count\n}\n
            time_complexity.js
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n) {\nlet count = 0,\nbase = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (let i = 0; i < n; i++) {\nfor (let j = 0; j < base; j++) {\ncount++;\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.ts
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n: number): number {\nlet count = 0,\nbase = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (let i = 0; i < n; i++) {\nfor (let j = 0; j < base; j++) {\ncount++;\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.c
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\nint count = 0;\nint bas = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < bas; j++) {\ncount++;\n}\nbas *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.cs
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\nint count = 0, bas = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < bas; j++) {\ncount++;\n}\nbas *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.swift
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc exponential(n: Int) -> Int {\nvar count = 0\nvar base = 1\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor _ in 0 ..< n {\nfor _ in 0 ..< base {\ncount += 1\n}\nbase *= 2\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count\n}\n
            time_complexity.zig
            // \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn exponential(n: i32) i32 {\nvar count: i32 = 0;\nvar bas: i32 = 1;\nvar i: i32 = 0;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nwhile (i < n) : (i += 1) {\nvar j: i32 = 0;\nwhile (j < bas) : (j += 1) {\ncount += 1;\n}\nbas *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.dart
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\nint count = 0, base = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (var i = 0; i < n; i++) {\nfor (var j = 0; j < base; j++) {\ncount++;\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.rs
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn exponential(n: i32) -> i32 {\nlet mut count = 0;\nlet mut base = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor _ in 0..n {\nfor _ in 0..base {\ncount += 1\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\ncount\n}\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u7ec6\u80de\u5206\u88c2\u7684\u8fc7\u7a0b\u3002

            \u56fe\uff1a\u6307\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u5728\u5b9e\u9645\u7b97\u6cd5\u4e2d\uff0c\u6307\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u9012\u5f52\u51fd\u6570\u4e2d\u3002\u4f8b\u5982\u4ee5\u4e0b\u4ee3\u7801\uff0c\u5176\u9012\u5f52\u5730\u4e00\u5206\u4e3a\u4e8c\uff0c\u7ecf\u8fc7 \\(n\\) \u6b21\u5206\u88c2\u540e\u505c\u6b62\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\nif (n == 1)\nreturn 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.cpp
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\nif (n == 1)\nreturn 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.py
            def exp_recur(n: int) -> int:\n\"\"\"\u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\nif n == 1:\nreturn 1\nreturn exp_recur(n - 1) + exp_recur(n - 1) + 1\n
            time_complexity.go
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc expRecur(n int) int {\nif n == 1 {\nreturn 1\n}\nreturn expRecur(n-1) + expRecur(n-1) + 1\n}\n
            time_complexity.js
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n) {\nif (n === 1) return 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.ts
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n: number): number {\nif (n === 1) return 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.c
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\nif (n == 1)\nreturn 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.cs
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\nif (n == 1) return 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.swift
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc expRecur(n: Int) -> Int {\nif n == 1 {\nreturn 1\n}\nreturn expRecur(n: n - 1) + expRecur(n: n - 1) + 1\n}\n
            time_complexity.zig
            // \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn expRecur(n: i32) i32 {\nif (n == 1) return 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.dart
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\nif (n == 1) return 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.rs
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn exp_recur(n: i32) -> i32 {\nif n == 1 {\nreturn 1;\n}\nexp_recur(n - 1) + exp_recur(n - 1) + 1\n}\n

            \u6307\u6570\u9636\u589e\u957f\u975e\u5e38\u8fc5\u901f\uff0c\u5728\u7a77\u4e3e\u6cd5\uff08\u66b4\u529b\u641c\u7d22\u3001\u56de\u6eaf\u7b49\uff09\u4e2d\u6bd4\u8f83\u5e38\u89c1\u3002\u5bf9\u4e8e\u6570\u636e\u89c4\u6a21\u8f83\u5927\u7684\u95ee\u9898\uff0c\u6307\u6570\u9636\u662f\u4e0d\u53ef\u63a5\u53d7\u7684\uff0c\u901a\u5e38\u9700\u8981\u4f7f\u7528\u300c\u52a8\u6001\u89c4\u5212\u300d\u6216\u300c\u8d2a\u5fc3\u300d\u7b49\u7b97\u6cd5\u6765\u89e3\u51b3\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#5-olog-n","title":"5. \u00a0 \u5bf9\u6570\u9636 \\(O(\\log n)\\)","text":"

            \u4e0e\u6307\u6570\u9636\u76f8\u53cd\uff0c\u5bf9\u6570\u9636\u53cd\u6620\u4e86\u201c\u6bcf\u8f6e\u7f29\u51cf\u5230\u4e00\u534a\u201d\u7684\u60c5\u51b5\u3002\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u7531\u4e8e\u6bcf\u8f6e\u7f29\u51cf\u5230\u4e00\u534a\uff0c\u56e0\u6b64\u5faa\u73af\u6b21\u6570\u662f \\(\\log_2 n\\) \uff0c\u5373 \\(2^n\\) \u7684\u53cd\u51fd\u6570\u3002\u76f8\u5173\u4ee3\u7801\u5982\u4e0b\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\nint count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\nint count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.py
            def logarithmic(n: float) -> int:\n\"\"\"\u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\ncount = 0\nwhile n > 1:\nn = n / 2\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc logarithmic(n float64) int {\ncount := 0\nfor n > 1 {\nn = n / 2\ncount++\n}\nreturn count\n}\n
            time_complexity.js
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n) {\nlet count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n: number): number {\nlet count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\nint count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\nint count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc logarithmic(n: Double) -> Int {\nvar count = 0\nvar n = n\nwhile n > 1 {\nn = n / 2\ncount += 1\n}\nreturn count\n}\n
            time_complexity.zig
            // \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn logarithmic(n: f32) i32 {\nvar count: i32 = 0;\nvar n_var = n;\nwhile (n_var > 1)\n{\nn_var = n_var / 2;\ncount +=1;\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(num n) {\nint count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn logarithmic(mut n: f32) -> i32 {\nlet mut count = 0;\nwhile n > 1.0 {\nn = n / 2.0;\ncount += 1;\n}\ncount\n}\n

            \u56fe\uff1a\u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u4e0e\u6307\u6570\u9636\u7c7b\u4f3c\uff0c\u5bf9\u6570\u9636\u4e5f\u5e38\u51fa\u73b0\u4e8e\u9012\u5f52\u51fd\u6570\u4e2d\u3002\u4ee5\u4e0b\u4ee3\u7801\u5f62\u6210\u4e86\u4e00\u4e2a\u9ad8\u5ea6\u4e3a \\(\\log_2 n\\) \u7684\u9012\u5f52\u6811\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\nif (n <= 1)\nreturn 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.cpp
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\nif (n <= 1)\nreturn 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.py
            def log_recur(n: float) -> int:\n\"\"\"\u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\nif n <= 1:\nreturn 0\nreturn log_recur(n / 2) + 1\n
            time_complexity.go
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc logRecur(n float64) int {\nif n <= 1 {\nreturn 0\n}\nreturn logRecur(n/2) + 1\n}\n
            time_complexity.js
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n) {\nif (n <= 1) return 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.ts
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n: number): number {\nif (n <= 1) return 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.c
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\nif (n <= 1)\nreturn 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.cs
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\nif (n <= 1) return 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.swift
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc logRecur(n: Double) -> Int {\nif n <= 1 {\nreturn 0\n}\nreturn logRecur(n: n / 2) + 1\n}\n
            time_complexity.zig
            // \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn logRecur(n: f32) i32 {\nif (n <= 1) return 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.dart
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(num n) {\nif (n <= 1) return 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.rs
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn log_recur(n: f32) -> i32 {\nif n <= 1.0 {\nreturn 0;\n}\nlog_recur(n / 2.0) + 1\n}\n

            \u5bf9\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u7b97\u6cd5\u4e2d\uff0c\u4f53\u73b0\u4e86\u201c\u4e00\u5206\u4e3a\u591a\u201d\u548c\u201c\u5316\u7e41\u4e3a\u7b80\u201d\u7684\u7b97\u6cd5\u601d\u60f3\u3002\u5b83\u589e\u957f\u7f13\u6162\uff0c\u662f\u7406\u60f3\u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u4ec5\u6b21\u4e8e\u5e38\u6570\u9636\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#6-on-log-n","title":"6. \u00a0 \u7ebf\u6027\u5bf9\u6570\u9636 \\(O(n \\log n)\\)","text":"

            \u7ebf\u6027\u5bf9\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u5d4c\u5957\u5faa\u73af\u4e2d\uff0c\u4e24\u5c42\u5faa\u73af\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u522b\u4e3a \\(O(\\log n)\\) \u548c \\(O(n)\\) \u3002\u76f8\u5173\u4ee3\u7801\u5982\u4e0b\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\nif (n <= 1)\nreturn 1;\nint count = linearLogRecur(n / 2) +\nlinearLogRecur(n / 2);\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\nif (n <= 1)\nreturn 1;\nint count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.py
            def linear_log_recur(n: float) -> int:\n\"\"\"\u7ebf\u6027\u5bf9\u6570\u9636\"\"\"\nif n <= 1:\nreturn 1\ncount: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)\nfor _ in range(n):\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n float64) int {\nif n <= 1 {\nreturn 1\n}\ncount := linearLogRecur(n/2) +\nlinearLogRecur(n/2)\nfor i := 0.0; i < n; i++ {\ncount++\n}\nreturn count\n}\n
            time_complexity.js
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n) {\nif (n <= 1) return 1;\nlet count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\nfor (let i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n: number): number {\nif (n <= 1) return 1;\nlet count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\nfor (let i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\nif (n <= 1)\nreturn 1;\nint count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\nif (n <= 1) return 1;\nint count = linearLogRecur(n / 2) +\nlinearLogRecur(n / 2);\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n: Double) -> Int {\nif n <= 1 {\nreturn 1\n}\nvar count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)\nfor _ in stride(from: 0, to: n, by: 1) {\ncount += 1\n}\nreturn count\n}\n
            time_complexity.zig
            // \u7ebf\u6027\u5bf9\u6570\u9636\nfn linearLogRecur(n: f32) i32 {\nif (n <= 1) return 1;\nvar count: i32 = linearLogRecur(n / 2) +\nlinearLogRecur(n / 2);\nvar i: f32 = 0;\nwhile (i < n) : (i += 1) {\ncount += 1;\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(num n) {\nif (n <= 1) return 1;\nint count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\nfor (var i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfn linear_log_recur(n: f32) -> i32 {\nif n <= 1.0 {\nreturn 1;\n}\nlet mut count = linear_log_recur(n / 2.0) + linear_log_recur(n / 2.0);\nfor _ in 0 ..n as i32 {\ncount += 1;\n}\nreturn count\n}\n

            \u56fe\uff1a\u7ebf\u6027\u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u4e3b\u6d41\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u4e3a \\(O(n \\log n)\\) \uff0c\u4f8b\u5982\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u5806\u6392\u5e8f\u7b49\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#7-on","title":"7. \u00a0 \u9636\u4e58\u9636 \\(O(n!)\\)","text":"

            \u9636\u4e58\u9636\u5bf9\u5e94\u6570\u5b66\u4e0a\u7684\u201c\u5168\u6392\u5217\u201d\u95ee\u9898\u3002\u7ed9\u5b9a \\(n\\) \u4e2a\u4e92\u4e0d\u91cd\u590d\u7684\u5143\u7d20\uff0c\u6c42\u5176\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u65b9\u6848\uff0c\u65b9\u6848\u6570\u91cf\u4e3a\uff1a

            \\[ n! = n \\times (n - 1) \\times (n - 2) \\times \\cdots \\times 2 \\times 1 \\]

            \u9636\u4e58\u901a\u5e38\u4f7f\u7528\u9012\u5f52\u5b9e\u73b0\u3002\u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u7b2c\u4e00\u5c42\u5206\u88c2\u51fa \\(n\\) \u4e2a\uff0c\u7b2c\u4e8c\u5c42\u5206\u88c2\u51fa \\(n - 1\\) \u4e2a\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u7b2c \\(n\\) \u5c42\u65f6\u505c\u6b62\u5206\u88c2\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\nif (n == 0)\nreturn 1;\nint count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (int i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\nif (n == 0)\nreturn 1;\nint count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (int i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.py
            def factorial_recur(n: int) -> int:\n\"\"\"\u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\nif n == 0:\nreturn 1\ncount = 0\n# \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor _ in range(n):\ncount += factorial_recur(n - 1)\nreturn count\n
            time_complexity.go
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n int) int {\nif n == 0 {\nreturn 1\n}\ncount := 0\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor i := 0; i < n; i++ {\ncount += factorialRecur(n - 1)\n}\nreturn count\n}\n
            time_complexity.js
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n) {\nif (n === 0) return 1;\nlet count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (let i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n: number): number {\nif (n === 0) return 1;\nlet count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (let i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\nif (n == 0)\nreturn 1;\nint count = 0;\nfor (int i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\nif (n == 0) return 1;\nint count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (int i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n: Int) -> Int {\nif n == 0 {\nreturn 1\n}\nvar count = 0\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor _ in 0 ..< n {\ncount += factorialRecur(n: n - 1)\n}\nreturn count\n}\n
            time_complexity.zig
            // \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn factorialRecur(n: i32) i32 {\nif (n == 0) return 1;\nvar count: i32 = 0;\nvar i: i32 = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nwhile (i < n) : (i += 1) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\nif (n == 0) return 1;\nint count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (var i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn factorial_recur(n: i32) -> i32 {\nif n == 0 {\nreturn 1;\n}\nlet mut count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor _ in 0..n {\ncount += factorial_recur(n - 1);\n}\ncount\n}\n

            \u56fe\uff1a\u9636\u4e58\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u8bf7\u6ce8\u610f\uff0c\u56e0\u4e3a \\(n! > 2^n\\) \uff0c\u6240\u4ee5\u9636\u4e58\u9636\u6bd4\u6307\u6570\u9636\u589e\u957f\u5f97\u66f4\u5feb\uff0c\u5728 \\(n\\) \u8f83\u5927\u65f6\u4e5f\u662f\u4e0d\u53ef\u63a5\u53d7\u7684\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#225","title":"2.2.5 \u00a0 \u6700\u5dee\u3001\u6700\u4f73\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6","text":"

            \u7b97\u6cd5\u7684\u65f6\u95f4\u6548\u7387\u5f80\u5f80\u4e0d\u662f\u56fa\u5b9a\u7684\uff0c\u800c\u662f\u4e0e\u8f93\u5165\u6570\u636e\u7684\u5206\u5e03\u6709\u5173\u3002\u5047\u8bbe\u8f93\u5165\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5176\u4e2d nums \u7531\u4ece \\(1\\) \u81f3 \\(n\\) \u7684\u6570\u5b57\u7ec4\u6210\uff0c\u6bcf\u4e2a\u6570\u5b57\u53ea\u51fa\u73b0\u4e00\u6b21\uff0c\u4f46\u5143\u7d20\u987a\u5e8f\u662f\u968f\u673a\u6253\u4e71\u7684\uff0c\u4efb\u52a1\u76ee\u6807\u662f\u8fd4\u56de\u5143\u7d20 \\(1\\) \u7684\u7d22\u5f15\u3002\u6211\u4eec\u53ef\u4ee5\u5f97\u51fa\u4ee5\u4e0b\u7ed3\u8bba\u3002

            • \u5f53 nums = [?, ?, ..., 1] \uff0c\u5373\u5f53\u672b\u5c3e\u5143\u7d20\u662f \\(1\\) \u65f6\uff0c\u9700\u8981\u5b8c\u6574\u904d\u5386\u6570\u7ec4\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002
            • \u5f53 nums = [1, ?, ?, ...] \uff0c\u5373\u5f53\u9996\u4e2a\u5143\u7d20\u4e3a \\(1\\) \u65f6\uff0c\u65e0\u8bba\u6570\u7ec4\u591a\u957f\u90fd\u4e0d\u9700\u8981\u7ee7\u7eed\u904d\u5386\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(\\Omega(1)\\) \u3002

            \u300c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u300d\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c\uff0c\u4f7f\u7528\u5927 \\(O\\) \u8bb0\u53f7\u8868\u793a\u3002\u76f8\u5e94\u5730\uff0c\u300c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u300d\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0b\u754c\uff0c\u7528 \\(\\Omega\\) \u8bb0\u53f7\u8868\u793a\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust worst_best_time_complexity.java
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] randomNumbers(int n) {\nInteger[] nums = new Integer[n];\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (int i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nCollections.shuffle(Arrays.asList(nums));\n// Integer[] -> int[]\nint[] res = new int[n];\nfor (int i = 0; i < n; i++) {\nres[i] = nums[i];\n}\nreturn res;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int[] nums) {\nfor (int i = 0; i < nums.length; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] == 1)\nreturn i;\n}\nreturn -1;\n}\n
            worst_best_time_complexity.cpp
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nvector<int> randomNumbers(int n) {\nvector<int> nums(n);\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (int i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u4f7f\u7528\u7cfb\u7edf\u65f6\u95f4\u751f\u6210\u968f\u673a\u79cd\u5b50\nunsigned seed = chrono::system_clock::now().time_since_epoch().count();\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nshuffle(nums.begin(), nums.end(), default_random_engine(seed));\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(vector<int> &nums) {\nfor (int i = 0; i < nums.size(); i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] == 1)\nreturn i;\n}\nreturn -1;\n}\n
            worst_best_time_complexity.py
            def random_numbers(n: int) -> list[int]:\n\"\"\"\u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a: 1, 2, ..., n \uff0c\u987a\u5e8f\u88ab\u6253\u4e71\"\"\"\n# \u751f\u6210\u6570\u7ec4 nums =: 1, 2, 3, ..., n\nnums = [i for i in range(1, n + 1)]\n# \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nrandom.shuffle(nums)\nreturn nums\ndef find_one(nums: list[int]) -> int:\n\"\"\"\u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\"\"\"\nfor i in range(len(nums)):\n# \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n# \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif nums[i] == 1:\nreturn i\nreturn -1\n
            worst_best_time_complexity.go
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n int) []int {\nnums := make([]int, n)\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor i := 0; i < n; i++ {\nnums[i] = i + 1\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nrand.Shuffle(len(nums), func(i, j int) {\nnums[i], nums[j] = nums[j], nums[i]\n})\nreturn nums\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums []int) int {\nfor i := 0; i < len(nums); i++ {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif nums[i] == 1 {\nreturn i\n}\n}\nreturn -1\n}\n
            worst_best_time_complexity.js
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n) {\nconst nums = Array(n);\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (let i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nfor (let i = 0; i < n; i++) {\nconst r = Math.floor(Math.random() * (i + 1));\nconst temp = nums[i];\nnums[i] = nums[r];\nnums[r] = temp;\n}\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums) {\nfor (let i = 0; i < nums.length; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] === 1) {\nreturn i;\n}\n}\nreturn -1;\n}\n
            worst_best_time_complexity.ts
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n: number): number[] {\nconst nums = Array(n);\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (let i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nfor (let i = 0; i < n; i++) {\nconst r = Math.floor(Math.random() * (i + 1));\nconst temp = nums[i];\nnums[i] = nums[r];\nnums[r] = temp;\n}\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums: number[]): number {\nfor (let i = 0; i < nums.length; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] === 1) {\nreturn i;\n}\n}\nreturn -1;\n}\n
            worst_best_time_complexity.c
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint *randomNumbers(int n) {\n// \u5206\u914d\u5806\u533a\u5185\u5b58\uff08\u521b\u5efa\u4e00\u7ef4\u53ef\u53d8\u957f\u6570\u7ec4\uff1a\u6570\u7ec4\u4e2d\u5143\u7d20\u6570\u91cf\u4e3an\uff0c\u5143\u7d20\u7c7b\u578b\u4e3aint\uff09\nint *nums = (int *)malloc(n * sizeof(int));\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (int i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nfor (int i = n - 1; i > 0; i--) {\nint j = rand() % (i + 1);\nint temp = nums[i];\nnums[i] = nums[j];\nnums[j] = temp;\n}\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int *nums, int n) {\nfor (int i = 0; i < n; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] == 1)\nreturn i;\n}\nreturn -1;\n}\n
            worst_best_time_complexity.cs
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] randomNumbers(int n) {\nint[] nums = new int[n];\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (int i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nfor (int i = 0; i < nums.Length; i++) {\nvar index = new Random().Next(i, nums.Length);\nvar tmp = nums[i];\nvar ran = nums[index];\nnums[i] = ran;\nnums[index] = tmp;\n}\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int[] nums) {\nfor (int i = 0; i < nums.Length; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] == 1)\nreturn i;\n}\nreturn -1;\n}\n
            worst_best_time_complexity.swift
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n: Int) -> [Int] {\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nvar nums = Array(1 ... n)\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nnums.shuffle()\nreturn nums\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums: [Int]) -> Int {\nfor i in nums.indices {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif nums[i] == 1 {\nreturn i\n}\n}\nreturn -1\n}\n
            worst_best_time_complexity.zig
            // \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71\npub fn randomNumbers(comptime n: usize) [n]i32 {\nvar nums: [n]i32 = undefined;\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (nums) |*num, i| {\nnum.* = @intCast(i32, i) + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nconst rand = std.crypto.random;\nrand.shuffle(i32, &nums);\nreturn nums;\n}\n// \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\npub fn findOne(nums: []i32) i32 {\nfor (nums) |num, i| {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (num == 1) return @intCast(i32, i);\n}\nreturn -1;\n}\n
            worst_best_time_complexity.dart
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nList<int> randomNumbers(int n) {\nfinal nums = List.filled(n, 0);\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (var i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nnums.shuffle();\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(List<int> nums) {\nfor (var i = 0; i < nums.length; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] == 1) return i;\n}\nreturn -1;\n}\n
            worst_best_time_complexity.rs
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfn random_numbers(n: i32) -> Vec<i32> {\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nlet mut nums = (1..=n).collect::<Vec<i32>>();\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nnums.shuffle(&mut thread_rng());\nnums\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfn find_one(nums: &[i32]) -> Option<usize> {\nfor i in 0..nums.len() {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif nums[i] == 1 {\nreturn Some(i);\n}\n}\nNone\n}\n

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6211\u4eec\u5728\u5b9e\u9645\u4e2d\u5f88\u5c11\u4f7f\u7528\u300c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u300d\uff0c\u56e0\u4e3a\u901a\u5e38\u53ea\u6709\u5728\u5f88\u5c0f\u6982\u7387\u4e0b\u624d\u80fd\u8fbe\u5230\uff0c\u53ef\u80fd\u4f1a\u5e26\u6765\u4e00\u5b9a\u7684\u8bef\u5bfc\u6027\u3002\u800c\u300c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u300d\u66f4\u4e3a\u5b9e\u7528\uff0c\u56e0\u4e3a\u5b83\u7ed9\u51fa\u4e86\u4e00\u4e2a\u6548\u7387\u5b89\u5168\u503c\uff0c\u8ba9\u6211\u4eec\u53ef\u4ee5\u653e\u5fc3\u5730\u4f7f\u7528\u7b97\u6cd5\u3002

            \u4ece\u4e0a\u8ff0\u793a\u4f8b\u53ef\u4ee5\u770b\u51fa\uff0c\u6700\u5dee\u6216\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u53ea\u51fa\u73b0\u4e8e\u201c\u7279\u6b8a\u7684\u6570\u636e\u5206\u5e03\u201d\uff0c\u8fd9\u4e9b\u60c5\u51b5\u7684\u51fa\u73b0\u6982\u7387\u53ef\u80fd\u5f88\u5c0f\uff0c\u5e76\u4e0d\u80fd\u771f\u5b9e\u5730\u53cd\u6620\u7b97\u6cd5\u8fd0\u884c\u6548\u7387\u3002\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u300c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u300d\u53ef\u4ee5\u4f53\u73b0\u7b97\u6cd5\u5728\u968f\u673a\u8f93\u5165\u6570\u636e\u4e0b\u7684\u8fd0\u884c\u6548\u7387\uff0c\u7528 \\(\\Theta\\) \u8bb0\u53f7\u6765\u8868\u793a\u3002

            \u5bf9\u4e8e\u90e8\u5206\u7b97\u6cd5\uff0c\u6211\u4eec\u53ef\u4ee5\u7b80\u5355\u5730\u63a8\u7b97\u51fa\u968f\u673a\u6570\u636e\u5206\u5e03\u4e0b\u7684\u5e73\u5747\u60c5\u51b5\u3002\u6bd4\u5982\u4e0a\u8ff0\u793a\u4f8b\uff0c\u7531\u4e8e\u8f93\u5165\u6570\u7ec4\u662f\u88ab\u6253\u4e71\u7684\uff0c\u56e0\u6b64\u5143\u7d20 \\(1\\) \u51fa\u73b0\u5728\u4efb\u610f\u7d22\u5f15\u7684\u6982\u7387\u90fd\u662f\u76f8\u7b49\u7684\uff0c\u90a3\u4e48\u7b97\u6cd5\u7684\u5e73\u5747\u5faa\u73af\u6b21\u6570\u5c31\u662f\u6570\u7ec4\u957f\u5ea6\u7684\u4e00\u534a \\(\\frac{n}{2}\\) \uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(\\Theta(\\frac{n}{2}) = \\Theta(n)\\) \u3002

            \u4f46\u5bf9\u4e8e\u8f83\u4e3a\u590d\u6742\u7684\u7b97\u6cd5\uff0c\u8ba1\u7b97\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5f80\u5f80\u662f\u6bd4\u8f83\u56f0\u96be\u7684\uff0c\u56e0\u4e3a\u5f88\u96be\u5206\u6790\u51fa\u5728\u6570\u636e\u5206\u5e03\u4e0b\u7684\u6574\u4f53\u6570\u5b66\u671f\u671b\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4f5c\u4e3a\u7b97\u6cd5\u6548\u7387\u7684\u8bc4\u5224\u6807\u51c6\u3002

            \u4e3a\u4ec0\u4e48\u5f88\u5c11\u770b\u5230 \\(\\Theta\\) \u7b26\u53f7\uff1f

            \u53ef\u80fd\u7531\u4e8e \\(O\\) \u7b26\u53f7\u8fc7\u4e8e\u6717\u6717\u4e0a\u53e3\uff0c\u6211\u4eec\u5e38\u5e38\u4f7f\u7528\u5b83\u6765\u8868\u793a\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u3002\u4f46\u4ece\u4e25\u683c\u610f\u4e49\u4e0a\u770b\uff0c\u8fd9\u79cd\u505a\u6cd5\u5e76\u4e0d\u89c4\u8303\u3002\u5728\u672c\u4e66\u548c\u5176\u4ed6\u8d44\u6599\u4e2d\uff0c\u82e5\u9047\u5230\u7c7b\u4f3c\u201c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\)\u201d\u7684\u8868\u8ff0\uff0c\u8bf7\u5c06\u5176\u76f4\u63a5\u7406\u89e3\u4e3a \\(\\Theta(n)\\) \u3002

            "},{"location":"chapter_data_structure/","title":"\u7b2c 3 \u7ae0 \u00a0 \u6570\u636e\u7ed3\u6784","text":"

            Abstract

            \u6570\u636e\u7ed3\u6784\u5982\u540c\u4e00\u526f\u7a33\u56fa\u800c\u591a\u6837\u7684\u6846\u67b6\u3002

            \u5b83\u4e3a\u6570\u636e\u7684\u6709\u5e8f\u7ec4\u7ec7\u63d0\u4f9b\u4e86\u84dd\u56fe\uff0c\u4f7f\u7b97\u6cd5\u5f97\u4ee5\u5728\u6b64\u57fa\u7840\u4e0a\u751f\u52a8\u8d77\u6765\u3002

            "},{"location":"chapter_data_structure/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 3.1 \u00a0 \u6570\u636e\u7ed3\u6784\u5206\u7c7b
            • 3.2 \u00a0 \u57fa\u672c\u6570\u636e\u7c7b\u578b
            • 3.3 \u00a0 \u6570\u5b57\u7f16\u7801 *
            • 3.4 \u00a0 \u5b57\u7b26\u7f16\u7801 *
            • 3.5 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_data_structure/basic_data_types/","title":"3.2 \u00a0 \u57fa\u672c\u6570\u636e\u7c7b\u578b","text":"

            \u8c08\u53ca\u8ba1\u7b97\u673a\u4e2d\u7684\u6570\u636e\uff0c\u6211\u4eec\u4f1a\u60f3\u5230\u6587\u672c\u3001\u56fe\u7247\u3001\u89c6\u9891\u3001\u8bed\u97f3\u30013D \u6a21\u578b\u7b49\u5404\u79cd\u5f62\u5f0f\u3002\u5c3d\u7ba1\u8fd9\u4e9b\u6570\u636e\u7684\u7ec4\u7ec7\u5f62\u5f0f\u5404\u5f02\uff0c\u4f46\u5b83\u4eec\u90fd\u7531\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6784\u6210\u3002

            \u57fa\u672c\u6570\u636e\u7c7b\u578b\u662f CPU \u53ef\u4ee5\u76f4\u63a5\u8fdb\u884c\u8fd0\u7b97\u7684\u7c7b\u578b\uff0c\u5728\u7b97\u6cd5\u4e2d\u76f4\u63a5\u88ab\u4f7f\u7528\u3002\u5b83\u5305\u62ec\uff1a

            • \u6574\u6570\u7c7b\u578b byte , short , int , long \u3002
            • \u6d6e\u70b9\u6570\u7c7b\u578b float , double \uff0c\u7528\u4e8e\u8868\u793a\u5c0f\u6570\u3002
            • \u5b57\u7b26\u7c7b\u578b char \uff0c\u7528\u4e8e\u8868\u793a\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u6bcd\u3001\u6807\u70b9\u7b26\u53f7\u3001\u751a\u81f3\u8868\u60c5\u7b26\u53f7\u7b49\u3002
            • \u5e03\u5c14\u7c7b\u578b bool \uff0c\u7528\u4e8e\u8868\u793a\u201c\u662f\u201d\u4e0e\u201c\u5426\u201d\u5224\u65ad\u3002

            \u57fa\u672c\u6570\u636e\u7c7b\u578b\u4ee5\u4e8c\u8fdb\u5236\u7684\u5f62\u5f0f\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u4e2d\u3002\u4e00\u4e2a\u4e8c\u8fdb\u5236\u4f4d\u5373\u4e3a \\(1\\) \u6bd4\u7279\u3002\u5728\u7edd\u5927\u591a\u6570\u73b0\u4ee3\u7cfb\u7edf\u4e2d\uff0c\\(1\\) \u5b57\u8282\uff08byte\uff09\u7531 \\(8\\) \u6bd4\u7279\uff08bits\uff09\u7ec4\u6210\u3002

            \u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u53d6\u51b3\u4e8e\u5176\u5360\u7528\u7684\u7a7a\u95f4\u5927\u5c0f\uff0c\u4f8b\u5982 Java \u89c4\u5b9a\uff1a

            • \u6574\u6570\u7c7b\u578b byte \u5360\u7528 \\(1\\) byte = \\(8\\) bits \uff0c\u53ef\u4ee5\u8868\u793a \\(2^{8}\\) \u4e2a\u6570\u5b57\u3002
            • \u6574\u6570\u7c7b\u578b int \u5360\u7528 \\(4\\) bytes = \\(32\\) bits \uff0c\u53ef\u4ee5\u8868\u793a \\(2^{32}\\) \u4e2a\u6570\u5b57\u3002

            \u4e0b\u8868\u5217\u4e3e\u4e86\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u5360\u7528\u7a7a\u95f4\u3001\u53d6\u503c\u8303\u56f4\u548c\u9ed8\u8ba4\u503c\u3002\u6b64\u8868\u683c\u65e0\u987b\u786c\u80cc\uff0c\u5927\u81f4\u7406\u89e3\u5373\u53ef\uff0c\u9700\u8981\u65f6\u53ef\u4ee5\u901a\u8fc7\u67e5\u8868\u6765\u56de\u5fc6\u3002

            \u8868\uff1a\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u5360\u7528\u7a7a\u95f4\u548c\u53d6\u503c\u8303\u56f4

            \u7c7b\u578b \u7b26\u53f7 \u5360\u7528\u7a7a\u95f4 \u6700\u5c0f\u503c \u6700\u5927\u503c \u9ed8\u8ba4\u503c \u6574\u6570 byte 1 byte \\(-2^7\\) (\\(-128\\)) \\(2^7 - 1\\) (\\(127\\)) \\(0\\) short 2 bytes \\(-2^{15}\\) \\(2^{15} - 1\\) \\(0\\) int 4 bytes \\(-2^{31}\\) \\(2^{31} - 1\\) \\(0\\) long 8 bytes \\(-2^{63}\\) \\(2^{63} - 1\\) \\(0\\) \u6d6e\u70b9\u6570 float 4 bytes \\(1.175 \\times 10^{-38}\\) \\(3.403 \\times 10^{38}\\) \\(0.0 f\\) double 8 bytes \\(2.225 \\times 10^{-308}\\) \\(1.798 \\times 10^{308}\\) \\(0.0\\) \u5b57\u7b26 char 2 bytes / 1 byte \\(0\\) \\(2^{16} - 1\\) \\(0\\) \u5e03\u5c14 bool 1 byte \\(\\text{false}\\) \\(\\text{true}\\) \\(\\text{false}\\)

            \u5bf9\u4e8e\u4e0a\u8868\uff0c\u9700\u8981\u6ce8\u610f\u4ee5\u4e0b\u51e0\u70b9\uff1a

            • C, C++ \u672a\u660e\u786e\u89c4\u5b9a\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5927\u5c0f\uff0c\u800c\u56e0\u5b9e\u73b0\u548c\u5e73\u53f0\u5404\u5f02\u3002\u4e0a\u8868\u9075\u5faa LP64 \u6570\u636e\u6a21\u578b\uff0c\u5176\u7528\u4e8e Unix 64 \u4f4d\u64cd\u4f5c\u7cfb\u7edf\uff08\u4f8b\u5982 Linux , macOS\uff09\u3002
            • \u5b57\u7b26 char \u7684\u5927\u5c0f\u5728 C, C++ \u4e2d\u4e3a 1 \u5b57\u8282\uff0c\u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\u53d6\u51b3\u4e8e\u7279\u5b9a\u7684\u5b57\u7b26\u7f16\u7801\u65b9\u6cd5\uff0c\u8be6\u89c1\u201c\u5b57\u7b26\u7f16\u7801\u201d\u7ae0\u8282\u3002
            • \u5373\u4f7f\u8868\u793a\u5e03\u5c14\u91cf\u4ec5\u9700 1 \u4f4d\uff08\\(0\\) \u6216 \\(1\\)\uff09\uff0c\u5b83\u5728\u5185\u5b58\u4e2d\u901a\u5e38\u88ab\u5b58\u50a8\u4e3a 1 \u5b57\u8282\u3002\u8fd9\u662f\u56e0\u4e3a\u73b0\u4ee3\u8ba1\u7b97\u673a CPU \u901a\u5e38\u5c06 1 \u5b57\u8282\u4f5c\u4e3a\u6700\u5c0f\u5bfb\u5740\u5185\u5b58\u5355\u5143\u3002

            \u90a3\u4e48\uff0c\u57fa\u672c\u6570\u636e\u7c7b\u578b\u4e0e\u6570\u636e\u7ed3\u6784\u4e4b\u95f4\u6709\u4ec0\u4e48\u8054\u7cfb\u5462\uff1f\u6211\u4eec\u77e5\u9053\uff0c\u6570\u636e\u7ed3\u6784\u662f\u5728\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u4e0e\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\u3002\u5b83\u7684\u4e3b\u8bed\u662f\u201c\u7ed3\u6784\u201d\u800c\u975e\u201c\u6570\u636e\u201d\u3002

            \u5982\u679c\u60f3\u8981\u8868\u793a\u201c\u4e00\u6392\u6570\u5b57\u201d\uff0c\u6211\u4eec\u81ea\u7136\u4f1a\u60f3\u5230\u4f7f\u7528\u6570\u7ec4\u3002\u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u7684\u7ebf\u6027\u7ed3\u6784\u53ef\u4ee5\u8868\u793a\u6570\u5b57\u7684\u76f8\u90bb\u5173\u7cfb\u548c\u987a\u5e8f\u5173\u7cfb\uff0c\u4f46\u81f3\u4e8e\u5b58\u50a8\u7684\u5185\u5bb9\u662f\u6574\u6570 int \u3001\u5c0f\u6570 float \u3001\u8fd8\u662f\u5b57\u7b26 char \uff0c\u5219\u4e0e\u201c\u6570\u636e\u7ed3\u6784\u201d\u65e0\u5173\u3002

            \u6362\u53e5\u8bdd\u8bf4\uff0c\u57fa\u672c\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u4e86\u6570\u636e\u7684\u201c\u5185\u5bb9\u7c7b\u578b\u201d\uff0c\u800c\u6570\u636e\u7ed3\u6784\u63d0\u4f9b\u4e86\u6570\u636e\u7684\u201c\u7ec4\u7ec7\u65b9\u5f0f\u201d\u3002\u4f8b\u5982\u4ee5\u4e0b\u4ee3\u7801\uff0c\u6211\u4eec\u7528\u76f8\u540c\u7684\u6570\u636e\u7ed3\u6784\uff08\u6570\u7ec4\uff09\u6765\u5b58\u50a8\u4e0e\u8868\u793a\u4e0d\u540c\u7684\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff08int , float , chat, bool\uff09\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nboolean[] bools = new boolean[5];\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint numbers[5];\nfloat decimals[5];\nchar characters[5];\nbool bools[5];\n
            # \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nnumbers: list[int] = [0] * 5\ndecimals: list[float] = [0.0] * 5\n# Python \u7684\u5b57\u7b26\u5e94\u88ab\u770b\u4f5c\u957f\u5ea6\u4e3a\u4e00\u7684\u5b57\u7b26\u4e32\ncharacters: list[str] = ['0'] * 5\nbools: list[bool] = [False] * 5\n# Python \u7684\u5217\u8868\u53ef\u4ee5\u81ea\u7531\u5b58\u50a8\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u548c\u5bf9\u8c61\u5f15\u7528\ndata = [0, 0.0, 'a', False, ListNode(0)]\n
            // \u4f7f\u7528\u591a\u79cd\u300c\u57fa\u672c\u6570\u636e\u7c7b\u578b\u300d\u6765\u521d\u59cb\u5316\u300c\u6570\u7ec4\u300d\nvar numbers = [5]int{}\nvar decimals = [5]float64{}\nvar characters = [5]byte{}\nvar bools = [5]bool{}\n
            // JavaScript \u7684\u6570\u7ec4\u53ef\u4ee5\u81ea\u7531\u5b58\u50a8\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u548c\u5bf9\u8c61\nconst array = [0, 0.0, 'a', false];\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nconst numbers: number[] = [];\nconst characters: string[] = [];\nconst bools: boolean[] = [];\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint numbers[10];\nfloat decimals[10];\nchar characters[10];\nbool bools[10];\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nbool[] bools = new bool[5];\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nlet numbers = Array(repeating: Int(), count: 5)\nlet decimals = Array(repeating: Double(), count: 5)\nlet characters = Array(repeating: Character(\"a\"), count: 5)\nlet bools = Array(repeating: Bool(), count: 5)\n
            \n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nList<int> numbers = List.filled(5, 0);\nList<double> decimals = List.filled(5, 0.0);\nList<String> characters = List.filled(5, 'a');\nList<bool> bools = List.filled(5, false);\n
            \n
            "},{"location":"chapter_data_structure/character_encoding/","title":"3.4 \u00a0 \u5b57\u7b26\u7f16\u7801 *","text":"

            \u5728\u8ba1\u7b97\u673a\u4e2d\uff0c\u6240\u6709\u6570\u636e\u90fd\u662f\u4ee5\u4e8c\u8fdb\u5236\u6570\u7684\u5f62\u5f0f\u5b58\u50a8\u7684\uff0c\u5b57\u7b26 char \u4e5f\u4e0d\u4f8b\u5916\u3002\u4e3a\u4e86\u8868\u793a\u5b57\u7b26\uff0c\u6211\u4eec\u9700\u8981\u5efa\u7acb\u4e00\u5957\u201c\u5b57\u7b26\u96c6\u201d\uff0c\u89c4\u5b9a\u6bcf\u4e2a\u5b57\u7b26\u548c\u4e8c\u8fdb\u5236\u6570\u4e4b\u95f4\u7684\u4e00\u4e00\u5bf9\u5e94\u5173\u7cfb\u3002\u6709\u4e86\u5b57\u7b26\u96c6\u4e4b\u540e\uff0c\u8ba1\u7b97\u673a\u5c31\u53ef\u4ee5\u901a\u8fc7\u67e5\u8868\u5b8c\u6210\u4e8c\u8fdb\u5236\u6570\u5230\u5b57\u7b26\u7684\u8f6c\u6362\u3002

            "},{"location":"chapter_data_structure/character_encoding/#341-ascii","title":"3.4.1 \u00a0 ASCII \u5b57\u7b26\u96c6","text":"

            \u300cASCII \u7801\u300d\u662f\u6700\u65e9\u51fa\u73b0\u7684\u5b57\u7b26\u96c6\uff0c\u5168\u79f0\u4e3a\u201c\u7f8e\u56fd\u6807\u51c6\u4fe1\u606f\u4ea4\u6362\u4ee3\u7801\u201d\u3002\u5b83\u4f7f\u7528 7 \u4f4d\u4e8c\u8fdb\u5236\u6570\uff08\u5373\u4e00\u4e2a\u5b57\u8282\u7684\u4f4e 7 \u4f4d\uff09\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\uff0c\u6700\u591a\u80fd\u591f\u8868\u793a 128 \u4e2a\u4e0d\u540c\u7684\u5b57\u7b26\u3002\u8fd9\u5305\u62ec\u82f1\u6587\u5b57\u6bcd\u7684\u5927\u5c0f\u5199\u3001\u6570\u5b57 0-9 \u3001\u4e00\u4e9b\u6807\u70b9\u7b26\u53f7\uff0c\u4ee5\u53ca\u4e00\u4e9b\u63a7\u5236\u5b57\u7b26\uff08\u5982\u6362\u884c\u7b26\u548c\u5236\u8868\u7b26\uff09\u3002

            \u56fe\uff1aASCII \u7801

            \u7136\u800c\uff0cASCII \u7801\u4ec5\u80fd\u591f\u8868\u793a\u82f1\u6587\u3002\u968f\u7740\u8ba1\u7b97\u673a\u7684\u5168\u7403\u5316\uff0c\u8bde\u751f\u4e86\u4e00\u79cd\u80fd\u591f\u8868\u793a\u66f4\u591a\u8bed\u8a00\u7684\u5b57\u7b26\u96c6\u300cEASCII\u300d\u3002\u5b83\u5728 ASCII \u7684 7 \u4f4d\u57fa\u7840\u4e0a\u6269\u5c55\u5230 8 \u4f4d\uff0c\u80fd\u591f\u8868\u793a 256 \u4e2a\u4e0d\u540c\u7684\u5b57\u7b26\u3002

            \u5728\u4e16\u754c\u8303\u56f4\u5185\uff0c\u9646\u7eed\u51fa\u73b0\u4e86\u4e00\u6279\u9002\u7528\u4e8e\u4e0d\u540c\u5730\u533a\u7684 EASCII \u5b57\u7b26\u96c6\u3002\u8fd9\u4e9b\u5b57\u7b26\u96c6\u7684\u524d 128 \u4e2a\u5b57\u7b26\u7edf\u4e00\u4e3a ASCII \u7801\uff0c\u540e 128 \u4e2a\u5b57\u7b26\u5b9a\u4e49\u4e0d\u540c\uff0c\u4ee5\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u9700\u6c42\u3002

            "},{"location":"chapter_data_structure/character_encoding/#342-gbk","title":"3.4.2 \u00a0 GBK \u5b57\u7b26\u96c6","text":"

            \u540e\u6765\u4eba\u4eec\u53d1\u73b0\uff0cEASCII \u7801\u4ecd\u7136\u65e0\u6cd5\u6ee1\u8db3\u8bb8\u591a\u8bed\u8a00\u7684\u5b57\u7b26\u6570\u91cf\u8981\u6c42\u3002\u6bd4\u5982\u6c49\u5b57\u5927\u7ea6\u6709\u8fd1\u5341\u4e07\u4e2a\uff0c\u5149\u65e5\u5e38\u4f7f\u7528\u7684\u5c31\u6709\u51e0\u5343\u4e2a\u3002\u4e2d\u56fd\u56fd\u5bb6\u6807\u51c6\u603b\u5c40\u4e8e 1980 \u5e74\u53d1\u5e03\u4e86\u300cGB2312\u300d\u5b57\u7b26\u96c6\uff0c\u5176\u6536\u5f55\u4e86 6763 \u4e2a\u6c49\u5b57\uff0c\u57fa\u672c\u6ee1\u8db3\u4e86\u6c49\u5b57\u7684\u8ba1\u7b97\u673a\u5904\u7406\u9700\u8981\u3002

            \u7136\u800c\uff0cGB2312 \u65e0\u6cd5\u5904\u7406\u90e8\u5206\u7684\u7f55\u89c1\u5b57\u548c\u7e41\u4f53\u5b57\u3002\u300cGBK\u300d\u5b57\u7b26\u96c6\u662f\u5728 GB2312 \u7684\u57fa\u7840\u4e0a\u6269\u5c55\u5f97\u5230\u7684\uff0c\u5b83\u5171\u6536\u5f55\u4e86 21886 \u4e2a\u6c49\u5b57\u3002\u5728 GBK \u7684\u7f16\u7801\u65b9\u6848\u4e2d\uff0cASCII \u5b57\u7b26\u4f7f\u7528\u4e00\u4e2a\u5b57\u8282\u8868\u793a\uff0c\u6c49\u5b57\u4f7f\u7528\u4e24\u4e2a\u5b57\u8282\u8868\u793a\u3002

            "},{"location":"chapter_data_structure/character_encoding/#343-unicode","title":"3.4.3 \u00a0 Unicode \u5b57\u7b26\u96c6","text":"

            \u968f\u7740\u8ba1\u7b97\u673a\u7684\u84ec\u52c3\u53d1\u5c55\uff0c\u5b57\u7b26\u96c6\u4e0e\u7f16\u7801\u6807\u51c6\u767e\u82b1\u9f50\u653e\uff0c\u800c\u8fd9\u5e26\u6765\u4e86\u8bb8\u591a\u95ee\u9898\u3002\u4e00\u65b9\u9762\uff0c\u8fd9\u4e9b\u5b57\u7b26\u96c6\u4e00\u822c\u53ea\u5b9a\u4e49\u4e86\u7279\u5b9a\u8bed\u8a00\u7684\u5b57\u7b26\uff0c\u65e0\u6cd5\u5728\u591a\u8bed\u8a00\u73af\u5883\u4e0b\u6b63\u5e38\u5de5\u4f5c\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u540c\u4e00\u79cd\u8bed\u8a00\u4e5f\u5b58\u5728\u591a\u79cd\u5b57\u7b26\u96c6\u6807\u51c6\uff0c\u5982\u679c\u4e24\u53f0\u7535\u8111\u5b89\u88c5\u7684\u662f\u4e0d\u540c\u7684\u7f16\u7801\u6807\u51c6\uff0c\u5219\u5728\u4fe1\u606f\u4f20\u9012\u65f6\u5c31\u4f1a\u51fa\u73b0\u4e71\u7801\u3002

            \u90a3\u4e2a\u65f6\u4ee3\u7684\u7814\u7a76\u4eba\u5458\u5c31\u5728\u60f3\uff1a\u5982\u679c\u63a8\u51fa\u4e00\u4e2a\u8db3\u591f\u5b8c\u6574\u7684\u5b57\u7b26\u96c6\uff0c\u5c06\u4e16\u754c\u8303\u56f4\u5185\u7684\u6240\u6709\u8bed\u8a00\u548c\u7b26\u53f7\u90fd\u6536\u5f55\u5176\u4e2d\uff0c\u4e0d\u5c31\u53ef\u4ee5\u89e3\u51b3\u8de8\u8bed\u8a00\u73af\u5883\u548c\u4e71\u7801\u95ee\u9898\u4e86\u5417\uff1f\u5728\u8fd9\u79cd\u60f3\u6cd5\u7684\u9a71\u52a8\u4e0b\uff0c\u4e00\u4e2a\u5927\u800c\u5168\u7684\u5b57\u7b26\u96c6 Unicode \u5e94\u8fd0\u800c\u751f\u3002

            \u300cUnicode\u300d\u7684\u5168\u79f0\u4e3a\u201c\u7edf\u4e00\u5b57\u7b26\u7f16\u7801\u201d\uff0c\u7406\u8bba\u4e0a\u80fd\u5bb9\u7eb3\u4e00\u767e\u591a\u4e07\u4e2a\u5b57\u7b26\u3002\u5b83\u81f4\u529b\u4e8e\u5c06\u5168\u7403\u8303\u56f4\u5185\u7684\u5b57\u7b26\u7eb3\u5165\u5230\u7edf\u4e00\u7684\u5b57\u7b26\u96c6\u4e4b\u4e2d\uff0c\u63d0\u4f9b\u4e00\u79cd\u901a\u7528\u7684\u5b57\u7b26\u96c6\u6765\u5904\u7406\u548c\u663e\u793a\u5404\u79cd\u8bed\u8a00\u6587\u5b57\uff0c\u51cf\u5c11\u56e0\u4e3a\u7f16\u7801\u6807\u51c6\u4e0d\u540c\u800c\u4ea7\u751f\u7684\u4e71\u7801\u95ee\u9898\u3002

            \u81ea 1991 \u5e74\u53d1\u5e03\u4ee5\u6765\uff0cUnicode \u4e0d\u65ad\u6269\u5145\u65b0\u7684\u8bed\u8a00\u4e0e\u5b57\u7b26\u3002\u622a\u6b62 2022 \u5e74 9 \u6708\uff0cUnicode \u5df2\u7ecf\u5305\u542b 149186 \u4e2a\u5b57\u7b26\uff0c\u5305\u62ec\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u7b26\u3001\u7b26\u53f7\u3001\u751a\u81f3\u662f\u8868\u60c5\u7b26\u53f7\u7b49\u3002\u5728\u5e9e\u5927\u7684 Unicode \u5b57\u7b26\u96c6\u4e2d\uff0c\u5e38\u7528\u7684\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\uff0c\u6709\u4e9b\u751f\u50fb\u7684\u5b57\u7b26\u5360 3 \u5b57\u8282\u751a\u81f3 4 \u5b57\u8282\u3002

            Unicode \u662f\u4e00\u79cd\u5b57\u7b26\u96c6\u6807\u51c6\uff0c\u672c\u8d28\u4e0a\u662f\u7ed9\u6bcf\u4e2a\u5b57\u7b26\u5206\u914d\u4e00\u4e2a\u7f16\u53f7\uff08\u79f0\u4e3a\u201c\u7801\u70b9\u201d\uff09\uff0c\u4f46\u5b83\u5e76\u6ca1\u6709\u89c4\u5b9a\u5728\u8ba1\u7b97\u673a\u4e2d\u5982\u4f55\u5b58\u50a8\u8fd9\u4e9b\u5b57\u7b26\u7801\u70b9\u3002\u6211\u4eec\u4e0d\u7981\u4f1a\u95ee\uff1a\u5f53\u591a\u79cd\u957f\u5ea6\u7684 Unicode \u7801\u70b9\u540c\u65f6\u51fa\u73b0\u5728\u540c\u4e00\u4e2a\u6587\u672c\u4e2d\u65f6\uff0c\u7cfb\u7edf\u5982\u4f55\u89e3\u6790\u5b57\u7b26\uff1f\u4f8b\u5982\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a 2 \u5b57\u8282\u7684\u7f16\u7801\uff0c\u7cfb\u7edf\u5982\u4f55\u786e\u8ba4\u5b83\u662f\u4e00\u4e2a 2 \u5b57\u8282\u7684\u5b57\u7b26\u8fd8\u662f\u4e24\u4e2a 1 \u5b57\u8282\u7684\u5b57\u7b26\uff1f

            \u5bf9\u4e8e\u4ee5\u4e0a\u95ee\u9898\uff0c\u4e00\u79cd\u76f4\u63a5\u7684\u89e3\u51b3\u65b9\u6848\u662f\u5c06\u6240\u6709\u5b57\u7b26\u5b58\u50a8\u4e3a\u7b49\u957f\u7684\u7f16\u7801\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u201cHello\u201d\u4e2d\u7684\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 1 \u5b57\u8282\uff0c\u201c\u7b97\u6cd5\u201d\u4e2d\u7684\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\u3002\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u9ad8\u4f4d\u586b 0 \uff0c\u5c06\u201cHello \u7b97\u6cd5\u201d\u4e2d\u7684\u6240\u6709\u5b57\u7b26\u90fd\u7f16\u7801\u4e3a 2 \u5b57\u8282\u957f\u5ea6\u3002\u8fd9\u6837\u7cfb\u7edf\u5c31\u53ef\u4ee5\u6bcf\u9694 2 \u5b57\u8282\u89e3\u6790\u4e00\u4e2a\u5b57\u7b26\uff0c\u6062\u590d\u51fa\u8fd9\u4e2a\u77ed\u8bed\u7684\u5185\u5bb9\u4e86\u3002

            \u56fe\uff1aUnicode \u7f16\u7801\u793a\u4f8b

            \u7136\u800c ASCII \u7801\u5df2\u7ecf\u5411\u6211\u4eec\u8bc1\u660e\uff0c\u7f16\u7801\u82f1\u6587\u53ea\u9700\u8981 1 \u5b57\u8282\u3002\u82e5\u91c7\u7528\u4e0a\u8ff0\u65b9\u6848\uff0c\u82f1\u6587\u6587\u672c\u5360\u7528\u7a7a\u95f4\u7684\u5927\u5c0f\u5c06\u4f1a\u662f ASCII \u7f16\u7801\u4e0b\u5927\u5c0f\u7684\u4e24\u500d\uff0c\u975e\u5e38\u6d6a\u8d39\u5185\u5b58\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u9700\u8981\u4e00\u79cd\u66f4\u52a0\u9ad8\u6548\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\u3002

            "},{"location":"chapter_data_structure/character_encoding/#344-utf-8","title":"3.4.4 \u00a0 UTF-8 \u7f16\u7801","text":"

            \u76ee\u524d\uff0cUTF-8 \u5df2\u6210\u4e3a\u56fd\u9645\u4e0a\u4f7f\u7528\u6700\u5e7f\u6cdb\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\u3002\u5b83\u662f\u4e00\u79cd\u53ef\u53d8\u957f\u7684\u7f16\u7801\uff0c\u4f7f\u7528 1 \u5230 4 \u4e2a\u5b57\u8282\u6765\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\uff0c\u6839\u636e\u5b57\u7b26\u7684\u590d\u6742\u6027\u800c\u53d8\u3002ASCII \u5b57\u7b26\u53ea\u9700\u8981 1 \u4e2a\u5b57\u8282\uff0c\u62c9\u4e01\u5b57\u6bcd\u548c\u5e0c\u814a\u5b57\u6bcd\u9700\u8981 2 \u4e2a\u5b57\u8282\uff0c\u5e38\u7528\u7684\u4e2d\u6587\u5b57\u7b26\u9700\u8981 3 \u4e2a\u5b57\u8282\uff0c\u5176\u4ed6\u7684\u4e00\u4e9b\u751f\u50fb\u5b57\u7b26\u9700\u8981 4 \u4e2a\u5b57\u8282\u3002

            UTF-8 \u7684\u7f16\u7801\u89c4\u5219\u5e76\u4e0d\u590d\u6742\uff0c\u5206\u4e3a\u4e24\u79cd\u60c5\u51b5\uff1a

            1. \u5bf9\u4e8e\u957f\u5ea6\u4e3a 1 \u5b57\u8282\u7684\u5b57\u7b26\uff0c\u5c06\u6700\u9ad8\u4f4d\u8bbe\u7f6e\u4e3a \\(0\\) \u3001\u5176\u4f59 7 \u4f4d\u8bbe\u7f6e\u4e3a Unicode \u7801\u70b9\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0cASCII \u5b57\u7b26\u5728 Unicode \u5b57\u7b26\u96c6\u4e2d\u5360\u636e\u4e86\u524d 128 \u4e2a\u7801\u70b9\u3002\u4e5f\u5c31\u662f\u8bf4\uff0cUTF-8 \u7f16\u7801\u53ef\u4ee5\u5411\u4e0b\u517c\u5bb9 ASCII \u7801\u3002\u8fd9\u610f\u5473\u7740\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528 UTF-8 \u6765\u89e3\u6790\u5e74\u4ee3\u4e45\u8fdc\u7684 ASCII \u7801\u6587\u672c\u3002
            2. \u5bf9\u4e8e\u957f\u5ea6\u4e3a \\(n\\) \u5b57\u8282\u7684\u5b57\u7b26\uff08\u5176\u4e2d \\(n > 1\\)\uff09\uff0c\u5c06\u9996\u4e2a\u5b57\u8282\u7684\u9ad8 \\(n\\) \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(1\\) \u3001\u7b2c \\(n + 1\\) \u4f4d\u8bbe\u7f6e\u4e3a \\(0\\) \uff1b\u4ece\u7b2c\u4e8c\u4e2a\u5b57\u8282\u5f00\u59cb\uff0c\u5c06\u6bcf\u4e2a\u5b57\u8282\u7684\u9ad8 2 \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(10\\) \uff1b\u5176\u4f59\u6240\u6709\u4f4d\u7528\u4e8e\u586b\u5145\u5b57\u7b26\u7684 Unicode \u7801\u70b9\u3002

            \u4e0b\u56fe\u5c55\u793a\u4e86\u201cHello\u7b97\u6cd5\u201d\u5bf9\u5e94\u7684 UTF-8 \u7f16\u7801\u3002\u89c2\u5bdf\u53d1\u73b0\uff0c\u7531\u4e8e\u6700\u9ad8 \\(n\\) \u4f4d\u90fd\u88ab\u8bbe\u7f6e\u4e3a \\(1\\) \uff0c\u56e0\u6b64\u7cfb\u7edf\u53ef\u4ee5\u901a\u8fc7\u8bfb\u53d6\u6700\u9ad8\u4f4d \\(1\\) \u7684\u4e2a\u6570\u6765\u89e3\u6790\u51fa\u5b57\u7b26\u7684\u957f\u5ea6\u4e3a \\(n\\) \u3002

            \u4f46\u4e3a\u4ec0\u4e48\u8981\u5c06\u5176\u4f59\u6240\u6709\u5b57\u8282\u7684\u9ad8 2 \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(10\\) \u5462\uff1f\u5b9e\u9645\u4e0a\uff0c\u8fd9\u4e2a \\(10\\) \u80fd\u591f\u8d77\u5230\u6821\u9a8c\u7b26\u7684\u4f5c\u7528\u3002\u5047\u8bbe\u7cfb\u7edf\u4ece\u4e00\u4e2a\u9519\u8bef\u7684\u5b57\u8282\u5f00\u59cb\u89e3\u6790\u6587\u672c\uff0c\u5b57\u8282\u5934\u90e8\u7684 \\(10\\) \u80fd\u591f\u5e2e\u52a9\u7cfb\u7edf\u5feb\u901f\u7684\u5224\u65ad\u51fa\u5f02\u5e38\u3002

            \u4e4b\u6240\u4ee5\u5c06 \\(10\\) \u5f53\u4f5c\u6821\u9a8c\u7b26\uff0c\u662f\u56e0\u4e3a\u5728 UTF-8 \u7f16\u7801\u89c4\u5219\u4e0b\uff0c\u4e0d\u53ef\u80fd\u6709\u5b57\u7b26\u7684\u6700\u9ad8\u4e24\u4f4d\u662f \\(10\\) \u3002\u8fd9\u4e2a\u7ed3\u8bba\u53ef\u4ee5\u7528\u53cd\u8bc1\u6cd5\u6765\u8bc1\u660e\uff1a\u5047\u8bbe\u4e00\u4e2a\u5b57\u7b26\u7684\u6700\u9ad8\u4e24\u4f4d\u662f \\(10\\) \uff0c\u8bf4\u660e\u8be5\u5b57\u7b26\u7684\u957f\u5ea6\u4e3a \\(1\\) \uff0c\u5bf9\u5e94 ASCII \u7801\u3002\u800c ASCII \u7801\u7684\u6700\u9ad8\u4f4d\u5e94\u8be5\u662f \\(0\\) \uff0c\u4e0e\u5047\u8bbe\u77db\u76fe\u3002

            \u56fe\uff1aUTF-8 \u7f16\u7801\u793a\u4f8b

            \u9664\u4e86 UTF-8 \u4e4b\u5916\uff0c\u5e38\u89c1\u7684\u7f16\u7801\u65b9\u5f0f\u8fd8\u5305\u62ec\uff1a

            • UTF-16 \u7f16\u7801\uff1a\u4f7f\u7528 2 \u6216 4 \u4e2a\u5b57\u8282\u6765\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\u3002\u6240\u6709\u7684 ASCII \u5b57\u7b26\u548c\u5e38\u7528\u7684\u975e\u82f1\u6587\u5b57\u7b26\uff0c\u90fd\u7528 2 \u4e2a\u5b57\u8282\u8868\u793a\uff1b\u5c11\u6570\u5b57\u7b26\u9700\u8981\u7528\u5230 4 \u4e2a\u5b57\u8282\u8868\u793a\u3002\u5bf9\u4e8e 2 \u5b57\u8282\u7684\u5b57\u7b26\uff0cUTF-16 \u7f16\u7801\u4e0e Unicode \u7801\u70b9\u76f8\u7b49\u3002
            • UTF-32 \u7f16\u7801\uff1a\u6bcf\u4e2a\u5b57\u7b26\u90fd\u4f7f\u7528 4 \u4e2a\u5b57\u8282\u3002\u8fd9\u610f\u5473\u7740 UTF-32 \u4f1a\u6bd4 UTF-8 \u548c UTF-16 \u66f4\u5360\u7528\u7a7a\u95f4\uff0c\u7279\u522b\u662f\u5bf9\u4e8e ASCII \u5b57\u7b26\u5360\u6bd4\u8f83\u9ad8\u7684\u6587\u672c\u3002

            \u4ece\u5b58\u50a8\u7a7a\u95f4\u7684\u89d2\u5ea6\u770b\uff0c\u4f7f\u7528 UTF-8 \u8868\u793a\u82f1\u6587\u5b57\u7b26\u975e\u5e38\u9ad8\u6548\uff0c\u56e0\u4e3a\u5b83\u4ec5\u9700 1 \u4e2a\u5b57\u8282\uff1b\u4f7f\u7528 UTF-16 \u7f16\u7801\u67d0\u4e9b\u975e\u82f1\u6587\u5b57\u7b26\uff08\u4f8b\u5982\u4e2d\u6587\uff09\u4f1a\u66f4\u52a0\u9ad8\u6548\uff0c\u56e0\u4e3a\u5b83\u53ea\u9700\u8981 2 \u4e2a\u5b57\u8282\uff0c\u800c UTF-8 \u53ef\u80fd\u9700\u8981 3 \u4e2a\u5b57\u8282\u3002

            \u4ece\u517c\u5bb9\u6027\u7684\u89d2\u5ea6\u770b\uff0cUTF-8 \u7684\u901a\u7528\u6027\u6700\u4f73\uff0c\u8bb8\u591a\u5de5\u5177\u548c\u5e93\u90fd\u4f18\u5148\u652f\u6301 UTF-8 \u3002

            "},{"location":"chapter_data_structure/character_encoding/#345","title":"3.4.5 \u00a0 \u7f16\u7a0b\u8bed\u8a00\u7684\u5b57\u7b26\u7f16\u7801","text":"

            \u5bf9\u4e8e\u4ee5\u5f80\u7684\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\uff0c\u7a0b\u5e8f\u8fd0\u884c\u4e2d\u7684\u5b57\u7b26\u4e32\u90fd\u91c7\u7528 UTF-16 \u6216 UTF-32 \u8fd9\u7c7b\u7b49\u957f\u7684\u7f16\u7801\u3002\u8fd9\u662f\u56e0\u4e3a\u5728\u7b49\u957f\u7f16\u7801\u4e0b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5b57\u7b26\u4e32\u770b\u4f5c\u6570\u7ec4\u6765\u5904\u7406\uff0c\u5176\u4f18\u70b9\u5305\u62ec\uff1a

            • \u968f\u673a\u8bbf\u95ee: UTF-16 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u8fdb\u884c\u968f\u673a\u8bbf\u95ee\u3002UTF-8 \u662f\u4e00\u79cd\u53d8\u957f\u7f16\u7801\uff0c\u8981\u627e\u5230\u7b2c \\(i\\) \u4e2a\u5b57\u7b26\uff0c\u6211\u4eec\u9700\u8981\u4ece\u5b57\u7b26\u4e32\u7684\u5f00\u59cb\u5904\u904d\u5386\u5230\u7b2c \\(i\\) \u4e2a\u5b57\u7b26\uff0c\u8fd9\u9700\u8981 \\(O(n)\\) \u7684\u65f6\u95f4\u3002
            • \u5b57\u7b26\u8ba1\u6570: \u4e0e\u968f\u673a\u8bbf\u95ee\u7c7b\u4f3c\uff0c\u8ba1\u7b97 UTF-16 \u5b57\u7b26\u4e32\u7684\u957f\u5ea6\u4e5f\u662f \\(O(1)\\) \u7684\u64cd\u4f5c\u3002\u4f46\u662f\uff0c\u8ba1\u7b97 UTF-8 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u7684\u957f\u5ea6\u9700\u8981\u904d\u5386\u6574\u4e2a\u5b57\u7b26\u4e32\u3002
            • \u5b57\u7b26\u4e32\u64cd\u4f5c: \u5728 UTF-16 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u4e2d\uff0c\u5f88\u591a\u5b57\u7b26\u4e32\u64cd\u4f5c\uff08\u5982\u5206\u5272\u3001\u8fde\u63a5\u3001\u63d2\u5165\u3001\u5220\u9664\u7b49\uff09\u90fd\u66f4\u5bb9\u6613\u8fdb\u884c\u3002\u5728 UTF-8 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u4e0a\u8fdb\u884c\u8fd9\u4e9b\u64cd\u4f5c\u901a\u5e38\u9700\u8981\u989d\u5916\u7684\u8ba1\u7b97\uff0c\u4ee5\u786e\u4fdd\u4e0d\u4f1a\u4ea7\u751f\u65e0\u6548\u7684 UTF-8 \u7f16\u7801\u3002

            \u5b9e\u9645\u4e0a\uff0c\u7f16\u7a0b\u8bed\u8a00\u7684\u5b57\u7b26\u7f16\u7801\u65b9\u6848\u8bbe\u8ba1\u662f\u4e00\u4e2a\u5f88\u6709\u8da3\u7684\u8bdd\u9898\uff0c\u5176\u6d89\u53ca\u5230\u8bb8\u591a\u56e0\u7d20\uff1a

            • Java \u7684 String \u7c7b\u578b\u4f7f\u7528 UTF-16 \u7f16\u7801\uff0c\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\u3002\u8fd9\u662f\u56e0\u4e3a Java \u8bed\u8a00\u8bbe\u8ba1\u4e4b\u521d\uff0c\u4eba\u4eec\u8ba4\u4e3a 16 \u4f4d\u8db3\u4ee5\u8868\u793a\u6240\u6709\u53ef\u80fd\u7684\u5b57\u7b26\u3002\u7136\u800c\uff0c\u8fd9\u662f\u4e00\u4e2a\u4e0d\u6b63\u786e\u7684\u5224\u65ad\u3002\u540e\u6765 Unicode \u89c4\u8303\u6269\u5c55\u5230\u4e86\u8d85\u8fc7 16 \u4f4d\uff0c\u6240\u4ee5 Java \u4e2d\u7684\u5b57\u7b26\u73b0\u5728\u53ef\u80fd\u7531\u4e00\u5bf9 16 \u4f4d\u7684\u503c\uff08\u79f0\u4e3a\u201c\u4ee3\u7406\u5bf9\u201d\uff09\u8868\u793a\u3002
            • JavaScript \u548c TypeScript \u7684\u5b57\u7b26\u4e32\u4f7f\u7528 UTF-16 \u7f16\u7801\u7684\u539f\u56e0\u4e0e Java \u7c7b\u4f3c\u3002\u5f53 JavaScript \u8bed\u8a00\u5728 1995 \u5e74\u88ab Netscape \u516c\u53f8\u9996\u6b21\u5f15\u5165\u65f6\uff0cUnicode \u8fd8\u5904\u4e8e\u76f8\u5bf9\u65e9\u671f\u7684\u9636\u6bb5\uff0c\u90a3\u65f6\u5019\u4f7f\u7528 16 \u4f4d\u7684\u7f16\u7801\u5c31\u8db3\u591f\u8868\u793a\u6240\u6709\u7684 Unicode \u5b57\u7b26\u4e86\u3002
            • C# \u4f7f\u7528 UTF-16 \u7f16\u7801\uff0c\u4e3b\u8981\u56e0\u4e3a .NET \u5e73\u53f0\u662f\u7531 Microsoft \u8bbe\u8ba1\u7684\uff0c\u800c Microsoft \u7684\u5f88\u591a\u6280\u672f\uff0c\u5305\u62ec Windows \u64cd\u4f5c\u7cfb\u7edf\uff0c\u90fd\u5e7f\u6cdb\u5730\u4f7f\u7528 UTF-16 \u7f16\u7801\u3002

            \u7531\u4e8e\u4ee5\u4e0a\u7f16\u7a0b\u8bed\u8a00\u5bf9\u5b57\u7b26\u6570\u91cf\u7684\u4f4e\u4f30\uff0c\u5b83\u4eec\u4e0d\u5f97\u4e0d\u91c7\u53d6\u201c\u4ee3\u7406\u5bf9\u201d\u7684\u65b9\u5f0f\u6765\u8868\u793a\u8d85\u8fc7 16 \u4f4d\u957f\u5ea6\u7684 Unicode \u5b57\u7b26\u3002\u8fd9\u662f\u4e00\u4e2a\u4e0d\u5f97\u5df2\u4e3a\u4e4b\u7684\u65e0\u5948\u4e4b\u4e3e\u3002\u4e00\u65b9\u9762\uff0c\u5305\u542b\u4ee3\u7406\u5bf9\u7684\u5b57\u7b26\u4e32\u4e2d\uff0c\u4e00\u4e2a\u5b57\u7b26\u53ef\u80fd\u5360\u7528 2 \u5b57\u8282\u6216 4 \u5b57\u8282\uff0c\u4ece\u800c\u4e27\u5931\u4e86\u7b49\u957f\u7f16\u7801\u7684\u4f18\u52bf\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u5904\u7406\u4ee3\u7406\u5bf9\u9700\u8981\u589e\u52a0\u989d\u5916\u4ee3\u7801\uff0c\u8fd9\u589e\u52a0\u4e86\u7f16\u7a0b\u7684\u590d\u6742\u6027\u548c Debug \u96be\u5ea6\u3002

            \u51fa\u4e8e\u4ee5\u4e0a\u539f\u56e0\uff0c\u90e8\u5206\u7f16\u7a0b\u8bed\u8a00\u63d0\u51fa\u4e86\u4e0d\u540c\u7684\u7f16\u7801\u65b9\u6848\uff1a

            • Python 3 \u4f7f\u7528\u4e00\u79cd\u7075\u6d3b\u7684\u5b57\u7b26\u4e32\u8868\u793a\uff0c\u5b58\u50a8\u7684\u5b57\u7b26\u957f\u5ea6\u53d6\u51b3\u4e8e\u5b57\u7b26\u4e32\u4e2d\u6700\u5927\u7684 Unicode \u7801\u70b9\u3002\u5bf9\u4e8e\u5168\u90e8\u662f ASCII \u5b57\u7b26\u7684\u5b57\u7b26\u4e32\uff0c\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 1 \u4e2a\u5b57\u8282\uff1b\u5982\u679c\u5b57\u7b26\u4e32\u4e2d\u5305\u542b\u7684\u5b57\u7b26\u8d85\u51fa\u4e86 ASCII \u8303\u56f4\uff0c\u4f46\u5168\u90e8\u5728\u57fa\u672c\u591a\u8bed\u8a00\u5e73\u9762\uff08BMP\uff09\u5185\uff0c\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u4e2a\u5b57\u8282\uff1b\u5982\u679c\u5b57\u7b26\u4e32\u4e2d\u6709\u8d85\u51fa BMP \u7684\u5b57\u7b26\uff0c\u90a3\u4e48\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 4 \u4e2a\u5b57\u8282\u3002
            • Go \u8bed\u8a00\u7684 string \u7c7b\u578b\u5728\u5185\u90e8\u4f7f\u7528 UTF-8 \u7f16\u7801\u3002Go \u8bed\u8a00\u8fd8\u63d0\u4f9b\u4e86 rune \u7c7b\u578b\uff0c\u5b83\u7528\u4e8e\u8868\u793a\u5355\u4e2a Unicode \u7801\u70b9\u3002
            • Rust \u8bed\u8a00\u7684 str \u548c String \u7c7b\u578b\u5728\u5185\u90e8\u4f7f\u7528 UTF-8 \u7f16\u7801\u3002Rust \u4e5f\u63d0\u4f9b\u4e86 char \u7c7b\u578b\uff0c\u7528\u4e8e\u8868\u793a\u5355\u4e2a Unicode \u7801\u70b9\u3002

            \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4ee5\u4e0a\u8ba8\u8bba\u7684\u90fd\u662f\u5b57\u7b26\u4e32\u5728\u7f16\u7a0b\u8bed\u8a00\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\uff0c\u8fd9\u548c\u5b57\u7b26\u4e32\u5982\u4f55\u5728\u6587\u4ef6\u4e2d\u5b58\u50a8\u6216\u5728\u7f51\u7edc\u4e2d\u4f20\u8f93\u662f\u4e24\u4e2a\u4e0d\u540c\u7684\u95ee\u9898\u3002\u5728\u6587\u4ef6\u5b58\u50a8\u6216\u7f51\u7edc\u4f20\u8f93\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u5b57\u7b26\u4e32\u7f16\u7801\u4e3a UTF-8 \u683c\u5f0f\uff0c\u4ee5\u8fbe\u5230\u6700\u4f18\u7684\u517c\u5bb9\u6027\u548c\u7a7a\u95f4\u6548\u7387\u3002

            "},{"location":"chapter_data_structure/classification_of_data_structure/","title":"3.1 \u00a0 \u6570\u636e\u7ed3\u6784\u5206\u7c7b","text":"

            \u5e38\u89c1\u7684\u6570\u636e\u7ed3\u6784\u5305\u62ec\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\uff0c\u5b83\u4eec\u53ef\u4ee5\u4ece\u201c\u903b\u8f91\u7ed3\u6784\u201d\u548c\u201c\u7269\u7406\u7ed3\u6784\u201d\u4e24\u4e2a\u7ef4\u5ea6\u8fdb\u884c\u5206\u7c7b\u3002

            "},{"location":"chapter_data_structure/classification_of_data_structure/#311","title":"3.1.1 \u00a0 \u903b\u8f91\u7ed3\u6784\uff1a\u7ebf\u6027\u4e0e\u975e\u7ebf\u6027","text":"

            \u300c\u903b\u8f91\u7ed3\u6784\u300d\u63ed\u793a\u4e86\u6570\u636e\u5143\u7d20\u4e4b\u95f4\u7684\u903b\u8f91\u5173\u7cfb\u3002\u5728\u6570\u7ec4\u548c\u94fe\u8868\u4e2d\uff0c\u6570\u636e\u6309\u7167\u987a\u5e8f\u4f9d\u6b21\u6392\u5217\uff0c\u4f53\u73b0\u4e86\u6570\u636e\u4e4b\u95f4\u7684\u7ebf\u6027\u5173\u7cfb\uff1b\u800c\u5728\u6811\u4e2d\uff0c\u6570\u636e\u4ece\u9876\u90e8\u5411\u4e0b\u6309\u5c42\u6b21\u6392\u5217\uff0c\u8868\u73b0\u51fa\u7956\u5148\u4e0e\u540e\u4ee3\u4e4b\u95f4\u7684\u6d3e\u751f\u5173\u7cfb\uff1b\u56fe\u5219\u7531\u8282\u70b9\u548c\u8fb9\u6784\u6210\uff0c\u53cd\u6620\u4e86\u590d\u6742\u7684\u7f51\u7edc\u5173\u7cfb\u3002

            \u903b\u8f91\u7ed3\u6784\u53ef\u88ab\u5206\u4e3a\u201c\u7ebf\u6027\u201d\u548c\u201c\u975e\u7ebf\u6027\u201d\u4e24\u5927\u7c7b\u3002\u7ebf\u6027\u7ed3\u6784\u6bd4\u8f83\u76f4\u89c2\uff0c\u6307\u6570\u636e\u5728\u903b\u8f91\u5173\u7cfb\u4e0a\u5448\u7ebf\u6027\u6392\u5217\uff1b\u975e\u7ebf\u6027\u7ed3\u6784\u5219\u76f8\u53cd\uff0c\u5448\u975e\u7ebf\u6027\u6392\u5217\u3002

            • \u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1a\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3002
            • \u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1a\u6811\u3001\u5806\u3001\u56fe\u3001\u54c8\u5e0c\u8868\u3002

            \u56fe\uff1a\u7ebf\u6027\u4e0e\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784

            \u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u53ef\u4ee5\u8fdb\u4e00\u6b65\u88ab\u5212\u5206\u4e3a\u6811\u5f62\u7ed3\u6784\u548c\u7f51\u72b6\u7ed3\u6784\u3002

            • \u7ebf\u6027\u7ed3\u6784\uff1a\u6570\u7ec4\u3001\u94fe\u8868\u3001\u961f\u5217\u3001\u6808\u3001\u54c8\u5e0c\u8868\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u4e00\u5bf9\u4e00\u7684\u987a\u5e8f\u5173\u7cfb\u3002
            • \u6811\u5f62\u7ed3\u6784\uff1a\u6811\u3001\u5806\u3001\u54c8\u5e0c\u8868\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u4e00\u5bf9\u591a\u7684\u5173\u7cfb\u3002
            • \u7f51\u72b6\u7ed3\u6784\uff1a\u56fe\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u591a\u5bf9\u591a\u7684\u5173\u7cfb\u3002
            "},{"location":"chapter_data_structure/classification_of_data_structure/#312","title":"3.1.2 \u00a0 \u7269\u7406\u7ed3\u6784\uff1a\u8fde\u7eed\u4e0e\u79bb\u6563","text":"

            \u5728\u8ba1\u7b97\u673a\u4e2d\uff0c\u5185\u5b58\u548c\u786c\u76d8\u662f\u4e24\u79cd\u4e3b\u8981\u7684\u5b58\u50a8\u786c\u4ef6\u8bbe\u5907\u3002\u786c\u76d8\u4e3b\u8981\u7528\u4e8e\u957f\u671f\u5b58\u50a8\u6570\u636e\uff0c\u5bb9\u91cf\u8f83\u5927\uff08\u901a\u5e38\u53ef\u8fbe\u5230 TB \u7ea7\u522b\uff09\u3001\u901f\u5ea6\u8f83\u6162\u3002\u5185\u5b58\u7528\u4e8e\u8fd0\u884c\u7a0b\u5e8f\u65f6\u6682\u5b58\u6570\u636e\uff0c\u901f\u5ea6\u8f83\u5feb\uff0c\u4f46\u5bb9\u91cf\u8f83\u5c0f\uff08\u901a\u5e38\u4e3a GB \u7ea7\u522b\uff09\u3002

            \u5728\u7b97\u6cd5\u8fd0\u884c\u8fc7\u7a0b\u4e2d\uff0c\u76f8\u5173\u6570\u636e\u90fd\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\u3002\u4e0b\u56fe\u5c55\u793a\u4e86\u4e00\u4e2a\u8ba1\u7b97\u673a\u5185\u5b58\u6761\uff0c\u5176\u4e2d\u6bcf\u4e2a\u9ed1\u8272\u65b9\u5757\u90fd\u5305\u542b\u4e00\u5757\u5185\u5b58\u7a7a\u95f4\u3002\u6211\u4eec\u53ef\u4ee5\u5c06\u5185\u5b58\u60f3\u8c61\u6210\u4e00\u4e2a\u5de8\u5927\u7684 Excel \u8868\u683c\uff0c\u5176\u4e2d\u6bcf\u4e2a\u5355\u5143\u683c\u90fd\u53ef\u4ee5\u5b58\u50a8\u4e00\u5b9a\u5927\u5c0f\u7684\u6570\u636e\uff0c\u5728\u7b97\u6cd5\u8fd0\u884c\u65f6\uff0c\u6240\u6709\u6570\u636e\u90fd\u88ab\u5b58\u50a8\u5728\u8fd9\u4e9b\u5355\u5143\u683c\u4e2d\u3002

            \u7cfb\u7edf\u901a\u8fc7\u5185\u5b58\u5730\u5740\u6765\u8bbf\u95ee\u76ee\u6807\u4f4d\u7f6e\u7684\u6570\u636e\u3002\u8ba1\u7b97\u673a\u6839\u636e\u7279\u5b9a\u89c4\u5219\u4e3a\u8868\u683c\u4e2d\u7684\u6bcf\u4e2a\u5355\u5143\u683c\u5206\u914d\u7f16\u53f7\uff0c\u786e\u4fdd\u6bcf\u4e2a\u5185\u5b58\u7a7a\u95f4\u90fd\u6709\u552f\u4e00\u7684\u5185\u5b58\u5730\u5740\u3002\u6709\u4e86\u8fd9\u4e9b\u5730\u5740\uff0c\u7a0b\u5e8f\u4fbf\u53ef\u4ee5\u8bbf\u95ee\u5185\u5b58\u4e2d\u7684\u6570\u636e\u3002

            \u56fe\uff1a\u5185\u5b58\u6761\u3001\u5185\u5b58\u7a7a\u95f4\u3001\u5185\u5b58\u5730\u5740

            \u5185\u5b58\u662f\u6240\u6709\u7a0b\u5e8f\u7684\u5171\u4eab\u8d44\u6e90\uff0c\u5f53\u67d0\u5757\u5185\u5b58\u88ab\u67d0\u4e2a\u7a0b\u5e8f\u5360\u7528\u65f6\uff0c\u5219\u65e0\u6cd5\u88ab\u5176\u4ed6\u7a0b\u5e8f\u540c\u65f6\u4f7f\u7528\u4e86\u3002\u56e0\u6b64\u5728\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u8bbe\u8ba1\u4e2d\uff0c\u5185\u5b58\u8d44\u6e90\u662f\u4e00\u4e2a\u91cd\u8981\u7684\u8003\u8651\u56e0\u7d20\u3002\u6bd4\u5982\uff0c\u7b97\u6cd5\u6240\u5360\u7528\u7684\u5185\u5b58\u5cf0\u503c\u4e0d\u5e94\u8d85\u8fc7\u7cfb\u7edf\u5269\u4f59\u7a7a\u95f2\u5185\u5b58\uff1b\u5982\u679c\u7f3a\u5c11\u8fde\u7eed\u5927\u5757\u7684\u5185\u5b58\u7a7a\u95f4\uff0c\u90a3\u4e48\u6240\u9009\u7528\u7684\u6570\u636e\u7ed3\u6784\u5fc5\u987b\u80fd\u591f\u5b58\u50a8\u5728\u79bb\u6563\u7684\u5185\u5b58\u7a7a\u95f4\u5185\u3002

            \u300c\u7269\u7406\u7ed3\u6784\u300d\u53cd\u6620\u4e86\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\uff0c\u53ef\u5206\u4e3a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\uff08\u6570\u7ec4\uff09\u548c\u79bb\u6563\u7a7a\u95f4\u5b58\u50a8\uff08\u94fe\u8868\uff09\u3002\u7269\u7406\u7ed3\u6784\u4ece\u5e95\u5c42\u51b3\u5b9a\u4e86\u6570\u636e\u7684\u8bbf\u95ee\u3001\u66f4\u65b0\u3001\u589e\u5220\u7b49\u64cd\u4f5c\u65b9\u6cd5\uff0c\u540c\u65f6\u5728\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u65b9\u9762\u5448\u73b0\u51fa\u4e92\u8865\u7684\u7279\u70b9\u3002

            \u56fe\uff1a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u4e0e\u79bb\u6563\u7a7a\u95f4\u5b58\u50a8

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6240\u6709\u6570\u636e\u7ed3\u6784\u90fd\u662f\u57fa\u4e8e\u6570\u7ec4\u3001\u94fe\u8868\u6216\u4e8c\u8005\u7684\u7ec4\u5408\u5b9e\u73b0\u7684\u3002\u4f8b\u5982\uff0c\u6808\u548c\u961f\u5217\u65e2\u53ef\u4ee5\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\uff0c\u4e5f\u53ef\u4ee5\u4f7f\u7528\u94fe\u8868\u5b9e\u73b0\uff1b\u800c\u54c8\u5e0c\u8868\u7684\u5b9e\u73b0\u53ef\u80fd\u540c\u65f6\u5305\u542b\u6570\u7ec4\u548c\u94fe\u8868\u3002

            • \u57fa\u4e8e\u6570\u7ec4\u53ef\u5b9e\u73b0\uff1a\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u3001\u77e9\u9635\u3001\u5f20\u91cf\uff08\u7ef4\u5ea6 \\(\\geq 3\\) \u7684\u6570\u7ec4\uff09\u7b49\u3002
            • \u57fa\u4e8e\u94fe\u8868\u53ef\u5b9e\u73b0\uff1a\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u7b49\u3002

            \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u4e5f\u88ab\u79f0\u4e3a\u201c\u9759\u6001\u6570\u636e\u7ed3\u6784\u201d\uff0c\u8fd9\u610f\u5473\u7740\u6b64\u7c7b\u6570\u636e\u7ed3\u6784\u5728\u521d\u59cb\u5316\u540e\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002\u76f8\u5bf9\u5e94\u5730\uff0c\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u88ab\u79f0\u4e3a\u201c\u52a8\u6001\u6570\u636e\u7ed3\u6784\u201d\uff0c\u8fd9\u7c7b\u6570\u636e\u7ed3\u6784\u5728\u521d\u59cb\u5316\u540e\uff0c\u4ecd\u53ef\u4ee5\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u5bf9\u5176\u957f\u5ea6\u8fdb\u884c\u8c03\u6574\u3002

            Tip

            \u5982\u82e5\u611f\u89c9\u7406\u89e3\u7269\u7406\u7ed3\u6784\u6709\u56f0\u96be\uff0c\u5efa\u8bae\u5148\u9605\u8bfb\u4e0b\u4e00\u7ae0\u201c\u6570\u7ec4\u4e0e\u94fe\u8868\u201d\uff0c\u7136\u540e\u518d\u56de\u987e\u672c\u8282\u5185\u5bb9\u3002

            "},{"location":"chapter_data_structure/number_encoding/","title":"3.3 \u00a0 \u6570\u5b57\u7f16\u7801 *","text":"

            Note

            \u5728\u672c\u4e66\u4e2d\uff0c\u6807\u9898\u5e26\u6709\u7684 * \u7b26\u53f7\u7684\u662f\u9009\u8bfb\u7ae0\u8282\u3002\u5982\u679c\u4f60\u65f6\u95f4\u6709\u9650\u6216\u611f\u5230\u7406\u89e3\u56f0\u96be\uff0c\u53ef\u4ee5\u5148\u8df3\u8fc7\uff0c\u7b49\u5b66\u5b8c\u5fc5\u8bfb\u7ae0\u8282\u540e\u518d\u5355\u72ec\u653b\u514b\u3002

            "},{"location":"chapter_data_structure/number_encoding/#331","title":"3.3.1 \u00a0 \u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801","text":"

            \u4ece\u4e0a\u4e00\u8282\u7684\u8868\u683c\u4e2d\u6211\u4eec\u53d1\u73b0\uff0c\u6240\u6709\u6574\u6570\u7c7b\u578b\u80fd\u591f\u8868\u793a\u7684\u8d1f\u6570\u90fd\u6bd4\u6b63\u6570\u591a\u4e00\u4e2a\u3002\u4f8b\u5982\uff0cbyte \u7684\u53d6\u503c\u8303\u56f4\u662f \\([-128, 127]\\) \u3002\u8fd9\u4e2a\u73b0\u8c61\u6bd4\u8f83\u53cd\u76f4\u89c9\uff0c\u5b83\u7684\u5185\u5728\u539f\u56e0\u6d89\u53ca\u5230\u539f\u7801\u3001\u53cd\u7801\u3001\u8865\u7801\u7684\u76f8\u5173\u77e5\u8bc6\u3002

            \u5728\u5c55\u5f00\u5206\u6790\u4e4b\u524d\uff0c\u6211\u4eec\u9996\u5148\u7ed9\u51fa\u4e09\u8005\u7684\u5b9a\u4e49\uff1a

            • \u539f\u7801\uff1a\u6211\u4eec\u5c06\u6570\u5b57\u7684\u4e8c\u8fdb\u5236\u8868\u793a\u7684\u6700\u9ad8\u4f4d\u89c6\u4e3a\u7b26\u53f7\u4f4d\uff0c\u5176\u4e2d \\(0\\) \u8868\u793a\u6b63\u6570\uff0c\\(1\\) \u8868\u793a\u8d1f\u6570\uff0c\u5176\u4f59\u4f4d\u8868\u793a\u6570\u5b57\u7684\u503c\u3002
            • \u53cd\u7801\uff1a\u6b63\u6570\u7684\u53cd\u7801\u4e0e\u5176\u539f\u7801\u76f8\u540c\uff0c\u8d1f\u6570\u7684\u53cd\u7801\u662f\u5bf9\u5176\u539f\u7801\u9664\u7b26\u53f7\u4f4d\u5916\u7684\u6240\u6709\u4f4d\u53d6\u53cd\u3002
            • \u8865\u7801\uff1a\u6b63\u6570\u7684\u8865\u7801\u4e0e\u5176\u539f\u7801\u76f8\u540c\uff0c\u8d1f\u6570\u7684\u8865\u7801\u662f\u5728\u5176\u53cd\u7801\u7684\u57fa\u7840\u4e0a\u52a0 \\(1\\) \u3002

            \u56fe\uff1a\u539f\u7801\u3001\u53cd\u7801\u4e0e\u8865\u7801\u4e4b\u95f4\u7684\u76f8\u4e92\u8f6c\u6362

            \u663e\u7136\u300c\u539f\u7801\u300d\u6700\u4e3a\u76f4\u89c2\u3002\u4f46\u5b9e\u9645\u4e0a\uff0c\u6570\u5b57\u662f\u4ee5\u300c\u8865\u7801\u300d\u7684\u5f62\u5f0f\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u4e2d\u7684\u3002\u8fd9\u662f\u56e0\u4e3a\u539f\u7801\u5b58\u5728\u4e00\u4e9b\u5c40\u9650\u6027\u3002

            \u4e00\u65b9\u9762\uff0c\u8d1f\u6570\u7684\u539f\u7801\u4e0d\u80fd\u76f4\u63a5\u7528\u4e8e\u8fd0\u7b97\u3002\u4f8b\u5982\uff0c\u6211\u4eec\u5728\u539f\u7801\u4e0b\u8ba1\u7b97 \\(1 + (-2)\\) \uff0c\u5f97\u5230\u7684\u7ed3\u679c\u662f \\(-3\\) \uff0c\u8fd9\u663e\u7136\u662f\u4e0d\u5bf9\u7684\u3002

            \\[ \\begin{aligned} & 1 + (-2) \\newline & = 0000 \\space 0001 + 1000 \\space 0010 \\newline & = 1000 \\space 0011 \\newline & = -3 \\end{aligned} \\]

            \u4e3a\u4e86\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u8ba1\u7b97\u673a\u5f15\u5165\u4e86\u300c\u53cd\u7801\u300d\u3002\u5982\u679c\u6211\u4eec\u5148\u5c06\u539f\u7801\u8f6c\u6362\u4e3a\u53cd\u7801\uff0c\u5e76\u5728\u53cd\u7801\u4e0b\u8ba1\u7b97 \\(1 + (-2)\\) \uff0c\u6700\u540e\u5c06\u7ed3\u679c\u4ece\u53cd\u7801\u8f6c\u5316\u56de\u539f\u7801\uff0c\u5219\u53ef\u5f97\u5230\u6b63\u786e\u7ed3\u679c \\(-1\\) \u3002

            \\[ \\begin{aligned} & 1 + (-2) \\newline & \\rightarrow 0000 \\space 0001 \\space \\text{(\u539f\u7801)} + 1000 \\space 0010 \\space \\text{(\u539f\u7801)} \\newline & = 0000 \\space 0001 \\space \\text{(\u53cd\u7801)} + 1111 \\space 1101 \\space \\text{(\u53cd\u7801)} \\newline & = 1111 \\space 1110 \\space \\text{(\u53cd\u7801)} \\newline & = 1000 \\space 0001 \\space \\text{(\u539f\u7801)} \\newline & \\rightarrow -1 \\end{aligned} \\]

            \u53e6\u4e00\u65b9\u9762\uff0c\u6570\u5b57\u96f6\u7684\u539f\u7801\u6709 \\(+0\\) \u548c \\(-0\\) \u4e24\u79cd\u8868\u793a\u65b9\u5f0f\u3002\u8fd9\u610f\u5473\u7740\u6570\u5b57\u96f6\u5bf9\u5e94\u7740\u4e24\u4e2a\u4e0d\u540c\u7684\u4e8c\u8fdb\u5236\u7f16\u7801\uff0c\u5176\u53ef\u80fd\u4f1a\u5e26\u6765\u6b67\u4e49\u3002\u6bd4\u5982\u5728\u6761\u4ef6\u5224\u65ad\u4e2d\uff0c\u5982\u679c\u6ca1\u6709\u533a\u5206\u6b63\u96f6\u548c\u8d1f\u96f6\uff0c\u5219\u53ef\u80fd\u4f1a\u5bfc\u81f4\u5224\u65ad\u7ed3\u679c\u51fa\u9519\u3002\u800c\u5982\u679c\u6211\u4eec\u60f3\u8981\u5904\u7406\u6b63\u96f6\u548c\u8d1f\u96f6\u6b67\u4e49\uff0c\u5219\u9700\u8981\u5f15\u5165\u989d\u5916\u7684\u5224\u65ad\u64cd\u4f5c\uff0c\u5176\u53ef\u80fd\u4f1a\u964d\u4f4e\u8ba1\u7b97\u673a\u7684\u8fd0\u7b97\u6548\u7387\u3002

            \\[ \\begin{aligned} +0 & = 0000 \\space 0000 \\newline -0 & = 1000 \\space 0000 \\end{aligned} \\]

            \u4e0e\u539f\u7801\u4e00\u6837\uff0c\u53cd\u7801\u4e5f\u5b58\u5728\u6b63\u8d1f\u96f6\u6b67\u4e49\u95ee\u9898\uff0c\u56e0\u6b64\u8ba1\u7b97\u673a\u8fdb\u4e00\u6b65\u5f15\u5165\u4e86\u300c\u8865\u7801\u300d\u3002\u6211\u4eec\u5148\u6765\u89c2\u5bdf\u4e00\u4e0b\u8d1f\u96f6\u7684\u539f\u7801\u3001\u53cd\u7801\u3001\u8865\u7801\u7684\u8f6c\u6362\u8fc7\u7a0b\uff1a

            \\[ \\begin{aligned} -0 = \\space & 1000 \\space 0000 \\space \\text{(\u539f\u7801)} \\newline = \\space & 1111 \\space 1111 \\space \\text{(\u53cd\u7801)} \\newline = 1 \\space & 0000 \\space 0000 \\space \\text{(\u8865\u7801)} \\newline \\end{aligned} \\]

            \u5728\u8d1f\u96f6\u7684\u53cd\u7801\u57fa\u7840\u4e0a\u52a0 \\(1\\) \u4f1a\u4ea7\u751f\u8fdb\u4f4d\uff0c\u4f46 byte \u7c7b\u578b\u7684\u957f\u5ea6\u53ea\u6709 8 \u4f4d\uff0c\u56e0\u6b64\u6ea2\u51fa\u5230\u7b2c 9 \u4f4d\u7684 \\(1\\) \u4f1a\u88ab\u820d\u5f03\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u8d1f\u96f6\u7684\u8865\u7801\u4e3a \\(0000 \\space 0000\\) \uff0c\u4e0e\u6b63\u96f6\u7684\u8865\u7801\u76f8\u540c\u3002\u8fd9\u610f\u5473\u7740\u5728\u8865\u7801\u8868\u793a\u4e2d\u53ea\u5b58\u5728\u4e00\u4e2a\u96f6\uff0c\u6b63\u8d1f\u96f6\u6b67\u4e49\u4ece\u800c\u5f97\u5230\u89e3\u51b3\u3002

            \u8fd8\u5269\u4f59\u6700\u540e\u4e00\u4e2a\u7591\u60d1\uff1abyte \u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u662f \\([-128, 127]\\) \uff0c\u591a\u51fa\u6765\u7684\u4e00\u4e2a\u8d1f\u6570 \\(-128\\) \u662f\u5982\u4f55\u5f97\u5230\u7684\u5462\uff1f\u6211\u4eec\u6ce8\u610f\u5230\uff0c\u533a\u95f4 \\([-127, +127]\\) \u5185\u7684\u6240\u6709\u6574\u6570\u90fd\u6709\u5bf9\u5e94\u7684\u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801\uff0c\u5e76\u4e14\u539f\u7801\u548c\u8865\u7801\u4e4b\u95f4\u662f\u53ef\u4ee5\u4e92\u76f8\u8f6c\u6362\u7684\u3002

            \u7136\u800c\uff0c\u8865\u7801 \\(1000 \\space 0000\\) \u662f\u4e00\u4e2a\u4f8b\u5916\uff0c\u5b83\u5e76\u6ca1\u6709\u5bf9\u5e94\u7684\u539f\u7801\u3002\u6839\u636e\u8f6c\u6362\u65b9\u6cd5\uff0c\u6211\u4eec\u5f97\u5230\u8be5\u8865\u7801\u7684\u539f\u7801\u4e3a \\(0000 \\space 0000\\) \u3002\u8fd9\u663e\u7136\u662f\u77db\u76fe\u7684\uff0c\u56e0\u4e3a\u8be5\u539f\u7801\u8868\u793a\u6570\u5b57 \\(0\\) \uff0c\u5b83\u7684\u8865\u7801\u5e94\u8be5\u662f\u81ea\u8eab\u3002\u8ba1\u7b97\u673a\u89c4\u5b9a\u8fd9\u4e2a\u7279\u6b8a\u7684\u8865\u7801 \\(1000 \\space 0000\\) \u4ee3\u8868 \\(-128\\) \u3002\u5b9e\u9645\u4e0a\uff0c\\((-1) + (-127)\\) \u5728\u8865\u7801\u4e0b\u7684\u8ba1\u7b97\u7ed3\u679c\u5c31\u662f \\(-128\\) \u3002

            \\[ \\begin{aligned} & (-127) + (-1) \\newline & \\rightarrow 1111 \\space 1111 \\space \\text{(\u539f\u7801)} + 1000 \\space 0001 \\space \\text{(\u539f\u7801)} \\newline & = 1000 \\space 0000 \\space \\text{(\u53cd\u7801)} + 1111 \\space 1110 \\space \\text{(\u53cd\u7801)} \\newline & = 1000 \\space 0001 \\space \\text{(\u8865\u7801)} + 1111 \\space 1111 \\space \\text{(\u8865\u7801)} \\newline & = 1000 \\space 0000 \\space \\text{(\u8865\u7801)} \\newline & \\rightarrow -128 \\end{aligned} \\]

            \u4f60\u53ef\u80fd\u5df2\u7ecf\u53d1\u73b0\uff0c\u4e0a\u8ff0\u7684\u6240\u6709\u8ba1\u7b97\u90fd\u662f\u52a0\u6cd5\u8fd0\u7b97\u3002\u8fd9\u6697\u793a\u7740\u4e00\u4e2a\u91cd\u8981\u4e8b\u5b9e\uff1a\u8ba1\u7b97\u673a\u5185\u90e8\u7684\u786c\u4ef6\u7535\u8def\u4e3b\u8981\u662f\u57fa\u4e8e\u52a0\u6cd5\u8fd0\u7b97\u8bbe\u8ba1\u7684\u3002\u8fd9\u662f\u56e0\u4e3a\u52a0\u6cd5\u8fd0\u7b97\u76f8\u5bf9\u4e8e\u5176\u4ed6\u8fd0\u7b97\uff08\u6bd4\u5982\u4e58\u6cd5\u3001\u9664\u6cd5\u548c\u51cf\u6cd5\uff09\u6765\u8bf4\uff0c\u786c\u4ef6\u5b9e\u73b0\u8d77\u6765\u66f4\u7b80\u5355\uff0c\u66f4\u5bb9\u6613\u8fdb\u884c\u5e76\u884c\u5316\u5904\u7406\uff0c\u8fd0\u7b97\u901f\u5ea6\u66f4\u5feb\u3002

            \u8bf7\u6ce8\u610f\uff0c\u8fd9\u5e76\u4e0d\u610f\u5473\u7740\u8ba1\u7b97\u673a\u53ea\u80fd\u505a\u52a0\u6cd5\u3002\u901a\u8fc7\u5c06\u52a0\u6cd5\u4e0e\u4e00\u4e9b\u57fa\u672c\u903b\u8f91\u8fd0\u7b97\u7ed3\u5408\uff0c\u8ba1\u7b97\u673a\u80fd\u591f\u5b9e\u73b0\u5404\u79cd\u5176\u4ed6\u7684\u6570\u5b66\u8fd0\u7b97\u3002\u4f8b\u5982\uff0c\u8ba1\u7b97\u51cf\u6cd5 \\(a - b\\) \u53ef\u4ee5\u8f6c\u6362\u4e3a\u8ba1\u7b97\u52a0\u6cd5 \\(a + (-b)\\) \uff1b\u8ba1\u7b97\u4e58\u6cd5\u548c\u9664\u6cd5\u53ef\u4ee5\u8f6c\u6362\u4e3a\u8ba1\u7b97\u591a\u6b21\u52a0\u6cd5\u6216\u51cf\u6cd5\u3002

            \u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u603b\u7ed3\u51fa\u8ba1\u7b97\u673a\u4f7f\u7528\u8865\u7801\u7684\u539f\u56e0\uff1a\u57fa\u4e8e\u8865\u7801\u8868\u793a\uff0c\u8ba1\u7b97\u673a\u53ef\u4ee5\u7528\u540c\u6837\u7684\u7535\u8def\u548c\u64cd\u4f5c\u6765\u5904\u7406\u6b63\u6570\u548c\u8d1f\u6570\u7684\u52a0\u6cd5\uff0c\u4e0d\u9700\u8981\u8bbe\u8ba1\u7279\u6b8a\u7684\u786c\u4ef6\u7535\u8def\u6765\u5904\u7406\u51cf\u6cd5\uff0c\u5e76\u4e14\u65e0\u987b\u7279\u522b\u5904\u7406\u6b63\u8d1f\u96f6\u7684\u6b67\u4e49\u95ee\u9898\u3002\u8fd9\u5927\u5927\u7b80\u5316\u4e86\u786c\u4ef6\u8bbe\u8ba1\uff0c\u63d0\u9ad8\u4e86\u8fd0\u7b97\u6548\u7387\u3002

            \u8865\u7801\u7684\u8bbe\u8ba1\u975e\u5e38\u7cbe\u5999\uff0c\u56e0\u7bc7\u5e45\u5173\u7cfb\u6211\u4eec\u5c31\u5148\u4ecb\u7ecd\u5230\u8fd9\u91cc\uff0c\u5efa\u8bae\u6709\u5174\u8da3\u7684\u8bfb\u8005\u8fdb\u4e00\u6b65\u6df1\u5ea6\u4e86\u89e3\u3002

            "},{"location":"chapter_data_structure/number_encoding/#332","title":"3.3.2 \u00a0 \u6d6e\u70b9\u6570\u7f16\u7801","text":"

            \u7ec6\u5fc3\u7684\u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\uff1aint \u548c float \u957f\u5ea6\u76f8\u540c\uff0c\u90fd\u662f 4 bytes\uff0c\u4f46\u4e3a\u4ec0\u4e48 float \u7684\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e int \uff1f\u8fd9\u975e\u5e38\u53cd\u76f4\u89c9\uff0c\u56e0\u4e3a\u6309\u7406\u8bf4 float \u9700\u8981\u8868\u793a\u5c0f\u6570\uff0c\u53d6\u503c\u8303\u56f4\u5e94\u8be5\u53d8\u5c0f\u624d\u5bf9\u3002

            \u5b9e\u9645\u4e0a\uff0c\u8fd9\u662f\u56e0\u4e3a\u6d6e\u70b9\u6570 float \u91c7\u7528\u4e86\u4e0d\u540c\u7684\u8868\u793a\u65b9\u5f0f\u3002\u8bb0\u4e00\u4e2a 32-bit \u957f\u5ea6\u7684\u4e8c\u8fdb\u5236\u6570\u4e3a\uff1a

            \\[ b_{31} b_{30} b_{29} \\ldots b_2 b_1 b_0 \\]

            \u6839\u636e IEEE 754 \u6807\u51c6\uff0c32-bit \u957f\u5ea6\u7684 float \u7531\u4ee5\u4e0b\u90e8\u5206\u6784\u6210\uff1a

            • \u7b26\u53f7\u4f4d \\(\\mathrm{S}\\) \uff1a\u5360 1 bit \uff0c\u5bf9\u5e94 \\(b_{31}\\) \u3002
            • \u6307\u6570\u4f4d \\(\\mathrm{E}\\) \uff1a\u5360 8 bits \uff0c\u5bf9\u5e94 \\(b_{30} b_{29} \\ldots b_{23}\\) \u3002
            • \u5206\u6570\u4f4d \\(\\mathrm{N}\\) \uff1a\u5360 23 bits \uff0c\u5bf9\u5e94 \\(b_{22} b_{21} \\ldots b_0\\) \u3002

            \u4e8c\u8fdb\u5236\u6570 float \u5bf9\u5e94\u7684\u503c\u7684\u8ba1\u7b97\u65b9\u6cd5\uff1a

            \\[ \\text {val} = (-1)^{b_{31}} \\times 2^{\\left(b_{30} b_{29} \\ldots b_{23}\\right)_2-127} \\times\\left(1 . b_{22} b_{21} \\ldots b_0\\right)_2 \\]

            \u8f6c\u5316\u5230\u5341\u8fdb\u5236\u4e0b\u7684\u8ba1\u7b97\u516c\u5f0f\uff1a

            \\[ \\text {val}=(-1)^{\\mathrm{S}} \\times 2^{\\mathrm{E} -127} \\times (1 + \\mathrm{N}) \\]

            \u5176\u4e2d\u5404\u9879\u7684\u53d6\u503c\u8303\u56f4\uff1a

            \\[ \\begin{aligned} \\mathrm{S} \\in & \\{ 0, 1\\} , \\quad \\mathrm{E} \\in \\{ 1, 2, \\dots, 254 \\} \\newline (1 + \\mathrm{N}) = & (1 + \\sum_{i=1}^{23} b_{23-i} 2^{-i}) \\subset [1, 2 - 2^{-23}] \\end{aligned} \\]

            \u56fe\uff1aIEEE 754 \u6807\u51c6\u4e0b\u7684 float \u8868\u793a\u65b9\u5f0f

            \u7ed9\u5b9a\u4e00\u4e2a\u793a\u4f8b\u6570\u636e \\(\\mathrm{S} = 0\\) \uff0c \\(\\mathrm{E} = 124\\) \uff0c\\(\\mathrm{N} = 2^{-2} + 2^{-3} = 0.375\\) \uff0c\u5219\u6709\uff1a

            \\[ \\text { val } = (-1)^0 \\times 2^{124 - 127} \\times (1 + 0.375) = 0.171875 \\]

            \u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u56de\u7b54\u6700\u521d\u7684\u95ee\u9898\uff1afloat \u7684\u8868\u793a\u65b9\u5f0f\u5305\u542b\u6307\u6570\u4f4d\uff0c\u5bfc\u81f4\u5176\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e int \u3002\u6839\u636e\u4ee5\u4e0a\u8ba1\u7b97\uff0cfloat \u53ef\u8868\u793a\u7684\u6700\u5927\u6b63\u6570\u4e3a \\(2^{254 - 127} \\times (2 - 2^{-23}) \\approx 3.4 \\times 10^{38}\\) \uff0c\u5207\u6362\u7b26\u53f7\u4f4d\u4fbf\u53ef\u5f97\u5230\u6700\u5c0f\u8d1f\u6570\u3002

            \u5c3d\u7ba1\u6d6e\u70b9\u6570 float \u6269\u5c55\u4e86\u53d6\u503c\u8303\u56f4\uff0c\u4f46\u5176\u526f\u4f5c\u7528\u662f\u727a\u7272\u4e86\u7cbe\u5ea6\u3002\u6574\u6570\u7c7b\u578b int \u5c06\u5168\u90e8 32 \u4f4d\u7528\u4e8e\u8868\u793a\u6570\u5b57\uff0c\u6570\u5b57\u662f\u5747\u5300\u5206\u5e03\u7684\uff1b\u800c\u7531\u4e8e\u6307\u6570\u4f4d\u7684\u5b58\u5728\uff0c\u6d6e\u70b9\u6570 float \u7684\u6570\u503c\u8d8a\u5927\uff0c\u76f8\u90bb\u4e24\u4e2a\u6570\u5b57\u4e4b\u95f4\u7684\u5dee\u503c\u5c31\u4f1a\u8d8b\u5411\u8d8a\u5927\u3002

            \u8fdb\u4e00\u6b65\u5730\uff0c\u6307\u6570\u4f4d \\(E = 0\\) \u548c \\(E = 255\\) \u5177\u6709\u7279\u6b8a\u542b\u4e49\uff0c\u7528\u4e8e\u8868\u793a\u96f6\u3001\u65e0\u7a77\u5927\u3001\\(\\mathrm{NaN}\\) \u7b49\u3002

            \u8868\uff1a\u6307\u6570\u4f4d\u542b\u4e49

            \u6307\u6570\u4f4d E \u5206\u6570\u4f4d \\(\\mathrm{N} = 0\\) \u5206\u6570\u4f4d \\(\\mathrm{N} \\ne 0\\) \u8ba1\u7b97\u516c\u5f0f \\(0\\) \\(\\pm 0\\) \u6b21\u6b63\u89c4\u6570 \\((-1)^{\\mathrm{S}} \\times 2^{-126} \\times (0.\\mathrm{N})\\) \\(1, 2, \\dots, 254\\) \u6b63\u89c4\u6570 \u6b63\u89c4\u6570 \\((-1)^{\\mathrm{S}} \\times 2^{(\\mathrm{E} -127)} \\times (1.\\mathrm{N})\\) \\(255\\) \\(\\pm \\infty\\) \\(\\mathrm{NaN}\\)

            \u7279\u522b\u5730\uff0c\u6b21\u6b63\u89c4\u6570\u663e\u8457\u63d0\u5347\u4e86\u6d6e\u70b9\u6570\u7684\u7cbe\u5ea6\uff0c\u8fd9\u662f\u56e0\u4e3a\uff1a

            • \u6700\u5c0f\u6b63\u6b63\u89c4\u6570\u4e3a \\(2^{-126} \\approx 1.18 \\times 10^{-38}\\) \u3002
            • \u6700\u5c0f\u6b63\u6b21\u6b63\u89c4\u6570\u4e3a \\(2^{-126} \\times 2^{-23} \\approx 1.4 \\times 10^{-45}\\) \u3002

            \u53cc\u7cbe\u5ea6 double \u4e5f\u91c7\u7528\u7c7b\u4f3c float \u7684\u8868\u793a\u65b9\u6cd5\uff0c\u6b64\u5904\u4e0d\u518d\u8be6\u8ff0\u3002

            "},{"location":"chapter_data_structure/summary/","title":"3.5 \u00a0 \u5c0f\u7ed3","text":"
            • \u6570\u636e\u7ed3\u6784\u53ef\u4ee5\u4ece\u903b\u8f91\u7ed3\u6784\u548c\u7269\u7406\u7ed3\u6784\u4e24\u4e2a\u89d2\u5ea6\u8fdb\u884c\u5206\u7c7b\u3002\u903b\u8f91\u7ed3\u6784\u63cf\u8ff0\u4e86\u6570\u636e\u5143\u7d20\u4e4b\u95f4\u7684\u903b\u8f91\u5173\u7cfb\uff0c\u800c\u7269\u7406\u7ed3\u6784\u63cf\u8ff0\u4e86\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\u3002
            • \u5e38\u89c1\u7684\u903b\u8f91\u7ed3\u6784\u5305\u62ec\u7ebf\u6027\u3001\u6811\u72b6\u548c\u7f51\u72b6\u7b49\u3002\u901a\u5e38\u6211\u4eec\u6839\u636e\u903b\u8f91\u7ed3\u6784\u5c06\u6570\u636e\u7ed3\u6784\u5206\u4e3a\u7ebf\u6027\uff08\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\uff09\u548c\u975e\u7ebf\u6027\uff08\u6811\u3001\u56fe\u3001\u5806\uff09\u4e24\u79cd\u3002\u54c8\u5e0c\u8868\u7684\u5b9e\u73b0\u53ef\u80fd\u540c\u65f6\u5305\u542b\u7ebf\u6027\u548c\u975e\u7ebf\u6027\u7ed3\u6784\u3002
            • \u5f53\u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u6570\u636e\u88ab\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u3002\u6bcf\u4e2a\u5185\u5b58\u7a7a\u95f4\u90fd\u62e5\u6709\u5bf9\u5e94\u7684\u5185\u5b58\u5730\u5740\uff0c\u7a0b\u5e8f\u901a\u8fc7\u8fd9\u4e9b\u5185\u5b58\u5730\u5740\u8bbf\u95ee\u6570\u636e\u3002
            • \u7269\u7406\u7ed3\u6784\u4e3b\u8981\u5206\u4e3a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\uff08\u6570\u7ec4\uff09\u548c\u79bb\u6563\u7a7a\u95f4\u5b58\u50a8\uff08\u94fe\u8868\uff09\u3002\u6240\u6709\u6570\u636e\u7ed3\u6784\u90fd\u662f\u7531\u6570\u7ec4\u3001\u94fe\u8868\u6216\u4e24\u8005\u7684\u7ec4\u5408\u5b9e\u73b0\u7684\u3002
            • \u8ba1\u7b97\u673a\u4e2d\u7684\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5305\u62ec\u6574\u6570 byte , short , int , long \u3001\u6d6e\u70b9\u6570 float , double \u3001\u5b57\u7b26 char \u548c\u5e03\u5c14 boolean \u3002\u5b83\u4eec\u7684\u53d6\u503c\u8303\u56f4\u53d6\u51b3\u4e8e\u5360\u7528\u7a7a\u95f4\u5927\u5c0f\u548c\u8868\u793a\u65b9\u5f0f\u3002
            • \u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801\u662f\u5728\u8ba1\u7b97\u673a\u4e2d\u7f16\u7801\u6570\u5b57\u7684\u4e09\u79cd\u65b9\u6cd5\uff0c\u5b83\u4eec\u4e4b\u95f4\u662f\u53ef\u4ee5\u76f8\u4e92\u8f6c\u6362\u7684\u3002\u6574\u6570\u7684\u539f\u7801\u7684\u6700\u9ad8\u4f4d\u662f\u7b26\u53f7\u4f4d\uff0c\u5176\u4f59\u4f4d\u662f\u6570\u5b57\u7684\u503c\u3002
            • \u6574\u6570\u5728\u8ba1\u7b97\u673a\u4e2d\u662f\u4ee5\u8865\u7801\u7684\u5f62\u5f0f\u5b58\u50a8\u7684\u3002\u5728\u8865\u7801\u8868\u793a\u4e0b\uff0c\u8ba1\u7b97\u673a\u53ef\u4ee5\u5bf9\u6b63\u6570\u548c\u8d1f\u6570\u7684\u52a0\u6cd5\u4e00\u89c6\u540c\u4ec1\uff0c\u4e0d\u9700\u8981\u4e3a\u51cf\u6cd5\u64cd\u4f5c\u5355\u72ec\u8bbe\u8ba1\u7279\u6b8a\u7684\u786c\u4ef6\u7535\u8def\uff0c\u5e76\u4e14\u4e0d\u5b58\u5728\u6b63\u8d1f\u96f6\u6b67\u4e49\u7684\u95ee\u9898\u3002
            • \u6d6e\u70b9\u6570\u7684\u7f16\u7801\u7531 1 \u4f4d\u7b26\u53f7\u4f4d\u30018 \u4f4d\u6307\u6570\u4f4d\u548c 23 \u4f4d\u5206\u6570\u4f4d\u6784\u6210\u3002\u7531\u4e8e\u5b58\u5728\u6307\u6570\u4f4d\uff0c\u6d6e\u70b9\u6570\u7684\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e\u6574\u6570\uff0c\u4ee3\u4ef7\u662f\u727a\u7272\u4e86\u7cbe\u5ea6\u3002
            • ASCII \u7801\u662f\u6700\u65e9\u51fa\u73b0\u7684\u82f1\u6587\u5b57\u7b26\u96c6\uff0c\u957f\u5ea6\u4e3a 1 \u5b57\u8282\uff0c\u5171\u6536\u5f55 127 \u4e2a\u5b57\u7b26\u3002GBK \u5b57\u7b26\u96c6\u662f\u5e38\u7528\u7684\u4e2d\u6587\u5b57\u7b26\u96c6\uff0c\u5171\u6536\u5f55\u4e24\u4e07\u591a\u4e2a\u6c49\u5b57\u3002Unicode \u81f4\u529b\u4e8e\u63d0\u4f9b\u4e00\u4e2a\u5b8c\u6574\u7684\u5b57\u7b26\u96c6\u6807\u51c6\uff0c\u6536\u5f55\u4e16\u754c\u5185\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u7b26\uff0c\u4ece\u800c\u89e3\u51b3\u7531\u4e8e\u5b57\u7b26\u7f16\u7801\u65b9\u6cd5\u4e0d\u4e00\u81f4\u800c\u5bfc\u81f4\u7684\u4e71\u7801\u95ee\u9898\u3002
            • UTF-8 \u662f\u6700\u53d7\u6b22\u8fce\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\uff0c\u901a\u7528\u6027\u975e\u5e38\u597d\u3002\u5b83\u662f\u4e00\u79cd\u53d8\u957f\u7684\u7f16\u7801\u65b9\u6cd5\uff0c\u5177\u6709\u5f88\u597d\u7684\u6269\u5c55\u6027\uff0c\u6709\u6548\u63d0\u5347\u4e86\u5b58\u50a8\u7a7a\u95f4\u7684\u4f7f\u7528\u6548\u7387\u3002UTF-16 \u548c UTF-32 \u662f\u7b49\u957f\u7684\u7f16\u7801\u65b9\u6cd5\u3002\u5728\u7f16\u7801\u4e2d\u6587\u65f6\uff0cUTF-16 \u6bd4 UTF-8 \u7684\u5360\u7528\u7a7a\u95f4\u66f4\u5c0f\u3002Java, C# \u7b49\u7f16\u7a0b\u8bed\u8a00\u9ed8\u8ba4\u4f7f\u7528 UTF-16 \u7f16\u7801\u3002
            "},{"location":"chapter_data_structure/summary/#351-q-a","title":"3.5.1 \u00a0 Q & A","text":"

            \u4e3a\u4ec0\u4e48\u54c8\u5e0c\u8868\u540c\u65f6\u5305\u542b\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u548c\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1f

            \u54c8\u5e0c\u8868\u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u800c\u4e3a\u4e86\u89e3\u51b3\u54c8\u5e0c\u51b2\u7a81\uff0c\u6211\u4eec\u53ef\u80fd\u4f1a\u4f7f\u7528\u201c\u94fe\u5f0f\u5730\u5740\u201d\uff08\u540e\u7eed\u6563\u5217\u8868\u7ae0\u8282\u4f1a\u8bb2\uff09\u3002\u5728\u62c9\u94fe\u6cd5\u4e2d\uff0c\u6570\u7ec4\u4e2d\u6bcf\u4e2a\u5730\u5740\uff08\u6876\uff09\u6307\u5411\u4e00\u4e2a\u94fe\u8868\uff1b\u5f53\u8fd9\u4e2a\u94fe\u8868\u957f\u5ea6\u8d85\u8fc7\u4e00\u5b9a\u9608\u503c\u65f6\uff0c\u53c8\u53ef\u80fd\u88ab\u8f6c\u5316\u4e3a\u6811\uff08\u901a\u5e38\u4e3a\u7ea2\u9ed1\u6811\uff09\u3002\u56e0\u6b64\uff0c\u54c8\u5e0c\u8868\u53ef\u80fd\u540c\u65f6\u5305\u542b\u7ebf\u6027\uff08\u6570\u7ec4\u3001\u94fe\u8868\uff09\u548c\u975e\u7ebf\u6027\uff08\u6811\uff09\u6570\u636e\u7ed3\u6784\u3002

            char \u7c7b\u578b\u7684\u957f\u5ea6\u662f 1 byte \u5417\uff1f

            char \u7c7b\u578b\u7684\u957f\u5ea6\u7531\u7f16\u7a0b\u8bed\u8a00\u91c7\u7528\u7684\u7f16\u7801\u65b9\u6cd5\u51b3\u5b9a\u3002\u4f8b\u5982\uff0cJava, JS, TS, C# \u90fd\u91c7\u7528 UTF-16 \u7f16\u7801\uff08\u4fdd\u5b58 Unicode \u7801\u70b9\uff09\uff0c\u56e0\u6b64 char \u7c7b\u578b\u7684\u957f\u5ea6\u4e3a 2 bytes \u3002

            "},{"location":"chapter_divide_and_conquer/","title":"\u7b2c 12 \u7ae0 \u00a0 \u5206\u6cbb","text":"

            Abstract

            \u96be\u9898\u88ab\u9010\u5c42\u62c6\u89e3\uff0c\u6bcf\u4e00\u6b21\u7684\u62c6\u89e3\u90fd\u4f7f\u5b83\u53d8\u5f97\u66f4\u4e3a\u7b80\u5355\u3002

            \u5206\u800c\u6cbb\u4e4b\u63ed\u793a\u4e86\u4e00\u4e2a\u91cd\u8981\u7684\u4e8b\u5b9e\uff1a\u4ece\u7b80\u5355\u505a\u8d77\uff0c\u4e00\u5207\u90fd\u4e0d\u518d\u590d\u6742\u3002

            "},{"location":"chapter_divide_and_conquer/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 12.1 \u00a0 \u5206\u6cbb\u7b97\u6cd5
            • 12.2 \u00a0 \u5206\u6cbb\u641c\u7d22\u7b56\u7565
            • 12.3 \u00a0 \u6784\u5efa\u6811\u95ee\u9898
            • 12.4 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898
            • 12.5 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_divide_and_conquer/binary_search_recur/","title":"12.2 \u00a0 \u5206\u6cbb\u641c\u7d22\u7b56\u7565","text":"

            \u6211\u4eec\u5df2\u7ecf\u5b66\u8fc7\uff0c\u641c\u7d22\u7b97\u6cd5\u5206\u4e3a\u4e24\u5927\u7c7b\uff1a

            • \u66b4\u529b\u641c\u7d22\uff1a\u5b83\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u5b9e\u73b0\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
            • \u81ea\u9002\u5e94\u641c\u7d22\uff1a\u5b83\u5229\u7528\u7279\u6709\u7684\u6570\u636e\u7ec4\u7ec7\u5f62\u5f0f\u6216\u5148\u9a8c\u4fe1\u606f\uff0c\u53ef\u8fbe\u5230 \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002

            \u5b9e\u9645\u4e0a\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u7684\u641c\u7d22\u7b97\u6cd5\u901a\u5e38\u90fd\u662f\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u5b9e\u73b0\u7684\uff0c\u4f8b\u5982\uff1a

            • \u4e8c\u5206\u67e5\u627e\u7684\u6bcf\u4e00\u6b65\u90fd\u5c06\u95ee\u9898\uff08\u5728\u6570\u7ec4\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff09\u5206\u89e3\u4e3a\u4e00\u4e2a\u5c0f\u95ee\u9898\uff08\u5728\u6570\u7ec4\u7684\u4e00\u534a\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff09\uff0c\u8fd9\u4e2a\u8fc7\u7a0b\u4e00\u76f4\u6301\u7eed\u5230\u6570\u7ec4\u4e3a\u7a7a\u6216\u627e\u5230\u76ee\u6807\u5143\u7d20\u4e3a\u6b62\u3002
            • \u6811\u662f\u5206\u6cbb\u5173\u7cfb\u7684\u4ee3\u8868\uff0c\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u3001AVL \u6811\u3001\u5806\u7b49\u6570\u636e\u7ed3\u6784\u4e2d\uff0c\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7686\u4e3a \\(O(\\log n)\\) \u3002

            \u4ee5\u4e8c\u5206\u67e5\u627e\u4e3a\u4f8b\uff1a

            • \u95ee\u9898\u53ef\u4ee5\u88ab\u5206\u89e3\uff1a\u4e8c\u5206\u67e5\u627e\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\uff08\u5728\u6570\u7ec4\u4e2d\u8fdb\u884c\u67e5\u627e\uff09\u5206\u89e3\u4e3a\u5b50\u95ee\u9898\uff08\u5728\u6570\u7ec4\u7684\u4e00\u534a\u4e2d\u8fdb\u884c\u67e5\u627e\uff09\uff0c\u8fd9\u662f\u901a\u8fc7\u6bd4\u8f83\u4e2d\u95f4\u5143\u7d20\u548c\u76ee\u6807\u5143\u7d20\u6765\u5b9e\u73b0\u7684\u3002
            • \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5728\u4e8c\u5206\u67e5\u627e\u4e2d\uff0c\u6bcf\u8f6e\u53ea\u5904\u7406\u4e00\u4e2a\u5b50\u95ee\u9898\uff0c\u5b83\u4e0d\u53d7\u53e6\u5916\u5b50\u95ee\u9898\u7684\u5f71\u54cd\u3002
            • \u5b50\u95ee\u9898\u7684\u89e3\u65e0\u987b\u5408\u5e76\uff1a\u4e8c\u5206\u67e5\u627e\u65e8\u5728\u67e5\u627e\u4e00\u4e2a\u7279\u5b9a\u5143\u7d20\uff0c\u56e0\u6b64\u4e0d\u9700\u8981\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\u3002\u5f53\u5b50\u95ee\u9898\u5f97\u5230\u89e3\u51b3\u65f6\uff0c\u539f\u95ee\u9898\u4e5f\u4f1a\u540c\u65f6\u5f97\u5230\u89e3\u51b3\u3002

            \u5206\u6cbb\u80fd\u591f\u63d0\u5347\u641c\u7d22\u6548\u7387\uff0c\u672c\u8d28\u4e0a\u662f\u56e0\u4e3a\u66b4\u529b\u641c\u7d22\u6bcf\u8f6e\u53ea\u80fd\u6392\u9664\u4e00\u4e2a\u9009\u9879\uff0c\u800c\u5206\u6cbb\u641c\u7d22\u6bcf\u8f6e\u53ef\u4ee5\u6392\u9664\u4e00\u534a\u9009\u9879\u3002

            "},{"location":"chapter_divide_and_conquer/binary_search_recur/#1","title":"1. \u00a0 \u57fa\u4e8e\u5206\u6cbb\u5b9e\u73b0\u4e8c\u5206","text":"

            \u5728\u4e4b\u524d\u7684\u7ae0\u8282\u4e2d\uff0c\u4e8c\u5206\u67e5\u627e\u662f\u57fa\u4e8e\u9012\u63a8\uff08\u8fed\u4ee3\uff09\u5b9e\u73b0\u7684\u3002\u73b0\u5728\u6211\u4eec\u57fa\u4e8e\u5206\u6cbb\uff08\u9012\u5f52\uff09\u6765\u5b9e\u73b0\u5b83\u3002

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \uff0c\u6570\u7ec4\u4e2d\u6240\u6709\u5143\u7d20\u90fd\u662f\u552f\u4e00\u7684\uff0c\u8bf7\u67e5\u627e\u5143\u7d20 target \u3002

            \u4ece\u5206\u6cbb\u89d2\u5ea6\uff0c\u6211\u4eec\u5c06\u641c\u7d22\u533a\u95f4 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u8bb0\u4e3a \\(f(i, j)\\) \u3002

            \u4ece\u539f\u95ee\u9898 \\(f(0, n-1)\\) \u4e3a\u8d77\u59cb\u70b9\uff0c\u4e8c\u5206\u67e5\u627e\u7684\u5206\u6cbb\u6b65\u9aa4\u4e3a\uff1a

            1. \u8ba1\u7b97\u641c\u7d22\u533a\u95f4 \\([i, j]\\) \u7684\u4e2d\u70b9 \\(m\\) \uff0c\u6839\u636e\u5b83\u6392\u9664\u4e00\u534a\u641c\u7d22\u533a\u95f4\u3002
            2. \u9012\u5f52\u6c42\u89e3\u89c4\u6a21\u51cf\u5c0f\u4e00\u534a\u7684\u5b50\u95ee\u9898\uff0c\u53ef\u80fd\u4e3a \\(f(i, m-1)\\) \u6216 \\(f(m+1, j)\\) \u3002
            3. \u5faa\u73af\u7b2c 1. , 2. \u6b65\uff0c\u76f4\u81f3\u627e\u5230 target \u6216\u533a\u95f4\u4e3a\u7a7a\u65f6\u8fd4\u56de\u3002

            \u4e0b\u56fe\u5c55\u793a\u4e86\u5728\u6570\u7ec4\u4e2d\u4e8c\u5206\u67e5\u627e\u5143\u7d20 \\(6\\) \u7684\u5206\u6cbb\u8fc7\u7a0b\u3002

            \u56fe\uff1a\u4e8c\u5206\u67e5\u627e\u7684\u5206\u6cbb\u8fc7\u7a0b

            \u5728\u5b9e\u73b0\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs() \u6765\u6c42\u89e3\u95ee\u9898 \\(f(i, j)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_recur.java
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(int[] nums, int target, int i, int j) {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nint m = (i + j) / 2;\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(int[] nums, int target) {\nint n = nums.length;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.cpp
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(vector<int> &nums, int target, int i, int j) {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nint m = (i + j) / 2;\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(vector<int> &nums, int target) {\nint n = nums.size();\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.py
            def dfs(nums: list[int], target: int, i: int, j: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j)\"\"\"\n# \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif i > j:\nreturn -1\n# \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nm = (i + j) // 2\nif nums[m] < target:\n# \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j)\nelif nums[m] > target:\n# \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1)\nelse:\n# \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\ndef binary_search(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\"\"\"\nn = len(nums)\n# \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1)\n
            binary_search_recur.go
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunc dfs(nums []int, target, i, j int) int {\n// \u5982\u679c\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u6ca1\u6709\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif i > j {\nreturn -1\n}\n//    \u8ba1\u7b97\u7d22\u5f15\u4e2d\u70b9\nm := i + ((j - i) >> 1)\n//\u5224\u65ad\u4e2d\u70b9\u4e0e\u76ee\u6807\u5143\u7d20\u5927\u5c0f\nif nums[m] < target {\n// \u5c0f\u4e8e\u5219\u9012\u5f52\u53f3\u534a\u6570\u7ec4\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m+1, j)\n} else if nums[m] > target {\n// \u5c0f\u4e8e\u5219\u9012\u5f52\u5de6\u534a\u6570\u7ec4\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m-1)\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nfunc binarySearch(nums []int, target int) int {\nn := len(nums)\nreturn dfs(nums, target, 0, n-1)\n}\n
            binary_search_recur.js
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunction dfs(nums, target, i, j) {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nconst m = i + ((j - i) >> 1);\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nfunction binarySearch(nums, target) {\nconst n = nums.length;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.ts
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunction dfs(nums: number[], target: number, i: number, j: number): number {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nconst m = i + ((j - i) >> 1);\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nfunction binarySearch(nums: number[], target: number): number {\nconst n = nums.length;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.c
            [class]{}-[func]{dfs}\n[class]{}-[func]{binarySearch}\n
            binary_search_recur.cs
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(int[] nums, int target, int i, int j) {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nint m = (i + j) / 2;\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(int[] nums, int target) {\nint n = nums.Length;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.swift
            [class]{}-[func]{dfs}\n[class]{}-[func]{binarySearch}\n
            binary_search_recur.zig
            [class]{}-[func]{dfs}\n[class]{}-[func]{binarySearch}\n
            binary_search_recur.dart
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(List<int> nums, int target, int i, int j) {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nint m = (i + j) ~/ 2;\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(List<int> nums, int target) {\nint n = nums.length;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.rs
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfn dfs(nums: &[i32], target: i32, i: i32, j: i32) -> i32 {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif i > j { return -1; }\nlet m: i32 = (i + j) / 2;\nif nums[m as usize] < target {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if nums[m as usize] > target {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nfn binary_search(nums: &[i32], target: i32) -> i32 {\nlet n = nums.len() as i32;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\ndfs(nums, target, 0, n - 1)\n}\n
            "},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/","title":"12.3 \u00a0 \u6784\u5efa\u4e8c\u53c9\u6811\u95ee\u9898","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u4e8c\u53c9\u6811\u7684\u524d\u5e8f\u904d\u5386 preorder \u548c\u4e2d\u5e8f\u904d\u5386 inorder \uff0c\u8bf7\u4ece\u4e2d\u6784\u5efa\u4e8c\u53c9\u6811\uff0c\u8fd4\u56de\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\u3002

            \u56fe\uff1a\u6784\u5efa\u4e8c\u53c9\u6811\u7684\u793a\u4f8b\u6570\u636e

            "},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#1","title":"1. \u00a0 \u5224\u65ad\u662f\u5426\u4e3a\u5206\u6cbb\u95ee\u9898","text":"

            \u539f\u95ee\u9898\u5b9a\u4e49\u4e3a\u4ece preorder \u548c inorder \u6784\u5efa\u4e8c\u53c9\u6811\u3002\u6211\u4eec\u9996\u5148\u4ece\u5206\u6cbb\u7684\u89d2\u5ea6\u5206\u6790\u8fd9\u9053\u9898\uff1a

            • \u95ee\u9898\u53ef\u4ee5\u88ab\u5206\u89e3\uff1a\u4ece\u5206\u6cbb\u7684\u89d2\u5ea6\u5207\u5165\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u539f\u95ee\u9898\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\u3001\u6784\u5efa\u53f3\u5b50\u6811\uff0c\u52a0\u4e0a\u4e00\u6b65\u64cd\u4f5c\uff1a\u521d\u59cb\u5316\u6839\u8282\u70b9\u3002\u800c\u5bf9\u4e8e\u6bcf\u4e2a\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u590d\u7528\u4ee5\u4e0a\u5212\u5206\u65b9\u6cd5\uff0c\u5c06\u5176\u5212\u5206\u4e3a\u66f4\u5c0f\u7684\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u76f4\u81f3\u8fbe\u5230\u6700\u5c0f\u5b50\u95ee\u9898\uff08\u7a7a\u5b50\u6811\uff09\u65f6\u7ec8\u6b62\u3002
            • \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u5b83\u4eec\u4e4b\u95f4\u6ca1\u6709\u4ea4\u96c6\u3002\u5728\u6784\u5efa\u5de6\u5b50\u6811\u65f6\uff0c\u6211\u4eec\u53ea\u9700\u8981\u5173\u6ce8\u4e2d\u5e8f\u904d\u5386\u548c\u524d\u5e8f\u904d\u5386\u4e2d\u4e0e\u5de6\u5b50\u6811\u5bf9\u5e94\u7684\u90e8\u5206\u3002\u53f3\u5b50\u6811\u540c\u7406\u3002
            • \u5b50\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u5408\u5e76\uff1a\u4e00\u65e6\u5f97\u5230\u4e86\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5c06\u5b83\u4eec\u94fe\u63a5\u5230\u6839\u8282\u70b9\u4e0a\uff0c\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002
            "},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#2","title":"2. \u00a0 \u5982\u4f55\u5212\u5206\u5b50\u6811","text":"

            \u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u8fd9\u9053\u9898\u662f\u53ef\u4ee5\u4f7f\u7528\u5206\u6cbb\u6765\u6c42\u89e3\u7684\uff0c\u4f46\u95ee\u9898\u662f\uff1a\u5982\u4f55\u901a\u8fc7\u524d\u5e8f\u904d\u5386 preorder \u548c\u4e2d\u5e8f\u904d\u5386 inorder \u6765\u5212\u5206\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u5462\uff1f

            \u6839\u636e\u5b9a\u4e49\uff0cpreorder \u548c inorder \u90fd\u53ef\u4ee5\u88ab\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\uff1a

            • \u524d\u5e8f\u904d\u5386\uff1a[ \u6839\u8282\u70b9 | \u5de6\u5b50\u6811 | \u53f3\u5b50\u6811 ] \uff0c\u4f8b\u5982\u4e0a\u56fe [ 3 | 9 | 2 1 7 ] \u3002
            • \u4e2d\u5e8f\u904d\u5386\uff1a[ \u5de6\u5b50\u6811 | \u6839\u8282\u70b9 \uff5c \u53f3\u5b50\u6811 ] \uff0c\u4f8b\u5982\u4e0a\u56fe [ 9 | 3 | 1 2 7 ] \u3002

            \u4ee5\u4e0a\u56fe\u6570\u636e\u4e3a\u4f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u6b65\u9aa4\u5f97\u5230\u4e0a\u8ff0\u7684\u5212\u5206\u7ed3\u679c\uff1a

            1. \u524d\u5e8f\u904d\u5386\u7684\u9996\u5143\u7d20 3 \u662f\u6839\u8282\u70b9\u7684\u503c\u3002
            2. \u67e5\u627e\u6839\u8282\u70b9 3 \u5728 inorder \u4e2d\u7684\u7d22\u5f15\uff0c\u5229\u7528\u8be5\u7d22\u5f15\u53ef\u5c06 inorder \u5212\u5206\u4e3a [ 9 | 3 \uff5c 1 2 7 ] \u3002
            3. \u6839\u636e inorder \u5212\u5206\u7ed3\u679c\uff0c\u6613\u5f97\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u7684\u8282\u70b9\u6570\u91cf\u5206\u522b\u4e3a 1 \u548c 3 \uff0c\u4ece\u800c\u53ef\u5c06 preorder \u5212\u5206\u4e3a [ 3 | 9 | 2 1 7 ] \u3002

            \u56fe\uff1a\u5728\u524d\u5e8f\u548c\u4e2d\u5e8f\u904d\u5386\u4e2d\u5212\u5206\u5b50\u6811

            "},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#3","title":"3. \u00a0 \u57fa\u4e8e\u53d8\u91cf\u63cf\u8ff0\u5b50\u6811\u533a\u95f4","text":"

            \u6839\u636e\u4ee5\u4e0a\u5212\u5206\u65b9\u6cd5\uff0c\u6211\u4eec\u5df2\u7ecf\u5f97\u5230\u6839\u8282\u70b9\u3001\u5de6\u5b50\u6811\u3001\u53f3\u5b50\u6811\u5728 preorder \u548c inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u3002\u800c\u4e3a\u4e86\u63cf\u8ff0\u8fd9\u4e9b\u7d22\u5f15\u533a\u95f4\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u51e0\u4e2a\u6307\u9488\u53d8\u91cf\uff1a

            • \u5c06\u5f53\u524d\u6811\u7684\u6839\u8282\u70b9\u5728 preorder \u4e2d\u7684\u7d22\u5f15\u8bb0\u4e3a \\(i\\) \u3002
            • \u5c06\u5f53\u524d\u6811\u7684\u6839\u8282\u70b9\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u8bb0\u4e3a \\(m\\) \u3002
            • \u5c06\u5f53\u524d\u6811\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u8bb0\u4e3a \\([l, r]\\) \u3002

            \u5982\u4e0b\u8868\u6240\u793a\uff0c\u901a\u8fc7\u4ee5\u4e0a\u53d8\u91cf\u5373\u53ef\u8868\u793a\u6839\u8282\u70b9\u5728 preorder \u4e2d\u7684\u7d22\u5f15\uff0c\u4ee5\u53ca\u5b50\u6811\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u3002

            \u8868\uff1a\u6839\u8282\u70b9\u548c\u5b50\u6811\u5728\u524d\u5e8f\u548c\u4e2d\u5e8f\u904d\u5386\u4e2d\u7684\u7d22\u5f15

            \u6839\u8282\u70b9\u5728 preorder \u4e2d\u7684\u7d22\u5f15 \u5b50\u6811\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4 \u5f53\u524d\u6811 \\(i\\) \\([l, r]\\) \u5de6\u5b50\u6811 \\(i + 1\\) \\([l, m-1]\\) \u53f3\u5b50\u6811 \\(i + 1 + (m - l)\\) \\([m+1, r]\\)

            \u8bf7\u6ce8\u610f\uff0c\u53f3\u5b50\u6811\u6839\u8282\u70b9\u7d22\u5f15\u4e2d\u7684 \\((m-l)\\) \u7684\u542b\u4e49\u662f\u201c\u5de6\u5b50\u6811\u7684\u8282\u70b9\u6570\u91cf\u201d\uff0c\u5efa\u8bae\u914d\u5408\u4e0b\u56fe\u7406\u89e3\u3002

            \u56fe\uff1a\u6839\u8282\u70b9\u548c\u5de6\u53f3\u5b50\u6811\u7684\u7d22\u5f15\u533a\u95f4\u8868\u793a

            "},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#4","title":"4. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u4e3a\u4e86\u63d0\u5347\u67e5\u8be2 \\(m\\) \u7684\u6548\u7387\uff0c\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 hmap \u6765\u5b58\u50a8\u6570\u7ec4 inorder \u4e2d\u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust build_tree.java
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode dfs(int[] preorder, int[] inorder, Map<Integer, Integer> hmap, int i, int l, int r) {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0)\nreturn null;\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nTreeNode root = new TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nint m = hmap.get(preorder[i]);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode buildTree(int[] preorder, int[] inorder) {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nMap<Integer, Integer> hmap = new HashMap<>();\nfor (int i = 0; i < inorder.length; i++) {\nhmap.put(inorder[i], i);\n}\nTreeNode root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);\nreturn root;\n}\n
            build_tree.cpp
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode *dfs(vector<int> &preorder, vector<int> &inorder, unordered_map<int, int> &hmap, int i, int l, int r) {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0)\nreturn NULL;\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nTreeNode *root = new TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nint m = hmap[preorder[i]];\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot->left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot->right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nunordered_map<int, int> hmap;\nfor (int i = 0; i < inorder.size(); i++) {\nhmap[inorder[i]] = i;\n}\nTreeNode *root = dfs(preorder, inorder, hmap, 0, 0, inorder.size() - 1);\nreturn root;\n}\n
            build_tree.py
            def dfs(\npreorder: list[int],\ninorder: list[int],\nhmap: dict[int, int],\ni: int,\nl: int,\nr: int,\n) -> TreeNode | None:\n\"\"\"\u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb\"\"\"\n# \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif r - l < 0:\nreturn None\n# \u521d\u59cb\u5316\u6839\u8282\u70b9\nroot = TreeNode(preorder[i])\n# \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nm = hmap[preorder[i]]\n# \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1)\n# \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r)\n# \u8fd4\u56de\u6839\u8282\u70b9\nreturn root\ndef build_tree(preorder: list[int], inorder: list[int]) -> TreeNode | None:\n\"\"\"\u6784\u5efa\u4e8c\u53c9\u6811\"\"\"\n# \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nhmap = {val: i for i, val in enumerate(inorder)}\nroot = dfs(preorder, inorder, hmap, 0, 0, len(inorder) - 1)\nreturn root\n
            build_tree.go
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunc dfsBuildTree(preorder, inorder []int, hmap map[int]int, i, l, r int) *TreeNode {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif r-l < 0 {\nreturn nil\n}\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nroot := NewTreeNode(preorder[i])\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nm := hmap[preorder[i]]\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.Left = dfsBuildTree(preorder, inorder, hmap, i+1, l, m-1)\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.Right = dfsBuildTree(preorder, inorder, hmap, i+1+m-l, m+1, r)\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunc buildTree(preorder, inorder []int) *TreeNode {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nhmap := make(map[int]int, len(inorder))\nfor i := 0; i < len(inorder); i++ {\nhmap[inorder[i]] = i\n}\nroot := dfsBuildTree(preorder, inorder, hmap, 0, 0, len(inorder)-1)\nreturn root\n}\n
            build_tree.js
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunction dfs(preorder, inorder, hmap, i, l, r) {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0) return null;\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nconst root = new TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nconst m = hmap.get(preorder[i]);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunction buildTree(preorder, inorder) {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nlet hmap = new Map();\nfor (let i = 0; i < inorder.length; i++) {\nhmap.set(inorder[i], i);\n}\nconst root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);\nreturn root;\n}\n
            build_tree.ts
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunction dfs(\npreorder: number[],\ninorder: number[],\nhmap: Map<number, number>,\ni: number,\nl: number,\nr: number\n): TreeNode | null {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0) return null;\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nconst root: TreeNode = new TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nconst m = hmap.get(preorder[i]);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunction buildTree(preorder: number[], inorder: number[]): TreeNode | null {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nlet hmap = new Map<number, number>();\nfor (let i = 0; i < inorder.length; i++) {\nhmap.set(inorder[i], i);\n}\nconst root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);\nreturn root;\n}\n
            build_tree.c
            [class]{}-[func]{dfs}\n[class]{}-[func]{buildTree}\n
            build_tree.cs
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode dfs(int[] preorder, int[] inorder, Dictionary<int, int> hmap, int i, int l, int r) {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0)\nreturn null;\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nTreeNode root = new TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nint m = hmap[preorder[i]];\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode buildTree(int[] preorder, int[] inorder) {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nDictionary<int, int> hmap = new Dictionary<int, int>();\nfor (int i = 0; i < inorder.Length; i++) {\nhmap.TryAdd(inorder[i], i);\n}\nTreeNode root = dfs(preorder, inorder, hmap, 0, 0, inorder.Length - 1);\nreturn root;\n}\n
            build_tree.swift
            [class]{}-[func]{dfs}\n[class]{}-[func]{buildTree}\n
            build_tree.zig
            [class]{}-[func]{dfs}\n[class]{}-[func]{buildTree}\n
            build_tree.dart
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode? dfs(\nList<int> preorder,\nList<int> inorder,\nMap<int, int> hmap,\nint i,\nint l,\nint r,\n) {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0) {\nreturn null;\n}\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nTreeNode? root = TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nint m = hmap[preorder[i]]!;\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode? buildTree(List<int> preorder, List<int> inorder) {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nMap<int, int> hmap = {};\nfor (int i = 0; i < inorder.length; i++) {\nhmap[inorder[i]] = i;\n}\nTreeNode? root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);\nreturn root;\n}\n
            build_tree.rs
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfn dfs(preorder: &[i32], inorder: &[i32], hmap: &HashMap<i32, i32>, i: i32, l: i32, r: i32) -> Option<Rc<RefCell<TreeNode>>> {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif r - l < 0 { return None; }\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nlet root = TreeNode::new(preorder[i as usize]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nlet m = hmap.get(&preorder[i as usize]).unwrap();\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.borrow_mut().left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.borrow_mut().right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nSome(root)\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfn build_tree(preorder: &[i32], inorder: &[i32]) -> Option<Rc<RefCell<TreeNode>>> {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nlet mut hmap: HashMap<i32, i32> = HashMap::new();\nfor i in 0..inorder.len() {\nhmap.insert(inorder[i], i as i32);\n}\nlet root = dfs(preorder, inorder, &hmap, 0, 0, inorder.len() as i32 - 1);\nroot\n}\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u6784\u5efa\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b\uff0c\u5404\u4e2a\u8282\u70b9\u662f\u5728\u5411\u4e0b\u201c\u9012\u201d\u7684\u8fc7\u7a0b\u4e2d\u5efa\u7acb\u7684\uff0c\u800c\u5404\u6761\u8fb9\uff08\u5373\u5f15\u7528\uff09\u662f\u5728\u5411\u4e0a\u201c\u5f52\u201d\u7684\u8fc7\u7a0b\u4e2d\u5efa\u7acb\u7684\u3002

            <1><2><3><4><5><6><7><8><9><10>

            \u56fe\uff1a\u6784\u5efa\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b

            \u8bbe\u6811\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u521d\u59cb\u5316\u6bcf\u4e00\u4e2a\u8282\u70b9\uff08\u6267\u884c\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs() \uff09\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u56e0\u6b64\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            \u54c8\u5e0c\u8868\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u9012\u5f52\u6df1\u5ea6\u8fbe\u5230 \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u7684\u6808\u5e27\u7a7a\u95f4\u3002\u56e0\u6b64\u603b\u4f53\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/","title":"12.1 \u00a0 \u5206\u6cbb\u7b97\u6cd5","text":"

            \u300c\u5206\u6cbb Divide and Conquer\u300d\uff0c\u5168\u79f0\u5206\u800c\u6cbb\u4e4b\uff0c\u662f\u4e00\u79cd\u975e\u5e38\u91cd\u8981\u4e14\u5e38\u89c1\u7684\u7b97\u6cd5\u7b56\u7565\u3002\u5206\u6cbb\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\uff0c\u5305\u62ec\u201c\u5206\u201d\u548c\u201c\u6cbb\u201d\u4e24\u6b65\uff1a

            1. \u5206\uff08\u5212\u5206\u9636\u6bb5\uff09\uff1a\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\u5206\u89e3\u4e3a\u4e24\u4e2a\u6216\u591a\u4e2a\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u5230\u8fbe\u6700\u5c0f\u5b50\u95ee\u9898\u65f6\u7ec8\u6b62\u3002
            2. \u6cbb\uff08\u5408\u5e76\u9636\u6bb5\uff09\uff1a\u4ece\u5df2\u77e5\u89e3\u7684\u6700\u5c0f\u5b50\u95ee\u9898\u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\uff0c\u4ece\u800c\u6784\u5efa\u51fa\u539f\u95ee\u9898\u7684\u89e3\u3002

            \u5df2\u4ecb\u7ecd\u8fc7\u7684\u300c\u5f52\u5e76\u6392\u5e8f\u300d\u662f\u5206\u6cbb\u7b56\u7565\u7684\u5178\u578b\u5e94\u7528\u4e4b\u4e00\uff0c\u5b83\u7684\u5206\u6cbb\u7b56\u7565\u4e3a\uff1a

            1. \u5206\uff1a\u9012\u5f52\u5730\u5c06\u539f\u6570\u7ec4\uff08\u539f\u95ee\u9898\uff09\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\uff09\uff0c\u76f4\u5230\u5b50\u6570\u7ec4\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\uff08\u6700\u5c0f\u5b50\u95ee\u9898\uff09\u3002
            2. \u6cbb\uff1a\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u6709\u5e8f\u7684\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\u8fdb\u884c\u5408\u5e76\uff0c\u4ece\u800c\u5f97\u5230\u6709\u5e8f\u7684\u539f\u6570\u7ec4\uff08\u539f\u95ee\u9898\u7684\u89e3\uff09\u3002

            \u56fe\uff1a\u5f52\u5e76\u6392\u5e8f\u7684\u5206\u6cbb\u7b56\u7565

            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1211","title":"12.1.1 \u00a0 \u5982\u4f55\u5224\u65ad\u5206\u6cbb\u95ee\u9898","text":"

            \u4e00\u4e2a\u95ee\u9898\u662f\u5426\u9002\u5408\u4f7f\u7528\u5206\u6cbb\u89e3\u51b3\uff0c\u901a\u5e38\u53ef\u4ee5\u53c2\u8003\u4ee5\u4e0b\u51e0\u4e2a\u5224\u65ad\u4f9d\u636e\uff1a

            1. \u95ee\u9898\u53ef\u4ee5\u88ab\u5206\u89e3\uff1a\u539f\u95ee\u9898\u53ef\u4ee5\u88ab\u5206\u89e3\u6210\u89c4\u6a21\u66f4\u5c0f\u3001\u7c7b\u4f3c\u7684\u5b50\u95ee\u9898\uff0c\u4ee5\u53ca\u80fd\u591f\u4ee5\u76f8\u540c\u65b9\u5f0f\u9012\u5f52\u5730\u8fdb\u884c\u5212\u5206\u3002
            2. \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5b50\u95ee\u9898\u4e4b\u95f4\u662f\u6ca1\u6709\u91cd\u53e0\u7684\uff0c\u4e92\u76f8\u6ca1\u6709\u4f9d\u8d56\uff0c\u53ef\u4ee5\u88ab\u72ec\u7acb\u89e3\u51b3\u3002
            3. \u5b50\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u88ab\u5408\u5e76\uff1a\u539f\u95ee\u9898\u7684\u89e3\u901a\u8fc7\u5408\u5e76\u5b50\u95ee\u9898\u7684\u89e3\u5f97\u6765\u3002

            \u663e\u7136\u5f52\u5e76\u6392\u5e8f\uff0c\u6ee1\u8db3\u4ee5\u4e0a\u4e09\u6761\u5224\u65ad\u4f9d\u636e\uff1a

            1. \u9012\u5f52\u5730\u5c06\u6570\u7ec4\uff08\u539f\u95ee\u9898\uff09\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\uff09\u3002
            2. \u6bcf\u4e2a\u5b50\u6570\u7ec4\u90fd\u53ef\u4ee5\u72ec\u7acb\u5730\u8fdb\u884c\u6392\u5e8f\uff08\u5b50\u95ee\u9898\u53ef\u4ee5\u72ec\u7acb\u8fdb\u884c\u6c42\u89e3\uff09\u3002
            3. \u4e24\u4e2a\u6709\u5e8f\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\u53ef\u4ee5\u88ab\u5408\u5e76\u4e3a\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\uff08\u539f\u95ee\u9898\u7684\u89e3\uff09\u3002
            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1212","title":"12.1.2 \u00a0 \u901a\u8fc7\u5206\u6cbb\u63d0\u5347\u6548\u7387","text":"

            \u5206\u6cbb\u4e0d\u4ec5\u53ef\u4ee5\u6709\u6548\u5730\u89e3\u51b3\u7b97\u6cd5\u95ee\u9898\uff0c\u5f80\u5f80\u8fd8\u53ef\u4ee5\u5e26\u6765\u7b97\u6cd5\u6548\u7387\u7684\u63d0\u5347\u3002\u5728\u6392\u5e8f\u7b97\u6cd5\u4e2d\uff0c\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u5806\u6392\u5e8f\u76f8\u8f83\u4e8e\u9009\u62e9\u3001\u5192\u6ce1\u3001\u63d2\u5165\u6392\u5e8f\u66f4\u5feb\uff0c\u5c31\u662f\u56e0\u4e3a\u5b83\u4eec\u5e94\u7528\u4e86\u5206\u6cbb\u7b56\u7565\u3002

            \u90a3\u4e48\uff0c\u6211\u4eec\u4e0d\u7981\u53d1\u95ee\uff1a\u4e3a\u4ec0\u4e48\u5206\u6cbb\u53ef\u4ee5\u63d0\u5347\u7b97\u6cd5\u6548\u7387\uff0c\u5176\u5e95\u5c42\u903b\u8f91\u662f\u4ec0\u4e48\uff1f\u6362\u53e5\u8bdd\u8bf4\uff0c\u5c06\u5927\u95ee\u9898\u5206\u89e3\u4e3a\u591a\u4e2a\u5b50\u95ee\u9898\u3001\u89e3\u51b3\u5b50\u95ee\u9898\u3001\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u5408\u5e76\u4e3a\u539f\u95ee\u9898\u7684\u89e3\uff0c\u8fd9\u51e0\u6b65\u7684\u6548\u7387\u4e3a\u4ec0\u4e48\u6bd4\u76f4\u63a5\u89e3\u51b3\u539f\u95ee\u9898\u7684\u6548\u7387\u66f4\u9ad8\uff1f\u8fd9\u4e2a\u95ee\u9898\u53ef\u4ee5\u4ece\u64cd\u4f5c\u6570\u91cf\u548c\u5e76\u884c\u8ba1\u7b97\u4e24\u65b9\u9762\u6765\u8ba8\u8bba\u3002

            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1","title":"1. \u00a0 \u64cd\u4f5c\u6570\u91cf\u4f18\u5316","text":"

            \u4ee5\u300c\u5192\u6ce1\u6392\u5e8f\u300d\u4e3a\u4f8b\uff0c\u5176\u5904\u7406\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\u9700\u8981 \\(O(n^2)\\) \u65f6\u95f4\u3002\u5047\u8bbe\u6211\u4eec\u628a\u6570\u7ec4\u4ece\u4e2d\u70b9\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u5219\u5212\u5206\u9700\u8981 \\(O(n)\\) \u65f6\u95f4\uff0c\u6392\u5e8f\u6bcf\u4e2a\u5b50\u6570\u7ec4\u9700\u8981 \\(O((\\frac{n}{2})^2)\\) \u65f6\u95f4\uff0c\u5408\u5e76\u4e24\u4e2a\u5b50\u6570\u7ec4\u9700\u8981 \\(O(n)\\) \u65f6\u95f4\uff0c\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\uff1a

            \\[ O(n + (\\frac{n}{2})^2 \\times 2 + n) = O(\\frac{n^2}{2} + 2n) \\]

            \u56fe\uff1a\u5212\u5206\u6570\u7ec4\u524d\u540e\u7684\u5192\u6ce1\u6392\u5e8f

            \u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u8ba1\u7b97\u4ee5\u4e0b\u4e0d\u7b49\u5f0f\uff0c\u5176\u5de6\u8fb9\u548c\u53f3\u8fb9\u5206\u522b\u4e3a\u5212\u5206\u524d\u548c\u5212\u5206\u540e\u7684\u64cd\u4f5c\u603b\u6570\uff1a

            \\[ \\begin{aligned} n^2 & > \\frac{n^2}{2} + 2n \\newline n^2 - \\frac{n^2}{2} - 2n & > 0 \\newline n(n - 4) & > 0 \\end{aligned} \\]

            \u8fd9\u610f\u5473\u7740\u5f53 \\(n > 4\\) \u65f6\uff0c\u5212\u5206\u540e\u7684\u64cd\u4f5c\u6570\u91cf\u66f4\u5c11\uff0c\u6392\u5e8f\u6548\u7387\u5e94\u8be5\u66f4\u9ad8\u3002\u8bf7\u6ce8\u610f\uff0c\u5212\u5206\u540e\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u7136\u662f\u5e73\u65b9\u9636 \\(O(n^2)\\) \uff0c\u53ea\u662f\u590d\u6742\u5ea6\u4e2d\u7684\u5e38\u6570\u9879\u53d8\u5c0f\u4e86\u3002

            \u8fdb\u4e00\u6b65\u60f3\uff0c\u5982\u679c\u6211\u4eec\u628a\u5b50\u6570\u7ec4\u4e0d\u65ad\u5730\u518d\u4ece\u4e2d\u70b9\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\u65f6\u505c\u6b62\u5212\u5206\u5462\uff1f\u8fd9\u79cd\u601d\u8def\u5b9e\u9645\u4e0a\u5c31\u662f\u300c\u5f52\u5e76\u6392\u5e8f\u300d\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002

            \u518d\u601d\u8003\uff0c\u5982\u679c\u6211\u4eec\u591a\u8bbe\u7f6e\u51e0\u4e2a\u5212\u5206\u70b9\uff0c\u5c06\u539f\u6570\u7ec4\u5e73\u5747\u5212\u5206\u4e3a \\(k\\) \u4e2a\u5b50\u6570\u7ec4\u5462\uff1f\u8fd9\u79cd\u60c5\u51b5\u4e0e\u300c\u6876\u6392\u5e8f\u300d\u975e\u5e38\u7c7b\u4f3c\uff0c\u5b83\u975e\u5e38\u9002\u5408\u6392\u5e8f\u6d77\u91cf\u6570\u636e\uff0c\u7406\u8bba\u4e0a\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230 \\(O(n + k)\\) \u3002

            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/#2","title":"2. \u00a0 \u5e76\u884c\u8ba1\u7b97\u4f18\u5316","text":"

            \u6211\u4eec\u77e5\u9053\uff0c\u5206\u6cbb\u751f\u6210\u7684\u5b50\u95ee\u9898\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u56e0\u6b64\u901a\u5e38\u53ef\u4ee5\u5e76\u884c\u89e3\u51b3\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u5206\u6cbb\u4e0d\u4ec5\u53ef\u4ee5\u964d\u4f4e\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u8fd8\u6709\u5229\u4e8e\u64cd\u4f5c\u7cfb\u7edf\u7684\u5e76\u884c\u4f18\u5316\u3002

            \u5e76\u884c\u4f18\u5316\u5728\u591a\u6838\u6216\u591a\u5904\u7406\u5668\u7684\u73af\u5883\u4e2d\u5c24\u5176\u6709\u6548\uff0c\u56e0\u4e3a\u7cfb\u7edf\u53ef\u4ee5\u540c\u65f6\u5904\u7406\u591a\u4e2a\u5b50\u95ee\u9898\uff0c\u66f4\u52a0\u5145\u5206\u5730\u5229\u7528\u8ba1\u7b97\u8d44\u6e90\uff0c\u4ece\u800c\u663e\u8457\u51cf\u5c11\u603b\u4f53\u7684\u8fd0\u884c\u65f6\u95f4\u3002

            \u6bd4\u5982\u5728\u6876\u6392\u5e8f\u4e2d\uff0c\u6211\u4eec\u5c06\u6d77\u91cf\u7684\u6570\u636e\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff0c\u5219\u53ef\u6240\u6709\u6876\u7684\u6392\u5e8f\u4efb\u52a1\u5206\u6563\u5230\u5404\u4e2a\u8ba1\u7b97\u5355\u5143\uff0c\u5b8c\u6210\u540e\u518d\u8fdb\u884c\u7ed3\u679c\u5408\u5e76\u3002

            \u56fe\uff1a\u6876\u6392\u5e8f\u7684\u5e76\u884c\u8ba1\u7b97

            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1213","title":"12.1.3 \u00a0 \u5206\u6cbb\u5e38\u89c1\u5e94\u7528","text":"

            \u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u53ef\u4ee5\u7528\u6765\u89e3\u51b3\u8bb8\u591a\u7ecf\u5178\u7b97\u6cd5\u95ee\u9898\uff1a

            • \u5bfb\u627e\u6700\u8fd1\u70b9\u5bf9\uff1a\u8be5\u7b97\u6cd5\u9996\u5148\u5c06\u70b9\u96c6\u5206\u6210\u4e24\u90e8\u5206\uff0c\u7136\u540e\u5206\u522b\u627e\u51fa\u4e24\u90e8\u5206\u4e2d\u7684\u6700\u8fd1\u70b9\u5bf9\uff0c\u6700\u540e\u518d\u627e\u51fa\u8de8\u8d8a\u4e24\u90e8\u5206\u7684\u6700\u8fd1\u70b9\u5bf9\u3002
            • \u5927\u6574\u6570\u4e58\u6cd5\uff1a\u4f8b\u5982 Karatsuba \u7b97\u6cd5\uff0c\u5b83\u662f\u5c06\u5927\u6574\u6570\u4e58\u6cd5\u5206\u89e3\u4e3a\u51e0\u4e2a\u8f83\u5c0f\u7684\u6574\u6570\u7684\u4e58\u6cd5\u548c\u52a0\u6cd5\u3002
            • \u77e9\u9635\u4e58\u6cd5\uff1a\u4f8b\u5982 Strassen \u7b97\u6cd5\uff0c\u5b83\u662f\u5c06\u5927\u77e9\u9635\u4e58\u6cd5\u5206\u89e3\u4e3a\u591a\u4e2a\u5c0f\u77e9\u9635\u7684\u4e58\u6cd5\u548c\u52a0\u6cd5\u3002
            • \u6c49\u8bfa\u5854\u95ee\u9898\uff1a\u6c49\u8bfa\u5854\u95ee\u9898\u53ef\u4ee5\u89c6\u4e3a\u5178\u578b\u7684\u5206\u6cbb\u7b56\u7565\uff0c\u901a\u8fc7\u9012\u5f52\u89e3\u51b3\u3002
            • \u6c42\u89e3\u9006\u5e8f\u5bf9\uff1a\u5728\u4e00\u4e2a\u5e8f\u5217\u4e2d\uff0c\u5982\u679c\u524d\u9762\u7684\u6570\u5b57\u5927\u4e8e\u540e\u9762\u7684\u6570\u5b57\uff0c\u90a3\u4e48\u8fd9\u4e24\u4e2a\u6570\u5b57\u6784\u6210\u4e00\u4e2a\u9006\u5e8f\u5bf9\u3002\u6c42\u89e3\u9006\u5e8f\u5bf9\u95ee\u9898\u53ef\u4ee5\u901a\u8fc7\u5206\u6cbb\u7684\u601d\u60f3\uff0c\u501f\u52a9\u5f52\u5e76\u6392\u5e8f\u8fdb\u884c\u6c42\u89e3\u3002

            \u53e6\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u5728\u7b97\u6cd5\u548c\u6570\u636e\u7ed3\u6784\u7684\u8bbe\u8ba1\u4e2d\u5e94\u7528\u975e\u5e38\u5e7f\u6cdb\uff0c\u4e3e\u51e0\u4e2a\u5df2\u7ecf\u5b66\u8fc7\u7684\u4f8b\u5b50\uff1a

            • \u4e8c\u5206\u67e5\u627e\uff1a\u4e8c\u5206\u67e5\u627e\u662f\u5c06\u6709\u5e8f\u6570\u7ec4\u4ece\u4e2d\u70b9\u7d22\u5f15\u5206\u4e3a\u4e24\u90e8\u5206\uff0c\u7136\u540e\u6839\u636e\u76ee\u6807\u503c\u4e0e\u4e2d\u95f4\u5143\u7d20\u503c\u6bd4\u8f83\u7ed3\u679c\uff0c\u51b3\u5b9a\u6392\u9664\u54ea\u4e00\u534a\u533a\u95f4\uff0c\u7136\u540e\u5728\u5269\u4f59\u533a\u95f4\u6267\u884c\u76f8\u540c\u7684\u4e8c\u5206\u64cd\u4f5c\u3002
            • \u5f52\u5e76\u6392\u5e8f\uff1a\u6587\u7ae0\u5f00\u5934\u5df2\u4ecb\u7ecd\uff0c\u4e0d\u518d\u8d58\u8ff0\u3002
            • \u5feb\u901f\u6392\u5e8f\uff1a\u5feb\u901f\u6392\u5e8f\u662f\u9009\u53d6\u4e00\u4e2a\u57fa\u51c6\u503c\uff0c\u7136\u540e\u628a\u6570\u7ec4\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u4e00\u4e2a\u5b50\u6570\u7ec4\u7684\u5143\u7d20\u6bd4\u57fa\u51c6\u503c\u5c0f\uff0c\u53e6\u4e00\u5b50\u6570\u7ec4\u7684\u5143\u7d20\u6bd4\u57fa\u51c6\u503c\u5927\uff0c\u7136\u540e\u518d\u5bf9\u8fd9\u4e24\u90e8\u5206\u8fdb\u884c\u76f8\u540c\u7684\u5212\u5206\u64cd\u4f5c\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u53ea\u5269\u4e0b\u4e00\u4e2a\u5143\u7d20\u3002
            • \u6876\u6392\u5e8f\uff1a\u6876\u6392\u5e8f\u7684\u57fa\u672c\u601d\u60f3\u662f\u5c06\u6570\u636e\u5206\u6563\u5230\u591a\u4e2a\u6876\uff0c\u7136\u540e\u5bf9\u6bcf\u4e2a\u6876\u5185\u7684\u5143\u7d20\u8fdb\u884c\u6392\u5e8f\uff0c\u6700\u540e\u5c06\u5404\u4e2a\u6876\u7684\u5143\u7d20\u4f9d\u6b21\u53d6\u51fa\uff0c\u4ece\u800c\u5f97\u5230\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\u3002
            • \u6811\uff1a\u4f8b\u5982\u4e8c\u53c9\u641c\u7d22\u6811\u3001AVL \u6811\u3001\u7ea2\u9ed1\u6811\u3001B \u6811\u3001B+ \u6811\u7b49\uff0c\u5b83\u4eec\u7684\u67e5\u627e\u3001\u63d2\u5165\u548c\u5220\u9664\u7b49\u64cd\u4f5c\u90fd\u53ef\u4ee5\u89c6\u4e3a\u5206\u6cbb\u7684\u5e94\u7528\u3002
            • \u5806\uff1a\u5806\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u5176\u5404\u79cd\u64cd\u4f5c\uff0c\u5982\u63d2\u5165\u3001\u5220\u9664\u548c\u5806\u5316\uff0c\u5b9e\u9645\u4e0a\u90fd\u9690\u542b\u4e86\u5206\u6cbb\u7684\u601d\u60f3\u3002
            • \u54c8\u5e0c\u8868\uff1a\u867d\u7136\u54c8\u5e0c\u8868\u6765\u5e76\u4e0d\u76f4\u63a5\u5e94\u7528\u5206\u6cbb\uff0c\u4f46\u67d0\u4e9b\u54c8\u5e0c\u51b2\u7a81\u89e3\u51b3\u7b56\u7565\u95f4\u63a5\u5e94\u7528\u4e86\u5206\u6cbb\u7b56\u7565\uff0c\u4f8b\u5982\uff0c\u94fe\u5f0f\u5730\u5740\u4e2d\u7684\u957f\u94fe\u8868\u4f1a\u88ab\u8f6c\u5316\u4e3a\u7ea2\u9ed1\u6811\uff0c\u4ee5\u63d0\u5347\u67e5\u8be2\u6548\u7387\u3002

            \u53ef\u4ee5\u770b\u51fa\uff0c\u5206\u6cbb\u662f\u4e00\u79cd\u201c\u6da6\u7269\u7ec6\u65e0\u58f0\u201d\u7684\u7b97\u6cd5\u601d\u60f3\uff0c\u9690\u542b\u5728\u5404\u79cd\u7b97\u6cd5\u4e0e\u6570\u636e\u7ed3\u6784\u4e4b\u4e2d\u3002

            "},{"location":"chapter_divide_and_conquer/hanota_problem/","title":"12.4 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898","text":"

            \u5728\u5f52\u5e76\u6392\u5e8f\u548c\u6784\u5efa\u4e8c\u53c9\u6811\u4e2d\uff0c\u6211\u4eec\u90fd\u662f\u5c06\u539f\u95ee\u9898\u5206\u89e3\u4e3a\u4e24\u4e2a\u89c4\u6a21\u4e3a\u539f\u95ee\u9898\u4e00\u534a\u7684\u5b50\u95ee\u9898\u3002\u7136\u800c\u5bf9\u4e8e\u6c49\u8bfa\u5854\u95ee\u9898\uff0c\u6211\u4eec\u91c7\u7528\u4e0d\u540c\u7684\u5206\u89e3\u7b56\u7565\u3002

            Question

            \u7ed9\u5b9a\u4e09\u6839\u67f1\u5b50\uff0c\u8bb0\u4e3a A , B , C \u3002\u8d77\u59cb\u72b6\u6001\u4e0b\uff0c\u67f1\u5b50 A \u4e0a\u5957\u7740 \\(n\\) \u4e2a\u5706\u76d8\uff0c\u5b83\u4eec\u4ece\u4e0a\u5230\u4e0b\u6309\u7167\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u6392\u5217\u3002\u6211\u4eec\u7684\u4efb\u52a1\u662f\u8981\u628a\u8fd9 \\(n\\) \u4e2a\u5706\u76d8\u79fb\u5230\u67f1\u5b50 C \u4e0a\uff0c\u5e76\u4fdd\u6301\u5b83\u4eec\u7684\u539f\u6709\u987a\u5e8f\u4e0d\u53d8\u3002\u5728\u79fb\u52a8\u5706\u76d8\u7684\u8fc7\u7a0b\u4e2d\uff0c\u9700\u8981\u9075\u5b88\u4ee5\u4e0b\u89c4\u5219\uff1a

            1. \u5706\u76d8\u53ea\u80fd\u4ece\u4e00\u4e2a\u67f1\u5b50\u9876\u90e8\u62ff\u51fa\uff0c\u4ece\u53e6\u4e00\u4e2a\u67f1\u5b50\u9876\u90e8\u653e\u5165\u3002
            2. \u6bcf\u6b21\u53ea\u80fd\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\u3002
            3. \u5c0f\u5706\u76d8\u5fc5\u987b\u65f6\u523b\u4f4d\u4e8e\u5927\u5706\u76d8\u4e4b\u4e0a\u3002

            \u56fe\uff1a\u6c49\u8bfa\u5854\u95ee\u9898\u793a\u4f8b

            \u6211\u4eec\u5c06\u89c4\u6a21\u4e3a \\(i\\) \u7684\u6c49\u8bfa\u5854\u95ee\u9898\u8bb0\u505a \\(f(i)\\) \u3002\u4f8b\u5982 \\(f(3)\\) \u4ee3\u8868\u5c06 \\(3\\) \u4e2a\u5706\u76d8\u4ece A \u79fb\u52a8\u81f3 C \u7684\u6c49\u8bfa\u5854\u95ee\u9898\u3002

            "},{"location":"chapter_divide_and_conquer/hanota_problem/#1","title":"1. \u00a0 \u8003\u8651\u57fa\u672c\u60c5\u51b5","text":"

            \u5bf9\u4e8e\u95ee\u9898 \\(f(1)\\) \uff0c\u5373\u5f53\u53ea\u6709\u4e00\u4e2a\u5706\u76d8\u65f6\uff0c\u5219\u5c06\u5b83\u76f4\u63a5\u4ece A \u79fb\u52a8\u81f3 C \u5373\u53ef\u3002

            <1><2>

            \u56fe\uff1a\u89c4\u6a21\u4e3a 1 \u95ee\u9898\u7684\u89e3

            \u5bf9\u4e8e\u95ee\u9898 \\(f(2)\\) \uff0c\u5373\u5f53\u6709\u4e24\u4e2a\u5706\u76d8\u65f6\uff0c\u7531\u4e8e\u8981\u65f6\u523b\u6ee1\u8db3\u5c0f\u5706\u76d8\u5728\u5927\u5706\u76d8\u4e4b\u4e0a\uff0c\u56e0\u6b64\u9700\u8981\u501f\u52a9 B \u6765\u5b8c\u6210\u79fb\u52a8\uff0c\u5305\u62ec\u4e09\u6b65\uff1a

            1. \u5148\u5c06\u4e0a\u9762\u7684\u5c0f\u5706\u76d8\u4ece A \u79fb\u81f3 B \u3002
            2. \u518d\u5c06\u5927\u5706\u76d8\u4ece A \u79fb\u81f3 C \u3002
            3. \u6700\u540e\u5c06\u5c0f\u5706\u76d8\u4ece B \u79fb\u81f3 C \u3002

            \u89e3\u51b3\u95ee\u9898 \\(f(2)\\) \u7684\u8fc7\u7a0b\u53ef\u603b\u7ed3\u4e3a\uff1a\u5c06\u4e24\u4e2a\u5706\u76d8\u501f\u52a9 B \u4ece A \u79fb\u81f3 C \u3002\u5176\u4e2d\uff0cC \u79f0\u4e3a\u76ee\u6807\u67f1\u3001B \u79f0\u4e3a\u7f13\u51b2\u67f1\u3002

            <1><2><3><4>

            \u56fe\uff1a\u89c4\u6a21\u4e3a 2 \u95ee\u9898\u7684\u89e3

            "},{"location":"chapter_divide_and_conquer/hanota_problem/#2","title":"2. \u00a0 \u5b50\u95ee\u9898\u5206\u89e3","text":"

            \u5bf9\u4e8e\u95ee\u9898 \\(f(3)\\) \uff0c\u5373\u5f53\u6709\u4e09\u4e2a\u5706\u76d8\u65f6\uff0c\u60c5\u51b5\u53d8\u5f97\u7a0d\u5fae\u590d\u6742\u4e86\u4e00\u4e9b\u3002\u7531\u4e8e\u5df2\u77e5 \\(f(1)\\) \u548c \\(f(2)\\) \u7684\u89e3\uff0c\u56e0\u6b64\u53ef\u4ece\u5206\u6cbb\u89d2\u5ea6\u601d\u8003\uff0c\u5c06 A \u9876\u90e8\u7684\u4e24\u4e2a\u5706\u76d8\u770b\u505a\u4e00\u4e2a\u6574\u4f53\uff0c\u6267\u884c\u4ee5\u4e0b\u6b65\u9aa4\uff1a

            1. \u4ee4 B \u4e3a\u76ee\u6807\u67f1\u3001C \u4e3a\u7f13\u51b2\u67f1\uff0c\u5c06\u4e24\u4e2a\u5706\u76d8\u4ece A \u79fb\u52a8\u81f3 B \u3002
            2. \u5c06 A \u4e2d\u5269\u4f59\u7684\u4e00\u4e2a\u5706\u76d8\u4ece A \u76f4\u63a5\u79fb\u52a8\u81f3 C \u3002
            3. \u4ee4 C \u4e3a\u76ee\u6807\u67f1\u3001A \u4e3a\u7f13\u51b2\u67f1\uff0c\u5c06\u4e24\u4e2a\u5706\u76d8\u4ece B \u79fb\u52a8\u81f3 C \u3002

            \u8fd9\u6837\u4e09\u4e2a\u5706\u76d8\u5c31\u88ab\u987a\u5229\u5730\u4ece A \u79fb\u52a8\u81f3 C \u4e86\u3002

            <1><2><3><4>

            \u56fe\uff1a\u89c4\u6a21\u4e3a 3 \u95ee\u9898\u7684\u89e3

            \u672c\u8d28\u4e0a\u770b\uff0c\u6211\u4eec\u5c06\u95ee\u9898 \\(f(3)\\) \u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(2)\\) \u548c\u5b50\u95ee\u9898 \\(f(1)\\) \u3002\u6309\u987a\u5e8f\u89e3\u51b3\u8fd9\u4e09\u4e2a\u5b50\u95ee\u9898\u4e4b\u540e\uff0c\u539f\u95ee\u9898\u968f\u4e4b\u5f97\u5230\u89e3\u51b3\u3002\u8fd9\u8bf4\u660e\u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff0c\u800c\u4e14\u89e3\u662f\u53ef\u4ee5\u5408\u5e76\u7684\u3002

            \u81f3\u6b64\uff0c\u6211\u4eec\u53ef\u603b\u7ed3\u51fa\u6c49\u8bfa\u5854\u95ee\u9898\u7684\u5206\u6cbb\u7b56\u7565\uff1a\u5c06\u539f\u95ee\u9898 \\(f(n)\\) \u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(n-1)\\) \u548c\u4e00\u4e2a\u5b50\u95ee\u9898 \\(f(1)\\) \u3002\u5b50\u95ee\u9898\u7684\u89e3\u51b3\u987a\u5e8f\u4e3a\uff1a

            1. \u5c06 \\(n-1\\) \u4e2a\u5706\u76d8\u501f\u52a9 C \u4ece A \u79fb\u81f3 B \u3002
            2. \u5c06\u5269\u4f59 \\(1\\) \u4e2a\u5706\u76d8\u4ece A \u76f4\u63a5\u79fb\u81f3 C \u3002
            3. \u5c06 \\(n-1\\) \u4e2a\u5706\u76d8\u501f\u52a9 A \u4ece B \u79fb\u81f3 C \u3002

            \u5bf9\u4e8e\u8fd9\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(n-1)\\) \uff0c\u53ef\u4ee5\u901a\u8fc7\u76f8\u540c\u7684\u65b9\u5f0f\u8fdb\u884c\u9012\u5f52\u5212\u5206\uff0c\u76f4\u81f3\u8fbe\u5230\u6700\u5c0f\u5b50\u95ee\u9898 \\(f(1)\\) \u3002\u800c \\(f(1)\\) \u7684\u89e3\u662f\u5df2\u77e5\u7684\uff0c\u53ea\u9700\u4e00\u6b21\u79fb\u52a8\u64cd\u4f5c\u5373\u53ef\u3002

            \u56fe\uff1a\u6c49\u8bfa\u5854\u95ee\u9898\u7684\u5206\u6cbb\u7b56\u7565

            "},{"location":"chapter_divide_and_conquer/hanota_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs(i, src, buf, tar) \uff0c\u5b83\u7684\u4f5c\u7528\u662f\u5c06\u67f1 src \u9876\u90e8\u7684 \\(i\\) \u4e2a\u5706\u76d8\u501f\u52a9\u7f13\u51b2\u67f1 buf \u79fb\u52a8\u81f3\u76ee\u6807\u67f1 tar \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust hanota.java
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(List<Integer> src, List<Integer> tar) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nInteger pan = src.remove(src.size() - 1);\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.add(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nvoid dfs(int i, List<Integer> src, List<Integer> buf, List<Integer> tar) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i == 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nvoid solveHanota(List<Integer> A, List<Integer> B, List<Integer> C) {\nint n = A.size();\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.cpp
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(vector<int> &src, vector<int> &tar) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nint pan = src.back();\nsrc.pop_back();\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.push_back(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nvoid dfs(int i, vector<int> &src, vector<int> &buf, vector<int> &tar) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i == 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nvoid hanota(vector<int> &A, vector<int> &B, vector<int> &C) {\nint n = A.size();\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.py
            def move(src: list[int], tar: list[int]):\n\"\"\"\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\"\"\"\n# \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\npan = src.pop()\n# \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.append(pan)\ndef dfs(i: int, src: list[int], buf: list[int], tar: list[int]):\n\"\"\"\u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i)\"\"\"\n# \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif i == 1:\nmove(src, tar)\nreturn\n# \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf)\n# \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar)\n# \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar)\ndef hanota(A: list[int], B: list[int], C: list[int]):\n\"\"\"\u6c42\u89e3\u6c49\u8bfa\u5854\"\"\"\nn = len(A)\n# \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C)\n
            hanota.go
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunc move(src, tar *list.List) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\npan := src.Back()\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.PushBack(pan.Value)\n// \u79fb\u9664 src \u9876\u90e8\u5706\u76d8\nsrc.Remove(pan)\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nfunc dfsHanota(i int, src, buf, tar *list.List) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif i == 1 {\nmove(src, tar)\nreturn\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfsHanota(i-1, src, tar, buf)\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar)\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfsHanota(i-1, buf, src, tar)\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nfunc hanota(A, B, C *list.List) {\nn := A.Len()\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfsHanota(n, A, B, C)\n}\n
            hanota.js
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunction move(src, tar) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nconst pan = src.pop();\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.push(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nfunction dfs(i, src, buf, tar) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i === 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nfunction hanota(A, B, C) {\nconst n = A.length;\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.ts
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunction move(src: number[], tar: number[]): void {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nconst pan = src.pop();\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.push(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nfunction dfs(i: number, src: number[], buf: number[], tar: number[]): void {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i === 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nfunction hanota(A: number[], B: number[], C: number[]): void {\nconst n = A.length;\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.c
            [class]{}-[func]{move}\n[class]{}-[func]{dfs}\n[class]{}-[func]{hanota}\n
            hanota.cs
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(List<int> src, List<int> tar) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nint pan = src[^1];\nsrc.RemoveAt(src.Count - 1);\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.Add(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nvoid dfs(int i, List<int> src, List<int> buf, List<int> tar) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i == 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nvoid solveHanota(List<int> A, List<int> B, List<int> C) {\nint n = A.Count;\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.swift
            [class]{}-[func]{move}\n[class]{}-[func]{dfs}\n[class]{}-[func]{hanota}\n
            hanota.zig
            [class]{}-[func]{move}\n[class]{}-[func]{dfs}\n[class]{}-[func]{hanota}\n
            hanota.dart
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(List<int> src, List<int> tar) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nint pan = src.removeLast();\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.add(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nvoid dfs(int i, List<int> src, List<int> buf, List<int> tar) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i == 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nvoid hanota(List<int> A, List<int> B, List<int> C) {\nint n = A.length;\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.rs
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfn move_pan(src: &mut Vec<i32>, tar: &mut Vec<i32>) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nlet pan = src.remove(src.len() - 1);\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.push(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nfn dfs(i: i32, src: &mut Vec<i32>, buf: &mut Vec<i32>, tar: &mut Vec<i32>) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif i == 1 {\nmove_pan(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove_pan(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nfn hanota(A: &mut Vec<i32>, B: &mut Vec<i32>, C: &mut Vec<i32>) {\nlet n = A.len() as i32;\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u6c49\u8bfa\u5854\u95ee\u9898\u5f62\u6210\u4e00\u4e2a\u9ad8\u5ea6\u4e3a \\(n\\) \u7684\u9012\u5f52\u6811\uff0c\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u5b50\u95ee\u9898\u3001\u5bf9\u5e94\u4e00\u4e2a\u5f00\u542f\u7684 dfs() \u51fd\u6570\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            \u56fe\uff1a\u6c49\u8bfa\u5854\u95ee\u9898\u7684\u9012\u5f52\u6811

            Quote

            \u6c49\u8bfa\u5854\u95ee\u9898\u6e90\u81ea\u4e00\u79cd\u53e4\u8001\u7684\u4f20\u8bf4\u6545\u4e8b\u3002\u5728\u53e4\u5370\u5ea6\u7684\u4e00\u4e2a\u5bfa\u5e99\u91cc\uff0c\u50e7\u4fa3\u4eec\u6709\u4e09\u6839\u9ad8\u5927\u7684\u94bb\u77f3\u67f1\u5b50\uff0c\u4ee5\u53ca \\(64\\) \u4e2a\u5927\u5c0f\u4e0d\u4e00\u7684\u91d1\u5706\u76d8\u3002\u50e7\u4fa3\u4eec\u4e0d\u65ad\u5730\u79fb\u52a8\u539f\u76d8\uff0c\u4ed6\u4eec\u76f8\u4fe1\u5728\u6700\u540e\u4e00\u4e2a\u5706\u76d8\u88ab\u6b63\u786e\u653e\u7f6e\u7684\u90a3\u4e00\u523b\uff0c\u8fd9\u4e2a\u4e16\u754c\u5c31\u4f1a\u7ed3\u675f\u3002

            \u7136\u800c\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u5373\u4f7f\u50e7\u4fa3\u4eec\u6bcf\u79d2\u949f\u79fb\u52a8\u4e00\u6b21\uff0c\u603b\u5171\u9700\u8981\u5927\u7ea6 \\(2^{64} \\approx 1.84\u00d710^{19}\\) \u79d2\uff0c\u5408\u7ea6 \\(5850\\) \u4ebf\u5e74\uff0c\u8fdc\u8fdc\u8d85\u8fc7\u4e86\u73b0\u5728\u5bf9\u5b87\u5b99\u5e74\u9f84\u7684\u4f30\u8ba1\u3002\u6240\u4ee5\uff0c\u5018\u82e5\u8fd9\u4e2a\u4f20\u8bf4\u662f\u771f\u7684\uff0c\u6211\u4eec\u5e94\u8be5\u4e0d\u9700\u8981\u62c5\u5fc3\u4e16\u754c\u672b\u65e5\u7684\u5230\u6765\u3002

            "},{"location":"chapter_divide_and_conquer/summary/","title":"12.5 \u00a0 \u5c0f\u7ed3","text":"
            • \u5206\u6cbb\u7b97\u6cd5\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u7b97\u6cd5\u8bbe\u8ba1\u7b56\u7565\uff0c\u5305\u62ec\u5206\uff08\u5212\u5206\uff09\u548c\u6cbb\uff08\u5408\u5e76\uff09\u4e24\u4e2a\u9636\u6bb5\uff0c\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\u3002
            • \u5224\u65ad\u662f\u5426\u662f\u5206\u6cbb\u7b97\u6cd5\u95ee\u9898\u7684\u4f9d\u636e\u5305\u62ec\uff1a\u95ee\u9898\u80fd\u5426\u88ab\u5206\u89e3\u3001\u5b50\u95ee\u9898\u662f\u5426\u72ec\u7acb\u3001\u5b50\u95ee\u9898\u662f\u5426\u53ef\u4ee5\u88ab\u5408\u5e76\u3002
            • \u5f52\u5e76\u6392\u5e8f\u662f\u5206\u6cbb\u7b56\u7565\u7684\u5178\u578b\u5e94\u7528\uff0c\u5176\u9012\u5f52\u5730\u5c06\u6570\u7ec4\u5212\u5206\u4e3a\u7b49\u957f\u7684\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u76f4\u5230\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\u65f6\u5f00\u59cb\u9010\u5c42\u5408\u5e76\uff0c\u4ece\u800c\u5b8c\u6210\u6392\u5e8f\u3002
            • \u5f15\u5165\u5206\u6cbb\u7b56\u7565\u5f80\u5f80\u53ef\u4ee5\u5e26\u6765\u7b97\u6cd5\u6548\u7387\u7684\u63d0\u5347\u3002\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u7b56\u7565\u51cf\u5c11\u4e86\u64cd\u4f5c\u6570\u91cf\uff1b\u53e6\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u540e\u6709\u5229\u4e8e\u7cfb\u7edf\u7684\u5e76\u884c\u4f18\u5316\u3002
            • \u5206\u6cbb\u65e2\u53ef\u4ee5\u89e3\u51b3\u8bb8\u591a\u7b97\u6cd5\u95ee\u9898\uff0c\u4e5f\u5e7f\u6cdb\u5e94\u7528\u4e8e\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u8bbe\u8ba1\u4e2d\uff0c\u5904\u5904\u53ef\u89c1\u5176\u8eab\u5f71\u3002
            • \u76f8\u8f83\u4e8e\u66b4\u529b\u641c\u7d22\uff0c\u81ea\u9002\u5e94\u641c\u7d22\u6548\u7387\u66f4\u9ad8\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u7684\u641c\u7d22\u7b97\u6cd5\u901a\u5e38\u90fd\u662f\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u5b9e\u73b0\u7684\u3002
            • \u4e8c\u5206\u67e5\u627e\u662f\u5206\u6cbb\u601d\u60f3\u7684\u53e6\u4e00\u4e2a\u5178\u578b\u5e94\u7528\uff0c\u5b83\u4e0d\u5305\u542b\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\u7684\u6b65\u9aa4\u3002\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u9012\u5f52\u5206\u6cbb\u5b9e\u73b0\u4e8c\u5206\u67e5\u627e\u3002
            • \u5728\u6784\u5efa\u4e8c\u53c9\u6811\u95ee\u9898\u4e2d\uff0c\u6784\u5efa\u6811\uff08\u539f\u95ee\u9898\uff09\u53ef\u4ee5\u88ab\u5212\u5206\u4e3a\u6784\u5efa\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u5176\u53ef\u4ee5\u901a\u8fc7\u5212\u5206\u524d\u5e8f\u904d\u5386\u548c\u4e2d\u5e8f\u904d\u5386\u7684\u7d22\u5f15\u533a\u95f4\u6765\u5b9e\u73b0\u3002
            • \u5728\u6c49\u8bfa\u5854\u95ee\u9898\u4e2d\uff0c\u4e00\u4e2a\u89c4\u6a21\u4e3a \\(n\\) \u7684\u95ee\u9898\u53ef\u4ee5\u88ab\u5212\u5206\u4e3a\u4e24\u4e2a\u89c4\u6a21\u4e3a \\(n-1\\) \u7684\u5b50\u95ee\u9898\u548c\u4e00\u4e2a\u89c4\u6a21\u4e3a \\(1\\) \u7684\u5b50\u95ee\u9898\u3002\u6309\u987a\u5e8f\u89e3\u51b3\u8fd9\u4e09\u4e2a\u5b50\u95ee\u9898\u540e\uff0c\u539f\u95ee\u9898\u968f\u4e4b\u5f97\u5230\u89e3\u51b3\u3002
            "},{"location":"chapter_dynamic_programming/","title":"\u7b2c 14 \u7ae0 \u00a0 \u52a8\u6001\u89c4\u5212","text":"

            Abstract

            \u5c0f\u6eaa\u6c47\u5165\u6cb3\u6d41\uff0c\u6c5f\u6cb3\u6c47\u5165\u5927\u6d77\u3002

            \u52a8\u6001\u89c4\u5212\u5c06\u5c0f\u95ee\u9898\u7684\u89e3\u6c47\u96c6\u6210\u5927\u95ee\u9898\u7684\u7b54\u6848\uff0c\u4e00\u6b65\u6b65\u5f15\u9886\u6211\u4eec\u8d70\u5411\u89e3\u51b3\u95ee\u9898\u7684\u5f7c\u5cb8\u3002

            "},{"location":"chapter_dynamic_programming/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 14.1 \u00a0 \u521d\u63a2\u52a8\u6001\u89c4\u5212
            • 14.2 \u00a0 DP \u95ee\u9898\u7279\u6027
            • 14.3 \u00a0 DP \u89e3\u9898\u601d\u8def
            • 14.4 \u00a0 0-1 \u80cc\u5305\u95ee\u9898
            • 14.5 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898
            • 14.6 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898
            • 14.7 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_dynamic_programming/dp_problem_features/","title":"14.2 \u00a0 \u52a8\u6001\u89c4\u5212\u95ee\u9898\u7279\u6027","text":"

            \u5728\u4e0a\u8282\u4e2d\uff0c\u6211\u4eec\u5b66\u4e60\u4e86\u52a8\u6001\u89c4\u5212\u662f\u5982\u4f55\u901a\u8fc7\u5b50\u95ee\u9898\u5206\u89e3\u6765\u6c42\u89e3\u95ee\u9898\u7684\u3002\u5b9e\u9645\u4e0a\uff0c\u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u901a\u7528\u7684\u7b97\u6cd5\u601d\u8def\uff0c\u5728\u5206\u6cbb\u3001\u52a8\u6001\u89c4\u5212\u3001\u56de\u6eaf\u4e2d\u7684\u4fa7\u91cd\u70b9\u4e0d\u540c\uff1a

            • \u300c\u5206\u6cbb\u7b97\u6cd5\u300d\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\u5212\u5206\u4e3a\u591a\u4e2a\u76f8\u4e92\u72ec\u7acb\u7684\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u6700\u5c0f\u5b50\u95ee\u9898\uff0c\u5e76\u5728\u56de\u6eaf\u4e2d\u5408\u5e76\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u6700\u7ec8\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002
            • \u300c\u52a8\u6001\u89c4\u5212\u300d\u4e5f\u5bf9\u95ee\u9898\u8fdb\u884c\u9012\u5f52\u5206\u89e3\uff0c\u4f46\u4e0e\u5206\u6cbb\u7b97\u6cd5\u7684\u4e3b\u8981\u533a\u522b\u662f\uff0c\u52a8\u6001\u89c4\u5212\u4e2d\u7684\u5b50\u95ee\u9898\u662f\u76f8\u4e92\u4f9d\u8d56\u7684\uff0c\u5728\u5206\u89e3\u8fc7\u7a0b\u4e2d\u4f1a\u51fa\u73b0\u8bb8\u591a\u91cd\u53e0\u5b50\u95ee\u9898\u3002
            • \u300c\u56de\u6eaf\u7b97\u6cd5\u300d\u5728\u5c1d\u8bd5\u548c\u56de\u9000\u4e2d\u7a77\u4e3e\u6240\u6709\u53ef\u80fd\u7684\u89e3\uff0c\u5e76\u901a\u8fc7\u526a\u679d\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u641c\u7d22\u5206\u652f\u3002\u539f\u95ee\u9898\u7684\u89e3\u7531\u4e00\u7cfb\u5217\u51b3\u7b56\u6b65\u9aa4\u6784\u6210\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6bcf\u4e2a\u51b3\u7b56\u6b65\u9aa4\u4e4b\u524d\u7684\u5b50\u5e8f\u5217\u770b\u4f5c\u4e3a\u4e00\u4e2a\u5b50\u95ee\u9898\u3002

            \u5b9e\u9645\u4e0a\uff0c\u52a8\u6001\u89c4\u5212\u5e38\u7528\u6765\u6c42\u89e3\u6700\u4f18\u5316\u95ee\u9898\uff0c\u5b83\u4eec\u4e0d\u4ec5\u5305\u542b\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u8fd8\u5177\u6709\u53e6\u5916\u4e24\u5927\u7279\u6027\uff1a\u6700\u4f18\u5b50\u7ed3\u6784\u3001\u65e0\u540e\u6548\u6027\u3002

            "},{"location":"chapter_dynamic_programming/dp_problem_features/#1421","title":"14.2.1 \u00a0 \u6700\u4f18\u5b50\u7ed3\u6784","text":"

            \u6211\u4eec\u5bf9\u722c\u697c\u68af\u95ee\u9898\u7a0d\u4f5c\u6539\u52a8\uff0c\u4f7f\u4e4b\u66f4\u52a0\u9002\u5408\u5c55\u793a\u6700\u4f18\u5b50\u7ed3\u6784\u6982\u5ff5\u3002

            \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7

            \u7ed9\u5b9a\u4e00\u4e2a\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u6bcf\u4e00\u9636\u697c\u68af\u4e0a\u90fd\u8d34\u6709\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\uff0c\u8868\u793a\u4f60\u5728\u8be5\u53f0\u9636\u6240\u9700\u8981\u4ed8\u51fa\u7684\u4ee3\u4ef7\u3002\u7ed9\u5b9a\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\u6570\u7ec4 \\(cost\\) \uff0c\u5176\u4e2d \\(cost[i]\\) \u8868\u793a\u5728\u7b2c \\(i\\) \u4e2a\u53f0\u9636\u9700\u8981\u4ed8\u51fa\u7684\u4ee3\u4ef7\uff0c\\(cost[0]\\) \u4e3a\u5730\u9762\u8d77\u59cb\u70b9\u3002\u8bf7\u8ba1\u7b97\u6700\u5c11\u9700\u8981\u4ed8\u51fa\u591a\u5c11\u4ee3\u4ef7\u624d\u80fd\u5230\u8fbe\u9876\u90e8\uff1f

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u82e5\u7b2c \\(1\\) , \\(2\\) , \\(3\\) \u9636\u7684\u4ee3\u4ef7\u5206\u522b\u4e3a \\(1\\) , \\(10\\) , \\(1\\) \uff0c\u5219\u4ece\u5730\u9762\u722c\u5230\u7b2c \\(3\\) \u9636\u7684\u6700\u5c0f\u4ee3\u4ef7\u4e3a \\(2\\) \u3002

            \u56fe\uff1a\u722c\u5230\u7b2c 3 \u9636\u7684\u6700\u5c0f\u4ee3\u4ef7

            \u8bbe \\(dp[i]\\) \u4e3a\u722c\u5230\u7b2c \\(i\\) \u9636\u7d2f\u8ba1\u4ed8\u51fa\u7684\u4ee3\u4ef7\uff0c\u7531\u4e8e\u7b2c \\(i\\) \u9636\u53ea\u53ef\u80fd\u4ece \\(i - 1\\) \u9636\u6216 \\(i - 2\\) \u9636\u8d70\u6765\uff0c\u56e0\u6b64 \\(dp[i]\\) \u53ea\u53ef\u80fd\u7b49\u4e8e \\(dp[i - 1] + cost[i]\\) \u6216 \\(dp[i - 2] + cost[i]\\) \u3002\u4e3a\u4e86\u5c3d\u53ef\u80fd\u51cf\u5c11\u4ee3\u4ef7\uff0c\u6211\u4eec\u5e94\u8be5\u9009\u62e9\u4e24\u8005\u4e2d\u8f83\u5c0f\u7684\u90a3\u4e00\u4e2a\uff0c\u5373\uff1a

            \\[ dp[i] = \\min(dp[i-1], dp[i-2]) + cost[i] \\]

            \u8fd9\u4fbf\u53ef\u4ee5\u5f15\u51fa\u300c\u6700\u4f18\u5b50\u7ed3\u6784\u300d\u7684\u542b\u4e49\uff1a\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u662f\u4ece\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6784\u5efa\u5f97\u6765\u7684\u3002

            \u672c\u9898\u663e\u7136\u5177\u6709\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u6211\u4eec\u4ece\u4e24\u4e2a\u5b50\u95ee\u9898\u6700\u4f18\u89e3 \\(dp[i-1]\\) , \\(dp[i-2]\\) \u4e2d\u6311\u9009\u51fa\u8f83\u4f18\u7684\u90a3\u4e00\u4e2a\uff0c\u5e76\u7528\u5b83\u6784\u5efa\u51fa\u539f\u95ee\u9898 \\(dp[i]\\) \u7684\u6700\u4f18\u89e3\u3002

            \u90a3\u4e48\uff0c\u4e0a\u8282\u7684\u722c\u697c\u68af\u9898\u76ee\u6709\u6ca1\u6709\u6700\u4f18\u5b50\u7ed3\u6784\u5462\uff1f\u5b83\u7684\u76ee\u6807\u662f\u6c42\u89e3\u65b9\u6848\u6570\u91cf\uff0c\u770b\u4f3c\u662f\u4e00\u4e2a\u8ba1\u6570\u95ee\u9898\uff0c\u4f46\u5982\u679c\u6362\u4e00\u79cd\u95ee\u6cd5\uff1a\u201c\u6c42\u89e3\u6700\u5927\u65b9\u6848\u6570\u91cf\u201d\u3002\u6211\u4eec\u610f\u5916\u5730\u53d1\u73b0\uff0c\u867d\u7136\u9898\u76ee\u4fee\u6539\u524d\u540e\u662f\u7b49\u4ef7\u7684\uff0c\u4f46\u6700\u4f18\u5b50\u7ed3\u6784\u6d6e\u73b0\u51fa\u6765\u4e86\uff1a\u7b2c \\(n\\) \u9636\u6700\u5927\u65b9\u6848\u6570\u91cf\u7b49\u4e8e\u7b2c \\(n-1\\) \u9636\u548c\u7b2c \\(n-2\\) \u9636\u6700\u5927\u65b9\u6848\u6570\u91cf\u4e4b\u548c\u3002\u6240\u4ee5\u8bf4\uff0c\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u89e3\u91ca\u65b9\u5f0f\u6bd4\u8f83\u7075\u6d3b\uff0c\u5728\u4e0d\u540c\u95ee\u9898\u4e2d\u4f1a\u6709\u4e0d\u540c\u7684\u542b\u4e49\u3002

            \u6839\u636e\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u4ee5\u53ca\u521d\u59cb\u72b6\u6001 \\(dp[1] = cost[1]\\) , \\(dp[2] = cost[2]\\) \uff0c\u53ef\u4ee5\u5f97\u51fa\u52a8\u6001\u89c4\u5212\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_cost_climbing_stairs_dp.java
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(int[] cost) {\nint n = cost.length - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[] dp = new int[n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];\n}\nreturn dp[n];\n}\n
            min_cost_climbing_stairs_dp.cpp
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(vector<int> &cost) {\nint n = cost.size() - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvector<int> dp(n + 1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];\n}\nreturn dp[n];\n}\n
            min_cost_climbing_stairs_dp.py
            def min_cost_climbing_stairs_dp(cost: list[int]) -> int:\n\"\"\"\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(cost) - 1\nif n == 1 or n == 2:\nreturn cost[n]\n# \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp = [0] * (n + 1)\n# \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1], dp[2] = cost[1], cost[2]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in range(3, n + 1):\ndp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]\nreturn dp[n]\n
            min_cost_climbing_stairs_dp.go
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDP(cost []int) int {\nn := len(cost) - 1\nif n == 1 || n == 2 {\nreturn cost[n]\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp := make([]int, n+1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1]\ndp[2] = cost[2]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i := 3; i <= n; i++ {\ndp[i] = int(math.Min(float64(dp[i-1]), float64(dp[i-2]+cost[i])))\n}\nreturn dp[n]\n}\n
            min_cost_climbing_stairs_dp.js
            [class]{}-[func]{minCostClimbingStairsDP}\n
            min_cost_climbing_stairs_dp.ts
            [class]{}-[func]{minCostClimbingStairsDP}\n
            min_cost_climbing_stairs_dp.c
            [class]{}-[func]{minCostClimbingStairsDP}\n
            min_cost_climbing_stairs_dp.cs
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(int[] cost) {\nint n = cost.Length - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[] dp = new int[n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = Math.Min(dp[i - 1], dp[i - 2]) + cost[i];\n}\nreturn dp[n];\n}\n
            min_cost_climbing_stairs_dp.swift
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDP(cost: [Int]) -> Int {\nlet n = cost.count - 1\nif n == 1 || n == 2 {\nreturn cost[n]\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = Array(repeating: 0, count: n + 1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1\ndp[2] = 2\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in stride(from: 3, through: n, by: 1) {\ndp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]\n}\nreturn dp[n]\n}\n
            min_cost_climbing_stairs_dp.zig
            // \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212\nfn minCostClimbingStairsDP(comptime cost: []i32) i32 {\ncomptime var n = cost.len - 1;\nif (n == 1 or n == 2) {\nreturn cost[n];\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = [_]i32{-1} ** (n + 1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (3..n + 1) |i| {\ndp[i] = @min(dp[i - 1], dp[i - 2]) + cost[i];\n}\nreturn dp[n];\n}\n
            min_cost_climbing_stairs_dp.dart
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(List<int> cost) {\nint n = cost.length - 1;\nif (n == 1 || n == 2) return cost[n];\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nList<int> dp = List.filled(n + 1, 0);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];\n}\nreturn dp[n];\n}\n
            min_cost_climbing_stairs_dp.rs
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfn min_cost_climbing_stairs_dp(cost: &[i32]) -> i32 {\nlet n = cost.len() - 1;\nif n == 1 || n == 2 { return cost[n]; }\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nlet mut dp = vec![-1; n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in 3..=n {\ndp[i] = cmp::min(dp[i - 1], dp[i - 2]) + cost[i];\n}\ndp[n]\n}\n

            \u56fe\uff1a\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            \u672c\u9898\u4e5f\u53ef\u4ee5\u8fdb\u884c\u72b6\u6001\u538b\u7f29\uff0c\u5c06\u4e00\u7ef4\u538b\u7f29\u81f3\u96f6\u7ef4\uff0c\u4f7f\u5f97\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u4f4e\u81f3 \\(O(1)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_cost_climbing_stairs_dp.java
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(int[] cost) {\nint n = cost.length - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\nint a = cost[1], b = cost[2];\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = Math.min(a, tmp) + cost[i];\na = tmp;\n}\nreturn b;\n}\n
            min_cost_climbing_stairs_dp.cpp
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(vector<int> &cost) {\nint n = cost.size() - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\nint a = cost[1], b = cost[2];\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = min(a, tmp) + cost[i];\na = tmp;\n}\nreturn b;\n}\n
            min_cost_climbing_stairs_dp.py
            def min_cost_climbing_stairs_dp_comp(cost: list[int]) -> int:\n\"\"\"\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(cost) - 1\nif n == 1 or n == 2:\nreturn cost[n]\na, b = cost[1], cost[2]\nfor i in range(3, n + 1):\na, b = b, min(a, b) + cost[i]\nreturn b\n
            min_cost_climbing_stairs_dp.go
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDPComp(cost []int) int {\nn := len(cost) - 1\nif n == 1 || n == 2 {\nreturn cost[n]\n}\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\na, b := cost[1], cost[2]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i := 3; i <= n; i++ {\ntmp := b\nb = int(math.Min(float64(a), float64(tmp+cost[i])))\na = tmp\n}\nreturn b\n}\n
            min_cost_climbing_stairs_dp.js
            [class]{}-[func]{minCostClimbingStairsDPComp}\n
            min_cost_climbing_stairs_dp.ts
            [class]{}-[func]{minCostClimbingStairsDPComp}\n
            min_cost_climbing_stairs_dp.c
            [class]{}-[func]{minCostClimbingStairsDPComp}\n
            min_cost_climbing_stairs_dp.cs
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(int[] cost) {\nint n = cost.Length - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\nint a = cost[1], b = cost[2];\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = Math.Min(a, tmp) + cost[i];\na = tmp;\n}\nreturn b;\n}\n
            min_cost_climbing_stairs_dp.swift
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDPComp(cost: [Int]) -> Int {\nlet n = cost.count - 1\nif n == 1 || n == 2 {\nreturn cost[n]\n}\nvar (a, b) = (cost[1], cost[2])\nfor i in stride(from: 3, through: n, by: 1) {\n(a, b) = (b, min(a, b) + cost[i])\n}\nreturn b\n}\n
            min_cost_climbing_stairs_dp.zig
            // \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn minCostClimbingStairsDPComp(cost: []i32) i32 {\nvar n = cost.len - 1;\nif (n == 1 or n == 2) {\nreturn cost[n];\n}\nvar a = cost[1];\nvar b = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (3..n + 1) |i| {\nvar tmp = b;\nb = @min(a, tmp) + cost[i];\na = tmp;\n}\nreturn b;\n}\n
            min_cost_climbing_stairs_dp.dart
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(List<int> cost) {\nint n = cost.length - 1;\nif (n == 1 || n == 2) return cost[n];\nint a = cost[1], b = cost[2];\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = min(a, tmp) + cost[i];\na = tmp;\n}\nreturn b;\n}\n
            min_cost_climbing_stairs_dp.rs
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn min_cost_climbing_stairs_dp_comp(cost: &[i32]) -> i32 {\nlet n = cost.len() - 1;\nif n == 1 || n == 2 { return cost[n] };\nlet (mut a, mut b) = (cost[1], cost[2]);\nfor i in 3..=n {\nlet tmp = b;\nb = cmp::min(a, tmp) + cost[i];\na = tmp;\n}\nb\n}\n
            "},{"location":"chapter_dynamic_programming/dp_problem_features/#1422","title":"14.2.2 \u00a0 \u65e0\u540e\u6548\u6027","text":"

            \u300c\u65e0\u540e\u6548\u6027\u300d\u662f\u52a8\u6001\u89c4\u5212\u80fd\u591f\u6709\u6548\u89e3\u51b3\u95ee\u9898\u7684\u91cd\u8981\u7279\u6027\u4e4b\u4e00\uff0c\u5b9a\u4e49\u4e3a\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u786e\u5b9a\u7684\u72b6\u6001\uff0c\u5b83\u7684\u672a\u6765\u53d1\u5c55\u53ea\u4e0e\u5f53\u524d\u72b6\u6001\u6709\u5173\uff0c\u800c\u4e0e\u5f53\u524d\u72b6\u6001\u8fc7\u53bb\u6240\u7ecf\u5386\u8fc7\u7684\u6240\u6709\u72b6\u6001\u65e0\u5173\u3002

            \u4ee5\u722c\u697c\u68af\u95ee\u9898\u4e3a\u4f8b\uff0c\u7ed9\u5b9a\u72b6\u6001 \\(i\\) \uff0c\u5b83\u4f1a\u53d1\u5c55\u51fa\u72b6\u6001 \\(i+1\\) \u548c\u72b6\u6001 \\(i+2\\) \uff0c\u5206\u522b\u5bf9\u5e94\u8df3 \\(1\\) \u6b65\u548c\u8df3 \\(2\\) \u6b65\u3002\u5728\u505a\u51fa\u8fd9\u4e24\u79cd\u9009\u62e9\u65f6\uff0c\u6211\u4eec\u65e0\u987b\u8003\u8651\u72b6\u6001 \\(i\\) \u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5b83\u4eec\u5bf9\u72b6\u6001 \\(i\\) \u7684\u672a\u6765\u6ca1\u6709\u5f71\u54cd\u3002

            \u7136\u800c\uff0c\u5982\u679c\u6211\u4eec\u5411\u722c\u697c\u68af\u95ee\u9898\u6dfb\u52a0\u4e00\u4e2a\u7ea6\u675f\uff0c\u60c5\u51b5\u5c31\u4e0d\u4e00\u6837\u4e86\u3002

            \u5e26\u7ea6\u675f\u722c\u697c\u68af

            \u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u4f46\u4e0d\u80fd\u8fde\u7eed\u4e24\u8f6e\u8df3 \\(1\\) \u9636\uff0c\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\u3002

            \u4f8b\u5982\uff0c\u722c\u4e0a\u7b2c \\(3\\) \u9636\u4ec5\u5269 \\(2\\) \u79cd\u53ef\u884c\u65b9\u6848\uff0c\u5176\u4e2d\u8fde\u7eed\u4e09\u6b21\u8df3 \\(1\\) \u9636\u7684\u65b9\u6848\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\uff0c\u56e0\u6b64\u88ab\u820d\u5f03\u3002

            \u56fe\uff1a\u5e26\u7ea6\u675f\u722c\u5230\u7b2c 3 \u9636\u7684\u65b9\u6848\u6570\u91cf

            \u5728\u8be5\u95ee\u9898\u4e2d\uff0c\u5982\u679c\u4e0a\u4e00\u8f6e\u662f\u8df3 \\(1\\) \u9636\u4e0a\u6765\u7684\uff0c\u90a3\u4e48\u4e0b\u4e00\u8f6e\u5c31\u5fc5\u987b\u8df3 \\(2\\) \u9636\u3002\u8fd9\u610f\u5473\u7740\uff0c\u4e0b\u4e00\u6b65\u9009\u62e9\u4e0d\u80fd\u7531\u5f53\u524d\u72b6\u6001\uff08\u5f53\u524d\u697c\u68af\u9636\u6570\uff09\u72ec\u7acb\u51b3\u5b9a\uff0c\u8fd8\u548c\u524d\u4e00\u4e2a\u72b6\u6001\uff08\u4e0a\u8f6e\u697c\u68af\u9636\u6570\uff09\u6709\u5173\u3002

            \u4e0d\u96be\u53d1\u73b0\uff0c\u6b64\u95ee\u9898\u5df2\u4e0d\u6ee1\u8db3\u65e0\u540e\u6548\u6027\uff0c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b \\(dp[i] = dp[i-1] + dp[i-2]\\) \u4e5f\u5931\u6548\u4e86\uff0c\u56e0\u4e3a \\(dp[i-1]\\) \u4ee3\u8868\u672c\u8f6e\u8df3 \\(1\\) \u9636\uff0c\u4f46\u5176\u4e2d\u5305\u542b\u4e86\u8bb8\u591a\u201c\u4e0a\u4e00\u8f6e\u8df3 \\(1\\) \u9636\u4e0a\u6765\u7684\u201d\u65b9\u6848\uff0c\u800c\u4e3a\u4e86\u6ee1\u8db3\u7ea6\u675f\uff0c\u6211\u4eec\u5c31\u4e0d\u80fd\u5c06 \\(dp[i-1]\\) \u76f4\u63a5\u8ba1\u5165 \\(dp[i]\\) \u4e2d\u3002

            \u4e3a\u6b64\uff0c\u6211\u4eec\u9700\u8981\u6269\u5c55\u72b6\u6001\u5b9a\u4e49\uff1a\u72b6\u6001 \\([i, j]\\) \u8868\u793a\u5904\u5728\u7b2c \\(i\\) \u9636\u3001\u5e76\u4e14\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(j\\) \u9636\uff0c\u5176\u4e2d \\(j \\in \\{1, 2\\}\\) \u3002\u6b64\u72b6\u6001\u5b9a\u4e49\u6709\u6548\u5730\u533a\u5206\u4e86\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(1\\) \u9636\u8fd8\u662f \\(2\\) \u9636\uff0c\u6211\u4eec\u53ef\u4ee5\u636e\u6b64\u6765\u51b3\u5b9a\u4e0b\u4e00\u6b65\u8be5\u600e\u4e48\u8df3\uff1a

            • \u5f53 \\(j\\) \u7b49\u4e8e \\(1\\) \uff0c\u5373\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(1\\) \u9636\u65f6\uff0c\u8fd9\u4e00\u8f6e\u53ea\u80fd\u9009\u62e9\u8df3 \\(2\\) \u9636\u3002
            • \u5f53 \\(j\\) \u7b49\u4e8e \\(2\\) \uff0c\u5373\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(2\\) \u9636\u65f6\uff0c\u8fd9\u4e00\u8f6e\u53ef\u9009\u62e9\u8df3 \\(1\\) \u9636\u6216\u8df3 \\(2\\) \u9636\u3002

            \u5728\u8be5\u5b9a\u4e49\u4e0b\uff0c\\(dp[i, j]\\) \u8868\u793a\u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u65b9\u6848\u6570\u3002\u5728\u8be5\u5b9a\u4e49\u4e0b\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a

            \\[ \\begin{cases} dp[i, 1] = dp[i-1, 2] \\\\ dp[i, 2] = dp[i-2, 1] + dp[i-2, 2] \\end{cases} \\]

            \u56fe\uff1a\u8003\u8651\u7ea6\u675f\u4e0b\u7684\u9012\u63a8\u5173\u7cfb

            \u6700\u7ec8\uff0c\u8fd4\u56de \\(dp[n, 1] + dp[n, 2]\\) \u5373\u53ef\uff0c\u4e24\u8005\u4e4b\u548c\u4ee3\u8868\u722c\u5230\u7b2c \\(n\\) \u9636\u7684\u65b9\u6848\u603b\u6570\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_constraint_dp.java
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\nif (n == 1 || n == 2) {\nreturn n;\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[][] dp = new int[n + 1][3];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1;\ndp[1][2] = 0;\ndp[2][1] = 0;\ndp[2][2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i][1] = dp[i - 1][2];\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n}\nreturn dp[n][1] + dp[n][2];\n}\n
            climbing_stairs_constraint_dp.cpp
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\nif (n == 1 || n == 2) {\nreturn n;\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvector<vector<int>> dp(n + 1, vector<int>(3, 0));\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1;\ndp[1][2] = 0;\ndp[2][1] = 0;\ndp[2][2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i][1] = dp[i - 1][2];\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n}\nreturn dp[n][1] + dp[n][2];\n}\n
            climbing_stairs_constraint_dp.py
            def climbing_stairs_constraint_dp(n: int) -> int:\n\"\"\"\u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nif n == 1 or n == 2:\nreturn n\n# \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp = [[0] * 3 for _ in range(n + 1)]\n# \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1], dp[1][2] = 1, 0\ndp[2][1], dp[2][2] = 0, 1\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in range(3, n + 1):\ndp[i][1] = dp[i - 1][2]\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2]\nreturn dp[n][1] + dp[n][2]\n
            climbing_stairs_constraint_dp.go
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsConstraintDP(n int) int {\nif n == 1 || n == 2 {\nreturn n\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp := make([][3]int, n+1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1\ndp[1][2] = 0\ndp[2][1] = 0\ndp[2][2] = 1\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i := 3; i <= n; i++ {\ndp[i][1] = dp[i-1][2]\ndp[i][2] = dp[i-2][1] + dp[i-2][2]\n}\nreturn dp[n][1] + dp[n][2]\n}\n
            climbing_stairs_constraint_dp.js
            [class]{}-[func]{climbingStairsConstraintDP}\n
            climbing_stairs_constraint_dp.ts
            [class]{}-[func]{climbingStairsConstraintDP}\n
            climbing_stairs_constraint_dp.c
            [class]{}-[func]{climbingStairsConstraintDP}\n
            climbing_stairs_constraint_dp.cs
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\nif (n == 1 || n == 2) {\nreturn n;\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[,] dp = new int[n + 1, 3];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1, 1] = 1;\ndp[1, 2] = 0;\ndp[2, 1] = 0;\ndp[2, 2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i, 1] = dp[i - 1, 2];\ndp[i, 2] = dp[i - 2, 1] + dp[i - 2, 2];\n}\nreturn dp[n, 1] + dp[n, 2];\n}\n
            climbing_stairs_constraint_dp.swift
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsConstraintDP(n: Int) -> Int {\nif n == 1 || n == 2 {\nreturn n\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = Array(repeating: Array(repeating: 0, count: 3), count: n + 1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1\ndp[1][2] = 0\ndp[2][1] = 0\ndp[2][2] = 1\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in stride(from: 3, through: n, by: 1) {\ndp[i][1] = dp[i - 1][2]\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2]\n}\nreturn dp[n][1] + dp[n][2]\n}\n
            climbing_stairs_constraint_dp.zig
            // \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\nfn climbingStairsConstraintDP(comptime n: usize) i32 {\nif (n == 1 or n == 2) {\nreturn @intCast(n);\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = [_][3]i32{ [_]i32{ -1, -1, -1 } } ** (n + 1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1;\ndp[1][2] = 0;\ndp[2][1] = 0;\ndp[2][2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (3..n + 1) |i| {\ndp[i][1] = dp[i - 1][2];\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n}\nreturn dp[n][1] + dp[n][2];\n}\n
            climbing_stairs_constraint_dp.dart
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\nif (n == 1 || n == 2) {\nreturn n;\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nList<List<int>> dp = List.generate(n + 1, (index) => List.filled(3, 0));\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1;\ndp[1][2] = 0;\ndp[2][1] = 0;\ndp[2][2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i][1] = dp[i - 1][2];\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n}\nreturn dp[n][1] + dp[n][2];\n}\n
            climbing_stairs_constraint_dp.rs
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_constraint_dp(n: usize) -> i32 {\nif n == 1 || n == 2 { return n as i32 };\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nlet mut dp = vec![vec![-1; 3]; n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1;\ndp[1][2] = 0;\ndp[2][1] = 0;\ndp[2][2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in 3..=n {\ndp[i][1] = dp[i - 1][2];\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n}\ndp[n][1] + dp[n][2]\n}\n

            \u5728\u4e0a\u9762\u7684\u6848\u4f8b\u4e2d\uff0c\u7531\u4e8e\u4ec5\u9700\u591a\u8003\u8651\u524d\u9762\u4e00\u4e2a\u72b6\u6001\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u901a\u8fc7\u6269\u5c55\u72b6\u6001\u5b9a\u4e49\uff0c\u4f7f\u5f97\u95ee\u9898\u6062\u590d\u65e0\u540e\u6548\u6027\u3002\u7136\u800c\uff0c\u8bb8\u591a\u95ee\u9898\u5177\u6709\u975e\u5e38\u4e25\u91cd\u7684\u201c\u6709\u540e\u6548\u6027\u201d\uff0c\u4f8b\u5982\uff1a

            \u722c\u697c\u68af\u4e0e\u969c\u788d\u751f\u6210

            \u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\u3002\u89c4\u5b9a\u5f53\u722c\u5230\u7b2c \\(i\\) \u9636\u65f6\uff0c\u7cfb\u7edf\u81ea\u52a8\u4f1a\u7ed9\u7b2c \\(2i\\) \u9636\u4e0a\u653e\u4e0a\u969c\u788d\u7269\uff0c\u4e4b\u540e\u6240\u6709\u8f6e\u90fd\u4e0d\u5141\u8bb8\u8df3\u5230\u7b2c \\(2i\\) \u9636\u4e0a\u3002\u4f8b\u5982\uff0c\u524d\u4e24\u8f6e\u5206\u522b\u8df3\u5230\u4e86\u7b2c \\(2, 3\\) \u9636\u4e0a\uff0c\u5219\u4e4b\u540e\u5c31\u4e0d\u80fd\u8df3\u5230\u7b2c \\(4, 6\\) \u9636\u4e0a\u3002\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\u3002

            \u5728\u8fd9\u4e2a\u95ee\u9898\u4e2d\uff0c\u4e0b\u6b21\u8df3\u8dc3\u4f9d\u8d56\u4e8e\u8fc7\u53bb\u6240\u6709\u7684\u72b6\u6001\uff0c\u56e0\u4e3a\u6bcf\u4e00\u6b21\u8df3\u8dc3\u90fd\u4f1a\u5728\u66f4\u9ad8\u7684\u9636\u68af\u4e0a\u8bbe\u7f6e\u969c\u788d\uff0c\u5e76\u5f71\u54cd\u672a\u6765\u7684\u8df3\u8dc3\u3002\u5bf9\u4e8e\u8fd9\u7c7b\u95ee\u9898\uff0c\u52a8\u6001\u89c4\u5212\u5f80\u5f80\u96be\u4ee5\u89e3\u51b3\u3002

            \u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u590d\u6742\u7684\u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff08\u4f8b\u5982\u65c5\u884c\u5546\u95ee\u9898\uff09\u90fd\u4e0d\u6ee1\u8db3\u65e0\u540e\u6548\u6027\u3002\u5bf9\u4e8e\u8fd9\u7c7b\u95ee\u9898\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u9009\u62e9\u4f7f\u7528\u5176\u4ed6\u65b9\u6cd5\uff0c\u4f8b\u5982\u542f\u53d1\u5f0f\u641c\u7d22\u3001\u9057\u4f20\u7b97\u6cd5\u3001\u5f3a\u5316\u5b66\u4e60\u7b49\uff0c\u4ece\u800c\u5728\u6709\u9650\u65f6\u95f4\u5185\u5f97\u5230\u53ef\u7528\u7684\u5c40\u90e8\u6700\u4f18\u89e3\u3002

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/","title":"14.3 \u00a0 \u52a8\u6001\u89c4\u5212\u89e3\u9898\u601d\u8def","text":"

            \u4e0a\u4e24\u8282\u4ecb\u7ecd\u4e86\u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u4e3b\u8981\u7279\u5f81\uff0c\u63a5\u4e0b\u6765\u6211\u4eec\u4e00\u8d77\u63a2\u7a76\u4e24\u4e2a\u66f4\u52a0\u5b9e\u7528\u7684\u95ee\u9898\uff1a

            1. \u5982\u4f55\u5224\u65ad\u4e00\u4e2a\u95ee\u9898\u662f\u4e0d\u662f\u52a8\u6001\u89c4\u5212\u95ee\u9898\uff1f
            2. \u6c42\u89e3\u52a8\u6001\u89c4\u5212\u95ee\u9898\u8be5\u4ece\u4f55\u5904\u5165\u624b\uff0c\u5b8c\u6574\u6b65\u9aa4\u662f\u4ec0\u4e48\uff1f
            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1431","title":"14.3.1 \u00a0 \u95ee\u9898\u5224\u65ad","text":"

            \u603b\u7684\u6765\u8bf4\uff0c\u5982\u679c\u4e00\u4e2a\u95ee\u9898\u5305\u542b\u91cd\u53e0\u5b50\u95ee\u9898\u3001\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5e76\u6ee1\u8db3\u65e0\u540e\u6548\u6027\uff0c\u90a3\u4e48\u5b83\u901a\u5e38\u5c31\u9002\u5408\u7528\u52a8\u6001\u89c4\u5212\u6c42\u89e3\u3002\u7136\u800c\uff0c\u6211\u4eec\u5f88\u96be\u4ece\u95ee\u9898\u63cf\u8ff0\u4e0a\u76f4\u63a5\u63d0\u53d6\u51fa\u8fd9\u4e9b\u7279\u6027\u3002\u56e0\u6b64\u6211\u4eec\u901a\u5e38\u4f1a\u653e\u5bbd\u6761\u4ef6\uff0c\u5148\u89c2\u5bdf\u95ee\u9898\u662f\u5426\u9002\u5408\u4f7f\u7528\u56de\u6eaf\uff08\u7a77\u4e3e\uff09\u89e3\u51b3\u3002

            \u9002\u5408\u7528\u56de\u6eaf\u89e3\u51b3\u7684\u95ee\u9898\u901a\u5e38\u6ee1\u8db3\u201c\u51b3\u7b56\u6811\u6a21\u578b\u201d\uff0c\u8fd9\u79cd\u95ee\u9898\u53ef\u4ee5\u4f7f\u7528\u6811\u5f62\u7ed3\u6784\u6765\u63cf\u8ff0\uff0c\u5176\u4e2d\u6bcf\u4e00\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u51b3\u7b56\uff0c\u6bcf\u4e00\u6761\u8def\u5f84\u4ee3\u8868\u4e00\u4e2a\u51b3\u7b56\u5e8f\u5217\u3002

            \u6362\u53e5\u8bdd\u8bf4\uff0c\u5982\u679c\u95ee\u9898\u5305\u542b\u660e\u786e\u7684\u51b3\u7b56\u6982\u5ff5\uff0c\u5e76\u4e14\u89e3\u662f\u901a\u8fc7\u4e00\u7cfb\u5217\u51b3\u7b56\u4ea7\u751f\u7684\uff0c\u90a3\u4e48\u5b83\u5c31\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\uff0c\u901a\u5e38\u53ef\u4ee5\u4f7f\u7528\u56de\u6eaf\u6765\u89e3\u51b3\u3002

            \u5728\u6b64\u57fa\u7840\u4e0a\uff0c\u8fd8\u6709\u4e00\u4e9b\u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u201c\u52a0\u5206\u9879\u201d\uff0c\u5305\u62ec\uff1a

            • \u95ee\u9898\u5305\u542b\u6700\u5927\uff08\u5c0f\uff09\u6216\u6700\u591a\uff08\u5c11\uff09\u7b49\u6700\u4f18\u5316\u63cf\u8ff0\u3002
            • \u95ee\u9898\u7684\u72b6\u6001\u80fd\u591f\u4f7f\u7528\u4e00\u4e2a\u5217\u8868\u3001\u591a\u7ef4\u77e9\u9635\u6216\u6811\u6765\u8868\u793a\uff0c\u5e76\u4e14\u4e00\u4e2a\u72b6\u6001\u4e0e\u5176\u5468\u56f4\u7684\u72b6\u6001\u5b58\u5728\u9012\u63a8\u5173\u7cfb\u3002

            \u800c\u76f8\u5e94\u7684\u201c\u51cf\u5206\u9879\u201d\u5305\u62ec\uff1a

            • \u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u800c\u4e0d\u662f\u627e\u51fa\u6700\u4f18\u89e3\u3002
            • \u95ee\u9898\u63cf\u8ff0\u4e2d\u6709\u660e\u663e\u7684\u6392\u5217\u7ec4\u5408\u7684\u7279\u5f81\uff0c\u9700\u8981\u8fd4\u56de\u5177\u4f53\u7684\u591a\u4e2a\u65b9\u6848\u3002

            \u5982\u679c\u4e00\u4e2a\u95ee\u9898\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\uff0c\u5e76\u5177\u6709\u8f83\u4e3a\u660e\u663e\u7684\u201c\u52a0\u5206\u9879\u201c\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5047\u8bbe\u5b83\u662f\u4e00\u4e2a\u52a8\u6001\u89c4\u5212\u95ee\u9898\uff0c\u5e76\u5728\u6c42\u89e3\u8fc7\u7a0b\u4e2d\u9a8c\u8bc1\u5b83\u3002

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1432","title":"14.3.2 \u00a0 \u95ee\u9898\u6c42\u89e3\u6b65\u9aa4","text":"

            \u52a8\u6001\u89c4\u5212\u7684\u89e3\u9898\u6d41\u7a0b\u4f1a\u56e0\u95ee\u9898\u7684\u6027\u8d28\u548c\u96be\u5ea6\u800c\u6709\u6240\u4e0d\u540c\uff0c\u4f46\u901a\u5e38\u9075\u5faa\u4ee5\u4e0b\u6b65\u9aa4\uff1a\u63cf\u8ff0\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u5efa\u7acb \\(dp\\) \u8868\uff0c\u63a8\u5bfc\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u7b49\u3002

            \u4e3a\u4e86\u66f4\u5f62\u8c61\u5730\u5c55\u793a\u89e3\u9898\u6b65\u9aa4\uff0c\u6211\u4eec\u4f7f\u7528\u4e00\u4e2a\u7ecf\u5178\u95ee\u9898\u300c\u6700\u5c0f\u8def\u5f84\u548c\u300d\u6765\u4e3e\u4f8b\u3002

            Question

            \u7ed9\u5b9a\u4e00\u4e2a \\(n \\times m\\) \u7684\u4e8c\u7ef4\u7f51\u683c grid \uff0c\u7f51\u683c\u4e2d\u7684\u6bcf\u4e2a\u5355\u5143\u683c\u5305\u542b\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\uff0c\u8868\u793a\u8be5\u5355\u5143\u683c\u7684\u4ee3\u4ef7\u3002\u673a\u5668\u4eba\u4ee5\u5de6\u4e0a\u89d2\u5355\u5143\u683c\u4e3a\u8d77\u59cb\u70b9\uff0c\u6bcf\u6b21\u53ea\u80fd\u5411\u4e0b\u6216\u8005\u5411\u53f3\u79fb\u52a8\u4e00\u6b65\uff0c\u76f4\u81f3\u5230\u8fbe\u53f3\u4e0b\u89d2\u5355\u5143\u683c\u3002\u8bf7\u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230\u53f3\u4e0b\u89d2\u7684\u6700\u5c0f\u8def\u5f84\u548c\u3002

            \u4f8b\u5982\u4ee5\u4e0b\u793a\u4f8b\u6570\u636e\uff0c\u7ed9\u5b9a\u7f51\u683c\u7684\u6700\u5c0f\u8def\u5f84\u548c\u4e3a \\(13\\) \u3002

            \u56fe\uff1a\u6700\u5c0f\u8def\u5f84\u548c\u793a\u4f8b\u6570\u636e

            \u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868

            \u672c\u9898\u7684\u6bcf\u4e00\u8f6e\u7684\u51b3\u7b56\u5c31\u662f\u4ece\u5f53\u524d\u683c\u5b50\u5411\u4e0b\u6216\u5411\u53f3\u4e00\u6b65\u3002\u8bbe\u5f53\u524d\u683c\u5b50\u7684\u884c\u5217\u7d22\u5f15\u4e3a \\([i, j]\\) \uff0c\u5219\u5411\u4e0b\u6216\u5411\u53f3\u8d70\u4e00\u6b65\u540e\uff0c\u7d22\u5f15\u53d8\u4e3a \\([i+1, j]\\) \u6216 \\([i, j+1]\\) \u3002\u56e0\u6b64\uff0c\u72b6\u6001\u5e94\u5305\u542b\u884c\u7d22\u5f15\u548c\u5217\u7d22\u5f15\u4e24\u4e2a\u53d8\u91cf\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002

            \u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u4ece\u8d77\u59cb\u70b9 \\([0, 0]\\) \u8d70\u5230 \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\uff0c\u89e3\u8bb0\u4e3a \\(dp[i, j]\\) \u3002

            \u81f3\u6b64\uff0c\u6211\u4eec\u5c31\u5f97\u5230\u4e86\u4e00\u4e2a\u4e8c\u7ef4 \\(dp\\) \u77e9\u9635\uff0c\u5176\u5c3a\u5bf8\u4e0e\u8f93\u5165\u7f51\u683c \\(grid\\) \u76f8\u540c\u3002

            \u56fe\uff1a\u72b6\u6001\u5b9a\u4e49\u4e0e dp \u8868

            Note

            \u52a8\u6001\u89c4\u5212\u548c\u56de\u6eaf\u8fc7\u7a0b\u53ef\u4ee5\u88ab\u63cf\u8ff0\u4e3a\u4e00\u4e2a\u51b3\u7b56\u5e8f\u5217\uff0c\u800c\u72b6\u6001\u7531\u6240\u6709\u51b3\u7b56\u53d8\u91cf\u6784\u6210\u3002\u5b83\u5e94\u5f53\u5305\u542b\u63cf\u8ff0\u89e3\u9898\u8fdb\u5ea6\u7684\u6240\u6709\u53d8\u91cf\uff0c\u5176\u5305\u542b\u4e86\u8db3\u591f\u7684\u4fe1\u606f\uff0c\u80fd\u591f\u7528\u6765\u63a8\u5bfc\u51fa\u4e0b\u4e00\u4e2a\u72b6\u6001\u3002

            \u6bcf\u4e2a\u72b6\u6001\u90fd\u5bf9\u5e94\u4e00\u4e2a\u5b50\u95ee\u9898\uff0c\u6211\u4eec\u4f1a\u5b9a\u4e49\u4e00\u4e2a \\(dp\\) \u8868\u6765\u5b58\u50a8\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u72b6\u6001\u7684\u6bcf\u4e2a\u72ec\u7acb\u53d8\u91cf\u90fd\u662f \\(dp\\) \u8868\u7684\u4e00\u4e2a\u7ef4\u5ea6\u3002\u672c\u8d28\u4e0a\u770b\uff0c\\(dp\\) \u8868\u662f\u72b6\u6001\u548c\u5b50\u95ee\u9898\u7684\u89e3\u4e4b\u95f4\u7684\u6620\u5c04\u3002

            \u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b

            \u5bf9\u4e8e\u72b6\u6001 \\([i, j]\\) \uff0c\u5b83\u53ea\u80fd\u4ece\u4e0a\u8fb9\u683c\u5b50 \\([i-1, j]\\) \u548c\u5de6\u8fb9\u683c\u5b50 \\([i, j-1]\\) \u8f6c\u79fb\u800c\u6765\u3002\u56e0\u6b64\u6700\u4f18\u5b50\u7ed3\u6784\u4e3a\uff1a\u5230\u8fbe \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\u7531 \\([i, j-1]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\u4e0e \\([i-1, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\uff0c\u8fd9\u4e24\u8005\u8f83\u5c0f\u7684\u90a3\u4e00\u4e2a\u51b3\u5b9a\u3002

            \u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u53ef\u63a8\u51fa\u4ee5\u4e0b\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff1a

            \\[ dp[i, j] = \\min(dp[i-1, j], dp[i, j-1]) + grid[i, j] \\]

            \u56fe\uff1a\u6700\u4f18\u5b50\u7ed3\u6784\u4e0e\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b

            Note

            \u6839\u636e\u5b9a\u4e49\u597d\u7684 \\(dp\\) \u8868\uff0c\u601d\u8003\u539f\u95ee\u9898\u548c\u5b50\u95ee\u9898\u7684\u5173\u7cfb\uff0c\u627e\u51fa\u901a\u8fc7\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6765\u6784\u9020\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u7684\u65b9\u6cd5\uff0c\u5373\u6700\u4f18\u5b50\u7ed3\u6784\u3002

            \u4e00\u65e6\u6211\u4eec\u627e\u5230\u4e86\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u6784\u5efa\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002

            \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f

            \u5728\u672c\u9898\u4e2d\uff0c\u5904\u5728\u9996\u884c\u7684\u72b6\u6001\u53ea\u80fd\u5411\u53f3\u8f6c\u79fb\uff0c\u9996\u5217\u72b6\u6001\u53ea\u80fd\u5411\u4e0b\u8f6c\u79fb\uff0c\u56e0\u6b64\u9996\u884c \\(i = 0\\) \u548c\u9996\u5217 \\(j = 0\\) \u662f\u8fb9\u754c\u6761\u4ef6\u3002

            \u6bcf\u4e2a\u683c\u5b50\u662f\u7531\u5176\u5de6\u65b9\u683c\u5b50\u548c\u4e0a\u65b9\u683c\u5b50\u8f6c\u79fb\u800c\u6765\uff0c\u56e0\u6b64\u6211\u4eec\u4f7f\u7528\u91c7\u7528\u5faa\u73af\u6765\u904d\u5386\u77e9\u9635\uff0c\u5916\u5faa\u73af\u904d\u5386\u5404\u884c\u3001\u5185\u5faa\u73af\u904d\u5386\u5404\u5217\u3002

            \u56fe\uff1a\u8fb9\u754c\u6761\u4ef6\u4e0e\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f

            Note

            \u8fb9\u754c\u6761\u4ef6\u5728\u52a8\u6001\u89c4\u5212\u4e2d\u7528\u4e8e\u521d\u59cb\u5316 \\(dp\\) \u8868\uff0c\u5728\u641c\u7d22\u4e2d\u7528\u4e8e\u526a\u679d\u3002

            \u72b6\u6001\u8f6c\u79fb\u987a\u5e8f\u7684\u6838\u5fc3\u662f\u8981\u4fdd\u8bc1\u5728\u8ba1\u7b97\u5f53\u524d\u95ee\u9898\u7684\u89e3\u65f6\uff0c\u6240\u6709\u5b83\u4f9d\u8d56\u7684\u66f4\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\u90fd\u5df2\u7ecf\u88ab\u6b63\u786e\u5730\u8ba1\u7b97\u51fa\u6765\u3002

            \u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u6211\u4eec\u5df2\u7ecf\u53ef\u4ee5\u76f4\u63a5\u5199\u51fa\u52a8\u6001\u89c4\u5212\u4ee3\u7801\u3002\u7136\u800c\u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u4ece\u9876\u81f3\u5e95\u7684\u601d\u60f3\uff0c\u56e0\u6b64\u6309\u7167\u201c\u66b4\u529b\u641c\u7d22 \\(\\rightarrow\\) \u8bb0\u5fc6\u5316\u641c\u7d22 \\(\\rightarrow\\) \u52a8\u6001\u89c4\u5212\u201d\u7684\u987a\u5e8f\u5b9e\u73b0\u66f4\u52a0\u7b26\u5408\u601d\u7ef4\u4e60\u60ef\u3002

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1","title":"1. \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"

            \u4ece\u72b6\u6001 \\([i, j]\\) \u5f00\u59cb\u641c\u7d22\uff0c\u4e0d\u65ad\u5206\u89e3\u4e3a\u66f4\u5c0f\u7684\u72b6\u6001 \\([i-1, j]\\) \u548c \\([i, j-1]\\) \uff0c\u5305\u62ec\u4ee5\u4e0b\u9012\u5f52\u8981\u7d20\uff1a

            • \u9012\u5f52\u53c2\u6570\uff1a\u72b6\u6001 \\([i, j]\\) \u3002
            • \u8fd4\u56de\u503c\uff1a\u4ece \\([0, 0]\\) \u5230 \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c \\(dp[i, j]\\) \u3002
            • \u7ec8\u6b62\u6761\u4ef6\uff1a\u5f53 \\(i = 0\\) \u4e14 \\(j = 0\\) \u65f6\uff0c\u8fd4\u56de\u4ee3\u4ef7 \\(grid[0, 0]\\) \u3002
            • \u526a\u679d\uff1a\u5f53 \\(i < 0\\) \u65f6\u6216 \\(j < 0\\) \u65f6\u7d22\u5f15\u8d8a\u754c\uff0c\u6b64\u65f6\u8fd4\u56de\u4ee3\u4ef7 \\(+\\infty\\) \uff0c\u4ee3\u8868\u4e0d\u53ef\u884c\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_path_sum.java
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(int[][] grid, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn Integer.MAX_VALUE;\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFS(grid, i - 1, j);\nint up = minPathSumDFS(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn Math.min(left, up) + grid[i][j];\n}\n
            min_path_sum.cpp
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(vector<vector<int>> &grid, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn INT_MAX;\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFS(grid, i - 1, j);\nint up = minPathSumDFS(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;\n}\n
            min_path_sum.py
            def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:\n\"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22\"\"\"\n# \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 and j == 0:\nreturn grid[0][0]\n# \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 or j < 0:\nreturn inf\n# \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nleft = min_path_sum_dfs(grid, i - 1, j)\nup = min_path_sum_dfs(grid, i, j - 1)\n# \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn min(left, up) + grid[i][j]\n
            min_path_sum.go
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc minPathSumDFS(grid [][]int, i, j int) int {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 && j == 0 {\nreturn grid[0][0]\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn math.MaxInt\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nleft := minPathSumDFS(grid, i-1, j)\nup := minPathSumDFS(grid, i, j-1)\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn int(math.Min(float64(left), float64(up))) + grid[i][j]\n}\n
            min_path_sum.js
            [class]{}-[func]{minPathSumDFS}\n
            min_path_sum.ts
            [class]{}-[func]{minPathSumDFS}\n
            min_path_sum.c
            [class]{}-[func]{minPathSumDFS}\n
            min_path_sum.cs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(int[][] grid, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0){\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn int.MaxValue;\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFS(grid, i - 1, j);\nint up = minPathSumDFS(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn Math.Min(left, up) + grid[i][j];\n}\n
            min_path_sum.swift
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc minPathSumDFS(grid: [[Int]], i: Int, j: Int) -> Int {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0, j == 0 {\nreturn grid[0][0]\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn .max\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nlet left = minPathSumDFS(grid: grid, i: i - 1, j: j)\nlet up = minPathSumDFS(grid: grid, i: i, j: j - 1)\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn min(left, up) + grid[i][j]\n}\n
            min_path_sum.zig
            // \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22\nfn minPathSumDFS(grid: anytype, i: i32, j: i32) i32 {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 and j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 or j < 0) {\nreturn std.math.maxInt(i32);\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nvar left = minPathSumDFS(grid, i - 1, j);\nvar up = minPathSumDFS(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n}\n
            min_path_sum.dart
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(List<List<int>> grid, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\n// \u5728 Dart \u4e2d\uff0cint \u7c7b\u578b\u662f\u56fa\u5b9a\u8303\u56f4\u7684\u6574\u6570\uff0c\u4e0d\u5b58\u5728\u8868\u793a\u201c\u65e0\u7a77\u5927\u201d\u7684\u503c\nreturn BigInt.from(2).pow(31).toInt();\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFS(grid, i - 1, j);\nint up = minPathSumDFS(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn min(left, up) + grid[i][j];\n}\n
            min_path_sum.rs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfn min_path_sum_dfs(grid: &Vec<Vec<i32>>, i: i32, j: i32) -> i32 {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 && j == 0 {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn i32::MAX;\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nlet left = min_path_sum_dfs(grid, i - 1, j);\nlet up = min_path_sum_dfs(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nstd::cmp::min(left, up) + grid[i as usize][j as usize]\n}\n

            \u4e0b\u56fe\u7ed9\u51fa\u4e86\u4ee5 \\(dp[2, 1]\\) \u4e3a\u6839\u8282\u70b9\u7684\u9012\u5f52\u6811\uff0c\u5176\u4e2d\u5305\u542b\u4e00\u4e9b\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u5176\u6570\u91cf\u4f1a\u968f\u7740\u7f51\u683c grid \u7684\u5c3a\u5bf8\u53d8\u5927\u800c\u6025\u5267\u589e\u591a\u3002

            \u672c\u8d28\u4e0a\u770b\uff0c\u9020\u6210\u91cd\u53e0\u5b50\u95ee\u9898\u7684\u539f\u56e0\u4e3a\uff1a\u5b58\u5728\u591a\u6761\u8def\u5f84\u53ef\u4ee5\u4ece\u5de6\u4e0a\u89d2\u5230\u8fbe\u67d0\u4e00\u5355\u5143\u683c\u3002

            \u56fe\uff1a\u66b4\u529b\u641c\u7d22\u9012\u5f52\u6811

            \u6bcf\u4e2a\u72b6\u6001\u90fd\u6709\u5411\u4e0b\u548c\u5411\u53f3\u4e24\u79cd\u9009\u62e9\uff0c\u4ece\u5de6\u4e0a\u89d2\u8d70\u5230\u53f3\u4e0b\u89d2\u603b\u5171\u9700\u8981 \\(m + n - 2\\) \u6b65\uff0c\u6240\u4ee5\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^{m + n})\\) \u3002\u8bf7\u6ce8\u610f\uff0c\u8fd9\u79cd\u8ba1\u7b97\u65b9\u5f0f\u672a\u8003\u8651\u4e34\u8fd1\u7f51\u683c\u8fb9\u754c\u7684\u60c5\u51b5\uff0c\u5f53\u5230\u8fbe\u7f51\u7edc\u8fb9\u754c\u65f6\u53ea\u5269\u4e0b\u4e00\u79cd\u9009\u62e9\u3002\u56e0\u6b64\u5b9e\u9645\u7684\u8def\u5f84\u6570\u91cf\u4f1a\u5c11\u4e00\u4e9b\u3002

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#2","title":"2. \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"

            \u6211\u4eec\u5f15\u5165\u4e00\u4e2a\u548c\u7f51\u683c grid \u76f8\u540c\u5c3a\u5bf8\u7684\u8bb0\u5fc6\u5217\u8868 mem \uff0c\u7528\u4e8e\u8bb0\u5f55\u5404\u4e2a\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5e76\u5c06\u91cd\u53e0\u5b50\u95ee\u9898\u8fdb\u884c\u526a\u679d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_path_sum.java
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn Integer.MAX_VALUE;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][j] != -1) {\nreturn mem[i][j];\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFSMem(grid, mem, i - 1, j);\nint up = minPathSumDFSMem(grid, mem, i, j - 1);\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = Math.min(left, up) + grid[i][j];\nreturn mem[i][j];\n}\n
            min_path_sum.cpp
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn INT_MAX;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][j] != -1) {\nreturn mem[i][j];\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFSMem(grid, mem, i - 1, j);\nint up = minPathSumDFSMem(grid, mem, i, j - 1);\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;\nreturn mem[i][j];\n}\n
            min_path_sum.py
            def min_path_sum_dfs_mem(\ngrid: list[list[int]], mem: list[list[int]], i: int, j: int\n) -> int:\n\"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n# \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 and j == 0:\nreturn grid[0][0]\n# \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 or j < 0:\nreturn inf\n# \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][j] != -1:\nreturn mem[i][j]\n# \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nleft = min_path_sum_dfs_mem(grid, mem, i - 1, j)\nup = min_path_sum_dfs_mem(grid, mem, i, j - 1)\n# \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = min(left, up) + grid[i][j]\nreturn mem[i][j]\n
            min_path_sum.go
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc minPathSumDFSMem(grid, mem [][]int, i, j int) int {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 && j == 0 {\nreturn grid[0][0]\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn math.MaxInt\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][j] != -1 {\nreturn mem[i][j]\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nleft := minPathSumDFSMem(grid, mem, i-1, j)\nup := minPathSumDFSMem(grid, mem, i, j-1)\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = int(math.Min(float64(left), float64(up))) + grid[i][j]\nreturn mem[i][j]\n}\n
            min_path_sum.js
            [class]{}-[func]{minPathSumDFSMem}\n
            min_path_sum.ts
            [class]{}-[func]{minPathSumDFSMem}\n
            min_path_sum.c
            [class]{}-[func]{minPathSumDFSMem}\n
            min_path_sum.cs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn int.MaxValue;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][j] != -1) {\nreturn mem[i][j];\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFSMem(grid, mem, i - 1, j);\nint up = minPathSumDFSMem(grid, mem, i, j - 1);\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = Math.Min(left, up) + grid[i][j];\nreturn mem[i][j];\n}\n
            min_path_sum.swift
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc minPathSumDFSMem(grid: [[Int]], mem: inout [[Int]], i: Int, j: Int) -> Int {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0, j == 0 {\nreturn grid[0][0]\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn .max\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][j] != -1 {\nreturn mem[i][j]\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nlet left = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)\nlet up = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = min(left, up) + grid[i][j]\nreturn mem[i][j]\n}\n
            min_path_sum.zig
            // \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn minPathSumDFSMem(grid: anytype, mem: anytype, i: i32, j: i32) i32 {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 and j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 or j < 0) {\nreturn std.math.maxInt(i32);\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] != -1) {\nreturn mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nvar left = minPathSumDFSMem(grid, mem, i - 1, j);\nvar up = minPathSumDFSMem(grid, mem, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] = @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\nreturn mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n}\n
            min_path_sum.dart
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(List<List<int>> grid, List<List<int>> mem, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\n// \u5728 Dart \u4e2d\uff0cint \u7c7b\u578b\u662f\u56fa\u5b9a\u8303\u56f4\u7684\u6574\u6570\uff0c\u4e0d\u5b58\u5728\u8868\u793a\u201c\u65e0\u7a77\u5927\u201d\u7684\u503c\nreturn BigInt.from(2).pow(31).toInt();\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][j] != -1) {\nreturn mem[i][j];\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFSMem(grid, mem, i - 1, j);\nint up = minPathSumDFSMem(grid, mem, i, j - 1);\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = min(left, up) + grid[i][j];\nreturn mem[i][j];\n}\n
            min_path_sum.rs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn min_path_sum_dfs_mem(grid: &Vec<Vec<i32>>, mem: &mut Vec<Vec<i32>>, i: i32, j: i32) -> i32 {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 && j == 0 {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn i32::MAX;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i as usize][j as usize] != -1 {\nreturn mem[i as usize][j as usize];\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nlet left = min_path_sum_dfs_mem(grid, mem, i - 1, j);\nlet up = min_path_sum_dfs_mem(grid, mem, i, j - 1);\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i as usize][j as usize] = std::cmp::min(left, up) + grid[i as usize][j as usize];\nmem[i as usize][j as usize]\n}\n

            \u5f15\u5165\u8bb0\u5fc6\u5316\u540e\uff0c\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\u53ea\u9700\u8ba1\u7b97\u4e00\u6b21\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u72b6\u6001\u603b\u6570\uff0c\u5373\u7f51\u683c\u5c3a\u5bf8 \\(O(nm)\\) \u3002

            \u56fe\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\u9012\u5f52\u6811

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#3","title":"3. \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"

            \u57fa\u4e8e\u8fed\u4ee3\u5b9e\u73b0\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_path_sum.java
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(int[][] grid) {\nint n = grid.length, m = grid[0].length;\n// \u521d\u59cb\u5316 dp \u8868\nint[][] dp = new int[n][m];\ndp[0][0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j < m; j++) {\ndp[0][j] = dp[0][j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor (int i = 1; i < n; i++) {\ndp[i][0] = dp[i - 1][0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i < n; i++) {\nfor (int j = 1; j < m; j++) {\ndp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n}\n}\nreturn dp[n - 1][m - 1];\n}\n
            min_path_sum.cpp
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(vector<vector<int>> &grid) {\nint n = grid.size(), m = grid[0].size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<vector<int>> dp(n, vector<int>(m));\ndp[0][0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j < m; j++) {\ndp[0][j] = dp[0][j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor (int i = 1; i < n; i++) {\ndp[i][0] = dp[i - 1][0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i < n; i++) {\nfor (int j = 1; j < m; j++) {\ndp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n}\n}\nreturn dp[n - 1][m - 1];\n}\n
            min_path_sum.py
            def min_path_sum_dp(grid: list[list[int]]) -> int:\n\"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn, m = len(grid), len(grid[0])\n# \u521d\u59cb\u5316 dp \u8868\ndp = [[0] * m for _ in range(n)]\ndp[0][0] = grid[0][0]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in range(1, m):\ndp[0][j] = dp[0][j - 1] + grid[0][j]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor i in range(1, n):\ndp[i][0] = dp[i - 1][0] + grid[i][0]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in range(1, n):\nfor j in range(1, m):\ndp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]\nreturn dp[n - 1][m - 1]\n
            min_path_sum.go
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDP(grid [][]int) int {\nn, m := len(grid), len(grid[0])\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([][]int, n)\nfor i := 0; i < n; i++ {\ndp[i] = make([]int, m)\n}\ndp[0][0] = grid[0][0]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j := 1; j < m; j++ {\ndp[0][j] = dp[0][j-1] + grid[0][j]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor i := 1; i < n; i++ {\ndp[i][0] = dp[i-1][0] + grid[i][0]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i := 1; i < n; i++ {\nfor j := 1; j < m; j++ {\ndp[i][j] = int(math.Min(float64(dp[i][j-1]), float64(dp[i-1][j]))) + grid[i][j]\n}\n}\nreturn dp[n-1][m-1]\n}\n
            min_path_sum.js
            [class]{}-[func]{minPathSumDP}\n
            min_path_sum.ts
            [class]{}-[func]{minPathSumDP}\n
            min_path_sum.c
            [class]{}-[func]{minPathSumDP}\n
            min_path_sum.cs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(int[][] grid) {\nint n = grid.Length, m = grid[0].Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[,] dp = new int[n, m];\ndp[0, 0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j < m; j++) {\ndp[0, j] = dp[0, j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor (int i = 1; i < n; i++) {\ndp[i, 0] = dp[i - 1, 0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i < n; i++) {\nfor (int j = 1; j < m; j++) {\ndp[i, j] = Math.Min(dp[i, j - 1], dp[i - 1, j]) + grid[i][j];\n}\n}\nreturn dp[n - 1, m - 1];\n}\n
            min_path_sum.swift
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDP(grid: [[Int]]) -> Int {\nlet n = grid.count\nlet m = grid[0].count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: Array(repeating: 0, count: m), count: n)\ndp[0][0] = grid[0][0]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in stride(from: 1, to: m, by: 1) {\ndp[0][j] = dp[0][j - 1] + grid[0][j]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor i in stride(from: 1, to: n, by: 1) {\ndp[i][0] = dp[i - 1][0] + grid[i][0]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in stride(from: 1, to: n, by: 1) {\nfor j in stride(from: 1, to: m, by: 1) {\ndp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]\n}\n}\nreturn dp[n - 1][m - 1]\n}\n
            min_path_sum.zig
            // \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212\nfn minPathSumDP(comptime grid: anytype) i32 {\ncomptime var n = grid.len;\ncomptime var m = grid[0].len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_][m]i32{[_]i32{0} ** m} ** n;\ndp[0][0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (1..m) |j| {\ndp[0][j] = dp[0][j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor (1..n) |i| {\ndp[i][0] = dp[i - 1][0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (1..n) |i| {\nfor (1..m) |j| {\ndp[i][j] = @min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n}\n}\nreturn dp[n - 1][m - 1];\n}\n
            min_path_sum.dart
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(List<List<int>> grid) {\nint n = grid.length, m = grid[0].length;\n// \u521d\u59cb\u5316 dp \u8868\nList<List<int>> dp = List.generate(n, (i) => List.filled(m, 0));\ndp[0][0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j < m; j++) {\ndp[0][j] = dp[0][j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor (int i = 1; i < n; i++) {\ndp[i][0] = dp[i - 1][0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i < n; i++) {\nfor (int j = 1; j < m; j++) {\ndp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n}\n}\nreturn dp[n - 1][m - 1];\n}\n
            min_path_sum.rs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfn min_path_sum_dp(grid: &Vec<Vec<i32>>) -> i32 {\nlet (n, m) = (grid.len(), grid[0].len());\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![vec![0; m]; n];\ndp[0][0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in 1..m {\ndp[0][j] = dp[0][j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor i in 1..n {\ndp[i][0] = dp[i - 1][0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in 1..n {\nfor j in 1..m {\ndp[i][j] = std::cmp::min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n}\n}\ndp[n - 1][m - 1]\n}\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u6700\u5c0f\u8def\u5f84\u548c\u7684\u72b6\u6001\u8f6c\u79fb\u8fc7\u7a0b\uff0c\u5176\u904d\u5386\u4e86\u6574\u4e2a\u7f51\u683c\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nm)\\) \u3002

            \u6570\u7ec4 dp \u5927\u5c0f\u4e3a \\(n \\times m\\) \uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nm)\\) \u3002

            <1><2><3><4><5><6><7><8><9><10><11><12>

            \u56fe\uff1a\u6700\u5c0f\u8def\u5f84\u548c\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#4","title":"4. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u7531\u4e8e\u6bcf\u4e2a\u683c\u5b50\u53ea\u4e0e\u5176\u5de6\u8fb9\u548c\u4e0a\u8fb9\u7684\u683c\u5b50\u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u53ea\u7528\u4e00\u4e2a\u5355\u884c\u6570\u7ec4\u6765\u5b9e\u73b0 \\(dp\\) \u8868\u3002

            \u8bf7\u6ce8\u610f\uff0c\u56e0\u4e3a\u6570\u7ec4 dp \u53ea\u80fd\u8868\u793a\u4e00\u884c\u7684\u72b6\u6001\uff0c\u6240\u4ee5\u6211\u4eec\u65e0\u6cd5\u63d0\u524d\u521d\u59cb\u5316\u9996\u5217\u72b6\u6001\uff0c\u800c\u662f\u5728\u904d\u5386\u6bcf\u884c\u4e2d\u66f4\u65b0\u5b83\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_path_sum.java
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(int[][] grid) {\nint n = grid.length, m = grid[0].length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[m];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0];\nfor (int j = 1; j < m; j++) {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i < n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j < m; j++) {\ndp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\nreturn dp[m - 1];\n}\n
            min_path_sum.cpp
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(vector<vector<int>> &grid) {\nint n = grid.size(), m = grid[0].size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<int> dp(m);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0];\nfor (int j = 1; j < m; j++) {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i < n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j < m; j++) {\ndp[j] = min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\nreturn dp[m - 1];\n}\n
            min_path_sum.py
            def min_path_sum_dp_comp(grid: list[list[int]]) -> int:\n\"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn, m = len(grid), len(grid[0])\n# \u521d\u59cb\u5316 dp \u8868\ndp = [0] * m\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0]\nfor j in range(1, m):\ndp[j] = dp[j - 1] + grid[0][j]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in range(1, n):\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in range(1, m):\ndp[j] = min(dp[j - 1], dp[j]) + grid[i][j]\nreturn dp[m - 1]\n
            min_path_sum.go
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDPComp(grid [][]int) int {\nn, m := len(grid), len(grid[0])\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([]int, m)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0]\nfor j := 1; j < m; j++ {\ndp[j] = dp[j-1] + grid[0][j]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i := 1; i < n; i++ {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j := 1; j < m; j++ {\ndp[j] = int(math.Min(float64(dp[j-1]), float64(dp[j]))) + grid[i][j]\n}\n}\nreturn dp[m-1]\n}\n
            min_path_sum.js
            [class]{}-[func]{minPathSumDPComp}\n
            min_path_sum.ts
            [class]{}-[func]{minPathSumDPComp}\n
            min_path_sum.c
            [class]{}-[func]{minPathSumDPComp}\n
            min_path_sum.cs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(int[][] grid) {\nint n = grid.Length, m = grid[0].Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[m];\ndp[0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j < m; j++) {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i < n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j < m; j++) {\ndp[j] = Math.Min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\nreturn dp[m - 1];\n}\n
            min_path_sum.swift
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDPComp(grid: [[Int]]) -> Int {\nlet n = grid.count\nlet m = grid[0].count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: 0, count: m)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0]\nfor j in stride(from: 1, to: m, by: 1) {\ndp[j] = dp[j - 1] + grid[0][j]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in stride(from: 1, to: n, by: 1) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in stride(from: 1, to: m, by: 1) {\ndp[j] = min(dp[j - 1], dp[j]) + grid[i][j]\n}\n}\nreturn dp[m - 1]\n}\n
            min_path_sum.zig
            // \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn minPathSumDPComp(comptime grid: anytype) i32 {\ncomptime var n = grid.len;\ncomptime var m = grid[0].len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_]i32{0} ** m;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0];\nfor (1..m) |j| {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (1..n) |i| {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\nfor (1..m) |j| {\ndp[j] = @min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\nreturn dp[m - 1];\n}\n
            min_path_sum.dart
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(List<List<int>> grid) {\nint n = grid.length, m = grid[0].length;\n// \u521d\u59cb\u5316 dp \u8868\nList<int> dp = List.filled(m, 0);\ndp[0] = grid[0][0];\nfor (int j = 1; j < m; j++) {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i < n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j < m; j++) {\ndp[j] = min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\nreturn dp[m - 1];\n}\n
            min_path_sum.rs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn min_path_sum_dp_comp(grid: &Vec<Vec<i32>>) -> i32 {\nlet (n, m) = (grid.len(), grid[0].len());\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![0; m];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0];\nfor j in 1..m {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in 1..n {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in 1..m {\ndp[j] = std::cmp::min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\ndp[m - 1]\n}\n
            "},{"location":"chapter_dynamic_programming/edit_distance_problem/","title":"14.6 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898","text":"

            \u7f16\u8f91\u8ddd\u79bb\uff0c\u4e5f\u88ab\u79f0\u4e3a Levenshtein \u8ddd\u79bb\uff0c\u6307\u4e24\u4e2a\u5b57\u7b26\u4e32\u4e4b\u95f4\u4e92\u76f8\u8f6c\u6362\u7684\u6700\u5c0f\u4fee\u6539\u6b21\u6570\uff0c\u901a\u5e38\u7528\u4e8e\u5728\u4fe1\u606f\u68c0\u7d22\u548c\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4e2d\u5ea6\u91cf\u4e24\u4e2a\u5e8f\u5217\u7684\u76f8\u4f3c\u5ea6\u3002

            Question

            \u8f93\u5165\u4e24\u4e2a\u5b57\u7b26\u4e32 \\(s\\) \u548c \\(t\\) \uff0c\u8fd4\u56de\u5c06 \\(s\\) \u8f6c\u6362\u4e3a \\(t\\) \u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002

            \u4f60\u53ef\u4ee5\u5728\u4e00\u4e2a\u5b57\u7b26\u4e32\u4e2d\u8fdb\u884c\u4e09\u79cd\u7f16\u8f91\u64cd\u4f5c\uff1a\u63d2\u5165\u4e00\u4e2a\u5b57\u7b26\u3001\u5220\u9664\u4e00\u4e2a\u5b57\u7b26\u3001\u66ff\u6362\u5b57\u7b26\u4e3a\u4efb\u610f\u4e00\u4e2a\u5b57\u7b26\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5c06 kitten \u8f6c\u6362\u4e3a sitting \u9700\u8981\u7f16\u8f91 3 \u6b65\uff0c\u5305\u62ec 2 \u6b21\u66ff\u6362\u64cd\u4f5c\u4e0e 1 \u6b21\u6dfb\u52a0\u64cd\u4f5c\uff1b\u5c06 hello \u8f6c\u6362\u4e3a algo \u9700\u8981 3 \u6b65\uff0c\u5305\u62ec 2 \u6b21\u66ff\u6362\u64cd\u4f5c\u548c 1 \u6b21\u5220\u9664\u64cd\u4f5c\u3002

            \u56fe\uff1a\u7f16\u8f91\u8ddd\u79bb\u7684\u793a\u4f8b\u6570\u636e

            \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u53ef\u4ee5\u5f88\u81ea\u7136\u5730\u7528\u51b3\u7b56\u6811\u6a21\u578b\u6765\u89e3\u91ca\u3002\u5b57\u7b26\u4e32\u5bf9\u5e94\u6811\u8282\u70b9\uff0c\u4e00\u8f6e\u51b3\u7b56\uff08\u4e00\u6b21\u7f16\u8f91\u64cd\u4f5c\uff09\u5bf9\u5e94\u6811\u7684\u4e00\u6761\u8fb9\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5728\u4e0d\u9650\u5236\u64cd\u4f5c\u7684\u60c5\u51b5\u4e0b\uff0c\u6bcf\u4e2a\u8282\u70b9\u90fd\u53ef\u4ee5\u6d3e\u751f\u51fa\u8bb8\u591a\u6761\u8fb9\uff0c\u6bcf\u6761\u8fb9\u5bf9\u5e94\u4e00\u79cd\u64cd\u4f5c\uff0c\u8fd9\u610f\u5473\u7740\u4ece hello \u8f6c\u6362\u5230 algo \u6709\u8bb8\u591a\u79cd\u53ef\u80fd\u7684\u8def\u5f84\u3002

            \u4ece\u51b3\u7b56\u6811\u7684\u89d2\u5ea6\u770b\uff0c\u672c\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u8282\u70b9 hello \u548c\u8282\u70b9 algo \u4e4b\u95f4\u7684\u6700\u77ed\u8def\u5f84\u3002

            \u56fe\uff1a\u57fa\u4e8e\u51b3\u7b56\u6811\u6a21\u578b\u8868\u793a\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898

            "},{"location":"chapter_dynamic_programming/edit_distance_problem/#1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"

            \u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868

            \u6bcf\u4e00\u8f6e\u7684\u51b3\u7b56\u662f\u5bf9\u5b57\u7b26\u4e32 \\(s\\) \u8fdb\u884c\u4e00\u6b21\u7f16\u8f91\u64cd\u4f5c\u3002

            \u6211\u4eec\u5e0c\u671b\u5728\u7f16\u8f91\u64cd\u4f5c\u7684\u8fc7\u7a0b\u4e2d\uff0c\u95ee\u9898\u7684\u89c4\u6a21\u9010\u6e10\u7f29\u5c0f\uff0c\u8fd9\u6837\u624d\u80fd\u6784\u5efa\u5b50\u95ee\u9898\u3002\u8bbe\u5b57\u7b26\u4e32 \\(s\\) \u548c \\(t\\) \u7684\u957f\u5ea6\u5206\u522b\u4e3a \\(n\\) \u548c \\(m\\) \uff0c\u6211\u4eec\u5148\u8003\u8651\u4e24\u5b57\u7b26\u4e32\u5c3e\u90e8\u7684\u5b57\u7b26 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \uff1a

            • \u82e5 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \u76f8\u540c\uff0c\u6211\u4eec\u53ef\u4ee5\u8df3\u8fc7\u5b83\u4eec\uff0c\u76f4\u63a5\u8003\u8651 \\(s[n-2]\\) \u548c \\(t[m-2]\\) \u3002
            • \u82e5 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \u4e0d\u540c\uff0c\u6211\u4eec\u9700\u8981\u5bf9 \\(s\\) \u8fdb\u884c\u4e00\u6b21\u7f16\u8f91\uff08\u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\uff09\uff0c\u4f7f\u5f97\u4e24\u5b57\u7b26\u4e32\u5c3e\u90e8\u7684\u5b57\u7b26\u76f8\u540c\uff0c\u4ece\u800c\u53ef\u4ee5\u8df3\u8fc7\u5b83\u4eec\uff0c\u8003\u8651\u89c4\u6a21\u66f4\u5c0f\u7684\u95ee\u9898\u3002

            \u4e5f\u5c31\u662f\u8bf4\uff0c\u6211\u4eec\u5728\u5b57\u7b26\u4e32 \\(s\\) \u4e2d\u8fdb\u884c\u7684\u6bcf\u4e00\u8f6e\u51b3\u7b56\uff08\u7f16\u8f91\u64cd\u4f5c\uff09\uff0c\u90fd\u4f1a\u4f7f\u5f97 \\(s\\) \u548c \\(t\\) \u4e2d\u5269\u4f59\u7684\u5f85\u5339\u914d\u5b57\u7b26\u53d1\u751f\u53d8\u5316\u3002\u56e0\u6b64\uff0c\u72b6\u6001\u4e3a\u5f53\u524d\u5728 \\(s\\) , \\(t\\) \u4e2d\u8003\u8651\u7684\u7b2c \\(i\\) , \\(j\\) \u4e2a\u5b57\u7b26\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002

            \u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\uff1a\u5c06 \\(s\\) \u7684\u524d \\(i\\) \u4e2a\u5b57\u7b26\u66f4\u6539\u4e3a \\(t\\) \u7684\u524d \\(j\\) \u4e2a\u5b57\u7b26\u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002

            \u81f3\u6b64\uff0c\u5f97\u5230\u4e00\u4e2a\u5c3a\u5bf8\u4e3a \\((i+1) \\times (j+1)\\) \u7684\u4e8c\u7ef4 \\(dp\\) \u8868\u3002

            \u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b

            \u8003\u8651\u5b50\u95ee\u9898 \\(dp[i, j]\\) \uff0c\u5176\u5bf9\u5e94\u7684\u4e24\u4e2a\u5b57\u7b26\u4e32\u7684\u5c3e\u90e8\u5b57\u7b26\u4e3a \\(s[i-1]\\) \u548c \\(t[j-1]\\) \uff0c\u53ef\u6839\u636e\u4e0d\u540c\u7f16\u8f91\u64cd\u4f5c\u5206\u4e3a\u4e09\u79cd\u60c5\u51b5\uff1a

            1. \u5728 \\(s[i-1]\\) \u4e4b\u540e\u6dfb\u52a0 \\(t[j-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i, j-1]\\) \u3002
            2. \u5220\u9664 \\(s[i-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i-1, j]\\) \u3002
            3. \u5c06 \\(s[i-1]\\) \u66ff\u6362\u4e3a \\(t[j-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i-1, j-1]\\) \u3002

            \u56fe\uff1a\u7f16\u8f91\u8ddd\u79bb\u7684\u72b6\u6001\u8f6c\u79fb

            \u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u53ef\u5f97\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\\(dp[i, j]\\) \u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u7b49\u4e8e \\(dp[i, j-1]\\) , \\(dp[i-1, j]\\) , \\(dp[i-1, j-1]\\) \u4e09\u8005\u4e2d\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\uff0c\u518d\u52a0\u4e0a\u672c\u6b21\u7684\u7f16\u8f91\u6b65\u6570 \\(1\\) \u3002\u5bf9\u5e94\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a

            \\[ dp[i, j] = \\min(dp[i, j-1], dp[i-1, j], dp[i-1, j-1]) + 1 \\]

            \u8bf7\u6ce8\u610f\uff0c\u5f53 \\(s[i-1]\\) \u548c \\(t[j-1]\\) \u76f8\u540c\u65f6\uff0c\u65e0\u987b\u7f16\u8f91\u5f53\u524d\u5b57\u7b26\uff0c\u8fd9\u79cd\u60c5\u51b5\u4e0b\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a

            \\[ dp[i, j] = dp[i-1, j-1] \\]

            \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f

            \u5f53\u4e24\u5b57\u7b26\u4e32\u90fd\u4e3a\u7a7a\u65f6\uff0c\u7f16\u8f91\u6b65\u6570\u4e3a \\(0\\) \uff0c\u5373 \\(dp[0, 0] = 0\\) \u3002\u5f53 \\(s\\) \u4e3a\u7a7a\u4f46 \\(t\\) \u4e0d\u4e3a\u7a7a\u65f6\uff0c\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u7b49\u4e8e \\(t\\) \u7684\u957f\u5ea6\uff0c\u5373\u9996\u884c \\(dp[0, j] = j\\) \u3002\u5f53 \\(s\\) \u4e0d\u4e3a\u7a7a\u4f46 \\(t\\) \u4e3a\u7a7a\u65f6\uff0c\u7b49\u4e8e \\(s\\) \u7684\u957f\u5ea6\uff0c\u5373\u9996\u5217 \\(dp[i, 0] = i\\) \u3002

            \u89c2\u5bdf\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u89e3 \\(dp[i, j]\\) \u4f9d\u8d56\u5de6\u65b9\u3001\u4e0a\u65b9\u3001\u5de6\u4e0a\u65b9\u7684\u89e3\uff0c\u56e0\u6b64\u901a\u8fc7\u4e24\u5c42\u5faa\u73af\u6b63\u5e8f\u904d\u5386\u6574\u4e2a \\(dp\\) \u8868\u5373\u53ef\u3002

            "},{"location":"chapter_dynamic_programming/edit_distance_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"JavaC++PythonGoJSTSCC#SwiftZigDartRust edit_distance.java
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(String s, String t) {\nint n = s.length(), m = t.length();\nint[][] dp = new int[n + 1][m + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int i = 1; i <= n; i++) {\ndp[i][0] = i;\n}\nfor (int j = 1; j <= m; j++) {\ndp[0][j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int j = 1; j <= m; j++) {\nif (s.charAt(i - 1) == t.charAt(j - 1)) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n}\n}\n}\nreturn dp[n][m];\n}\n
            edit_distance.cpp
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(string s, string t) {\nint n = s.length(), m = t.length();\nvector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int i = 1; i <= n; i++) {\ndp[i][0] = i;\n}\nfor (int j = 1; j <= m; j++) {\ndp[0][j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int j = 1; j <= m; j++) {\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n}\n}\n}\nreturn dp[n][m];\n}\n
            edit_distance.py
            def edit_distance_dp(s: str, t: str) -> int:\n\"\"\"\u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn, m = len(s), len(t)\ndp = [[0] * (m + 1) for _ in range(n + 1)]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor i in range(1, n + 1):\ndp[i][0] = i\nfor j in range(1, m + 1):\ndp[0][j] = j\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in range(1, n + 1):\nfor j in range(1, m + 1):\nif s[i - 1] == t[j - 1]:\n# \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1]\nelse:\n# \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1\nreturn dp[n][m]\n
            edit_distance.go
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDP(s string, t string) int {\nn := len(s)\nm := len(t)\ndp := make([][]int, n+1)\nfor i := 0; i <= n; i++ {\ndp[i] = make([]int, m+1)\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor i := 1; i <= n; i++ {\ndp[i][0] = i\n}\nfor j := 1; j <= m; j++ {\ndp[0][j] = j\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i := 1; i <= n; i++ {\nfor j := 1; j <= m; j++ {\nif s[i-1] == t[j-1] {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i-1][j-1]\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = MinInt(MinInt(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]) + 1\n}\n}\n}\nreturn dp[n][m]\n}\n
            edit_distance.js
            [class]{}-[func]{editDistanceDP}\n
            edit_distance.ts
            [class]{}-[func]{editDistanceDP}\n
            edit_distance.c
            [class]{}-[func]{editDistanceDP}\n
            edit_distance.cs
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(string s, string t) {\nint n = s.Length, m = t.Length;\nint[,] dp = new int[n + 1, m + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int i = 1; i <= n; i++) {\ndp[i, 0] = i;\n}\nfor (int j = 1; j <= m; j++) {\ndp[0, j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int j = 1; j <= m; j++) {\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i, j] = dp[i - 1, j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i, j] = Math.Min(Math.Min(dp[i, j - 1], dp[i - 1, j]), dp[i - 1, j - 1]) + 1;\n}\n}\n}\nreturn dp[n, m];\n}\n
            edit_distance.swift
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDP(s: String, t: String) -> Int {\nlet n = s.utf8CString.count\nlet m = t.utf8CString.count\nvar dp = Array(repeating: Array(repeating: 0, count: m + 1), count: n + 1)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor i in stride(from: 1, through: n, by: 1) {\ndp[i][0] = i\n}\nfor j in stride(from: 1, through: m, by: 1) {\ndp[0][j] = j\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in stride(from: 1, through: n, by: 1) {\nfor j in stride(from: 1, through: m, by: 1) {\nif s.utf8CString[i - 1] == t.utf8CString[j - 1] {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1]\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1\n}\n}\n}\nreturn dp[n][m]\n}\n
            edit_distance.zig
            // \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212\nfn editDistanceDP(comptime s: []const u8, comptime t: []const u8) i32 {\ncomptime var n = s.len;\ncomptime var m = t.len;\nvar dp = [_][m + 1]i32{[_]i32{0} ** (m + 1)} ** (n + 1);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (1..n + 1) |i| {\ndp[i][0] = @intCast(i);\n}\nfor (1..m + 1) |j| {\ndp[0][j] = @intCast(j);\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (1..n + 1) |i| {\nfor (1..m + 1) |j| {\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = @min(@min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n}\n}\n}\nreturn dp[n][m];\n}\n
            edit_distance.dart
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(String s, String t) {\nint n = s.length, m = t.length;\nList<List<int>> dp = List.generate(n + 1, (_) => List.filled(m + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int i = 1; i <= n; i++) {\ndp[i][0] = i;\n}\nfor (int j = 1; j <= m; j++) {\ndp[0][j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int j = 1; j <= m; j++) {\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n}\n}\n}\nreturn dp[n][m];\n}\n
            edit_distance.rs
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfn edit_distance_dp(s: &str, t: &str) -> i32 {\nlet (n, m) = (s.len(), t.len());\nlet mut dp = vec![vec![0; m + 1]; n + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor i in 1..= n {\ndp[i][0] = i as i32;\n}\nfor j in 1..m {\ndp[0][j] = j as i32;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in 1..=n {\nfor j in 1..=m {\nif s.chars().nth(i - 1) == t.chars().nth(j - 1) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = std::cmp::min(std::cmp::min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n}\n}\n}\ndp[n][m]\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u7684\u72b6\u6001\u8f6c\u79fb\u8fc7\u7a0b\u4e0e\u80cc\u5305\u95ee\u9898\u975e\u5e38\u7c7b\u4f3c\uff0c\u90fd\u53ef\u4ee5\u770b\u4f5c\u662f\u586b\u5199\u4e00\u4e2a\u4e8c\u7ef4\u7f51\u683c\u7684\u8fc7\u7a0b\u3002

            <1><2><3><4><5><6><7><8><9><10><11><12><13><14><15>

            \u56fe\uff1a\u7f16\u8f91\u8ddd\u79bb\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            "},{"location":"chapter_dynamic_programming/edit_distance_problem/#3","title":"3. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u7531\u4e8e \\(dp[i,j]\\) \u662f\u7531\u4e0a\u65b9 \\(dp[i-1, j]\\) \u3001\u5de6\u65b9 \\(dp[i, j-1]\\) \u3001\u5de6\u4e0a\u65b9\u72b6\u6001 \\(dp[i-1, j-1]\\) \u8f6c\u79fb\u800c\u6765\uff0c\u800c\u6b63\u5e8f\u904d\u5386\u4f1a\u4e22\u5931\u5de6\u4e0a\u65b9 \\(dp[i-1, j-1]\\) \uff0c\u5012\u5e8f\u904d\u5386\u65e0\u6cd5\u63d0\u524d\u6784\u5efa \\(dp[i, j-1]\\) \uff0c\u56e0\u6b64\u4e24\u79cd\u904d\u5386\u987a\u5e8f\u90fd\u4e0d\u53ef\u53d6\u3002

            \u4e3a\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e00\u4e2a\u53d8\u91cf leftup \u6765\u6682\u5b58\u5de6\u4e0a\u65b9\u7684\u89e3 \\(dp[i-1, j-1]\\) \uff0c\u4ece\u800c\u53ea\u9700\u8003\u8651\u5de6\u65b9\u548c\u4e0a\u65b9\u7684\u89e3\u3002\u6b64\u65f6\u7684\u60c5\u51b5\u4e0e\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u76f8\u540c\uff0c\u53ef\u4f7f\u7528\u6b63\u5e8f\u904d\u5386\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust edit_distance.java
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(String s, String t) {\nint n = s.length(), m = t.length();\nint[] dp = new int[m + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j <= m; j++) {\ndp[j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i <= n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nint leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j <= m; j++) {\nint temp = dp[j];\nif (s.charAt(i - 1) == t.charAt(j - 1)) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = Math.min(Math.min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m];\n}\n
            edit_distance.cpp
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(string s, string t) {\nint n = s.length(), m = t.length();\nvector<int> dp(m + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j <= m; j++) {\ndp[j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i <= n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nint leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j <= m; j++) {\nint temp = dp[j];\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m];\n}\n
            edit_distance.py
            def edit_distance_dp_comp(s: str, t: str) -> int:\n\"\"\"\u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn, m = len(s), len(t)\ndp = [0] * (m + 1)\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in range(1, m + 1):\ndp[j] = j\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in range(1, n + 1):\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nleftup = dp[0]  # \u6682\u5b58 dp[i-1, j-1]\ndp[0] += 1\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in range(1, m + 1):\ntemp = dp[j]\nif s[i - 1] == t[j - 1]:\n# \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup\nelse:\n# \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = min(dp[j - 1], dp[j], leftup) + 1\nleftup = temp  # \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\nreturn dp[m]\n
            edit_distance.go
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDPComp(s string, t string) int {\nn := len(s)\nm := len(t)\ndp := make([]int, m+1)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j := 1; j <= m; j++ {\ndp[j] = j\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i := 1; i <= n; i++ {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nleftUp := dp[0] // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j := 1; j <= m; j++ {\ntemp := dp[j]\nif s[i-1] == t[j-1] {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftUp\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = MinInt(MinInt(dp[j-1], dp[j]), leftUp) + 1\n}\nleftUp = temp // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m]\n}\n
            edit_distance.js
            [class]{}-[func]{editDistanceDPComp}\n
            edit_distance.ts
            [class]{}-[func]{editDistanceDPComp}\n
            edit_distance.c
            [class]{}-[func]{editDistanceDPComp}\n
            edit_distance.cs
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(string s, string t) {\nint n = s.Length, m = t.Length;\nint[] dp = new int[m + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j <= m; j++) {\ndp[j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i <= n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nint leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j <= m; j++) {\nint temp = dp[j];\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = Math.Min(Math.Min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m];\n}\n
            edit_distance.swift
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDPComp(s: String, t: String) -> Int {\nlet n = s.utf8CString.count\nlet m = t.utf8CString.count\nvar dp = Array(repeating: 0, count: m + 1)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in stride(from: 1, through: m, by: 1) {\ndp[j] = j\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in stride(from: 1, through: n, by: 1) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nvar leftup = dp[0] // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in stride(from: 1, through: m, by: 1) {\nlet temp = dp[j]\nif s.utf8CString[i - 1] == t.utf8CString[j - 1] {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1\n}\nleftup = temp // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m]\n}\n
            edit_distance.zig
            // \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn editDistanceDPComp(comptime s: []const u8, comptime t: []const u8) i32 {\ncomptime var n = s.len;\ncomptime var m = t.len;\nvar dp = [_]i32{0} ** (m + 1);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (1..m + 1) |j| {\ndp[j] = @intCast(j);\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (1..n + 1) |i| {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nvar leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = @intCast(i);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (1..m + 1) |j| {\nvar temp = dp[j];\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = @min(@min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m];\n}\n
            edit_distance.dart
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(String s, String t) {\nint n = s.length, m = t.length;\nList<int> dp = List.filled(m + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j <= m; j++) {\ndp[j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i <= n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nint leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j <= m; j++) {\nint temp = dp[j];\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m];\n}\n
            edit_distance.rs
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn edit_distance_dp_comp(s: &str, t: &str) -> i32 {\nlet (n, m) = (s.len(), t.len());\nlet mut dp = vec![0; m + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in 1..m {\ndp[j] = j as i32;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in 1..=n {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nlet mut leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i as i32;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in 1..=m {\nlet temp = dp[j];\nif s.chars().nth(i - 1) == t.chars().nth(j - 1) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = std::cmp::min(std::cmp::min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\ndp[m]\n}\n
            "},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/","title":"14.1 \u00a0 \u521d\u63a2\u52a8\u6001\u89c4\u5212","text":"

            \u300c\u52a8\u6001\u89c4\u5212 Dynamic Programming\u300d\u662f\u4e00\u4e2a\u91cd\u8981\u7684\u7b97\u6cd5\u8303\u5f0f\uff0c\u5b83\u5c06\u4e00\u4e2a\u95ee\u9898\u5206\u89e3\u4e3a\u4e00\u7cfb\u5217\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u5e76\u901a\u8fc7\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\u6765\u907f\u514d\u91cd\u590d\u8ba1\u7b97\uff0c\u4ece\u800c\u5927\u5e45\u63d0\u5347\u65f6\u95f4\u6548\u7387\u3002

            \u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u4ece\u4e00\u4e2a\u7ecf\u5178\u4f8b\u9898\u5165\u624b\uff0c\u5148\u7ed9\u51fa\u5b83\u7684\u66b4\u529b\u56de\u6eaf\u89e3\u6cd5\uff0c\u89c2\u5bdf\u5176\u4e2d\u5305\u542b\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u518d\u9010\u6b65\u5bfc\u51fa\u66f4\u9ad8\u6548\u7684\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u3002

            \u722c\u697c\u68af

            \u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5bf9\u4e8e\u4e00\u4e2a \\(3\\) \u9636\u697c\u68af\uff0c\u5171\u6709 \\(3\\) \u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\u3002

            \u56fe\uff1a\u722c\u5230\u7b2c 3 \u9636\u7684\u65b9\u6848\u6570\u91cf

            \u672c\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u65b9\u6848\u6570\u91cf\uff0c\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u901a\u8fc7\u56de\u6eaf\u6765\u7a77\u4e3e\u6240\u6709\u53ef\u80fd\u6027\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u5c06\u722c\u697c\u68af\u60f3\u8c61\u4e3a\u4e00\u4e2a\u591a\u8f6e\u9009\u62e9\u7684\u8fc7\u7a0b\uff1a\u4ece\u5730\u9762\u51fa\u53d1\uff0c\u6bcf\u8f6e\u9009\u62e9\u4e0a \\(1\\) \u9636\u6216 \\(2\\) \u9636\uff0c\u6bcf\u5f53\u5230\u8fbe\u697c\u68af\u9876\u90e8\u65f6\u5c31\u5c06\u65b9\u6848\u6570\u91cf\u52a0 \\(1\\) \uff0c\u5f53\u8d8a\u8fc7\u697c\u68af\u9876\u90e8\u65f6\u5c31\u5c06\u5176\u526a\u679d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_backtrack.java
            /* \u56de\u6eaf */\nvoid backtrack(List<Integer> choices, int state, int n, List<Integer> res) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state == n)\nres.set(0, res.get(0) + 1);\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (Integer choice : choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n)\nbreak;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\nList<Integer> choices = Arrays.asList(1, 2); // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nint state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nList<Integer> res = new ArrayList<>();\nres.add(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res.get(0);\n}\n
            climbing_stairs_backtrack.cpp
            /* \u56de\u6eaf */\nvoid backtrack(vector<int> &choices, int state, int n, vector<int> &res) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state == n)\nres[0]++;\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (auto &choice : choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n)\nbreak;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\nvector<int> choices = {1, 2}; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nint state = 0;                // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nvector<int> res = {0};        // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res[0];\n}\n
            climbing_stairs_backtrack.py
            def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:\n\"\"\"\u56de\u6eaf\"\"\"\n# \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif state == n:\nres[0] += 1\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices:\n# \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif state + choice > n:\nbreak\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res)\n# \u56de\u9000\ndef climbing_stairs_backtrack(n: int) -> int:\n\"\"\"\u722c\u697c\u68af\uff1a\u56de\u6eaf\"\"\"\nchoices = [1, 2]  # \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nstate = 0  # \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nres = [0]  # \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res)\nreturn res[0]\n
            climbing_stairs_backtrack.go
            /* \u56de\u6eaf */\nfunc backtrack(choices []int, state, n int, res []int) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif state == n {\nres[0] = res[0] + 1\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor _, choice := range choices {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif state+choice > n {\nbreak\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state+choice, n, res)\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunc climbingStairsBacktrack(n int) int {\n// \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nchoices := []int{1, 2}\n// \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nstate := 0\nres := make([]int, 1)\n// \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nres[0] = 0\nbacktrack(choices, state, n, res)\nreturn res[0]\n}\n
            climbing_stairs_backtrack.js
            /* \u56de\u6eaf */\nfunction backtrack(choices, state, n, res) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state === n) res.set(0, res.get(0) + 1);\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (const choice of choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n) break;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunction climbingStairsBacktrack(n) {\nconst choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nconst state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nconst res = new Map();\nres.set(0, 0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res.get(0);\n}\n
            climbing_stairs_backtrack.ts
            /* \u56de\u6eaf */\nfunction backtrack(\nchoices: number[],\nstate: number,\nn: number,\nres: Map<0, any>\n): void {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state === n) res.set(0, res.get(0) + 1);\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (const choice of choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n) break;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunction climbingStairsBacktrack(n: number): number {\nconst choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nconst state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nconst res = new Map();\nres.set(0, 0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res.get(0);\n}\n
            climbing_stairs_backtrack.c
            [class]{}-[func]{backtrack}\n[class]{}-[func]{climbingStairsBacktrack}\n
            climbing_stairs_backtrack.cs
            /* \u56de\u6eaf */\nvoid backtrack(List<int> choices, int state, int n, List<int> res) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state == n)\nres[0]++;\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nforeach (int choice in choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n)\nbreak;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\nList<int> choices = new List<int> { 1, 2 }; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nint state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nList<int> res = new List<int> { 0 }; // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res[0];\n}\n
            climbing_stairs_backtrack.swift
            /* \u56de\u6eaf */\nfunc backtrack(choices: [Int], state: Int, n: Int, res: inout [Int]) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif state == n {\nres[0] += 1\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif state + choice > n {\nbreak\n}\nbacktrack(choices: choices, state: state + choice, n: n, res: &res)\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunc climbingStairsBacktrack(n: Int) -> Int {\nlet choices = [1, 2] // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nlet state = 0 // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nvar res: [Int] = []\nres.append(0) // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices: choices, state: state, n: n, res: &res)\nreturn res[0]\n}\n
            climbing_stairs_backtrack.zig
            // \u56de\u6eaf\nfn backtrack(choices: []i32, state: i32, n: i32, res: std.ArrayList(i32)) void {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state == n) {\nres.items[0] = res.items[0] + 1;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (choices) |choice| {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n// \u722c\u697c\u68af\uff1a\u56de\u6eaf\nfn climbingStairsBacktrack(n: usize) !i32 {\nvar choices = [_]i32{ 1, 2 }; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nvar state: i32 = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nvar res = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer res.deinit();\ntry res.append(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(&choices, state, @intCast(n), res);\nreturn res.items[0];\n}\n
            climbing_stairs_backtrack.dart
            /* \u56de\u6eaf */\nvoid backtrack(List<int> choices, int state, int n, List<int> res) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state == n) {\nres[0]++;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int choice in choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n) break;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\nList<int> choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nint state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nList<int> res = [];\nres.add(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res[0];\n}\n
            climbing_stairs_backtrack.rs
            /* \u56de\u6eaf */\nfn backtrack(choices: &[i32], state: i32, n: i32, res: &mut [i32]) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif state == n { res[0] = res[0] + 1; }\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor &choice in choices {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif state + choice > n { break; }\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfn climbing_stairs_backtrack(n: usize) -> i32 {\nlet choices = vec![ 1, 2 ]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nlet state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nlet mut res = Vec::new();\nres.push(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(&choices, state, n as i32, &mut res);\nres[0]\n}\n
            "},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1411","title":"14.1.1 \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"

            \u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u5e76\u4e0d\u663e\u5f0f\u5730\u5bf9\u95ee\u9898\u8fdb\u884c\u62c6\u89e3\uff0c\u800c\u662f\u5c06\u95ee\u9898\u770b\u4f5c\u4e00\u7cfb\u5217\u51b3\u7b56\u6b65\u9aa4\uff0c\u901a\u8fc7\u8bd5\u63a2\u548c\u526a\u679d\uff0c\u641c\u7d22\u6240\u6709\u53ef\u80fd\u7684\u89e3\u3002

            \u6211\u4eec\u53ef\u4ee5\u5c1d\u8bd5\u4ece\u95ee\u9898\u5206\u89e3\u7684\u89d2\u5ea6\u5206\u6790\u8fd9\u9053\u9898\u3002\u8bbe\u722c\u5230\u7b2c \\(i\\) \u9636\u5171\u6709 \\(dp[i]\\) \u79cd\u65b9\u6848\uff0c\u90a3\u4e48 \\(dp[i]\\) \u5c31\u662f\u539f\u95ee\u9898\uff0c\u5176\u5b50\u95ee\u9898\u5305\u62ec:

            \\[ dp[i-1] , dp[i-2] , \\cdots , dp[2] , dp[1] \\]

            \u7531\u4e8e\u6bcf\u8f6e\u53ea\u80fd\u4e0a \\(1\\) \u9636\u6216 \\(2\\) \u9636\uff0c\u56e0\u6b64\u5f53\u6211\u4eec\u7ad9\u5728\u7b2c \\(i\\) \u9636\u697c\u68af\u4e0a\u65f6\uff0c\u4e0a\u4e00\u8f6e\u53ea\u53ef\u80fd\u7ad9\u5728\u7b2c \\(i - 1\\) \u9636\u6216\u7b2c \\(i - 2\\) \u9636\u4e0a\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u6211\u4eec\u53ea\u80fd\u4ece\u7b2c \\(i -1\\) \u9636\u6216\u7b2c \\(i - 2\\) \u9636\u524d\u5f80\u7b2c \\(i\\) \u9636\u3002

            \u7531\u6b64\u4fbf\u53ef\u5f97\u51fa\u4e00\u4e2a\u91cd\u8981\u63a8\u8bba\uff1a\u722c\u5230\u7b2c \\(i - 1\\) \u9636\u7684\u65b9\u6848\u6570\u52a0\u4e0a\u722c\u5230\u7b2c \\(i - 2\\) \u9636\u7684\u65b9\u6848\u6570\u5c31\u7b49\u4e8e\u722c\u5230\u7b2c \\(i\\) \u9636\u7684\u65b9\u6848\u6570\u3002\u516c\u5f0f\u5982\u4e0b\uff1a

            \\[ dp[i] = dp[i-1] + dp[i-2] \\]

            \u8fd9\u610f\u5473\u7740\u5728\u722c\u697c\u68af\u95ee\u9898\u4e2d\uff0c\u5404\u4e2a\u5b50\u95ee\u9898\u4e4b\u95f4\u5b58\u5728\u9012\u63a8\u5173\u7cfb\uff0c\u539f\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u7531\u5b50\u95ee\u9898\u7684\u89e3\u6784\u5efa\u5f97\u6765\u3002

            \u56fe\uff1a\u65b9\u6848\u6570\u91cf\u9012\u63a8\u5173\u7cfb

            \u6211\u4eec\u53ef\u4ee5\u6839\u636e\u9012\u63a8\u516c\u5f0f\u5f97\u5230\u66b4\u529b\u641c\u7d22\u89e3\u6cd5\uff1a

            • \u4ee5 \\(dp[n]\\) \u4e3a\u8d77\u59cb\u70b9\uff0c\u9012\u5f52\u5730\u5c06\u4e00\u4e2a\u8f83\u5927\u95ee\u9898\u62c6\u89e3\u4e3a\u4e24\u4e2a\u8f83\u5c0f\u95ee\u9898\u7684\u548c\uff0c\u76f4\u81f3\u5230\u8fbe\u6700\u5c0f\u5b50\u95ee\u9898 \\(dp[1]\\) \u548c \\(dp[2]\\) \u65f6\u8fd4\u56de\u3002
            • \u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3 \\(dp[1] = 1\\) , \\(dp[2] = 2\\) \u662f\u5df2\u77e5\u7684\uff0c\u4ee3\u8868\u722c\u5230\u7b2c \\(1\\) , \\(2\\) \u9636\u5206\u522b\u6709 \\(1\\) , \\(2\\) \u79cd\u65b9\u6848\u3002

            \u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u5b83\u548c\u6807\u51c6\u56de\u6eaf\u4ee3\u7801\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\uff0c\u4f46\u66f4\u52a0\u7b80\u6d01\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_dfs.java
            /* \u641c\u7d22 */\nint dfs(int i) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.cpp
            /* \u641c\u7d22 */\nint dfs(int i) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.py
            def dfs(i: int) -> int:\n\"\"\"\u641c\u7d22\"\"\"\n# \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 or i == 2:\nreturn i\n# dp[i] = dp[i-1] + dp[i-2]\ncount = dfs(i - 1) + dfs(i - 2)\nreturn count\ndef climbing_stairs_dfs(n: int) -> int:\n\"\"\"\u722c\u697c\u68af\uff1a\u641c\u7d22\"\"\"\nreturn dfs(n)\n
            climbing_stairs_dfs.go
            /* \u641c\u7d22 */\nfunc dfs(i int) int {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 {\nreturn i\n}\n// dp[i] = dp[i-1] + dp[i-2]\ncount := dfs(i-1) + dfs(i-2)\nreturn count\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunc climbingStairsDFS(n int) int {\nreturn dfs(n)\n}\n
            climbing_stairs_dfs.js
            /* \u641c\u7d22 */\nfunction dfs(i) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i === 1 || i === 2) return i;\n// dp[i] = dp[i-1] + dp[i-2]\nconst count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunction climbingStairsDFS(n) {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.ts
            /* \u641c\u7d22 */\nfunction dfs(i: number): number {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i === 1 || i === 2) return i;\n// dp[i] = dp[i-1] + dp[i-2]\nconst count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunction climbingStairsDFS(n: number): number {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.c
            [class]{}-[func]{dfs}\n[class]{}-[func]{climbingStairsDFS}\n
            climbing_stairs_dfs.cs
            /* \u641c\u7d22 */\nint dfs(int i) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.swift
            /* \u641c\u7d22 */\nfunc dfs(i: Int) -> Int {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 {\nreturn i\n}\n// dp[i] = dp[i-1] + dp[i-2]\nlet count = dfs(i: i - 1) + dfs(i: i - 2)\nreturn count\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunc climbingStairsDFS(n: Int) -> Int {\ndfs(i: n)\n}\n
            climbing_stairs_dfs.zig
            // \u641c\u7d22\nfn dfs(i: usize) i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 or i == 2) {\nreturn @intCast(i);\n}\n// dp[i] = dp[i-1] + dp[i-2]\nvar count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n// \u722c\u697c\u68af\uff1a\u641c\u7d22\nfn climbingStairsDFS(comptime n: usize) i32 {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.dart
            /* \u641c\u7d22 */\nint dfs(int i) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2) return i;\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.rs
            /* \u641c\u7d22 */\nfn dfs(i: usize) -> i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 { return i as i32; }\n// dp[i] = dp[i-1] + dp[i-2]\nlet count = dfs(i - 1) + dfs(i - 2);\ncount\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfn climbing_stairs_dfs(n: usize) -> i32 {\ndfs(n) }\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u66b4\u529b\u641c\u7d22\u5f62\u6210\u7684\u9012\u5f52\u6811\u3002\u5bf9\u4e8e\u95ee\u9898 \\(dp[n]\\) \uff0c\u5176\u9012\u5f52\u6811\u7684\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \u3002\u6307\u6570\u9636\u5c5e\u4e8e\u7206\u70b8\u5f0f\u589e\u957f\uff0c\u5982\u679c\u6211\u4eec\u8f93\u5165\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684 \\(n\\) \uff0c\u5219\u4f1a\u9677\u5165\u6f2b\u957f\u7684\u7b49\u5f85\u4e4b\u4e2d\u3002

            \u56fe\uff1a\u722c\u697c\u68af\u5bf9\u5e94\u9012\u5f52\u6811

            \u89c2\u5bdf\u4e0a\u56fe\u53d1\u73b0\uff0c\u6307\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f\u7531\u4e8e\u300c\u91cd\u53e0\u5b50\u95ee\u9898\u300d\u5bfc\u81f4\u7684\u3002\u4f8b\u5982\uff1a\\(dp[9]\\) \u88ab\u5206\u89e3\u4e3a \\(dp[8]\\) \u548c \\(dp[7]\\) \uff0c\\(dp[8]\\) \u88ab\u5206\u89e3\u4e3a \\(dp[7]\\) \u548c \\(dp[6]\\) \uff0c\u4e24\u8005\u90fd\u5305\u542b\u5b50\u95ee\u9898 \\(dp[7]\\) \u3002

            \u4ee5\u6b64\u7c7b\u63a8\uff0c\u5b50\u95ee\u9898\u4e2d\u5305\u542b\u66f4\u5c0f\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u5b50\u5b50\u5b59\u5b59\u65e0\u7a77\u5c3d\u4e5f\u3002\u7edd\u5927\u90e8\u5206\u8ba1\u7b97\u8d44\u6e90\u90fd\u6d6a\u8d39\u5728\u8fd9\u4e9b\u91cd\u53e0\u7684\u95ee\u9898\u4e0a\u3002

            "},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1412","title":"14.1.2 \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"

            \u4e3a\u4e86\u63d0\u5347\u7b97\u6cd5\u6548\u7387\uff0c\u6211\u4eec\u5e0c\u671b\u6240\u6709\u7684\u91cd\u53e0\u5b50\u95ee\u9898\u90fd\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u6570\u7ec4 mem \u6765\u8bb0\u5f55\u6bcf\u4e2a\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5e76\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u8fd9\u6837\u505a\uff1a

            1. \u5f53\u9996\u6b21\u8ba1\u7b97 \\(dp[i]\\) \u65f6\uff0c\u6211\u4eec\u5c06\u5176\u8bb0\u5f55\u81f3 mem[i] \uff0c\u4ee5\u4fbf\u4e4b\u540e\u4f7f\u7528\u3002
            2. \u5f53\u518d\u6b21\u9700\u8981\u8ba1\u7b97 \\(dp[i]\\) \u65f6\uff0c\u6211\u4eec\u4fbf\u53ef\u76f4\u63a5\u4ece mem[i] \u4e2d\u83b7\u53d6\u7ed3\u679c\uff0c\u4ece\u800c\u5c06\u91cd\u53e0\u5b50\u95ee\u9898\u526a\u679d\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_dfs_mem.java
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, int[] mem) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1)\nreturn mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nint[] mem = new int[n + 1];\nArrays.fill(mem, -1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.cpp
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, vector<int> &mem) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1)\nreturn mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nvector<int> mem(n + 1, -1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.py
            def dfs(i: int, mem: list[int]) -> int:\n\"\"\"\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n# \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 or i == 2:\nreturn i\n# \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif mem[i] != -1:\nreturn mem[i]\n# dp[i] = dp[i-1] + dp[i-2]\ncount = dfs(i - 1, mem) + dfs(i - 2, mem)\n# \u8bb0\u5f55 dp[i]\nmem[i] = count\nreturn count\ndef climbing_stairs_dfs_mem(n: int) -> int:\n\"\"\"\u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n# mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nmem = [-1] * (n + 1)\nreturn dfs(n, mem)\n
            climbing_stairs_dfs_mem.go
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc dfsMem(i int, mem []int) int {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 {\nreturn i\n}\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif mem[i] != -1 {\nreturn mem[i]\n}\n// dp[i] = dp[i-1] + dp[i-2]\ncount := dfsMem(i-1, mem) + dfsMem(i-2, mem)\n// \u8bb0\u5f55 dp[i]\nmem[i] = count\nreturn count\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc climbingStairsDFSMem(n int) int {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nmem := make([]int, n+1)\nfor i := range mem {\nmem[i] = -1\n}\nreturn dfsMem(n, mem)\n}\n
            climbing_stairs_dfs_mem.js
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction dfs(i, mem) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i === 1 || i === 2) return i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1) return mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nconst count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction climbingStairsDFSMem(n) {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nconst mem = new Array(n + 1).fill(-1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.ts
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction dfs(i: number, mem: number[]): number {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i === 1 || i === 2) return i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1) return mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nconst count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction climbingStairsDFSMem(n: number): number {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nconst mem = new Array(n + 1).fill(-1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.c
            [class]{}-[func]{dfs}\n[class]{}-[func]{climbingStairsDFSMem}\n
            climbing_stairs_dfs_mem.cs
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, int[] mem) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1)\nreturn mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nint[] mem = new int[n + 1];\nArray.Fill(mem, -1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.swift
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc dfs(i: Int, mem: inout [Int]) -> Int {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 {\nreturn i\n}\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif mem[i] != -1 {\nreturn mem[i]\n}\n// dp[i] = dp[i-1] + dp[i-2]\nlet count = dfs(i: i - 1, mem: &mem) + dfs(i: i - 2, mem: &mem)\n// \u8bb0\u5f55 dp[i]\nmem[i] = count\nreturn count\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc climbingStairsDFSMem(n: Int) -> Int {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nvar mem = Array(repeating: -1, count: n + 1)\nreturn dfs(i: n, mem: &mem)\n}\n
            climbing_stairs_dfs_mem.zig
            // \u8bb0\u5fc6\u5316\u641c\u7d22\nfn dfs(i: usize, mem: []i32) i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 or i == 2) {\nreturn @intCast(i);\n}\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1) {\nreturn mem[i];\n}\n// dp[i] = dp[i-1] + dp[i-2]\nvar count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n// \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn climbingStairsDFSMem(comptime n: usize) i32 {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nvar mem = [_]i32{ -1 } ** (n + 1);\nreturn dfs(n, &mem);\n}\n
            climbing_stairs_dfs_mem.dart
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, List<int> mem) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2) return i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1) return mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nList<int> mem = List.filled(n + 1, -1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.rs
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn dfs(i: usize, mem: &mut [i32]) -> i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 { return i as i32; }\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif mem[i] != -1 { return mem[i]; }\n// dp[i] = dp[i-1] + dp[i-2]\nlet count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\ncount\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn climbing_stairs_dfs_mem(n: usize) -> i32 {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nlet mut mem = vec![-1; n + 1];\ndfs(n, &mut mem)\n}\n

            \u89c2\u5bdf\u4e0b\u56fe\uff0c\u7ecf\u8fc7\u8bb0\u5fc6\u5316\u5904\u7406\u540e\uff0c\u6240\u6709\u91cd\u53e0\u5b50\u95ee\u9898\u90fd\u53ea\u9700\u88ab\u8ba1\u7b97\u4e00\u6b21\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u88ab\u4f18\u5316\u81f3 \\(O(n)\\) \uff0c\u8fd9\u662f\u4e00\u4e2a\u5de8\u5927\u7684\u98de\u8dc3\u3002

            \u56fe\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\u5bf9\u5e94\u9012\u5f52\u6811

            "},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1413","title":"14.1.3 \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"

            \u8bb0\u5fc6\u5316\u641c\u7d22\u662f\u4e00\u79cd\u201c\u4ece\u9876\u81f3\u5e95\u201d\u7684\u65b9\u6cd5\uff1a\u6211\u4eec\u4ece\u539f\u95ee\u9898\uff08\u6839\u8282\u70b9\uff09\u5f00\u59cb\uff0c\u9012\u5f52\u5730\u5c06\u8f83\u5927\u5b50\u95ee\u9898\u5206\u89e3\u4e3a\u8f83\u5c0f\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u89e3\u5df2\u77e5\u7684\u6700\u5c0f\u5b50\u95ee\u9898\uff08\u53f6\u8282\u70b9\uff09\u3002\u4e4b\u540e\uff0c\u901a\u8fc7\u56de\u6eaf\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u9010\u5c42\u6536\u96c6\uff0c\u6784\u5efa\u51fa\u539f\u95ee\u9898\u7684\u89e3\u3002

            \u4e0e\u4e4b\u76f8\u53cd\uff0c\u52a8\u6001\u89c4\u5212\u662f\u4e00\u79cd\u201c\u4ece\u5e95\u81f3\u9876\u201d\u7684\u65b9\u6cd5\uff1a\u4ece\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\u5f00\u59cb\uff0c\u8fed\u4ee3\u5730\u6784\u5efa\u66f4\u5927\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u76f4\u81f3\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002

            \u7531\u4e8e\u52a8\u6001\u89c4\u5212\u4e0d\u5305\u542b\u56de\u6eaf\u8fc7\u7a0b\uff0c\u56e0\u6b64\u53ea\u9700\u4f7f\u7528\u5faa\u73af\u8fed\u4ee3\u5b9e\u73b0\uff0c\u65e0\u987b\u4f7f\u7528\u9012\u5f52\u3002\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u521d\u59cb\u5316\u4e00\u4e2a\u6570\u7ec4 dp \u6765\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5b83\u8d77\u5230\u4e86\u8bb0\u5fc6\u5316\u641c\u7d22\u4e2d\u6570\u7ec4 mem \u76f8\u540c\u7684\u8bb0\u5f55\u4f5c\u7528\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_dp.java
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\nif (n == 1 || n == 2)\nreturn n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[] dp = new int[n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.cpp
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\nif (n == 1 || n == 2)\nreturn n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvector<int> dp(n + 1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.py
            def climbing_stairs_dp(n: int) -> int:\n\"\"\"\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nif n == 1 or n == 2:\nreturn n\n# \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp = [0] * (n + 1)\n# \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1], dp[2] = 1, 2\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in range(3, n + 1):\ndp[i] = dp[i - 1] + dp[i - 2]\nreturn dp[n]\n
            climbing_stairs_dp.go
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDP(n int) int {\nif n == 1 || n == 2 {\nreturn n\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp := make([]int, n+1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1\ndp[2] = 2\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i := 3; i <= n; i++ {\ndp[i] = dp[i-1] + dp[i-2]\n}\nreturn dp[n]\n}\n
            climbing_stairs_dp.js
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDP(n) {\nif (n === 1 || n === 2) return n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nconst dp = new Array(n + 1).fill(-1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (let i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.ts
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDP(n: number): number {\nif (n === 1 || n === 2) return n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nconst dp = new Array(n + 1).fill(-1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (let i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.c
            [class]{}-[func]{climbingStairsDP}\n
            climbing_stairs_dp.cs
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\nif (n == 1 || n == 2)\nreturn n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[] dp = new int[n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.swift
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDP(n: Int) -> Int {\nif n == 1 || n == 2 {\nreturn n\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = Array(repeating: 0, count: n + 1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1\ndp[2] = 2\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in stride(from: 3, through: n, by: 1) {\ndp[i] = dp[i - 1] + dp[i - 2]\n}\nreturn dp[n]\n}\n
            climbing_stairs_dp.zig
            // \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\nfn climbingStairsDP(comptime n: usize) i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (n == 1 or n == 2) {\nreturn @intCast(n);\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = [_]i32{-1} ** (n + 1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (3..n + 1) |i| {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.dart
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\nif (n == 1 || n == 2) return n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nList<int> dp = List.filled(n + 1, 0);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.rs
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_dp(n: usize) -> i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif n == 1 || n == 2 { return n as i32; }\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nlet mut dp = vec![-1; n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in 3..=n {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\ndp[n]\n}\n

            \u4e0e\u56de\u6eaf\u7b97\u6cd5\u4e00\u6837\uff0c\u52a8\u6001\u89c4\u5212\u4e5f\u4f7f\u7528\u201c\u72b6\u6001\u201d\u6982\u5ff5\u6765\u8868\u793a\u95ee\u9898\u6c42\u89e3\u7684\u67d0\u4e2a\u7279\u5b9a\u9636\u6bb5\uff0c\u6bcf\u4e2a\u72b6\u6001\u90fd\u5bf9\u5e94\u4e00\u4e2a\u5b50\u95ee\u9898\u4ee5\u53ca\u76f8\u5e94\u7684\u5c40\u90e8\u6700\u4f18\u89e3\u3002\u4f8b\u5982\uff0c\u722c\u697c\u68af\u95ee\u9898\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u5f53\u524d\u6240\u5728\u697c\u68af\u9636\u6570 \\(i\\) \u3002

            \u603b\u7ed3\u4ee5\u4e0a\uff0c\u52a8\u6001\u89c4\u5212\u7684\u5e38\u7528\u672f\u8bed\u5305\u62ec\uff1a

            • \u5c06\u6570\u7ec4 dp \u79f0\u4e3a\u300c\\(dp\\) \u8868\u300d\uff0c\\(dp[i]\\) \u8868\u793a\u72b6\u6001 \\(i\\) \u5bf9\u5e94\u5b50\u95ee\u9898\u7684\u89e3\u3002
            • \u5c06\u6700\u5c0f\u5b50\u95ee\u9898\u5bf9\u5e94\u7684\u72b6\u6001\uff08\u5373\u7b2c \\(1\\) , \\(2\\) \u9636\u697c\u68af\uff09\u79f0\u4e3a\u300c\u521d\u59cb\u72b6\u6001\u300d\u3002
            • \u5c06\u9012\u63a8\u516c\u5f0f \\(dp[i] = dp[i-1] + dp[i-2]\\) \u79f0\u4e3a\u300c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u300d\u3002

            \u56fe\uff1a\u722c\u697c\u68af\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            "},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1414","title":"14.1.4 \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u7ec6\u5fc3\u7684\u4f60\u53ef\u80fd\u53d1\u73b0\uff0c\u7531\u4e8e \\(dp[i]\\) \u53ea\u4e0e \\(dp[i-1]\\) \u548c \\(dp[i-2]\\) \u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u65e0\u987b\u4f7f\u7528\u4e00\u4e2a\u6570\u7ec4 dp \u6765\u5b58\u50a8\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u800c\u53ea\u9700\u4e24\u4e2a\u53d8\u91cf\u6eda\u52a8\u524d\u8fdb\u5373\u53ef\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_dp.java
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\nif (n == 1 || n == 2)\nreturn n;\nint a = 1, b = 2;\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.cpp
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\nif (n == 1 || n == 2)\nreturn n;\nint a = 1, b = 2;\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.py
            def climbing_stairs_dp_comp(n: int) -> int:\n\"\"\"\u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nif n == 1 or n == 2:\nreturn n\na, b = 1, 2\nfor _ in range(3, n + 1):\na, b = b, a + b\nreturn b\n
            climbing_stairs_dp.go
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDPComp(n int) int {\nif n == 1 || n == 2 {\nreturn n\n}\na, b := 1, 2\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i := 3; i <= n; i++ {\na, b = b, a+b\n}\nreturn b\n}\n
            climbing_stairs_dp.js
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDPComp(n) {\nif (n === 1 || n === 2) return n;\nlet a = 1,\nb = 2;\nfor (let i = 3; i <= n; i++) {\nconst tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.ts
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDPComp(n: number): number {\nif (n === 1 || n === 2) return n;\nlet a = 1,\nb = 2;\nfor (let i = 3; i <= n; i++) {\nconst tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.c
            [class]{}-[func]{climbingStairsDPComp}\n
            climbing_stairs_dp.cs
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\nif (n == 1 || n == 2)\nreturn n;\nint a = 1, b = 2;\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.swift
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDPComp(n: Int) -> Int {\nif n == 1 || n == 2 {\nreturn n\n}\nvar a = 1\nvar b = 2\nfor _ in stride(from: 3, through: n, by: 1) {\n(a, b) = (b, a + b)\n}\nreturn b\n}\n
            climbing_stairs_dp.zig
            // \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn climbingStairsDPComp(comptime n: usize) i32 {\nif (n == 1 or n == 2) {\nreturn @intCast(n);\n}\nvar a: i32 = 1;\nvar b: i32 = 2;\nfor (3..n + 1) |_| {\nvar tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.dart
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\nif (n == 1 || n == 2) return n;\nint a = 1, b = 2;\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.rs
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_dp_comp(n: usize) -> i32 {\nif n == 1 || n == 2 { return n as i32; }\nlet (mut a, mut b) = (1, 2);\nfor _ in 3..=n {\nlet tmp = b;\nb = a + b;\na = tmp;\n}\nb\n}\n

            \u89c2\u5bdf\u4ee5\u4e0a\u4ee3\u7801\uff0c\u7531\u4e8e\u7701\u53bb\u4e86\u6570\u7ec4 dp \u5360\u7528\u7684\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u4f4e\u81f3 \\(O(1)\\) \u3002

            \u8fd9\u79cd\u7a7a\u95f4\u4f18\u5316\u6280\u5de7\u88ab\u79f0\u4e3a\u300c\u72b6\u6001\u538b\u7f29\u300d\u3002\u5728\u5e38\u89c1\u7684\u52a8\u6001\u89c4\u5212\u95ee\u9898\u4e2d\uff0c\u5f53\u524d\u72b6\u6001\u4ec5\u4e0e\u524d\u9762\u6709\u9650\u4e2a\u72b6\u6001\u6709\u5173\uff0c\u8fd9\u65f6\u6211\u4eec\u53ef\u4ee5\u5e94\u7528\u72b6\u6001\u538b\u7f29\uff0c\u53ea\u4fdd\u7559\u5fc5\u8981\u7684\u72b6\u6001\uff0c\u901a\u8fc7\u201c\u964d\u7ef4\u201d\u6765\u8282\u7701\u5185\u5b58\u7a7a\u95f4\u3002

            "},{"location":"chapter_dynamic_programming/knapsack_problem/","title":"14.4 \u00a0 0-1 \u80cc\u5305\u95ee\u9898","text":"

            \u80cc\u5305\u95ee\u9898\u662f\u4e00\u4e2a\u975e\u5e38\u597d\u7684\u52a8\u6001\u89c4\u5212\u5165\u95e8\u9898\u76ee\uff0c\u662f\u52a8\u6001\u89c4\u5212\u4e2d\u6700\u5e38\u89c1\u7684\u95ee\u9898\u5f62\u5f0f\u3002\u5176\u5177\u6709\u5f88\u591a\u53d8\u79cd\uff0c\u4f8b\u5982 0-1 \u80cc\u5305\u95ee\u9898\u3001\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u3001\u591a\u91cd\u80cc\u5305\u95ee\u9898\u7b49\u3002

            \u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5148\u6765\u6c42\u89e3\u6700\u5e38\u89c1\u7684 0-1 \u80cc\u5305\u95ee\u9898\u3002

            Question

            \u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\) \u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ea\u80fd\u9009\u62e9\u4e00\u6b21\uff0c\u95ee\u5728\u4e0d\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\u4e0b\u80fd\u653e\u5165\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002

            \u8bf7\u6ce8\u610f\uff0c\u7269\u54c1\u7f16\u53f7 \\(i\\) \u4ece \\(1\\) \u5f00\u59cb\u8ba1\u6570\uff0c\u6570\u7ec4\u7d22\u5f15\u4ece \\(0\\) \u5f00\u59cb\u8ba1\u6570\uff0c\u56e0\u6b64\u7269\u54c1 \\(i\\) \u5bf9\u5e94\u91cd\u91cf \\(wgt[i-1]\\) \u548c\u4ef7\u503c \\(val[i-1]\\) \u3002

            \u56fe\uff1a0-1 \u80cc\u5305\u7684\u793a\u4f8b\u6570\u636e

            \u6211\u4eec\u53ef\u4ee5\u5c06 0-1 \u80cc\u5305\u95ee\u9898\u770b\u4f5c\u662f\u4e00\u4e2a\u7531 \\(n\\) \u8f6e\u51b3\u7b56\u7ec4\u6210\u7684\u8fc7\u7a0b\uff0c\u6bcf\u4e2a\u7269\u4f53\u90fd\u6709\u4e0d\u653e\u5165\u548c\u653e\u5165\u4e24\u79cd\u51b3\u7b56\uff0c\u56e0\u6b64\u8be5\u95ee\u9898\u662f\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\u7684\u3002

            \u8be5\u95ee\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u201c\u5728\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u7684\u6700\u5927\u4ef7\u503c\u201d\uff0c\u56e0\u6b64\u8f83\u5927\u6982\u7387\u662f\u4e2a\u52a8\u6001\u89c4\u5212\u95ee\u9898\u3002

            \u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868

            \u5bf9\u4e8e\u6bcf\u4e2a\u7269\u54c1\u6765\u8bf4\uff0c\u4e0d\u653e\u5165\u80cc\u5305\uff0c\u80cc\u5305\u5bb9\u91cf\u4e0d\u53d8\uff1b\u653e\u5165\u80cc\u5305\uff0c\u80cc\u5305\u5bb9\u91cf\u51cf\u5c0f\u3002\u7531\u6b64\u53ef\u5f97\u72b6\u6001\u5b9a\u4e49\uff1a\u5f53\u524d\u7269\u54c1\u7f16\u53f7 \\(i\\) \u548c\u5269\u4f59\u80cc\u5305\u5bb9\u91cf \\(c\\) \uff0c\u8bb0\u4e3a \\([i, c]\\) \u3002

            \u72b6\u6001 \\([i, c]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u524d \\(i\\) \u4e2a\u7269\u54c1\u5728\u5269\u4f59\u5bb9\u91cf\u4e3a \\(c\\) \u7684\u80cc\u5305\u4e2d\u7684\u6700\u5927\u4ef7\u503c\uff0c\u8bb0\u4e3a \\(dp[i, c]\\) \u3002

            \u5f85\u6c42\u89e3\u7684\u662f \\(dp[n, cap]\\) \uff0c\u56e0\u6b64\u9700\u8981\u4e00\u4e2a\u5c3a\u5bf8\u4e3a \\((n+1) \\times (cap+1)\\) \u7684\u4e8c\u7ef4 \\(dp\\) \u8868\u3002

            \u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b

            \u5f53\u6211\u4eec\u505a\u51fa\u7269\u54c1 \\(i\\) \u7684\u51b3\u7b56\u540e\uff0c\u5269\u4f59\u7684\u662f\u524d \\(i-1\\) \u4e2a\u7269\u54c1\u7684\u51b3\u7b56\u3002\u56e0\u6b64\uff0c\u72b6\u6001\u8f6c\u79fb\u5206\u4e3a\u4e24\u79cd\u60c5\u51b5\uff1a

            • \u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u80cc\u5305\u5bb9\u91cf\u4e0d\u53d8\uff0c\u72b6\u6001\u8f6c\u79fb\u81f3 \\([i-1, c]\\) \u3002
            • \u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u80cc\u5305\u5bb9\u91cf\u51cf\u5c0f \\(wgt[i-1]\\) \uff0c\u4ef7\u503c\u589e\u52a0 \\(val[i-1]\\) \uff0c\u72b6\u6001\u8f6c\u79fb\u81f3 \\([i-1, c-wgt[i-1]]\\) \u3002

            \u4e0a\u8ff0\u7684\u72b6\u6001\u8f6c\u79fb\u5411\u6211\u4eec\u63ed\u793a\u4e86\u672c\u9898\u7684\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u6700\u5927\u4ef7\u503c \\(dp[i, c]\\) \u7b49\u4e8e\u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \u548c\u653e\u5165\u7269\u54c1 \\(i\\) \u4e24\u79cd\u65b9\u6848\u4e2d\u7684\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\u3002\u7531\u6b64\u53ef\u63a8\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff1a

            \\[ dp[i, c] = \\max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1]) \\]

            \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u82e5\u5f53\u524d\u7269\u54c1\u91cd\u91cf \\(wgt[i - 1]\\) \u8d85\u51fa\u5269\u4f59\u80cc\u5305\u5bb9\u91cf \\(c\\) \uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\u3002

            \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f

            \u5f53\u65e0\u7269\u54c1\u6216\u65e0\u5269\u4f59\u80cc\u5305\u5bb9\u91cf\u65f6\u6700\u5927\u4ef7\u503c\u4e3a \\(0\\) \uff0c\u5373\u9996\u5217 \\(dp[i, 0]\\) \u548c\u9996\u884c \\(dp[0, c]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002

            \u5f53\u524d\u72b6\u6001 \\([i, c]\\) \u4ece\u4e0a\u65b9\u7684\u72b6\u6001 \\([i-1, c]\\) \u548c\u5de6\u4e0a\u65b9\u7684\u72b6\u6001 \\([i-1, c-wgt[i-1]]\\) \u8f6c\u79fb\u800c\u6765\uff0c\u56e0\u6b64\u901a\u8fc7\u4e24\u5c42\u5faa\u73af\u6b63\u5e8f\u904d\u5386\u6574\u4e2a \\(dp\\) \u8868\u5373\u53ef\u3002

            \u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u6211\u4eec\u63a5\u4e0b\u6765\u6309\u987a\u5e8f\u5b9e\u73b0\u66b4\u529b\u641c\u7d22\u3001\u8bb0\u5fc6\u5316\u641c\u7d22\u3001\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u3002

            "},{"location":"chapter_dynamic_programming/knapsack_problem/#1","title":"1. \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"

            \u641c\u7d22\u4ee3\u7801\u5305\u542b\u4ee5\u4e0b\u8981\u7d20\uff1a

            • \u9012\u5f52\u53c2\u6570\uff1a\u72b6\u6001 \\([i, c]\\) \u3002
            • \u8fd4\u56de\u503c\uff1a\u5b50\u95ee\u9898\u7684\u89e3 \\(dp[i, c]\\) \u3002
            • \u7ec8\u6b62\u6761\u4ef6\uff1a\u5f53\u7269\u54c1\u7f16\u53f7\u8d8a\u754c \\(i = 0\\) \u6216\u80cc\u5305\u5269\u4f59\u5bb9\u91cf\u4e3a \\(0\\) \u65f6\uff0c\u7ec8\u6b62\u9012\u5f52\u5e76\u8fd4\u56de\u4ef7\u503c \\(0\\) \u3002
            • \u526a\u679d\uff1a\u82e5\u5f53\u524d\u7269\u54c1\u91cd\u91cf\u8d85\u51fa\u80cc\u5305\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust knapsack.java
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(int[] wgt, int[] val, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFS(wgt, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFS(wgt, val, i - 1, c);\nint yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn Math.max(no, yes);\n}\n
            knapsack.cpp
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(vector<int> &wgt, vector<int> &val, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFS(wgt, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFS(wgt, val, i - 1, c);\nint yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn max(no, yes);\n}\n
            knapsack.py
            def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:\n\"\"\"0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22\"\"\"\n# \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 or c == 0:\nreturn 0\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c:\nreturn knapsack_dfs(wgt, val, i - 1, c)\n# \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nno = knapsack_dfs(wgt, val, i - 1, c)\nyes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]\n# \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn max(no, yes)\n
            knapsack.go
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc knapsackDFS(wgt, val []int, i, c int) int {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i-1] > c {\nreturn knapsackDFS(wgt, val, i-1, c)\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nno := knapsackDFS(wgt, val, i-1, c)\nyes := knapsackDFS(wgt, val, i-1, c-wgt[i-1]) + val[i-1]\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn int(math.Max(float64(no), float64(yes)))\n}\n
            knapsack.js
            [class]{}-[func]{knapsackDFS}\n
            knapsack.ts
            [class]{}-[func]{knapsackDFS}\n
            knapsack.c
            [class]{}-[func]{knapsackDFS}\n
            knapsack.cs
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(int[] weight, int[] val, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (weight[i - 1] > c) {\nreturn knapsackDFS(weight, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFS(weight, val, i - 1, c);\nint yes = knapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn Math.Max(no, yes);\n}\n
            knapsack.swift
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c {\nreturn knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nlet no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)\nlet yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn max(no, yes)\n}\n
            knapsack.zig
            // 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22\nfn knapsackDFS(wgt: []i32, val: []i32, i: usize, c: usize) i32 {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 or c == 0) {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFS(wgt, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nvar no = knapsackDFS(wgt, val, i - 1, c);\nvar yes = knapsackDFS(wgt, val, i - 1, c - @as(usize, @intCast(wgt[i - 1]))) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn @max(no, yes);\n}\n
            knapsack.dart
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(List<int> wgt, List<int> val, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFS(wgt, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFS(wgt, val, i - 1, c);\nint yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn max(no, yes);\n}\n
            knapsack.rs
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfn knapsack_dfs(wgt: &[i32], val: &[i32], i: usize, c: usize) -> i32 {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c as i32 {\nreturn knapsack_dfs(wgt, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nlet no = knapsack_dfs(wgt, val, i - 1, c);\nlet yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1] as usize) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nstd::cmp::max(no, yes)\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u7531\u4e8e\u6bcf\u4e2a\u7269\u54c1\u90fd\u4f1a\u4ea7\u751f\u4e0d\u9009\u548c\u9009\u4e24\u6761\u641c\u7d22\u5206\u652f\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \u3002

            \u89c2\u5bdf\u9012\u5f52\u6811\uff0c\u5bb9\u6613\u53d1\u73b0\u5176\u4e2d\u5b58\u5728\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u4f8b\u5982 \\(dp[1, 10]\\) \u7b49\u3002\u800c\u5f53\u7269\u54c1\u8f83\u591a\u3001\u80cc\u5305\u5bb9\u91cf\u8f83\u5927\uff0c\u5c24\u5176\u662f\u76f8\u540c\u91cd\u91cf\u7684\u7269\u54c1\u8f83\u591a\u65f6\uff0c\u91cd\u53e0\u5b50\u95ee\u9898\u7684\u6570\u91cf\u5c06\u4f1a\u5927\u5e45\u589e\u591a\u3002

            \u56fe\uff1a0-1 \u80cc\u5305\u7684\u66b4\u529b\u641c\u7d22\u9012\u5f52\u6811

            "},{"location":"chapter_dynamic_programming/knapsack_problem/#2","title":"2. \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"

            \u4e3a\u4e86\u4fdd\u8bc1\u91cd\u53e0\u5b50\u95ee\u9898\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\uff0c\u6211\u4eec\u501f\u52a9\u8bb0\u5fc6\u5217\u8868 mem \u6765\u8bb0\u5f55\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5176\u4e2d mem[i][c] \u5bf9\u5e94 \\(dp[i, c]\\) \u3002

            \u5f15\u5165\u8bb0\u5fc6\u5316\u4e4b\u540e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u5b50\u95ee\u9898\u6570\u91cf\uff0c\u4e5f\u5c31\u662f \\(O(n \\times cap)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust knapsack.java
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(int[] wgt, int[] val, int[][] mem, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][c] != -1) {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFSMem(wgt, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFSMem(wgt, val, mem, i - 1, c);\nint yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = Math.max(no, yes);\nreturn mem[i][c];\n}\n
            knapsack.cpp
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(vector<int> &wgt, vector<int> &val, vector<vector<int>> &mem, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][c] != -1) {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFSMem(wgt, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFSMem(wgt, val, mem, i - 1, c);\nint yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = max(no, yes);\nreturn mem[i][c];\n}\n
            knapsack.py
            def knapsack_dfs_mem(\nwgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int\n) -> int:\n\"\"\"0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n# \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 or c == 0:\nreturn 0\n# \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][c] != -1:\nreturn mem[i][c]\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c:\nreturn knapsack_dfs_mem(wgt, val, mem, i - 1, c)\n# \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nno = knapsack_dfs_mem(wgt, val, mem, i - 1, c)\nyes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]\n# \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = max(no, yes)\nreturn mem[i][c]\n
            knapsack.go
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc knapsackDFSMem(wgt, val []int, mem [][]int, i, c int) int {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][c] != -1 {\nreturn mem[i][c]\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i-1] > c {\nreturn knapsackDFSMem(wgt, val, mem, i-1, c)\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nno := knapsackDFSMem(wgt, val, mem, i-1, c)\nyes := knapsackDFSMem(wgt, val, mem, i-1, c-wgt[i-1]) + val[i-1]\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = int(math.Max(float64(no), float64(yes)))\nreturn mem[i][c]\n}\n
            knapsack.js
            [class]{}-[func]{knapsackDFSMem}\n
            knapsack.ts
            [class]{}-[func]{knapsackDFSMem}\n
            knapsack.c
            [class]{}-[func]{knapsackDFSMem}\n
            knapsack.cs
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][c] != -1) {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (weight[i - 1] > c) {\nreturn knapsackDFSMem(weight, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFSMem(weight, val, mem, i - 1, c);\nint yes = knapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = Math.Max(no, yes);\nreturn mem[i][c];\n}\n
            knapsack.swift
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][c] != -1 {\nreturn mem[i][c]\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c {\nreturn knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nlet no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)\nlet yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = max(no, yes)\nreturn mem[i][c]\n}\n
            knapsack.zig
            // 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn knapsackDFSMem(wgt: []i32, val: []i32, mem: anytype, i: usize, c: usize) i32 {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 or c == 0) {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][c] != -1) {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFSMem(wgt, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nvar no = knapsackDFSMem(wgt, val, mem, i - 1, c);\nvar yes = knapsackDFSMem(wgt, val, mem, i - 1, c - @as(usize, @intCast(wgt[i - 1]))) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = @max(no, yes);\nreturn mem[i][c];\n}\n
            knapsack.dart
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(\nList<int> wgt,\nList<int> val,\nList<List<int>> mem,\nint i,\nint c,\n) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][c] != -1) {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFSMem(wgt, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFSMem(wgt, val, mem, i - 1, c);\nint yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = max(no, yes);\nreturn mem[i][c];\n}\n
            knapsack.rs
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn knapsack_dfs_mem(wgt: &[i32], val: &[i32], mem: &mut Vec<Vec<i32>>, i: usize, c: usize) -> i32 {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][c] != -1 {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c as i32 {\nreturn knapsack_dfs_mem(wgt, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nlet no = knapsack_dfs_mem(wgt, val, mem, i - 1, c);\nlet yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1] as usize) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = std::cmp::max(no, yes);\nmem[i][c]\n}\n

            \u56fe\uff1a0-1 \u80cc\u5305\u7684\u8bb0\u5fc6\u5316\u641c\u7d22\u9012\u5f52\u6811

            "},{"location":"chapter_dynamic_programming/knapsack_problem/#3","title":"3. \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"

            \u52a8\u6001\u89c4\u5212\u5b9e\u8d28\u4e0a\u5c31\u662f\u5728\u72b6\u6001\u8f6c\u79fb\u4e2d\u586b\u5145 \\(dp\\) \u8868\u7684\u8fc7\u7a0b\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust knapsack.java
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(int[] wgt, int[] val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[][] dp = new int[n + 1][cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = Math.max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            knapsack.cpp
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(vector<int> &wgt, vector<int> &val, int cap) {\nint n = wgt.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            knapsack.py
            def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:\n\"\"\"0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(wgt)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [[0] * (cap + 1) for _ in range(n + 1)]\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\nfor c in range(1, cap + 1):\nif wgt[i - 1] > c:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c]\nelse:\n# \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])\nreturn dp[n][cap]\n
            knapsack.go
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDP(wgt, val []int, cap int) int {\nn := len(wgt)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([][]int, n+1)\nfor i := 0; i <= n; i++ {\ndp[i] = make([]int, cap+1)\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\nfor c := 1; c <= cap; c++ {\nif wgt[i-1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i-1][c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i-1][c-wgt[i-1]]+val[i-1])))\n}\n}\n}\nreturn dp[n][cap]\n}\n
            knapsack.js
            [class]{}-[func]{knapsackDP}\n
            knapsack.ts
            [class]{}-[func]{knapsackDP}\n
            knapsack.c
            [class]{}-[func]{knapsackDP}\n
            knapsack.cs
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(int[] weight, int[] val, int cap) {\nint n = weight.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[,] dp = new int[n + 1, cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (weight[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i, c] = dp[i - 1, c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i, c] = Math.Max(dp[i - 1, c - weight[i - 1]] + val[i - 1], dp[i - 1, c]);\n}\n}\n}\nreturn dp[n, cap];\n}\n
            knapsack.swift
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {\nlet n = wgt.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor c in stride(from: 1, through: cap, by: 1) {\nif wgt[i - 1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])\n}\n}\n}\nreturn dp[n][cap]\n}\n
            knapsack.zig
            // 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\nfn knapsackDP(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\ncomptime var n = wgt.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_][cap + 1]i32{[_]i32{0} ** (cap + 1)} ** (n + 1);\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..cap + 1) |c| {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = @max(dp[i - 1][c], dp[i - 1][c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            knapsack.dart
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(List<int> wgt, List<int> val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            knapsack.rs
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfn knapsack_dp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\nlet n = wgt.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![vec![0; cap + 1]; n + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor c in 1..=cap {\nif wgt[i - 1] > c as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = std::cmp::max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1] as usize] + val[i - 1]);\n}\n}\n}\ndp[n][cap]\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u90fd\u7531\u6570\u7ec4 dp \u5927\u5c0f\u51b3\u5b9a\uff0c\u5373 \\(O(n \\times cap)\\) \u3002

            <1><2><3><4><5><6><7><8><9><10><11><12><13><14>

            \u56fe\uff1a0-1 \u80cc\u5305\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            "},{"location":"chapter_dynamic_programming/knapsack_problem/#4","title":"4. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u7531\u4e8e\u6bcf\u4e2a\u72b6\u6001\u90fd\u53ea\u4e0e\u5176\u4e0a\u4e00\u884c\u7684\u72b6\u6001\u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e24\u4e2a\u6570\u7ec4\u6eda\u52a8\u524d\u8fdb\uff0c\u5c06\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n^2)\\) \u5c06\u4f4e\u81f3 \\(O(n)\\) \u3002

            \u8fdb\u4e00\u6b65\u601d\u8003\uff0c\u6211\u4eec\u662f\u5426\u53ef\u4ee5\u4ec5\u7528\u4e00\u4e2a\u6570\u7ec4\u5b9e\u73b0\u72b6\u6001\u538b\u7f29\u5462\uff1f\u89c2\u5bdf\u53ef\u77e5\uff0c\u6bcf\u4e2a\u72b6\u6001\u90fd\u662f\u7531\u6b63\u4e0a\u65b9\u6216\u5de6\u4e0a\u65b9\u7684\u683c\u5b50\u8f6c\u79fb\u8fc7\u6765\u7684\u3002\u5047\u8bbe\u53ea\u6709\u4e00\u4e2a\u6570\u7ec4\uff0c\u5f53\u5f00\u59cb\u904d\u5386\u7b2c \\(i\\) \u884c\u65f6\uff0c\u8be5\u6570\u7ec4\u5b58\u50a8\u7684\u4ecd\u7136\u662f\u7b2c \\(i-1\\) \u884c\u7684\u72b6\u6001\u3002

            • \u5982\u679c\u91c7\u53d6\u6b63\u5e8f\u904d\u5386\uff0c\u90a3\u4e48\u904d\u5386\u5230 \\(dp[i, j]\\) \u65f6\uff0c\u5de6\u4e0a\u65b9 \\(dp[i-1, 1]\\) ~ \\(dp[i-1, j-1]\\) \u503c\u53ef\u80fd\u5df2\u7ecf\u88ab\u8986\u76d6\uff0c\u6b64\u65f6\u5c31\u65e0\u6cd5\u5f97\u5230\u6b63\u786e\u7684\u72b6\u6001\u8f6c\u79fb\u7ed3\u679c\u3002
            • \u5982\u679c\u91c7\u53d6\u5012\u5e8f\u904d\u5386\uff0c\u5219\u4e0d\u4f1a\u53d1\u751f\u8986\u76d6\u95ee\u9898\uff0c\u72b6\u6001\u8f6c\u79fb\u53ef\u4ee5\u6b63\u786e\u8fdb\u884c\u3002

            \u4ee5\u4e0b\u52a8\u753b\u5c55\u793a\u4e86\u5728\u5355\u4e2a\u6570\u7ec4\u4e0b\u4ece\u7b2c \\(i = 1\\) \u884c\u8f6c\u6362\u81f3\u7b2c \\(i = 2\\) \u884c\u7684\u8fc7\u7a0b\u3002\u8bf7\u601d\u8003\u6b63\u5e8f\u904d\u5386\u548c\u5012\u5e8f\u904d\u5386\u7684\u533a\u522b\u3002

            <1><2><3><4><5><6>

            \u56fe\uff1a0-1 \u80cc\u5305\u7684\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            \u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u6211\u4eec\u4ec5\u9700\u5c06\u6570\u7ec4 dp \u7684\u7b2c\u4e00\u7ef4 \\(i\\) \u76f4\u63a5\u5220\u9664\uff0c\u5e76\u4e14\u628a\u5185\u5faa\u73af\u66f4\u6539\u4e3a\u5012\u5e8f\u904d\u5386\u5373\u53ef\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust knapsack.java
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(int[] wgt, int[] val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\n// \u5012\u5e8f\u904d\u5386\nfor (int c = cap; c >= 1; c--) {\nif (wgt[i - 1] <= c) {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            knapsack.cpp
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {\nint n = wgt.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<int> dp(cap + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\n// \u5012\u5e8f\u904d\u5386\nfor (int c = cap; c >= 1; c--) {\nif (wgt[i - 1] <= c) {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            knapsack.py
            def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:\n\"\"\"0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(wgt)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [0] * (cap + 1)\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\n# \u5012\u5e8f\u904d\u5386\nfor c in range(cap, 0, -1):\nif wgt[i - 1] > c:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c]\nelse:\n# \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\nreturn dp[cap]\n
            knapsack.go
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDPComp(wgt, val []int, cap int) int {\nn := len(wgt)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([]int, cap+1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\n// \u5012\u5e8f\u904d\u5386\nfor c := cap; c >= 1; c-- {\nif wgt[i-1] <= c {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))\n}\n}\n}\nreturn dp[cap]\n}\n
            knapsack.js
            [class]{}-[func]{knapsackDPComp}\n
            knapsack.ts
            [class]{}-[func]{knapsackDPComp}\n
            knapsack.c
            [class]{}-[func]{knapsackDPComp}\n
            knapsack.cs
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(int[] weight, int[] val, int cap) {\nint n = weight.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\n// \u5012\u5e8f\u904d\u5386\nfor (int c = cap; c > 0; c--) {\nif (weight[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = Math.Max(dp[c], dp[c - weight[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            knapsack.swift
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {\nlet n = wgt.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: 0, count: cap + 1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\n// \u5012\u5e8f\u904d\u5386\nfor c in stride(from: cap, through: 1, by: -1) {\nif wgt[i - 1] <= c {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n}\n}\n}\nreturn dp[cap]\n}\n
            knapsack.zig
            // 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn knapsackDPComp(wgt: []i32, val: []i32, comptime cap: usize) i32 {\nvar n = wgt.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_]i32{0} ** (cap + 1);\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\n// \u5012\u5e8f\u904d\u5386\nvar c = cap;\nwhile (c > 0) : (c -= 1) {\nif (wgt[i - 1] < c) {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = @max(dp[c], dp[c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            knapsack.dart
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(List<int> wgt, List<int> val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<int> dp = List.filled(cap + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\n// \u5012\u5e8f\u904d\u5386\nfor (int c = cap; c >= 1; c--) {\nif (wgt[i - 1] <= c) {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            knapsack.rs
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn knapsack_dp_comp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\nlet n = wgt.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![0; cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\n// \u5012\u5e8f\u904d\u5386\nfor c in (1..=cap).rev() {\nif wgt[i - 1] <= c as i32 {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = std::cmp::max(dp[c], dp[c - wgt[i - 1] as usize] + val[i - 1]);\n}\n}\n}\ndp[cap]\n}\n
            "},{"location":"chapter_dynamic_programming/summary/","title":"14.7 \u00a0 \u5c0f\u7ed3","text":"
            • \u52a8\u6001\u89c4\u5212\u5bf9\u95ee\u9898\u8fdb\u884c\u5206\u89e3\uff0c\u5e76\u901a\u8fc7\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\u6765\u89c4\u907f\u91cd\u590d\u8ba1\u7b97\uff0c\u5b9e\u73b0\u9ad8\u6548\u7684\u8ba1\u7b97\u6548\u7387\u3002
            • \u4e0d\u8003\u8651\u65f6\u95f4\u7684\u524d\u63d0\u4e0b\uff0c\u6240\u6709\u52a8\u6001\u89c4\u5212\u95ee\u9898\u90fd\u53ef\u4ee5\u7528\u56de\u6eaf\uff08\u66b4\u529b\u641c\u7d22\uff09\u8fdb\u884c\u6c42\u89e3\uff0c\u4f46\u9012\u5f52\u6811\u4e2d\u5b58\u5728\u5927\u91cf\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u6548\u7387\u6781\u4f4e\u3002\u901a\u8fc7\u5f15\u5165\u8bb0\u5fc6\u5316\u5217\u8868\uff0c\u53ef\u4ee5\u5b58\u50a8\u6240\u6709\u8ba1\u7b97\u8fc7\u7684\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u4ece\u800c\u4fdd\u8bc1\u91cd\u53e0\u5b50\u95ee\u9898\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\u3002
            • \u8bb0\u5fc6\u5316\u9012\u5f52\u662f\u4e00\u79cd\u4ece\u9876\u81f3\u5e95\u7684\u9012\u5f52\u5f0f\u89e3\u6cd5\uff0c\u800c\u4e0e\u4e4b\u5bf9\u5e94\u7684\u52a8\u6001\u89c4\u5212\u662f\u4e00\u79cd\u4ece\u5e95\u81f3\u9876\u7684\u9012\u63a8\u5f0f\u89e3\u6cd5\uff0c\u5176\u5982\u540c\u201c\u586b\u5199\u8868\u683c\u201d\u4e00\u6837\u3002\u7531\u4e8e\u5f53\u524d\u72b6\u6001\u4ec5\u4f9d\u8d56\u4e8e\u67d0\u4e9b\u5c40\u90e8\u72b6\u6001\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u6d88\u9664 \\(dp\\) \u8868\u7684\u4e00\u4e2a\u7ef4\u5ea6\uff0c\u4ece\u800c\u964d\u4f4e\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
            • \u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u901a\u7528\u7684\u7b97\u6cd5\u601d\u8def\uff0c\u5728\u5206\u6cbb\u3001\u52a8\u6001\u89c4\u5212\u3001\u56de\u6eaf\u4e2d\u5177\u6709\u4e0d\u540c\u7684\u6027\u8d28\u3002
            • \u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u4e09\u5927\u7279\u6027\uff1a\u91cd\u53e0\u5b50\u95ee\u9898\u3001\u6700\u4f18\u5b50\u7ed3\u6784\u3001\u65e0\u540e\u6548\u6027\u3002
            • \u5982\u679c\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u53ef\u4ee5\u4ece\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6784\u5efa\u5f97\u6765\uff0c\u5219\u5b83\u5c31\u5177\u6709\u6700\u4f18\u5b50\u7ed3\u6784\u3002
            • \u65e0\u540e\u6548\u6027\u6307\u5bf9\u4e8e\u4e00\u4e2a\u72b6\u6001\uff0c\u5176\u672a\u6765\u53d1\u5c55\u53ea\u4e0e\u8be5\u72b6\u6001\u6709\u5173\uff0c\u4e0e\u5176\u6240\u7ecf\u5386\u7684\u8fc7\u53bb\u7684\u6240\u6709\u72b6\u6001\u65e0\u5173\u3002\u8bb8\u591a\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u90fd\u4e0d\u5177\u6709\u65e0\u540e\u6548\u6027\uff0c\u65e0\u6cd5\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u5feb\u901f\u6c42\u89e3\u3002

            \u80cc\u5305\u95ee\u9898

            • \u80cc\u5305\u95ee\u9898\u662f\u6700\u5178\u578b\u7684\u52a8\u6001\u89c4\u5212\u9898\u76ee\uff0c\u5177\u6709 0-1 \u80cc\u5305\u3001\u5b8c\u5168\u80cc\u5305\u3001\u591a\u91cd\u80cc\u5305\u7b49\u53d8\u79cd\u95ee\u9898\u3002
            • 0-1 \u80cc\u5305\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u524d \\(i\\) \u4e2a\u7269\u54c1\u5728\u5269\u4f59\u5bb9\u91cf\u4e3a \\(c\\) \u7684\u80cc\u5305\u4e2d\u7684\u6700\u5927\u4ef7\u503c\u3002\u6839\u636e\u4e0d\u653e\u5165\u80cc\u5305\u548c\u653e\u5165\u80cc\u5305\u4e24\u79cd\u51b3\u7b56\uff0c\u53ef\u5f97\u5230\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5e76\u6784\u5efa\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002\u5728\u72b6\u6001\u538b\u7f29\u4e2d\uff0c\u7531\u4e8e\u6bcf\u4e2a\u72b6\u6001\u4f9d\u8d56\u6b63\u4e0a\u65b9\u548c\u5de6\u4e0a\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u9700\u8981\u5012\u5e8f\u904d\u5386\u5217\u8868\uff0c\u907f\u514d\u5de6\u4e0a\u65b9\u72b6\u6001\u88ab\u8986\u76d6\u3002
            • \u5b8c\u5168\u80cc\u5305\u7684\u6bcf\u79cd\u7269\u54c1\u7684\u9009\u53d6\u6570\u91cf\u65e0\u9650\u5236\uff0c\u56e0\u6b64\u9009\u62e9\u653e\u5165\u7269\u54c1\u7684\u72b6\u6001\u8f6c\u79fb\u4e0e 0-1 \u80cc\u5305\u4e0d\u540c\u3002\u7531\u4e8e\u72b6\u6001\u4f9d\u8d56\u4e8e\u6b63\u4e0a\u65b9\u548c\u6b63\u5de6\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u5728\u72b6\u6001\u538b\u7f29\u4e2d\u5e94\u5f53\u6b63\u5e8f\u904d\u5386\u3002
            • \u96f6\u94b1\u5151\u6362\u95ee\u9898\u662f\u5b8c\u5168\u80cc\u5305\u7684\u4e00\u4e2a\u53d8\u79cd\u3002\u5b83\u4ece\u6c42\u201c\u6700\u5927\u201d\u4ef7\u503c\u53d8\u4e3a\u6c42\u201c\u6700\u5c0f\u201d\u786c\u5e01\u6570\u91cf\uff0c\u56e0\u6b64\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(\\max()\\) \u5e94\u6539\u4e3a \\(\\min()\\) \u3002\u4ece\u6c42\u201c\u4e0d\u8d85\u8fc7\u201d\u80cc\u5305\u5bb9\u91cf\u5230\u6c42\u201c\u6070\u597d\u201d\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u4f7f\u7528 \\(amt + 1\\) \u6765\u8868\u793a\u201c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u201d\u7684\u65e0\u6548\u89e3\u3002
            • \u96f6\u94b1\u5151\u6362 II \u95ee\u9898\u4ece\u6c42\u201c\u6700\u5c11\u786c\u5e01\u6570\u91cf\u201d\u6539\u4e3a\u6c42\u201c\u786c\u5e01\u7ec4\u5408\u6570\u91cf\u201d\uff0c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u76f8\u5e94\u5730\u4ece \\(\\min()\\) \u6539\u4e3a\u6c42\u548c\u8fd0\u7b97\u7b26\u3002

            \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898

            • \u7f16\u8f91\u8ddd\u79bb\uff08Levenshtein \u8ddd\u79bb\uff09\u7528\u4e8e\u8861\u91cf\u4e24\u4e2a\u5b57\u7b26\u4e32\u4e4b\u95f4\u7684\u76f8\u4f3c\u5ea6\uff0c\u5176\u5b9a\u4e49\u4e3a\u4ece\u4e00\u4e2a\u5b57\u7b26\u4e32\u5230\u53e6\u4e00\u4e2a\u5b57\u7b26\u4e32\u7684\u6700\u5c0f\u7f16\u8f91\u6b65\u6570\uff0c\u7f16\u8f91\u64cd\u4f5c\u5305\u62ec\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66ff\u6362\u3002
            • \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u5c06 \\(s\\) \u7684\u524d \\(i\\) \u4e2a\u5b57\u7b26\u66f4\u6539\u4e3a \\(t\\) \u7684\u524d \\(j\\) \u4e2a\u5b57\u7b26\u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002\u5f53 \\(s[i] \\ne t[j]\\) \u65f6\uff0c\u5177\u6709\u4e09\u79cd\u51b3\u7b56\uff1a\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66ff\u6362\uff0c\u5b83\u4eec\u90fd\u6709\u76f8\u5e94\u7684\u5269\u4f59\u5b50\u95ee\u9898\u3002\u636e\u6b64\u4fbf\u53ef\u4ee5\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\u4e0e\u6784\u5efa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002\u800c\u5f53 \\(s[i] = t[j]\\) \u65f6\uff0c\u65e0\u987b\u7f16\u8f91\u5f53\u524d\u5b57\u7b26\u3002
            • \u5728\u7f16\u8f91\u8ddd\u79bb\u4e2d\uff0c\u72b6\u6001\u4f9d\u8d56\u4e8e\u5176\u6b63\u4e0a\u65b9\u3001\u6b63\u5de6\u65b9\u3001\u5de6\u4e0a\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u72b6\u6001\u538b\u7f29\u540e\u6b63\u5e8f\u6216\u5012\u5e8f\u904d\u5386\u90fd\u65e0\u6cd5\u6b63\u786e\u5730\u8fdb\u884c\u72b6\u6001\u8f6c\u79fb\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u5229\u7528\u4e00\u4e2a\u53d8\u91cf\u6682\u5b58\u5de6\u4e0a\u65b9\u72b6\u6001\uff0c\u4ece\u800c\u8f6c\u5316\u5230\u4e0e\u5b8c\u5168\u80cc\u5305\u7b49\u4ef7\u7684\u60c5\u51b5\uff0c\u53ef\u4ee5\u5728\u72b6\u6001\u538b\u7f29\u540e\u8fdb\u884c\u6b63\u5e8f\u904d\u5386\u3002
            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/","title":"14.5 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898","text":"

            \u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5148\u6c42\u89e3\u53e6\u4e00\u4e2a\u5e38\u89c1\u7684\u80cc\u5305\u95ee\u9898\uff1a\u5b8c\u5168\u80cc\u5305\uff0c\u518d\u4e86\u89e3\u5b83\u7684\u4e00\u79cd\u7279\u4f8b\uff1a\u96f6\u94b1\u5151\u6362\u3002

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1451","title":"14.5.1 \u00a0 \u5b8c\u5168\u80cc\u5305","text":"

            Question

            \u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\) \u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u5728\u4e0d\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\u4e0b\u80fd\u653e\u5165\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002

            \u56fe\uff1a\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"

            \u5b8c\u5168\u80cc\u5305\u548c 0-1 \u80cc\u5305\u95ee\u9898\u975e\u5e38\u76f8\u4f3c\uff0c\u533a\u522b\u4ec5\u5728\u4e8e\u4e0d\u9650\u5236\u7269\u54c1\u7684\u9009\u62e9\u6b21\u6570\u3002

            • \u5728 0-1 \u80cc\u5305\u4e2d\uff0c\u6bcf\u4e2a\u7269\u54c1\u53ea\u6709\u4e00\u4e2a\uff0c\u56e0\u6b64\u5c06\u7269\u54c1 \\(i\\) \u653e\u5165\u80cc\u5305\u540e\uff0c\u53ea\u80fd\u4ece\u524d \\(i-1\\) \u4e2a\u7269\u54c1\u4e2d\u9009\u62e9\u3002
            • \u5728\u5b8c\u5168\u80cc\u5305\u4e2d\uff0c\u6bcf\u4e2a\u7269\u54c1\u6709\u65e0\u6570\u4e2a\uff0c\u56e0\u6b64\u5c06\u7269\u54c1 \\(i\\) \u653e\u5165\u80cc\u5305\u540e\uff0c\u4ecd\u53ef\u4ee5\u4ece\u524d \\(i\\) \u4e2a\u7269\u54c1\u4e2d\u9009\u62e9\u3002

            \u8fd9\u5c31\u5bfc\u81f4\u4e86\u72b6\u6001\u8f6c\u79fb\u7684\u53d8\u5316\uff0c\u5bf9\u4e8e\u72b6\u6001 \\([i, c]\\) \u6709\uff1a

            • \u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u4e0e 0-1 \u80cc\u5305\u76f8\u540c\uff0c\u8f6c\u79fb\u81f3 \\([i-1, c]\\) \u3002
            • \u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u4e0e 0-1 \u80cc\u5305\u4e0d\u540c\uff0c\u8f6c\u79fb\u81f3 \\([i, c-wgt[i-1]]\\) \u3002

            \u4ece\u800c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u53d8\u4e3a\uff1a

            \\[ dp[i, c] = \\max(dp[i-1, c], dp[i, c - wgt[i-1]] + val[i-1]) \\]"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u5bf9\u6bd4\u4e24\u9053\u9898\u76ee\u7684\u4ee3\u7801\uff0c\u72b6\u6001\u8f6c\u79fb\u4e2d\u6709\u4e00\u5904\u4ece \\(i-1\\) \u53d8\u4e3a \\(i\\) \uff0c\u5176\u4f59\u5b8c\u5168\u4e00\u81f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust unbounded_knapsack.java
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(int[] wgt, int[] val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[][] dp = new int[n + 1][cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            unbounded_knapsack.cpp
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(vector<int> &wgt, vector<int> &val, int cap) {\nint n = wgt.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            unbounded_knapsack.py
            def unbounded_knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:\n\"\"\"\u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(wgt)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [[0] * (cap + 1) for _ in range(n + 1)]\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\nfor c in range(1, cap + 1):\nif wgt[i - 1] > c:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c]\nelse:\n# \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])\nreturn dp[n][cap]\n
            unbounded_knapsack.go
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDP(wgt, val []int, cap int) int {\nn := len(wgt)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([][]int, n+1)\nfor i := 0; i <= n; i++ {\ndp[i] = make([]int, cap+1)\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\nfor c := 1; c <= cap; c++ {\nif wgt[i-1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i-1][c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i][c-wgt[i-1]]+val[i-1])))\n}\n}\n}\nreturn dp[n][cap]\n}\n
            unbounded_knapsack.js
            [class]{}-[func]{unboundedKnapsackDP}\n
            unbounded_knapsack.ts
            [class]{}-[func]{unboundedKnapsackDP}\n
            unbounded_knapsack.c
            [class]{}-[func]{unboundedKnapsackDP}\n
            unbounded_knapsack.cs
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(int[] wgt, int[] val, int cap) {\nint n = wgt.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[,] dp = new int[n + 1, cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i, c] = dp[i - 1, c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i, c] = Math.Max(dp[i - 1, c], dp[i, c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n, cap];\n}\n
            unbounded_knapsack.swift
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {\nlet n = wgt.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor c in stride(from: 1, through: cap, by: 1) {\nif wgt[i - 1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])\n}\n}\n}\nreturn dp[n][cap]\n}\n
            unbounded_knapsack.zig
            // \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\nfn unboundedKnapsackDP(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\ncomptime var n = wgt.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_][cap + 1]i32{[_]i32{0} ** (cap + 1)} ** (n + 1);\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..cap + 1) |c| {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = @max(dp[i - 1][c], dp[i][c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            unbounded_knapsack.dart
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(List<int> wgt, List<int> val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            unbounded_knapsack.rs
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfn unbounded_knapsack_dp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\nlet n = wgt.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![vec![0; cap + 1]; n + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor c in 1..=cap {\nif wgt[i - 1] > c as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = std::cmp::max(dp[i - 1][c], dp[i][c - wgt[i - 1] as usize] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3","title":"3. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u7531\u4e8e\u5f53\u524d\u72b6\u6001\u662f\u4ece\u5de6\u8fb9\u548c\u4e0a\u8fb9\u7684\u72b6\u6001\u8f6c\u79fb\u800c\u6765\uff0c\u56e0\u6b64\u72b6\u6001\u538b\u7f29\u540e\u5e94\u8be5\u5bf9 \\(dp\\) \u8868\u4e2d\u7684\u6bcf\u4e00\u884c\u91c7\u53d6\u6b63\u5e8f\u904d\u5386\u3002

            \u8fd9\u4e2a\u904d\u5386\u987a\u5e8f\u4e0e 0-1 \u80cc\u5305\u6b63\u597d\u76f8\u53cd\u3002\u8bf7\u901a\u8fc7\u4ee5\u4e0b\u52a8\u753b\u6765\u7406\u89e3\u4e24\u8005\u7684\u533a\u522b\u3002

            <1><2><3><4><5><6>

            \u56fe\uff1a\u5b8c\u5168\u80cc\u5305\u7684\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            \u4ee3\u7801\u5b9e\u73b0\u6bd4\u8f83\u7b80\u5355\uff0c\u4ec5\u9700\u5c06\u6570\u7ec4 dp \u7684\u7b2c\u4e00\u7ef4\u5220\u9664\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust unbounded_knapsack.java
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            unbounded_knapsack.cpp
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {\nint n = wgt.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<int> dp(cap + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            unbounded_knapsack.py
            def unbounded_knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:\n\"\"\"\u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(wgt)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [0] * (cap + 1)\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\n# \u6b63\u5e8f\u904d\u5386\nfor c in range(1, cap + 1):\nif wgt[i - 1] > c:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c]\nelse:\n# \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\nreturn dp[cap]\n
            unbounded_knapsack.go
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDPComp(wgt, val []int, cap int) int {\nn := len(wgt)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([]int, cap+1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\nfor c := 1; c <= cap; c++ {\nif wgt[i-1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))\n}\n}\n}\nreturn dp[cap]\n}\n
            unbounded_knapsack.js
            [class]{}-[func]{unboundedKnapsackDPComp}\n
            unbounded_knapsack.ts
            [class]{}-[func]{unboundedKnapsackDPComp}\n
            unbounded_knapsack.c
            [class]{}-[func]{unboundedKnapsackDPComp}\n
            unbounded_knapsack.cs
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {\nint n = wgt.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = Math.Max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            unbounded_knapsack.swift
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {\nlet n = wgt.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: 0, count: cap + 1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor c in stride(from: 1, through: cap, by: 1) {\nif wgt[i - 1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n}\n}\n}\nreturn dp[cap]\n}\n
            unbounded_knapsack.zig
            // \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn unboundedKnapsackDPComp(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\ncomptime var n = wgt.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_]i32{0} ** (cap + 1);\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..cap + 1) |c| {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = @max(dp[c], dp[c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            unbounded_knapsack.dart
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(List<int> wgt, List<int> val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<int> dp = List.filled(cap + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            unbounded_knapsack.rs
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn unbounded_knapsack_dp_comp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\nlet n = wgt.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![0; cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor c in 1..=cap {\nif wgt[i - 1] > c as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = std::cmp::max(dp[c], dp[c - wgt[i - 1] as usize] + val[i - 1]);\n}\n}\n}\ndp[cap]\n}\n
            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1452","title":"14.5.2 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898","text":"

            \u80cc\u5305\u95ee\u9898\u662f\u4e00\u5927\u7c7b\u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u4ee3\u8868\uff0c\u5176\u62e5\u6709\u5f88\u591a\u7684\u53d8\u79cd\uff0c\u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002

            Question

            \u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u80fd\u591f\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u6700\u5c11\u786c\u5e01\u4e2a\u6570\u3002\u5982\u679c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u5219\u8fd4\u56de \\(-1\\) \u3002

            \u56fe\uff1a\u96f6\u94b1\u5151\u6362\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1_1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"

            \u96f6\u94b1\u5151\u6362\u53ef\u4ee5\u770b\u4f5c\u662f\u5b8c\u5168\u80cc\u5305\u7684\u4e00\u79cd\u7279\u6b8a\u60c5\u51b5\uff0c\u4e24\u8005\u5177\u6709\u4ee5\u4e0b\u8054\u7cfb\u4e0e\u4e0d\u540c\u70b9\uff1a

            • \u4e24\u9053\u9898\u53ef\u4ee5\u76f8\u4e92\u8f6c\u6362\uff0c\u201c\u7269\u54c1\u201d\u5bf9\u5e94\u4e8e\u201c\u786c\u5e01\u201d\u3001\u201c\u7269\u54c1\u91cd\u91cf\u201d\u5bf9\u5e94\u4e8e\u201c\u786c\u5e01\u9762\u503c\u201d\u3001\u201c\u80cc\u5305\u5bb9\u91cf\u201d\u5bf9\u5e94\u4e8e\u201c\u76ee\u6807\u91d1\u989d\u201d\u3002
            • \u4f18\u5316\u76ee\u6807\u76f8\u53cd\uff0c\u80cc\u5305\u95ee\u9898\u662f\u8981\u6700\u5927\u5316\u7269\u54c1\u4ef7\u503c\uff0c\u96f6\u94b1\u5151\u6362\u95ee\u9898\u662f\u8981\u6700\u5c0f\u5316\u786c\u5e01\u6570\u91cf\u3002
            • \u80cc\u5305\u95ee\u9898\u662f\u6c42\u201c\u4e0d\u8d85\u8fc7\u201d\u80cc\u5305\u5bb9\u91cf\u4e0b\u7684\u89e3\uff0c\u96f6\u94b1\u5151\u6362\u662f\u6c42\u201c\u6070\u597d\u201d\u51d1\u5230\u76ee\u6807\u91d1\u989d\u7684\u89e3\u3002

            \u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868

            \u72b6\u6001 \\([i, a]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u524d \\(i\\) \u79cd\u786c\u5e01\u80fd\u591f\u51d1\u51fa\u91d1\u989d \\(a\\) \u7684\u6700\u5c11\u786c\u5e01\u4e2a\u6570\uff0c\u8bb0\u4e3a \\(dp[i, a]\\) \u3002

            \u4e8c\u7ef4 \\(dp\\) \u8868\u7684\u5c3a\u5bf8\u4e3a \\((n+1) \\times (amt+1)\\) \u3002

            \u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b

            \u4e0e\u5b8c\u5168\u80cc\u5305\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u57fa\u672c\u76f8\u540c\uff0c\u4e0d\u540c\u70b9\u5728\u4e8e\uff1a

            • \u672c\u9898\u8981\u6c42\u6700\u5c0f\u503c\uff0c\u56e0\u6b64\u9700\u5c06\u8fd0\u7b97\u7b26 \\(\\max()\\) \u66f4\u6539\u4e3a \\(\\min()\\) \u3002
            • \u4f18\u5316\u4e3b\u4f53\u662f\u786c\u5e01\u6570\u91cf\u800c\u975e\u5546\u54c1\u4ef7\u503c\uff0c\u56e0\u6b64\u5728\u9009\u4e2d\u786c\u5e01\u65f6\u6267\u884c \\(+1\\) \u5373\u53ef\u3002
            \\[ dp[i, a] = \\min(dp[i-1, a], dp[i, a - coins[i-1]] + 1) \\]

            \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f

            \u5f53\u76ee\u6807\u91d1\u989d\u4e3a \\(0\\) \u65f6\uff0c\u51d1\u51fa\u5b83\u7684\u6700\u5c11\u786c\u5e01\u4e2a\u6570\u4e3a \\(0\\) \uff0c\u5373\u9996\u5217\u6240\u6709 \\(dp[i, 0]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002

            \u5f53\u65e0\u786c\u5e01\u65f6\uff0c\u65e0\u6cd5\u51d1\u51fa\u4efb\u610f \\(> 0\\) \u7684\u76ee\u6807\u91d1\u989d\uff0c\u5373\u662f\u65e0\u6548\u89e3\u3002\u4e3a\u4f7f\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(\\min()\\) \u51fd\u6570\u80fd\u591f\u8bc6\u522b\u5e76\u8fc7\u6ee4\u65e0\u6548\u89e3\uff0c\u6211\u4eec\u8003\u8651\u4f7f\u7528 \\(+ \\infty\\) \u6765\u8868\u793a\u5b83\u4eec\uff0c\u5373\u4ee4\u9996\u884c\u6240\u6709 \\(dp[0, a]\\) \u90fd\u7b49\u4e8e \\(+ \\infty\\) \u3002

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u5e76\u672a\u63d0\u4f9b \\(+ \\infty\\) \u53d8\u91cf\uff0c\u53ea\u80fd\u4f7f\u7528\u6574\u578b int \u7684\u6700\u5927\u503c\u6765\u4ee3\u66ff\u3002\u800c\u8fd9\u53c8\u4f1a\u5bfc\u81f4\u5927\u6570\u8d8a\u754c\uff1a\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(+ 1\\) \u64cd\u4f5c\u53ef\u80fd\u53d1\u751f\u6ea2\u51fa\u3002

            \u4e3a\u6b64\uff0c\u6211\u4eec\u91c7\u7528\u6570\u5b57 \\(amt + 1\\) \u6765\u8868\u793a\u65e0\u6548\u89e3\uff0c\u56e0\u4e3a\u51d1\u51fa \\(amt\\) \u7684\u786c\u5e01\u4e2a\u6570\u6700\u591a\u4e3a \\(amt\\) \u4e2a\u3002

            \u6700\u540e\u8fd4\u56de\u524d\uff0c\u5224\u65ad \\(dp[n, amt]\\) \u662f\u5426\u7b49\u4e8e \\(amt + 1\\) \uff0c\u82e5\u662f\u5219\u8fd4\u56de \\(-1\\) \uff0c\u4ee3\u8868\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust coin_change.java
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(int[] coins, int amt) {\nint n = coins.length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nint[][] dp = new int[n + 1][amt + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int a = 1; a <= amt; a++) {\ndp[0][a] = MAX;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
            coin_change.cpp
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(vector<int> &coins, int amt) {\nint n = coins.size();\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nvector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int a = 1; a <= amt; a++) {\ndp[0][a] = MAX;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
            coin_change.py
            def coin_change_dp(coins: list[int], amt: int) -> int:\n\"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(coins)\nMAX = amt + 1\n# \u521d\u59cb\u5316 dp \u8868\ndp = [[0] * (amt + 1) for _ in range(n + 1)]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor a in range(1, amt + 1):\ndp[0][a] = MAX\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in range(1, n + 1):\nfor a in range(1, amt + 1):\nif coins[i - 1] > a:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a]\nelse:\n# \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)\nreturn dp[n][amt] if dp[n][amt] != MAX else -1\n
            coin_change.go
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDP(coins []int, amt int) int {\nn := len(coins)\nmax := amt + 1\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([][]int, n+1)\nfor i := 0; i <= n; i++ {\ndp[i] = make([]int, amt+1)\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor a := 1; a <= amt; a++ {\ndp[0][a] = max\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i := 1; i <= n; i++ {\nfor a := 1; a <= amt; a++ {\nif coins[i-1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i-1][a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = int(math.Min(float64(dp[i-1][a]), float64(dp[i][a-coins[i-1]]+1)))\n}\n}\n}\nif dp[n][amt] != max {\nreturn dp[n][amt]\n}\nreturn -1\n}\n
            coin_change.js
            [class]{}-[func]{coinChangeDP}\n
            coin_change.ts
            [class]{}-[func]{coinChangeDP}\n
            coin_change.c
            [class]{}-[func]{coinChangeDP}\n
            coin_change.cs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(int[] coins, int amt) {\nint n = coins.Length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nint[,] dp = new int[n + 1, amt + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int a = 1; a <= amt; a++) {\ndp[0, a] = MAX;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i, a] = dp[i - 1, a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i, a] = Math.Min(dp[i - 1, a], dp[i, a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[n, amt] != MAX ? dp[n, amt] : -1;\n}\n
            coin_change.swift
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDP(coins: [Int], amt: Int) -> Int {\nlet n = coins.count\nlet MAX = amt + 1\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor a in stride(from: 1, through: amt, by: 1) {\ndp[0][a] = MAX\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in stride(from: 1, through: n, by: 1) {\nfor a in stride(from: 1, through: amt, by: 1) {\nif coins[i - 1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)\n}\n}\n}\nreturn dp[n][amt] != MAX ? dp[n][amt] : -1\n}\n
            coin_change.zig
            // \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212\nfn coinChangeDP(comptime coins: []i32, comptime amt: usize) i32 {\ncomptime var n = coins.len;\ncomptime var max = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_][amt + 1]i32{[_]i32{0} ** (amt + 1)} ** (n + 1);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (1..amt + 1) |a| {\ndp[0][a] = max;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (1..n + 1) |i| {\nfor (1..amt + 1) |a| {\nif (coins[i - 1] > @as(i32, @intCast(a))) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = @min(dp[i - 1][a], dp[i][a - @as(usize, @intCast(coins[i - 1]))] + 1);\n}\n}\n}\nif (dp[n][amt] != max) {\nreturn @intCast(dp[n][amt]);\n} else {\nreturn -1;\n}\n}\n
            coin_change.dart
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(List<int> coins, int amt) {\nint n = coins.length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nList<List<int>> dp = List.generate(n + 1, (index) => List.filled(amt + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int a = 1; a <= amt; a++) {\ndp[0][a] = MAX;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
            coin_change.rs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfn coin_change_dp(coins: &[i32], amt: usize) -> i32 {\nlet n = coins.len();\nlet max = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![vec![0; amt + 1]; n + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor a in 1..= amt {\ndp[0][a] = max;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in 1..=n {\nfor a in 1..=amt {\nif coins[i - 1] > a as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = std::cmp::min(dp[i - 1][a], dp[i][a - coins[i - 1] as usize] + 1);\n}\n}\n}\nif dp[n][amt] != max { return dp[n][amt] as i32; } else { -1 }\n}\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u96f6\u94b1\u5151\u6362\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b\uff0c\u548c\u5b8c\u5168\u80cc\u5305\u975e\u5e38\u76f8\u4f3c\u3002

            <1><2><3><4><5><6><7><8><9><10><11><12><13><14><15>

            \u56fe\uff1a\u96f6\u94b1\u5151\u6362\u95ee\u9898\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3_1","title":"3. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u96f6\u94b1\u5151\u6362\u7684\u72b6\u6001\u538b\u7f29\u7684\u5904\u7406\u65b9\u5f0f\u548c\u5b8c\u5168\u80cc\u5305\u4e00\u81f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust coin_change.java
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(int[] coins, int amt) {\nint n = coins.length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[amt + 1];\nArrays.fill(dp, MAX);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[amt] != MAX ? dp[amt] : -1;\n}\n
            coin_change.cpp
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(vector<int> &coins, int amt) {\nint n = coins.size();\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nvector<int> dp(amt + 1, MAX);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[amt] != MAX ? dp[amt] : -1;\n}\n
            coin_change.py
            def coin_change_dp_comp(coins: list[int], amt: int) -> int:\n\"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(coins)\nMAX = amt + 1\n# \u521d\u59cb\u5316 dp \u8868\ndp = [MAX] * (amt + 1)\ndp[0] = 0\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\n# \u6b63\u5e8f\u904d\u5386\nfor a in range(1, amt + 1):\nif coins[i - 1] > a:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\nelse:\n# \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)\nreturn dp[amt] if dp[amt] != MAX else -1\n
            coin_change.go
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDPComp(coins []int, amt int) int {\nn := len(coins)\nmax := amt + 1\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([]int, amt+1)\nfor i := 1; i <= amt; i++ {\ndp[i] = max\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\n// \u5012\u5e8f\u904d\u5386\nfor a := 1; a <= amt; a++ {\nif coins[i-1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = int(math.Min(float64(dp[a]), float64(dp[a-coins[i-1]]+1)))\n}\n}\n}\nif dp[amt] != max {\nreturn dp[amt]\n}\nreturn -1\n}\n
            coin_change.js
            [class]{}-[func]{coinChangeDPComp}\n
            coin_change.ts
            [class]{}-[func]{coinChangeDPComp}\n
            coin_change.c
            [class]{}-[func]{coinChangeDPComp}\n
            coin_change.cs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(int[] coins, int amt) {\nint n = coins.Length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[amt + 1];\nArray.Fill(dp, MAX);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = Math.Min(dp[a], dp[a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[amt] != MAX ? dp[amt] : -1;\n}\n
            coin_change.swift
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDPComp(coins: [Int], amt: Int) -> Int {\nlet n = coins.count\nlet MAX = amt + 1\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: MAX, count: amt + 1)\ndp[0] = 0\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor a in stride(from: 1, through: amt, by: 1) {\nif coins[i - 1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)\n}\n}\n}\nreturn dp[amt] != MAX ? dp[amt] : -1\n}\n
            coin_change.zig
            // \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn coinChangeDPComp(comptime coins: []i32, comptime amt: usize) i32 {\ncomptime var n = coins.len;\ncomptime var max = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_]i32{0} ** (amt + 1);\n@memset(&dp, max);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..amt + 1) |a| {\nif (coins[i - 1] > @as(i32, @intCast(a))) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = @min(dp[a], dp[a - @as(usize, @intCast(coins[i - 1]))] + 1);\n}\n}\n}\nif (dp[amt] != max) {\nreturn @intCast(dp[amt]);\n} else {\nreturn -1;\n}\n}\n
            coin_change.dart
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(List<int> coins, int amt) {\nint n = coins.length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nList<int> dp = List.filled(amt + 1, MAX);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[amt] != MAX ? dp[amt] : -1;\n}\n
            coin_change.rs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn coin_change_dp_comp(coins: &[i32], amt: usize) -> i32 {\nlet n = coins.len();\nlet max = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![0; amt + 1];\ndp.fill(max);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor a in 1..=amt {\nif coins[i - 1] > a as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = std::cmp::min(dp[a], dp[a - coins[i - 1] as usize] + 1);\n}\n}\n}\nif dp[amt] != max { return dp[amt] as i32; } else { -1 }\n}\n
            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1453-ii","title":"14.5.3 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898 II","text":"

            Question

            \u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u5728\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u786c\u5e01\u7ec4\u5408\u6570\u91cf\u3002

            \u56fe\uff1a\u96f6\u94b1\u5151\u6362\u95ee\u9898 II \u7684\u793a\u4f8b\u6570\u636e

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1_2","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"

            \u76f8\u6bd4\u4e8e\u4e0a\u4e00\u9898\uff0c\u672c\u9898\u76ee\u6807\u662f\u7ec4\u5408\u6570\u91cf\uff0c\u56e0\u6b64\u5b50\u95ee\u9898\u53d8\u4e3a\uff1a\u524d \\(i\\) \u79cd\u786c\u5e01\u80fd\u591f\u51d1\u51fa\u91d1\u989d \\(a\\) \u7684\u7ec4\u5408\u6570\u91cf\u3002\u800c \\(dp\\) \u8868\u4ecd\u7136\u662f\u5c3a\u5bf8\u4e3a \\((n+1) \\times (amt + 1)\\) \u7684\u4e8c\u7ef4\u77e9\u9635\u3002

            \u5f53\u524d\u72b6\u6001\u7684\u7ec4\u5408\u6570\u91cf\u7b49\u4e8e\u4e0d\u9009\u5f53\u524d\u786c\u5e01\u4e0e\u9009\u5f53\u524d\u786c\u5e01\u8fd9\u4e24\u79cd\u51b3\u7b56\u7684\u7ec4\u5408\u6570\u91cf\u4e4b\u548c\u3002\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a

            \\[ dp[i, a] = dp[i-1, a] + dp[i, a - coins[i-1]] \\]

            \u5f53\u76ee\u6807\u91d1\u989d\u4e3a \\(0\\) \u65f6\uff0c\u65e0\u987b\u9009\u62e9\u4efb\u4f55\u786c\u5e01\u5373\u53ef\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u5e94\u5c06\u9996\u5217\u6240\u6709 \\(dp[i, 0]\\) \u90fd\u521d\u59cb\u5316\u4e3a \\(1\\) \u3002\u5f53\u65e0\u786c\u5e01\u65f6\uff0c\u65e0\u6cd5\u51d1\u51fa\u4efb\u4f55 \\(>0\\) \u7684\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u9996\u884c\u6240\u6709 \\(dp[0, a]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2_2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"JavaC++PythonGoJSTSCC#SwiftZigDartRust coin_change_ii.java
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(int[] coins, int amt) {\nint n = coins.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[][] dp = new int[n + 1][amt + 1];\n// \u521d\u59cb\u5316\u9996\u5217\nfor (int i = 0; i <= n; i++) {\ndp[i][0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n}\n}\n}\nreturn dp[n][amt];\n}\n
            coin_change_ii.cpp
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(vector<int> &coins, int amt) {\nint n = coins.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));\n// \u521d\u59cb\u5316\u9996\u5217\nfor (int i = 0; i <= n; i++) {\ndp[i][0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n}\n}\n}\nreturn dp[n][amt];\n}\n
            coin_change_ii.py
            def coin_change_ii_dp(coins: list[int], amt: int) -> int:\n\"\"\"\u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(coins)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [[0] * (amt + 1) for _ in range(n + 1)]\n# \u521d\u59cb\u5316\u9996\u5217\nfor i in range(n + 1):\ndp[i][0] = 1\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\nfor a in range(1, amt + 1):\nif coins[i - 1] > a:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a]\nelse:\n# \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]\nreturn dp[n][amt]\n
            coin_change_ii.go
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDP(coins []int, amt int) int {\nn := len(coins)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([][]int, n+1)\nfor i := 0; i <= n; i++ {\ndp[i] = make([]int, amt+1)\n}\n// \u521d\u59cb\u5316\u9996\u5217\nfor i := 0; i <= n; i++ {\ndp[i][0] = 1\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i := 1; i <= n; i++ {\nfor a := 1; a <= amt; a++ {\nif coins[i-1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i-1][a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = dp[i-1][a] + dp[i][a-coins[i-1]]\n}\n}\n}\nreturn dp[n][amt]\n}\n
            coin_change_ii.js
            [class]{}-[func]{coinChangeIIDP}\n
            coin_change_ii.ts
            [class]{}-[func]{coinChangeIIDP}\n
            coin_change_ii.c
            [class]{}-[func]{coinChangeIIDP}\n
            coin_change_ii.cs
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(int[] coins, int amt) {\nint n = coins.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[,] dp = new int[n + 1, amt + 1];\n// \u521d\u59cb\u5316\u9996\u5217\nfor (int i = 0; i <= n; i++) {\ndp[i, 0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i, a] = dp[i - 1, a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i, a] = dp[i - 1, a] + dp[i, a - coins[i - 1]];\n}\n}\n}\nreturn dp[n, amt];\n}\n
            coin_change_ii.swift
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDP(coins: [Int], amt: Int) -> Int {\nlet n = coins.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)\n// \u521d\u59cb\u5316\u9996\u5217\nfor i in stride(from: 0, through: n, by: 1) {\ndp[i][0] = 1\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor a in stride(from: 1, through: amt, by: 1) {\nif coins[i - 1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]\n}\n}\n}\nreturn dp[n][amt]\n}\n
            coin_change_ii.zig
            // \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212\nfn coinChangeIIDP(comptime coins: []i32, comptime amt: usize) i32 {\ncomptime var n = coins.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_][amt + 1]i32{[_]i32{0} ** (amt + 1)} ** (n + 1);\n// \u521d\u59cb\u5316\u9996\u5217\nfor (0..n + 1) |i| {\ndp[i][0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..amt + 1) |a| {\nif (coins[i - 1] > @as(i32, @intCast(a))) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = dp[i - 1][a] + dp[i][a - @as(usize, @intCast(coins[i - 1]))];\n}\n}\n}\nreturn dp[n][amt];\n}\n
            coin_change_ii.dart
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(List<int> coins, int amt) {\nint n = coins.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<List<int>> dp = List.generate(n + 1, (index) => List.filled(amt + 1, 0));\n// \u521d\u59cb\u5316\u9996\u5217\nfor (int i = 0; i <= n; i++) {\ndp[i][0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n}\n}\n}\nreturn dp[n][amt];\n}\n
            coin_change_ii.rs
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfn coin_change_ii_dp(coins: &[i32], amt: usize) -> i32 {\nlet n = coins.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![vec![0; amt + 1]; n + 1];\n// \u521d\u59cb\u5316\u9996\u5217\nfor i in 0..= n {\ndp[i][0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor a in 1..=amt {\nif coins[i - 1] > a as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1] as usize];\n}\n}\n}\ndp[n][amt]\n}\n
            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3_2","title":"3. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u72b6\u6001\u538b\u7f29\u5904\u7406\u65b9\u5f0f\u76f8\u540c\uff0c\u5220\u9664\u786c\u5e01\u7ef4\u5ea6\u5373\u53ef\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust coin_change_ii.java
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(int[] coins, int amt) {\nint n = coins.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[amt + 1];\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]];\n}\n}\n}\nreturn dp[amt];\n}\n
            coin_change_ii.cpp
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(vector<int> &coins, int amt) {\nint n = coins.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<int> dp(amt + 1, 0);\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]];\n}\n}\n}\nreturn dp[amt];\n}\n
            coin_change_ii.py
            def coin_change_ii_dp_comp(coins: list[int], amt: int) -> int:\n\"\"\"\u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(coins)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [0] * (amt + 1)\ndp[0] = 1\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\n# \u6b63\u5e8f\u904d\u5386\nfor a in range(1, amt + 1):\nif coins[i - 1] > a:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\nelse:\n# \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]]\nreturn dp[amt]\n
            coin_change_ii.go
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDPComp(coins []int, amt int) int {\nn := len(coins)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([]int, amt+1)\ndp[0] = 1\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\n// \u5012\u5e8f\u904d\u5386\nfor a := 1; a <= amt; a++ {\nif coins[i-1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a-coins[i-1]]\n}\n}\n}\nreturn dp[amt]\n}\n
            coin_change_ii.js
            [class]{}-[func]{coinChangeIIDPComp}\n
            coin_change_ii.ts
            [class]{}-[func]{coinChangeIIDPComp}\n
            coin_change_ii.c
            [class]{}-[func]{coinChangeIIDPComp}\n
            coin_change_ii.cs
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(int[] coins, int amt) {\nint n = coins.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[amt + 1];\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]];\n}\n}\n}\nreturn dp[amt];\n}\n
            coin_change_ii.swift
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDPComp(coins: [Int], amt: Int) -> Int {\nlet n = coins.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: 0, count: amt + 1)\ndp[0] = 1\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor a in stride(from: 1, through: amt, by: 1) {\nif coins[i - 1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]]\n}\n}\n}\nreturn dp[amt]\n}\n
            coin_change_ii.zig
            // \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn coinChangeIIDPComp(comptime coins: []i32, comptime amt: usize) i32 {\ncomptime var n = coins.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_]i32{0} ** (amt + 1);\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..amt + 1) |a| {\nif (coins[i - 1] > @as(i32, @intCast(a))) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = dp[a] + dp[a - @as(usize, @intCast(coins[i - 1]))];\n}\n}\n}\nreturn dp[amt];\n}\n
            coin_change_ii.dart
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(List<int> coins, int amt) {\nint n = coins.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<int> dp = List.filled(amt + 1, 0);\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]];\n}\n}\n}\nreturn dp[amt];\n}\n
            coin_change_ii.rs
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn coin_change_ii_dp_comp(coins: &[i32], amt: usize) -> i32 {\nlet n = coins.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![0; amt + 1];\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor a in 1..=amt {\nif coins[i - 1] > a as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = dp[a] + dp[a - coins[i - 1] as usize];\n}\n}\n}\ndp[amt]\n}\n
            "},{"location":"chapter_graph/","title":"\u7b2c 9 \u7ae0 \u00a0 \u56fe","text":"

            Abstract

            \u5728\u751f\u547d\u65c5\u9014\u4e2d\uff0c\u6211\u4eec\u5c31\u50cf\u662f\u6bcf\u4e2a\u8282\u70b9\uff0c\u88ab\u65e0\u6570\u770b\u4e0d\u89c1\u7684\u8fb9\u76f8\u8fde\u3002

            \u6bcf\u4e00\u6b21\u7684\u76f8\u8bc6\u4e0e\u76f8\u79bb\uff0c\u90fd\u5728\u8fd9\u5f20\u5de8\u5927\u7684\u7f51\u7edc\u56fe\u4e2d\u7559\u4e0b\u72ec\u7279\u7684\u5370\u8bb0\u3002

            "},{"location":"chapter_graph/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 9.1 \u00a0 \u56fe
            • 9.2 \u00a0 \u56fe\u57fa\u7840\u64cd\u4f5c
            • 9.3 \u00a0 \u56fe\u7684\u904d\u5386
            • 9.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_graph/graph/","title":"9.1 \u00a0 \u56fe","text":"

            \u300c\u56fe Graph\u300d\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u7531\u300c\u9876\u70b9 Vertex\u300d\u548c\u300c\u8fb9 Edge\u300d\u7ec4\u6210\u3002\u6211\u4eec\u53ef\u4ee5\u5c06\u56fe \\(G\\) \u62bd\u8c61\u5730\u8868\u793a\u4e3a\u4e00\u7ec4\u9876\u70b9 \\(V\\) \u548c\u4e00\u7ec4\u8fb9 \\(E\\) \u7684\u96c6\u5408\u3002\u4ee5\u4e0b\u793a\u4f8b\u5c55\u793a\u4e86\u4e00\u4e2a\u5305\u542b 5 \u4e2a\u9876\u70b9\u548c 7 \u6761\u8fb9\u7684\u56fe\u3002

            \\[ \\begin{aligned} V & = \\{ 1, 2, 3, 4, 5 \\} \\newline E & = \\{ (1,2), (1,3), (1,5), (2,3), (2,4), (2,5), (4,5) \\} \\newline G & = \\{ V, E \\} \\newline \\end{aligned} \\]

            \u56fe\uff1a\u94fe\u8868\u3001\u6811\u3001\u56fe\u4e4b\u95f4\u7684\u5173\u7cfb

            \u90a3\u4e48\uff0c\u56fe\u4e0e\u5176\u4ed6\u6570\u636e\u7ed3\u6784\u7684\u5173\u7cfb\u662f\u4ec0\u4e48\uff1f\u5982\u679c\u6211\u4eec\u628a\u300c\u9876\u70b9\u300d\u770b\u4f5c\u8282\u70b9\uff0c\u628a\u300c\u8fb9\u300d\u770b\u4f5c\u8fde\u63a5\u5404\u4e2a\u8282\u70b9\u7684\u6307\u9488\uff0c\u5219\u53ef\u5c06\u300c\u56fe\u300d\u770b\u4f5c\u662f\u4e00\u79cd\u4ece\u300c\u94fe\u8868\u300d\u62d3\u5c55\u800c\u6765\u7684\u6570\u636e\u7ed3\u6784\u3002\u76f8\u8f83\u4e8e\u7ebf\u6027\u5173\u7cfb\uff08\u94fe\u8868\uff09\u548c\u5206\u6cbb\u5173\u7cfb\uff08\u6811\uff09\uff0c\u7f51\u7edc\u5173\u7cfb\uff08\u56fe\uff09\u7684\u81ea\u7531\u5ea6\u66f4\u9ad8\uff0c\u4ece\u800c\u66f4\u4e3a\u590d\u6742\u3002

            "},{"location":"chapter_graph/graph/#911","title":"9.1.1 \u00a0 \u56fe\u5e38\u89c1\u7c7b\u578b","text":"

            \u6839\u636e\u8fb9\u662f\u5426\u5177\u6709\u65b9\u5411\uff0c\u53ef\u5206\u4e3a\u300c\u65e0\u5411\u56fe Undirected Graph\u300d\u548c\u300c\u6709\u5411\u56fe Directed Graph\u300d\u3002

            • \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u8fb9\u8868\u793a\u4e24\u9876\u70b9\u4e4b\u95f4\u7684\u201c\u53cc\u5411\u201d\u8fde\u63a5\u5173\u7cfb\uff0c\u4f8b\u5982\u5fae\u4fe1\u6216 QQ \u4e2d\u7684\u201c\u597d\u53cb\u5173\u7cfb\u201d\u3002
            • \u5728\u6709\u5411\u56fe\u4e2d\uff0c\u8fb9\u5177\u6709\u65b9\u5411\u6027\uff0c\u5373 \\(A \\rightarrow B\\) \u548c \\(A \\leftarrow B\\) \u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u4f8b\u5982\u5fae\u535a\u6216\u6296\u97f3\u4e0a\u7684\u201c\u5173\u6ce8\u201d\u4e0e\u201c\u88ab\u5173\u6ce8\u201d\u5173\u7cfb\u3002

            \u56fe\uff1a\u6709\u5411\u56fe\u4e0e\u65e0\u5411\u56fe

            \u6839\u636e\u6240\u6709\u9876\u70b9\u662f\u5426\u8fde\u901a\uff0c\u53ef\u5206\u4e3a\u300c\u8fde\u901a\u56fe Connected Graph\u300d\u548c\u300c\u975e\u8fde\u901a\u56fe Disconnected Graph\u300d\u3002

            • \u5bf9\u4e8e\u8fde\u901a\u56fe\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u53ef\u4ee5\u5230\u8fbe\u5176\u4f59\u4efb\u610f\u9876\u70b9\u3002
            • \u5bf9\u4e8e\u975e\u8fde\u901a\u56fe\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u81f3\u5c11\u6709\u4e00\u4e2a\u9876\u70b9\u65e0\u6cd5\u5230\u8fbe\u3002

            \u56fe\uff1a\u8fde\u901a\u56fe\u4e0e\u975e\u8fde\u901a\u56fe

            \u6211\u4eec\u8fd8\u53ef\u4ee5\u4e3a\u8fb9\u6dfb\u52a0\u201c\u6743\u91cd\u201d\u53d8\u91cf\uff0c\u4ece\u800c\u5f97\u5230\u300c\u6709\u6743\u56fe Weighted Graph\u300d\u3002\u4f8b\u5982\uff0c\u5728\u738b\u8005\u8363\u8000\u7b49\u624b\u6e38\u4e2d\uff0c\u7cfb\u7edf\u4f1a\u6839\u636e\u5171\u540c\u6e38\u620f\u65f6\u95f4\u6765\u8ba1\u7b97\u73a9\u5bb6\u4e4b\u95f4\u7684\u201c\u4eb2\u5bc6\u5ea6\u201d\uff0c\u8fd9\u79cd\u4eb2\u5bc6\u5ea6\u7f51\u7edc\u5c31\u53ef\u4ee5\u7528\u6709\u6743\u56fe\u6765\u8868\u793a\u3002

            \u56fe\uff1a\u6709\u6743\u56fe\u4e0e\u65e0\u6743\u56fe

            "},{"location":"chapter_graph/graph/#912","title":"9.1.2 \u00a0 \u56fe\u5e38\u7528\u672f\u8bed","text":"
            • \u300c\u90bb\u63a5 Adjacency\u300d\uff1a\u5f53\u4e24\u9876\u70b9\u4e4b\u95f4\u5b58\u5728\u8fb9\u76f8\u8fde\u65f6\uff0c\u79f0\u8fd9\u4e24\u9876\u70b9\u201c\u90bb\u63a5\u201d\u3002\u5728\u4e0a\u56fe\u4e2d\uff0c\u9876\u70b9 1 \u7684\u90bb\u63a5\u9876\u70b9\u4e3a\u9876\u70b9 2\u30013\u30015\u3002
            • \u300c\u8def\u5f84 Path\u300d\uff1a\u4ece\u9876\u70b9 A \u5230\u9876\u70b9 B \u7ecf\u8fc7\u7684\u8fb9\u6784\u6210\u7684\u5e8f\u5217\u88ab\u79f0\u4e3a\u4ece A \u5230 B \u7684\u201c\u8def\u5f84\u201d\u3002\u5728\u4e0a\u56fe\u4e2d\uff0c\u8fb9\u5e8f\u5217 1-5-2-4 \u662f\u9876\u70b9 1 \u5230\u9876\u70b9 4 \u7684\u4e00\u6761\u8def\u5f84\u3002
            • \u300c\u5ea6 Degree\u300d\u8868\u793a\u4e00\u4e2a\u9876\u70b9\u62e5\u6709\u7684\u8fb9\u6570\u3002\u5bf9\u4e8e\u6709\u5411\u56fe\uff0c\u300c\u5165\u5ea6 In-Degree\u300d\u8868\u793a\u6709\u591a\u5c11\u6761\u8fb9\u6307\u5411\u8be5\u9876\u70b9\uff0c\u300c\u51fa\u5ea6 Out-Degree\u300d\u8868\u793a\u6709\u591a\u5c11\u6761\u8fb9\u4ece\u8be5\u9876\u70b9\u6307\u51fa\u3002
            "},{"location":"chapter_graph/graph/#913","title":"9.1.3 \u00a0 \u56fe\u7684\u8868\u793a","text":"

            \u56fe\u7684\u5e38\u7528\u8868\u793a\u65b9\u6cd5\u5305\u62ec\u300c\u90bb\u63a5\u77e9\u9635\u300d\u548c\u300c\u90bb\u63a5\u8868\u300d\u3002\u4ee5\u4e0b\u4f7f\u7528\u65e0\u5411\u56fe\u8fdb\u884c\u4e3e\u4f8b\u3002

            "},{"location":"chapter_graph/graph/#1","title":"1. \u00a0 \u90bb\u63a5\u77e9\u9635","text":"

            \u8bbe\u56fe\u7684\u9876\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u300c\u90bb\u63a5\u77e9\u9635 Adjacency Matrix\u300d\u4f7f\u7528\u4e00\u4e2a \\(n \\times n\\) \u5927\u5c0f\u7684\u77e9\u9635\u6765\u8868\u793a\u56fe\uff0c\u6bcf\u4e00\u884c\uff08\u5217\uff09\u4ee3\u8868\u4e00\u4e2a\u9876\u70b9\uff0c\u77e9\u9635\u5143\u7d20\u4ee3\u8868\u8fb9\uff0c\u7528 \\(1\\) \u6216 \\(0\\) \u8868\u793a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u662f\u5426\u5b58\u5728\u8fb9\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u8bbe\u90bb\u63a5\u77e9\u9635\u4e3a \\(M\\) \u3001\u9876\u70b9\u5217\u8868\u4e3a \\(V\\) \uff0c\u90a3\u4e48\u77e9\u9635\u5143\u7d20 \\(M[i][j] = 1\\) \u8868\u793a\u9876\u70b9 \\(V[i]\\) \u5230\u9876\u70b9 \\(V[j]\\) \u4e4b\u95f4\u5b58\u5728\u8fb9\uff0c\u53cd\u4e4b \\(M[i][j] = 0\\) \u8868\u793a\u4e24\u9876\u70b9\u4e4b\u95f4\u65e0\u8fb9\u3002

            \u56fe\uff1a\u56fe\u7684\u90bb\u63a5\u77e9\u9635\u8868\u793a

            \u90bb\u63a5\u77e9\u9635\u5177\u6709\u4ee5\u4e0b\u7279\u6027\uff1a

            • \u9876\u70b9\u4e0d\u80fd\u4e0e\u81ea\u8eab\u76f8\u8fde\uff0c\u56e0\u6b64\u90bb\u63a5\u77e9\u9635\u4e3b\u5bf9\u89d2\u7ebf\u5143\u7d20\u6ca1\u6709\u610f\u4e49\u3002
            • \u5bf9\u4e8e\u65e0\u5411\u56fe\uff0c\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u7b49\u4ef7\uff0c\u6b64\u65f6\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\u3002
            • \u5c06\u90bb\u63a5\u77e9\u9635\u7684\u5143\u7d20\u4ece \\(1\\) , \\(0\\) \u66ff\u6362\u4e3a\u6743\u91cd\uff0c\u5219\u53ef\u8868\u793a\u6709\u6743\u56fe\u3002

            \u4f7f\u7528\u90bb\u63a5\u77e9\u9635\u8868\u793a\u56fe\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u8bbf\u95ee\u77e9\u9635\u5143\u7d20\u4ee5\u83b7\u53d6\u8fb9\uff0c\u56e0\u6b64\u589e\u5220\u67e5\u64cd\u4f5c\u7684\u6548\u7387\u5f88\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(1)\\) \u3002\u7136\u800c\uff0c\u77e9\u9635\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u5185\u5b58\u5360\u7528\u8f83\u591a\u3002

            "},{"location":"chapter_graph/graph/#2","title":"2. \u00a0 \u90bb\u63a5\u8868","text":"

            \u300c\u90bb\u63a5\u8868 Adjacency List\u300d\u4f7f\u7528 \\(n\\) \u4e2a\u94fe\u8868\u6765\u8868\u793a\u56fe\uff0c\u94fe\u8868\u8282\u70b9\u8868\u793a\u9876\u70b9\u3002\u7b2c \\(i\\) \u6761\u94fe\u8868\u5bf9\u5e94\u9876\u70b9 \\(i\\) \uff0c\u5176\u4e2d\u5b58\u50a8\u4e86\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff08\u5373\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u9876\u70b9\uff09\u3002

            \u56fe\uff1a\u56fe\u7684\u90bb\u63a5\u8868\u8868\u793a

            \u90bb\u63a5\u8868\u4ec5\u5b58\u50a8\u5b9e\u9645\u5b58\u5728\u7684\u8fb9\uff0c\u800c\u8fb9\u7684\u603b\u6570\u901a\u5e38\u8fdc\u5c0f\u4e8e \\(n^2\\) \uff0c\u56e0\u6b64\u5b83\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\u3002\u7136\u800c\uff0c\u5728\u90bb\u63a5\u8868\u4e2d\u9700\u8981\u901a\u8fc7\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u8fb9\uff0c\u56e0\u6b64\u5176\u65f6\u95f4\u6548\u7387\u4e0d\u5982\u90bb\u63a5\u77e9\u9635\u3002

            \u89c2\u5bdf\u4e0a\u56fe\u53ef\u53d1\u73b0\uff0c\u90bb\u63a5\u8868\u7ed3\u6784\u4e0e\u54c8\u5e0c\u8868\u4e2d\u7684\u300c\u94fe\u5730\u5740\u6cd5\u300d\u975e\u5e38\u76f8\u4f3c\uff0c\u56e0\u6b64\u6211\u4eec\u4e5f\u53ef\u4ee5\u91c7\u7528\u7c7b\u4f3c\u65b9\u6cd5\u6765\u4f18\u5316\u6548\u7387\u3002\u4f8b\u5982\uff0c\u5f53\u94fe\u8868\u8f83\u957f\u65f6\uff0c\u53ef\u4ee5\u5c06\u94fe\u8868\u8f6c\u5316\u4e3a AVL \u6811\u6216\u7ea2\u9ed1\u6811\uff0c\u4ece\u800c\u5c06\u65f6\u95f4\u6548\u7387\u4ece \\(O(n)\\) \u4f18\u5316\u81f3 \\(O(\\log n)\\) \uff0c\u8fd8\u53ef\u4ee5\u901a\u8fc7\u4e2d\u5e8f\u904d\u5386\u83b7\u53d6\u6709\u5e8f\u5e8f\u5217\uff1b\u6b64\u5916\uff0c\u8fd8\u53ef\u4ee5\u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u54c8\u5e0c\u8868\uff0c\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u964d\u4f4e\u81f3 \\(O(1)\\) \u3002

            "},{"location":"chapter_graph/graph/#914","title":"9.1.4 \u00a0 \u56fe\u5e38\u89c1\u5e94\u7528","text":"

            \u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u8bb8\u591a\u7cfb\u7edf\u90fd\u53ef\u4ee5\u7528\u56fe\u6765\u5efa\u6a21\uff0c\u76f8\u5e94\u7684\u5f85\u6c42\u89e3\u95ee\u9898\u4e5f\u53ef\u4ee5\u7ea6\u5316\u4e3a\u56fe\u8ba1\u7b97\u95ee\u9898\u3002

            \u8868\uff1a\u73b0\u5b9e\u751f\u6d3b\u4e2d\u5e38\u89c1\u7684\u56fe

            \u9876\u70b9 \u8fb9 \u56fe\u8ba1\u7b97\u95ee\u9898 \u793e\u4ea4\u7f51\u7edc \u7528\u6237 \u597d\u53cb\u5173\u7cfb \u6f5c\u5728\u597d\u53cb\u63a8\u8350 \u5730\u94c1\u7ebf\u8def \u7ad9\u70b9 \u7ad9\u70b9\u95f4\u7684\u8fde\u901a\u6027 \u6700\u77ed\u8def\u7ebf\u63a8\u8350 \u592a\u9633\u7cfb \u661f\u4f53 \u661f\u4f53\u95f4\u7684\u4e07\u6709\u5f15\u529b\u4f5c\u7528 \u884c\u661f\u8f68\u9053\u8ba1\u7b97"},{"location":"chapter_graph/graph_operations/","title":"9.2 \u00a0 \u56fe\u57fa\u7840\u64cd\u4f5c","text":"

            \u56fe\u7684\u57fa\u7840\u64cd\u4f5c\u53ef\u5206\u4e3a\u5bf9\u300c\u8fb9\u300d\u7684\u64cd\u4f5c\u548c\u5bf9\u300c\u9876\u70b9\u300d\u7684\u64cd\u4f5c\u3002\u5728\u300c\u90bb\u63a5\u77e9\u9635\u300d\u548c\u300c\u90bb\u63a5\u8868\u300d\u4e24\u79cd\u8868\u793a\u65b9\u6cd5\u4e0b\uff0c\u5b9e\u73b0\u65b9\u5f0f\u6709\u6240\u4e0d\u540c\u3002

            "},{"location":"chapter_graph/graph_operations/#921","title":"9.2.1 \u00a0 \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u7684\u5b9e\u73b0","text":"

            \u7ed9\u5b9a\u4e00\u4e2a\u9876\u70b9\u6570\u91cf\u4e3a \\(n\\) \u7684\u65e0\u5411\u56fe\uff0c\u5219\u6709\uff1a

            • \u6dfb\u52a0\u6216\u5220\u9664\u8fb9\uff1a\u76f4\u63a5\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u4fee\u6539\u6307\u5b9a\u7684\u8fb9\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u800c\u7531\u4e8e\u662f\u65e0\u5411\u56fe\uff0c\u56e0\u6b64\u9700\u8981\u540c\u65f6\u66f4\u65b0\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
            • \u6dfb\u52a0\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u77e9\u9635\u7684\u5c3e\u90e8\u6dfb\u52a0\u4e00\u884c\u4e00\u5217\uff0c\u5e76\u5168\u90e8\u586b \\(0\\) \u5373\u53ef\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
            • \u5220\u9664\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u4e00\u884c\u4e00\u5217\u3002\u5f53\u5220\u9664\u9996\u884c\u9996\u5217\u65f6\u8fbe\u5230\u6700\u5dee\u60c5\u51b5\uff0c\u9700\u8981\u5c06 \\((n-1)^2\\) \u4e2a\u5143\u7d20\u201c\u5411\u5de6\u4e0a\u79fb\u52a8\u201d\uff0c\u4ece\u800c\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
            • \u521d\u59cb\u5316\uff1a\u4f20\u5165 \\(n\\) \u4e2a\u9876\u70b9\uff0c\u521d\u59cb\u5316\u957f\u5ea6\u4e3a \\(n\\) \u7684\u9876\u70b9\u5217\u8868 vertices \uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\uff1b\u521d\u59cb\u5316 \\(n \\times n\\) \u5927\u5c0f\u7684\u90bb\u63a5\u77e9\u9635 adjMat \uff0c\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
            \u521d\u59cb\u5316\u90bb\u63a5\u77e9\u9635\u6dfb\u52a0\u8fb9\u5220\u9664\u8fb9\u6dfb\u52a0\u9876\u70b9\u5220\u9664\u9876\u70b9

            \u56fe\uff1a\u90bb\u63a5\u77e9\u9635\u7684\u521d\u59cb\u5316\u3001\u589e\u5220\u8fb9\u3001\u589e\u5220\u9876\u70b9

            \u4ee5\u4e0b\u662f\u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u8868\u793a\u56fe\u7684\u5b9e\u73b0\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust graph_adjacency_matrix.java
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nList<Integer> vertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nList<List<Integer>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u65b9\u6cd5 */\npublic GraphAdjMat(int[] vertices, int[][] edges) {\nthis.vertices = new ArrayList<>();\nthis.adjMat = new ArrayList<>();\n// \u6dfb\u52a0\u9876\u70b9\nfor (int val : vertices) {\naddVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor (int[] e : edges) {\naddEdge(e[0], e[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npublic int size() {\nreturn vertices.size();\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npublic void addVertex(int val) {\nint n = size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nvertices.add(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nList<Integer> newRow = new ArrayList<>(n);\nfor (int j = 0; j < n; j++) {\nnewRow.add(0);\n}\nadjMat.add(newRow);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor (List<Integer> row : adjMat) {\nrow.add(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\npublic void removeVertex(int index) {\nif (index >= size())\nthrow new IndexOutOfBoundsException();\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nvertices.remove(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nadjMat.remove(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor (List<Integer> row : adjMat) {\nrow.remove(index);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\npublic void addEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\nthrow new IndexOutOfBoundsException();\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nadjMat.get(i).set(j, 1);\nadjMat.get(j).set(i, 1);\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\npublic void removeEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\nthrow new IndexOutOfBoundsException();\nadjMat.get(i).set(j, 0);\nadjMat.get(j).set(i, 0);\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\npublic void print() {\nSystem.out.print(\"\u9876\u70b9\u5217\u8868 = \");\nSystem.out.println(vertices);\nSystem.out.println(\"\u90bb\u63a5\u77e9\u9635 =\");\nPrintUtil.printMatrix(adjMat);\n}\n}\n
            graph_adjacency_matrix.cpp
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nvector<int> vertices;       // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nvector<vector<int>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nGraphAdjMat(const vector<int> &vertices, const vector<vector<int>> &edges) {\n// \u6dfb\u52a0\u9876\u70b9\nfor (int val : vertices) {\naddVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor (const vector<int> &edge : edges) {\naddEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nint size() const {\nreturn vertices.size();\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(int val) {\nint n = size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nvertices.push_back(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nadjMat.emplace_back(vector<int>(n, 0));\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor (vector<int> &row : adjMat) {\nrow.push_back(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(int index) {\nif (index >= size()) {\nthrow out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nvertices.erase(vertices.begin() + index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nadjMat.erase(adjMat.begin() + index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor (vector<int> &row : adjMat) {\nrow.erase(row.begin() + index);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid addEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\nthrow out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nadjMat[i][j] = 1;\nadjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid removeEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\nthrow out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n}\nadjMat[i][j] = 0;\nadjMat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nvoid print() {\ncout << \"\u9876\u70b9\u5217\u8868 = \";\nprintVector(vertices);\ncout << \"\u90bb\u63a5\u77e9\u9635 =\" << endl;\nprintVectorMatrix(adjMat);\n}\n};\n
            graph_adjacency_matrix.py
            class GraphAdjMat:\n\"\"\"\u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\"\"\"\n# \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nvertices: list[int] = []\n# \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\nadj_mat: list[list[int]] = []\ndef __init__(self, vertices: list[int], edges: list[list[int]]):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.vertices: list[int] = []\nself.adj_mat: list[list[int]] = []\n# \u6dfb\u52a0\u9876\u70b9\nfor val in vertices:\nself.add_vertex(val)\n# \u6dfb\u52a0\u8fb9\n# \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor e in edges:\nself.add_edge(e[0], e[1])\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u9876\u70b9\u6570\u91cf\"\"\"\nreturn len(self.vertices)\ndef add_vertex(self, val: int):\n\"\"\"\u6dfb\u52a0\u9876\u70b9\"\"\"\nn = self.size()\n# \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nself.vertices.append(val)\n# \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nnew_row = [0] * n\nself.adj_mat.append(new_row)\n# \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor row in self.adj_mat:\nrow.append(0)\ndef remove_vertex(self, index: int):\n\"\"\"\u5220\u9664\u9876\u70b9\"\"\"\nif index >= self.size():\nraise IndexError()\n# \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nself.vertices.pop(index)\n# \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nself.adj_mat.pop(index)\n# \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor row in self.adj_mat:\nrow.pop(index)\ndef add_edge(self, i: int, j: int):\n\"\"\"\u6dfb\u52a0\u8fb9\"\"\"\n# \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n# \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:\nraise IndexError()\n# \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nself.adj_mat[i][j] = 1\nself.adj_mat[j][i] = 1\ndef remove_edge(self, i: int, j: int):\n\"\"\"\u5220\u9664\u8fb9\"\"\"\n# \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n# \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:\nraise IndexError()\nself.adj_mat[i][j] = 0\nself.adj_mat[j][i] = 0\ndef print(self):\n\"\"\"\u6253\u5370\u90bb\u63a5\u77e9\u9635\"\"\"\nprint(\"\u9876\u70b9\u5217\u8868 =\", self.vertices)\nprint(\"\u90bb\u63a5\u77e9\u9635 =\")\nprint_matrix(self.adj_mat)\n
            graph_adjacency_matrix.go
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\ntype graphAdjMat struct {\n// \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nvertices []int\n// \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\nadjMat [][]int\n}\n/* \u6784\u9020\u51fd\u6570 */\nfunc newGraphAdjMat(vertices []int, edges [][]int) *graphAdjMat {\n// \u6dfb\u52a0\u9876\u70b9\nn := len(vertices)\nadjMat := make([][]int, n)\nfor i := range adjMat {\nadjMat[i] = make([]int, n)\n}\n// \u521d\u59cb\u5316\u56fe\ng := &graphAdjMat{\nvertices: vertices,\nadjMat:   adjMat,\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor i := range edges {\ng.addEdge(edges[i][0], edges[i][1])\n}\nreturn g\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nfunc (g *graphAdjMat) size() int {\nreturn len(g.vertices)\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nfunc (g *graphAdjMat) addVertex(val int) {\nn := g.size()\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\ng.vertices = append(g.vertices, val)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nnewRow := make([]int, n)\ng.adjMat = append(g.adjMat, newRow)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor i := range g.adjMat {\ng.adjMat[i] = append(g.adjMat[i], 0)\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nfunc (g *graphAdjMat) removeVertex(index int) {\nif index >= g.size() {\nreturn\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\ng.vertices = append(g.vertices[:index], g.vertices[index+1:]...)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\ng.adjMat = append(g.adjMat[:index], g.adjMat[index+1:]...)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor i := range g.adjMat {\ng.adjMat[i] = append(g.adjMat[i][:index], g.adjMat[i][index+1:]...)\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc (g *graphAdjMat) addEdge(i, j int) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j {\nfmt.Errorf(\"%s\", \"Index Out Of Bounds Exception\")\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\ng.adjMat[i][j] = 1\ng.adjMat[j][i] = 1\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc (g *graphAdjMat) removeEdge(i, j int) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j {\nfmt.Errorf(\"%s\", \"Index Out Of Bounds Exception\")\n}\ng.adjMat[i][j] = 0\ng.adjMat[j][i] = 0\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nfunc (g *graphAdjMat) print() {\nfmt.Printf(\"\\t\u9876\u70b9\u5217\u8868 = %v\\n\", g.vertices)\nfmt.Printf(\"\\t\u90bb\u63a5\u77e9\u9635 = \\n\")\nfor i := range g.adjMat {\nfmt.Printf(\"\\t\\t\\t%v\\n\", g.adjMat[i])\n}\n}\n
            graph_adjacency_matrix.js
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nvertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nadjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u51fd\u6570 */\nconstructor(vertices, edges) {\nthis.vertices = [];\nthis.adjMat = [];\n// \u6dfb\u52a0\u9876\u70b9\nfor (const val of vertices) {\nthis.addVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor (const e of edges) {\nthis.addEdge(e[0], e[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nsize() {\nreturn this.vertices.length;\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\naddVertex(val) {\nconst n = this.size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nthis.vertices.push(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nconst newRow = [];\nfor (let j = 0; j < n; j++) {\nnewRow.push(0);\n}\nthis.adjMat.push(newRow);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor (const row of this.adjMat) {\nrow.push(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nremoveVertex(index) {\nif (index >= this.size()) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nthis.vertices.splice(index, 1);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nthis.adjMat.splice(index, 1);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor (const row of this.adjMat) {\nrow.splice(index, 1);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\naddEdge(i, j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) === (j, i)\nthis.adjMat[i][j] = 1;\nthis.adjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nremoveEdge(i, j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\nthis.adjMat[i][j] = 0;\nthis.adjMat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nprint() {\nconsole.log('\u9876\u70b9\u5217\u8868 = ', this.vertices);\nconsole.log('\u90bb\u63a5\u77e9\u9635 =', this.adjMat);\n}\n}\n
            graph_adjacency_matrix.ts
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nvertices: number[]; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nadjMat: number[][]; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u51fd\u6570 */\nconstructor(vertices: number[], edges: number[][]) {\nthis.vertices = [];\nthis.adjMat = [];\n// \u6dfb\u52a0\u9876\u70b9\nfor (const val of vertices) {\nthis.addVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor (const e of edges) {\nthis.addEdge(e[0], e[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nsize(): number {\nreturn this.vertices.length;\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\naddVertex(val: number): void {\nconst n: number = this.size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nthis.vertices.push(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nconst newRow: number[] = [];\nfor (let j: number = 0; j < n; j++) {\nnewRow.push(0);\n}\nthis.adjMat.push(newRow);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor (const row of this.adjMat) {\nrow.push(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nremoveVertex(index: number): void {\nif (index >= this.size()) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nthis.vertices.splice(index, 1);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nthis.adjMat.splice(index, 1);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor (const row of this.adjMat) {\nrow.splice(index, 1);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\naddEdge(i: number, j: number): void {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) === (j, i)\nthis.adjMat[i][j] = 1;\nthis.adjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nremoveEdge(i: number, j: number): void {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\nthis.adjMat[i][j] = 0;\nthis.adjMat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nprint(): void {\nconsole.log('\u9876\u70b9\u5217\u8868 = ', this.vertices);\nconsole.log('\u90bb\u63a5\u77e9\u9635 =', this.adjMat);\n}\n}\n
            graph_adjacency_matrix.c
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u7ed3\u6784 */\nstruct graphAdjMat {\nint *vertices;         // \u9876\u70b9\u5217\u8868\nunsigned int **adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u8fb9\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nunsigned int size;     // \u9876\u70b9\u6570\u91cf\nunsigned int capacity; // \u56fe\u5bb9\u91cf\n};\ntypedef struct graphAdjMat graphAdjMat;\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid addEdge(graphAdjMat *t, int i, int j) {\n// \u8d8a\u754c\u68c0\u67e5\nif (i < 0 || j < 0 || i >= t->size || j >= t->size || i == j) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nexit(1);\n}\n// \u6dfb\u52a0\u8fb9\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nt->adjMat[i][j] = 1;\nt->adjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid removeEdge(graphAdjMat *t, int i, int j) {\n// \u8d8a\u754c\u68c0\u67e5\nif (i < 0 || j < 0 || i >= t->size || j >= t->size || i == j) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nexit(1);\n}\n// \u5220\u9664\u8fb9\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nt->adjMat[i][j] = 0;\nt->adjMat[j][i] = 0;\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(graphAdjMat *t, int val) {\n// \u5982\u679c\u5b9e\u9645\u4f7f\u7528\u4e0d\u5927\u4e8e\u9884\u8bbe\u7a7a\u95f4\uff0c\u5219\u76f4\u63a5\u521d\u59cb\u5316\u65b0\u7a7a\u95f4\nif (t->size < t->capacity) {\nt->vertices[t->size] = val; // \u521d\u59cb\u5316\u65b0\u9876\u70b9\u503c\nfor (int i = 0; i < t->size; i++) {\nt->adjMat[i][t->size] = 0; // \u90bb\u63a5\u77e9\u65b0\u5217\u9635\u7f6e0\n}\nmemset(t->adjMat[t->size], 0, sizeof(unsigned int) * (t->size + 1)); // \u5c06\u65b0\u589e\u884c\u7f6e 0\nt->size++;\nreturn;\n}\n// \u6269\u5bb9\uff0c\u7533\u8bf7\u65b0\u7684\u9876\u70b9\u6570\u7ec4\nint *temp = (int *)malloc(sizeof(int) * (t->size * 2));\nmemcpy(temp, t->vertices, sizeof(int) * t->size);\ntemp[t->size] = val;\n// \u91ca\u653e\u539f\u6570\u7ec4\nfree(t->vertices);\nt->vertices = temp;\n// \u6269\u5bb9\uff0c\u7533\u8bf7\u65b0\u7684\u4e8c\u7ef4\u6570\u7ec4\nunsigned int **tempMat = (unsigned int **)malloc(sizeof(unsigned int *) * t->size * 2);\nunsigned int *tempMatLine = (unsigned int *)malloc(sizeof(unsigned int) * (t->size * 2) * (t->size * 2));\nmemset(tempMatLine, 0, sizeof(unsigned int) * (t->size * 2) * (t->size * 2));\nfor (int k = 0; k < t->size * 2; k++) {\ntempMat[k] = tempMatLine + k * (t->size * 2);\n}\nfor (int i = 0; i < t->size; i++) {\nmemcpy(tempMat[i], t->adjMat[i], sizeof(unsigned int) * t->size); // \u539f\u6570\u636e\u590d\u5236\u5230\u65b0\u6570\u7ec4\n}\nfor (int i = 0; i < t->size; i++) {\ntempMat[i][t->size] = 0; // \u5c06\u65b0\u589e\u5217\u7f6e 0\n}\nmemset(tempMat[t->size], 0, sizeof(unsigned int) * (t->size + 1)); // \u5c06\u65b0\u589e\u884c\u7f6e 0\n// \u91ca\u653e\u539f\u6570\u7ec4\nfree(t->adjMat[0]);\nfree(t->adjMat);\n// \u6269\u5bb9\u540e\uff0c\u6307\u5411\u65b0\u5730\u5740\nt->adjMat = tempMat;  // \u6307\u5411\u65b0\u7684\u90bb\u63a5\u77e9\u9635\u5730\u5740\nt->capacity = t->size * 2;\nt->size++;\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(graphAdjMat *t, unsigned int index) {\n// \u8d8a\u754c\u68c0\u67e5\nif (index < 0 || index >= t->size) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nexit(1);\n}\nfor (int i = index; i < t->size - 1; i++) {\nt->vertices[i] = t->vertices[i + 1]; // \u6e05\u9664\u5220\u9664\u7684\u9876\u70b9\uff0c\u5e76\u5c06\u5176\u540e\u6240\u6709\u9876\u70b9\u524d\u79fb\n}\nt->vertices[t->size - 1] = 0; // \u5c06\u88ab\u524d\u79fb\u7684\u6700\u540e\u4e00\u4e2a\u9876\u70b9\u7f6e 0\n// \u6e05\u9664\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7684\u5217\nfor (int i = 0; i < t->size - 1; i++) {\nif (i < index) {\nfor (int j = index; j < t->size - 1; j++) {\nt->adjMat[i][j] = t->adjMat[i][j + 1]; // \u88ab\u5220\u9664\u5217\u540e\u7684\u6240\u6709\u5217\u524d\u79fb\n}\n} else { memcpy(t->adjMat[i], t->adjMat[i + 1], sizeof(unsigned int) * t->size); // \u88ab\u5220\u9664\u884c\u7684\u4e0b\u65b9\u6240\u6709\u884c\u4e0a\u79fb\nfor (int j = index; j < t->size; j++) {\nt->adjMat[i][j] = t->adjMat[i][j + 1]; // \u88ab\u5220\u9664\u5217\u540e\u7684\u6240\u6709\u5217\u524d\u79fb\n}\n}\n}\nt->size--;\n}\n/* \u6253\u5370\u9876\u70b9\u4e0e\u90bb\u63a5\u77e9\u9635 */\nvoid printGraph(graphAdjMat *t) {\nif (t->size == 0) {\nprintf(\"graph is empty\\n\");\nreturn;\n}\nprintf(\"\u9876\u70b9\u5217\u8868 = [\");\nfor (int i = 0; i < t->size; i++) {\nif (i != t->size - 1) {\nprintf(\"%d, \", t->vertices[i]);\n} else {\nprintf(\"%d\", t->vertices[i]);\n}\n}\nprintf(\"]\\n\");\nprintf(\"\u90bb\u63a5\u77e9\u9635 =\\n[\\n\");\nfor (int i = 0; i < t->size; i++) {\nprintf(\"  [\");\nfor (int j = 0; j < t->size; j++) {\nif (j != t->size - 1) {\nprintf(\"%u, \", t->adjMat[i][j]);\n} else {\nprintf(\"%u\", t->adjMat[i][j]);\n}\n}\nprintf(\"],\\n\");\n}\nprintf(\"]\\n\");\n}\n/* \u6784\u9020\u51fd\u6570 */\ngraphAdjMat *newGraphAjdMat(unsigned int numberVertices, int *vertices, unsigned int **adjMat) {\n// \u7533\u8bf7\u5185\u5b58\ngraphAdjMat *newGraph = (graphAdjMat *)malloc(sizeof(graphAdjMat));                                          // \u4e3a\u56fe\u5206\u914d\u5185\u5b58\nnewGraph->vertices = (int *)malloc(sizeof(int) * numberVertices * 2);                                        // \u4e3a\u9876\u70b9\u5217\u8868\u5206\u914d\u5185\u5b58\nnewGraph->adjMat = (unsigned int **)malloc(sizeof(unsigned int *) * numberVertices * 2);                     // \u4e3a\u90bb\u63a5\u77e9\u9635\u5206\u914d\u4e8c\u7ef4\u5185\u5b58\nunsigned int *temp = (unsigned int *)malloc(sizeof(unsigned int) * numberVertices * 2 * numberVertices * 2); // \u4e3a\u90bb\u63a5\u77e9\u9635\u5206\u914d\u4e00\u7ef4\u5185\u5b58\nnewGraph->size = numberVertices;                                                                             // \u521d\u59cb\u5316\u9876\u70b9\u6570\u91cf\nnewGraph->capacity = numberVertices * 2;                                                                     // \u521d\u59cb\u5316\u56fe\u5bb9\u91cf\n// \u914d\u7f6e\u4e8c\u7ef4\u6570\u7ec4\nfor (int i = 0; i < numberVertices * 2; i++) {\nnewGraph->adjMat[i] = temp + i * numberVertices * 2; // \u5c06\u4e8c\u7ef4\u6307\u9488\u6307\u5411\u4e00\u7ef4\u6570\u7ec4\n}\n// \u8d4b\u503c\nmemcpy(newGraph->vertices, vertices, sizeof(int) * numberVertices);\nfor (int i = 0; i < numberVertices; i++) {\nmemcpy(newGraph->adjMat[i], adjMat[i], sizeof(unsigned int) * numberVertices); // \u5c06\u4f20\u5165\u7684\u90bb\u63a5\u77e9\u9635\u8d4b\u503c\u7ed9\u7ed3\u6784\u4f53\u5185\u90bb\u63a5\u77e9\u9635\n}\n// \u8fd4\u56de\u7ed3\u6784\u4f53\u6307\u9488\nreturn newGraph;\n}\n
            graph_adjacency_matrix.cs
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nList<int> vertices;     // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nList<List<int>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u51fd\u6570 */\npublic GraphAdjMat(int[] vertices, int[][] edges) {\nthis.vertices = new List<int>();\nthis.adjMat = new List<List<int>>();\n// \u6dfb\u52a0\u9876\u70b9\nforeach (int val in vertices) {\naddVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nforeach (int[] e in edges) {\naddEdge(e[0], e[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npublic int size() {\nreturn vertices.Count;\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npublic void addVertex(int val) {\nint n = size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nvertices.Add(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nList<int> newRow = new List<int>(n);\nfor (int j = 0; j < n; j++) {\nnewRow.Add(0);\n}\nadjMat.Add(newRow);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nforeach (List<int> row in adjMat) {\nrow.Add(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\npublic void removeVertex(int index) {\nif (index >= size())\nthrow new IndexOutOfRangeException();\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nvertices.RemoveAt(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nadjMat.RemoveAt(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nforeach (List<int> row in adjMat) {\nrow.RemoveAt(index);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\npublic void addEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\nthrow new IndexOutOfRangeException();\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nadjMat[i][j] = 1;\nadjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\npublic void removeEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\nthrow new IndexOutOfRangeException();\nadjMat[i][j] = 0;\nadjMat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\npublic void print() {\nConsole.Write(\"\u9876\u70b9\u5217\u8868 = \");\nPrintUtil.PrintList(vertices);\nConsole.WriteLine(\"\u90bb\u63a5\u77e9\u9635 =\");\nPrintUtil.PrintMatrix(adjMat);\n}\n}\n
            graph_adjacency_matrix.swift
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nprivate var vertices: [Int] // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nprivate var adjMat: [[Int]] // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u65b9\u6cd5 */\ninit(vertices: [Int], edges: [[Int]]) {\nself.vertices = []\nadjMat = []\n// \u6dfb\u52a0\u9876\u70b9\nfor val in vertices {\naddVertex(val: val)\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor e in edges {\naddEdge(i: e[0], j: e[1])\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nfunc size() -> Int {\nvertices.count\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nfunc addVertex(val: Int) {\nlet n = size()\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nvertices.append(val)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nlet newRow = Array(repeating: 0, count: n)\nadjMat.append(newRow)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor i in adjMat.indices {\nadjMat[i].append(0)\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nfunc removeVertex(index: Int) {\nif index >= size() {\nfatalError(\"\u8d8a\u754c\")\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nvertices.remove(at: index)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nadjMat.remove(at: index)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor i in adjMat.indices {\nadjMat[i].remove(at: index)\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc addEdge(i: Int, j: Int) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 || j < 0 || i >= size() || j >= size() || i == j {\nfatalError(\"\u8d8a\u754c\")\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nadjMat[i][j] = 1\nadjMat[j][i] = 1\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc removeEdge(i: Int, j: Int) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 || j < 0 || i >= size() || j >= size() || i == j {\nfatalError(\"\u8d8a\u754c\")\n}\nadjMat[i][j] = 0\nadjMat[j][i] = 0\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nfunc print() {\nSwift.print(\"\u9876\u70b9\u5217\u8868 = \", terminator: \"\")\nSwift.print(vertices)\nSwift.print(\"\u90bb\u63a5\u77e9\u9635 =\")\nPrintUtil.printMatrix(matrix: adjMat)\n}\n}\n
            graph_adjacency_matrix.zig
            \n
            graph_adjacency_matrix.dart
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nList<int> vertices = []; // \u9876\u70b9\u5143\u7d20\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nList<List<int>> adjMat = []; //\u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u65b9\u6cd5 */\nGraphAdjMat(List<int> vertices, List<List<int>> edges) {\nthis.vertices = [];\nthis.adjMat = [];\n// \u6dfb\u52a0\u9876\u70b9\nfor (int val in vertices) {\naddVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor (List<int> e in edges) {\naddEdge(e[0], e[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nint size() {\nreturn vertices.length;\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(int val) {\nint n = size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nvertices.add(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nList<int> newRow = List.filled(n, 0, growable: true);\nadjMat.add(newRow);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor (List<int> row in adjMat) {\nrow.add(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(int index) {\nif (index >= size()) {\nthrow IndexError;\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nvertices.removeAt(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nadjMat.removeAt(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor (List<int> row in adjMat) {\nrow.removeAt(index);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid addEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\nthrow IndexError;\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nadjMat[i][j] = 1;\nadjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid removeEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\nthrow IndexError;\n}\nadjMat[i][j] = 0;\nadjMat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nvoid printAdjMat() {\nprint(\"\u9876\u70b9\u5217\u8868 = $vertices\");\nprint(\"\u90bb\u63a5\u77e9\u9635 = \");\nprintMatrix(adjMat);\n}\n}\n
            graph_adjacency_matrix.rs
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u578b */\npub struct GraphAdjMat {\n// \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\npub vertices: Vec<i32>,\n// \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\npub adj_mat: Vec<Vec<i32>>,\n}\nimpl GraphAdjMat {\n/* \u6784\u9020\u65b9\u6cd5 */\npub fn new(vertices: Vec<i32>, edges: Vec<[usize; 2]>) -> Self {\nlet mut graph = GraphAdjMat {\nvertices: vec![],\nadj_mat: vec![],\n};\n// \u6dfb\u52a0\u9876\u70b9\nfor val in vertices {\ngraph.add_vertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor edge in edges {\ngraph.add_edge(edge[0], edge[1])\n}\ngraph\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npub fn size(&self) -> usize {\nself.vertices.len()\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npub fn add_vertex(&mut self, val: i32) {\nlet n = self.size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nself.vertices.push(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nself.adj_mat.push(vec![0; n]);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor row in &mut self.adj_mat {\nrow.push(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\npub fn remove_vertex(&mut self, index: usize) {\nif index >= self.size() {\npanic!(\"index error\")\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nself.vertices.remove(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nself.adj_mat.remove(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor row in &mut self.adj_mat {\nrow.remove(index);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\npub fn add_edge(&mut self, i: usize, j: usize) {\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i >= self.size() || j >= self.size() || i == j {\npanic!(\"index error\")\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nself.adj_mat[i][j] = 1;\nself.adj_mat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\npub fn remove_edge(&mut self, i: usize, j: usize) {\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i >= self.size() || j >= self.size() || i == j {\npanic!(\"index error\")\n}\nself.adj_mat[i][j] = 0;\nself.adj_mat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\npub fn print(&self) {\nprintln!(\"\u9876\u70b9\u5217\u8868 = {:?}\", self.vertices);\nprintln!(\"\u90bb\u63a5\u77e9\u9635 =\");\nprintln!(\"[\");\nfor row in &self.adj_mat {\nprintln!(\"  {:?},\", row);\n}\nprintln!(\"]\")\n}\n}\n
            "},{"location":"chapter_graph/graph_operations/#922","title":"9.2.2 \u00a0 \u57fa\u4e8e\u90bb\u63a5\u8868\u7684\u5b9e\u73b0","text":"

            \u8bbe\u65e0\u5411\u56fe\u7684\u9876\u70b9\u603b\u6570\u4e3a \\(n\\) \u3001\u8fb9\u603b\u6570\u4e3a \\(m\\) \uff0c\u5219\u6709\uff1a

            • \u6dfb\u52a0\u8fb9\uff1a\u5728\u9876\u70b9\u5bf9\u5e94\u94fe\u8868\u7684\u672b\u5c3e\u6dfb\u52a0\u8fb9\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u56e0\u4e3a\u662f\u65e0\u5411\u56fe\uff0c\u6240\u4ee5\u9700\u8981\u540c\u65f6\u6dfb\u52a0\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
            • \u5220\u9664\u8fb9\uff1a\u5728\u9876\u70b9\u5bf9\u5e94\u94fe\u8868\u4e2d\u67e5\u627e\u5e76\u5220\u9664\u6307\u5b9a\u8fb9\uff0c\u4f7f\u7528 \\(O(m)\\) \u65f6\u95f4\u3002\u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u9700\u8981\u540c\u65f6\u5220\u9664\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
            • \u6dfb\u52a0\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u94fe\u8868\uff0c\u5e76\u5c06\u65b0\u589e\u9876\u70b9\u4f5c\u4e3a\u94fe\u8868\u5934\u8282\u70b9\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002
            • \u5220\u9664\u9876\u70b9\uff1a\u9700\u904d\u5386\u6574\u4e2a\u90bb\u63a5\u8868\uff0c\u5220\u9664\u5305\u542b\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u8fb9\uff0c\u4f7f\u7528 \\(O(n + m)\\) \u65f6\u95f4\u3002
            • \u521d\u59cb\u5316\uff1a\u5728\u90bb\u63a5\u8868\u4e2d\u521b\u5efa \\(n\\) \u4e2a\u9876\u70b9\u548c \\(2m\\) \u6761\u8fb9\uff0c\u4f7f\u7528 \\(O(n + m)\\) \u65f6\u95f4\u3002
            \u521d\u59cb\u5316\u90bb\u63a5\u8868\u6dfb\u52a0\u8fb9\u5220\u9664\u8fb9\u6dfb\u52a0\u9876\u70b9\u5220\u9664\u9876\u70b9

            \u56fe\uff1a\u90bb\u63a5\u8868\u7684\u521d\u59cb\u5316\u3001\u589e\u5220\u8fb9\u3001\u589e\u5220\u9876\u70b9

            \u4ee5\u4e0b\u662f\u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u56fe\u7684\u4ee3\u7801\u793a\u4f8b\u3002\u7ec6\u5fc3\u7684\u540c\u5b66\u53ef\u80fd\u6ce8\u610f\u5230\uff0c\u6211\u4eec\u5728\u90bb\u63a5\u8868\u4e2d\u4f7f\u7528 Vertex \u8282\u70b9\u7c7b\u6765\u8868\u793a\u9876\u70b9\uff0c\u8fd9\u6837\u505a\u7684\u539f\u56e0\u6709\uff1a

            • \u5982\u679c\u6211\u4eec\u9009\u62e9\u901a\u8fc7\u9876\u70b9\u503c\u6765\u533a\u5206\u4e0d\u540c\u9876\u70b9\uff0c\u90a3\u4e48\u503c\u91cd\u590d\u7684\u9876\u70b9\u5c06\u65e0\u6cd5\u88ab\u533a\u5206\u3002
            • \u5982\u679c\u7c7b\u4f3c\u90bb\u63a5\u77e9\u9635\u90a3\u6837\uff0c\u4f7f\u7528\u9876\u70b9\u5217\u8868\u7d22\u5f15\u6765\u533a\u5206\u4e0d\u540c\u9876\u70b9\u3002\u90a3\u4e48\uff0c\u5047\u8bbe\u6211\u4eec\u60f3\u8981\u5220\u9664\u7d22\u5f15\u4e3a \\(i\\) \u7684\u9876\u70b9\uff0c\u5219\u9700\u8981\u904d\u5386\u6574\u4e2a\u90bb\u63a5\u8868\uff0c\u5c06\u5176\u4e2d \\(> i\\) \u7684\u7d22\u5f15\u5168\u90e8\u51cf \\(1\\) \uff0c\u8fd9\u6837\u64cd\u4f5c\u6548\u7387\u8f83\u4f4e\u3002
            • \u56e0\u6b64\u6211\u4eec\u8003\u8651\u5f15\u5165\u9876\u70b9\u7c7b Vertex \uff0c\u4f7f\u5f97\u6bcf\u4e2a\u9876\u70b9\u90fd\u662f\u552f\u4e00\u7684\u5bf9\u8c61\uff0c\u6b64\u65f6\u5220\u9664\u9876\u70b9\u65f6\u5c31\u65e0\u987b\u6539\u52a8\u5176\u4f59\u9876\u70b9\u4e86\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust graph_adjacency_list.java
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nMap<Vertex, List<Vertex>> adjList;\n/* \u6784\u9020\u65b9\u6cd5 */\npublic GraphAdjList(Vertex[][] edges) {\nthis.adjList = new HashMap<>();\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor (Vertex[] edge : edges) {\naddVertex(edge[0]);\naddVertex(edge[1]);\naddEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npublic int size() {\nreturn adjList.size();\n}\n/* \u6dfb\u52a0\u8fb9 */\npublic void addEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)\nthrow new IllegalArgumentException();\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nadjList.get(vet1).add(vet2);\nadjList.get(vet2).add(vet1);\n}\n/* \u5220\u9664\u8fb9 */\npublic void removeEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)\nthrow new IllegalArgumentException();\n// \u5220\u9664\u8fb9 vet1 - vet2\nadjList.get(vet1).remove(vet2);\nadjList.get(vet2).remove(vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npublic void addVertex(Vertex vet) {\nif (adjList.containsKey(vet))\nreturn;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nadjList.put(vet, new ArrayList<>());\n}\n/* \u5220\u9664\u9876\u70b9 */\npublic void removeVertex(Vertex vet) {\nif (!adjList.containsKey(vet))\nthrow new IllegalArgumentException();\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nadjList.remove(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor (List<Vertex> list : adjList.values()) {\nlist.remove(vet);\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\npublic void print() {\nSystem.out.println(\"\u90bb\u63a5\u8868 =\");\nfor (Map.Entry<Vertex, List<Vertex>> pair : adjList.entrySet()) {\nList<Integer> tmp = new ArrayList<>();\nfor (Vertex vertex : pair.getValue())\ntmp.add(vertex.val);\nSystem.out.println(pair.getKey().val + \": \" + tmp + \",\");\n}\n}\n}\n
            graph_adjacency_list.cpp
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\npublic:\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nunordered_map<Vertex *, vector<Vertex *>> adjList;\n/* \u5728 vector \u4e2d\u5220\u9664\u6307\u5b9a\u8282\u70b9 */\nvoid remove(vector<Vertex *> &vec, Vertex *vet) {\nfor (int i = 0; i < vec.size(); i++) {\nif (vec[i] == vet) {\nvec.erase(vec.begin() + i);\nbreak;\n}\n}\n}\n/* \u6784\u9020\u65b9\u6cd5 */\nGraphAdjList(const vector<vector<Vertex *>> &edges) {\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor (const vector<Vertex *> &edge : edges) {\naddVertex(edge[0]);\naddVertex(edge[1]);\naddEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nint size() {\nreturn adjList.size();\n}\n/* \u6dfb\u52a0\u8fb9 */\nvoid addEdge(Vertex *vet1, Vertex *vet2) {\nif (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)\nthrow invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nadjList[vet1].push_back(vet2);\nadjList[vet2].push_back(vet1);\n}\n/* \u5220\u9664\u8fb9 */\nvoid removeEdge(Vertex *vet1, Vertex *vet2) {\nif (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)\nthrow invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n// \u5220\u9664\u8fb9 vet1 - vet2\nremove(adjList[vet1], vet2);\nremove(adjList[vet2], vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(Vertex *vet) {\nif (adjList.count(vet))\nreturn;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nadjList[vet] = vector<Vertex *>();\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(Vertex *vet) {\nif (!adjList.count(vet))\nthrow invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nadjList.erase(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor (auto &adj : adjList) {\nremove(adj.second, vet);\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nvoid print() {\ncout << \"\u90bb\u63a5\u8868 =\" << endl;\nfor (auto &adj : adjList) {\nconst auto &key = adj.first;\nconst auto &vec = adj.second;\ncout << key->val << \": \";\nprintVector(vetsToVals(vec));\n}\n}\n};\n
            graph_adjacency_list.py
            class GraphAdjList:\n\"\"\"\u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\"\"\"\ndef __init__(self, edges: list[list[Vertex]]):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n# \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nself.adj_list = dict[Vertex, Vertex]()\n# \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor edge in edges:\nself.add_vertex(edge[0])\nself.add_vertex(edge[1])\nself.add_edge(edge[0], edge[1])\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u9876\u70b9\u6570\u91cf\"\"\"\nreturn len(self.adj_list)\ndef add_edge(self, vet1: Vertex, vet2: Vertex):\n\"\"\"\u6dfb\u52a0\u8fb9\"\"\"\nif vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:\nraise ValueError()\n# \u6dfb\u52a0\u8fb9 vet1 - vet2\nself.adj_list[vet1].append(vet2)\nself.adj_list[vet2].append(vet1)\ndef remove_edge(self, vet1: Vertex, vet2: Vertex):\n\"\"\"\u5220\u9664\u8fb9\"\"\"\nif vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:\nraise ValueError()\n# \u5220\u9664\u8fb9 vet1 - vet2\nself.adj_list[vet1].remove(vet2)\nself.adj_list[vet2].remove(vet1)\ndef add_vertex(self, vet: Vertex):\n\"\"\"\u6dfb\u52a0\u9876\u70b9\"\"\"\nif vet in self.adj_list:\nreturn\n# \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nself.adj_list[vet] = []\ndef remove_vertex(self, vet: Vertex):\n\"\"\"\u5220\u9664\u9876\u70b9\"\"\"\nif vet not in self.adj_list:\nraise ValueError()\n# \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nself.adj_list.pop(vet)\n# \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor vertex in self.adj_list:\nif vet in self.adj_list[vertex]:\nself.adj_list[vertex].remove(vet)\ndef print(self):\n\"\"\"\u6253\u5370\u90bb\u63a5\u8868\"\"\"\nprint(\"\u90bb\u63a5\u8868 =\")\nfor vertex in self.adj_list:\ntmp = [v.val for v in self.adj_list[vertex]]\nprint(f\"{vertex.val}: {tmp},\")\n
            graph_adjacency_list.go
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\ntype graphAdjList struct {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nadjList map[Vertex][]Vertex\n}\n/* \u6784\u9020\u51fd\u6570 */\nfunc newGraphAdjList(edges [][]Vertex) *graphAdjList {\ng := &graphAdjList{\nadjList: make(map[Vertex][]Vertex),\n}\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor _, edge := range edges {\ng.addVertex(edge[0])\ng.addVertex(edge[1])\ng.addEdge(edge[0], edge[1])\n}\nreturn g\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nfunc (g *graphAdjList) size() int {\nreturn len(g.adjList)\n}\n/* \u6dfb\u52a0\u8fb9 */\nfunc (g *graphAdjList) addEdge(vet1 Vertex, vet2 Vertex) {\n_, ok1 := g.adjList[vet1]\n_, ok2 := g.adjList[vet2]\nif !ok1 || !ok2 || vet1 == vet2 {\npanic(\"error\")\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2, \u6dfb\u52a0\u533f\u540d struct{},\ng.adjList[vet1] = append(g.adjList[vet1], vet2)\ng.adjList[vet2] = append(g.adjList[vet2], vet1)\n}\n/* \u5220\u9664\u8fb9 */\nfunc (g *graphAdjList) removeEdge(vet1 Vertex, vet2 Vertex) {\n_, ok1 := g.adjList[vet1]\n_, ok2 := g.adjList[vet2]\nif !ok1 || !ok2 || vet1 == vet2 {\npanic(\"error\")\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\ng.adjList[vet1] = DeleteSliceElms(g.adjList[vet1], vet2)\ng.adjList[vet2] = DeleteSliceElms(g.adjList[vet2], vet1)\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nfunc (g *graphAdjList) addVertex(vet Vertex) {\n_, ok := g.adjList[vet]\nif ok {\nreturn\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\ng.adjList[vet] = make([]Vertex, 0)\n}\n/* \u5220\u9664\u9876\u70b9 */\nfunc (g *graphAdjList) removeVertex(vet Vertex) {\n_, ok := g.adjList[vet]\nif !ok {\npanic(\"error\")\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\ndelete(g.adjList, vet)\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor v, list := range g.adjList {\ng.adjList[v] = DeleteSliceElms(list, vet)\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nfunc (g *graphAdjList) print() {\nvar builder strings.Builder\nfmt.Printf(\"\u90bb\u63a5\u8868 = \\n\")\nfor k, v := range g.adjList {\nbuilder.WriteString(\"\\t\\t\" + strconv.Itoa(k.Val) + \": \")\nfor _, vet := range v {\nbuilder.WriteString(strconv.Itoa(vet.Val) + \" \")\n}\nfmt.Println(builder.String())\nbuilder.Reset()\n}\n}\n
            graph_adjacency_list.js
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nadjList;\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(edges) {\nthis.adjList = new Map();\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor (const edge of edges) {\nthis.addVertex(edge[0]);\nthis.addVertex(edge[1]);\nthis.addEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nsize() {\nreturn this.adjList.size;\n}\n/* \u6dfb\u52a0\u8fb9 */\naddEdge(vet1, vet2) {\nif (\n!this.adjList.has(vet1) ||\n!this.adjList.has(vet2) ||\nvet1 === vet2\n) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nthis.adjList.get(vet1).push(vet2);\nthis.adjList.get(vet2).push(vet1);\n}\n/* \u5220\u9664\u8fb9 */\nremoveEdge(vet1, vet2) {\nif (\n!this.adjList.has(vet1) ||\n!this.adjList.has(vet2) ||\nvet1 === vet2\n) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\nthis.adjList.get(vet1).splice(this.adjList.get(vet1).indexOf(vet2), 1);\nthis.adjList.get(vet2).splice(this.adjList.get(vet2).indexOf(vet1), 1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\naddVertex(vet) {\nif (this.adjList.has(vet)) return;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nthis.adjList.set(vet, []);\n}\n/* \u5220\u9664\u9876\u70b9 */\nremoveVertex(vet) {\nif (!this.adjList.has(vet)) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nthis.adjList.delete(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor (const set of this.adjList.values()) {\nconst index = set.indexOf(vet);\nif (index > -1) {\nset.splice(index, 1);\n}\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nprint() {\nconsole.log('\u90bb\u63a5\u8868 =');\nfor (const [key, value] of this.adjList) {\nconst tmp = [];\nfor (const vertex of value) {\ntmp.push(vertex.val);\n}\nconsole.log(key.val + ': ' + tmp.join());\n}\n}\n}\n
            graph_adjacency_list.ts
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nadjList: Map<Vertex, Vertex[]>;\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(edges: Vertex[][]) {\nthis.adjList = new Map();\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor (const edge of edges) {\nthis.addVertex(edge[0]);\nthis.addVertex(edge[1]);\nthis.addEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nsize(): number {\nreturn this.adjList.size;\n}\n/* \u6dfb\u52a0\u8fb9 */\naddEdge(vet1: Vertex, vet2: Vertex): void {\nif (\n!this.adjList.has(vet1) ||\n!this.adjList.has(vet2) ||\nvet1 === vet2\n) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nthis.adjList.get(vet1).push(vet2);\nthis.adjList.get(vet2).push(vet1);\n}\n/* \u5220\u9664\u8fb9 */\nremoveEdge(vet1: Vertex, vet2: Vertex): void {\nif (\n!this.adjList.has(vet1) ||\n!this.adjList.has(vet2) ||\nvet1 === vet2\n) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\nthis.adjList.get(vet1).splice(this.adjList.get(vet1).indexOf(vet2), 1);\nthis.adjList.get(vet2).splice(this.adjList.get(vet2).indexOf(vet1), 1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\naddVertex(vet: Vertex): void {\nif (this.adjList.has(vet)) return;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nthis.adjList.set(vet, []);\n}\n/* \u5220\u9664\u9876\u70b9 */\nremoveVertex(vet: Vertex): void {\nif (!this.adjList.has(vet)) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nthis.adjList.delete(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor (const set of this.adjList.values()) {\nconst index: number = set.indexOf(vet);\nif (index > -1) {\nset.splice(index, 1);\n}\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nprint(): void {\nconsole.log('\u90bb\u63a5\u8868 =');\nfor (const [key, value] of this.adjList.entries()) {\nconst tmp = [];\nfor (const vertex of value) {\ntmp.push(vertex.val);\n}\nconsole.log(key.val + ': ' + tmp.join());\n}\n}\n}\n
            graph_adjacency_list.c
            /* \u57fa\u4e8e\u90bb\u63a5\u94fe\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u7ed3\u6784 */\nstruct graphAdjList {\nVertex **verticesList; // \u90bb\u63a5\u8868\nunsigned int size;     // \u9876\u70b9\u6570\u91cf\nunsigned int capacity; // \u9876\u70b9\u5bb9\u91cf\n};\ntypedef struct graphAdjList graphAdjList;\n/* \u6dfb\u52a0\u8fb9 */\nvoid addEdge(graphAdjList *t, int i, int j) {\n// \u8d8a\u754c\u68c0\u67e5\nif (i < 0 || j < 0 || i == j || i >= t->size || j >= t->size) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nreturn;\n}\n// \u67e5\u627e\u6b32\u6dfb\u52a0\u8fb9\u7684\u9876\u70b9 vet1 - vet2\nVertex *vet1 = t->verticesList[i];\nVertex *vet2 = t->verticesList[j];\n// \u8fde\u63a5\u9876\u70b9 vet1 - vet2\npushBack(vet1->linked, vet2);\npushBack(vet2->linked, vet1);\n}\n/* \u5220\u9664\u8fb9 */\nvoid removeEdge(graphAdjList *t, int i, int j) {\n// \u8d8a\u754c\u68c0\u67e5\nif (i < 0 || j < 0 || i == j || i >= t->size || j >= t->size) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nreturn;\n}\n// \u67e5\u627e\u6b32\u5220\u9664\u8fb9\u7684\u9876\u70b9 vet1 - vet2\nVertex *vet1 = t->verticesList[i];\nVertex *vet2 = t->verticesList[j];\n// \u79fb\u9664\u5f85\u5220\u9664\u8fb9 vet1 - vet2\nremoveLink(vet1->linked, vet2);\nremoveLink(vet2->linked, vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(graphAdjList *t, int val) {\n// \u82e5\u5927\u5c0f\u8d85\u8fc7\u5bb9\u91cf\uff0c\u5219\u6269\u5bb9\nif (t->size >= t->capacity) {\nVertex **tempList = (Vertex **)malloc(sizeof(Vertex *) * 2 * t->capacity);\nmemcpy(tempList, t->verticesList, sizeof(Vertex *) * t->size);\nfree(t->verticesList);         // \u91ca\u653e\u539f\u90bb\u63a5\u8868\u5185\u5b58\nt->verticesList = tempList;    // \u6307\u5411\u65b0\u90bb\u63a5\u8868\nt->capacity = t->capacity * 2; // \u5bb9\u91cf\u6269\u5927\u81f32\u500d\n}\n// \u7533\u8bf7\u65b0\u9876\u70b9\u5185\u5b58\u5e76\u5c06\u65b0\u9876\u70b9\u5730\u5740\u5b58\u5165\u9876\u70b9\u5217\u8868\nVertex *newV = newVertex(val);    // \u5efa\u7acb\u65b0\u9876\u70b9\nnewV->pos = t->size;              // \u4e3a\u65b0\u9876\u70b9\u6807\u8bb0\u4e0b\u6807\nnewV->linked = newLinklist(newV); // \u4e3a\u65b0\u9876\u70b9\u5efa\u7acb\u94fe\u8868\nt->verticesList[t->size] = newV;  // \u5c06\u65b0\u9876\u70b9\u52a0\u5165\u90bb\u63a5\u8868\nt->size++;\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(graphAdjList *t, unsigned int index) {\n// \u8d8a\u754c\u68c0\u67e5\nif (index < 0 || index >= t->size) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nexit(1);\n}\nVertex *vet = t->verticesList[index]; // \u67e5\u627e\u5f85\u5220\u8282\u70b9\nif (vet == 0) {                       // \u82e5\u4e0d\u5b58\u5728\u8be5\u8282\u70b9\uff0c\u5219\u8fd4\u56de\nprintf(\"index is:%d\\n\", index);\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nreturn;\n}\n// \u904d\u5386\u5f85\u5220\u9664\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5c06\u6240\u6709\u4e0e\u5f85\u5220\u9664\u7ed3\u70b9\u6709\u5173\u7684\u8fb9\u5220\u9664\nNode *temp = vet->linked->head->next;\nwhile (temp != 0) {\nremoveLink(temp->val->linked, vet); // \u5220\u9664\u4e0e\u8be5\u9876\u70b9\u6709\u5173\u7684\u8fb9\ntemp = temp->next;                }\n// \u5c06\u9876\u70b9\u524d\u79fb\nfor (int i = index; i < t->size - 1; i++) {\nt->verticesList[i] = t->verticesList[i + 1]; // \u9876\u70b9\u524d\u79fb\nt->verticesList[i]->pos--;                   // \u6240\u6709\u524d\u79fb\u7684\u9876\u70b9\u7d22\u5f15\u503c\u51cf1\n}\nt->verticesList[t->size - 1] = 0; // \u5c06\u88ab\u5220\u9664\u9876\u70b9\u7684\u4f4d\u7f6e\u7f6e 0\nt->size--;\n//\u91ca\u653e\u88ab\u5220\u9664\u9876\u70b9\u7684\u5185\u5b58\nfreeVertex(vet);\n}\n/* \u6253\u5370\u9876\u70b9\u4e0e\u90bb\u63a5\u77e9\u9635 */\nvoid printGraph(graphAdjList *t) {\nprintf(\"\u90bb\u63a5\u8868  =\\n\");\nfor (int i = 0; i < t->size; i++) {\nNode *n = t->verticesList[i]->linked->head->next;\nprintf(\"%d: [\", t->verticesList[i]->val);\nwhile (n != 0) {\nif (n->next != 0) {\nprintf(\"%d, \", n->val->val);\n} else {\nprintf(\"%d\", n->val->val);\n}\nn = n->next;\n}\nprintf(\"]\\n\");\n}\n}\n/* \u6784\u9020\u51fd\u6570 */\ngraphAdjList *newGraphAdjList(unsigned int verticesCapacity) {\n// \u7533\u8bf7\u5185\u5b58\ngraphAdjList *newGraph = (graphAdjList *)malloc(sizeof(graphAdjList));\n// \u5efa\u7acb\u9876\u70b9\u8868\u5e76\u5206\u914d\u5185\u5b58\nnewGraph->verticesList = (Vertex **)malloc(sizeof(Vertex *) * verticesCapacity); // \u4e3a\u9876\u70b9\u5217\u8868\u5206\u914d\u5185\u5b58\nmemset(newGraph->verticesList, 0, sizeof(Vertex *) * verticesCapacity);          // \u9876\u70b9\u5217\u8868\u7f6e 0\nnewGraph->size = 0;                                                              // \u521d\u59cb\u5316\u9876\u70b9\u6570\u91cf\nnewGraph->capacity = verticesCapacity;                                           // \u521d\u59cb\u5316\u9876\u70b9\u5bb9\u91cf\n// \u8fd4\u56de\u56fe\u6307\u9488\nreturn newGraph;                }\n
            graph_adjacency_list.cs
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\npublic Dictionary<Vertex, List<Vertex>> adjList;\n/* \u6784\u9020\u51fd\u6570 */\npublic GraphAdjList(Vertex[][] edges) {\nthis.adjList = new Dictionary<Vertex, List<Vertex>>();\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nforeach (Vertex[] edge in edges) {\naddVertex(edge[0]);\naddVertex(edge[1]);\naddEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npublic int size() {\nreturn adjList.Count;\n}\n/* \u6dfb\u52a0\u8fb9 */\npublic void addEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)\nthrow new InvalidOperationException();\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nadjList[vet1].Add(vet2);\nadjList[vet2].Add(vet1);\n}\n/* \u5220\u9664\u8fb9 */\npublic void removeEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)\nthrow new InvalidOperationException();\n// \u5220\u9664\u8fb9 vet1 - vet2\nadjList[vet1].Remove(vet2);\nadjList[vet2].Remove(vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npublic void addVertex(Vertex vet) {\nif (adjList.ContainsKey(vet))\nreturn;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nadjList.Add(vet, new List<Vertex>());\n}\n/* \u5220\u9664\u9876\u70b9 */\npublic void removeVertex(Vertex vet) {\nif (!adjList.ContainsKey(vet))\nthrow new InvalidOperationException();\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nadjList.Remove(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nforeach (List<Vertex> list in adjList.Values) {\nlist.Remove(vet);\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\npublic void print() {\nConsole.WriteLine(\"\u90bb\u63a5\u8868 =\");\nforeach (KeyValuePair<Vertex, List<Vertex>> pair in adjList) {\nList<int> tmp = new List<int>();\nforeach (Vertex vertex in pair.Value)\ntmp.Add(vertex.val);\nConsole.WriteLine(pair.Key.val + \": [\" + string.Join(\", \", tmp) + \"],\");\n}\n}\n}\n
            graph_adjacency_list.swift
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\npublic private(set) var adjList: [Vertex: [Vertex]]\n/* \u6784\u9020\u65b9\u6cd5 */\npublic init(edges: [[Vertex]]) {\nadjList = [:]\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor edge in edges {\naddVertex(vet: edge[0])\naddVertex(vet: edge[1])\naddEdge(vet1: edge[0], vet2: edge[1])\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npublic func size() -> Int {\nadjList.count\n}\n/* \u6dfb\u52a0\u8fb9 */\npublic func addEdge(vet1: Vertex, vet2: Vertex) {\nif adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {\nfatalError(\"\u53c2\u6570\u9519\u8bef\")\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nadjList[vet1]?.append(vet2)\nadjList[vet2]?.append(vet1)\n}\n/* \u5220\u9664\u8fb9 */\npublic func removeEdge(vet1: Vertex, vet2: Vertex) {\nif adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {\nfatalError(\"\u53c2\u6570\u9519\u8bef\")\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\nadjList[vet1]?.removeAll(where: { $0 == vet2 })\nadjList[vet2]?.removeAll(where: { $0 == vet1 })\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npublic func addVertex(vet: Vertex) {\nif adjList[vet] != nil {\nreturn\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nadjList[vet] = []\n}\n/* \u5220\u9664\u9876\u70b9 */\npublic func removeVertex(vet: Vertex) {\nif adjList[vet] == nil {\nfatalError(\"\u53c2\u6570\u9519\u8bef\")\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nadjList.removeValue(forKey: vet)\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor key in adjList.keys {\nadjList[key]?.removeAll(where: { $0 == vet })\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\npublic func print() {\nSwift.print(\"\u90bb\u63a5\u8868 =\")\nfor pair in adjList {\nvar tmp: [Int] = []\nfor vertex in pair.value {\ntmp.append(vertex.val)\n}\nSwift.print(\"\\(pair.key.val): \\(tmp),\")\n}\n}\n}\n
            graph_adjacency_list.zig
            [class]{GraphAdjList}-[func]{}\n
            graph_adjacency_list.dart
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nMap<Vertex, List<Vertex>> adjList = {};\n/* \u6784\u9020\u65b9\u6cd5 */\nGraphAdjList(List<List<Vertex>> edges) {\nfor (List<Vertex> edge in edges) {\naddVertex(edge[0]);\naddVertex(edge[1]);\naddEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nint size() {\nreturn adjList.length;\n}\n/* \u6dfb\u52a0\u8fb9 */\nvoid addEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.containsKey(vet1) ||\n!adjList.containsKey(vet2) ||\nvet1 == vet2) {\nthrow ArgumentError;\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nadjList[vet1]!.add(vet2);\nadjList[vet2]!.add(vet1);\n}\n/* \u5220\u9664\u8fb9 */\nvoid removeEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.containsKey(vet1) ||\n!adjList.containsKey(vet2) ||\nvet1 == vet2) {\nthrow ArgumentError;\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\nadjList[vet1]!.remove(vet2);\nadjList[vet2]!.remove(vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(Vertex vet) {\nif (adjList.containsKey(vet)) return;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nadjList[vet] = [];\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(Vertex vet) {\nif (!adjList.containsKey(vet)) {\nthrow ArgumentError;\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nadjList.remove(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nadjList.forEach((key, value) {\nvalue.remove(vet);\n});\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nvoid printAdjList() {\nprint(\"\u90bb\u63a5\u8868 =\");\nadjList.forEach((key, value) {\nList<int> tmp = [];\nfor (Vertex vertex in value) {\ntmp.add(vertex.val);\n}\nprint(\"${key.val}: $tmp,\");\n});\n}\n}\n
            graph_adjacency_list.rs
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u578b */\npub struct GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\npub adj_list: HashMap<Vertex, Vec<Vertex>>,\n}\nimpl GraphAdjList {\n/* \u6784\u9020\u65b9\u6cd5 */\npub fn new(edges: Vec<[Vertex; 2]>) -> Self {\nlet mut graph = GraphAdjList {\nadj_list: HashMap::new(),\n};\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor edge in edges {\ngraph.add_vertex(edge[0]);\ngraph.add_vertex(edge[1]);\ngraph.add_edge(edge[0], edge[1]);\n}\ngraph\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n#[allow(unused)]\npub fn size(&self) -> usize {\nself.adj_list.len()\n}\n/* \u6dfb\u52a0\u8fb9 */\npub fn add_edge(&mut self, vet1: Vertex, vet2: Vertex) {\nif !self.adj_list.contains_key(&vet1) || !self.adj_list.contains_key(&vet2) || vet1 == vet2\n{\npanic!(\"value error\");\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nself.adj_list.get_mut(&vet1).unwrap().push(vet2);\nself.adj_list.get_mut(&vet2).unwrap().push(vet1);\n}\n/* \u5220\u9664\u8fb9 */\n#[allow(unused)]\npub fn remove_edge(&mut self, vet1: Vertex, vet2: Vertex) {\nif !self.adj_list.contains_key(&vet1) || !self.adj_list.contains_key(&vet2) || vet1 == vet2\n{\npanic!(\"value error\");\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\nself.adj_list\n.get_mut(&vet1)\n.unwrap()\n.retain(|&vet| vet != vet2);\nself.adj_list\n.get_mut(&vet2)\n.unwrap()\n.retain(|&vet| vet != vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npub fn add_vertex(&mut self, vet: Vertex) {\nif self.adj_list.contains_key(&vet) {\nreturn;\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nself.adj_list.insert(vet, vec![]);\n}\n/* \u5220\u9664\u9876\u70b9 */\n#[allow(unused)]\npub fn remove_vertex(&mut self, vet: Vertex) {\nif !self.adj_list.contains_key(&vet) {\npanic!(\"value error\");\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nself.adj_list.remove(&vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor list in self.adj_list.values_mut() {\nlist.retain(|&v| v != vet);\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\npub fn print(&self) {\nprintln!(\"\u90bb\u63a5\u8868 =\");\nfor (vertex, list) in &self.adj_list {\nlet list = list.iter().map(|vertex| vertex.val).collect::<Vec<i32>>();\nprintln!(\"{}: {:?},\", vertex.val, list);\n}\n}\n}\n
            "},{"location":"chapter_graph/graph_operations/#923","title":"9.2.3 \u00a0 \u6548\u7387\u5bf9\u6bd4","text":"

            \u8bbe\u56fe\u4e2d\u5171\u6709 \\(n\\) \u4e2a\u9876\u70b9\u548c \\(m\\) \u6761\u8fb9\uff0c\u4e0b\u8868\u4e3a\u90bb\u63a5\u77e9\u9635\u548c\u90bb\u63a5\u8868\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u6548\u7387\u5bf9\u6bd4\u3002

            \u8868\uff1a\u90bb\u63a5\u77e9\u9635\u4e0e\u90bb\u63a5\u8868\u5bf9\u6bd4

            \u90bb\u63a5\u77e9\u9635 \u90bb\u63a5\u8868\uff08\u94fe\u8868\uff09 \u90bb\u63a5\u8868\uff08\u54c8\u5e0c\u8868\uff09 \u5224\u65ad\u662f\u5426\u90bb\u63a5 \\(O(1)\\) \\(O(m)\\) \\(O(1)\\) \u6dfb\u52a0\u8fb9 \\(O(1)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u8fb9 \\(O(1)\\) \\(O(m)\\) \\(O(1)\\) \u6dfb\u52a0\u9876\u70b9 \\(O(n)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u9876\u70b9 \\(O(n^2)\\) \\(O(n + m)\\) \\(O(n)\\) \u5185\u5b58\u7a7a\u95f4\u5360\u7528 \\(O(n^2)\\) \\(O(n + m)\\) \\(O(n + m)\\)

            \u89c2\u5bdf\u4e0a\u8868\uff0c\u4f3c\u4e4e\u90bb\u63a5\u8868\uff08\u54c8\u5e0c\u8868\uff09\u7684\u65f6\u95f4\u4e0e\u7a7a\u95f4\u6548\u7387\u6700\u4f18\u3002\u4f46\u5b9e\u9645\u4e0a\uff0c\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u64cd\u4f5c\u8fb9\u7684\u6548\u7387\u66f4\u9ad8\uff0c\u53ea\u9700\u8981\u4e00\u6b21\u6570\u7ec4\u8bbf\u95ee\u6216\u8d4b\u503c\u64cd\u4f5c\u5373\u53ef\u3002\u7efc\u5408\u6765\u770b\uff0c\u90bb\u63a5\u77e9\u9635\u4f53\u73b0\u4e86\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\u7684\u539f\u5219\uff0c\u800c\u90bb\u63a5\u8868\u4f53\u73b0\u4e86\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u7684\u539f\u5219\u3002

            "},{"location":"chapter_graph/graph_traversal/","title":"9.3 \u00a0 \u56fe\u7684\u904d\u5386","text":"

            \u56fe\u4e0e\u6811\u7684\u5173\u7cfb

            \u6811\u4ee3\u8868\u7684\u662f\u201c\u4e00\u5bf9\u591a\u201d\u7684\u5173\u7cfb\uff0c\u800c\u56fe\u5219\u5177\u6709\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\uff0c\u53ef\u4ee5\u8868\u793a\u4efb\u610f\u7684\u201c\u591a\u5bf9\u591a\u201d\u5173\u7cfb\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u6811\u770b\u4f5c\u662f\u56fe\u7684\u4e00\u79cd\u7279\u4f8b\u3002\u663e\u7136\uff0c\u6811\u7684\u904d\u5386\u64cd\u4f5c\u4e5f\u662f\u56fe\u7684\u904d\u5386\u64cd\u4f5c\u7684\u4e00\u79cd\u7279\u4f8b\uff0c\u5efa\u8bae\u4f60\u5728\u5b66\u4e60\u672c\u7ae0\u8282\u65f6\u878d\u4f1a\u8d2f\u901a\u4e24\u8005\u7684\u6982\u5ff5\u4e0e\u5b9e\u73b0\u65b9\u6cd5\u3002

            \u300c\u56fe\u300d\u548c\u300c\u6811\u300d\u90fd\u662f\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u90fd\u9700\u8981\u4f7f\u7528\u300c\u641c\u7d22\u7b97\u6cd5\u300d\u6765\u5b9e\u73b0\u904d\u5386\u64cd\u4f5c\u3002

            \u4e0e\u6811\u7c7b\u4f3c\uff0c\u56fe\u7684\u904d\u5386\u65b9\u5f0f\u4e5f\u53ef\u5206\u4e3a\u4e24\u79cd\uff0c\u5373\u300c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386 Breadth-First Traversal\u300d\u548c\u300c\u6df1\u5ea6\u4f18\u5148\u904d\u5386 Depth-First Traversal\u300d\uff0c\u4e5f\u79f0\u4e3a\u300c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22 Breadth-First Search\u300d\u548c\u300c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22 Depth-First Search\u300d\uff0c\u7b80\u79f0 BFS \u548c DFS\u3002

            "},{"location":"chapter_graph/graph_traversal/#931","title":"9.3.1 \u00a0 \u5e7f\u5ea6\u4f18\u5148\u904d\u5386","text":"

            \u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u7531\u8fd1\u53ca\u8fdc\u7684\u904d\u5386\u65b9\u5f0f\uff0c\u4ece\u8ddd\u79bb\u6700\u8fd1\u7684\u9876\u70b9\u5f00\u59cb\u8bbf\u95ee\uff0c\u5e76\u4e00\u5c42\u5c42\u5411\u5916\u6269\u5f20\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u5148\u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff0c\u7136\u540e\u904d\u5386\u4e0b\u4e00\u4e2a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u6240\u6709\u9876\u70b9\u8bbf\u95ee\u5b8c\u6bd5\u3002

            \u56fe\uff1a\u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386

            "},{"location":"chapter_graph/graph_traversal/#1","title":"1. \u00a0 \u7b97\u6cd5\u5b9e\u73b0","text":"

            BFS \u901a\u5e38\u501f\u52a9\u300c\u961f\u5217\u300d\u6765\u5b9e\u73b0\u3002\u961f\u5217\u5177\u6709\u201c\u5148\u5165\u5148\u51fa\u201d\u7684\u6027\u8d28\uff0c\u8fd9\u4e0e BFS \u7684\u201c\u7531\u8fd1\u53ca\u8fdc\u201d\u7684\u601d\u60f3\u5f02\u66f2\u540c\u5de5\u3002

            1. \u5c06\u904d\u5386\u8d77\u59cb\u9876\u70b9 startVet \u52a0\u5165\u961f\u5217\uff0c\u5e76\u5f00\u542f\u5faa\u73af\u3002
            2. \u5728\u5faa\u73af\u7684\u6bcf\u8f6e\u8fed\u4ee3\u4e2d\uff0c\u5f39\u51fa\u961f\u9996\u9876\u70b9\u5e76\u8bb0\u5f55\u8bbf\u95ee\uff0c\u7136\u540e\u5c06\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\u52a0\u5165\u5230\u961f\u5217\u5c3e\u90e8\u3002
            3. \u5faa\u73af\u6b65\u9aa4 2. \uff0c\u76f4\u5230\u6240\u6709\u9876\u70b9\u88ab\u8bbf\u95ee\u5b8c\u6210\u540e\u7ed3\u675f\u3002

            \u4e3a\u4e86\u9632\u6b62\u91cd\u590d\u904d\u5386\u9876\u70b9\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 visited \u6765\u8bb0\u5f55\u54ea\u4e9b\u8282\u70b9\u5df2\u88ab\u8bbf\u95ee\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust graph_bfs.java
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = new ArrayList<>();\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nSet<Vertex> visited = new HashSet<>();\nvisited.add(startVet);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nQueue<Vertex> que = new LinkedList<>();\nque.offer(startVet);\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (!que.isEmpty()) {\nVertex vet = que.poll(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.add(vet);            // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (Vertex adjVet : graph.adjList.get(vet)) {\nif (visited.contains(adjVet))\ncontinue;        // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nque.offer(adjVet);   // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.cpp
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvector<Vertex *> graphBFS(GraphAdjList &graph, Vertex *startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nvector<Vertex *> res;\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nunordered_set<Vertex *> visited = {startVet};\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nqueue<Vertex *> que;\nque.push(startVet);\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (!que.empty()) {\nVertex *vet = que.front();\nque.pop();          // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.push_back(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (auto adjVet : graph.adjList[vet]) {\nif (visited.count(adjVet))\ncontinue;            // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nque.push(adjVet);        // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.emplace(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.py
            def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:\n\"\"\"\u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS\"\"\"\n# \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n# \u9876\u70b9\u904d\u5386\u5e8f\u5217\nres = []\n# \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvisited = set[Vertex]([start_vet])\n# \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nque = deque[Vertex]([start_vet])\n# \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile len(que) > 0:\nvet = que.popleft()  # \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.append(vet)  # \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n# \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor adj_vet in graph.adj_list[vet]:\nif adj_vet in visited:\ncontinue  # \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nque.append(adj_vet)  # \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.add(adj_vet)  # \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n# \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res\n
            graph_bfs.go
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphBFS(g *graphAdjList, startVet Vertex) []Vertex {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nres := make([]Vertex, 0)\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvisited := make(map[Vertex]struct{})\nvisited[startVet] = struct{}{}\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS, \u4f7f\u7528\u5207\u7247\u6a21\u62df\u961f\u5217\nqueue := make([]Vertex, 0)\nqueue = append(queue, startVet)\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nfor len(queue) > 0 {\n// \u961f\u9996\u9876\u70b9\u51fa\u961f\nvet := queue[0]\nqueue = queue[1:]\n// \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nres = append(res, vet)\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor _, adjVet := range g.adjList[vet] {\n_, isExist := visited[adjVet]\n// \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nif !isExist {\nqueue = append(queue, adjVet)\nvisited[adjVet] = struct{}{}\n}\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res\n}\n
            graph_bfs.js
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphBFS(graph, startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nconst res = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nconst visited = new Set();\nvisited.add(startVet);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nconst que = [startVet];\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (que.length) {\nconst vet = que.shift(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (const adjVet of graph.adjList.get(vet) ?? []) {\nif (visited.has(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.push(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.ts
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphBFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nconst res: Vertex[] = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nconst visited: Set<Vertex> = new Set();\nvisited.add(startVet);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nconst que = [startVet];\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (que.length) {\nconst vet = que.shift(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (const adjVet of graph.adjList.get(vet) ?? []) {\nif (visited.has(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.push(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\nvisited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.c
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nVertex **graphBFS(graphAdjList *t, Vertex *startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nVertex **res = (Vertex **)malloc(sizeof(Vertex *) * t->size);\nmemset(res, 0, sizeof(Vertex *) * t->size);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nqueue *que = newQueue(t->size);\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nhashTable *visited = newHash(t->size);\nint resIndex = 0;\nqueuePush(que, startVet);         // \u5c06\u7b2c\u4e00\u4e2a\u5143\u7d20\u5165\u961f\nhashMark(visited, startVet->pos); // \u6807\u8bb0\u7b2c\u4e00\u4e2a\u5165\u961f\u7684\u9876\u70b9\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (que->head < que->tail) {\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u8fb9\u94fe\u8868\uff0c\u5c06\u6240\u6709\u4e0e\u8be5\u9876\u70b9\u6709\u8fde\u63a5\u7684\uff0c\u5e76\u4e14\u672a\u88ab\u6807\u8bb0\u7684\u9876\u70b9\u5165\u961f\nNode *n = queueTop(que)->linked->head->next;\nwhile (n != 0) {\n// \u67e5\u8be2\u54c8\u5e0c\u8868\uff0c\u82e5\u8be5\u7d22\u5f15\u7684\u9876\u70b9\u5df2\u5165\u961f\uff0c\u5219\u8df3\u8fc7\uff0c\u5426\u5219\u5165\u961f\u5e76\u6807\u8bb0\nif (hashQuery(visited, n->val->pos) == 1) {\nn = n->next;\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nqueuePush(que, n->val);         // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nhashMark(visited, n->val->pos); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n// \u961f\u9996\u5143\u7d20\u5b58\u5165\u6570\u7ec4\nres[resIndex] = queueTop(que); // \u961f\u9996\u9876\u70b9\u52a0\u5165\u9876\u70b9\u904d\u5386\u5e8f\u5217\nresIndex++;\nqueuePop(que); // \u961f\u9996\u5143\u7d20\u51fa\u961f\n}\n// \u91ca\u653e\u5185\u5b58\nfreeQueue(que);\nfreeHash(visited);\nresIndex = 0;\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.cs
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = new List<Vertex>();\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nHashSet<Vertex> visited = new HashSet<Vertex>() { startVet };\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nQueue<Vertex> que = new Queue<Vertex>();\nque.Enqueue(startVet);\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (que.Count > 0) {\nVertex vet = que.Dequeue(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.Add(vet);               // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nforeach (Vertex adjVet in graph.adjList[vet]) {\nif (visited.Contains(adjVet)) {\ncontinue;          // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.Enqueue(adjVet);   // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.Add(adjVet);   // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.swift
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphBFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nvar res: [Vertex] = []\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvar visited: Set<Vertex> = [startVet]\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nvar que: [Vertex] = [startVet]\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile !que.isEmpty {\nlet vet = que.removeFirst() // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.append(vet) // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor adjVet in graph.adjList[vet] ?? [] {\nif visited.contains(adjVet) {\ncontinue // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.append(adjVet) // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.insert(adjVet) // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res\n}\n
            graph_bfs.zig
            [class]{}-[func]{graphBFS}\n
            graph_bfs.dart
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\nList<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nSet<Vertex> visited = {};\nvisited.add(startVet);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nQueue<Vertex> que = Queue();\nque.add(startVet);\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (que.isNotEmpty) {\nVertex vet = que.removeFirst(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (Vertex adjVet in graph.adjList[vet]!) {\nif (visited.contains(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.add(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.rs
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfn graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nlet mut res = vec![];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nlet mut visited = HashSet::new();\nvisited.insert(start_vet);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nlet mut que = VecDeque::new();\nque.push_back(start_vet);\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile !que.is_empty() {\nlet vet = que.pop_front().unwrap(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nif let Some(adj_vets) = graph.adj_list.get(&vet) {\nfor &adj_vet in adj_vets {\nif visited.contains(&adj_vet) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.push_back(adj_vet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.insert(adj_vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nres\n}\n

            \u4ee3\u7801\u76f8\u5bf9\u62bd\u8c61\uff0c\u5efa\u8bae\u5bf9\u7167\u4ee5\u4e0b\u52a8\u753b\u56fe\u793a\u6765\u52a0\u6df1\u7406\u89e3\u3002

            <1><2><3><4><5><6><7><8><9><10><11>

            \u56fe\uff1a\u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u6b65\u9aa4

            \u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u7684\u5e8f\u5217\u662f\u5426\u552f\u4e00\uff1f

            \u4e0d\u552f\u4e00\u3002\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u53ea\u8981\u6c42\u6309\u201c\u7531\u8fd1\u53ca\u8fdc\u201d\u7684\u987a\u5e8f\u904d\u5386\uff0c\u800c\u591a\u4e2a\u76f8\u540c\u8ddd\u79bb\u7684\u9876\u70b9\u7684\u904d\u5386\u987a\u5e8f\u662f\u5141\u8bb8\u88ab\u4efb\u610f\u6253\u4e71\u7684\u3002\u4ee5\u4e0a\u56fe\u4e3a\u4f8b\uff0c\u9876\u70b9 \\(1\\) , \\(3\\) \u7684\u8bbf\u95ee\u987a\u5e8f\u53ef\u4ee5\u4ea4\u6362\u3001\u9876\u70b9 \\(2\\) , \\(4\\) , \\(6\\) \u7684\u8bbf\u95ee\u987a\u5e8f\u4e5f\u53ef\u4ee5\u4efb\u610f\u4ea4\u6362\u3002

            "},{"location":"chapter_graph/graph_traversal/#2","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"

            \u65f6\u95f4\u590d\u6742\u5ea6\uff1a \u6240\u6709\u9876\u70b9\u90fd\u4f1a\u5165\u961f\u5e76\u51fa\u961f\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(|V|)\\) \u65f6\u95f4\uff1b\u5728\u904d\u5386\u90bb\u63a5\u9876\u70b9\u7684\u8fc7\u7a0b\u4e2d\uff0c\u7531\u4e8e\u662f\u65e0\u5411\u56fe\uff0c\u56e0\u6b64\u6240\u6709\u8fb9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(2\\) \u6b21\uff0c\u4f7f\u7528 \\(O(2|E|)\\) \u65f6\u95f4\uff1b\u603b\u4f53\u4f7f\u7528 \\(O(|V| + |E|)\\) \u65f6\u95f4\u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6\uff1a \u5217\u8868 res \uff0c\u54c8\u5e0c\u8868 visited \uff0c\u961f\u5217 que \u4e2d\u7684\u9876\u70b9\u6570\u91cf\u6700\u591a\u4e3a \\(|V|\\) \uff0c\u4f7f\u7528 \\(O(|V|)\\) \u7a7a\u95f4\u3002

            "},{"location":"chapter_graph/graph_traversal/#932","title":"9.3.2 \u00a0 \u6df1\u5ea6\u4f18\u5148\u904d\u5386","text":"

            \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u4f18\u5148\u8d70\u5230\u5e95\u3001\u65e0\u8def\u53ef\u8d70\u518d\u56de\u5934\u7684\u904d\u5386\u65b9\u5f0f\u3002\u5177\u4f53\u5730\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u8bbf\u95ee\u5f53\u524d\u9876\u70b9\u7684\u67d0\u4e2a\u90bb\u63a5\u9876\u70b9\uff0c\u76f4\u5230\u8d70\u5230\u5c3d\u5934\u65f6\u8fd4\u56de\uff0c\u518d\u7ee7\u7eed\u8d70\u5230\u5c3d\u5934\u5e76\u8fd4\u56de\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u6240\u6709\u9876\u70b9\u904d\u5386\u5b8c\u6210\u3002

            \u56fe\uff1a\u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386

            "},{"location":"chapter_graph/graph_traversal/#1_1","title":"1. \u00a0 \u7b97\u6cd5\u5b9e\u73b0","text":"

            \u8fd9\u79cd\u201c\u8d70\u5230\u5c3d\u5934 + \u56de\u6eaf\u201d\u7684\u7b97\u6cd5\u5f62\u5f0f\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u6765\u5b9e\u73b0\u3002\u4e0e BFS \u7c7b\u4f3c\uff0c\u5728 DFS \u4e2d\u6211\u4eec\u4e5f\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 visited \u6765\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\uff0c\u4ee5\u907f\u514d\u91cd\u590d\u8bbf\u95ee\u9876\u70b9\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust graph_dfs.java
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList graph, Set<Vertex> visited, List<Vertex> res, Vertex vet) {\nres.add(vet);     // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (Vertex adjVet : graph.adjList.get(vet)) {\nif (visited.contains(adjVet))\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = new ArrayList<>();\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nSet<Vertex> visited = new HashSet<>();\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.cpp
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList &graph, unordered_set<Vertex *> &visited, vector<Vertex *> &res, Vertex *vet) {\nres.push_back(vet);   // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.emplace(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (Vertex *adjVet : graph.adjList[vet]) {\nif (visited.count(adjVet))\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvector<Vertex *> graphDFS(GraphAdjList &graph, Vertex *startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nvector<Vertex *> res;\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nunordered_set<Vertex *> visited;\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.py
            def dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex):\n\"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570\"\"\"\nres.append(vet)  # \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.add(vet)  # \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n# \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor adjVet in graph.adj_list[vet]:\nif adjVet in visited:\ncontinue  # \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n# \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet)\ndef graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:\n\"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS\"\"\"\n# \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n# \u9876\u70b9\u904d\u5386\u5e8f\u5217\nres = []\n# \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvisited = set[Vertex]()\ndfs(graph, visited, res, start_vet)\nreturn res\n
            graph_dfs.go
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfunc dfs(g *graphAdjList, visited map[Vertex]struct{}, res *[]Vertex, vet Vertex) {\n// append \u64cd\u4f5c\u4f1a\u8fd4\u56de\u65b0\u7684\u7684\u5f15\u7528\uff0c\u5fc5\u987b\u8ba9\u539f\u5f15\u7528\u91cd\u65b0\u8d4b\u503c\u4e3a\u65b0slice\u7684\u5f15\u7528\n*res = append(*res, vet)\nvisited[vet] = struct{}{}\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor _, adjVet := range g.adjList[vet] {\n_, isExist := visited[adjVet]\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\nif !isExist {\ndfs(g, visited, res, adjVet)\n}\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphDFS(g *graphAdjList, startVet Vertex) []Vertex {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nres := make([]Vertex, 0)\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvisited := make(map[Vertex]struct{})\ndfs(g, visited, &res, startVet)\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res\n}\n
            graph_dfs.js
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction dfs(graph, visited, res, vet) {\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (const adjVet of graph.adjList.get(vet)) {\nif (visited.has(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphDFS(graph, startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nconst res = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nconst visited = new Set();\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.ts
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfunction dfs(\ngraph: GraphAdjList,\nvisited: Set<Vertex>,\nres: Vertex[],\nvet: Vertex\n): void {\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (const adjVet of graph.adjList.get(vet)) {\nif (visited.has(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphDFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nconst res: Vertex[] = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nconst visited: Set<Vertex> = new Set();\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.c
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nint resIndex = 0;\nvoid dfs(graphAdjList *graph, hashTable *visited, Vertex *vet, Vertex **res) {\nif (hashQuery(visited, vet->pos) == 1) {\nreturn; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nhashMark(visited, vet->pos); // \u6807\u8bb0\u9876\u70b9\u5e76\u5c06\u9876\u70b9\u5b58\u5165\u6570\u7ec4\nres[resIndex] = vet;         // \u5c06\u9876\u70b9\u5b58\u5165\u6570\u7ec4\nresIndex++;\n// \u904d\u5386\u8be5\u9876\u70b9\u94fe\u8868\nNode *n = vet->linked->head->next;\nwhile (n != 0) {\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, n->val, res);\nn = n->next;\n}\nreturn;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nVertex **graphDFS(graphAdjList *graph, Vertex *startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nVertex **res = (Vertex **)malloc(sizeof(Vertex *) * graph->size);\nmemset(res, 0, sizeof(Vertex *) * graph->size);\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nhashTable *visited = newHash(graph->size);\ndfs(graph, visited, startVet, res);\n// \u91ca\u653e\u54c8\u5e0c\u8868\u5185\u5b58\u5e76\u5c06\u6570\u7ec4\u7d22\u5f15\u5f52\u96f6\nfreeHash(visited);\nresIndex = 0;\n// \u8fd4\u56de\u904d\u5386\u6570\u7ec4\nreturn res;\n}\n
            graph_dfs.cs
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList graph, HashSet<Vertex> visited, List<Vertex> res, Vertex vet) {\nres.Add(vet);     // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.Add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nforeach (Vertex adjVet in graph.adjList[vet]) {\nif (visited.Contains(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9                             \n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = new List<Vertex>();\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nHashSet<Vertex> visited = new HashSet<Vertex>();\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.swift
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfunc dfs(graph: GraphAdjList, visited: inout Set<Vertex>, res: inout [Vertex], vet: Vertex) {\nres.append(vet) // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.insert(vet) // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor adjVet in graph.adjList[vet] ?? [] {\nif visited.contains(adjVet) {\ncontinue // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph: graph, visited: &visited, res: &res, vet: adjVet)\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphDFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nvar res: [Vertex] = []\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvar visited: Set<Vertex> = []\ndfs(graph: graph, visited: &visited, res: &res, vet: startVet)\nreturn res\n}\n
            graph_dfs.zig
            [class]{}-[func]{dfs}\n[class]{}-[func]{graphDFS}\n
            graph_dfs.dart
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(\nGraphAdjList graph,\nSet<Vertex> visited,\nList<Vertex> res,\nVertex vet,\n) {\nres.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (Vertex adjVet in graph.adjList[vet]!) {\nif (visited.contains(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\nList<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nSet<Vertex> visited = {};\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.rs
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfn dfs(graph: &GraphAdjList, visited: &mut HashSet<Vertex>, res: &mut Vec<Vertex>, vet: Vertex) {\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.insert(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nif let Some(adj_vets) = graph.adj_list.get(&vet) {\nfor &adj_vet in adj_vets {\nif visited.contains(&adj_vet) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adj_vet);\n}\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfn graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nlet mut res = vec![];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nlet mut visited = HashSet::new();\ndfs(&graph, &mut visited, &mut res, start_vet);\nres\n}\n

            \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u7b97\u6cd5\u6d41\u7a0b\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5176\u4e2d\uff1a

            • \u76f4\u865a\u7ebf\u4ee3\u8868\u5411\u4e0b\u9012\u63a8\uff0c\u8868\u793a\u5f00\u542f\u4e86\u4e00\u4e2a\u65b0\u7684\u9012\u5f52\u65b9\u6cd5\u6765\u8bbf\u95ee\u65b0\u9876\u70b9\u3002
            • \u66f2\u865a\u7ebf\u4ee3\u8868\u5411\u4e0a\u56de\u6eaf\uff0c\u8868\u793a\u6b64\u9012\u5f52\u65b9\u6cd5\u5df2\u7ecf\u8fd4\u56de\uff0c\u56de\u6eaf\u5230\u4e86\u5f00\u542f\u6b64\u9012\u5f52\u65b9\u6cd5\u7684\u4f4d\u7f6e\u3002

            \u4e3a\u4e86\u52a0\u6df1\u7406\u89e3\uff0c\u5efa\u8bae\u5c06\u56fe\u793a\u4e0e\u4ee3\u7801\u7ed3\u5408\u8d77\u6765\uff0c\u5728\u8111\u4e2d\uff08\u6216\u8005\u7528\u7b14\u753b\u4e0b\u6765\uff09\u6a21\u62df\u6574\u4e2a DFS \u8fc7\u7a0b\uff0c\u5305\u62ec\u6bcf\u4e2a\u9012\u5f52\u65b9\u6cd5\u4f55\u65f6\u5f00\u542f\u3001\u4f55\u65f6\u8fd4\u56de\u3002

            <1><2><3><4><5><6><7><8><9><10><11>

            \u56fe\uff1a\u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u6b65\u9aa4

            \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u5e8f\u5217\u662f\u5426\u552f\u4e00\uff1f

            \u4e0e\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u7c7b\u4f3c\uff0c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u5e8f\u5217\u7684\u987a\u5e8f\u4e5f\u4e0d\u662f\u552f\u4e00\u7684\u3002\u7ed9\u5b9a\u67d0\u9876\u70b9\uff0c\u5148\u5f80\u54ea\u4e2a\u65b9\u5411\u63a2\u7d22\u90fd\u53ef\u4ee5\uff0c\u5373\u90bb\u63a5\u9876\u70b9\u7684\u987a\u5e8f\u53ef\u4ee5\u4efb\u610f\u6253\u4e71\uff0c\u90fd\u662f\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u3002

            \u4ee5\u6811\u7684\u904d\u5386\u4e3a\u4f8b\uff0c\u201c\u6839 \\(\\rightarrow\\) \u5de6 \\(\\rightarrow\\) \u53f3\u201d\u3001\u201c\u5de6 \\(\\rightarrow\\) \u6839 \\(\\rightarrow\\) \u53f3\u201d\u3001\u201c\u5de6 \\(\\rightarrow\\) \u53f3 \\(\\rightarrow\\) \u6839\u201d\u5206\u522b\u5bf9\u5e94\u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386\uff0c\u5b83\u4eec\u5c55\u793a\u4e86\u4e09\u79cd\u4e0d\u540c\u7684\u904d\u5386\u4f18\u5148\u7ea7\uff0c\u7136\u800c\u8fd9\u4e09\u8005\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u3002

            "},{"location":"chapter_graph/graph_traversal/#2_1","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"

            \u65f6\u95f4\u590d\u6742\u5ea6\uff1a \u6240\u6709\u9876\u70b9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(1\\) \u6b21\uff0c\u4f7f\u7528 \\(O(|V|)\\) \u65f6\u95f4\uff1b\u6240\u6709\u8fb9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(2\\) \u6b21\uff0c\u4f7f\u7528 \\(O(2|E|)\\) \u65f6\u95f4\uff1b\u603b\u4f53\u4f7f\u7528 \\(O(|V| + |E|)\\) \u65f6\u95f4\u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6\uff1a \u5217\u8868 res \uff0c\u54c8\u5e0c\u8868 visited \u9876\u70b9\u6570\u91cf\u6700\u591a\u4e3a \\(|V|\\) \uff0c\u9012\u5f52\u6df1\u5ea6\u6700\u5927\u4e3a \\(|V|\\) \uff0c\u56e0\u6b64\u4f7f\u7528 \\(O(|V|)\\) \u7a7a\u95f4\u3002

            "},{"location":"chapter_graph/summary/","title":"9.4 \u00a0 \u5c0f\u7ed3","text":"
            • \u56fe\u7531\u9876\u70b9\u548c\u8fb9\u7ec4\u6210\uff0c\u53ef\u4ee5\u88ab\u8868\u793a\u4e3a\u4e00\u7ec4\u9876\u70b9\u548c\u4e00\u7ec4\u8fb9\u6784\u6210\u7684\u96c6\u5408\u3002
            • \u76f8\u8f83\u4e8e\u7ebf\u6027\u5173\u7cfb\uff08\u94fe\u8868\uff09\u548c\u5206\u6cbb\u5173\u7cfb\uff08\u6811\uff09\uff0c\u7f51\u7edc\u5173\u7cfb\uff08\u56fe\uff09\u5177\u6709\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\uff0c\u56e0\u800c\u66f4\u4e3a\u590d\u6742\u3002
            • \u6709\u5411\u56fe\u7684\u8fb9\u5177\u6709\u65b9\u5411\u6027\uff0c\u8fde\u901a\u56fe\u4e2d\u7684\u4efb\u610f\u9876\u70b9\u5747\u53ef\u8fbe\uff0c\u6709\u6743\u56fe\u7684\u6bcf\u6761\u8fb9\u90fd\u5305\u542b\u6743\u91cd\u53d8\u91cf\u3002
            • \u90bb\u63a5\u77e9\u9635\u5229\u7528\u77e9\u9635\u6765\u8868\u793a\u56fe\uff0c\u6bcf\u4e00\u884c\uff08\u5217\uff09\u4ee3\u8868\u4e00\u4e2a\u9876\u70b9\uff0c\u77e9\u9635\u5143\u7d20\u4ee3\u8868\u8fb9\uff0c\u7528 \\(1\\) \u6216 \\(0\\) \u8868\u793a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u6709\u8fb9\u6216\u65e0\u8fb9\u3002\u90bb\u63a5\u77e9\u9635\u5728\u589e\u5220\u67e5\u64cd\u4f5c\u4e0a\u6548\u7387\u5f88\u9ad8\uff0c\u4f46\u7a7a\u95f4\u5360\u7528\u8f83\u591a\u3002
            • \u90bb\u63a5\u8868\u4f7f\u7528\u591a\u4e2a\u94fe\u8868\u6765\u8868\u793a\u56fe\uff0c\u7b2c \\(i\\) \u6761\u94fe\u8868\u5bf9\u5e94\u9876\u70b9 \\(i\\) \uff0c\u5176\u4e2d\u5b58\u50a8\u4e86\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\u3002\u90bb\u63a5\u8868\u76f8\u5bf9\u4e8e\u90bb\u63a5\u77e9\u9635\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\uff0c\u4f46\u7531\u4e8e\u9700\u8981\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u8fb9\uff0c\u65f6\u95f4\u6548\u7387\u8f83\u4f4e\u3002
            • \u5f53\u90bb\u63a5\u8868\u4e2d\u7684\u94fe\u8868\u8fc7\u957f\u65f6\uff0c\u53ef\u4ee5\u5c06\u5176\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u6216\u54c8\u5e0c\u8868\uff0c\u4ece\u800c\u63d0\u5347\u67e5\u8be2\u6548\u7387\u3002
            • \u4ece\u7b97\u6cd5\u601d\u60f3\u89d2\u5ea6\u5206\u6790\uff0c\u90bb\u63a5\u77e9\u9635\u4f53\u73b0\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\uff0c\u90bb\u63a5\u8868\u4f53\u73b0\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u3002
            • \u56fe\u53ef\u7528\u4e8e\u5efa\u6a21\u5404\u7c7b\u73b0\u5b9e\u7cfb\u7edf\uff0c\u5982\u793e\u4ea4\u7f51\u7edc\u3001\u5730\u94c1\u7ebf\u8def\u7b49\u3002
            • \u6811\u662f\u56fe\u7684\u4e00\u79cd\u7279\u4f8b\uff0c\u6811\u7684\u904d\u5386\u4e5f\u662f\u56fe\u7684\u904d\u5386\u7684\u4e00\u79cd\u7279\u4f8b\u3002
            • \u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u7531\u8fd1\u53ca\u8fdc\u3001\u5c42\u5c42\u6269\u5f20\u7684\u641c\u7d22\u65b9\u5f0f\uff0c\u901a\u5e38\u501f\u52a9\u961f\u5217\u5b9e\u73b0\u3002
            • \u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u4f18\u5148\u8d70\u5230\u5e95\u3001\u65e0\u8def\u53ef\u8d70\u65f6\u518d\u56de\u6eaf\u7684\u641c\u7d22\u65b9\u5f0f\uff0c\u5e38\u57fa\u4e8e\u9012\u5f52\u6765\u5b9e\u73b0\u3002
            "},{"location":"chapter_graph/summary/#941-q-a","title":"9.4.1 \u00a0 Q & A","text":"

            \u8def\u5f84\u7684\u5b9a\u4e49\u662f\u9876\u70b9\u5e8f\u5217\u8fd8\u662f\u8fb9\u5e8f\u5217\uff1f

            \u7ef4\u57fa\u767e\u79d1\u4e0a\u4e0d\u540c\u8bed\u8a00\u7248\u672c\u7684\u5b9a\u4e49\u4e0d\u4e00\u81f4\uff1a\u82f1\u6587\u7248\u662f\u201c\u8def\u5f84\u662f\u4e00\u4e2a\u8fb9\u5e8f\u5217\u201d\uff0c\u800c\u4e2d\u6587\u7248\u662f\u201c\u8def\u5f84\u662f\u4e00\u4e2a\u9876\u70b9\u5e8f\u5217\u201d\u3002\u4ee5\u4e0b\u662f\u82f1\u6587\u7248\u539f\u6587\uff1aIn graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices. \u5728\u672c\u6587\u4e2d\uff0c\u8def\u5f84\u88ab\u8ba4\u4e3a\u662f\u4e00\u4e2a\u8fb9\u5e8f\u5217\uff0c\u800c\u4e0d\u662f\u4e00\u4e2a\u9876\u70b9\u5e8f\u5217\u3002\u8fd9\u662f\u56e0\u4e3a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u53ef\u80fd\u5b58\u5728\u591a\u6761\u8fb9\u8fde\u63a5\uff0c\u6b64\u65f6\u6bcf\u6761\u8fb9\u90fd\u5bf9\u5e94\u4e00\u6761\u8def\u5f84\u3002

            \u975e\u8fde\u901a\u56fe\u4e2d\uff0c\u662f\u5426\u4f1a\u6709\u65e0\u6cd5\u904d\u5386\u5230\u7684\u70b9\uff1f

            \u5728\u975e\u8fde\u901a\u56fe\u4e2d\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u81f3\u5c11\u6709\u4e00\u4e2a\u9876\u70b9\u65e0\u6cd5\u5230\u8fbe\u3002\u904d\u5386\u975e\u8fde\u901a\u56fe\u9700\u8981\u8bbe\u7f6e\u591a\u4e2a\u8d77\u70b9\uff0c\u4ee5\u904d\u5386\u5230\u56fe\u7684\u6240\u6709\u8fde\u901a\u5206\u91cf\u3002

            \u5728\u90bb\u63a5\u8868\u4e2d\uff0c\u201c\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u6240\u6709\u9876\u70b9\u201d\u7684\u9876\u70b9\u987a\u5e8f\u662f\u5426\u6709\u8981\u6c42\uff1f

            \u53ef\u4ee5\u662f\u4efb\u610f\u987a\u5e8f\u3002\u4f46\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u53ef\u80fd\u4f1a\u9700\u8981\u6309\u7167\u6307\u5b9a\u89c4\u5219\u6765\u6392\u5e8f\uff0c\u6bd4\u5982\u6309\u7167\u9876\u70b9\u6dfb\u52a0\u7684\u6b21\u5e8f\u3001\u6216\u8005\u6309\u7167\u9876\u70b9\u503c\u5927\u5c0f\u7684\u987a\u5e8f\u7b49\u7b49\uff0c\u8fd9\u6837\u53ef\u4ee5\u6709\u52a9\u4e8e\u5feb\u901f\u67e5\u627e\u201c\u5e26\u6709\u67d0\u79cd\u6781\u503c\u201d\u7684\u9876\u70b9\u3002

            "},{"location":"chapter_greedy/","title":"\u7b2c 15 \u7ae0 \u00a0 \u8d2a\u5fc3","text":"

            Abstract

            \u5411\u65e5\u8475\u671d\u7740\u592a\u9633\u8f6c\u52a8\uff0c\u65f6\u523b\u90fd\u5728\u8ffd\u6c42\u81ea\u8eab\u6210\u957f\u7684\u6700\u5927\u53ef\u80fd\u3002

            \u8d2a\u5fc3\u7b56\u7565\u5728\u4e00\u8f6e\u8f6e\u7684\u7b80\u5355\u9009\u62e9\u4e2d\uff0c\u9010\u6b65\u5bfc\u5411\u6700\u4f73\u7684\u7b54\u6848\u3002

            "},{"location":"chapter_greedy/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 15.1 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5
            • 15.2 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898
            • 15.3 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898
            • 15.4 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898
            • 15.5 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_greedy/fractional_knapsack_problem/","title":"15.2 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898","text":"

            \u5206\u6570\u80cc\u5305\u662f 0-1 \u80cc\u5305\u7684\u4e00\u4e2a\u53d8\u79cd\u95ee\u9898\u3002

            Question

            \u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\) \u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ea\u80fd\u9009\u62e9\u4e00\u6b21\uff0c\u4f46\u53ef\u4ee5\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\uff0c\u4ef7\u503c\u6839\u636e\u9009\u62e9\u7684\u91cd\u91cf\u6bd4\u4f8b\u8ba1\u7b97\uff0c\u95ee\u5728\u4e0d\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\u4e0b\u80cc\u5305\u4e2d\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002

            \u56fe\uff1a\u5206\u6570\u80cc\u5305\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e

            \u672c\u9898\u548c 0-1 \u80cc\u5305\u6574\u4f53\u4e0a\u975e\u5e38\u76f8\u4f3c\uff0c\u72b6\u6001\u5305\u542b\u5f53\u524d\u7269\u54c1 \\(i\\) \u548c\u5bb9\u91cf \\(c\\) \uff0c\u76ee\u6807\u662f\u6c42\u4e0d\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\u4e0b\u7684\u6700\u5927\u4ef7\u503c\u3002

            \u4e0d\u540c\u70b9\u5728\u4e8e\uff0c\u672c\u9898\u5141\u8bb8\u53ea\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\uff0c\u8fd9\u610f\u5473\u7740\u53ef\u4ee5\u5bf9\u7269\u54c1\u4efb\u610f\u5730\u8fdb\u884c\u5207\u5206\uff0c\u5e76\u6309\u7167\u91cd\u91cf\u6bd4\u4f8b\u6765\u8ba1\u7b97\u7269\u54c1\u4ef7\u503c\uff0c\u56e0\u6b64\u6709\uff1a

            1. \u5bf9\u4e8e\u7269\u54c1 \\(i\\) \uff0c\u5b83\u5728\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u4ef7\u503c\u4e3a \\(val[i-1] / wgt[i-1]\\) \uff0c\u7b80\u79f0\u4e3a\u5355\u4f4d\u4ef7\u503c\u3002
            2. \u5047\u8bbe\u653e\u5165\u4e00\u90e8\u5206\u7269\u54c1 \\(i\\) \uff0c\u91cd\u91cf\u4e3a \\(w\\) \uff0c\u5219\u80cc\u5305\u589e\u52a0\u7684\u4ef7\u503c\u4e3a \\(w \\times val[i-1] / wgt[i-1]\\) \u3002

            \u56fe\uff1a\u7269\u54c1\u5728\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u4ef7\u503c

            "},{"location":"chapter_greedy/fractional_knapsack_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"

            \u6700\u5927\u5316\u80cc\u5305\u5185\u7269\u54c1\u603b\u4ef7\u503c\uff0c\u672c\u8d28\u4e0a\u662f\u8981\u6700\u5927\u5316\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u7269\u54c1\u4ef7\u503c\u3002\u7531\u6b64\u4fbf\u53ef\u63a8\u51fa\u672c\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\uff1a

            1. \u5c06\u7269\u54c1\u6309\u7167\u5355\u4f4d\u4ef7\u503c\u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\u3002
            2. \u904d\u5386\u6240\u6709\u7269\u54c1\uff0c\u6bcf\u8f6e\u8d2a\u5fc3\u5730\u9009\u62e9\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\u7684\u7269\u54c1\u3002
            3. \u82e5\u5269\u4f59\u80cc\u5305\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u4f7f\u7528\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u586b\u6ee1\u80cc\u5305\u5373\u53ef\u3002

            \u56fe\uff1a\u5206\u6570\u80cc\u5305\u7684\u8d2a\u5fc3\u7b56\u7565

            "},{"location":"chapter_greedy/fractional_knapsack_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u6211\u4eec\u5efa\u7acb\u4e86\u4e00\u4e2a\u7269\u54c1\u7c7b Item \uff0c\u4ee5\u4fbf\u5c06\u7269\u54c1\u6309\u7167\u5355\u4f4d\u4ef7\u503c\u8fdb\u884c\u6392\u5e8f\u3002\u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u5f53\u80cc\u5305\u5df2\u6ee1\u65f6\u8df3\u51fa\u5e76\u8fd4\u56de\u89e3\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust fractional_knapsack.java
            /* \u7269\u54c1 */\nclass Item {\nint w; // \u7269\u54c1\u91cd\u91cf\nint v; // \u7269\u54c1\u4ef7\u503c\npublic Item(int w, int v) {\nthis.w = w;\nthis.v = v;\n}\n}\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(int[] wgt, int[] val, int cap) {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nItem[] items = new Item[wgt.length];\nfor (int i = 0; i < wgt.length; i++) {\nitems[i] = new Item(wgt[i], val[i]);\n}\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nArrays.sort(items, Comparator.comparingDouble(item -> -((double) item.v / item.w)));\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\ndouble res = 0;\nfor (Item item : items) {\nif (item.w <= cap) {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v;\ncap -= item.w;\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += (double) item.v / item.w * cap;\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\nreturn res;\n}\n
            fractional_knapsack.cpp
            /* \u7269\u54c1 */\nclass Item {\npublic:\nint w; // \u7269\u54c1\u91cd\u91cf\nint v; // \u7269\u54c1\u4ef7\u503c\nItem(int w, int v) : w(w), v(v) {\n}\n};\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(vector<int> &wgt, vector<int> &val, int cap) {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nvector<Item> items;\nfor (int i = 0; i < wgt.size(); i++) {\nitems.push_back(Item(wgt[i], val[i]));\n}\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nsort(items.begin(), items.end(), [](Item &a, Item &b) { return (double)a.v / a.w > (double)b.v / b.w; });\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\ndouble res = 0;\nfor (auto &item : items) {\nif (item.w <= cap) {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v;\ncap -= item.w;\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += (double)item.v / item.w * cap;\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\nreturn res;\n}\n
            fractional_knapsack.py
            class Item:\n\"\"\"\u7269\u54c1\"\"\"\ndef __init__(self, w: int, v: int):\nself.w = w  # \u7269\u54c1\u91cd\u91cf\nself.v = v  # \u7269\u54c1\u4ef7\u503c\ndef fractional_knapsack(wgt: list[int], val: list[int], cap: int) -> int:\n\"\"\"\u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3\"\"\"\n# \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nitems = [Item(w, v) for w, v in zip(wgt, val)]\n# \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nitems.sort(key=lambda item: item.v / item.w, reverse=True)\n# \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\nres = 0\nfor item in items:\nif item.w <= cap:\n# \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v\ncap -= item.w\nelse:\n# \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += (item.v / item.w) * cap\n# \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak\nreturn res\n
            fractional_knapsack.go
            /* \u7269\u54c1 */\ntype Item struct {\nw int // \u7269\u54c1\u91cd\u91cf\nv int // \u7269\u54c1\u4ef7\u503c\n}\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfunc fractionalKnapsack(wgt []int, val []int, cap int) float64 {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nitems := make([]Item, len(wgt))\nfor i := 0; i < len(wgt); i++ {\nitems[i] = Item{wgt[i], val[i]}\n}\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nsort.Slice(items, func(i, j int) bool {\nreturn float64(items[i].v)/float64(items[i].w) > float64(items[j].v)/float64(items[j].w)\n})\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\nres := 0.0\nfor _, item := range items {\nif item.w <= cap {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += float64(item.v)\ncap -= item.w\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += float64(item.v) / float64(item.w) * float64(cap)\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak\n}\n}\nreturn res\n}\n
            fractional_knapsack.js
            [class]{Item}-[func]{}\n[class]{}-[func]{fractionalKnapsack}\n
            fractional_knapsack.ts
            [class]{Item}-[func]{}\n[class]{}-[func]{fractionalKnapsack}\n
            fractional_knapsack.c
            [class]{Item}-[func]{}\n[class]{}-[func]{fractionalKnapsack}\n
            fractional_knapsack.cs
            /* \u7269\u54c1 */\nclass Item {\npublic int w; // \u7269\u54c1\u91cd\u91cf\npublic int v; // \u7269\u54c1\u4ef7\u503c\npublic Item(int w, int v) {\nthis.w = w;\nthis.v = v;\n}\n}\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(int[] wgt, int[] val, int cap) {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nItem[] items = new Item[wgt.Length];\nfor (int i = 0; i < wgt.Length; i++) {\nitems[i] = new Item(wgt[i], val[i]);\n}\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nArray.Sort(items, (x, y) => (y.v / y.w).CompareTo(x.v / x.w));\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\ndouble res = 0;\nforeach (Item item in items) {\nif (item.w <= cap) {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v;\ncap -= item.w;\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += (double)item.v / item.w * cap;\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\nreturn res;\n}\n
            fractional_knapsack.swift
            [class]{Item}-[func]{}\n[class]{}-[func]{fractionalKnapsack}\n
            fractional_knapsack.zig
            [class]{Item}-[func]{}\n[class]{}-[func]{fractionalKnapsack}\n
            fractional_knapsack.dart
            /* \u7269\u54c1 */\nclass Item {\nint w; // \u7269\u54c1\u91cd\u91cf\nint v; // \u7269\u54c1\u4ef7\u503c\nItem(this.w, this.v);\n}\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(List<int> wgt, List<int> val, int cap) {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nList<Item> items = List.generate(wgt.length, (i) => Item(wgt[i], val[i]));\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nitems.sort((a, b) => (b.v / b.w).compareTo(a.v / a.w));\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\ndouble res = 0;\nfor (Item item in items) {\nif (item.w <= cap) {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v;\ncap -= item.w;\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += item.v / item.w * cap;\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\nreturn res;\n}\n
            fractional_knapsack.rs
            /* \u7269\u54c1 */\nstruct Item {\nw: i32, // \u7269\u54c1\u91cd\u91cf\nv: i32, // \u7269\u54c1\u4ef7\u503c\n}\nimpl Item {\nfn new(w: i32, v: i32) -> Self {\nSelf { w, v }\n}\n}\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfn fractional_knapsack(wgt: &[i32], val: &[i32], mut cap: i32) -> f64 {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nlet mut items = wgt\n.iter()\n.zip(val.iter())\n.map(|(&w, &v)| Item::new(w, v))\n.collect::<Vec<Item>>();\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nitems.sort_by(|a, b| {\n(b.v as f64 / b.w as f64)\n.partial_cmp(&(a.v as f64 / a.w as f64))\n.unwrap()\n});\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\nlet mut res = 0.0;\nfor item in &items {\nif item.w <= cap {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v as f64;\ncap -= item.w;\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += item.v as f64 / item.w as f64 * cap as f64;\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\nres\n}\n

            \u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u9700\u8981\u904d\u5386\u6574\u4e2a\u7269\u54c1\u5217\u8868\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u7269\u54c1\u6570\u91cf\u3002

            \u7531\u4e8e\u521d\u59cb\u5316\u4e86\u4e00\u4e2a Item \u5bf9\u8c61\u5217\u8868\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            "},{"location":"chapter_greedy/fractional_knapsack_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"

            \u91c7\u7528\u53cd\u8bc1\u6cd5\u3002\u5047\u8bbe\u7269\u54c1 \\(x\\) \u662f\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\u7684\u7269\u54c1\uff0c\u4f7f\u7528\u67d0\u7b97\u6cd5\u6c42\u5f97\u6700\u5927\u4ef7\u503c\u4e3a res \uff0c\u4f46\u8be5\u89e3\u4e2d\u4e0d\u5305\u542b\u7269\u54c1 \\(x\\) \u3002

            \u73b0\u5728\u4ece\u80cc\u5305\u4e2d\u62ff\u51fa\u5355\u4f4d\u91cd\u91cf\u7684\u4efb\u610f\u7269\u54c1\uff0c\u5e76\u66ff\u6362\u4e3a\u5355\u4f4d\u91cd\u91cf\u7684\u7269\u54c1 \\(x\\) \u3002\u7531\u4e8e\u7269\u54c1 \\(x\\) \u7684\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\uff0c\u56e0\u6b64\u66ff\u6362\u540e\u7684\u603b\u4ef7\u503c\u4e00\u5b9a\u5927\u4e8e res \u3002\u8fd9\u4e0e res \u662f\u6700\u4f18\u89e3\u77db\u76fe\uff0c\u8bf4\u660e\u6700\u4f18\u89e3\u4e2d\u5fc5\u987b\u5305\u542b\u7269\u54c1 \\(x\\) \u3002

            \u5bf9\u4e8e\u8be5\u89e3\u4e2d\u7684\u5176\u4ed6\u7269\u54c1\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u6784\u5efa\u51fa\u4e0a\u8ff0\u77db\u76fe\u3002\u603b\u800c\u8a00\u4e4b\uff0c\u5355\u4f4d\u4ef7\u503c\u66f4\u5927\u7684\u7269\u54c1\u603b\u662f\u66f4\u4f18\u9009\u62e9\uff0c\u8fd9\u8bf4\u660e\u8d2a\u5fc3\u7b56\u7565\u662f\u6709\u6548\u7684\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5982\u679c\u5c06\u7269\u54c1\u91cd\u91cf\u548c\u7269\u54c1\u5355\u4f4d\u4ef7\u503c\u5206\u522b\u770b\u4f5c\u4e00\u4e2a 2D \u56fe\u8868\u7684\u6a2a\u8f74\u548c\u7eb5\u8f74\uff0c\u5219\u5206\u6570\u80cc\u5305\u95ee\u9898\u53ef\u88ab\u8f6c\u5316\u4e3a\u201c\u6c42\u5728\u6709\u9650\u6a2a\u8f74\u533a\u95f4\u4e0b\u7684\u6700\u5927\u56f4\u6210\u9762\u79ef\u201d\u3002

            \u901a\u8fc7\u8fd9\u4e2a\u7c7b\u6bd4\uff0c\u6211\u4eec\u53ef\u4ee5\u4ece\u51e0\u4f55\u89d2\u5ea6\u7406\u89e3\u8d2a\u5fc3\u7b56\u7565\u7684\u6709\u6548\u6027\u3002

            \u56fe\uff1a\u5206\u6570\u80cc\u5305\u95ee\u9898\u7684\u51e0\u4f55\u8868\u793a

            "},{"location":"chapter_greedy/greedy_algorithm/","title":"15.1 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5","text":"

            \u8d2a\u5fc3\u7b97\u6cd5\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u89e3\u51b3\u4f18\u5316\u95ee\u9898\u7684\u7b97\u6cd5\uff0c\u5176\u57fa\u672c\u601d\u60f3\u662f\u5728\u95ee\u9898\u7684\u6bcf\u4e2a\u51b3\u7b56\u9636\u6bb5\uff0c\u90fd\u9009\u62e9\u5f53\u524d\u770b\u8d77\u6765\u6700\u4f18\u7684\u9009\u62e9\uff0c\u5373\u8d2a\u5fc3\u5730\u505a\u51fa\u5c40\u90e8\u6700\u4f18\u7684\u51b3\u7b56\uff0c\u4ee5\u671f\u671b\u83b7\u5f97\u5168\u5c40\u6700\u4f18\u89e3\u3002\u8d2a\u5fc3\u7b97\u6cd5\u7b80\u6d01\u4e14\u9ad8\u6548\uff0c\u5728\u8bb8\u591a\u5b9e\u9645\u95ee\u9898\u4e2d\u90fd\u6709\u7740\u5e7f\u6cdb\u7684\u5e94\u7528\u3002

            \u8d2a\u5fc3\u7b97\u6cd5\u548c\u52a8\u6001\u89c4\u5212\u90fd\u5e38\u7528\u4e8e\u89e3\u51b3\u4f18\u5316\u95ee\u9898\u3002\u5b83\u4eec\u6709\u4e00\u4e9b\u76f8\u4f3c\u4e4b\u5904\uff0c\u6bd4\u5982\u90fd\u4f9d\u8d56\u6700\u4f18\u5b50\u7ed3\u6784\u6027\u8d28\u3002\u4e24\u8005\u7684\u4e0d\u540c\u70b9\u5728\u4e8e\uff1a

            • \u52a8\u6001\u89c4\u5212\u4f1a\u6839\u636e\u4e4b\u524d\u9636\u6bb5\u7684\u6240\u6709\u51b3\u7b56\u6765\u8003\u8651\u5f53\u524d\u51b3\u7b56\uff0c\u5e76\u4f7f\u7528\u8fc7\u53bb\u5b50\u95ee\u9898\u7684\u89e3\u6765\u6784\u5efa\u5f53\u524d\u5b50\u95ee\u9898\u7684\u89e3\u3002
            • \u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4f1a\u91cd\u65b0\u8003\u8651\u8fc7\u53bb\u7684\u51b3\u7b56\uff0c\u800c\u662f\u4e00\u8def\u5411\u524d\u5730\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u4e0d\u65ad\u7f29\u5c0f\u95ee\u9898\u8303\u56f4\uff0c\u76f4\u81f3\u95ee\u9898\u88ab\u89e3\u51b3\u3002

            \u6211\u4eec\u5148\u901a\u8fc7\u4f8b\u9898\u201c\u96f6\u94b1\u5151\u6362\u201d\u4e86\u89e3\u8d2a\u5fc3\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u3002\u8fd9\u9053\u9898\u5df2\u7ecf\u5728\u52a8\u6001\u89c4\u5212\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u76f8\u4fe1\u4f60\u5bf9\u5b83\u5e76\u4e0d\u964c\u751f\u3002

            Question

            \u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u80fd\u591f\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u6700\u5c11\u786c\u5e01\u4e2a\u6570\u3002\u5982\u679c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u5219\u8fd4\u56de \\(-1\\) \u3002

            \u8fd9\u9053\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\u5728\u751f\u6d3b\u4e2d\u5f88\u5e38\u89c1\uff1a\u7ed9\u5b9a\u76ee\u6807\u91d1\u989d\uff0c\u6211\u4eec\u8d2a\u5fc3\u5730\u9009\u62e9\u4e0d\u5927\u4e8e\u4e14\u6700\u63a5\u8fd1\u5b83\u7684\u786c\u5e01\uff0c\u4e0d\u65ad\u5faa\u73af\u8be5\u6b65\u9aa4\uff0c\u76f4\u81f3\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u4e3a\u6b62\u3002

            \u56fe\uff1a\u96f6\u94b1\u5151\u6362\u7684\u8d2a\u5fc3\u7b56\u7565

            \u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002\u4f60\u53ef\u80fd\u4f1a\u4e0d\u7531\u5730\u53d1\u51fa\u611f\u53f9\uff1aSo Clean \uff01\u8d2a\u5fc3\u7b97\u6cd5\u4ec5\u7528\u5341\u884c\u4ee3\u7801\u5c31\u89e3\u51b3\u4e86\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust coin_change_greedy.java
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(int[] coins, int amt) {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\nint i = coins.length - 1;\nint count = 0;\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile (amt > 0) {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile (i > 0 && coins[i] > amt) {\ni--;\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i];\ncount++;\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nreturn amt == 0 ? count : -1;\n}\n
            coin_change_greedy.cpp
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(vector<int> &coins, int amt) {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\nint i = coins.size() - 1;\nint count = 0;\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile (amt > 0) {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile (i > 0 && coins[i] > amt) {\ni--;\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i];\ncount++;\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nreturn amt == 0 ? count : -1;\n}\n
            coin_change_greedy.py
            def coin_change_greedy(coins: list[int], amt: int) -> int:\n\"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3\"\"\"\n# \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\ni = len(coins) - 1\ncount = 0\n# \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile amt > 0:\n# \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile i > 0 and coins[i] > amt:\ni -= 1\n# \u9009\u62e9 coins[i]\namt -= coins[i]\ncount += 1\n# \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nreturn count if amt == 0 else -1\n
            coin_change_greedy.go
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfunc coinChangeGreedy(coins []int, amt int) int {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\ni := len(coins) - 1\ncount := 0\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nfor amt > 0 {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nfor i > 0 && coins[i] > amt {\ni--\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i]\ncount++\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nif amt != 0 {\nreturn -1\n}\nreturn count\n}\n
            coin_change_greedy.js
            [class]{}-[func]{coinChangeGreedy}\n
            coin_change_greedy.ts
            [class]{}-[func]{coinChangeGreedy}\n
            coin_change_greedy.c
            [class]{}-[func]{coinChangeGreedy}\n
            coin_change_greedy.cs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(int[] coins, int amt) {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\nint i = coins.Length - 1;\nint count = 0;\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile (amt > 0) {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile (i > 0 && coins[i] > amt) {\ni--;\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i];\ncount++;\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nreturn amt == 0 ? count : -1;\n}\n
            coin_change_greedy.swift
            [class]{}-[func]{coinChangeGreedy}\n
            coin_change_greedy.zig
            [class]{}-[func]{coinChangeGreedy}\n
            coin_change_greedy.dart
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(List<int> coins, int amt) {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\nint i = coins.length - 1;\nint count = 0;\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile (amt > 0) {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile (i > 0 && coins[i] > amt) {\ni--;\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i];\ncount++;\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nreturn amt == 0 ? count : -1;\n}\n
            coin_change_greedy.rs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfn coin_change_greedy(coins: &[i32], mut amt: i32) -> i32 {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\nlet mut i = coins.len() - 1;\nlet mut count = 0;\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile amt > 0 {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile i > 0 && coins[i] > amt {\ni -= 1;\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i];\ncount += 1;\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nif amt == 0 {\ncount\n} else {\n-1\n}\n}\n
            "},{"location":"chapter_greedy/greedy_algorithm/#1511","title":"15.1.1 \u00a0 \u8d2a\u5fc3\u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"

            \u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4ec5\u64cd\u4f5c\u76f4\u63a5\u3001\u5b9e\u73b0\u7b80\u5355\uff0c\u800c\u4e14\u901a\u5e38\u6548\u7387\u4e5f\u5f88\u9ad8\u3002\u5728\u4ee5\u4e0a\u4ee3\u7801\u4e2d\uff0c\u8bb0\u786c\u5e01\u6700\u5c0f\u9762\u503c\u4e3a \\(\\min(coins)\\) \uff0c\u5219\u8d2a\u5fc3\u9009\u62e9\u6700\u591a\u5faa\u73af \\(amt / \\min(coins)\\) \u6b21\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(amt / \\min(coins))\\) \u3002\u8fd9\u6bd4\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\times amt)\\) \u63d0\u5347\u4e86\u4e00\u4e2a\u6570\u91cf\u7ea7\u3002

            \u7136\u800c\uff0c\u5bf9\u4e8e\u67d0\u4e9b\u786c\u5e01\u9762\u503c\u7ec4\u5408\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u5e76\u4e0d\u80fd\u627e\u5230\u6700\u4f18\u89e3\u3002\u6211\u4eec\u6765\u770b\u51e0\u4e2a\u4f8b\u5b50\uff1a

            • \u6b63\u4f8b \\(coins = [1, 5, 10, 20, 50, 100]\\)\uff1a\u5728\u8be5\u786c\u5e01\u7ec4\u5408\u4e0b\uff0c\u7ed9\u5b9a\u4efb\u610f \\(amt\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u90fd\u53ef\u4ee5\u627e\u51fa\u6700\u4f18\u89e3\u3002
            • \u53cd\u4f8b \\(coins = [1, 20, 50]\\)\uff1a\u5047\u8bbe \\(amt = 60\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ea\u80fd\u627e\u5230 \\(50 + 1 \\times 10\\) \u7684\u5151\u6362\u7ec4\u5408\uff0c\u5171\u8ba1 \\(11\\) \u679a\u786c\u5e01\uff0c\u4f46\u52a8\u6001\u89c4\u5212\u53ef\u4ee5\u627e\u5230\u6700\u4f18\u89e3 \\(20 + 20 + 20\\) \uff0c\u4ec5\u9700 \\(3\\) \u679a\u786c\u5e01\u3002
            • \u53cd\u4f8b \\(coins = [1, 49, 50]\\)\uff1a\u5047\u8bbe \\(amt = 98\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ea\u80fd\u627e\u5230 \\(50 + 1 \\times 48\\) \u7684\u5151\u6362\u7ec4\u5408\uff0c\u5171\u8ba1 \\(49\\) \u679a\u786c\u5e01\uff0c\u4f46\u52a8\u6001\u89c4\u5212\u53ef\u4ee5\u627e\u5230\u6700\u4f18\u89e3 \\(49 + 49\\) \uff0c\u4ec5\u9700 \\(2\\) \u679a\u786c\u5e01\u3002

            \u56fe\uff1a\u8d2a\u5fc3\u65e0\u6cd5\u627e\u51fa\u6700\u4f18\u89e3\u7684\u793a\u4f8b

            \u4e5f\u5c31\u662f\u8bf4\uff0c\u5bf9\u4e8e\u96f6\u94b1\u5151\u6362\u95ee\u9898\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u65e0\u6cd5\u4fdd\u8bc1\u627e\u5230\u5168\u5c40\u6700\u4f18\u89e3\uff0c\u5e76\u4e14\u6709\u53ef\u80fd\u627e\u5230\u975e\u5e38\u5dee\u7684\u89e3\u3002\u5b83\u66f4\u9002\u5408\u7528\u52a8\u6001\u89c4\u5212\u89e3\u51b3\u3002

            \u4e00\u822c\u60c5\u51b5\u4e0b\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u9002\u7528\u4e8e\u4ee5\u4e0b\u4e24\u7c7b\u95ee\u9898\uff1a

            1. \u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1a\u8d2a\u5fc3\u7b97\u6cd5\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\u5f80\u5f80\u662f\u6700\u4f18\u9009\u62e9\uff0c\u56e0\u4e3a\u5b83\u5f80\u5f80\u6bd4\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u66f4\u9ad8\u6548\u3002
            2. \u53ef\u4ee5\u627e\u5230\u8fd1\u4f3c\u6700\u4f18\u89e3\uff1a\u8d2a\u5fc3\u7b97\u6cd5\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e5f\u662f\u53ef\u7528\u7684\u3002\u5bf9\u4e8e\u5f88\u591a\u590d\u6742\u95ee\u9898\u6765\u8bf4\uff0c\u5bfb\u627e\u5168\u5c40\u6700\u4f18\u89e3\u662f\u975e\u5e38\u56f0\u96be\u7684\uff0c\u80fd\u4ee5\u8f83\u9ad8\u6548\u7387\u627e\u5230\u6b21\u4f18\u89e3\u4e5f\u662f\u975e\u5e38\u4e0d\u9519\u7684\u3002
            "},{"location":"chapter_greedy/greedy_algorithm/#1512","title":"15.1.2 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5\u7279\u6027","text":"

            \u90a3\u4e48\u95ee\u9898\u6765\u4e86\uff0c\u4ec0\u4e48\u6837\u7684\u95ee\u9898\u9002\u5408\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u5462\uff1f\u6216\u8005\u8bf4\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1f

            \u76f8\u8f83\u4e8e\u52a8\u6001\u89c4\u5212\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u7684\u4f7f\u7528\u6761\u4ef6\u66f4\u52a0\u82db\u523b\uff0c\u5176\u4e3b\u8981\u5173\u6ce8\u95ee\u9898\u7684\u4e24\u4e2a\u6027\u8d28\uff1a

            • \u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\uff1a\u53ea\u6709\u5f53\u5c40\u90e8\u6700\u4f18\u9009\u62e9\u59cb\u7ec8\u53ef\u4ee5\u5bfc\u81f4\u5168\u5c40\u6700\u4f18\u89e3\u65f6\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u624d\u80fd\u4fdd\u8bc1\u5f97\u5230\u6700\u4f18\u89e3\u3002
            • \u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u5305\u542b\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u3002

            \u6700\u4f18\u5b50\u7ed3\u6784\u5df2\u7ecf\u5728\u52a8\u6001\u89c4\u5212\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u4e0d\u518d\u8d58\u8ff0\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u4e00\u4e9b\u95ee\u9898\u7684\u6700\u4f18\u5b50\u7ed3\u6784\u5e76\u4e0d\u660e\u663e\uff0c\u4f46\u4ecd\u7136\u53ef\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u89e3\u51b3\u3002

            \u6211\u4eec\u4e3b\u8981\u63a2\u7a76\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u7684\u5224\u65ad\u65b9\u6cd5\u3002\u867d\u7136\u5b83\u7684\u63cf\u8ff0\u770b\u4e0a\u53bb\u6bd4\u8f83\u7b80\u5355\uff0c\u4f46\u5b9e\u9645\u4e0a\u5bf9\u4e8e\u8bb8\u591a\u95ee\u9898\uff0c\u8bc1\u660e\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u4e0d\u662f\u4e00\u4ef6\u6613\u4e8b\u3002

            \u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\uff0c\u6211\u4eec\u867d\u7136\u80fd\u591f\u5bb9\u6613\u5730\u4e3e\u51fa\u53cd\u4f8b\uff0c\u5bf9\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u8fdb\u884c\u8bc1\u4f2a\uff0c\u4f46\u8bc1\u5b9e\u7684\u96be\u5ea6\u8f83\u5927\u3002\u5982\u679c\u95ee\uff1a\u6ee1\u8db3\u4ec0\u4e48\u6761\u4ef6\u7684\u786c\u5e01\u7ec4\u5408\u53ef\u4ee5\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\uff1f\u6211\u4eec\u5f80\u5f80\u53ea\u80fd\u51ed\u501f\u76f4\u89c9\u6216\u4e3e\u4f8b\u5b50\u6765\u7ed9\u51fa\u4e00\u4e2a\u6a21\u68f1\u4e24\u53ef\u7684\u7b54\u6848\uff0c\u800c\u96be\u4ee5\u7ed9\u51fa\u4e25\u8c28\u7684\u6570\u5b66\u8bc1\u660e\u3002

            Quote

            \u6709\u4e00\u7bc7\u8bba\u6587\u4e13\u95e8\u8ba8\u8bba\u4e86\u8be5\u95ee\u9898\u3002\u4f5c\u8005\u7ed9\u51fa\u4e86\u4e00\u4e2a \\(O(n^3)\\) \u65f6\u95f4\u590d\u6742\u5ea6\u7684\u7b97\u6cd5\uff0c\u7528\u4e8e\u5224\u65ad\u4e00\u4e2a\u786c\u5e01\u7ec4\u5408\u662f\u5426\u53ef\u4ee5\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u627e\u51fa\u4efb\u4f55\u91d1\u989d\u7684\u6700\u4f18\u89e3\u3002

            Pearson, David. A polynomial-time algorithm for the change-making problem. Operations Research Letters 33.3 (2005): 231-234.

            "},{"location":"chapter_greedy/greedy_algorithm/#1513","title":"15.1.3 \u00a0 \u8d2a\u5fc3\u89e3\u9898\u6b65\u9aa4","text":"

            \u8d2a\u5fc3\u95ee\u9898\u7684\u89e3\u51b3\u6d41\u7a0b\u5927\u4f53\u53ef\u5206\u4e3a\u4e09\u6b65\uff1a

            1. \u95ee\u9898\u5206\u6790\uff1a\u68b3\u7406\u4e0e\u7406\u89e3\u95ee\u9898\u7279\u6027\uff0c\u5305\u62ec\u72b6\u6001\u5b9a\u4e49\u3001\u4f18\u5316\u76ee\u6807\u548c\u7ea6\u675f\u6761\u4ef6\u7b49\u3002\u8fd9\u4e00\u6b65\u5728\u56de\u6eaf\u548c\u52a8\u6001\u89c4\u5212\u4e2d\u90fd\u6709\u6d89\u53ca\u3002
            2. \u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\uff1a\u786e\u5b9a\u5982\u4f55\u5728\u6bcf\u4e00\u6b65\u4e2d\u505a\u51fa\u8d2a\u5fc3\u9009\u62e9\u3002\u8fd9\u4e2a\u7b56\u7565\u80fd\u591f\u5728\u6bcf\u4e00\u6b65\u51cf\u5c0f\u95ee\u9898\u7684\u89c4\u6a21\uff0c\u5e76\u6700\u7ec8\u80fd\u89e3\u51b3\u6574\u4e2a\u95ee\u9898\u3002
            3. \u6b63\u786e\u6027\u8bc1\u660e\uff1a\u901a\u5e38\u9700\u8981\u8bc1\u660e\u95ee\u9898\u5177\u6709\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u3002\u8fd9\u4e2a\u6b65\u9aa4\u53ef\u80fd\u9700\u8981\u4f7f\u7528\u5230\u6570\u5b66\u8bc1\u660e\uff0c\u4f8b\u5982\u5f52\u7eb3\u6cd5\u6216\u53cd\u8bc1\u6cd5\u7b49\u3002

            \u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\u662f\u6c42\u89e3\u95ee\u9898\u7684\u6838\u5fc3\u6b65\u9aa4\uff0c\u4f46\u5b9e\u65bd\u8d77\u6765\u53ef\u80fd\u5e76\u4e0d\u5bb9\u6613\uff0c\u539f\u56e0\u5305\u62ec\uff1a

            • \u4e0d\u540c\u95ee\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\u7684\u5dee\u5f02\u8f83\u5927\u3002\u5bf9\u4e8e\u8bb8\u591a\u95ee\u9898\u6765\u8bf4\uff0c\u8d2a\u5fc3\u7b56\u7565\u90fd\u6bd4\u8f83\u6d45\u663e\uff0c\u6211\u4eec\u901a\u8fc7\u4e00\u4e9b\u5927\u6982\u7684\u601d\u8003\u4e0e\u5c1d\u8bd5\u5c31\u80fd\u5f97\u51fa\u3002\u800c\u5bf9\u4e8e\u4e00\u4e9b\u590d\u6742\u95ee\u9898\uff0c\u8d2a\u5fc3\u7b56\u7565\u53ef\u80fd\u975e\u5e38\u9690\u853d\uff0c\u8fd9\u79cd\u60c5\u51b5\u5c31\u975e\u5e38\u8003\u9a8c\u4e2a\u4eba\u7684\u89e3\u9898\u7ecf\u9a8c\u4e0e\u7b97\u6cd5\u80fd\u529b\u4e86\u3002
            • \u67d0\u4e9b\u8d2a\u5fc3\u7b56\u7565\u5177\u6709\u8f83\u5f3a\u7684\u8ff7\u60d1\u6027\u3002\u5f53\u6211\u4eec\u6ee1\u6000\u4fe1\u5fc3\u8bbe\u8ba1\u597d\u8d2a\u5fc3\u7b56\u7565\uff0c\u5199\u51fa\u89e3\u9898\u4ee3\u7801\u5e76\u63d0\u4ea4\u8fd0\u884c\uff0c\u5f88\u53ef\u80fd\u53d1\u73b0\u90e8\u5206\u6d4b\u8bd5\u6837\u4f8b\u65e0\u6cd5\u901a\u8fc7\u3002\u8fd9\u662f\u56e0\u4e3a\u8bbe\u8ba1\u7684\u8d2a\u5fc3\u7b56\u7565\u53ea\u662f\u201c\u90e8\u5206\u6b63\u786e\u201d\u7684\uff0c\u4e0a\u6587\u4ecb\u7ecd\u7684\u96f6\u94b1\u5151\u6362\u5c31\u662f\u4e2a\u5178\u578b\u6848\u4f8b\u3002

            \u4e3a\u4e86\u4fdd\u8bc1\u6b63\u786e\u6027\uff0c\u6211\u4eec\u5e94\u8be5\u5bf9\u8d2a\u5fc3\u7b56\u7565\u8fdb\u884c\u4e25\u8c28\u7684\u6570\u5b66\u8bc1\u660e\uff0c\u901a\u5e38\u9700\u8981\u7528\u5230\u53cd\u8bc1\u6cd5\u6216\u6570\u5b66\u5f52\u7eb3\u6cd5\u3002

            \u7136\u800c\uff0c\u6b63\u786e\u6027\u8bc1\u660e\u4e5f\u5f88\u53ef\u80fd\u4e0d\u662f\u4e00\u4ef6\u6613\u4e8b\u3002\u5982\u82e5\u6ca1\u6709\u5934\u7eea\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u9009\u62e9\u9762\u5411\u6d4b\u8bd5\u7528\u4f8b\u8fdb\u884c Debug \uff0c\u4e00\u6b65\u6b65\u4fee\u6539\u4e0e\u9a8c\u8bc1\u8d2a\u5fc3\u7b56\u7565\u3002

            "},{"location":"chapter_greedy/greedy_algorithm/#1514","title":"15.1.4 \u00a0 \u8d2a\u5fc3\u5178\u578b\u4f8b\u9898","text":"

            \u8d2a\u5fc3\u7b97\u6cd5\u5e38\u5e38\u5e94\u7528\u5728\u6ee1\u8db3\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u4f18\u5316\u95ee\u9898\u4e2d\uff0c\u4ee5\u4e0b\u662f\u4e00\u4e9b\u5178\u578b\u7684\u8d2a\u5fc3\u7b97\u6cd5\u95ee\u9898\uff1a

            1. \u786c\u5e01\u627e\u96f6\u95ee\u9898\uff1a\u5728\u67d0\u4e9b\u786c\u5e01\u7ec4\u5408\u4e0b\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u603b\u662f\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
            2. \u533a\u95f4\u8c03\u5ea6\u95ee\u9898\uff1a\u5047\u8bbe\u4f60\u6709\u4e00\u4e9b\u4efb\u52a1\uff0c\u6bcf\u4e2a\u4efb\u52a1\u5728\u4e00\u6bb5\u65f6\u95f4\u5185\u8fdb\u884c\uff0c\u4f60\u7684\u76ee\u6807\u662f\u5b8c\u6210\u5c3d\u53ef\u80fd\u591a\u7684\u4efb\u52a1\u3002\u5982\u679c\u6bcf\u6b21\u90fd\u9009\u62e9\u7ed3\u675f\u65f6\u95f4\u6700\u65e9\u7684\u4efb\u52a1\uff0c\u90a3\u4e48\u8d2a\u5fc3\u7b97\u6cd5\u5c31\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
            3. \u5206\u6570\u80cc\u5305\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u7269\u54c1\u548c\u4e00\u4e2a\u8f7d\u91cd\u91cf\uff0c\u4f60\u7684\u76ee\u6807\u662f\u9009\u62e9\u4e00\u7ec4\u7269\u54c1\uff0c\u4f7f\u5f97\u603b\u91cd\u91cf\u4e0d\u8d85\u8fc7\u8f7d\u91cd\u91cf\uff0c\u4e14\u603b\u4ef7\u503c\u6700\u5927\u3002\u5982\u679c\u6bcf\u6b21\u90fd\u9009\u62e9\u6027\u4ef7\u6bd4\u6700\u9ad8\uff08\u4ef7\u503c / \u91cd\u91cf\uff09\u7684\u7269\u54c1\uff0c\u90a3\u4e48\u8d2a\u5fc3\u7b97\u6cd5\u5728\u4e00\u4e9b\u60c5\u51b5\u4e0b\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
            4. \u80a1\u7968\u4e70\u5356\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u80a1\u7968\u7684\u5386\u53f2\u4ef7\u683c\uff0c\u4f60\u53ef\u4ee5\u8fdb\u884c\u591a\u6b21\u4e70\u5356\uff0c\u4f46\u5982\u679c\u4f60\u5df2\u7ecf\u6301\u6709\u80a1\u7968\uff0c\u90a3\u4e48\u5728\u5356\u51fa\u4e4b\u524d\u4e0d\u80fd\u518d\u4e70\uff0c\u76ee\u6807\u662f\u83b7\u53d6\u6700\u5927\u5229\u6da6\u3002
            5. \u970d\u592b\u66fc\u7f16\u7801\uff1a\u970d\u592b\u66fc\u7f16\u7801\u662f\u4e00\u79cd\u7528\u4e8e\u65e0\u635f\u6570\u636e\u538b\u7f29\u7684\u8d2a\u5fc3\u7b97\u6cd5\u3002\u901a\u8fc7\u6784\u5efa\u970d\u592b\u66fc\u6811\uff0c\u6bcf\u6b21\u9009\u62e9\u51fa\u73b0\u9891\u7387\u6700\u5c0f\u7684\u4e24\u4e2a\u8282\u70b9\u5408\u5e76\uff0c\u6700\u540e\u5f97\u5230\u7684\u970d\u592b\u66fc\u6811\u7684\u5e26\u6743\u8def\u5f84\u957f\u5ea6\uff08\u5373\u7f16\u7801\u957f\u5ea6\uff09\u6700\u5c0f\u3002
            6. Dijkstra \u7b97\u6cd5\uff1a\u5b83\u662f\u4e00\u79cd\u89e3\u51b3\u7ed9\u5b9a\u6e90\u9876\u70b9\u5230\u5176\u4f59\u5404\u9876\u70b9\u7684\u6700\u77ed\u8def\u5f84\u95ee\u9898\u7684\u8d2a\u5fc3\u7b97\u6cd5\u3002
            "},{"location":"chapter_greedy/max_capacity_problem/","title":"15.3 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898","text":"

            Question

            \u8f93\u5165\u4e00\u4e2a\u6570\u7ec4 \\(ht\\) \uff0c\u6570\u7ec4\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u4ee3\u8868\u4e00\u4e2a\u5782\u76f4\u9694\u677f\u7684\u9ad8\u5ea6\u3002\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e24\u4e2a\u9694\u677f\uff0c\u4ee5\u53ca\u5b83\u4eec\u4e4b\u95f4\u7684\u7a7a\u95f4\u53ef\u4ee5\u7ec4\u6210\u4e00\u4e2a\u5bb9\u5668\u3002

            \u5bb9\u5668\u7684\u5bb9\u91cf\u7b49\u4e8e\u9ad8\u5ea6\u548c\u5bbd\u5ea6\u7684\u4e58\u79ef\uff08\u5373\u9762\u79ef\uff09\uff0c\u5176\u4e2d\u9ad8\u5ea6\u7531\u8f83\u77ed\u7684\u9694\u677f\u51b3\u5b9a\uff0c\u5bbd\u5ea6\u662f\u4e24\u4e2a\u9694\u677f\u7684\u6570\u7ec4\u7d22\u5f15\u4e4b\u5dee\u3002

            \u8bf7\u5728\u6570\u7ec4\u4e2d\u9009\u62e9\u4e24\u4e2a\u9694\u677f\uff0c\u4f7f\u5f97\u7ec4\u6210\u7684\u5bb9\u5668\u7684\u5bb9\u91cf\u6700\u5927\uff0c\u8fd4\u56de\u6700\u5927\u5bb9\u91cf\u3002

            \u56fe\uff1a\u6700\u5927\u5bb9\u91cf\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e

            \u5bb9\u5668\u7531\u4efb\u610f\u4e24\u4e2a\u9694\u677f\u56f4\u6210\uff0c\u56e0\u6b64\u672c\u9898\u7684\u72b6\u6001\u4e3a\u4e24\u4e2a\u9694\u677f\u7684\u7d22\u5f15\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002

            \u6839\u636e\u9898\u610f\uff0c\u5bb9\u91cf\u7b49\u4e8e\u9ad8\u5ea6\u4e58\u4ee5\u5bbd\u5ea6\uff0c\u5176\u4e2d\u9ad8\u5ea6\u7531\u77ed\u677f\u51b3\u5b9a\uff0c\u5bbd\u5ea6\u662f\u4e24\u9694\u677f\u7684\u7d22\u5f15\u4e4b\u5dee\u3002\u8bbe\u5bb9\u91cf\u4e3a \\(cap[i, j]\\) \uff0c\u5219\u53ef\u5f97\u8ba1\u7b97\u516c\u5f0f\uff1a

            \\[ cap[i, j] = \\min(ht[i], ht[j]) \\times (j - i) \\]

            \u8bbe\u6570\u7ec4\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u4e24\u4e2a\u9694\u677f\u7684\u7ec4\u5408\u6570\u91cf\uff08\u5373\u72b6\u6001\u603b\u6570\uff09\u4e3a \\(C_n^2 = \\frac{n(n - 1)}{2}\\) \u4e2a\u3002\u6700\u76f4\u63a5\u5730\uff0c\u6211\u4eec\u53ef\u4ee5\u7a77\u4e3e\u6240\u6709\u72b6\u6001\uff0c\u4ece\u800c\u6c42\u5f97\u6700\u5927\u5bb9\u91cf\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002

            "},{"location":"chapter_greedy/max_capacity_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"

            \u8fd9\u9053\u9898\u8fd8\u6709\u66f4\u9ad8\u6548\u7387\u7684\u89e3\u6cd5\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u73b0\u9009\u53d6\u4e00\u4e2a\u72b6\u6001 \\([i, j]\\) \uff0c\u5176\u6ee1\u8db3\u7d22\u5f15 \\(i < j\\) \u4e14\u9ad8\u5ea6 \\(ht[i] < ht[j]\\) \uff0c\u5373 \\(i\\) \u4e3a\u77ed\u677f\u3001 \\(j\\) \u4e3a\u957f\u677f\u3002

            \u56fe\uff1a\u521d\u59cb\u72b6\u6001

            \u6211\u4eec\u53d1\u73b0\uff0c\u5982\u679c\u6b64\u65f6\u5c06\u957f\u677f \\(j\\) \u5411\u77ed\u677f \\(i\\) \u9760\u8fd1\uff0c\u5219\u5bb9\u91cf\u4e00\u5b9a\u53d8\u5c0f\u3002\u8fd9\u662f\u56e0\u4e3a\u5728\u79fb\u52a8\u957f\u677f \\(j\\) \u540e\uff1a

            • \u5bbd\u5ea6 \\(j-i\\) \u80af\u5b9a\u53d8\u5c0f\u3002
            • \u9ad8\u5ea6\u7531\u77ed\u677f\u51b3\u5b9a\uff0c\u56e0\u6b64\u9ad8\u5ea6\u53ea\u53ef\u80fd\u4e0d\u53d8\uff08 \\(i\\) \u4ecd\u4e3a\u77ed\u677f\uff09\u6216\u53d8\u5c0f\uff08\u79fb\u52a8\u540e\u7684 \\(j\\) \u6210\u4e3a\u77ed\u677f\uff09\u3002

            \u56fe\uff1a\u5411\u5185\u79fb\u52a8\u957f\u677f\u540e\u7684\u72b6\u6001

            \u53cd\u5411\u601d\u8003\uff0c\u6211\u4eec\u53ea\u6709\u5411\u5185\u6536\u7f29\u77ed\u677f \\(i\\) \uff0c\u624d\u6709\u53ef\u80fd\u4f7f\u5bb9\u91cf\u53d8\u5927\u3002\u56e0\u4e3a\u867d\u7136\u5bbd\u5ea6\u4e00\u5b9a\u53d8\u5c0f\uff0c\u4f46\u9ad8\u5ea6\u53ef\u80fd\u4f1a\u53d8\u5927\uff08\u79fb\u52a8\u540e\u7684\u77ed\u677f \\(i\\) \u53ef\u80fd\u4f1a\u53d8\u957f\uff09\u3002

            \u56fe\uff1a\u5411\u5185\u79fb\u52a8\u957f\u677f\u540e\u7684\u72b6\u6001

            \u7531\u6b64\u4fbf\u53ef\u63a8\u51fa\u672c\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\uff1a

            1. \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6307\u9488 \\(i\\) , \\(j\\) \u5206\u5217\u4e0e\u6570\u7ec4\u4e24\u7aef\u3002
            2. \u8ba1\u7b97\u5f53\u524d\u72b6\u6001\u7684\u5bb9\u91cf \\(cap[i, j]\\) \uff0c\u5e76\u66f4\u65b0\u6700\u5927\u5bb9\u91cf\u3002
            3. \u6bd4\u8f83\u677f \\(i\\) \u548c \u677f \\(j\\) \u7684\u9ad8\u5ea6\uff0c\u5e76\u5c06\u77ed\u677f\u5411\u5185\u79fb\u52a8\u4e00\u683c\u3002
            4. \u5faa\u73af\u6267\u884c\u7b2c 2. , 3. \u6b65\uff0c\u76f4\u81f3 \\(i\\) \u548c \\(j\\) \u76f8\u9047\u65f6\u7ed3\u675f\u3002
            <1><2><3><4><5><6><7><8><9>

            \u56fe\uff1a\u6700\u5927\u5bb9\u91cf\u95ee\u9898\u7684\u8d2a\u5fc3\u8fc7\u7a0b

            "},{"location":"chapter_greedy/max_capacity_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u4ee3\u7801\u5faa\u73af\u6700\u591a \\(n\\) \u8f6e\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            \u53d8\u91cf \\(i\\) , \\(j\\) , \\(res\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u989d\u5916\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust max_capacity.java
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(int[] ht) {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\nint i = 0, j = ht.length - 1;\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nint res = 0;\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile (i < j) {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\nint cap = Math.min(ht[i], ht[j]) * (j - i);\nres = Math.max(res, cap);\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif (ht[i] < ht[j]) {\ni++;\n} else {\nj--;\n}\n}\nreturn res;\n}\n
            max_capacity.cpp
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(vector<int> &ht) {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\nint i = 0, j = ht.size() - 1;\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nint res = 0;\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile (i < j) {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\nint cap = min(ht[i], ht[j]) * (j - i);\nres = max(res, cap);\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif (ht[i] < ht[j]) {\ni++;\n} else {\nj--;\n}\n}\nreturn res;\n}\n
            max_capacity.py
            def max_capacity(ht: list[int]) -> int:\n\"\"\"\u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3\"\"\"\n# \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\ni, j = 0, len(ht) - 1\n# \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nres = 0\n# \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile i < j:\n# \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\ncap = min(ht[i], ht[j]) * (j - i)\nres = max(res, cap)\n# \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif ht[i] < ht[j]:\ni += 1\nelse:\nj -= 1\nreturn res\n
            max_capacity.go
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfunc maxCapacity(ht []int) int {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\ni, j := 0, len(ht)-1\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nres := 0\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nfor i < j {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\ncapacity := int(math.Min(float64(ht[i]), float64(ht[j]))) * (j - i)\nres = int(math.Max(float64(res), float64(capacity)))\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif ht[i] < ht[j] {\ni++\n} else {\nj--\n}\n}\nreturn res\n}\n
            max_capacity.js
            [class]{}-[func]{maxCapacity}\n
            max_capacity.ts
            [class]{}-[func]{maxCapacity}\n
            max_capacity.c
            [class]{}-[func]{maxCapacity}\n
            max_capacity.cs
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(int[] ht) {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\nint i = 0, j = ht.Length - 1;\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nint res = 0;\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile (i < j) {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\nint cap = Math.Min(ht[i], ht[j]) * (j - i);\nres = Math.Max(res, cap);\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif (ht[i] < ht[j]) {\ni++;\n} else {\nj--;\n}\n}\nreturn res;\n}\n
            max_capacity.swift
            [class]{}-[func]{maxCapacity}\n
            max_capacity.zig
            [class]{}-[func]{maxCapacity}\n
            max_capacity.dart
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(List<int> ht) {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\nint i = 0, j = ht.length - 1;\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nint res = 0;\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile (i < j) {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\nint cap = min(ht[i], ht[j]) * (j - i);\nres = max(res, cap);\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif (ht[i] < ht[j]) {\ni++;\n} else {\nj--;\n}\n}\nreturn res;\n}\n
            max_capacity.rs
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfn max_capacity(ht: &[i32]) -> i32 {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\nlet mut i = 0;\nlet mut j = ht.len() - 1;\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nlet mut res = 0;\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile i < j {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\nlet cap = std::cmp::min(ht[i], ht[j]) * (j - i) as i32;\nres = std::cmp::max(res, cap);\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif ht[i] < ht[j] {\ni += 1;\n} else {\nj -= 1;\n}\n}\nres\n}\n
            "},{"location":"chapter_greedy/max_capacity_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"

            \u4e4b\u6240\u4ee5\u8d2a\u5fc3\u6bd4\u7a77\u4e3e\u66f4\u5feb\uff0c\u662f\u56e0\u4e3a\u6bcf\u8f6e\u7684\u8d2a\u5fc3\u9009\u62e9\u90fd\u4f1a\u201c\u8df3\u8fc7\u201d\u4e00\u4e9b\u72b6\u6001\u3002

            \u6bd4\u5982\u5728\u72b6\u6001 \\(cap[i, j]\\) \u4e0b\uff0c\\(i\\) \u4e3a\u77ed\u677f\u3001\\(j\\) \u4e3a\u957f\u677f\u3002\u82e5\u8d2a\u5fc3\u5730\u5c06\u77ed\u677f \\(i\\) \u5411\u5185\u79fb\u52a8\u4e00\u683c\uff0c\u4f1a\u5bfc\u81f4\u4ee5\u4e0b\u72b6\u6001\u88ab\u201c\u8df3\u8fc7\u201d\u3002\u8fd9\u610f\u5473\u7740\u4e4b\u540e\u65e0\u6cd5\u9a8c\u8bc1\u8fd9\u4e9b\u72b6\u6001\u7684\u5bb9\u91cf\u5927\u5c0f\u3002

            \\[ cap[i, i+1], cap[i, i+2], \\cdots, cap[i, j-2], cap[i, j-1] \\]

            \u56fe\uff1a\u79fb\u52a8\u77ed\u677f\u5bfc\u81f4\u88ab\u8df3\u8fc7\u7684\u72b6\u6001

            \u89c2\u5bdf\u53d1\u73b0\uff0c\u8fd9\u4e9b\u88ab\u8df3\u8fc7\u7684\u72b6\u6001\u5b9e\u9645\u4e0a\u5c31\u662f\u5c06\u957f\u677f \\(j\\) \u5411\u5185\u79fb\u52a8\u7684\u6240\u6709\u72b6\u6001\u3002\u800c\u5728\u7b2c\u4e8c\u6b65\u4e2d\uff0c\u6211\u4eec\u5df2\u7ecf\u8bc1\u660e\u5185\u79fb\u957f\u677f\u4e00\u5b9a\u4f1a\u5bfc\u81f4\u5bb9\u91cf\u53d8\u5c0f\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u88ab\u8df3\u8fc7\u7684\u72b6\u6001\u90fd\u4e0d\u53ef\u80fd\u662f\u6700\u4f18\u89e3\uff0c\u8df3\u8fc7\u5b83\u4eec\u4e0d\u4f1a\u5bfc\u81f4\u9519\u8fc7\u6700\u4f18\u89e3\u3002

            \u4ee5\u4e0a\u7684\u5206\u6790\u8bf4\u660e\uff0c\u79fb\u52a8\u77ed\u677f\u7684\u64cd\u4f5c\u662f\u201c\u5b89\u5168\u201d\u7684\uff0c\u8d2a\u5fc3\u7b56\u7565\u662f\u6709\u6548\u7684\u3002

            "},{"location":"chapter_greedy/max_product_cutting_problem/","title":"15.4 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570 \\(n\\) \uff0c\u5c06\u5176\u5207\u5206\u4e3a\u81f3\u5c11\u4e24\u4e2a\u6b63\u6574\u6570\u7684\u548c\uff0c\u6c42\u5207\u5206\u540e\u6240\u6709\u6574\u6570\u7684\u4e58\u79ef\u6700\u5927\u662f\u591a\u5c11\u3002

            \u56fe\uff1a\u6700\u5927\u5207\u5206\u4e58\u79ef\u7684\u95ee\u9898\u5b9a\u4e49

            \u5047\u8bbe\u6211\u4eec\u5c06 \\(n\\) \u5207\u5206\u4e3a \\(m\\) \u4e2a\u6574\u6570\u56e0\u5b50\uff0c\u5176\u4e2d\u7b2c \\(i\\) \u4e2a\u56e0\u5b50\u8bb0\u4e3a \\(n_i\\) \uff0c\u5373

            \\[ n = \\sum_{i=1}^{m}n_i \\]

            \u672c\u9898\u76ee\u6807\u662f\u6c42\u5f97\u6240\u6709\u6574\u6570\u56e0\u5b50\u7684\u6700\u5927\u4e58\u79ef\uff0c\u5373

            \\[ \\max(\\prod_{i=1}^{m}n_i) \\]

            \u6211\u4eec\u9700\u8981\u601d\u8003\u7684\u662f\uff1a\u5207\u5206\u6570\u91cf \\(m\\) \u5e94\u8be5\u591a\u5927\uff0c\u6bcf\u4e2a \\(n_i\\) \u5e94\u8be5\u662f\u591a\u5c11\uff1f

            "},{"location":"chapter_greedy/max_product_cutting_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"

            \u6839\u636e\u7ecf\u9a8c\uff0c\u4e24\u4e2a\u6574\u6570\u7684\u4e58\u79ef\u5f80\u5f80\u6bd4\u5b83\u4eec\u7684\u52a0\u548c\u66f4\u5927\u3002\u5047\u8bbe\u4ece \\(n\\) \u4e2d\u5206\u51fa\u4e00\u4e2a\u56e0\u5b50 \\(2\\) \uff0c\u5219\u5b83\u4eec\u7684\u4e58\u79ef\u4e3a \\(2(n-2)\\) \u3002\u6211\u4eec\u5c06\u8be5\u4e58\u79ef\u4e0e \\(n\\) \u4f5c\u6bd4\u8f83\uff1a

            \\[ \\begin{aligned} 2(n-2) & \\geq n \\newline 2n - n - 4 & \\geq 0 \\newline n & \\geq 4 \\end{aligned} \\]

            \u6211\u4eec\u53d1\u73b0\u5f53 \\(n \\geq 4\\) \u65f6\uff0c\u5207\u5206\u51fa\u4e00\u4e2a \\(2\\) \u540e\u4e58\u79ef\u4f1a\u53d8\u5927\uff0c\u8fd9\u8bf4\u660e\u5927\u4e8e\u7b49\u4e8e \\(4\\) \u7684\u6574\u6570\u90fd\u5e94\u8be5\u88ab\u5207\u5206\u3002

            \u8d2a\u5fc3\u7b56\u7565\u4e00\uff1a\u5982\u679c\u5207\u5206\u65b9\u6848\u4e2d\u5305\u542b \\(\\geq 4\\) \u7684\u56e0\u5b50\uff0c\u90a3\u4e48\u5b83\u5c31\u5e94\u8be5\u88ab\u7ee7\u7eed\u5207\u5206\u3002\u6700\u7ec8\u7684\u5207\u5206\u65b9\u6848\u53ea\u5e94\u51fa\u73b0 \\(1\\) , \\(2\\) , \\(3\\) \u8fd9\u4e09\u79cd\u56e0\u5b50\u3002

            \u56fe\uff1a\u5207\u5206\u5bfc\u81f4\u4e58\u79ef\u53d8\u5927

            \u63a5\u4e0b\u6765\u601d\u8003\u54ea\u4e2a\u56e0\u5b50\u662f\u6700\u4f18\u7684\u3002\u5728 \\(1\\) , \\(2\\) , \\(3\\) \u8fd9\u4e09\u4e2a\u56e0\u5b50\u4e2d\uff0c\u663e\u7136 \\(1\\) \u662f\u6700\u5dee\u7684\uff0c\u56e0\u4e3a \\(1 \\times (n-1) < n\\) \u6052\u6210\u7acb\uff0c\u5373\u5207\u5206\u51fa \\(1\\) \u53cd\u800c\u4f1a\u5bfc\u81f4\u4e58\u79ef\u51cf\u5c0f\u3002

            \u6211\u4eec\u53d1\u73b0\uff0c\u5f53 \\(n = 6\\) \u65f6\uff0c\u6709 \\(3 \\times 3 > 2 \\times 2 \\times 2\\) \u3002\u8fd9\u610f\u5473\u7740\u5207\u5206\u51fa \\(3\\) \u6bd4\u5207\u5206\u51fa \\(2\\) \u66f4\u4f18\u3002

            \u8d2a\u5fc3\u7b56\u7565\u4e8c\uff1a\u5728\u5207\u5206\u65b9\u6848\u4e2d\uff0c\u6700\u591a\u53ea\u5e94\u5b58\u5728\u4e24\u4e2a \\(2\\) \u3002\u56e0\u4e3a\u4e09\u4e2a \\(2\\) \u603b\u662f\u53ef\u4ee5\u88ab\u66ff\u6362\u4e3a\u4e24\u4e2a \\(3\\) \uff0c\u4ece\u800c\u83b7\u5f97\u66f4\u5927\u4e58\u79ef\u3002

            \u56fe\uff1a\u6700\u4f18\u5207\u5206\u56e0\u5b50

            \u603b\u7ed3\u4ee5\u4e0a\uff0c\u53ef\u63a8\u51fa\u8d2a\u5fc3\u7b56\u7565\uff1a

            1. \u8f93\u5165\u6574\u6570 \\(n\\) \uff0c\u4ece\u5176\u4e0d\u65ad\u5730\u5207\u5206\u51fa\u56e0\u5b50 \\(3\\) \uff0c\u76f4\u81f3\u4f59\u6570\u4e3a \\(0\\) , \\(1\\) , \\(2\\) \u3002
            2. \u5f53\u4f59\u6570\u4e3a \\(0\\) \u65f6\uff0c\u4ee3\u8868 \\(n\\) \u662f \\(3\\) \u7684\u500d\u6570\uff0c\u56e0\u6b64\u4e0d\u505a\u4efb\u4f55\u5904\u7406\u3002
            3. \u5f53\u4f59\u6570\u4e3a \\(2\\) \u65f6\uff0c\u4e0d\u7ee7\u7eed\u5212\u5206\uff0c\u4fdd\u7559\u4e4b\u3002
            4. \u5f53\u4f59\u6570\u4e3a \\(1\\) \u65f6\uff0c\u7531\u4e8e \\(2 \\times 2 > 1 \\times 3\\) \uff0c\u56e0\u6b64\u5e94\u5c06\u6700\u540e\u4e00\u4e2a \\(3\\) \u66ff\u6362\u4e3a \\(2\\) \u3002
            "},{"location":"chapter_greedy/max_product_cutting_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u65e0\u987b\u901a\u8fc7\u5faa\u73af\u6765\u5207\u5206\u6574\u6570\uff0c\u800c\u53ef\u4ee5\u5229\u7528\u5411\u4e0b\u6574\u9664\u8fd0\u7b97\u5f97\u5230 \\(3\\) \u7684\u4e2a\u6570 \\(a\\) \uff0c\u7528\u53d6\u6a21\u8fd0\u7b97\u5f97\u5230\u4f59\u6570 \\(b\\) \uff0c\u6b64\u65f6\u6709\uff1a

            \\[ n = 3 a + b \\]

            \u8bf7\u6ce8\u610f\uff0c\u5bf9\u4e8e \\(n \\leq 3\\) \u7684\u8fb9\u754c\u60c5\u51b5\uff0c\u5fc5\u987b\u62c6\u5206\u51fa\u4e00\u4e2a \\(1\\) \uff0c\u4e58\u79ef\u4e3a \\(1 \\times (n - 1)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust max_product_cutting.java
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif (n <= 3) {\nreturn 1 * (n - 1);\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\nint a = n / 3;\nint b = n % 3;\nif (b == 1) {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn (int) Math.pow(3, a - 1) * 2 * 2;\n}\nif (b == 2) {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int) Math.pow(3, a) * 2;\n}\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int) Math.pow(3, a);\n}\n
            max_product_cutting.cpp
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif (n <= 3) {\nreturn 1 * (n - 1);\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\nint a = n / 3;\nint b = n % 3;\nif (b == 1) {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn (int)pow(3, a - 1) * 2 * 2;\n}\nif (b == 2) {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int)pow(3, a) * 2;\n}\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int)pow(3, a);\n}\n
            max_product_cutting.py
            def max_product_cutting(n: int) -> int:\n\"\"\"\u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3\"\"\"\n# \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif n <= 3:\nreturn 1 * (n - 1)\n# \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\na, b = n // 3, n % 3\nif b == 1:\n# \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn int(math.pow(3, a - 1)) * 2 * 2\nif b == 2:\n# \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn int(math.pow(3, a)) * 2\n# \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn int(math.pow(3, a))\n
            max_product_cutting.go
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfunc maxProductCutting(n int) int {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif n <= 3 {\nreturn 1 * (n - 1)\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\na := n / 3\nb := n % 3\nif b == 1 {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn int(math.Pow(3, float64(a-1))) * 2 * 2\n}\nif b == 2 {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn int(math.Pow(3, float64(a))) * 2\n}\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn int(math.Pow(3, float64(a)))\n}\n
            max_product_cutting.js
            [class]{}-[func]{maxProductCutting}\n
            max_product_cutting.ts
            [class]{}-[func]{maxProductCutting}\n
            max_product_cutting.c
            [class]{}-[func]{maxProductCutting}\n
            max_product_cutting.cs
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif (n <= 3) {\nreturn 1 * (n - 1);\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\nint a = n / 3;\nint b = n % 3;\nif (b == 1) {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn (int)Math.Pow(3, a - 1) * 2 * 2;\n}\nif (b == 2) {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int)Math.Pow(3, a) * 2;\n}\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int)Math.Pow(3, a);\n}\n
            max_product_cutting.swift
            [class]{}-[func]{maxProductCutting}\n
            max_product_cutting.zig
            [class]{}-[func]{maxProductCutting}\n
            max_product_cutting.dart
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif (n <= 3) {\nreturn 1 * (n - 1);\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\nint a = n ~/ 3;\nint b = n % 3;\nif (b == 1) {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn (pow(3, a - 1) * 2 * 2).toInt();\n}\nif (b == 2) {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (pow(3, a) * 2).toInt();\n}\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn pow(3, a).toInt();\n}\n
            max_product_cutting.rs
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfn max_product_cutting(n: i32) -> i32 {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif n <= 3 {\nreturn 1 * (n - 1);\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\nlet a = n / 3;\nlet b = n % 3;\nif b == 1 {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n3_i32.pow(a as u32 - 1) * 2 * 2\n} else if b == 2 {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n3_i32.pow(a as u32) * 2\n} else {\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n3_i32.pow(a as u32)\n}\n}\n

            \u56fe\uff1a\u6700\u5927\u5207\u5206\u4e58\u79ef\u7684\u8ba1\u7b97\u65b9\u6cd5

            \u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u7f16\u7a0b\u8bed\u8a00\u7684\u5e42\u8fd0\u7b97\u7684\u5b9e\u73b0\u65b9\u6cd5\u3002\u4ee5 Python \u4e3a\u4f8b\uff0c\u5e38\u7528\u7684\u5e42\u8ba1\u7b97\u51fd\u6570\u6709\u4e09\u79cd\uff1a

            • \u8fd0\u7b97\u7b26 ** \u548c\u51fd\u6570 pow() \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log\u2061 a)\\) \u3002
            • \u51fd\u6570 math.pow() \u5185\u90e8\u8c03\u7528 C \u8bed\u8a00\u5e93\u7684 pow() \u51fd\u6570\uff0c\u5176\u6267\u884c\u6d6e\u70b9\u53d6\u5e42\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002

            \u53d8\u91cf \\(a\\) , \\(b\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002

            "},{"location":"chapter_greedy/max_product_cutting_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"

            \u4f7f\u7528\u53cd\u8bc1\u6cd5\uff0c\u53ea\u5206\u6790 \\(n \\geq 3\\) \u7684\u60c5\u51b5\u3002

            1. \u6240\u6709\u56e0\u5b50 \\(\\leq 3\\) :\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5b58\u5728 \\(\\geq 4\\) \u7684\u56e0\u5b50 \\(x\\) \uff0c\u90a3\u4e48\u4e00\u5b9a\u53ef\u4ee5\u5c06\u5176\u7ee7\u7eed\u5212\u5206\u4e3a \\(2(x-2)\\) \uff0c\u4ece\u800c\u83b7\u5f97\u66f4\u5927\u7684\u4e58\u79ef\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
            2. \u5207\u5206\u65b9\u6848\u4e0d\u5305\u542b \\(1\\) :\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5b58\u5728\u4e00\u4e2a\u56e0\u5b50 \\(1\\) \uff0c\u90a3\u4e48\u5b83\u4e00\u5b9a\u53ef\u4ee5\u5408\u5e76\u5165\u53e6\u5916\u4e00\u4e2a\u56e0\u5b50\u4e2d\uff0c\u4ee5\u83b7\u53d6\u66f4\u5927\u4e58\u79ef\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
            3. \u5207\u5206\u65b9\u6848\u6700\u591a\u5305\u542b\u4e24\u4e2a \\(2\\) \uff1a\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5305\u542b\u4e09\u4e2a \\(2\\) \uff0c\u90a3\u4e48\u4e00\u5b9a\u53ef\u4ee5\u66ff\u6362\u4e3a\u4e24\u4e2a \\(3\\) \uff0c\u4e58\u79ef\u66f4\u5927\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
            "},{"location":"chapter_greedy/summary/","title":"15.5 \u00a0 \u5c0f\u7ed3","text":"
            • \u8d2a\u5fc3\u7b97\u6cd5\u901a\u5e38\u7528\u4e8e\u89e3\u51b3\u6700\u4f18\u5316\u95ee\u9898\uff0c\u5176\u539f\u7406\u662f\u5728\u6bcf\u4e2a\u51b3\u7b56\u9636\u6bb5\u90fd\u505a\u51fa\u5c40\u90e8\u6700\u4f18\u7684\u51b3\u7b56\uff0c\u4ee5\u671f\u671b\u83b7\u5f97\u5168\u5c40\u6700\u4f18\u89e3\u3002
            • \u8d2a\u5fc3\u7b97\u6cd5\u4f1a\u8fed\u4ee3\u5730\u505a\u51fa\u4e00\u4e2a\u53c8\u4e00\u4e2a\u7684\u8d2a\u5fc3\u9009\u62e9\uff0c\u6bcf\u8f6e\u90fd\u5c06\u95ee\u9898\u8f6c\u5316\u6210\u4e00\u4e2a\u89c4\u6a21\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u76f4\u5230\u95ee\u9898\u88ab\u89e3\u51b3\u3002
            • \u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4ec5\u5b9e\u73b0\u7b80\u5355\uff0c\u8fd8\u5177\u6709\u5f88\u9ad8\u7684\u89e3\u9898\u6548\u7387\u3002\u76f8\u6bd4\u4e8e\u52a8\u6001\u89c4\u5212\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u66f4\u4f4e\u3002
            • \u5728\u96f6\u94b1\u5151\u6362\u95ee\u9898\u4e2d\uff0c\u5bf9\u4e8e\u67d0\u4e9b\u786c\u5e01\u7ec4\u5408\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1b\u5bf9\u4e8e\u53e6\u5916\u4e00\u4e9b\u786c\u5e01\u7ec4\u5408\u5219\u4e0d\u7136\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ef\u80fd\u627e\u5230\u5f88\u5dee\u7684\u89e3\u3002
            • \u9002\u5408\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u7684\u95ee\u9898\u5177\u6709\u4e24\u5927\u6027\u8d28\uff1a\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u3002\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u4ee3\u8868\u8d2a\u5fc3\u7b56\u7565\u7684\u6709\u6548\u6027\u3002
            • \u5bf9\u4e8e\u67d0\u4e9b\u590d\u6742\u95ee\u9898\uff0c\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u7684\u8bc1\u660e\u5e76\u4e0d\u7b80\u5355\u3002\u76f8\u5bf9\u6765\u8bf4\uff0c\u8bc1\u4f2a\u66f4\u52a0\u5bb9\u6613\uff0c\u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002
            • \u6c42\u89e3\u8d2a\u5fc3\u95ee\u9898\u4e3b\u8981\u5206\u4e3a\u4e09\u6b65\uff1a\u95ee\u9898\u5206\u6790\u3001\u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a\u3001\u6b63\u786e\u6027\u8bc1\u660e\u3002\u5176\u4e2d\uff0c\u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a\u662f\u6838\u5fc3\u6b65\u9aa4\uff0c\u6b63\u786e\u6027\u8bc1\u660e\u5f80\u5f80\u662f\u96be\u70b9\u3002
            • \u5206\u6570\u80cc\u5305\u95ee\u9898\u5728 0-1 \u80cc\u5305\u7684\u57fa\u7840\u4e0a\uff0c\u5141\u8bb8\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\uff0c\u56e0\u6b64\u53ef\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u3002\u8d2a\u5fc3\u7b56\u7565\u7684\u6b63\u786e\u6027\u53ef\u4ee5\u4f7f\u7528\u53cd\u8bc1\u6cd5\u6765\u8bc1\u660e\u3002
            • \u6700\u5927\u5bb9\u91cf\u95ee\u9898\u53ef\u4f7f\u7528\u7a77\u4e3e\u6cd5\u6c42\u89e3\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002\u901a\u8fc7\u8bbe\u8ba1\u8d2a\u5fc3\u7b56\u7565\uff0c\u6bcf\u8f6e\u5411\u5185\u79fb\u52a8\u77ed\u677f\uff0c\u53ef\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(n)\\) \u3002
            • \u5728\u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898\u4e2d\uff0c\u6211\u4eec\u5148\u540e\u63a8\u7406\u51fa\u4e24\u4e2a\u8d2a\u5fc3\u7b56\u7565\uff1a\\(\\geq 4\\) \u7684\u6574\u6570\u90fd\u5e94\u8be5\u7ee7\u7eed\u5207\u5206\u3001\u6700\u4f18\u5207\u5206\u56e0\u5b50\u4e3a \\(3\\) \u3002\u4ee3\u7801\u4e2d\u5305\u542b\u5e42\u8fd0\u7b97\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u5e42\u8fd0\u7b97\u5b9e\u73b0\u65b9\u6cd5\uff0c\u901a\u5e38\u4e3a \\(O(1)\\) \u6216 \\(O(\\log n)\\) \u3002
            "},{"location":"chapter_hashing/","title":"\u7b2c 6 \u7ae0 \u00a0 \u6563\u5217\u8868","text":"

            Abstract

            \u5728\u8ba1\u7b97\u673a\u4e16\u754c\u4e2d\uff0c\u6563\u5217\u8868\u5982\u540c\u4e00\u4f4d\u667a\u80fd\u7684\u56fe\u4e66\u7ba1\u7406\u5458\u3002

            \u4ed6\u77e5\u9053\u5982\u4f55\u8ba1\u7b97\u7d22\u4e66\u53f7\uff0c\u4ece\u800c\u53ef\u4ee5\u5feb\u901f\u627e\u5230\u76ee\u6807\u4e66\u7c4d\u3002

            "},{"location":"chapter_hashing/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 6.1 \u00a0 \u54c8\u5e0c\u8868
            • 6.2 \u00a0 \u54c8\u5e0c\u51b2\u7a81
            • 6.3 \u00a0 \u54c8\u5e0c\u7b97\u6cd5
            • 6.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_hashing/hash_algorithm/","title":"6.3 \u00a0 \u54c8\u5e0c\u7b97\u6cd5","text":"

            \u5728\u4e0a\u4e24\u8282\u4e2d\uff0c\u6211\u4eec\u4e86\u89e3\u4e86\u54c8\u5e0c\u8868\u7684\u5de5\u4f5c\u539f\u7406\u548c\u54c8\u5e0c\u51b2\u7a81\u7684\u5904\u7406\u65b9\u6cd5\u3002\u7136\u800c\u65e0\u8bba\u662f\u5f00\u653e\u5bfb\u5740\u8fd8\u662f\u94fe\u5730\u5740\u6cd5\uff0c\u5b83\u4eec\u53ea\u80fd\u4fdd\u8bc1\u54c8\u5e0c\u8868\u53ef\u4ee5\u5728\u53d1\u751f\u51b2\u7a81\u65f6\u6b63\u5e38\u5de5\u4f5c\uff0c\u4f46\u65e0\u6cd5\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u7684\u53d1\u751f\u3002

            \u5982\u679c\u54c8\u5e0c\u51b2\u7a81\u8fc7\u4e8e\u9891\u7e41\uff0c\u54c8\u5e0c\u8868\u7684\u6027\u80fd\u5219\u4f1a\u6025\u5267\u52a3\u5316\u3002\u5bf9\u4e8e\u94fe\u5730\u5740\u54c8\u5e0c\u8868\uff0c\u7406\u60f3\u60c5\u51b5\u4e0b\u952e\u503c\u5bf9\u5e73\u5747\u5206\u5e03\u5728\u5404\u4e2a\u6876\u4e2d\uff0c\u8fbe\u5230\u6700\u4f73\u67e5\u8be2\u6548\u7387\uff1b\u6700\u5dee\u60c5\u51b5\u4e0b\u6240\u6709\u952e\u503c\u5bf9\u90fd\u88ab\u5b58\u50a8\u5230\u540c\u4e00\u4e2a\u6876\u4e2d\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u9000\u5316\u81f3 \\(O(n)\\) \u3002

            \u56fe\uff1a\u54c8\u5e0c\u51b2\u7a81\u7684\u6700\u4f73\u4e0e\u6700\u5dee\u60c5\u51b5

            \u952e\u503c\u5bf9\u7684\u5206\u5e03\u60c5\u51b5\u7531\u54c8\u5e0c\u51fd\u6570\u51b3\u5b9a\u3002\u56de\u5fc6\u54c8\u5e0c\u51fd\u6570\u7684\u8ba1\u7b97\u6b65\u9aa4\uff0c\u5148\u8ba1\u7b97\u54c8\u5e0c\u503c\uff0c\u518d\u5bf9\u6570\u7ec4\u957f\u5ea6\u53d6\u6a21\uff1a

            index = hash(key) % capacity\n

            \u89c2\u5bdf\u4ee5\u4e0a\u516c\u5f0f\uff0c\u5f53\u54c8\u5e0c\u8868\u5bb9\u91cf capacity \u56fa\u5b9a\u65f6\uff0c\u54c8\u5e0c\u7b97\u6cd5 hash() \u51b3\u5b9a\u4e86\u8f93\u51fa\u503c\uff0c\u8fdb\u800c\u51b3\u5b9a\u4e86\u952e\u503c\u5bf9\u5728\u54c8\u5e0c\u8868\u4e2d\u7684\u5206\u5e03\u60c5\u51b5\u3002

            \u8fd9\u610f\u5473\u7740\uff0c\u4e3a\u4e86\u51cf\u5c0f\u54c8\u5e0c\u51b2\u7a81\u7684\u53d1\u751f\u6982\u7387\uff0c\u6211\u4eec\u5e94\u5f53\u5c06\u6ce8\u610f\u529b\u96c6\u4e2d\u5728\u54c8\u5e0c\u7b97\u6cd5 hash() \u7684\u8bbe\u8ba1\u4e0a\u3002

            "},{"location":"chapter_hashing/hash_algorithm/#631","title":"6.3.1 \u00a0 \u54c8\u5e0c\u7b97\u6cd5\u7684\u76ee\u6807","text":"

            \u4e3a\u4e86\u5b9e\u73b0\u201c\u65e2\u5feb\u53c8\u7a33\u201d\u7684\u54c8\u5e0c\u8868\u6570\u636e\u7ed3\u6784\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5e94\u5305\u542b\u4ee5\u4e0b\u7279\u70b9\uff1a

            • \u786e\u5b9a\u6027\uff1a\u5bf9\u4e8e\u76f8\u540c\u7684\u8f93\u5165\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5e94\u59cb\u7ec8\u4ea7\u751f\u76f8\u540c\u7684\u8f93\u51fa\u3002\u8fd9\u6837\u624d\u80fd\u786e\u4fdd\u54c8\u5e0c\u8868\u662f\u53ef\u9760\u7684\u3002
            • \u6548\u7387\u9ad8\uff1a\u8ba1\u7b97\u54c8\u5e0c\u503c\u7684\u8fc7\u7a0b\u5e94\u8be5\u8db3\u591f\u5feb\u3002\u8ba1\u7b97\u5f00\u9500\u8d8a\u5c0f\uff0c\u54c8\u5e0c\u8868\u7684\u5b9e\u7528\u6027\u8d8a\u9ad8\u3002
            • \u5747\u5300\u5206\u5e03\uff1a\u54c8\u5e0c\u7b97\u6cd5\u5e94\u4f7f\u5f97\u952e\u503c\u5bf9\u5e73\u5747\u5206\u5e03\u5728\u54c8\u5e0c\u8868\u4e2d\u3002\u5206\u5e03\u8d8a\u5e73\u5747\uff0c\u54c8\u5e0c\u51b2\u7a81\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\u3002

            \u5b9e\u9645\u4e0a\uff0c\u54c8\u5e0c\u7b97\u6cd5\u9664\u4e86\u53ef\u4ee5\u7528\u4e8e\u5b9e\u73b0\u54c8\u5e0c\u8868\uff0c\u8fd8\u5e7f\u6cdb\u5e94\u7528\u4e8e\u5176\u4ed6\u9886\u57df\u4e2d\u3002\u4e3e\u4e24\u4e2a\u4f8b\u5b50\uff1a

            • \u5bc6\u7801\u5b58\u50a8\uff1a\u4e3a\u4e86\u4fdd\u62a4\u7528\u6237\u5bc6\u7801\u7684\u5b89\u5168\uff0c\u7cfb\u7edf\u901a\u5e38\u4e0d\u4f1a\u76f4\u63a5\u5b58\u50a8\u7528\u6237\u7684\u660e\u6587\u5bc6\u7801\uff0c\u800c\u662f\u5b58\u50a8\u5bc6\u7801\u7684\u54c8\u5e0c\u503c\u3002\u5f53\u7528\u6237\u8f93\u5165\u5bc6\u7801\u65f6\uff0c\u7cfb\u7edf\u4f1a\u5bf9\u8f93\u5165\u7684\u5bc6\u7801\u8ba1\u7b97\u54c8\u5e0c\u503c\uff0c\u7136\u540e\u4e0e\u5b58\u50a8\u7684\u54c8\u5e0c\u503c\u8fdb\u884c\u6bd4\u8f83\u3002\u5982\u679c\u4e24\u8005\u5339\u914d\uff0c\u90a3\u4e48\u5bc6\u7801\u5c31\u88ab\u89c6\u4e3a\u6b63\u786e\u3002
            • \u6570\u636e\u5b8c\u6574\u6027\u68c0\u67e5\uff1a\u6570\u636e\u53d1\u9001\u65b9\u53ef\u4ee5\u8ba1\u7b97\u6570\u636e\u7684\u54c8\u5e0c\u503c\u5e76\u5c06\u5176\u4e00\u540c\u53d1\u9001\uff1b\u63a5\u6536\u65b9\u53ef\u4ee5\u91cd\u65b0\u8ba1\u7b97\u63a5\u6536\u5230\u7684\u6570\u636e\u7684\u54c8\u5e0c\u503c\uff0c\u5e76\u4e0e\u63a5\u6536\u5230\u7684\u54c8\u5e0c\u503c\u8fdb\u884c\u6bd4\u8f83\u3002\u5982\u679c\u4e24\u8005\u5339\u914d\uff0c\u90a3\u4e48\u6570\u636e\u5c31\u88ab\u89c6\u4e3a\u5b8c\u6574\u7684\u3002

            \u5bf9\u4e8e\u5bc6\u7801\u5b66\u7684\u76f8\u5173\u5e94\u7528\uff0c\u54c8\u5e0c\u7b97\u6cd5\u9700\u8981\u6ee1\u8db3\u66f4\u9ad8\u7684\u5b89\u5168\u6807\u51c6\uff0c\u4ee5\u9632\u6b62\u4ece\u54c8\u5e0c\u503c\u63a8\u5bfc\u51fa\u539f\u59cb\u5bc6\u7801\u7b49\u9006\u5411\u5de5\u7a0b\uff0c\u5305\u62ec\uff1a

            • \u6297\u78b0\u649e\u6027\uff1a\u5e94\u5f53\u6781\u5176\u56f0\u96be\u627e\u5230\u4e24\u4e2a\u4e0d\u540c\u7684\u8f93\u5165\uff0c\u4f7f\u5f97\u5b83\u4eec\u7684\u54c8\u5e0c\u503c\u76f8\u540c\u3002
            • \u96ea\u5d29\u6548\u5e94\uff1a\u8f93\u5165\u7684\u5fae\u5c0f\u53d8\u5316\u5e94\u5f53\u5bfc\u81f4\u8f93\u51fa\u7684\u663e\u8457\u4e14\u4e0d\u53ef\u9884\u6d4b\u7684\u53d8\u5316\u3002

            \u8bf7\u6ce8\u610f\uff0c\u201c\u5747\u5300\u5206\u5e03\u201d\u4e0e\u201c\u6297\u78b0\u649e\u6027\u201d\u662f\u4e24\u4e2a\u72ec\u7acb\u7684\u6982\u5ff5\uff0c\u6ee1\u8db3\u5747\u5300\u5206\u5e03\u4e0d\u4e00\u5b9a\u6ee1\u8db3\u6297\u78b0\u649e\u6027\u3002\u4f8b\u5982\uff0c\u5728\u968f\u673a\u8f93\u5165 key \u4e0b\uff0c\u54c8\u5e0c\u51fd\u6570 key % 100 \u53ef\u4ee5\u4ea7\u751f\u5747\u5300\u5206\u5e03\u7684\u8f93\u51fa\u3002\u7136\u800c\u8be5\u54c8\u5e0c\u7b97\u6cd5\u8fc7\u4e8e\u7b80\u5355\uff0c\u6240\u6709\u540e\u4e24\u4f4d\u76f8\u7b49\u7684 key \u7684\u8f93\u51fa\u90fd\u76f8\u540c\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u4ece\u54c8\u5e0c\u503c\u53cd\u63a8\u51fa\u53ef\u7528\u7684 key \uff0c\u4ece\u800c\u7834\u89e3\u5bc6\u7801\u3002

            "},{"location":"chapter_hashing/hash_algorithm/#632","title":"6.3.2 \u00a0 \u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1","text":"

            \u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1\u662f\u4e00\u4e2a\u590d\u6742\u4e14\u9700\u8981\u8003\u8651\u8bb8\u591a\u56e0\u7d20\u7684\u95ee\u9898\u3002\u7136\u800c\u5bf9\u4e8e\u7b80\u5355\u573a\u666f\uff0c\u6211\u4eec\u4e5f\u80fd\u8bbe\u8ba1\u4e00\u4e9b\u7b80\u5355\u7684\u54c8\u5e0c\u7b97\u6cd5\u3002\u4ee5\u5b57\u7b26\u4e32\u54c8\u5e0c\u4e3a\u4f8b\uff1a

            • \u52a0\u6cd5\u54c8\u5e0c\uff1a\u5bf9\u8f93\u5165\u7684\u6bcf\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u8fdb\u884c\u76f8\u52a0\uff0c\u5c06\u5f97\u5230\u7684\u603b\u548c\u4f5c\u4e3a\u54c8\u5e0c\u503c\u3002
            • \u4e58\u6cd5\u54c8\u5e0c\uff1a\u5229\u7528\u4e86\u4e58\u6cd5\u7684\u4e0d\u76f8\u5173\u6027\uff0c\u6bcf\u8f6e\u4e58\u4ee5\u4e00\u4e2a\u5e38\u6570\uff0c\u5c06\u5404\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u7d2f\u79ef\u5230\u54c8\u5e0c\u503c\u4e2d\u3002
            • \u5f02\u6216\u54c8\u5e0c\uff1a\u5c06\u8f93\u5165\u6570\u636e\u7684\u6bcf\u4e2a\u5143\u7d20\u901a\u8fc7\u5f02\u6216\u64cd\u4f5c\u7d2f\u79ef\u5230\u4e00\u4e2a\u54c8\u5e0c\u503c\u4e2d\u3002
            • \u65cb\u8f6c\u54c8\u5e0c\uff1a\u5c06\u6bcf\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u7d2f\u79ef\u5230\u4e00\u4e2a\u54c8\u5e0c\u503c\u4e2d\uff0c\u6bcf\u6b21\u7d2f\u79ef\u4e4b\u524d\u90fd\u4f1a\u5bf9\u54c8\u5e0c\u503c\u8fdb\u884c\u65cb\u8f6c\u64cd\u4f5c\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust simple_hash.java
            /* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(String key) {\nlong hash = 0;\nfinal int MODULUS = 1000000007;\nfor (char c : key.toCharArray()) {\nhash = (hash + (int) c) % MODULUS;\n}\nreturn (int) hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(String key) {\nlong hash = 0;\nfinal int MODULUS = 1000000007;\nfor (char c : key.toCharArray()) {\nhash = (31 * hash + (int) c) % MODULUS;\n}\nreturn (int) hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(String key) {\nint hash = 0;\nfinal int MODULUS = 1000000007;\nfor (char c : key.toCharArray()) {\nhash ^= (int) c;\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(String key) {\nlong hash = 0;\nfinal int MODULUS = 1000000007;\nfor (char c : key.toCharArray()) {\nhash = ((hash << 4) ^ (hash >> 28) ^ (int) c) % MODULUS;\n}\nreturn (int) hash;\n}\n
            simple_hash.cpp
            /* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(string key) {\nlong long hash = 0;\nconst int MODULUS = 1000000007;\nfor (unsigned char c : key) {\nhash = (hash + (int)c) % MODULUS;\n}\nreturn (int)hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(string key) {\nlong long hash = 0;\nconst int MODULUS = 1000000007;\nfor (unsigned char c : key) {\nhash = (31 * hash + (int)c) % MODULUS;\n}\nreturn (int)hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(string key) {\nint hash = 0;\nconst int MODULUS = 1000000007;\nfor (unsigned char c : key) {\ncout<<(int)c<<endl;\nhash ^= (int)c;\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(string key) {\nlong long hash = 0;\nconst int MODULUS = 1000000007;\nfor (unsigned char c : key) {\nhash = ((hash << 4) ^ (hash >> 28) ^ (int)c) % MODULUS;\n}\nreturn (int)hash;\n}\n
            simple_hash.py
            def add_hash(key: str) -> int:\n\"\"\"\u52a0\u6cd5\u54c8\u5e0c\"\"\"\nhash = 0\nmodulus = 1000000007\nfor c in key:\nhash += ord(c)\nreturn hash % modulus\ndef mul_hash(key: str) -> int:\n\"\"\"\u4e58\u6cd5\u54c8\u5e0c\"\"\"\nhash = 0\nmodulus = 1000000007\nfor c in key:\nhash = 31 * hash + ord(c)\nreturn hash % modulus\ndef xor_hash(key: str) -> int:\n\"\"\"\u5f02\u6216\u54c8\u5e0c\"\"\"\nhash = 0\nmodulus = 1000000007\nfor c in key:\nhash ^= ord(c)\nreturn hash % modulus\ndef rot_hash(key: str) -> int:\n\"\"\"\u65cb\u8f6c\u54c8\u5e0c\"\"\"\nhash = 0\nmodulus = 1000000007\nfor c in key:\nhash = (hash << 4) ^ (hash >> 28) ^ ord(c)\nreturn hash % modulus\n
            simple_hash.go
            /* \u52a0\u6cd5\u54c8\u5e0c */\nfunc addHash(key string) int {\nvar hash int64\nvar modulus int64\nmodulus = 1000000007\nfor _, b := range []byte(key) {\nhash = (hash + int64(b)) % modulus\n}\nreturn int(hash)\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunc mulHash(key string) int {\nvar hash int64\nvar modulus int64\nmodulus = 1000000007\nfor _, b := range []byte(key) {\nhash = (31*hash + int64(b)) % modulus\n}\nreturn int(hash)\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nfunc xorHash(key string) int {\nhash := 0\nmodulus := 1000000007\nfor _, b := range []byte(key) {\nfmt.Println(int(b))\nhash ^= int(b)\nhash = (31*hash + int(b)) % modulus\n}\nreturn hash & modulus\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunc rotHash(key string) int {\nvar hash int64\nvar modulus int64\nmodulus = 1000000007\nfor _, b := range []byte(key) {\nhash = ((hash << 4) ^ (hash >> 28) ^ int64(b)) % modulus\n}\nreturn int(hash)\n}\n
            simple_hash.js
            /* \u52a0\u6cd5\u54c8\u5e0c */\nfunction addHash(key) {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = (hash + c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunction mulHash(key) {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = (31 * hash + c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nfunction xorHash(key) {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash ^= c.charCodeAt(0);\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunction rotHash(key) {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = ((hash << 4) ^ (hash >> 28) ^ c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n
            simple_hash.ts
            /* \u52a0\u6cd5\u54c8\u5e0c */\nfunction addHash(key: string): number {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = (hash + c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunction mulHash(key: string): number {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = (31 * hash + c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nfunction xorHash(key: string): number {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash ^= c.charCodeAt(0);\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunction rotHash(key: string): number {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = ((hash << 4) ^ (hash >> 28) ^ c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n
            simple_hash.c
            [class]{}-[func]{addHash}\n[class]{}-[func]{mulHash}\n[class]{}-[func]{xorHash}\n[class]{}-[func]{rotHash}\n
            simple_hash.cs
            /* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(string key) {\nlong hash = 0;\nconst int MODULUS = 1000000007;\nforeach (char c in key) {\nhash = (hash + c) % MODULUS;\n}\nreturn (int)hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(string key) {\nlong hash = 0;\nconst int MODULUS = 1000000007;\nforeach (char c in key) {\nhash = (31 * hash + c) % MODULUS;\n}\nreturn (int)hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(string key) {\nint hash = 0;\nconst int MODULUS = 1000000007;\nforeach (char c in key) {\nhash ^= c;\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(string key) {\nlong hash = 0;\nconst int MODULUS = 1000000007;\nforeach (char c in key) {\nhash = ((hash << 4) ^ (hash >> 28) ^ c) % MODULUS;\n}\nreturn (int)hash;\n}\n
            simple_hash.swift
            /* \u52a0\u6cd5\u54c8\u5e0c */\nfunc addHash(key: String) -> Int {\nvar hash = 0\nlet MODULUS = 1_000_000_007\nfor c in key {\nfor scalar in c.unicodeScalars {\nhash = (hash + Int(scalar.value)) % MODULUS\n}\n}\nreturn hash\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunc mulHash(key: String) -> Int {\nvar hash = 0\nlet MODULUS = 1_000_000_007\nfor c in key {\nfor scalar in c.unicodeScalars {\nhash = (31 * hash + Int(scalar.value)) % MODULUS\n}\n}\nreturn hash\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nfunc xorHash(key: String) -> Int {\nvar hash = 0\nlet MODULUS = 1_000_000_007\nfor c in key {\nfor scalar in c.unicodeScalars {\nhash ^= Int(scalar.value)\n}\n}\nreturn hash & MODULUS\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunc rotHash(key: String) -> Int {\nvar hash = 0\nlet MODULUS = 1_000_000_007\nfor c in key {\nfor scalar in c.unicodeScalars {\nhash = ((hash << 4) ^ (hash >> 28) ^ Int(scalar.value)) % MODULUS\n}\n}\nreturn hash\n}\n
            simple_hash.zig
            [class]{}-[func]{addHash}\n[class]{}-[func]{mulHash}\n[class]{}-[func]{xorHash}\n[class]{}-[func]{rotHash}\n
            simple_hash.dart
            /* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(String key) {\nint hash = 0;\nfinal int MODULUS = 1000000007;\nfor (int i = 0; i < key.length; i++) {\nhash = (hash + key.codeUnitAt(i)) % MODULUS;\n}\nreturn hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(String key) {\nint hash = 0;\nfinal int MODULUS = 1000000007;\nfor (int i = 0; i < key.length; i++) {\nhash = (31 * hash + key.codeUnitAt(i)) % MODULUS;\n}\nreturn hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(String key) {\nint hash = 0;\nfinal int MODULUS = 1000000007;\nfor (int i = 0; i < key.length; i++) {\nhash ^= key.codeUnitAt(i);\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(String key) {\nint hash = 0;\nfinal int MODULUS = 1000000007;\nfor (int i = 0; i < key.length; i++) {\nhash = ((hash << 4) ^ (hash >> 28) ^ key.codeUnitAt(i)) % MODULUS;\n}\nreturn hash;\n}\n
            simple_hash.rs
            [class]{}-[func]{add_hash}\n[class]{}-[func]{mul_hash}\n[class]{}-[func]{xor_hash}\n[class]{}-[func]{rot_hash}\n

            \u89c2\u5bdf\u53d1\u73b0\uff0c\u6bcf\u79cd\u54c8\u5e0c\u7b97\u6cd5\u7684\u6700\u540e\u4e00\u6b65\u90fd\u662f\u5bf9\u5927\u8d28\u6570 \\(1000000007\\) \u53d6\u6a21\uff0c\u4ee5\u786e\u4fdd\u54c8\u5e0c\u503c\u5728\u5408\u9002\u7684\u8303\u56f4\u5185\u3002\u503c\u5f97\u601d\u8003\u7684\u662f\uff0c\u4e3a\u4ec0\u4e48\u8981\u5f3a\u8c03\u5bf9\u8d28\u6570\u53d6\u6a21\uff0c\u6216\u8005\u8bf4\u5bf9\u5408\u6570\u53d6\u6a21\u7684\u5f0a\u7aef\u662f\u4ec0\u4e48\uff1f\u8fd9\u662f\u4e00\u4e2a\u6709\u8da3\u7684\u95ee\u9898\u3002

            \u5148\u629b\u51fa\u7ed3\u8bba\uff1a\u5f53\u6211\u4eec\u4f7f\u7528\u5927\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\u65f6\uff0c\u53ef\u4ee5\u6700\u5927\u5316\u5730\u4fdd\u8bc1\u54c8\u5e0c\u503c\u7684\u5747\u5300\u5206\u5e03\u3002\u56e0\u4e3a\u8d28\u6570\u4e0d\u4f1a\u4e0e\u5176\u4ed6\u6570\u5b57\u5b58\u5728\u516c\u7ea6\u6570\uff0c\u53ef\u4ee5\u51cf\u5c11\u56e0\u53d6\u6a21\u64cd\u4f5c\u800c\u4ea7\u751f\u7684\u5468\u671f\u6027\u6a21\u5f0f\uff0c\u4ece\u800c\u907f\u514d\u54c8\u5e0c\u51b2\u7a81\u3002

            \u4e3e\u4e2a\u4f8b\u5b50\uff0c\u5047\u8bbe\u6211\u4eec\u9009\u62e9\u5408\u6570 \\(9\\) \u4f5c\u4e3a\u6a21\u6570\uff0c\u5b83\u53ef\u4ee5\u88ab \\(3\\) \u6574\u9664\u3002\u90a3\u4e48\u6240\u6709\u53ef\u4ee5\u88ab \\(3\\) \u6574\u9664\u7684 key \u90fd\u4f1a\u88ab\u6620\u5c04\u5230 \\(0\\) , \\(3\\) , \\(6\\) \u8fd9\u4e09\u4e2a\u54c8\u5e0c\u503c\u3002

            \\[ \\begin{aligned} \\text{modulus} & = 9 \\newline \\text{key} & = \\{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \\cdots \\} \\newline \\text{hash} & = \\{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\\cdots \\} \\end{aligned} \\]

            \u5982\u679c\u8f93\u5165 key \u6070\u597d\u6ee1\u8db3\u8fd9\u79cd\u7b49\u5dee\u6570\u5217\u7684\u6570\u636e\u5206\u5e03\uff0c\u90a3\u4e48\u54c8\u5e0c\u503c\u5c31\u4f1a\u51fa\u73b0\u805a\u5806\uff0c\u4ece\u800c\u52a0\u91cd\u54c8\u5e0c\u51b2\u7a81\u3002\u73b0\u5728\uff0c\u5047\u8bbe\u5c06 modulus \u66ff\u6362\u4e3a\u8d28\u6570 \\(13\\) \uff0c\u7531\u4e8e key \u548c modulus \u4e4b\u95f4\u4e0d\u5b58\u5728\u516c\u7ea6\u6570\uff0c\u8f93\u51fa\u7684\u54c8\u5e0c\u503c\u7684\u5747\u5300\u6027\u4f1a\u660e\u663e\u63d0\u5347\u3002

            \\[ \\begin{aligned} \\text{modulus} & = 13 \\newline \\text{key} & = \\{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \\cdots \\} \\newline \\text{hash} & = \\{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \\cdots \\} \\end{aligned} \\]

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u5982\u679c\u80fd\u591f\u4fdd\u8bc1 key \u662f\u968f\u673a\u5747\u5300\u5206\u5e03\u7684\uff0c\u90a3\u4e48\u9009\u62e9\u8d28\u6570\u6216\u8005\u5408\u6570\u4f5c\u4e3a\u6a21\u6570\u90fd\u662f\u53ef\u4ee5\u7684\uff0c\u5b83\u4eec\u90fd\u80fd\u8f93\u51fa\u5747\u5300\u5206\u5e03\u7684\u54c8\u5e0c\u503c\u3002\u800c\u5f53 key \u7684\u5206\u5e03\u5b58\u5728\u67d0\u79cd\u5468\u671f\u6027\u65f6\uff0c\u5bf9\u5408\u6570\u53d6\u6a21\u66f4\u5bb9\u6613\u51fa\u73b0\u805a\u96c6\u73b0\u8c61\u3002

            \u603b\u800c\u8a00\u4e4b\uff0c\u6211\u4eec\u901a\u5e38\u9009\u53d6\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\uff0c\u5e76\u4e14\u8fd9\u4e2a\u8d28\u6570\u6700\u597d\u8db3\u591f\u5927\uff0c\u4ee5\u5c3d\u53ef\u80fd\u6d88\u9664\u5468\u671f\u6027\u6a21\u5f0f\uff0c\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u7a33\u5065\u6027\u3002

            "},{"location":"chapter_hashing/hash_algorithm/#633","title":"6.3.3 \u00a0 \u5e38\u89c1\u54c8\u5e0c\u7b97\u6cd5","text":"

            \u4e0d\u96be\u53d1\u73b0\uff0c\u4ee5\u4e0a\u4ecb\u7ecd\u7684\u7b80\u5355\u54c8\u5e0c\u7b97\u6cd5\u90fd\u6bd4\u8f83\u201c\u8106\u5f31\u201d\uff0c\u8fdc\u8fdc\u6ca1\u6709\u8fbe\u5230\u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1\u76ee\u6807\u3002\u4f8b\u5982\uff0c\u7531\u4e8e\u52a0\u6cd5\u548c\u5f02\u6216\u6ee1\u8db3\u4ea4\u6362\u5f8b\uff0c\u56e0\u6b64\u52a0\u6cd5\u54c8\u5e0c\u548c\u5f02\u6216\u54c8\u5e0c\u65e0\u6cd5\u533a\u5206\u5185\u5bb9\u76f8\u540c\u4f46\u987a\u5e8f\u4e0d\u540c\u7684\u5b57\u7b26\u4e32\uff0c\u8fd9\u53ef\u80fd\u4f1a\u52a0\u5267\u54c8\u5e0c\u51b2\u7a81\uff0c\u5e76\u5f15\u8d77\u4e00\u4e9b\u5b89\u5168\u95ee\u9898\u3002

            \u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u7528\u4e00\u4e9b\u6807\u51c6\u54c8\u5e0c\u7b97\u6cd5\uff0c\u4f8b\u5982 MD5 , SHA-1 , SHA-2 , SHA3 \u7b49\u3002\u5b83\u4eec\u53ef\u4ee5\u5c06\u4efb\u610f\u957f\u5ea6\u7684\u8f93\u5165\u6570\u636e\u6620\u5c04\u5230\u6052\u5b9a\u957f\u5ea6\u7684\u54c8\u5e0c\u503c\u3002

            \u8fd1\u4e00\u4e2a\u4e16\u7eaa\u4ee5\u6765\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5904\u5728\u4e0d\u65ad\u5347\u7ea7\u4e0e\u4f18\u5316\u7684\u8fc7\u7a0b\u4e2d\u3002\u4e00\u90e8\u5206\u7814\u7a76\u4eba\u5458\u52aa\u529b\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u6027\u80fd\uff0c\u53e6\u4e00\u90e8\u5206\u7814\u7a76\u4eba\u5458\u548c\u9ed1\u5ba2\u5219\u81f4\u529b\u4e8e\u5bfb\u627e\u54c8\u5e0c\u7b97\u6cd5\u7684\u5b89\u5168\u6027\u95ee\u9898\u3002\u76f4\u81f3\u76ee\u524d\uff1a

            • MD5 \u548c SHA-1 \u5df2\u591a\u6b21\u88ab\u6210\u529f\u653b\u51fb\uff0c\u56e0\u6b64\u5b83\u4eec\u88ab\u5404\u7c7b\u5b89\u5168\u5e94\u7528\u5f03\u7528\u3002
            • SHA-2 \u7cfb\u5217\u4e2d\u7684 SHA-256 \u662f\u6700\u5b89\u5168\u7684\u54c8\u5e0c\u7b97\u6cd5\u4e4b\u4e00\uff0c\u4ecd\u672a\u51fa\u73b0\u6210\u529f\u7684\u653b\u51fb\u6848\u4f8b\uff0c\u56e0\u6b64\u5e38\u88ab\u7528\u5728\u5404\u7c7b\u5b89\u5168\u5e94\u7528\u4e0e\u534f\u8bae\u4e2d\u3002
            • SHA-3 \u76f8\u8f83 SHA-2 \u7684\u5b9e\u73b0\u5f00\u9500\u66f4\u4f4e\u3001\u8ba1\u7b97\u6548\u7387\u66f4\u9ad8\uff0c\u4f46\u76ee\u524d\u4f7f\u7528\u8986\u76d6\u5ea6\u4e0d\u5982 SHA-2 \u7cfb\u5217\u3002
            MD5 SHA-1 SHA-2 SHA-3 \u63a8\u51fa\u65f6\u95f4 1992 1995 2002 2008 \u8f93\u51fa\u957f\u5ea6 128 bits 160 bits 256 / 512 bits 224/256/384/512 bits \u54c8\u5e0c\u51b2\u7a81 \u8f83\u591a \u8f83\u591a \u5f88\u5c11 \u5f88\u5c11 \u5b89\u5168\u7b49\u7ea7 \u4f4e\uff0c\u5df2\u88ab\u6210\u529f\u653b\u51fb \u4f4e\uff0c\u5df2\u88ab\u6210\u529f\u653b\u51fb \u9ad8 \u9ad8 \u5e94\u7528 \u5df2\u88ab\u5f03\u7528\uff0c\u4ecd\u7528\u4e8e\u6570\u636e\u5b8c\u6574\u6027\u68c0\u67e5 \u5df2\u88ab\u5f03\u7528 \u52a0\u5bc6\u8d27\u5e01\u4ea4\u6613\u9a8c\u8bc1\u3001\u6570\u5b57\u7b7e\u540d\u7b49 \u53ef\u7528\u4e8e\u66ff\u4ee3 SHA-2"},{"location":"chapter_hashing/hash_algorithm/#634","title":"6.3.4 \u00a0 \u6570\u636e\u7ed3\u6784\u7684\u54c8\u5e0c\u503c","text":"

            \u6211\u4eec\u77e5\u9053\uff0c\u54c8\u5e0c\u8868\u7684 key \u53ef\u4ee5\u662f\u6574\u6570\u3001\u5c0f\u6570\u6216\u5b57\u7b26\u4e32\u7b49\u6570\u636e\u7c7b\u578b\u3002\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u4e3a\u8fd9\u4e9b\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u5185\u7f6e\u7684\u54c8\u5e0c\u7b97\u6cd5\uff0c\u7528\u4e8e\u8ba1\u7b97\u54c8\u5e0c\u8868\u4e2d\u7684\u6876\u7d22\u5f15\u3002\u4ee5 Python \u4e3a\u4f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u8c03\u7528 hash() \u51fd\u6570\u6765\u8ba1\u7b97\u5404\u79cd\u6570\u636e\u7c7b\u578b\u7684\u54c8\u5e0c\u503c\uff0c\u5305\u62ec\uff1a

            • \u6574\u6570\u548c\u5e03\u5c14\u91cf\u7684\u54c8\u5e0c\u503c\u5c31\u662f\u5176\u672c\u8eab\u3002
            • \u6d6e\u70b9\u6570\u548c\u5b57\u7b26\u4e32\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\u8f83\u4e3a\u590d\u6742\uff0c\u6709\u5174\u8da3\u7684\u540c\u5b66\u8bf7\u81ea\u884c\u5b66\u4e60\u3002
            • \u5143\u7ec4\u7684\u54c8\u5e0c\u503c\u662f\u5bf9\u5176\u4e2d\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fdb\u884c\u54c8\u5e0c\uff0c\u7136\u540e\u5c06\u8fd9\u4e9b\u54c8\u5e0c\u503c\u7ec4\u5408\u8d77\u6765\uff0c\u5f97\u5230\u5355\u4e00\u7684\u54c8\u5e0c\u503c\u3002
            • \u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u57fa\u4e8e\u5176\u5185\u5b58\u5730\u5740\u751f\u6210\u3002\u901a\u8fc7\u91cd\u5199\u5bf9\u8c61\u7684\u54c8\u5e0c\u65b9\u6cd5\uff0c\u53ef\u5b9e\u73b0\u57fa\u4e8e\u5185\u5bb9\u751f\u6210\u54c8\u5e0c\u503c\u3002

            Tip

            \u8bf7\u6ce8\u610f\uff0c\u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u7684\u5185\u7f6e\u54c8\u5e0c\u503c\u8ba1\u7b97\u51fd\u6570\u7684\u5b9a\u4e49\u548c\u65b9\u6cd5\u4e0d\u540c\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust built_in_hash.java
            int num = 3;\nint hashNum = Integer.hashCode(num);\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\nboolean bol = true;\nint hashBol = Boolean.hashCode(bol);\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a 1231\ndouble dec = 3.14159;\nint hashDec = Double.hashCode(dec);\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -1340954729\nString str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.hashCode();\n// \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a -727081396\nObject[] arr = { 12836, \"\u5c0f\u54c8\" };\nint hashTup = Arrays.hashCode(arr);\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 1151158\nListNode obj = new ListNode(0);\nint hashObj = obj.hashCode();\n// \u8282\u70b9\u5bf9\u8c61 utils.ListNode@7dc5e7b4 \u7684\u54c8\u5e0c\u503c\u4e3a 2110121908\n
            built_in_hash.cpp
            int num = 3;\nsize_t hashNum = hash<int>()(num);\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\nbool bol = true;\nsize_t hashBol = hash<bool>()(bol);\n// \u5e03\u5c14\u91cf 1 \u7684\u54c8\u5e0c\u503c\u4e3a 1\ndouble dec = 3.14159;\nsize_t hashDec = hash<double>()(dec);\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 4614256650576692846\nstring str = \"Hello \u7b97\u6cd5\";\nsize_t hashStr = hash<string>()(str);\n// \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a 15466937326284535026\n// \u5728 C++ \u4e2d\uff0c\u5185\u7f6e std:hash() \u4ec5\u63d0\u4f9b\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\n// \u6570\u7ec4\u3001\u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\u9700\u8981\u81ea\u884c\u5b9e\u73b0\n
            built_in_hash.py
            num = 3\nhash_num = hash(num)\n# \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\nbol = True\nhash_bol = hash(bol)\n# \u5e03\u5c14\u91cf True \u7684\u54c8\u5e0c\u503c\u4e3a 1\ndec = 3.14159\nhash_dec = hash(dec)\n# \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 326484311674566659\nstr = \"Hello \u7b97\u6cd5\"\nhash_str = hash(str)\n# \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a 4617003410720528961\ntup = (12836, \"\u5c0f\u54c8\")\nhash_tup = hash(tup)\n# \u5143\u7ec4 (12836, '\u5c0f\u54c8') \u7684\u54c8\u5e0c\u503c\u4e3a 1029005403108185979\nobj = ListNode(0)\nhash_obj = hash(obj)\n# \u8282\u70b9\u5bf9\u8c61 <ListNode object at 0x1058fd810> \u7684\u54c8\u5e0c\u503c\u4e3a 274267521\n
            built_in_hash.go
            \n
            built_in_hash.js
            \n
            built_in_hash.ts
            \n
            built_in_hash.c
            \n
            built_in_hash.cs
            int num = 3;\nint hashNum = num.GetHashCode();\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3;\nbool bol = true;\nint hashBol = bol.GetHashCode();\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a 1;\ndouble dec = 3.14159;\nint hashDec = dec.GetHashCode();\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -1340954729;\nstring str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.GetHashCode();\n// \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a -586107568;\nobject[] arr = { 12836, \"\u5c0f\u54c8\" };\nint hashTup = arr.GetHashCode();\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 42931033;\nListNode obj = new ListNode(0);\nint hashObj = obj.GetHashCode();\n// \u8282\u70b9\u5bf9\u8c61 0 \u7684\u54c8\u5e0c\u503c\u4e3a 39053774;\n
            built_in_hash.swift
            let num = 3\nlet hashNum = num.hashValue\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 9047044699613009734\nlet bol = true\nlet hashBol = bol.hashValue\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a -4431640247352757451\nlet dec = 3.14159\nlet hashDec = dec.hashValue\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -2465384235396674631\nlet str = \"Hello \u7b97\u6cd5\"\nlet hashStr = str.hashValue\n// \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a -7850626797806988787\nlet arr = [AnyHashable(12836), AnyHashable(\"\u5c0f\u54c8\")]\nlet hashTup = arr.hashValue\n// \u6570\u7ec4 [AnyHashable(12836), AnyHashable(\"\u5c0f\u54c8\")] \u7684\u54c8\u5e0c\u503c\u4e3a -2308633508154532996\nlet obj = ListNode(x: 0)\nlet hashObj = obj.hashValue\n// \u8282\u70b9\u5bf9\u8c61 utils.ListNode \u7684\u54c8\u5e0c\u503c\u4e3a -2434780518035996159\n
            built_in_hash.zig
            \n
            built_in_hash.dart
            int num = 3;\nint hashNum = num.hashCode;\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 34803\nbool bol = true;\nint hashBol = bol.hashCode;\n// \u5e03\u5c14\u503c true \u7684\u54c8\u5e0c\u503c\u4e3a 1231\ndouble dec = 3.14159;\nint hashDec = dec.hashCode;\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 2570631074981783\nString str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.hashCode;\n// \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a 468167534\nList arr = [12836, \"\u5c0f\u54c8\"];\nint hashArr = arr.hashCode;\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 976512528\nListNode obj = new ListNode(0);\nint hashObj = obj.hashCode;\n// \u8282\u70b9\u5bf9\u8c61 Instance of 'ListNode' \u7684\u54c8\u5e0c\u503c\u4e3a 1033450432\n
            built_in_hash.rs
            \n

            \u5728\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u53ea\u6709\u4e0d\u53ef\u53d8\u5bf9\u8c61\u624d\u53ef\u4f5c\u4e3a\u54c8\u5e0c\u8868\u7684 key \u3002\u5047\u5982\u6211\u4eec\u5c06\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\u4f5c\u4e3a key \uff0c\u5f53\u5217\u8868\u7684\u5185\u5bb9\u53d1\u751f\u53d8\u5316\u65f6\uff0c\u5b83\u7684\u54c8\u5e0c\u503c\u4e5f\u968f\u4e4b\u6539\u53d8\uff0c\u6211\u4eec\u5c31\u65e0\u6cd5\u5728\u54c8\u5e0c\u8868\u4e2d\u67e5\u8be2\u5230\u539f\u5148\u7684 value \u4e86\u3002

            \u867d\u7136\u81ea\u5b9a\u4e49\u5bf9\u8c61\uff08\u6bd4\u5982\u94fe\u8868\u8282\u70b9\uff09\u7684\u6210\u5458\u53d8\u91cf\u662f\u53ef\u53d8\u7684\uff0c\u4f46\u5b83\u662f\u53ef\u54c8\u5e0c\u7684\u3002\u8fd9\u662f\u56e0\u4e3a\u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u901a\u5e38\u662f\u57fa\u4e8e\u5185\u5b58\u5730\u5740\u751f\u6210\u7684\uff0c\u5373\u4f7f\u5bf9\u8c61\u7684\u5185\u5bb9\u53d1\u751f\u4e86\u53d8\u5316\uff0c\u4f46\u5b83\u7684\u5185\u5b58\u5730\u5740\u4e0d\u53d8\uff0c\u54c8\u5e0c\u503c\u4ecd\u7136\u662f\u4e0d\u53d8\u7684\u3002

            \u7ec6\u5fc3\u7684\u4f60\u53ef\u80fd\u53d1\u73b0\u5728\u4e0d\u540c\u63a7\u5236\u53f0\u4e2d\u8fd0\u884c\u7a0b\u5e8f\u65f6\uff0c\u8f93\u51fa\u7684\u54c8\u5e0c\u503c\u662f\u4e0d\u540c\u7684\u3002\u8fd9\u662f\u56e0\u4e3a Python \u89e3\u91ca\u5668\u5728\u6bcf\u6b21\u542f\u52a8\u65f6\uff0c\u90fd\u4f1a\u4e3a\u5b57\u7b26\u4e32\u54c8\u5e0c\u51fd\u6570\u52a0\u5165\u4e00\u4e2a\u968f\u673a\u7684\u76d0\uff08Salt\uff09\u503c\u3002\u8fd9\u79cd\u505a\u6cd5\u53ef\u4ee5\u6709\u6548\u9632\u6b62 HashDoS \u653b\u51fb\uff0c\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u5b89\u5168\u6027\u3002

            "},{"location":"chapter_hashing/hash_collision/","title":"6.2 \u00a0 \u54c8\u5e0c\u51b2\u7a81","text":"

            \u4e0a\u8282\u63d0\u5230\uff0c\u901a\u5e38\u60c5\u51b5\u4e0b\u54c8\u5e0c\u51fd\u6570\u7684\u8f93\u5165\u7a7a\u95f4\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\uff0c\u56e0\u6b64\u7406\u8bba\u4e0a\u54c8\u5e0c\u51b2\u7a81\u662f\u4e0d\u53ef\u907f\u514d\u7684\u3002\u6bd4\u5982\uff0c\u8f93\u5165\u7a7a\u95f4\u4e3a\u5168\u4f53\u6574\u6570\uff0c\u8f93\u51fa\u7a7a\u95f4\u4e3a\u6570\u7ec4\u5bb9\u91cf\u5927\u5c0f\uff0c\u5219\u5fc5\u7136\u6709\u591a\u4e2a\u6574\u6570\u6620\u5c04\u81f3\u540c\u4e00\u6570\u7ec4\u7d22\u5f15\u3002

            \u54c8\u5e0c\u51b2\u7a81\u4f1a\u5bfc\u81f4\u67e5\u8be2\u7ed3\u679c\u9519\u8bef\uff0c\u4e25\u91cd\u5f71\u54cd\u54c8\u5e0c\u8868\u7684\u53ef\u7528\u6027\u3002\u4e3a\u89e3\u51b3\u8be5\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u6bcf\u5f53\u9047\u5230\u54c8\u5e0c\u51b2\u7a81\u65f6\u5c31\u8fdb\u884c\u54c8\u5e0c\u8868\u6269\u5bb9\uff0c\u76f4\u81f3\u51b2\u7a81\u6d88\u5931\u4e3a\u6b62\u3002\u6b64\u65b9\u6cd5\u7b80\u5355\u7c97\u66b4\u4e14\u6709\u6548\uff0c\u4f46\u6548\u7387\u592a\u4f4e\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u6269\u5bb9\u9700\u8981\u8fdb\u884c\u5927\u91cf\u7684\u6570\u636e\u642c\u8fd0\u4e0e\u54c8\u5e0c\u503c\u8ba1\u7b97\u3002\u4e3a\u4e86\u63d0\u5347\u6548\u7387\uff0c\u6211\u4eec\u5207\u6362\u4e00\u4e0b\u601d\u8def\uff1a

            1. \u6539\u826f\u54c8\u5e0c\u8868\u6570\u636e\u7ed3\u6784\uff0c\u4f7f\u5f97\u54c8\u5e0c\u8868\u53ef\u4ee5\u5728\u5b58\u5728\u54c8\u5e0c\u51b2\u7a81\u65f6\u6b63\u5e38\u5de5\u4f5c\u3002
            2. \u4ec5\u5728\u5fc5\u8981\u65f6\uff0c\u5373\u5f53\u54c8\u5e0c\u51b2\u7a81\u6bd4\u8f83\u4e25\u91cd\u65f6\uff0c\u624d\u6267\u884c\u6269\u5bb9\u64cd\u4f5c\u3002

            \u54c8\u5e0c\u8868\u7684\u7ed3\u6784\u6539\u826f\u65b9\u6cd5\u4e3b\u8981\u5305\u62ec\u94fe\u5f0f\u5730\u5740\u548c\u5f00\u653e\u5bfb\u5740\u3002

            "},{"location":"chapter_hashing/hash_collision/#621","title":"6.2.1 \u00a0 \u94fe\u5f0f\u5730\u5740","text":"

            \u5728\u539f\u59cb\u54c8\u5e0c\u8868\u4e2d\uff0c\u6bcf\u4e2a\u6876\u4ec5\u80fd\u5b58\u50a8\u4e00\u4e2a\u952e\u503c\u5bf9\u3002\u300c\u94fe\u5f0f\u5730\u5740 Separate Chaining\u300d\u5c06\u5355\u4e2a\u5143\u7d20\u8f6c\u6362\u4e3a\u94fe\u8868\uff0c\u5c06\u952e\u503c\u5bf9\u4f5c\u4e3a\u94fe\u8868\u8282\u70b9\uff0c\u5c06\u6240\u6709\u53d1\u751f\u51b2\u7a81\u7684\u952e\u503c\u5bf9\u90fd\u5b58\u50a8\u5728\u540c\u4e00\u94fe\u8868\u4e2d\u3002

            \u56fe\uff1a\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868

            \u94fe\u5f0f\u5730\u5740\u4e0b\uff0c\u54c8\u5e0c\u8868\u7684\u64cd\u4f5c\u65b9\u6cd5\u5305\u62ec\uff1a

            • \u67e5\u8be2\u5143\u7d20\uff1a\u8f93\u5165 key \uff0c\u7ecf\u8fc7\u54c8\u5e0c\u51fd\u6570\u5f97\u5230\u6570\u7ec4\u7d22\u5f15\uff0c\u5373\u53ef\u8bbf\u95ee\u94fe\u8868\u5934\u8282\u70b9\uff0c\u7136\u540e\u904d\u5386\u94fe\u8868\u5e76\u5bf9\u6bd4 key \u4ee5\u67e5\u627e\u76ee\u6807\u952e\u503c\u5bf9\u3002
            • \u6dfb\u52a0\u5143\u7d20\uff1a\u5148\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u8bbf\u95ee\u94fe\u8868\u5934\u8282\u70b9\uff0c\u7136\u540e\u5c06\u8282\u70b9\uff08\u5373\u952e\u503c\u5bf9\uff09\u6dfb\u52a0\u5230\u94fe\u8868\u4e2d\u3002
            • \u5220\u9664\u5143\u7d20\uff1a\u6839\u636e\u54c8\u5e0c\u51fd\u6570\u7684\u7ed3\u679c\u8bbf\u95ee\u94fe\u8868\u5934\u90e8\uff0c\u63a5\u7740\u904d\u5386\u94fe\u8868\u4ee5\u67e5\u627e\u76ee\u6807\u8282\u70b9\uff0c\u5e76\u5c06\u5176\u5220\u9664\u3002

            \u8be5\u65b9\u6cd5\u5b58\u5728\u4e00\u4e9b\u5c40\u9650\u6027\uff0c\u5305\u62ec\uff1a

            • \u5360\u7528\u7a7a\u95f4\u589e\u5927\uff0c\u94fe\u8868\u5305\u542b\u8282\u70b9\u6307\u9488\uff0c\u5b83\u76f8\u6bd4\u6570\u7ec4\u66f4\u52a0\u8017\u8d39\u5185\u5b58\u7a7a\u95f4\u3002
            • \u67e5\u8be2\u6548\u7387\u964d\u4f4e\uff0c\u56e0\u4e3a\u9700\u8981\u7ebf\u6027\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u5bf9\u5e94\u5143\u7d20\u3002

            \u4ee5\u4e0b\u7ed9\u51fa\u4e86\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\u7684\u7b80\u5355\u5b9e\u73b0\uff0c\u9700\u8981\u6ce8\u610f\uff1a

            • \u4e3a\u4e86\u4f7f\u5f97\u4ee3\u7801\u5c3d\u91cf\u7b80\u77ed\uff0c\u6211\u4eec\u4f7f\u7528\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\u4ee3\u66ff\u94fe\u8868\u3002\u5728\u8fd9\u79cd\u8bbe\u5b9a\u4e0b\uff0c\u54c8\u5e0c\u8868\uff08\u6570\u7ec4\uff09\u5305\u542b\u591a\u4e2a\u6876\uff0c\u6bcf\u4e2a\u6876\u90fd\u662f\u4e00\u4e2a\u5217\u8868\u3002
            • \u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u54c8\u5e0c\u8868\u6269\u5bb9\u65b9\u6cd5\u3002\u5177\u4f53\u6765\u770b\uff0c\u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7 \\(0.75\\) \u65f6\uff0c\u6211\u4eec\u5c06\u54c8\u5e0c\u8868\u6269\u5bb9\u81f3 \\(2\\) \u500d\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust hash_map_chaining.java
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\nint size; // \u952e\u503c\u5bf9\u6570\u91cf\nint capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\ndouble loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nint extendRatio; // \u6269\u5bb9\u500d\u6570\nList<List<Pair>> buckets; // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\npublic HashMapChaining() {\nsize = 0;\ncapacity = 4;\nloadThres = 2 / 3.0;\nextendRatio = 2;\nbuckets = new ArrayList<>(capacity);\nfor (int i = 0; i < capacity; i++) {\nbuckets.add(new ArrayList<>());\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor() {\nreturn (double) size / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nString get(int key) {\nint index = hashFunc(key);\nList<Pair> bucket = buckets.get(index);\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor (Pair pair : bucket) {\nif (pair.key == key) {\nreturn pair.val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, String val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\nList<Pair> bucket = buckets.get(index);\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor (Pair pair : bucket) {\nif (pair.key == key) {\npair.val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nPair pair = new Pair(key, val);\nbucket.add(pair);\nsize++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\nList<Pair> bucket = buckets.get(index);\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (Pair pair : bucket) {\nif (pair.key == key) {\nbucket.remove(pair);\nsize--;\nbreak;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nList<List<Pair>> bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = new ArrayList<>(capacity);\nfor (int i = 0; i < capacity; i++) {\nbuckets.add(new ArrayList<>());\n}\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (List<Pair> bucket : bucketsTmp) {\nfor (Pair pair : bucket) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print() {\nfor (List<Pair> bucket : buckets) {\nList<String> res = new ArrayList<>();\nfor (Pair pair : bucket) {\nres.add(pair.key + \" -> \" + pair.val);\n}\nSystem.out.println(res);\n}\n}\n}\n
            hash_map_chaining.cpp
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\nprivate:\nint size;                       // \u952e\u503c\u5bf9\u6570\u91cf\nint capacity;                   // \u54c8\u5e0c\u8868\u5bb9\u91cf\ndouble loadThres;               // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nint extendRatio;                // \u6269\u5bb9\u500d\u6570\nvector<vector<Pair *>> buckets; // \u6876\u6570\u7ec4\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nHashMapChaining() : size(0), capacity(4), loadThres(2.0 / 3), extendRatio(2) {\nbuckets.resize(capacity);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor() {\nreturn (double)size / (double)capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nstring get(int key) {\nint index = hashFunc(key);\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor (Pair *pair : buckets[index]) {\nif (pair->key == key) {\nreturn pair->val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de nullptr\nreturn nullptr;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, string val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor (Pair *pair : buckets[index]) {\nif (pair->key == key) {\npair->val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nbuckets[index].push_back(new Pair(key, val));\nsize++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\nauto &bucket = buckets[index];\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (int i = 0; i < bucket.size(); i++) {\nif (bucket[i]->key == key) {\nPair *tmp = bucket[i];\nbucket.erase(bucket.begin() + i); // \u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\ndelete tmp;                       // \u91ca\u653e\u5185\u5b58\nsize--;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nvector<vector<Pair *>> bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets.clear();\nbuckets.resize(capacity);\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (auto &bucket : bucketsTmp) {\nfor (Pair *pair : bucket) {\nput(pair->key, pair->val);\n// \u91ca\u653e\u5185\u5b58\ndelete pair;\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print() {\nfor (auto &bucket : buckets) {\ncout << \"[\";\nfor (Pair *pair : bucket) {\ncout << pair->key << \" -> \" << pair->val << \", \";\n}\ncout << \"]\\n\";\n}\n}\n};\n
            hash_map_chaining.py
            class HashMapChaining:\n\"\"\"\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.size = 0  # \u952e\u503c\u5bf9\u6570\u91cf\nself.capacity = 4  # \u54c8\u5e0c\u8868\u5bb9\u91cf\nself.load_thres = 2 / 3  # \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nself.extend_ratio = 2  # \u6269\u5bb9\u500d\u6570\nself.buckets = [[] for _ in range(self.capacity)]  # \u6876\u6570\u7ec4\ndef hash_func(self, key: int) -> int:\n\"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\nreturn key % self.capacity\ndef load_factor(self) -> float:\n\"\"\"\u8d1f\u8f7d\u56e0\u5b50\"\"\"\nreturn self.size / self.capacity\ndef get(self, key: int) -> str:\n\"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\nindex = self.hash_func(key)\nbucket = self.buckets[index]\n# \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor pair in bucket:\nif pair.key == key:\nreturn pair.val\n# \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de None\nreturn None\ndef put(self, key: int, val: str):\n\"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\n# \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif self.load_factor() > self.load_thres:\nself.extend()\nindex = self.hash_func(key)\nbucket = self.buckets[index]\n# \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor pair in bucket:\nif pair.key == key:\npair.val = val\nreturn\n# \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\npair = Pair(key, val)\nbucket.append(pair)\nself.size += 1\ndef remove(self, key: int):\n\"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\nindex = self.hash_func(key)\nbucket = self.buckets[index]\n# \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor pair in bucket:\nif pair.key == key:\nbucket.remove(pair)\nself.size -= 1\nbreak\ndef extend(self):\n\"\"\"\u6269\u5bb9\u54c8\u5e0c\u8868\"\"\"\n# \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nbuckets = self.buckets\n# \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nself.capacity *= self.extend_ratio\nself.buckets = [[] for _ in range(self.capacity)]\nself.size = 0\n# \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor bucket in buckets:\nfor pair in bucket:\nself.put(pair.key, pair.val)\ndef print(self):\n\"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\nfor bucket in self.buckets:\nres = []\nfor pair in bucket:\nres.append(str(pair.key) + \" -> \" + pair.val)\nprint(res)\n
            hash_map_chaining.go
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\ntype hashMapChaining struct {\nsize        int      // \u952e\u503c\u5bf9\u6570\u91cf\ncapacity    int      // \u54c8\u5e0c\u8868\u5bb9\u91cf\nloadThres   float64  // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nextendRatio int      // \u6269\u5bb9\u500d\u6570\nbuckets     [][]pair // \u6876\u6570\u7ec4\n}\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newHashMapChaining() *hashMapChaining {\nbuckets := make([][]pair, 4)\nfor i := 0; i < 4; i++ {\nbuckets[i] = make([]pair, 0)\n}\nreturn &hashMapChaining{\nsize:        0,\ncapacity:    4,\nloadThres:   2 / 3.0,\nextendRatio: 2,\nbuckets:     buckets,\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (m *hashMapChaining) hashFunc(key int) int {\nreturn key % m.capacity\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc (m *hashMapChaining) loadFactor() float64 {\nreturn float64(m.size / m.capacity)\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (m *hashMapChaining) get(key int) string {\nidx := m.hashFunc(key)\nbucket := m.buckets[idx]\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor _, p := range bucket {\nif p.key == key {\nreturn p.val\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\nreturn \"\"\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (m *hashMapChaining) put(key int, val string) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif m.loadFactor() > m.loadThres {\nm.extend()\n}\nidx := m.hashFunc(key)\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor _, p := range m.buckets[idx] {\nif p.key == key {\np.val = val\nreturn\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\np := pair{\nkey: key,\nval: val,\n}\nm.buckets[idx] = append(m.buckets[idx], p)\nm.size += 1\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (m *hashMapChaining) remove(key int) {\nidx := m.hashFunc(key)\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor i, p := range m.buckets[idx] {\nif p.key == key {\n// \u5207\u7247\u5220\u9664\nm.buckets[idx] = append(m.buckets[idx][:i], m.buckets[idx][i+1:]...)\nm.size -= 1\nbreak\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc (m *hashMapChaining) extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\ntmpBuckets := make([][]pair, len(m.buckets))\nfor i := 0; i < len(m.buckets); i++ {\ntmpBuckets[i] = make([]pair, len(m.buckets[i]))\ncopy(tmpBuckets[i], m.buckets[i])\n}\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nm.capacity *= m.extendRatio\nm.buckets = make([][]pair, m.capacity)\nfor i := 0; i < m.capacity; i++ {\nm.buckets[i] = make([]pair, 0)\n}\nm.size = 0\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor _, bucket := range tmpBuckets {\nfor _, p := range bucket {\nm.put(p.key, p.val)\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (m *hashMapChaining) print() {\nvar builder strings.Builder\nfor _, bucket := range m.buckets {\nbuilder.WriteString(\"[\")\nfor _, p := range bucket {\nbuilder.WriteString(strconv.Itoa(p.key) + \" -> \" + p.val + \" \")\n}\nbuilder.WriteString(\"]\")\nfmt.Println(builder.String())\nbuilder.Reset()\n}\n}\n
            hash_map_chaining.js
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n#size; // \u952e\u503c\u5bf9\u6570\u91cf\n#capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n#loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n#extendRatio; // \u6269\u5bb9\u500d\u6570\n#buckets; // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.#size = 0;\nthis.#capacity = 4;\nthis.#loadThres = 2 / 3.0;\nthis.#extendRatio = 2;\nthis.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\n#hashFunc(key) {\nreturn key % this.#capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\n#loadFactor() {\nreturn this.#size / this.#capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nget(key) {\nconst index = this.#hashFunc(key);\nconst bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor (const pair of bucket) {\nif (pair.key === key) {\nreturn pair.val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nput(key, val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (this.#loadFactor() > this.#loadThres) {\nthis.#extend();\n}\nconst index = this.#hashFunc(key);\nconst bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor (const pair of bucket) {\nif (pair.key === key) {\npair.val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nconst pair = new Pair(key, val);\nbucket.push(pair);\nthis.#size++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nremove(key) {\nconst index = this.#hashFunc(key);\nlet bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (let i = 0; i < bucket.length; i++) {\nif (bucket[i].key === key) {\nbucket.splice(i, 1);\nthis.#size--;\nbreak;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n#extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nconst bucketsTmp = this.#buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nthis.#capacity *= this.#extendRatio;\nthis.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\nthis.#size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (const bucket of bucketsTmp) {\nfor (const pair of bucket) {\nthis.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nprint() {\nfor (const bucket of this.#buckets) {\nlet res = [];\nfor (const pair of bucket) {\nres.push(pair.key + ' -> ' + pair.val);\n}\nconsole.log(res);\n}\n}\n}\n
            hash_map_chaining.ts
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n#size: number; // \u952e\u503c\u5bf9\u6570\u91cf\n#capacity: number; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n#loadThres: number; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n#extendRatio: number; // \u6269\u5bb9\u500d\u6570\n#buckets: Pair[][]; // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.#size = 0;\nthis.#capacity = 4;\nthis.#loadThres = 2 / 3.0;\nthis.#extendRatio = 2;\nthis.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\n#hashFunc(key: number): number {\nreturn key % this.#capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\n#loadFactor(): number {\nreturn this.#size / this.#capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nget(key: number): string | null {\nconst index = this.#hashFunc(key);\nconst bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor (const pair of bucket) {\nif (pair.key === key) {\nreturn pair.val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nput(key: number, val: string): void {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (this.#loadFactor() > this.#loadThres) {\nthis.#extend();\n}\nconst index = this.#hashFunc(key);\nconst bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor (const pair of bucket) {\nif (pair.key === key) {\npair.val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nconst pair = new Pair(key, val);\nbucket.push(pair);\nthis.#size++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nremove(key: number): void {\nconst index = this.#hashFunc(key);\nlet bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (let i = 0; i < bucket.length; i++) {\nif (bucket[i].key === key) {\nbucket.splice(i, 1);\nthis.#size--;\nbreak;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n#extend(): void {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nconst bucketsTmp = this.#buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nthis.#capacity *= this.#extendRatio;\nthis.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\nthis.#size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (const bucket of bucketsTmp) {\nfor (const pair of bucket) {\nthis.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nprint(): void {\nfor (const bucket of this.#buckets) {\nlet res = [];\nfor (const pair of bucket) {\nres.push(pair.key + ' -> ' + pair.val);\n}\nconsole.log(res);\n}\n}\n}\n
            hash_map_chaining.c
            [class]{hashMapChaining}-[func]{}\n
            hash_map_chaining.cs
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\nint size; // \u952e\u503c\u5bf9\u6570\u91cf\nint capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\ndouble loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nint extendRatio; // \u6269\u5bb9\u500d\u6570\nList<List<Pair>> buckets; // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\npublic HashMapChaining() {\nsize = 0;\ncapacity = 4;\nloadThres = 2 / 3.0;\nextendRatio = 2;\nbuckets = new List<List<Pair>>(capacity);\nfor (int i = 0; i < capacity; i++) {\nbuckets.Add(new List<Pair>());\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate int hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nprivate double loadFactor() {\nreturn (double)size / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic string get(int key) {\nint index = hashFunc(key);\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nforeach (Pair pair in buckets[index]) {\nif (pair.key == key) {\nreturn pair.val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic void put(int key, string val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nforeach (Pair pair in buckets[index]) {\nif (pair.key == key) {\npair.val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nbuckets[index].Add(new Pair(key, val));\nsize++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic void remove(int key) {\nint index = hashFunc(key);\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nforeach (Pair pair in buckets[index].ToList()) {\nif (pair.key == key) {\nbuckets[index].Remove(pair);\nsize--;\nbreak;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nprivate void extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nList<List<Pair>> bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = new List<List<Pair>>(capacity);\nfor (int i = 0; i < capacity; i++) {\nbuckets.Add(new List<Pair>());\n}\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nforeach (List<Pair> bucket in bucketsTmp) {\nforeach (Pair pair in bucket) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic void print() {\nforeach (List<Pair> bucket in buckets) {\nList<string> res = new List<string>();\nforeach (Pair pair in bucket) {\nres.Add(pair.key + \" -> \" + pair.val);\n}\nforeach (string kv in res) {\nConsole.WriteLine(kv);\n}\n}\n}\n}\n
            hash_map_chaining.swift
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\nvar size: Int // \u952e\u503c\u5bf9\u6570\u91cf\nvar capacity: Int // \u54c8\u5e0c\u8868\u5bb9\u91cf\nvar loadThres: Double // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nvar extendRatio: Int // \u6269\u5bb9\u500d\u6570\nvar buckets: [[Pair]] // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\ninit() {\nsize = 0\ncapacity = 4\nloadThres = 2 / 3\nextendRatio = 2\nbuckets = Array(repeating: [], count: capacity)\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc hashFunc(key: Int) -> Int {\nkey % capacity\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc loadFactor() -> Double {\nDouble(size / capacity)\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc get(key: Int) -> String? {\nlet index = hashFunc(key: key)\nlet bucket = buckets[index]\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor pair in bucket {\nif pair.key == key {\nreturn pair.val\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de nil\nreturn nil\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc put(key: Int, val: String) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif loadFactor() > loadThres {\nextend()\n}\nlet index = hashFunc(key: key)\nlet bucket = buckets[index]\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor pair in bucket {\nif pair.key == key {\npair.val = val\nreturn\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nlet pair = Pair(key: key, val: val)\nbuckets[index].append(pair)\nsize += 1\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc remove(key: Int) {\nlet index = hashFunc(key: key)\nlet bucket = buckets[index]\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (pairIndex, pair) in bucket.enumerated() {\nif pair.key == key {\nbuckets[index].remove(at: pairIndex)\n}\n}\nsize -= 1\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nlet bucketsTmp = buckets\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio\nbuckets = Array(repeating: [], count: capacity)\nsize = 0\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor bucket in bucketsTmp {\nfor pair in bucket {\nput(key: pair.key, val: pair.val)\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc print() {\nfor bucket in buckets {\nlet res = bucket.map { \"\\($0.key) -> \\($0.val)\" }\nSwift.print(res)\n}\n}\n}\n
            hash_map_chaining.zig
            [class]{HashMapChaining}-[func]{}\n
            hash_map_chaining.dart
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\nlate int size; // \u952e\u503c\u5bf9\u6570\u91cf\nlate int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\nlate double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nlate int extendRatio; // \u6269\u5bb9\u500d\u6570\nlate List<List<Pair>> buckets; // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\nHashMapChaining() {\nsize = 0;\ncapacity = 4;\nloadThres = 2 / 3.0;\nextendRatio = 2;\nbuckets = List.generate(capacity, (_) => []);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor() {\nreturn size / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nString? get(int key) {\nint index = hashFunc(key);\nList<Pair> bucket = buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor (Pair pair in bucket) {\nif (pair.key == key) {\nreturn pair.val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, String val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\nList<Pair> bucket = buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor (Pair pair in bucket) {\nif (pair.key == key) {\npair.val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nPair pair = Pair(key, val);\nbucket.add(pair);\nsize++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\nList<Pair> bucket = buckets[index];\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (Pair pair in bucket) {\nif (pair.key == key) {\nbucket.remove(pair);\nsize--;\nbreak;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nList<List<Pair>> bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = List.generate(capacity, (_) => []);\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (List<Pair> bucket in bucketsTmp) {\nfor (Pair pair in bucket) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid printHashMap() {\nfor (List<Pair> bucket in buckets) {\nList<String> res = [];\nfor (Pair pair in bucket) {\nres.add(\"${pair.key} -> ${pair.val}\");\n}\nprint(res);\n}\n}\n}\n
            hash_map_chaining.rs
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nstruct HashMapChaining {\nsize: i32,\ncapacity: i32,\nload_thres: f32,\nextend_ratio: i32,\nbuckets: Vec<Vec<Pair>>,\n}\nimpl HashMapChaining {\n/* \u6784\u9020\u65b9\u6cd5 */\nfn new() -> Self {\nSelf {\nsize: 0,\ncapacity: 4,\nload_thres: 2.0 / 3.0,\nextend_ratio: 2,\nbuckets: vec![vec![]; 4],\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfn hash_func(&self, key: i32) -> usize {\nkey as usize % self.capacity as usize\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfn load_factor(&self) -> f32 {\nself.size as f32 / self.capacity as f32\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfn remove(&mut self, key: i32) -> Option<String> {\nlet index = self.hash_func(key);\nlet bucket = &mut self.buckets[index];\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor i in 0..bucket.len() {\nif bucket[i].key == key {\nlet pair = bucket.remove(i);\nself.size -= 1;\nreturn Some(pair.val);\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de None\nNone\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfn extend(&mut self) {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nlet buckets_tmp = std::mem::replace(&mut self.buckets, vec![]);\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nself.capacity *= self.extend_ratio;\nself.buckets = vec![Vec::new(); self.capacity as usize];\nself.size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor bucket in buckets_tmp {\nfor pair in bucket {\nself.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfn print(&self) {\nfor bucket in &self.buckets {\nlet mut res = Vec::new();\nfor pair in bucket {\nres.push(format!(\"{} -> {}\", pair.key, pair.val));\n}\nprintln!(\"{:?}\", res);\n}\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfn put(&mut self, key: i32, val: String) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif self.load_factor() > self.load_thres {\nself.extend();\n}\nlet index = self.hash_func(key);\nlet bucket = &mut self.buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor pair in bucket {\nif pair.key == key {\npair.val = val.clone();\nreturn;\n}\n}\nlet bucket = &mut self.buckets[index];\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nlet pair = Pair {\nkey,\nval: val.clone(),\n};\nbucket.push(pair);\nself.size += 1;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfn get(&self, key: i32) -> Option<&str> {\nlet index = self.hash_func(key);\nlet bucket = &self.buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor pair in bucket {\nif pair.key == key {\nreturn Some(&pair.val);\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de None\nNone\n}\n}\n

            Tip

            \u5f53\u94fe\u8868\u5f88\u957f\u65f6\uff0c\u67e5\u8be2\u6548\u7387 \\(O(n)\\) \u5f88\u5dee\uff0c\u6b64\u65f6\u53ef\u4ee5\u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u300cAVL \u6811\u300d\u6216\u300c\u7ea2\u9ed1\u6811\u300d\uff0c\u4ece\u800c\u5c06\u67e5\u8be2\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(\\log n)\\) \u3002

            "},{"location":"chapter_hashing/hash_collision/#622","title":"6.2.2 \u00a0 \u5f00\u653e\u5bfb\u5740","text":"

            \u300c\u5f00\u653e\u5bfb\u5740 Open Addressing\u300d\u4e0d\u5f15\u5165\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\uff0c\u800c\u662f\u901a\u8fc7\u201c\u591a\u6b21\u63a2\u6d4b\u201d\u6765\u5904\u7406\u54c8\u5e0c\u51b2\u7a81\uff0c\u63a2\u6d4b\u65b9\u5f0f\u4e3b\u8981\u5305\u62ec\u7ebf\u6027\u63a2\u6d4b\u3001\u5e73\u65b9\u63a2\u6d4b\u3001\u591a\u6b21\u54c8\u5e0c\u7b49\u3002

            "},{"location":"chapter_hashing/hash_collision/#1","title":"1. \u00a0 \u7ebf\u6027\u63a2\u6d4b","text":"

            \u7ebf\u6027\u63a2\u6d4b\u91c7\u7528\u56fa\u5b9a\u6b65\u957f\u7684\u7ebf\u6027\u67e5\u627e\u6765\u8fdb\u884c\u63a2\u6d4b\uff0c\u5bf9\u5e94\u7684\u54c8\u5e0c\u8868\u64cd\u4f5c\u65b9\u6cd5\u4e3a\uff1a

            • \u63d2\u5165\u5143\u7d20\uff1a\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u8ba1\u7b97\u6570\u7ec4\u7d22\u5f15\uff0c\u82e5\u53d1\u73b0\u6876\u5185\u5df2\u6709\u5143\u7d20\uff0c\u5219\u4ece\u51b2\u7a81\u4f4d\u7f6e\u5411\u540e\u7ebf\u6027\u904d\u5386\uff08\u6b65\u957f\u901a\u5e38\u4e3a \\(1\\) \uff09\uff0c\u76f4\u81f3\u627e\u5230\u7a7a\u4f4d\uff0c\u5c06\u5143\u7d20\u63d2\u5165\u5176\u4e2d\u3002
            • \u67e5\u627e\u5143\u7d20\uff1a\u82e5\u53d1\u73b0\u54c8\u5e0c\u51b2\u7a81\uff0c\u5219\u4f7f\u7528\u76f8\u540c\u6b65\u957f\u5411\u540e\u7ebf\u6027\u904d\u5386\uff0c\u76f4\u5230\u627e\u5230\u5bf9\u5e94\u5143\u7d20\uff0c\u8fd4\u56de value \u5373\u53ef\uff1b\u5982\u679c\u9047\u5230\u7a7a\u4f4d\uff0c\u8bf4\u660e\u76ee\u6807\u952e\u503c\u5bf9\u4e0d\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u8fd4\u56de \\(\\text{None}\\) \u3002

            \u56fe\uff1a\u7ebf\u6027\u63a2\u6d4b

            \u7136\u800c\uff0c\u7ebf\u6027\u63a2\u6d4b\u5b58\u5728\u4ee5\u4e0b\u7f3a\u9677\uff1a

            • \u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u3002\u5220\u9664\u5143\u7d20\u4f1a\u5728\u6570\u7ec4\u5185\u4ea7\u751f\u4e00\u4e2a\u7a7a\u4f4d\uff0c\u5f53\u67e5\u627e\u8be5\u7a7a\u4f4d\u4e4b\u540e\u7684\u5143\u7d20\u65f6\uff0c\u8be5\u7a7a\u4f4d\u53ef\u80fd\u5bfc\u81f4\u7a0b\u5e8f\u8bef\u5224\u5143\u7d20\u4e0d\u5b58\u5728\u3002\u4e3a\u6b64\uff0c\u901a\u5e38\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u6807\u5fd7\u4f4d\u6765\u6807\u8bb0\u5df2\u5220\u9664\u5143\u7d20\u3002
            • \u5bb9\u6613\u4ea7\u751f\u805a\u96c6\u3002\u6570\u7ec4\u5185\u8fde\u7eed\u88ab\u5360\u7528\u4f4d\u7f6e\u8d8a\u957f\uff0c\u8fd9\u4e9b\u8fde\u7eed\u4f4d\u7f6e\u53d1\u751f\u54c8\u5e0c\u51b2\u7a81\u7684\u53ef\u80fd\u6027\u8d8a\u5927\uff0c\u8fdb\u4e00\u6b65\u4fc3\u4f7f\u8fd9\u4e00\u4f4d\u7f6e\u7684\u805a\u5806\u751f\u957f\uff0c\u5f62\u6210\u6076\u6027\u5faa\u73af\uff0c\u6700\u7ec8\u5bfc\u81f4\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u6548\u7387\u52a3\u5316\u3002

            \u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u4e00\u4e2a\u7b80\u5355\u7684\u5f00\u653e\u5bfb\u5740\uff08\u7ebf\u6027\u63a2\u6d4b\uff09\u54c8\u5e0c\u8868\u3002\u503c\u5f97\u6ce8\u610f\u4e24\u70b9\uff1a

            • \u6211\u4eec\u4f7f\u7528\u4e00\u4e2a\u56fa\u5b9a\u7684\u952e\u503c\u5bf9\u5b9e\u4f8b removed \u6765\u6807\u8bb0\u5df2\u5220\u9664\u5143\u7d20\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u5f53\u4e00\u4e2a\u6876\u5185\u7684\u5143\u7d20\u4e3a \\(\\text{None}\\) \u6216 removed \u65f6\uff0c\u8bf4\u660e\u8fd9\u4e2a\u6876\u662f\u7a7a\u7684\uff0c\u53ef\u7528\u4e8e\u653e\u7f6e\u952e\u503c\u5bf9\u3002
            • \u5728\u7ebf\u6027\u63a2\u6d4b\u65f6\uff0c\u6211\u4eec\u4ece\u5f53\u524d\u7d22\u5f15 index \u5411\u540e\u904d\u5386\uff1b\u800c\u5f53\u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u9700\u8981\u56de\u5230\u5934\u90e8\u7ee7\u7eed\u904d\u5386\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust hash_map_open_addressing.java
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\nprivate int size; // \u952e\u503c\u5bf9\u6570\u91cf\nprivate int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\nprivate double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nprivate int extendRatio; // \u6269\u5bb9\u500d\u6570\nprivate Pair[] buckets; // \u6876\u6570\u7ec4\nprivate Pair removed; // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\npublic HashMapOpenAddressing() {\nsize = 0;\ncapacity = 4;\nloadThres = 2.0 / 3.0;\nextendRatio = 2;\nbuckets = new Pair[capacity];\nremoved = new Pair(-1, \"-1\");\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\npublic int hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\npublic double loadFactor() {\nreturn (double) size / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic String get(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif (buckets[j] == null)\nreturn null;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (buckets[j].key == key && buckets[j] != removed)\nreturn buckets[j].val;\n}\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic void put(int key, String val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (buckets[j] == null || buckets[j] == removed) {\nbuckets[j] = new Pair(key, val);\nsize += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (buckets[j].key == key) {\nbuckets[j].val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic void remove(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (buckets[j] == null) {\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (buckets[j].key == key) {\nbuckets[j] = removed;\nsize -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\npublic void extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nPair[] bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = new Pair[capacity];\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (Pair pair : bucketsTmp) {\nif (pair != null && pair != removed) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic void print() {\nfor (Pair pair : buckets) {\nif (pair != null) {\nSystem.out.println(pair.key + \" -> \" + pair.val);\n} else {\nSystem.out.println(\"null\");\n}\n}\n}\n}\n
            hash_map_open_addressing.cpp
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\nprivate:\nint size;               // \u952e\u503c\u5bf9\u6570\u91cf\nint capacity;           // \u54c8\u5e0c\u8868\u5bb9\u91cf\ndouble loadThres;       // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nint extendRatio;        // \u6269\u5bb9\u500d\u6570\nvector<Pair *> buckets; // \u6876\u6570\u7ec4\nPair *removed;          // \u5220\u9664\u6807\u8bb0\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nHashMapOpenAddressing() {\n// \u6784\u9020\u65b9\u6cd5\nsize = 0;\ncapacity = 4;\nloadThres = 2.0 / 3.0;\nextendRatio = 2;\nbuckets = vector<Pair *>(capacity, nullptr);\nremoved = new Pair(-1, \"-1\");\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor() {\nreturn static_cast<double>(size) / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nstring get(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de nullptr\nif (buckets[j] == nullptr)\nreturn nullptr;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (buckets[j]->key == key && buckets[j] != removed)\nreturn buckets[j]->val;\n}\nreturn nullptr;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, string val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres)\nextend();\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (buckets[j] == nullptr || buckets[j] == removed) {\nbuckets[j] = new Pair(key, val);\nsize += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (buckets[j]->key == key) {\nbuckets[j]->val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (buckets[j] == nullptr)\nreturn;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (buckets[j]->key == key) {\ndelete buckets[j]; // \u91ca\u653e\u5185\u5b58\nbuckets[j] = removed;\nsize -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nvector<Pair *> bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = vector<Pair *>(capacity, nullptr);\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (Pair *pair : bucketsTmp) {\nif (pair != nullptr && pair != removed) {\nput(pair->key, pair->val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print() {\nfor (auto &pair : buckets) {\nif (pair != nullptr) {\ncout << pair->key << \" -> \" << pair->val << endl;\n} else {\ncout << \"nullptr\" << endl;\n}\n}\n}\n};\n
            hash_map_open_addressing.py
            class HashMapOpenAddressing:\n\"\"\"\u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.size = 0  # \u952e\u503c\u5bf9\u6570\u91cf\nself.capacity = 4  # \u54c8\u5e0c\u8868\u5bb9\u91cf\nself.load_thres = 2 / 3  # \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nself.extend_ratio = 2  # \u6269\u5bb9\u500d\u6570\nself.buckets: list[Pair | None] = [None] * self.capacity  # \u6876\u6570\u7ec4\nself.removed = Pair(-1, \"-1\")  # \u5220\u9664\u6807\u8bb0\ndef hash_func(self, key: int) -> int:\n\"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\nreturn key % self.capacity\ndef load_factor(self) -> float:\n\"\"\"\u8d1f\u8f7d\u56e0\u5b50\"\"\"\nreturn self.size / self.capacity\ndef get(self, key: int) -> str:\n\"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\nindex = self.hash_func(key)\n# \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in range(self.capacity):\n# \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj = (index + i) % self.capacity\n# \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de None\nif self.buckets[j] is None:\nreturn None\n# \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif self.buckets[j].key == key and self.buckets[j] != self.removed:\nreturn self.buckets[j].val\ndef put(self, key: int, val: str):\n\"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\n# \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif self.load_factor() > self.load_thres:\nself.extend()\nindex = self.hash_func(key)\n# \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in range(self.capacity):\n# \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj = (index + i) % self.capacity\n# \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif self.buckets[j] in [None, self.removed]:\nself.buckets[j] = Pair(key, val)\nself.size += 1\nreturn\n# \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif self.buckets[j].key == key:\nself.buckets[j].val = val\nreturn\ndef remove(self, key: int):\n\"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\nindex = self.hash_func(key)\n# \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in range(self.capacity):\n# \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj = (index + i) % self.capacity\n# \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif self.buckets[j] is None:\nreturn\n# \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif self.buckets[j].key == key:\nself.buckets[j] = self.removed\nself.size -= 1\nreturn\ndef extend(self):\n\"\"\"\u6269\u5bb9\u54c8\u5e0c\u8868\"\"\"\n# \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nbuckets_tmp = self.buckets\n# \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nself.capacity *= self.extend_ratio\nself.buckets = [None] * self.capacity\nself.size = 0\n# \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor pair in buckets_tmp:\nif pair not in [None, self.removed]:\nself.put(pair.key, pair.val)\ndef print(self):\n\"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\nfor pair in self.buckets:\nif pair is not None:\nprint(pair.key, \"->\", pair.val)\nelse:\nprint(\"None\")\n
            hash_map_open_addressing.go
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\ntype hashMapOpenAddressing struct {\nsize        int     // \u952e\u503c\u5bf9\u6570\u91cf\ncapacity    int     // \u54c8\u5e0c\u8868\u5bb9\u91cf\nloadThres   float64 // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nextendRatio int     // \u6269\u5bb9\u500d\u6570\nbuckets     []pair  // \u6876\u6570\u7ec4\nremoved     pair    // \u5220\u9664\u6807\u8bb0\n}\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newHashMapOpenAddressing() *hashMapOpenAddressing {\nbuckets := make([]pair, 4)\nreturn &hashMapOpenAddressing{\nsize:        0,\ncapacity:    4,\nloadThres:   2 / 3.0,\nextendRatio: 2,\nbuckets:     buckets,\nremoved: pair{\nkey: -1,\nval: \"-1\",\n},\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (m *hashMapOpenAddressing) hashFunc(key int) int {\nreturn key % m.capacity\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc (m *hashMapOpenAddressing) loadFactor() float64 {\nreturn float64(m.size) / float64(m.capacity)\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) get(key int) string {\nidx := m.hashFunc(key)\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i := 0; i < m.capacity; i++ {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj := (idx + 1) % m.capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif m.buckets[j] == (pair{}) {\nreturn \"\"\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif m.buckets[j].key == key && m.buckets[j] != m.removed {\nreturn m.buckets[j].val\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\nreturn \"\"\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) put(key int, val string) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif m.loadFactor() > m.loadThres {\nm.extend()\n}\nidx := m.hashFunc(key)\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i := 0; i < m.capacity; i++ {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj := (idx + i) % m.capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif m.buckets[j] == (pair{}) || m.buckets[j] == m.removed {\nm.buckets[j] = pair{\nkey: key,\nval: val,\n}\nm.size += 1\nreturn\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif m.buckets[j].key == key {\nm.buckets[j].val = val\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) remove(key int) {\nidx := m.hashFunc(key)\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i := 0; i < m.capacity; i++ {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj := (idx + 1) % m.capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif m.buckets[j] == (pair{}) {\nreturn\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif m.buckets[j].key == key {\nm.buckets[j] = m.removed\nm.size -= 1\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc (m *hashMapOpenAddressing) extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\ntmpBuckets := make([]pair, len(m.buckets))\ncopy(tmpBuckets, m.buckets)\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nm.capacity *= m.extendRatio\nm.buckets = make([]pair, m.capacity)\nm.size = 0\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor _, p := range tmpBuckets {\nif p != (pair{}) && p != m.removed {\nm.put(p.key, p.val)\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (m *hashMapOpenAddressing) print() {\nfor _, p := range m.buckets {\nif p != (pair{}) {\nfmt.Println(strconv.Itoa(p.key) + \" -> \" + p.val)\n} else {\nfmt.Println(\"nil\")\n}\n}\n}\n
            hash_map_open_addressing.js
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n#size; // \u952e\u503c\u5bf9\u6570\u91cf\n#capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n#loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n#extendRatio; // \u6269\u5bb9\u500d\u6570\n#buckets; // \u6876\u6570\u7ec4\n#removed; // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.#size = 0;\nthis.#capacity = 4;\nthis.#loadThres = 2.0 / 3.0;\nthis.#extendRatio = 2;\nthis.#buckets = new Array(this.#capacity).fill(null);\nthis.#removed = new Pair(-1, '-1');\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\n#hashFunc(key) {\nreturn key % this.#capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\n#loadFactor() {\nreturn this.#size / this.#capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nget(key) {\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nconst j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif (this.#buckets[j] === null) return null;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (\nthis.#buckets[j].key === key &&\nthis.#buckets[j][key] !== this.#removed.key\n)\nreturn this.#buckets[j].val;\n}\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nput(key, val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (this.#loadFactor() > this.#loadThres) {\nthis.#extend();\n}\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (\nthis.#buckets[j] === null ||\nthis.#buckets[j][key] === this.#removed.key\n) {\nthis.#buckets[j] = new Pair(key, val);\nthis.#size += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (this.#buckets[j].key === key) {\nthis.#buckets[j].val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nremove(key) {\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nconst j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (this.#buckets[j] === null) {\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (this.#buckets[j].key === key) {\nthis.#buckets[j] = this.#removed;\nthis.#size -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n#extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nconst bucketsTmp = this.#buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nthis.#capacity *= this.#extendRatio;\nthis.#buckets = new Array(this.#capacity).fill(null);\nthis.#size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (const pair of bucketsTmp) {\nif (pair !== null && pair.key !== this.#removed.key) {\nthis.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nprint() {\nfor (const pair of this.#buckets) {\nif (pair !== null) {\nconsole.log(pair.key + ' -> ' + pair.val);\n} else {\nconsole.log('null');\n}\n}\n}\n}\n
            hash_map_open_addressing.ts
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n#size: number; // \u952e\u503c\u5bf9\u6570\u91cf\n#capacity: number; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n#loadThres: number; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n#extendRatio: number; // \u6269\u5bb9\u500d\u6570\n#buckets: Pair[]; // \u6876\u6570\u7ec4\n#removed: Pair; // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.#size = 0;\nthis.#capacity = 4;\nthis.#loadThres = 2.0 / 3.0;\nthis.#extendRatio = 2;\nthis.#buckets = new Array(this.#capacity).fill(null);\nthis.#removed = new Pair(-1, '-1');\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\n#hashFunc(key: number): number {\nreturn key % this.#capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\n#loadFactor(): number {\nreturn this.#size / this.#capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nget(key: number): string | null {\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nconst j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif (this.#buckets[j] === null) return null;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (\nthis.#buckets[j].key === key &&\nthis.#buckets[j][key] !== this.#removed.key\n)\nreturn this.#buckets[j].val;\n}\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nput(key: number, val: string): void {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (this.#loadFactor() > this.#loadThres) {\nthis.#extend();\n}\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (\nthis.#buckets[j] === null ||\nthis.#buckets[j][key] === this.#removed.key\n) {\nthis.#buckets[j] = new Pair(key, val);\nthis.#size += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (this.#buckets[j].key === key) {\nthis.#buckets[j].val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nremove(key: number): void {\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nconst j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (this.#buckets[j] === null) {\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (this.#buckets[j].key === key) {\nthis.#buckets[j] = this.#removed;\nthis.#size -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n#extend(): void {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nconst bucketsTmp = this.#buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nthis.#capacity *= this.#extendRatio;\nthis.#buckets = new Array(this.#capacity).fill(null);\nthis.#size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (const pair of bucketsTmp) {\nif (pair !== null && pair.key !== this.#removed.key) {\nthis.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nprint(): void {\nfor (const pair of this.#buckets) {\nif (pair !== null) {\nconsole.log(pair.key + ' -> ' + pair.val);\n} else {\nconsole.log('null');\n}\n}\n}\n}\n
            hash_map_open_addressing.c
            [class]{hashMapOpenAddressing}-[func]{}\n
            hash_map_open_addressing.cs
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\nint size; // \u952e\u503c\u5bf9\u6570\u91cf\nint capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\ndouble loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nint extendRatio; // \u6269\u5bb9\u500d\u6570\nPair[] buckets; // \u6876\u6570\u7ec4\nPair removed; // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\npublic HashMapOpenAddressing() {\nsize = 0;\ncapacity = 4;\nloadThres = 2.0 / 3.0;\nextendRatio = 2;\nbuckets = new Pair[capacity];\nremoved = new Pair(-1, \"-1\");\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate int hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nprivate double loadFactor() {\nreturn (double)size / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic string get(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif (buckets[j] == null)\nreturn null;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (buckets[j].key == key && buckets[j] != removed)\nreturn buckets[j].val;\n}\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic void put(int key, string val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (buckets[j] == null || buckets[j] == removed) {\nbuckets[j] = new Pair(key, val);\nsize += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (buckets[j].key == key) {\nbuckets[j].val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic void remove(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (buckets[j] == null) {\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (buckets[j].key == key) {\nbuckets[j] = removed;\nsize -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nprivate void extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nPair[] bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = new Pair[capacity];\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nforeach (Pair pair in bucketsTmp) {\nif (pair != null && pair != removed) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic void print() {\nforeach (Pair pair in buckets) {\nif (pair != null) {\nConsole.WriteLine(pair.key + \" -> \" + pair.val);\n} else {\nConsole.WriteLine(\"null\");\n}\n}\n}\n}\n
            hash_map_open_addressing.swift
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\nvar size: Int // \u952e\u503c\u5bf9\u6570\u91cf\nvar capacity: Int // \u54c8\u5e0c\u8868\u5bb9\u91cf\nvar loadThres: Double // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nvar extendRatio: Int // \u6269\u5bb9\u500d\u6570\nvar buckets: [Pair?] // \u6876\u6570\u7ec4\nvar removed: Pair // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\ninit() {\nsize = 0\ncapacity = 4\nloadThres = 2 / 3\nextendRatio = 2\nbuckets = Array(repeating: nil, count: capacity)\nremoved = Pair(key: -1, val: \"-1\")\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc hashFunc(key: Int) -> Int {\nkey % capacity\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc loadFactor() -> Double {\nDouble(size / capacity)\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc get(key: Int) -> String? {\nlet index = hashFunc(key: key)\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in stride(from: 0, to: capacity, by: 1) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + i) % capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de nil\nif buckets[j] == nil {\nreturn nil\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif buckets[j]?.key == key, buckets[j] != removed {\nreturn buckets[j]?.val\n}\n}\nreturn nil\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc put(key: Int, val: String) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif loadFactor() > loadThres {\nextend()\n}\nlet index = hashFunc(key: key)\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in stride(from: 0, through: capacity, by: 1) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + i) % capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif buckets[j] == nil || buckets[j] == removed {\nbuckets[j] = Pair(key: key, val: val)\nsize += 1\nreturn\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif buckets[j]?.key == key {\nbuckets[j]?.val = val\nreturn\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc remove(key: Int) {\nlet index = hashFunc(key: key)\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in stride(from: 0, to: capacity, by: 1) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + i) % capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif buckets[j] == nil {\nreturn\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif buckets[j]?.key == key {\nbuckets[j] = removed\nsize -= 1\nreturn\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nlet bucketsTmp = buckets\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio\nbuckets = Array(repeating: nil, count: capacity)\nsize = 0\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor pair in bucketsTmp {\nif let pair, pair != removed {\nput(key: pair.key, val: pair.val)\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc print() {\nfor pair in buckets {\nif let pair {\nSwift.print(\"\\(pair.key) -> \\(pair.val)\")\n} else {\nSwift.print(\"null\")\n}\n}\n}\n}\n
            hash_map_open_addressing.zig
            [class]{HashMapOpenAddressing}-[func]{}\n
            hash_map_open_addressing.dart
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\nlate int _size; // \u952e\u503c\u5bf9\u6570\u91cf\nlate int _capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\nlate double _loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nlate int _extendRatio; // \u6269\u5bb9\u500d\u6570\nlate List<Pair?> _buckets; // \u6876\u6570\u7ec4\nlate Pair _removed; // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\nHashMapOpenAddressing() {\n_size = 0;\n_capacity = 4;\n_loadThres = 2.0 / 3.0;\n_extendRatio = 2;\n_buckets = List.generate(_capacity, (index) => null);\n_removed = Pair(-1, \"-1\");\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nreturn key % _capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor() {\nreturn _size / _capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nString? get(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < _capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % _capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif (_buckets[j] == null) return null;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (_buckets[j]!.key == key && _buckets[j] != _removed)\nreturn _buckets[j]!.val;\n}\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, String val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > _loadThres) {\nextend();\n}\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < _capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % _capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (_buckets[j] == null || _buckets[j] == _removed) {\n_buckets[j] = new Pair(key, val);\n_size += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (_buckets[j]!.key == key) {\n_buckets[j]!.val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < _capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % _capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (_buckets[j] == null) {\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (_buckets[j]!.key == key) {\n_buckets[j] = _removed;\n_size -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nList<Pair?> bucketsTmp = _buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n_capacity *= _extendRatio;\n_buckets = List.generate(_capacity, (index) => null);\n_size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (Pair? pair in bucketsTmp) {\nif (pair != null && pair != _removed) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid printHashMap() {\nfor (Pair? pair in _buckets) {\nif (pair != null) {\nprint(\"${pair.key} -> ${pair.val}\");\n} else {\nprint(null);\n}\n}\n}\n}\n
            hash_map_open_addressing.rs
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nstruct HashMapOpenAddressing {\nsize: usize,\ncapacity: usize,\nload_thres: f32,\nextend_ratio: usize,\nbuckets: Vec<Option<Pair>>,\nremoved: Pair,\n}\nimpl HashMapOpenAddressing {\n/* \u6784\u9020\u65b9\u6cd5 */\nfn new() -> Self {\nSelf {\nsize: 0,\ncapacity: 4,\nload_thres: 2.0 / 3.0,\nextend_ratio: 2,\nbuckets: vec![None; 4],\nremoved: Pair {\nkey: -1,\nval: \"-1\".to_string(),\n},\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfn hash_func(&self, key: i32) -> usize {\n(key % self.capacity as i32) as usize\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfn load_factor(&self) -> f32 {\nself.size as f32 / self.capacity as f32\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfn get(&self, key: i32) -> Option<&str> {\nlet mut index = self.hash_func(key);\nlet capacity = self.capacity;\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor _ in 0..capacity {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + 1) % capacity;\nmatch &self.buckets[j] {\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de None\nNone => return None,\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nSome(pair) if pair.key == key && pair != &self.removed => return Some(&pair.val),\n_ => index = j,\n}\n}\nNone\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfn put(&mut self, key: i32, val: String) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif self.load_factor() > self.load_thres {\nself.extend();\n}\nlet mut index = self.hash_func(key);\nlet capacity = self.capacity;\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor _ in 0..capacity {\n//\u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + 1) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nmatch &mut self.buckets[j] {\nbucket @ &mut None | bucket @ &mut Some(Pair { key: -1, .. }) => {\n*bucket = Some(Pair { key, val });\nself.size += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nSome(pair) if pair.key == key => {\npair.val = val;\nreturn;\n}\n_ => index = j,\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfn remove(&mut self, key: i32) {\nlet mut index = self.hash_func(key);\nlet capacity = self.capacity;\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor _ in 0..capacity {\nlet j = (index + 1) % capacity;\nmatch &mut self.buckets[j] {\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nNone => return,\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nSome(pair) if pair.key == key => {\n*pair = Pair {\nkey: -1,\nval: \"-1\".to_string(),\n};\nself.size -= 1;\nreturn;\n}\n_ => index = j,\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfn extend(&mut self) {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nlet buckets_tmp = self.buckets.clone();\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nself.capacity *= self.extend_ratio;\nself.buckets = vec![None; self.capacity];\nself.size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor pair in buckets_tmp {\nif let Some(pair) = pair {\nself.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfn print(&self) {\nfor pair in &self.buckets {\nmatch pair {\nSome(pair) => println!(\"{} -> {}\", pair.key, pair.val),\nNone => println!(\"None\"),\n}\n}\n}\n}\n
            "},{"location":"chapter_hashing/hash_collision/#2","title":"2. \u00a0 \u591a\u6b21\u54c8\u5e0c","text":"

            \u987e\u540d\u601d\u4e49\uff0c\u591a\u6b21\u54c8\u5e0c\u65b9\u6cd5\u662f\u4f7f\u7528\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570 \\(f_1(x)\\) , \\(f_2(x)\\) , \\(f_3(x)\\) , \\(\\cdots\\) \u8fdb\u884c\u63a2\u6d4b\u3002

            • \u63d2\u5165\u5143\u7d20\uff1a\u82e5\u54c8\u5e0c\u51fd\u6570 \\(f_1(x)\\) \u51fa\u73b0\u51b2\u7a81\uff0c\u5219\u5c1d\u8bd5 \\(f_2(x)\\) \uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u5230\u627e\u5230\u7a7a\u4f4d\u540e\u63d2\u5165\u5143\u7d20\u3002
            • \u67e5\u627e\u5143\u7d20\uff1a\u5728\u76f8\u540c\u7684\u54c8\u5e0c\u51fd\u6570\u987a\u5e8f\u4e0b\u8fdb\u884c\u67e5\u627e\uff0c\u76f4\u5230\u627e\u5230\u76ee\u6807\u5143\u7d20\u65f6\u8fd4\u56de\uff1b\u6216\u9047\u5230\u7a7a\u4f4d\u6216\u5df2\u5c1d\u8bd5\u6240\u6709\u54c8\u5e0c\u51fd\u6570\uff0c\u8bf4\u660e\u54c8\u5e0c\u8868\u4e2d\u4e0d\u5b58\u5728\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(\\text{None}\\) \u3002

            \u4e0e\u7ebf\u6027\u63a2\u6d4b\u76f8\u6bd4\uff0c\u591a\u6b21\u54c8\u5e0c\u65b9\u6cd5\u4e0d\u6613\u4ea7\u751f\u805a\u96c6\uff0c\u4f46\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u4f1a\u589e\u52a0\u989d\u5916\u7684\u8ba1\u7b97\u91cf\u3002

            "},{"location":"chapter_hashing/hash_collision/#623","title":"6.2.3 \u00a0 \u7f16\u7a0b\u8bed\u8a00\u7684\u9009\u62e9","text":"

            Java \u91c7\u7528\u94fe\u5f0f\u5730\u5740\u3002\u81ea JDK 1.8 \u4ee5\u6765\uff0c\u5f53 HashMap \u5185\u6570\u7ec4\u957f\u5ea6\u8fbe\u5230 64 \u4e14\u94fe\u8868\u957f\u5ea6\u8fbe\u5230 8 \u65f6\uff0c\u94fe\u8868\u4f1a\u88ab\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u4ee5\u63d0\u5347\u67e5\u627e\u6027\u80fd\u3002

            Python \u91c7\u7528\u5f00\u653e\u5bfb\u5740\u3002\u5b57\u5178 dict \u4f7f\u7528\u4f2a\u968f\u673a\u6570\u8fdb\u884c\u63a2\u6d4b\u3002

            Golang \u91c7\u7528\u94fe\u5f0f\u5730\u5740\u3002Go \u89c4\u5b9a\u6bcf\u4e2a\u6876\u6700\u591a\u5b58\u50a8 8 \u4e2a\u952e\u503c\u5bf9\uff0c\u8d85\u51fa\u5bb9\u91cf\u5219\u8fde\u63a5\u4e00\u4e2a\u6ea2\u51fa\u6876\uff1b\u5f53\u6ea2\u51fa\u6876\u8fc7\u591a\u65f6\uff0c\u4f1a\u6267\u884c\u4e00\u6b21\u7279\u6b8a\u7684\u7b49\u91cf\u6269\u5bb9\u64cd\u4f5c\uff0c\u4ee5\u786e\u4fdd\u6027\u80fd\u3002

            "},{"location":"chapter_hashing/hash_map/","title":"6.1 \u00a0 \u54c8\u5e0c\u8868","text":"

            \u6563\u5217\u8868\uff0c\u53c8\u79f0\u300c\u54c8\u5e0c\u8868 Hash Table\u300d\uff0c\u5176\u901a\u8fc7\u5efa\u7acb\u952e key \u4e0e\u503c value \u4e4b\u95f4\u7684\u6620\u5c04\uff0c\u5b9e\u73b0\u9ad8\u6548\u7684\u5143\u7d20\u67e5\u8be2\u3002\u5177\u4f53\u800c\u8a00\uff0c\u6211\u4eec\u5411\u54c8\u5e0c\u8868\u8f93\u5165\u4e00\u4e2a\u952e key \uff0c\u5219\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u83b7\u53d6\u5bf9\u5e94\u7684\u503c value \u3002

            \u4ee5\u4e00\u4e2a\u5305\u542b \\(n\\) \u4e2a\u5b66\u751f\u7684\u6570\u636e\u5e93\u4e3a\u4f8b\uff0c\u6bcf\u4e2a\u5b66\u751f\u90fd\u6709\u201c\u59d3\u540d\u201d\u548c\u201c\u5b66\u53f7\u201d\u4e24\u9879\u6570\u636e\u3002\u5047\u5982\u6211\u4eec\u5e0c\u671b\u5b9e\u73b0\u201c\u8f93\u5165\u4e00\u4e2a\u5b66\u53f7\uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u59d3\u540d\u201d\u7684\u67e5\u8be2\u529f\u80fd\uff0c\u5219\u53ef\u4ee5\u91c7\u7528\u54c8\u5e0c\u8868\u6765\u5b9e\u73b0\u3002

            \u56fe\uff1a\u54c8\u5e0c\u8868\u7684\u62bd\u8c61\u8868\u793a

            \u9664\u54c8\u5e0c\u8868\u5916\uff0c\u6211\u4eec\u8fd8\u53ef\u4ee5\u4f7f\u7528\u6570\u7ec4\u6216\u94fe\u8868\u5b9e\u73b0\u67e5\u8be2\u529f\u80fd\u3002\u82e5\u5c06\u5b66\u751f\u6570\u636e\u770b\u4f5c\u6570\u7ec4\uff08\u94fe\u8868\uff09\u5143\u7d20\uff0c\u5219\u6709\uff1a

            • \u6dfb\u52a0\u5143\u7d20\uff1a\u4ec5\u9700\u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u6570\u7ec4\uff08\u94fe\u8868\uff09\u7684\u5c3e\u90e8\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002
            • \u67e5\u8be2\u5143\u7d20\uff1a\u7531\u4e8e\u6570\u7ec4\uff08\u94fe\u8868\uff09\u662f\u4e71\u5e8f\u7684\uff0c\u56e0\u6b64\u9700\u8981\u904d\u5386\u5176\u4e2d\u7684\u6240\u6709\u5143\u7d20\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
            • \u5220\u9664\u5143\u7d20\uff1a\u9700\u8981\u5148\u67e5\u8be2\u5230\u5143\u7d20\uff0c\u518d\u4ece\u6570\u7ec4\u4e2d\u5220\u9664\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002

            \u8868\uff1a\u5143\u7d20\u67e5\u8be2\u6548\u7387\u5bf9\u6bd4

            \u6570\u7ec4 \u94fe\u8868 \u54c8\u5e0c\u8868 \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(1)\\) \u6dfb\u52a0\u5143\u7d20 \\(O(1)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(1)\\)

            \u89c2\u5bdf\u53d1\u73b0\uff0c\u5728\u54c8\u5e0c\u8868\u4e2d\u8fdb\u884c\u589e\u5220\u67e5\u6539\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u662f \\(O(1)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002

            "},{"location":"chapter_hashing/hash_map/#611","title":"6.1.1 \u00a0 \u54c8\u5e0c\u8868\u5e38\u7528\u64cd\u4f5c","text":"

            \u54c8\u5e0c\u8868\u7684\u5e38\u89c1\u64cd\u4f5c\u5305\u62ec\uff1a\u521d\u59cb\u5316\u3001\u67e5\u8be2\u64cd\u4f5c\u3001\u6dfb\u52a0\u952e\u503c\u5bf9\u548c\u5220\u9664\u952e\u503c\u5bf9\u7b49\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust hash_map.java
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nMap<Integer, String> map = new HashMap<>();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.put(12836, \"\u5c0f\u54c8\");   map.put(15937, \"\u5c0f\u5570\");   map.put(16750, \"\u5c0f\u7b97\");   map.put(13276, \"\u5c0f\u6cd5\");\nmap.put(10583, \"\u5c0f\u9e2d\");\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nString name = map.get(15937);\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.remove(10583);\n
            hash_map.cpp
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nunordered_map<int, string> map;\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\";\nmap[15937] = \"\u5c0f\u5570\";\nmap[16750] = \"\u5c0f\u7b97\";\nmap[13276] = \"\u5c0f\u6cd5\";\nmap[10583] = \"\u5c0f\u9e2d\";\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nstring name = map[15937];\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.erase(10583);\n
            hash_map.py
            # \u521d\u59cb\u5316\u54c8\u5e0c\u8868\nhmap: Dict = {}\n# \u6dfb\u52a0\u64cd\u4f5c\n# \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nhmap[12836] = \"\u5c0f\u54c8\"\nhmap[15937] = \"\u5c0f\u5570\"\nhmap[16750] = \"\u5c0f\u7b97\"\nhmap[13276] = \"\u5c0f\u6cd5\"\nhmap[10583] = \"\u5c0f\u9e2d\"\n# \u67e5\u8be2\u64cd\u4f5c\n# \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nname: str = hmap[15937]\n# \u5220\u9664\u64cd\u4f5c\n# \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nhmap.pop(10583)\n
            hash_map.go
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nhmap := make(map[int]string)\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nhmap[12836] = \"\u5c0f\u54c8\"\nhmap[15937] = \"\u5c0f\u5570\"\nhmap[16750] = \"\u5c0f\u7b97\"\nhmap[13276] = \"\u5c0f\u6cd5\"\nhmap[10583] = \"\u5c0f\u9e2d\"\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nname := hmap[15937]\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\ndelete(hmap, 10583)\n
            hash_map.js
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nconst map = new ArrayHashMap();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.set(12836, '\u5c0f\u54c8');\nmap.set(15937, '\u5c0f\u5570');\nmap.set(16750, '\u5c0f\u7b97');\nmap.set(13276, '\u5c0f\u6cd5');\nmap.set(10583, '\u5c0f\u9e2d');\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map.get(15937);\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.delete(10583);\n
            hash_map.ts
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nconst map = new Map<number, string>();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.set(12836, '\u5c0f\u54c8');\nmap.set(15937, '\u5c0f\u5570');\nmap.set(16750, '\u5c0f\u7b97');\nmap.set(13276, '\u5c0f\u6cd5');\nmap.set(10583, '\u5c0f\u9e2d');\nconsole.info('\\n\u6dfb\u52a0\u5b8c\u6210\u540e\uff0c\u54c8\u5e0c\u8868\u4e3a\\nKey -> Value');\nconsole.info(map);\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map.get(15937);\nconsole.info('\\n\u8f93\u5165\u5b66\u53f7 15937 \uff0c\u67e5\u8be2\u5230\u59d3\u540d ' + name);\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.delete(10583);\nconsole.info('\\n\u5220\u9664 10583 \u540e\uff0c\u54c8\u5e0c\u8868\u4e3a\\nKey -> Value');\nconsole.info(map);\n
            hash_map.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u8868\n
            hash_map.cs
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nDictionary<int, String> map = new ();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.Add(12836, \"\u5c0f\u54c8\");\nmap.Add(15937, \"\u5c0f\u5570\");\nmap.Add(16750, \"\u5c0f\u7b97\");\nmap.Add(13276, \"\u5c0f\u6cd5\");\nmap.Add(10583, \"\u5c0f\u9e2d\");\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nString name = map[15937];\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.Remove(10583);\n
            hash_map.swift
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nvar map: [Int: String] = [:]\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\"\nmap[15937] = \"\u5c0f\u5570\"\nmap[16750] = \"\u5c0f\u7b97\"\nmap[13276] = \"\u5c0f\u6cd5\"\nmap[10583] = \"\u5c0f\u9e2d\"\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map[15937]!\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.removeValue(forKey: 10583)\n
            hash_map.zig
            \n
            hash_map.dart
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nMap<int, String> map = {};\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\";\nmap[15937] = \"\u5c0f\u5570\";\nmap[16750] = \"\u5c0f\u7b97\";\nmap[13276] = \"\u5c0f\u6cd5\";\nmap[10583] = \"\u5c0f\u9e2d\";\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nString name = map[15937];\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.remove(10583);\n
            hash_map.rs
            \n

            \u54c8\u5e0c\u8868\u6709\u4e09\u79cd\u5e38\u7528\u904d\u5386\u65b9\u5f0f\uff1a\u904d\u5386\u952e\u503c\u5bf9\u3001\u904d\u5386\u952e\u548c\u904d\u5386\u503c\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust hash_map.java
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor (Map.Entry <Integer, String> kv: map.entrySet()) {\nSystem.out.println(kv.getKey() + \" -> \" + kv.getValue());\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nfor (int key: map.keySet()) {\nSystem.out.println(key);\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nfor (String val: map.values()) {\nSystem.out.println(val);\n}\n
            hash_map.cpp
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor (auto kv: map) {\ncout << kv.first << \" -> \" << kv.second << endl;\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nfor (auto key: map) {\ncout << key.first << endl;\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nfor (auto val: map) {\ncout << val.second << endl;\n}\n
            hash_map.py
            # \u904d\u5386\u54c8\u5e0c\u8868\n# \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor key, value in hmap.items():\nprint(key, \"->\", value)\n# \u5355\u72ec\u904d\u5386\u952e key\nfor key in hmap.keys():\nprint(key)\n# \u5355\u72ec\u904d\u5386\u503c value\nfor value in hmap.values():\nprint(value)\n
            hash_map_test.go
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor key, value := range hmap {\nfmt.Println(key, \"->\", value)\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nfor key := range hmap {\nfmt.Println(key)\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nfor _, value := range hmap {\nfmt.Println(value)\n}\n
            hash_map.js
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\nconsole.info('\\n\u904d\u5386\u952e\u503c\u5bf9 Key->Value');\nfor (const [k, v] of map.entries()) {\nconsole.info(k + ' -> ' + v);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u952e Key');\nfor (const k of map.keys()) {\nconsole.info(k);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u503c Value');\nfor (const v of map.values()) {\nconsole.info(v);\n}\n
            hash_map.ts
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\nconsole.info('\\n\u904d\u5386\u952e\u503c\u5bf9 Key->Value');\nfor (const [k, v] of map.entries()) {\nconsole.info(k + ' -> ' + v);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u952e Key');\nfor (const k of map.keys()) {\nconsole.info(k);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u503c Value');\nfor (const v of map.values()) {\nconsole.info(v);\n}\n
            hash_map.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u8868\n
            hash_map.cs
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nforeach (var kv in map) {\nConsole.WriteLine(kv.Key + \" -> \" + kv.Value);\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nforeach (int key in map.Keys) {\nConsole.WriteLine(key);\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nforeach (String val in map.Values) {\nConsole.WriteLine(val);\n}\n
            hash_map.swift
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nfor (key, value) in map {\nprint(\"\\(key) -> \\(value)\")\n}\n// \u5355\u72ec\u904d\u5386\u952e Key\nfor key in map.keys {\nprint(key)\n}\n// \u5355\u72ec\u904d\u5386\u503c Value\nfor value in map.values {\nprint(value)\n}\n
            hash_map.zig
            \n
            hash_map.dart
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nmap.forEach((key, value) {\nprint('$key -> $value');\n});\n// \u5355\u72ec\u904d\u5386\u952e Key\nmap.keys.forEach((key) {\nprint(key);\n});\n// \u5355\u72ec\u904d\u5386\u503c Value\nmap.values.forEach((value) {\nprint(value);\n});\n
            hash_map.rs
            \n
            "},{"location":"chapter_hashing/hash_map/#612","title":"6.1.2 \u00a0 \u54c8\u5e0c\u8868\u7b80\u5355\u5b9e\u73b0","text":"

            \u6211\u4eec\u5148\u8003\u8651\u6700\u7b80\u5355\u7684\u60c5\u51b5\uff0c\u4ec5\u7528\u4e00\u4e2a\u6570\u7ec4\u6765\u5b9e\u73b0\u54c8\u5e0c\u8868\u3002\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u6211\u4eec\u5c06\u6570\u7ec4\u4e2d\u7684\u6bcf\u4e2a\u7a7a\u4f4d\u79f0\u4e3a\u300c\u6876 Bucket\u300d\uff0c\u6bcf\u4e2a\u6876\u53ef\u5b58\u50a8\u4e00\u4e2a\u952e\u503c\u5bf9\u3002\u56e0\u6b64\uff0c\u67e5\u8be2\u64cd\u4f5c\u5c31\u662f\u627e\u5230 key \u5bf9\u5e94\u7684\u6876\uff0c\u5e76\u5728\u6876\u4e2d\u83b7\u53d6 value \u3002

            \u90a3\u4e48\uff0c\u5982\u4f55\u57fa\u4e8e key \u6765\u5b9a\u4f4d\u5bf9\u5e94\u7684\u6876\u5462\uff1f\u8fd9\u662f\u901a\u8fc7\u300c\u54c8\u5e0c\u51fd\u6570 Hash Function\u300d\u5b9e\u73b0\u7684\u3002\u54c8\u5e0c\u51fd\u6570\u7684\u4f5c\u7528\u662f\u5c06\u4e00\u4e2a\u8f83\u5927\u7684\u8f93\u5165\u7a7a\u95f4\u6620\u5c04\u5230\u4e00\u4e2a\u8f83\u5c0f\u7684\u8f93\u51fa\u7a7a\u95f4\u3002\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u8f93\u5165\u7a7a\u95f4\u662f\u6240\u6709 key \uff0c\u8f93\u51fa\u7a7a\u95f4\u662f\u6240\u6709\u6876\uff08\u6570\u7ec4\u7d22\u5f15\uff09\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u8f93\u5165\u4e00\u4e2a key \uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u5f97\u5230\u8be5 key \u5bf9\u5e94\u7684\u952e\u503c\u5bf9\u5728\u6570\u7ec4\u4e2d\u7684\u5b58\u50a8\u4f4d\u7f6e\u3002

            \u8f93\u5165\u4e00\u4e2a key \uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u8ba1\u7b97\u8fc7\u7a0b\u5206\u4e3a\u4e24\u6b65\uff1a

            1. \u901a\u8fc7\u67d0\u79cd\u54c8\u5e0c\u7b97\u6cd5 hash() \u8ba1\u7b97\u5f97\u5230\u54c8\u5e0c\u503c\u3002
            2. \u5c06\u54c8\u5e0c\u503c\u5bf9\u6876\u6570\u91cf\uff08\u6570\u7ec4\u957f\u5ea6\uff09capacity \u53d6\u6a21\uff0c\u4ece\u800c\u83b7\u53d6\u8be5 key \u5bf9\u5e94\u7684\u6570\u7ec4\u7d22\u5f15 index \u3002
            index = hash(key) % capacity\n

            \u968f\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5229\u7528 index \u5728\u54c8\u5e0c\u8868\u4e2d\u8bbf\u95ee\u5bf9\u5e94\u7684\u6876\uff0c\u4ece\u800c\u83b7\u53d6 value \u3002

            \u8bbe\u6570\u7ec4\u957f\u5ea6 capacity = 100 \u3001\u54c8\u5e0c\u7b97\u6cd5 hash(key) = key \uff0c\u6613\u5f97\u54c8\u5e0c\u51fd\u6570\u4e3a key % 100 \u3002\u4e0b\u56fe\u4ee5 key \u5b66\u53f7\u548c value \u59d3\u540d\u4e3a\u4f8b\uff0c\u5c55\u793a\u4e86\u54c8\u5e0c\u51fd\u6570\u7684\u5de5\u4f5c\u539f\u7406\u3002

            \u56fe\uff1a\u54c8\u5e0c\u51fd\u6570\u5de5\u4f5c\u539f\u7406

            \u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u4e00\u4e2a\u7b80\u5355\u54c8\u5e0c\u8868\u3002\u5176\u4e2d\uff0c\u6211\u4eec\u5c06 key \u548c value \u5c01\u88c5\u6210\u4e00\u4e2a\u7c7b Pair \uff0c\u4ee5\u8868\u793a\u952e\u503c\u5bf9\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array_hash_map.java
            /* \u952e\u503c\u5bf9 */\nclass Pair {\npublic int key;\npublic String val;\npublic Pair(int key, String val) {\nthis.key = key;\nthis.val = val;\n}\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nprivate List<Pair> buckets;\npublic ArrayHashMap() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nbuckets = new ArrayList<>();\nfor (int i = 0; i < 100; i++) {\nbuckets.add(null);\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate int hashFunc(int key) {\nint index = key % 100;\nreturn index;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic String get(int key) {\nint index = hashFunc(key);\nPair pair = buckets.get(index);\nif (pair == null)\nreturn null;\nreturn pair.val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic void put(int key, String val) {\nPair pair = new Pair(key, val);\nint index = hashFunc(key);\nbuckets.set(index, pair);\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic void remove(int key) {\nint index = hashFunc(key);\n// \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\nbuckets.set(index, null);\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\npublic List<Pair> pairSet() {\nList<Pair> pairSet = new ArrayList<>();\nfor (Pair pair : buckets) {\nif (pair != null)\npairSet.add(pair);\n}\nreturn pairSet;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\npublic List<Integer> keySet() {\nList<Integer> keySet = new ArrayList<>();\nfor (Pair pair : buckets) {\nif (pair != null)\nkeySet.add(pair.key);\n}\nreturn keySet;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\npublic List<String> valueSet() {\nList<String> valueSet = new ArrayList<>();\nfor (Pair pair : buckets) {\nif (pair != null)\nvalueSet.add(pair.val);\n}\nreturn valueSet;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic void print() {\nfor (Pair kv : pairSet()) {\nSystem.out.println(kv.key + \" -> \" + kv.val);\n}\n}\n}\n
            array_hash_map.cpp
            /* \u952e\u503c\u5bf9 */\nstruct Pair {\npublic:\nint key;\nstring val;\nPair(int key, string val) {\nthis->key = key;\nthis->val = val;\n}\n};\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nprivate:\nvector<Pair *> buckets;\npublic:\nArrayHashMap() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nbuckets = vector<Pair *>(100);\n}\n~ArrayHashMap() {\n// \u91ca\u653e\u5185\u5b58\nfor (const auto &bucket : buckets) {\ndelete bucket;\n}\nbuckets.clear();\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nint index = key % 100;\nreturn index;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nstring get(int key) {\nint index = hashFunc(key);\nPair *pair = buckets[index];\nif (pair == nullptr)\nreturn nullptr;\nreturn pair->val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, string val) {\nPair *pair = new Pair(key, val);\nint index = hashFunc(key);\nbuckets[index] = pair;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\n// \u91ca\u653e\u5185\u5b58\u5e76\u7f6e\u4e3a nullptr\ndelete buckets[index];\nbuckets[index] = nullptr;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\nvector<Pair *> pairSet() {\nvector<Pair *> pairSet;\nfor (Pair *pair : buckets) {\nif (pair != nullptr) {\npairSet.push_back(pair);\n}\n}\nreturn pairSet;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\nvector<int> keySet() {\nvector<int> keySet;\nfor (Pair *pair : buckets) {\nif (pair != nullptr) {\nkeySet.push_back(pair->key);\n}\n}\nreturn keySet;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\nvector<string> valueSet() {\nvector<string> valueSet;\nfor (Pair *pair : buckets) {\nif (pair != nullptr) {\nvalueSet.push_back(pair->val);\n}\n}\nreturn valueSet;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print() {\nfor (Pair *kv : pairSet()) {\ncout << kv->key << \" -> \" << kv->val << endl;\n}\n}\n};\n
            array_hash_map.py
            class Pair:\n\"\"\"\u952e\u503c\u5bf9\"\"\"\ndef __init__(self, key: int, val: str):\nself.key = key\nself.val = val\nclass ArrayHashMap:\n\"\"\"\u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n# \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nself.buckets: list[Pair | None] = [None] * 100\ndef hash_func(self, key: int) -> int:\n\"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\nindex = key % 100\nreturn index\ndef get(self, key: int) -> str:\n\"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\nindex: int = self.hash_func(key)\npair: Pair = self.buckets[index]\nif pair is None:\nreturn None\nreturn pair.val\ndef put(self, key: int, val: str):\n\"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\npair = Pair(key, val)\nindex: int = self.hash_func(key)\nself.buckets[index] = pair\ndef remove(self, key: int):\n\"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\nindex: int = self.hash_func(key)\n# \u7f6e\u4e3a None \uff0c\u4ee3\u8868\u5220\u9664\nself.buckets[index] = None\ndef entry_set(self) -> list[Pair]:\n\"\"\"\u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9\"\"\"\nresult: list[Pair] = []\nfor pair in self.buckets:\nif pair is not None:\nresult.append(pair)\nreturn result\ndef key_set(self) -> list[int]:\n\"\"\"\u83b7\u53d6\u6240\u6709\u952e\"\"\"\nresult = []\nfor pair in self.buckets:\nif pair is not None:\nresult.append(pair.key)\nreturn result\ndef value_set(self) -> list[str]:\n\"\"\"\u83b7\u53d6\u6240\u6709\u503c\"\"\"\nresult = []\nfor pair in self.buckets:\nif pair is not None:\nresult.append(pair.val)\nreturn result\ndef print(self):\n\"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\nfor pair in self.buckets:\nif pair is not None:\nprint(pair.key, \"->\", pair.val)\n
            array_hash_map.go
            /* \u952e\u503c\u5bf9 */\ntype pair struct {\nkey int\nval string\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\ntype arrayHashMap struct {\nbuckets []*pair\n}\n/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nfunc newArrayHashMap() *arrayHashMap {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nbuckets := make([]*pair, 100)\nreturn &arrayHashMap{buckets: buckets}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (a *arrayHashMap) hashFunc(key int) int {\nindex := key % 100\nreturn index\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (a *arrayHashMap) get(key int) string {\nindex := a.hashFunc(key)\npair := a.buckets[index]\nif pair == nil {\nreturn \"Not Found\"\n}\nreturn pair.val\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (a *arrayHashMap) put(key int, val string) {\npair := &pair{key: key, val: val}\nindex := a.hashFunc(key)\na.buckets[index] = pair\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (a *arrayHashMap) remove(key int) {\nindex := a.hashFunc(key)\n// \u7f6e\u4e3a nil \uff0c\u4ee3\u8868\u5220\u9664\na.buckets[index] = nil\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u5bf9 */\nfunc (a *arrayHashMap) pairSet() []*pair {\nvar pairs []*pair\nfor _, pair := range a.buckets {\nif pair != nil {\npairs = append(pairs, pair)\n}\n}\nreturn pairs\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\nfunc (a *arrayHashMap) keySet() []int {\nvar keys []int\nfor _, pair := range a.buckets {\nif pair != nil {\nkeys = append(keys, pair.key)\n}\n}\nreturn keys\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\nfunc (a *arrayHashMap) valueSet() []string {\nvar values []string\nfor _, pair := range a.buckets {\nif pair != nil {\nvalues = append(values, pair.val)\n}\n}\nreturn values\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (a *arrayHashMap) print() {\nfor _, pair := range a.buckets {\nif pair != nil {\nfmt.Println(pair.key, \"->\", pair.val)\n}\n}\n}\n
            array_hash_map.js
            /* \u952e\u503c\u5bf9 Number -> String */\nclass Pair {\nconstructor(key, val) {\nthis.key = key;\nthis.val = val;\n}\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n#buckets;\nconstructor() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nthis.#buckets = new Array(100).fill(null);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\n#hashFunc(key) {\nreturn key % 100;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nget(key) {\nlet index = this.#hashFunc(key);\nlet pair = this.#buckets[index];\nif (pair === null) return null;\nreturn pair.val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nset(key, val) {\nlet index = this.#hashFunc(key);\nthis.#buckets[index] = new Pair(key, val);\n}\n/* \u5220\u9664\u64cd\u4f5c */\ndelete(key) {\nlet index = this.#hashFunc(key);\n// \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\nthis.#buckets[index] = null;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\nentries() {\nlet arr = [];\nfor (let i = 0; i < this.#buckets.length; i++) {\nif (this.#buckets[i]) {\narr.push(this.#buckets[i]);\n}\n}\nreturn arr;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\nkeys() {\nlet arr = [];\nfor (let i = 0; i < this.#buckets.length; i++) {\nif (this.#buckets[i]) {\narr.push(this.#buckets[i].key);\n}\n}\nreturn arr;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\nvalues() {\nlet arr = [];\nfor (let i = 0; i < this.#buckets.length; i++) {\nif (this.#buckets[i]) {\narr.push(this.#buckets[i].val);\n}\n}\nreturn arr;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nprint() {\nlet pairSet = this.entries();\nfor (const pair of pairSet) {\nif (!pair) continue;\nconsole.info(`${pair.key} -> ${pair.val}`);\n}\n}\n}\n
            array_hash_map.ts
            /* \u952e\u503c\u5bf9 Number -> String */\nclass Pair {\npublic key: number;\npublic val: string;\nconstructor(key: number, val: string) {\nthis.key = key;\nthis.val = val;\n}\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nprivate readonly buckets: (Pair | null)[];\nconstructor() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nthis.buckets = new Array(100).fill(null);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate hashFunc(key: number): number {\nreturn key % 100;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic get(key: number): string | null {\nlet index = this.hashFunc(key);\nlet pair = this.buckets[index];\nif (pair === null) return null;\nreturn pair.val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic set(key: number, val: string) {\nlet index = this.hashFunc(key);\nthis.buckets[index] = new Pair(key, val);\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic delete(key: number) {\nlet index = this.hashFunc(key);\n// \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\nthis.buckets[index] = null;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\npublic entries(): (Pair | null)[] {\nlet arr: (Pair | null)[] = [];\nfor (let i = 0; i < this.buckets.length; i++) {\nif (this.buckets[i]) {\narr.push(this.buckets[i]);\n}\n}\nreturn arr;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\npublic keys(): (number | undefined)[] {\nlet arr: (number | undefined)[] = [];\nfor (let i = 0; i < this.buckets.length; i++) {\nif (this.buckets[i]) {\narr.push(this.buckets[i].key);\n}\n}\nreturn arr;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\npublic values(): (string | undefined)[] {\nlet arr: (string | undefined)[] = [];\nfor (let i = 0; i < this.buckets.length; i++) {\nif (this.buckets[i]) {\narr.push(this.buckets[i].val);\n}\n}\nreturn arr;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic print() {\nlet pairSet = this.entries();\nfor (const pair of pairSet) {\nif (!pair) continue;\nconsole.info(`${pair.key} -> ${pair.val}`);\n}\n}\n}\n
            array_hash_map.c
            /* \u952e\u503c\u5bf9 int->string */\nstruct pair {\nint key;\nchar *val;\n};\ntypedef struct pair pair;\n[class]{arrayHashMap}-[func]{}\n
            array_hash_map.cs
            /* \u952e\u503c\u5bf9 int->string */\nclass Pair {\npublic int key;\npublic string val;\npublic Pair(int key, string val) {\nthis.key = key;\nthis.val = val;\n}\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nprivate List<Pair?> buckets;\npublic ArrayHashMap() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nbuckets = new();\nfor (int i = 0; i < 100; i++) {\nbuckets.Add(null);\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate int hashFunc(int key) {\nint index = key % 100;\nreturn index;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic string? get(int key) {\nint index = hashFunc(key);\nPair? pair = buckets[index];\nif (pair == null) return null;\nreturn pair.val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic void put(int key, string val) {\nPair pair = new Pair(key, val);\nint index = hashFunc(key);\nbuckets[index] = pair;\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic void remove(int key) {\nint index = hashFunc(key);\n// \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\nbuckets[index] = null;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\npublic List<Pair> pairSet() {\nList<Pair> pairSet = new();\nforeach (Pair? pair in buckets) {\nif (pair != null)\npairSet.Add(pair);\n}\nreturn pairSet;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\npublic List<int> keySet() {\nList<int> keySet = new();\nforeach (Pair? pair in buckets) {\nif (pair != null)\nkeySet.Add(pair.key);\n}\nreturn keySet;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\npublic List<string> valueSet() {\nList<string> valueSet = new();\nforeach (Pair? pair in buckets) {\nif (pair != null)\nvalueSet.Add(pair.val);\n}\nreturn valueSet;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic void print() {\nforeach (Pair kv in pairSet()) {\nConsole.WriteLine(kv.key + \" -> \" + kv.val);\n}\n}\n}\n
            array_hash_map.swift
            /* \u952e\u503c\u5bf9 */\nclass Pair {\nvar key: Int\nvar val: String\ninit(key: Int, val: String) {\nself.key = key\nself.val = val\n}\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nprivate var buckets: [Pair?] = []\ninit() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nfor _ in 0 ..< 100 {\nbuckets.append(nil)\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate func hashFunc(key: Int) -> Int {\nlet index = key % 100\nreturn index\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc get(key: Int) -> String? {\nlet index = hashFunc(key: key)\nlet pair = buckets[index]\nreturn pair?.val\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc put(key: Int, val: String) {\nlet pair = Pair(key: key, val: val)\nlet index = hashFunc(key: key)\nbuckets[index] = pair\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc remove(key: Int) {\nlet index = hashFunc(key: key)\n// \u7f6e\u4e3a nil \uff0c\u4ee3\u8868\u5220\u9664\nbuckets[index] = nil\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\nfunc pairSet() -> [Pair] {\nvar pairSet: [Pair] = []\nfor pair in buckets {\nif let pair = pair {\npairSet.append(pair)\n}\n}\nreturn pairSet\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\nfunc keySet() -> [Int] {\nvar keySet: [Int] = []\nfor pair in buckets {\nif let pair = pair {\nkeySet.append(pair.key)\n}\n}\nreturn keySet\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\nfunc valueSet() -> [String] {\nvar valueSet: [String] = []\nfor pair in buckets {\nif let pair = pair {\nvalueSet.append(pair.val)\n}\n}\nreturn valueSet\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc print() {\nfor pair in pairSet() {\nSwift.print(\"\\(pair.key) -> \\(pair.val)\")\n}\n}\n}\n
            array_hash_map.zig
            // \u952e\u503c\u5bf9\nconst Pair = struct {\nkey: usize = undefined,\nval: []const u8 = undefined,\npub fn init(key: usize, val: []const u8) Pair {\nreturn Pair {\n.key = key,\n.val = val,\n};\n}\n};\n// \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868\nfn ArrayHashMap(comptime T: type) type {\nreturn struct {\nbucket: ?std.ArrayList(?T) = null,\nmem_allocator: std.mem.Allocator = undefined,\nconst Self = @This();\n// \u6784\u9020\u51fd\u6570\npub fn init(self: *Self, allocator: std.mem.Allocator) !void {\nself.mem_allocator = allocator;\n// \u521d\u59cb\u5316\u4e00\u4e2a\u957f\u5ea6\u4e3a 100 \u7684\u6876\uff08\u6570\u7ec4\uff09\nself.bucket = std.ArrayList(?T).init(self.mem_allocator);\nvar i: i32 = 0;\nwhile (i < 100) : (i += 1) {\ntry self.bucket.?.append(null);\n}\n}\n// \u6790\u6784\u51fd\u6570\npub fn deinit(self: *Self) void {\nif (self.bucket != null) self.bucket.?.deinit();\n}\n// \u54c8\u5e0c\u51fd\u6570\nfn hashFunc(key: usize) usize {\nvar index = key % 100;\nreturn index;\n}\n// \u67e5\u8be2\u64cd\u4f5c\npub fn get(self: *Self, key: usize) []const u8 {\nvar index = hashFunc(key);\nvar pair = self.bucket.?.items[index];\nreturn pair.?.val;\n}\n// \u6dfb\u52a0\u64cd\u4f5c\npub fn put(self: *Self, key: usize, val: []const u8) !void {\nvar pair = Pair.init(key, val);\nvar index = hashFunc(key);\nself.bucket.?.items[index] = pair;\n}\n// \u5220\u9664\u64cd\u4f5c\npub fn remove(self: *Self, key: usize) !void {\nvar index = hashFunc(key);\n// \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\nself.bucket.?.items[index] = null;\n}       // \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9\npub fn pairSet(self: *Self) !std.ArrayList(T) {\nvar entry_set = std.ArrayList(T).init(self.mem_allocator);\nfor (self.bucket.?.items) |item| {\nif (item == null) continue;\ntry entry_set.append(item.?);\n}\nreturn entry_set;\n}  // \u83b7\u53d6\u6240\u6709\u952e\npub fn keySet(self: *Self) !std.ArrayList(usize) {\nvar key_set = std.ArrayList(usize).init(self.mem_allocator);\nfor (self.bucket.?.items) |item| {\nif (item == null) continue;\ntry key_set.append(item.?.key);\n}\nreturn key_set;\n}  // \u83b7\u53d6\u6240\u6709\u503c\npub fn valueSet(self: *Self) !std.ArrayList([]const u8) {\nvar value_set = std.ArrayList([]const u8).init(self.mem_allocator);\nfor (self.bucket.?.items) |item| {\nif (item == null) continue;\ntry value_set.append(item.?.val);\n}\nreturn value_set;\n}\n// \u6253\u5370\u54c8\u5e0c\u8868\npub fn print(self: *Self) !void {\nvar entry_set = try self.pairSet();\ndefer entry_set.deinit();\nfor (entry_set.items) |item| {\nstd.debug.print(\"{} -> {s}\\n\", .{item.key, item.val});\n}\n}\n};\n}\n
            array_hash_map.dart
            /* \u952e\u503c\u5bf9 */\nclass Pair {\nint key;\nString val;\nPair(this.key, this.val);\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nlate List<Pair?> _buckets;\nArrayHashMap() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n_buckets = List.filled(100, null);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint _hashFunc(int key) {\nfinal int index = key % 100;\nreturn index;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nString? get(int key) {\nfinal int index = _hashFunc(key);\nfinal Pair? pair = _buckets[index];\nif (pair == null) {\nreturn null;\n}\nreturn pair.val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, String val) {\nfinal Pair pair = Pair(key, val);\nfinal int index = _hashFunc(key);\n_buckets[index] = pair;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nfinal int index = _hashFunc(key);\n_buckets[index] = null;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\nList<Pair> pairSet() {\nList<Pair> pairSet = [];\nfor (final Pair? pair in _buckets) {\nif (pair != null) {\npairSet.add(pair);\n}\n}\nreturn pairSet;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\nList<int> keySet() {\nList<int> keySet = [];\nfor (final Pair? pair in _buckets) {\nif (pair != null) {\nkeySet.add(pair.key);\n}\n}\nreturn keySet;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\nList<String> values() {\nList<String> valueSet = [];\nfor (final Pair? pair in _buckets) {\nif (pair != null) {\nvalueSet.add(pair.val);\n}\n}\nreturn valueSet;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid printHashMap() {\nfor (final Pair kv in pairSet()) {\nprint(\"${kv.key} -> ${kv.val}\");\n}\n}\n}\n
            array_hash_map.rs
            /* \u952e\u503c\u5bf9 */\npub struct Pair {\npub key: i32,\npub val: String,\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\npub struct ArrayHashMap {\nbuckets: Vec<Option<Pair>>\n}\nimpl ArrayHashMap {\npub fn new() -> ArrayHashMap {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nSelf { buckets: vec![None; 100] }\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfn hash_func(&self, key: i32) -> usize {\nkey as usize % 100\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npub fn get(&self, key: i32) -> Option<&String> {\nlet index = self.hash_func(key);\nself.buckets[index].as_ref().map(|pair| &pair.val)\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npub fn put(&mut self, key: i32, val: &str) {\nlet index = self.hash_func(key);\nself.buckets[index] = Some(Pair {\nkey,\nval: val.to_string(),\n});\n}\n/* \u5220\u9664\u64cd\u4f5c */\npub fn remove(&mut self, key: i32) {\nlet index = self.hash_func(key);\n// \u7f6e\u4e3a None \uff0c\u4ee3\u8868\u5220\u9664\nself.buckets[index] = None;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\npub fn entry_set(&self) -> Vec<&Pair> {\nself.buckets.iter().filter_map(|pair| pair.as_ref()).collect()\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\npub fn key_set(&self) -> Vec<&i32> {\nself.buckets.iter().filter_map(|pair| pair.as_ref().map(|pair| &pair.key)).collect()\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\npub fn value_set(&self) -> Vec<&String> {\nself.buckets.iter().filter_map(|pair| pair.as_ref().map(|pair| &pair.val)).collect()\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npub fn print(&self) {\nfor pair in self.entry_set() {\nprintln!(\"{} -> {}\", pair.key, pair.val);\n}\n}\n}\n
            "},{"location":"chapter_hashing/hash_map/#613","title":"6.1.3 \u00a0 \u54c8\u5e0c\u51b2\u7a81\u4e0e\u6269\u5bb9","text":"

            \u672c\u8d28\u4e0a\u770b\uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u4f5c\u7528\u662f\u5c06\u6240\u6709 key \u6784\u6210\u7684\u8f93\u5165\u7a7a\u95f4\u6620\u5c04\u5230\u6570\u7ec4\u6240\u6709\u7d22\u5f15\u6784\u6210\u7684\u8f93\u51fa\u7a7a\u95f4\uff0c\u800c\u8f93\u5165\u7a7a\u95f4\u5f80\u5f80\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u7406\u8bba\u4e0a\u4e00\u5b9a\u5b58\u5728\u201c\u591a\u4e2a\u8f93\u5165\u5bf9\u5e94\u76f8\u540c\u8f93\u51fa\u201d\u7684\u60c5\u51b5\u3002

            \u5bf9\u4e8e\u4e0a\u8ff0\u793a\u4f8b\u4e2d\u7684\u54c8\u5e0c\u51fd\u6570\uff0c\u5f53\u8f93\u5165\u7684 key \u540e\u4e24\u4f4d\u76f8\u540c\u65f6\uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u8f93\u51fa\u7ed3\u679c\u4e5f\u76f8\u540c\u3002\u4f8b\u5982\uff0c\u67e5\u8be2\u5b66\u53f7\u4e3a 12836 \u548c 20336 \u7684\u4e24\u4e2a\u5b66\u751f\u65f6\uff0c\u6211\u4eec\u5f97\u5230\uff1a

            12836 % 100 = 36\n20336 % 100 = 36\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u4e24\u4e2a\u5b66\u53f7\u6307\u5411\u4e86\u540c\u4e00\u4e2a\u59d3\u540d\uff0c\u8fd9\u663e\u7136\u662f\u4e0d\u5bf9\u7684\u3002\u6211\u4eec\u5c06\u8fd9\u79cd\u591a\u4e2a\u8f93\u5165\u5bf9\u5e94\u540c\u4e00\u8f93\u51fa\u7684\u60c5\u51b5\u79f0\u4e3a\u300c\u54c8\u5e0c\u51b2\u7a81 Hash Collision\u300d\u3002

            \u56fe\uff1a\u54c8\u5e0c\u51b2\u7a81\u793a\u4f8b

            \u5bb9\u6613\u60f3\u5230\uff0c\u54c8\u5e0c\u8868\u5bb9\u91cf \\(n\\) \u8d8a\u5927\uff0c\u591a\u4e2a key \u88ab\u5206\u914d\u5230\u540c\u4e00\u4e2a\u6876\u4e2d\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\uff0c\u51b2\u7a81\u5c31\u8d8a\u5c11\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6269\u5bb9\u54c8\u5e0c\u8868\u6765\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u6269\u5bb9\u524d\u952e\u503c\u5bf9 (136, A) \u548c (236, D) \u53d1\u751f\u51b2\u7a81\uff0c\u6269\u5bb9\u540e\u51b2\u7a81\u6d88\u5931\u3002

            \u56fe\uff1a\u54c8\u5e0c\u8868\u6269\u5bb9

            \u7c7b\u4f3c\u4e8e\u6570\u7ec4\u6269\u5bb9\uff0c\u54c8\u5e0c\u8868\u6269\u5bb9\u9700\u5c06\u6240\u6709\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u8fc1\u79fb\u81f3\u65b0\u54c8\u5e0c\u8868\uff0c\u975e\u5e38\u8017\u65f6\u3002\u5e76\u4e14\u7531\u4e8e\u54c8\u5e0c\u8868\u5bb9\u91cf capacity \u6539\u53d8\uff0c\u6211\u4eec\u9700\u8981\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u6765\u91cd\u65b0\u8ba1\u7b97\u6240\u6709\u952e\u503c\u5bf9\u7684\u5b58\u50a8\u4f4d\u7f6e\uff0c\u8fd9\u8fdb\u4e00\u6b65\u63d0\u9ad8\u4e86\u6269\u5bb9\u8fc7\u7a0b\u7684\u8ba1\u7b97\u5f00\u9500\u3002\u4e3a\u6b64\uff0c\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u9884\u7559\u8db3\u591f\u5927\u7684\u54c8\u5e0c\u8868\u5bb9\u91cf\uff0c\u9632\u6b62\u9891\u7e41\u6269\u5bb9\u3002

            \u300c\u8d1f\u8f7d\u56e0\u5b50 Load Factor\u300d\u662f\u54c8\u5e0c\u8868\u7684\u4e00\u4e2a\u91cd\u8981\u6982\u5ff5\uff0c\u5176\u5b9a\u4e49\u4e3a\u54c8\u5e0c\u8868\u7684\u5143\u7d20\u6570\u91cf\u9664\u4ee5\u6876\u6570\u91cf\uff0c\u7528\u4e8e\u8861\u91cf\u54c8\u5e0c\u51b2\u7a81\u7684\u4e25\u91cd\u7a0b\u5ea6\uff0c\u4e5f\u5e38\u88ab\u4f5c\u4e3a\u54c8\u5e0c\u8868\u6269\u5bb9\u7684\u89e6\u53d1\u6761\u4ef6\u3002\u4f8b\u5982\u5728 Java \u4e2d\uff0c\u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7 \\(0.75\\) \u65f6\uff0c\u7cfb\u7edf\u4f1a\u5c06\u54c8\u5e0c\u8868\u5bb9\u91cf\u6269\u5c55\u4e3a\u539f\u5148\u7684 \\(2\\) \u500d\u3002

            "},{"location":"chapter_hashing/summary/","title":"6.4 \u00a0 \u5c0f\u7ed3","text":"
            • \u8f93\u5165 key \uff0c\u54c8\u5e0c\u8868\u80fd\u591f\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u67e5\u8be2\u5230 value \uff0c\u6548\u7387\u975e\u5e38\u9ad8\u3002
            • \u5e38\u89c1\u7684\u54c8\u5e0c\u8868\u64cd\u4f5c\u5305\u62ec\u67e5\u8be2\u3001\u6dfb\u52a0\u952e\u503c\u5bf9\u3001\u5220\u9664\u952e\u503c\u5bf9\u548c\u904d\u5386\u54c8\u5e0c\u8868\u7b49\u3002
            • \u54c8\u5e0c\u51fd\u6570\u5c06 key \u6620\u5c04\u4e3a\u6570\u7ec4\u7d22\u5f15\uff0c\u4ece\u800c\u8bbf\u95ee\u5bf9\u5e94\u6876\u5e76\u83b7\u53d6 value \u3002
            • \u4e24\u4e2a\u4e0d\u540c\u7684 key \u53ef\u80fd\u5728\u7ecf\u8fc7\u54c8\u5e0c\u51fd\u6570\u540e\u5f97\u5230\u76f8\u540c\u7684\u6570\u7ec4\u7d22\u5f15\uff0c\u5bfc\u81f4\u67e5\u8be2\u7ed3\u679c\u51fa\u9519\uff0c\u8fd9\u79cd\u73b0\u8c61\u88ab\u79f0\u4e3a\u54c8\u5e0c\u51b2\u7a81\u3002
            • \u54c8\u5e0c\u8868\u5bb9\u91cf\u8d8a\u5927\uff0c\u54c8\u5e0c\u51b2\u7a81\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\u3002\u56e0\u6b64\u53ef\u4ee5\u901a\u8fc7\u6269\u5bb9\u54c8\u5e0c\u8868\u6765\u7f13\u89e3\u54c8\u5e0c\u51b2\u7a81\u3002\u4e0e\u6570\u7ec4\u6269\u5bb9\u7c7b\u4f3c\uff0c\u54c8\u5e0c\u8868\u6269\u5bb9\u64cd\u4f5c\u7684\u5f00\u9500\u5f88\u5927\u3002
            • \u8d1f\u8f7d\u56e0\u5b50\u5b9a\u4e49\u4e3a\u54c8\u5e0c\u8868\u4e2d\u5143\u7d20\u6570\u91cf\u9664\u4ee5\u6876\u6570\u91cf\uff0c\u53cd\u6620\u4e86\u54c8\u5e0c\u51b2\u7a81\u7684\u4e25\u91cd\u7a0b\u5ea6\uff0c\u5e38\u7528\u4f5c\u89e6\u53d1\u54c8\u5e0c\u8868\u6269\u5bb9\u7684\u6761\u4ef6\u3002
            • \u94fe\u5f0f\u5730\u5740\u901a\u8fc7\u5c06\u5355\u4e2a\u5143\u7d20\u8f6c\u5316\u4e3a\u94fe\u8868\uff0c\u5c06\u6240\u6709\u51b2\u7a81\u5143\u7d20\u5b58\u50a8\u5728\u540c\u4e00\u4e2a\u94fe\u8868\u4e2d\u3002\u7136\u800c\uff0c\u94fe\u8868\u8fc7\u957f\u4f1a\u964d\u4f4e\u67e5\u8be2\u6548\u7387\uff0c\u53ef\u4ee5\u8fdb\u4e00\u6b65\u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u6765\u63d0\u9ad8\u6548\u7387\u3002
            • \u5f00\u653e\u5bfb\u5740\u901a\u8fc7\u591a\u6b21\u63a2\u6d4b\u6765\u5904\u7406\u54c8\u5e0c\u51b2\u7a81\u3002\u7ebf\u6027\u63a2\u6d4b\u4f7f\u7528\u56fa\u5b9a\u6b65\u957f\uff0c\u7f3a\u70b9\u662f\u4e0d\u80fd\u5220\u9664\u5143\u7d20\uff0c\u4e14\u5bb9\u6613\u4ea7\u751f\u805a\u96c6\u3002\u591a\u6b21\u54c8\u5e0c\u4f7f\u7528\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u8fdb\u884c\u63a2\u6d4b\uff0c\u76f8\u8f83\u7ebf\u6027\u63a2\u6d4b\u66f4\u4e0d\u6613\u4ea7\u751f\u805a\u96c6\uff0c\u4f46\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u589e\u52a0\u4e86\u8ba1\u7b97\u91cf\u3002
            • \u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u91c7\u53d6\u4e86\u4e0d\u540c\u7684\u54c8\u5e0c\u8868\u5b9e\u73b0\u3002\u4f8b\u5982\uff0cJava \u7684 HashMap \u4f7f\u7528\u94fe\u5f0f\u5730\u5740\uff0c\u800c Python \u7684 Dict \u91c7\u7528\u5f00\u653e\u5bfb\u5740\u3002
            • \u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u6211\u4eec\u5e0c\u671b\u54c8\u5e0c\u7b97\u6cd5\u5177\u6709\u786e\u5b9a\u6027\u3001\u9ad8\u6548\u7387\u548c\u5747\u5300\u5206\u5e03\u7684\u7279\u70b9\u3002\u5728\u5bc6\u7801\u5b66\u4e2d\uff0c\u54c8\u5e0c\u7b97\u6cd5\u8fd8\u5e94\u8be5\u5177\u5907\u6297\u78b0\u649e\u6027\u548c\u96ea\u5d29\u6548\u5e94\u3002
            • \u54c8\u5e0c\u7b97\u6cd5\u901a\u5e38\u91c7\u7528\u5927\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\uff0c\u4ee5\u6700\u5927\u5316\u5730\u4fdd\u8bc1\u54c8\u5e0c\u503c\u7684\u5747\u5300\u5206\u5e03\uff0c\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u3002
            • \u5e38\u89c1\u7684\u54c8\u5e0c\u7b97\u6cd5\u5305\u62ec MD5, SHA-1, SHA-2, SHA3 \u7b49\u3002MD5 \u5e38\u7528\u4e8e\u6821\u9a8c\u6587\u4ef6\u5b8c\u6574\u6027\uff0cSHA-2 \u5e38\u7528\u4e8e\u5b89\u5168\u5e94\u7528\u4e0e\u534f\u8bae\u3002
            • \u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u4e3a\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u7b97\u6cd5\uff0c\u7528\u4e8e\u8ba1\u7b97\u54c8\u5e0c\u8868\u4e2d\u7684\u6876\u7d22\u5f15\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u53ea\u6709\u4e0d\u53ef\u53d8\u5bf9\u8c61\u662f\u53ef\u54c8\u5e0c\u7684\u3002
            "},{"location":"chapter_hashing/summary/#641-q-a","title":"6.4.1 \u00a0 Q & A","text":"

            \u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\u4ec0\u4e48\u4e0d\u662f \\(O(n)\\) \uff1f

            \u5f53\u54c8\u5e0c\u51b2\u7a81\u6bd4\u8f83\u4e25\u91cd\u65f6\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u9000\u5316\u81f3 \\(O(n)\\) \u3002\u5f53\u54c8\u5e0c\u51fd\u6570\u8bbe\u8ba1\u7684\u6bd4\u8f83\u597d\u3001\u5bb9\u91cf\u8bbe\u7f6e\u6bd4\u8f83\u5408\u7406\u3001\u51b2\u7a81\u6bd4\u8f83\u5e73\u5747\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002\u6211\u4eec\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u5185\u7f6e\u7684\u54c8\u5e0c\u8868\u65f6\uff0c\u901a\u5e38\u8ba4\u4e3a\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002

            \u4e3a\u4ec0\u4e48\u4e0d\u4f7f\u7528\u54c8\u5e0c\u51fd\u6570 \\(f(x) = x\\) \u5462\uff1f\u8fd9\u6837\u5c31\u4e0d\u4f1a\u6709\u51b2\u7a81\u4e86

            \u5728 \\(f(x) = x\\) \u54c8\u5e0c\u51fd\u6570\u4e0b\uff0c\u6bcf\u4e2a\u5143\u7d20\u5bf9\u5e94\u552f\u4e00\u7684\u6876\u7d22\u5f15\uff0c\u8fd9\u4e0e\u6570\u7ec4\u7b49\u4ef7\u3002\u7136\u800c\uff0c\u8f93\u5165\u7a7a\u95f4\u901a\u5e38\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\uff08\u6570\u7ec4\u957f\u5ea6\uff09\uff0c\u56e0\u6b64\u54c8\u5e0c\u51fd\u6570\u7684\u6700\u540e\u4e00\u6b65\u5f80\u5f80\u662f\u5bf9\u6570\u7ec4\u957f\u5ea6\u53d6\u6a21\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u54c8\u5e0c\u8868\u7684\u76ee\u6807\u662f\u5c06\u4e00\u4e2a\u8f83\u5927\u7684\u72b6\u6001\u7a7a\u95f4\u6620\u5c04\u5230\u4e00\u4e2a\u8f83\u5c0f\u7684\u7a7a\u95f4\uff0c\u5e76\u63d0\u4f9b \\(O(1)\\) \u7684\u67e5\u8be2\u6548\u7387\u3002

            \u54c8\u5e0c\u8868\u5e95\u5c42\u5b9e\u73b0\u662f\u6570\u7ec4\u3001\u94fe\u8868\u3001\u4e8c\u53c9\u6811\uff0c\u4f46\u4e3a\u4ec0\u4e48\u6548\u7387\u53ef\u4ee5\u6bd4\u4ed6\u4eec\u66f4\u9ad8\u5462\uff1f

            \u9996\u5148\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u6548\u7387\u53d8\u9ad8\uff0c\u4f46\u7a7a\u95f4\u6548\u7387\u53d8\u4f4e\u4e86\u3002\u54c8\u5e0c\u8868\u6709\u76f8\u5f53\u4e00\u90e8\u5206\u7684\u5185\u5b58\u662f\u672a\u4f7f\u7528\u7684\uff0c

            \u5176\u6b21\uff0c\u53ea\u662f\u5728\u7279\u5b9a\u4f7f\u7528\u573a\u666f\u4e0b\u65f6\u95f4\u6548\u7387\u53d8\u9ad8\u4e86\u3002\u5982\u679c\u4e00\u4e2a\u529f\u80fd\u80fd\u591f\u5728\u76f8\u540c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e0b\u4f7f\u7528\u6570\u7ec4\u6216\u94fe\u8868\u5b9e\u73b0\uff0c\u90a3\u4e48\u901a\u5e38\u6bd4\u54c8\u5e0c\u8868\u66f4\u5feb\u3002\u8fd9\u662f\u56e0\u4e3a\u54c8\u5e0c\u51fd\u6570\u8ba1\u7b97\u9700\u8981\u5f00\u9500\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u7684\u5e38\u6570\u9879\u66f4\u5927\u3002

            \u6700\u540e\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u80fd\u53d1\u751f\u52a3\u5316\u3002\u4f8b\u5982\u5728\u94fe\u5f0f\u5730\u5740\u4e2d\uff0c\u6211\u4eec\u91c7\u53d6\u5728\u94fe\u8868\u6216\u7ea2\u9ed1\u6811\u4e2d\u6267\u884c\u67e5\u627e\u64cd\u4f5c\uff0c\u4ecd\u7136\u6709\u9000\u5316\u81f3 \\(O(n)\\) \u65f6\u95f4\u7684\u98ce\u9669\u3002

            \u591a\u6b21\u54c8\u5e0c\u6709\u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u7684\u7f3a\u9677\u5417\uff1f\u5bf9\u4e8e\u6807\u8bb0\u5df2\u5220\u9664\u7684\u7a7a\u95f4\uff0c\u8fd9\u4e2a\u7a7a\u95f4\u8fd8\u80fd\u518d\u6b21\u4f7f\u7528\u5417\uff1f

            \u591a\u6b21\u54c8\u5e0c\u662f\u5f00\u653e\u5bfb\u5740\u7684\u4e00\u79cd\uff0c\u5f00\u653e\u5bfb\u5740\u6cd5\u90fd\u6709\u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u7684\u7f3a\u9677\uff0c\u9700\u8981\u901a\u8fc7\u6807\u8bb0\u5220\u9664\u3002\u88ab\u6807\u8bb0\u4e3a\u5df2\u5220\u9664\u7684\u7a7a\u95f4\u662f\u53ef\u4ee5\u518d\u6b21\u88ab\u4f7f\u7528\u7684\u3002\u5f53\u5c06\u65b0\u5143\u7d20\u63d2\u5165\u54c8\u5e0c\u8868\uff0c\u5e76\u4e14\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u627e\u5230\u4e86\u88ab\u6807\u8bb0\u4e3a\u5df2\u5220\u9664\u7684\u4f4d\u7f6e\u65f6\uff0c\u8be5\u4f4d\u7f6e\u53ef\u4ee5\u88ab\u65b0\u7684\u5143\u7d20\u4f7f\u7528\u3002\u8fd9\u6837\u505a\u65e2\u80fd\u4fdd\u6301\u54c8\u5e0c\u8868\u7684\u63a2\u6d4b\u5e8f\u5217\u4e0d\u53d8\uff0c\u53c8\u80fd\u4fdd\u8bc1\u54c8\u5e0c\u8868\u7684\u7a7a\u95f4\u4f7f\u7528\u7387\u3002

            \u4e3a\u4ec0\u4e48\u5728\u7ebf\u6027\u63a2\u6d4b\u4e2d\uff0c\u67e5\u627e\u5143\u7d20\u7684\u65f6\u5019\u4f1a\u51fa\u73b0\u54c8\u5e0c\u51b2\u7a81\u5462\uff1f

            \u67e5\u627e\u7684\u65f6\u5019\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u627e\u5230\u5bf9\u5e94\u7684\u6876\u548c\u952e\u503c\u5bf9\uff0c\u53d1\u73b0 key \u4e0d\u5339\u914d\uff0c\u8fd9\u5c31\u4ee3\u8868\u6709\u54c8\u5e0c\u51b2\u7a81\u3002\u56e0\u6b64\uff0c\u7ebf\u6027\u63a2\u6d4b\u6cd5\u4f1a\u6839\u636e\u9884\u5148\u8bbe\u5b9a\u7684\u6b65\u957f\u4f9d\u6b21\u5411\u4e0b\u67e5\u627e\uff0c\u76f4\u81f3\u627e\u5230\u6b63\u786e\u7684\u952e\u503c\u5bf9\u6216\u65e0\u6cd5\u627e\u5230\u8df3\u51fa\u4e3a\u6b62\u3002

            \u4e3a\u4ec0\u4e48\u54c8\u5e0c\u8868\u6269\u5bb9\u80fd\u591f\u7f13\u89e3\u54c8\u5e0c\u51b2\u7a81\uff1f

            \u54c8\u5e0c\u51fd\u6570\u7684\u6700\u540e\u4e00\u6b65\u5f80\u5f80\u662f\u5bf9\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u53d6\u4f59\uff0c\u8ba9\u8f93\u51fa\u503c\u843d\u5165\u5728\u6570\u7ec4\u7d22\u5f15\u8303\u56f4\uff1b\u5728\u6269\u5bb9\u540e\uff0c\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u53d1\u751f\u53d8\u5316\uff0c\u800c key \u5bf9\u5e94\u7684\u7d22\u5f15\u4e5f\u53ef\u80fd\u53d1\u751f\u53d8\u5316\u3002\u539f\u5148\u843d\u5728\u540c\u4e00\u4e2a\u6876\u7684\u591a\u4e2a key \uff0c\u5728\u6269\u5bb9\u540e\u53ef\u80fd\u4f1a\u88ab\u5206\u914d\u5230\u591a\u4e2a\u6876\u4e2d\uff0c\u4ece\u800c\u5b9e\u73b0\u54c8\u5e0c\u51b2\u7a81\u7684\u7f13\u89e3\u3002

            "},{"location":"chapter_heap/","title":"\u7b2c 8 \u7ae0 \u00a0 \u5806","text":"

            Abstract

            \u5806\u5c31\u50cf\u662f\u5c71\u5ddd\u7684\u5cf0\u5ce6\uff0c\u5b83\u4eec\u5c42\u53e0\u8d77\u4f0f\u3001\u5f62\u6001\u5404\u5f02\u3002

            \u6bcf\u4e00\u5ea7\u5c71\u5cf0\u90fd\u6709\u5176\u9ad8\u4f4e\u4e4b\u5206\uff0c\u800c\u6700\u9ad8\u7684\u5c71\u5cf0\u603b\u662f\u6700\u5148\u6620\u5165\u773c\u5e18\u3002

            "},{"location":"chapter_heap/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 8.1 \u00a0 \u5806
            • 8.2 \u00a0 \u5efa\u5806\u64cd\u4f5c
            • 8.3 \u00a0 Top-K \u95ee\u9898
            • 8.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_heap/build_heap/","title":"8.2 \u00a0 \u5efa\u5806\u64cd\u4f5c","text":"

            \u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5e0c\u671b\u4f7f\u7528\u4e00\u4e2a\u5217\u8868\u7684\u6240\u6709\u5143\u7d20\u6765\u6784\u5efa\u4e00\u4e2a\u5806\uff0c\u8fd9\u4e2a\u8fc7\u7a0b\u88ab\u79f0\u4e3a\u300c\u5efa\u5806\u300d\u3002

            "},{"location":"chapter_heap/build_heap/#821","title":"8.2.1 \u00a0 \u501f\u52a9\u5165\u5806\u65b9\u6cd5\u5b9e\u73b0","text":"

            \u6700\u76f4\u63a5\u7684\u65b9\u6cd5\u662f\u501f\u52a9\u201c\u5143\u7d20\u5165\u5806\u64cd\u4f5c\u201d\u5b9e\u73b0\u3002\u6211\u4eec\u9996\u5148\u521b\u5efa\u4e00\u4e2a\u7a7a\u5806\uff0c\u7136\u540e\u5c06\u5217\u8868\u5143\u7d20\u4f9d\u6b21\u6267\u884c\u201c\u5165\u5806\u201d\u3002

            \u8bbe\u5143\u7d20\u6570\u91cf\u4e3a \\(n\\) \uff0c\u5165\u5806\u64cd\u4f5c\u4f7f\u7528 \\(O(\\log{n})\\) \u65f6\u95f4\uff0c\u56e0\u6b64\u5c06\u6240\u6709\u5143\u7d20\u5165\u5806\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002

            "},{"location":"chapter_heap/build_heap/#822","title":"8.2.2 \u00a0 \u57fa\u4e8e\u5806\u5316\u64cd\u4f5c\u5b9e\u73b0","text":"

            \u6709\u8da3\u7684\u662f\uff0c\u5b58\u5728\u4e00\u79cd\u66f4\u9ad8\u6548\u7684\u5efa\u5806\u65b9\u6cd5\uff0c\u5176\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230 \\(O(n)\\) \u3002\u6211\u4eec\u5148\u5c06\u5217\u8868\u6240\u6709\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u5230\u5806\u4e2d\uff0c\u7136\u540e\u5012\u5e8f\u904d\u5386\u8be5\u5806\uff0c\u4f9d\u6b21\u5bf9\u6bcf\u4e2a\u8282\u70b9\u6267\u884c\u201c\u4ece\u9876\u81f3\u5e95\u5806\u5316\u201d\u3002

            \u8bf7\u6ce8\u610f\uff0c\u56e0\u4e3a\u53f6\u8282\u70b9\u6ca1\u6709\u5b50\u8282\u70b9\uff0c\u6240\u4ee5\u65e0\u987b\u5806\u5316\u3002\u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u6211\u4eec\u4ece\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u7684\u7236\u8282\u70b9\u5f00\u59cb\u8fdb\u884c\u5806\u5316\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_heap.java
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(List<Integer> nums) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nmaxHeap = new ArrayList<>(nums);\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = parent(size() - 1); i >= 0; i--) {\nsiftDown(i);\n}\n}\n
            my_heap.cpp
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(vector<int> nums) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nmaxHeap = nums;\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = parent(size() - 1); i >= 0; i--) {\nsiftDown(i);\n}\n}\n
            my_heap.py
            def __init__(self, nums: list[int]):\n\"\"\"\u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806\"\"\"\n# \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nself.max_heap = nums\n# \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in range(self.parent(self.size() - 1), -1, -1):\nself.sift_down(i)\n
            my_heap.go
            /* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u5207\u7247\u5efa\u5806 */\nfunc newMaxHeap(nums []any) *maxHeap {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nh := &maxHeap{data: nums}\nfor i := len(h.data) - 1; i >= 0; i-- {\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nh.siftDown(i)\n}\nreturn h\n}\n
            my_heap.js
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u5efa\u7acb\u7a7a\u5806\u6216\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nconstructor(nums) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nthis.#maxHeap = nums === undefined ? [] : [...nums];\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (let i = this.#parent(this.size() - 1); i >= 0; i--) {\nthis.#siftDown(i);\n}\n}\n
            my_heap.ts
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u5efa\u7acb\u7a7a\u5806\u6216\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nconstructor(nums?: number[]) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nthis.maxHeap = nums === undefined ? [] : [...nums];\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (let i = this.parent(this.size() - 1); i >= 0; i--) {\nthis.siftDown(i);\n}\n}\n
            my_heap.c
            /* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u5207\u7247\u5efa\u5806 */\nmaxHeap *newMaxHeap(int nums[], int size) {\n// \u6240\u6709\u5143\u7d20\u5165\u5806\nmaxHeap *h = (maxHeap *)malloc(sizeof(maxHeap));\nh->size = size;\nmemcpy(h->data, nums, size * sizeof(int));\nfor (int i = size - 1; i >= 0; i--) {\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nsiftDown(h, i);\n}\nreturn h;\n}\n
            my_heap.cs
            /* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(IEnumerable<int> nums) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nmaxHeap = new List<int>(nums);\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nvar size = parent(this.size() - 1);\nfor (int i = size; i >= 0; i--) {\nsiftDown(i);\n}\n}\n
            my_heap.swift
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\ninit(nums: [Int]) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nmaxHeap = nums\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in stride(from: parent(i: size() - 1), through: 0, by: -1) {\nsiftDown(i: i)\n}\n}\n
            my_heap.zig
            // \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806\nfn init(self: *Self, allocator: std.mem.Allocator, nums: []const T) !void {\nif (self.max_heap != null) return;\nself.max_heap = std.ArrayList(T).init(allocator);\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\ntry self.max_heap.?.appendSlice(nums);\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nvar i: usize = parent(self.size() - 1) + 1;\nwhile (i > 0) : (i -= 1) {\ntry self.siftDown(i - 1);\n}\n}\n
            my_heap.dart
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(List<int> nums) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n_maxHeap = nums;\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = _parent(size() - 1); i >= 0; i--) {\nsiftDown(i);\n}\n}\n
            my_heap.rs
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nfn new(nums: Vec<i32>) -> Self {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nlet mut heap = MaxHeap { max_heap: nums };\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in (0..=Self::parent(heap.size() - 1)).rev() {\nheap.sift_down(i);\n}\nheap\n}\n
            "},{"location":"chapter_heap/build_heap/#823","title":"8.2.3 \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"

            \u4e3a\u4ec0\u4e48\u7b2c\u4e8c\u79cd\u5efa\u5806\u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(n)\\) \uff1f\u6211\u4eec\u6765\u5c55\u5f00\u63a8\u7b97\u4e00\u4e0b\u3002

            • \u5728\u5b8c\u5168\u4e8c\u53c9\u6811\u4e2d\uff0c\u8bbe\u8282\u70b9\u603b\u6570\u4e3a \\(n\\) \uff0c\u5219\u53f6\u8282\u70b9\u6570\u91cf\u4e3a \\((n + 1) / 2\\) \uff0c\u5176\u4e2d \\(/\\) \u4e3a\u5411\u4e0b\u6574\u9664\u3002\u56e0\u6b64\uff0c\u5728\u6392\u9664\u53f6\u8282\u70b9\u540e\uff0c\u9700\u8981\u5806\u5316\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\((n - 1)/2\\) \uff0c\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
            • \u5728\u4ece\u9876\u81f3\u5e95\u5806\u5316\u7684\u8fc7\u7a0b\u4e2d\uff0c\u6bcf\u4e2a\u8282\u70b9\u6700\u591a\u5806\u5316\u5230\u53f6\u8282\u70b9\uff0c\u56e0\u6b64\u6700\u5927\u8fed\u4ee3\u6b21\u6570\u4e3a\u4e8c\u53c9\u6811\u9ad8\u5ea6 \\(O(\\log n)\\) \u3002

            \u5c06\u4e0a\u8ff0\u4e24\u8005\u76f8\u4e58\uff0c\u53ef\u5f97\u5230\u5efa\u5806\u8fc7\u7a0b\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u7136\u800c\uff0c\u8fd9\u4e2a\u4f30\u7b97\u7ed3\u679c\u5e76\u4e0d\u51c6\u786e\uff0c\u56e0\u4e3a\u6211\u4eec\u6ca1\u6709\u8003\u8651\u5230\u4e8c\u53c9\u6811\u5e95\u5c42\u8282\u70b9\u6570\u91cf\u8fdc\u591a\u4e8e\u9876\u5c42\u8282\u70b9\u7684\u7279\u6027\u3002

            \u63a5\u4e0b\u6765\u6211\u4eec\u6765\u8fdb\u884c\u66f4\u4e3a\u8be6\u7ec6\u7684\u8ba1\u7b97\u3002\u4e3a\u4e86\u51cf\u5c0f\u8ba1\u7b97\u96be\u5ea6\uff0c\u6211\u4eec\u5047\u8bbe\u6811\u662f\u4e00\u4e2a\u201c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u201d\uff0c\u8be5\u5047\u8bbe\u4e0d\u4f1a\u5f71\u54cd\u8ba1\u7b97\u7ed3\u679c\u7684\u6b63\u786e\u6027\u3002\u8bbe\u4e8c\u53c9\u6811\uff08\u5373\u5806\uff09\u8282\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u6811\u9ad8\u5ea6\u4e3a \\(h\\) \u3002\u4e0a\u6587\u63d0\u5230\uff0c\u8282\u70b9\u5806\u5316\u6700\u5927\u8fed\u4ee3\u6b21\u6570\u7b49\u4e8e\u8be5\u8282\u70b9\u5230\u53f6\u8282\u70b9\u7684\u8ddd\u79bb\uff0c\u800c\u8be5\u8ddd\u79bb\u6b63\u662f\u201c\u8282\u70b9\u9ad8\u5ea6\u201d\u3002

            \u56fe\uff1a\u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u5404\u5c42\u8282\u70b9\u6570\u91cf

            \u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5404\u5c42\u7684\u201c\u8282\u70b9\u6570\u91cf \\(\\times\\) \u8282\u70b9\u9ad8\u5ea6\u201d\u6c42\u548c\uff0c\u4ece\u800c\u5f97\u5230\u6240\u6709\u8282\u70b9\u7684\u5806\u5316\u8fed\u4ee3\u6b21\u6570\u7684\u603b\u548c\u3002

            \\[ T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \\cdots + 2^{(h-1)}\\times1 \\]

            \u5316\u7b80\u4e0a\u5f0f\u9700\u8981\u501f\u52a9\u4e2d\u5b66\u7684\u6570\u5217\u77e5\u8bc6\uff0c\u5148\u5bf9 \\(T(h)\\) \u4e58\u4ee5 \\(2\\) \uff0c\u5f97\u5230

            \\[ \\begin{aligned} T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \\cdots + 2^{h-1}\\times1 \\newline 2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \\cdots + 2^{h}\\times1 \\newline \\end{aligned} \\]

            \u4f7f\u7528\u9519\u4f4d\u76f8\u51cf\u6cd5\uff0c\u7528\u4e0b\u5f0f \\(2 T(h)\\) \u51cf\u53bb\u4e0a\u5f0f \\(T(h)\\) \uff0c\u53ef\u5f97

            \\[ 2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \\cdots + 2^{h-1} + 2^h \\]

            \u89c2\u5bdf\u4e0a\u5f0f\uff0c\u53d1\u73b0 \\(T(h)\\) \u662f\u4e00\u4e2a\u7b49\u6bd4\u6570\u5217\uff0c\u53ef\u76f4\u63a5\u4f7f\u7528\u6c42\u548c\u516c\u5f0f\uff0c\u5f97\u5230\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a

            \\[ \\begin{aligned} T(h) & = 2 \\frac{1 - 2^h}{1 - 2} - h \\newline & = 2^{h+1} - h - 2 \\newline & = O(2^h) \\end{aligned} \\]

            \u8fdb\u4e00\u6b65\u5730\uff0c\u9ad8\u5ea6\u4e3a \\(h\\) \u7684\u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(n = 2^{h+1} - 1\\) \uff0c\u6613\u5f97\u590d\u6742\u5ea6\u4e3a \\(O(2^h) = O(n)\\) \u3002\u4ee5\u4e0a\u63a8\u7b97\u8868\u660e\uff0c\u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002

            "},{"location":"chapter_heap/heap/","title":"8.1 \u00a0 \u5806","text":"

            \u300c\u5806 Heap\u300d\u662f\u4e00\u79cd\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u53ef\u5206\u4e3a\u4e24\u79cd\u7c7b\u578b\uff1a

            • \u300c\u5927\u9876\u5806 Max Heap\u300d\uff0c\u4efb\u610f\u8282\u70b9\u7684\u503c \\(\\geq\\) \u5176\u5b50\u8282\u70b9\u7684\u503c\u3002
            • \u300c\u5c0f\u9876\u5806 Min Heap\u300d\uff0c\u4efb\u610f\u8282\u70b9\u7684\u503c \\(\\leq\\) \u5176\u5b50\u8282\u70b9\u7684\u503c\u3002

            \u56fe\uff1a\u5c0f\u9876\u5806\u4e0e\u5927\u9876\u5806

            \u5806\u4f5c\u4e3a\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u4e00\u4e2a\u7279\u4f8b\uff0c\u5177\u6709\u4ee5\u4e0b\u7279\u6027\uff1a

            • \u6700\u5e95\u5c42\u8282\u70b9\u9760\u5de6\u586b\u5145\uff0c\u5176\u4ed6\u5c42\u7684\u8282\u70b9\u90fd\u88ab\u586b\u6ee1\u3002
            • \u6211\u4eec\u5c06\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\u79f0\u4e3a\u300c\u5806\u9876\u300d\uff0c\u5c06\u5e95\u5c42\u6700\u9760\u53f3\u7684\u8282\u70b9\u79f0\u4e3a\u300c\u5806\u5e95\u300d\u3002
            • \u5bf9\u4e8e\u5927\u9876\u5806\uff08\u5c0f\u9876\u5806\uff09\uff0c\u5806\u9876\u5143\u7d20\uff08\u5373\u6839\u8282\u70b9\uff09\u7684\u503c\u5206\u522b\u662f\u6700\u5927\uff08\u6700\u5c0f\uff09\u7684\u3002
            "},{"location":"chapter_heap/heap/#811","title":"8.1.1 \u00a0 \u5806\u5e38\u7528\u64cd\u4f5c","text":"

            \u9700\u8981\u6307\u51fa\u7684\u662f\uff0c\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684\u662f\u300c\u4f18\u5148\u961f\u5217 Priority Queue\u300d\uff0c\u8fd9\u662f\u4e00\u79cd\u62bd\u8c61\u6570\u636e\u7ed3\u6784\uff0c\u5b9a\u4e49\u4e3a\u5177\u6709\u4f18\u5148\u7ea7\u6392\u5e8f\u7684\u961f\u5217\u3002

            \u5b9e\u9645\u4e0a\uff0c\u5806\u901a\u5e38\u7528\u4f5c\u5b9e\u73b0\u4f18\u5148\u961f\u5217\uff0c\u5927\u9876\u5806\u76f8\u5f53\u4e8e\u5143\u7d20\u6309\u4ece\u5927\u5230\u5c0f\u987a\u5e8f\u51fa\u961f\u7684\u4f18\u5148\u961f\u5217\u3002\u4ece\u4f7f\u7528\u89d2\u5ea6\u6765\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u300c\u4f18\u5148\u961f\u5217\u300d\u548c\u300c\u5806\u300d\u770b\u4f5c\u7b49\u4ef7\u7684\u6570\u636e\u7ed3\u6784\u3002\u56e0\u6b64\uff0c\u672c\u4e66\u5bf9\u4e24\u8005\u4e0d\u505a\u7279\u522b\u533a\u5206\uff0c\u7edf\u4e00\u4f7f\u7528\u300c\u5806\u300d\u6765\u547d\u540d\u3002

            \u5806\u7684\u5e38\u7528\u64cd\u4f5c\u89c1\u4e0b\u8868\uff0c\u65b9\u6cd5\u540d\u9700\u8981\u6839\u636e\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002

            \u8868\uff1a\u5806\u7684\u64cd\u4f5c\u6548\u7387

            \u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u5806 \\(O(\\log n)\\) pop() \u5806\u9876\u5143\u7d20\u51fa\u5806 \\(O(\\log n)\\) peek() \u8bbf\u95ee\u5806\u9876\u5143\u7d20\uff08\u5927 / \u5c0f\u9876\u5806\u5206\u522b\u4e3a\u6700\u5927 / \u5c0f\u503c\uff09 \\(O(1)\\) size() \u83b7\u53d6\u5806\u7684\u5143\u7d20\u6570\u91cf \\(O(1)\\) isEmpty() \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a \\(O(1)\\)

            \u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684\u5806\u7c7b\uff08\u6216\u4f18\u5148\u961f\u5217\u7c7b\uff09\u3002

            Tip

            \u7c7b\u4f3c\u4e8e\u6392\u5e8f\u7b97\u6cd5\u4e2d\u7684\u201c\u4ece\u5c0f\u5230\u5927\u6392\u5217\u201d\u548c\u201c\u4ece\u5927\u5230\u5c0f\u6392\u5217\u201d\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539 Comparator \u6765\u5b9e\u73b0\u201c\u5c0f\u9876\u5806\u201d\u4e0e\u201c\u5927\u9876\u5806\u201d\u4e4b\u95f4\u7684\u8f6c\u6362\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust heap.java
            /* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\nQueue<Integer> minHeap = new PriorityQueue<>();\n// \u521d\u59cb\u5316\u5927\u9876\u5806\uff08\u4f7f\u7528 lambda \u8868\u8fbe\u5f0f\u4fee\u6539 Comparator \u5373\u53ef\uff09\nQueue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.offer(1);\nmaxHeap.offer(3);\nmaxHeap.offer(2);\nmaxHeap.offer(5);\nmaxHeap.offer(4);\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.peek(); // 5\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\npeek = heap.poll();  // 5\npeek = heap.poll();  // 4\npeek = heap.poll();  // 3\npeek = heap.poll();  // 2\npeek = heap.poll();  // 1\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.size();\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = maxHeap.isEmpty();\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nminHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));\n
            heap.cpp
            /* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\npriority_queue<int, vector<int>, greater<int>> minHeap;\n// \u521d\u59cb\u5316\u5927\u9876\u5806\npriority_queue<int, vector<int>, less<int>> maxHeap;\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.push(1);\nmaxHeap.push(3);\nmaxHeap.push(2);\nmaxHeap.push(5);\nmaxHeap.push(4);\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.top(); // 5\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\nmaxHeap.pop(); // 5\nmaxHeap.pop(); // 4\nmaxHeap.pop(); // 3\nmaxHeap.pop(); // 2\nmaxHeap.pop(); // 1\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.size();\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = maxHeap.empty();\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nvector<int> input{1, 3, 2, 5, 4};\npriority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());\n
            heap.py
            # \u521d\u59cb\u5316\u5c0f\u9876\u5806\nmin_heap, flag = [], 1\n# \u521d\u59cb\u5316\u5927\u9876\u5806\nmax_heap, flag = [], -1\n# Python \u7684 heapq \u6a21\u5757\u9ed8\u8ba4\u5b9e\u73b0\u5c0f\u9876\u5806\n# \u8003\u8651\u5c06\u201c\u5143\u7d20\u53d6\u8d1f\u201d\u540e\u518d\u5165\u5806\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5c06\u5927\u5c0f\u5173\u7cfb\u98a0\u5012\uff0c\u4ece\u800c\u5b9e\u73b0\u5927\u9876\u5806\n# \u5728\u672c\u793a\u4f8b\u4e2d\uff0cflag = 1 \u65f6\u5bf9\u5e94\u5c0f\u9876\u5806\uff0cflag = -1 \u65f6\u5bf9\u5e94\u5927\u9876\u5806\n# \u5143\u7d20\u5165\u5806\nheapq.heappush(max_heap, flag * 1)\nheapq.heappush(max_heap, flag * 3)\nheapq.heappush(max_heap, flag * 2)\nheapq.heappush(max_heap, flag * 5)\nheapq.heappush(max_heap, flag * 4)\n# \u83b7\u53d6\u5806\u9876\u5143\u7d20\npeek: int = flag * max_heap[0] # 5\n# \u5806\u9876\u5143\u7d20\u51fa\u5806\n# \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\nval = flag * heapq.heappop(max_heap) # 5\nval = flag * heapq.heappop(max_heap) # 4\nval = flag * heapq.heappop(max_heap) # 3\nval = flag * heapq.heappop(max_heap) # 2\nval = flag * heapq.heappop(max_heap) # 1\n# \u83b7\u53d6\u5806\u5927\u5c0f\nsize: int = len(max_heap)\n# \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = not max_heap\n# \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806\nmin_heap: list[int] = [1, 3, 2, 5, 4]\nheapq.heapify(min_heap)\n
            heap.go
            // Go \u8bed\u8a00\u4e2d\u53ef\u4ee5\u901a\u8fc7\u5b9e\u73b0 heap.Interface \u6765\u6784\u5efa\u6574\u6570\u5927\u9876\u5806\n// \u5b9e\u73b0 heap.Interface \u9700\u8981\u540c\u65f6\u5b9e\u73b0 sort.Interface\ntype intHeap []any\n// Push heap.Interface \u7684\u65b9\u6cd5\uff0c\u5b9e\u73b0\u63a8\u5165\u5143\u7d20\u5230\u5806\nfunc (h *intHeap) Push(x any) {\n// Push \u548c Pop \u4f7f\u7528 pointer receiver \u4f5c\u4e3a\u53c2\u6570\n// \u56e0\u4e3a\u5b83\u4eec\u4e0d\u4ec5\u4f1a\u5bf9\u5207\u7247\u7684\u5185\u5bb9\u8fdb\u884c\u8c03\u6574\uff0c\u8fd8\u4f1a\u4fee\u6539\u5207\u7247\u7684\u957f\u5ea6\u3002\n*h = append(*h, x.(int))\n}\n// Pop heap.Interface \u7684\u65b9\u6cd5\uff0c\u5b9e\u73b0\u5f39\u51fa\u5806\u9876\u5143\u7d20\nfunc (h *intHeap) Pop() any {\n// \u5f85\u51fa\u5806\u5143\u7d20\u5b58\u653e\u5728\u6700\u540e\nlast := (*h)[len(*h)-1]\n*h = (*h)[:len(*h)-1]\nreturn last\n}\n// Len sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Len() int {\nreturn len(*h)\n}\n// Less sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Less(i, j int) bool {\n// \u5982\u679c\u5b9e\u73b0\u5c0f\u9876\u5806\uff0c\u5219\u9700\u8981\u8c03\u6574\u4e3a\u5c0f\u4e8e\u53f7\nreturn (*h)[i].(int) > (*h)[j].(int)\n}\n// Swap sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Swap(i, j int) {\n(*h)[i], (*h)[j] = (*h)[j], (*h)[i]\n}\n// Top \u83b7\u53d6\u5806\u9876\u5143\u7d20\nfunc (h *intHeap) Top() any {\nreturn (*h)[0]\n}\n/* Driver Code */\nfunc TestHeap(t *testing.T) {\n/* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5927\u9876\u5806\nmaxHeap := &intHeap{}\nheap.Init(maxHeap)\n/* \u5143\u7d20\u5165\u5806 */\n// \u8c03\u7528 heap.Interface \u7684\u65b9\u6cd5\uff0c\u6765\u6dfb\u52a0\u5143\u7d20\nheap.Push(maxHeap, 1)\nheap.Push(maxHeap, 3)\nheap.Push(maxHeap, 2)\nheap.Push(maxHeap, 4)\nheap.Push(maxHeap, 5)\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\ntop := maxHeap.Top()\nfmt.Printf(\"\u5806\u9876\u5143\u7d20\u4e3a %d\\n\", top)\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u8c03\u7528 heap.Interface \u7684\u65b9\u6cd5\uff0c\u6765\u79fb\u9664\u5143\u7d20\nheap.Pop(maxHeap) // 5\nheap.Pop(maxHeap) // 4\nheap.Pop(maxHeap) // 3\nheap.Pop(maxHeap) // 2\nheap.Pop(maxHeap) // 1\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nsize := len(*maxHeap)\nfmt.Printf(\"\u5806\u5143\u7d20\u6570\u91cf\u4e3a %d\\n\", size)\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nisEmpty := len(*maxHeap) == 0\nfmt.Printf(\"\u5806\u662f\u5426\u4e3a\u7a7a %t\\n\", isEmpty)\n}\n
            heap.js
            // JavaScript \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
            heap.ts
            // TypeScript \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
            heap.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
            heap.cs
            /* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\nPriorityQueue<int, int> minHeap = new PriorityQueue<int, int>();\n// \u521d\u59cb\u5316\u5927\u9876\u5806\uff08\u4f7f\u7528 lambda \u8868\u8fbe\u5f0f\u4fee\u6539 Comparator \u5373\u53ef\uff09\nPriorityQueue<int, int> maxHeap = new PriorityQueue<int, int>(Comparer<int>.Create((x, y) => y - x));\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.Enqueue(1, 1);\nmaxHeap.Enqueue(3, 3);\nmaxHeap.Enqueue(2, 2);\nmaxHeap.Enqueue(5, 5);\nmaxHeap.Enqueue(4, 4);\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.Peek();//5\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\npeek = maxHeap.Dequeue();  // 5\npeek = maxHeap.Dequeue();  // 4\npeek = maxHeap.Dequeue();  // 3\npeek = maxHeap.Dequeue();  // 2\npeek = maxHeap.Dequeue();  // 1\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.Count;\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = maxHeap.Count == 0;\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nminHeap = new PriorityQueue<int, int>(new List<(int, int)> { (1, 1), (3, 3), (2, 2), (5, 5), (4, 4), });\n
            heap.swift
            // Swift \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
            heap.zig
            \n
            heap.dart
            // Dart \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
            heap.rs
            \n
            "},{"location":"chapter_heap/heap/#812","title":"8.1.2 \u00a0 \u5806\u7684\u5b9e\u73b0","text":"

            \u4e0b\u6587\u5b9e\u73b0\u7684\u662f\u5927\u9876\u5806\u3002\u82e5\u8981\u5c06\u5176\u8f6c\u6362\u4e3a\u5c0f\u9876\u5806\uff0c\u53ea\u9700\u5c06\u6240\u6709\u5927\u5c0f\u903b\u8f91\u5224\u65ad\u53d6\u9006\uff08\u4f8b\u5982\uff0c\u5c06 \\(\\geq\\) \u66ff\u6362\u4e3a \\(\\leq\\) \uff09\u3002\u611f\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u3002

            "},{"location":"chapter_heap/heap/#1","title":"1. \u00a0 \u5806\u7684\u5b58\u50a8\u4e0e\u8868\u793a","text":"

            \u6211\u4eec\u5728\u4e8c\u53c9\u6811\u7ae0\u8282\u4e2d\u5b66\u4e60\u5230\uff0c\u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u7528\u6570\u7ec4\u6765\u8868\u793a\u3002\u7531\u4e8e\u5806\u6b63\u662f\u4e00\u79cd\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u6211\u4eec\u5c06\u91c7\u7528\u6570\u7ec4\u6765\u5b58\u50a8\u5806\u3002

            \u5f53\u4f7f\u7528\u6570\u7ec4\u8868\u793a\u4e8c\u53c9\u6811\u65f6\uff0c\u5143\u7d20\u4ee3\u8868\u8282\u70b9\u503c\uff0c\u7d22\u5f15\u4ee3\u8868\u8282\u70b9\u5728\u4e8c\u53c9\u6811\u4e2d\u7684\u4f4d\u7f6e\u3002\u8282\u70b9\u6307\u9488\u901a\u8fc7\u7d22\u5f15\u6620\u5c04\u516c\u5f0f\u6765\u5b9e\u73b0\u3002

            \u5177\u4f53\u800c\u8a00\uff0c\u7ed9\u5b9a\u7d22\u5f15 \\(i\\) \uff0c\u5176\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 1\\) \uff0c\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 2\\) \uff0c\u7236\u8282\u70b9\u7d22\u5f15\u4e3a \\((i - 1) / 2\\)\uff08\u5411\u4e0b\u53d6\u6574\uff09\u3002\u5f53\u7d22\u5f15\u8d8a\u754c\u65f6\uff0c\u8868\u793a\u7a7a\u8282\u70b9\u6216\u8282\u70b9\u4e0d\u5b58\u5728\u3002

            \u56fe\uff1a\u5806\u7684\u8868\u793a\u4e0e\u5b58\u50a8

            \u6211\u4eec\u53ef\u4ee5\u5c06\u7d22\u5f15\u6620\u5c04\u516c\u5f0f\u5c01\u88c5\u6210\u51fd\u6570\uff0c\u65b9\u4fbf\u540e\u7eed\u4f7f\u7528\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_heap.java
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(int i) {\nreturn (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.cpp
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(int i) {\nreturn (i - 1) / 2; // \u5411\u4e0b\u53d6\u6574\n}\n
            my_heap.py
            def left(self, i: int) -> int:\n\"\"\"\u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\"\"\"\nreturn 2 * i + 1\ndef right(self, i: int) -> int:\n\"\"\"\u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\"\"\"\nreturn 2 * i + 2\ndef parent(self, i: int) -> int:\n\"\"\"\u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15\"\"\"\nreturn (i - 1) // 2  # \u5411\u4e0b\u6574\u9664\n
            my_heap.go
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc (h *maxHeap) left(i int) int {\nreturn 2*i + 1\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc (h *maxHeap) right(i int) int {\nreturn 2*i + 2\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nfunc (h *maxHeap) parent(i int) int {\n// \u5411\u4e0b\u6574\u9664\nreturn (i - 1) / 2\n}\n
            my_heap.js
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\n#left(i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\n#right(i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\n#parent(i) {\nreturn Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.ts
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nleft(i: number): number {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nright(i: number): number {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nparent(i: number): number {\nreturn Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.c
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(maxHeap *h, int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(maxHeap *h, int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(maxHeap *h, int i) {\nreturn (i - 1) / 2;\n}\n
            my_heap.cs
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(int i) {\nreturn (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.swift
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc left(i: Int) -> Int {\n2 * i + 1\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc right(i: Int) -> Int {\n2 * i + 2\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nfunc parent(i: Int) -> Int {\n(i - 1) / 2 // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.zig
            // \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\nfn left(i: usize) usize {\nreturn 2 * i + 1;\n}\n// \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\nfn right(i: usize) usize {\nreturn 2 * i + 2;\n}\n// \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15\nfn parent(i: usize) usize {\n// return (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\nreturn @divFloor(i - 1, 2);\n}\n
            my_heap.dart
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint _left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint _right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint _parent(int i) {\nreturn (i - 1) ~/ 2; // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.rs
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nfn left(i: usize) -> usize {\n2 * i + 1\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nfn right(i: usize) -> usize {\n2 * i + 2\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nfn parent(i: usize) -> usize {\n(i - 1) / 2 // \u5411\u4e0b\u6574\u9664\n}\n
            "},{"location":"chapter_heap/heap/#2","title":"2. \u00a0 \u8bbf\u95ee\u5806\u9876\u5143\u7d20","text":"

            \u5806\u9876\u5143\u7d20\u5373\u4e3a\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\uff0c\u4e5f\u5c31\u662f\u5217\u8868\u7684\u9996\u4e2a\u5143\u7d20\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_heap.java
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\nreturn maxHeap.get(0);\n}\n
            my_heap.cpp
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\nreturn maxHeap[0];\n}\n
            my_heap.py
            def peek(self) -> int:\n\"\"\"\u8bbf\u95ee\u5806\u9876\u5143\u7d20\"\"\"\nreturn self.max_heap[0]\n
            my_heap.go
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunc (h *maxHeap) peek() any {\nreturn h.data[0]\n}\n
            my_heap.js
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\npeek() {\nreturn this.#maxHeap[0];\n}\n
            my_heap.ts
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\npeek(): number {\nreturn this.maxHeap[0];\n}\n
            my_heap.c
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek(maxHeap *h) {\nreturn h->data[0];\n}\n
            my_heap.cs
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\nreturn maxHeap[0];\n}\n
            my_heap.swift
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunc peek() -> Int {\nmaxHeap[0]\n}\n
            my_heap.zig
            // \u8bbf\u95ee\u5806\u9876\u5143\u7d20\nfn peek(self: *Self) T {\nreturn self.max_heap.?.items[0];\n}  
            my_heap.dart
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\nreturn _maxHeap[0];\n}\n
            my_heap.rs
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfn peek(&self) -> Option<i32> {\nself.max_heap.first().copied()\n}\n
            "},{"location":"chapter_heap/heap/#3","title":"3. \u00a0 \u5143\u7d20\u5165\u5806","text":"

            \u7ed9\u5b9a\u5143\u7d20 val \uff0c\u6211\u4eec\u9996\u5148\u5c06\u5176\u6dfb\u52a0\u5230\u5806\u5e95\u3002\u6dfb\u52a0\u4e4b\u540e\uff0c\u7531\u4e8e val \u53ef\u80fd\u5927\u4e8e\u5806\u4e2d\u5176\u4ed6\u5143\u7d20\uff0c\u5806\u7684\u6210\u7acb\u6761\u4ef6\u53ef\u80fd\u5df2\u88ab\u7834\u574f\u3002\u56e0\u6b64\uff0c\u9700\u8981\u4fee\u590d\u4ece\u63d2\u5165\u8282\u70b9\u5230\u6839\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u7684\u5404\u4e2a\u8282\u70b9\uff0c\u8fd9\u4e2a\u64cd\u4f5c\u88ab\u79f0\u4e3a\u300c\u5806\u5316 Heapify\u300d\u3002

            \u8003\u8651\u4ece\u5165\u5806\u8282\u70b9\u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u6267\u884c\u5806\u5316\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u6211\u4eec\u6bd4\u8f83\u63d2\u5165\u8282\u70b9\u4e0e\u5176\u7236\u8282\u70b9\u7684\u503c\uff0c\u5982\u679c\u63d2\u5165\u8282\u70b9\u66f4\u5927\uff0c\u5219\u5c06\u5b83\u4eec\u4ea4\u6362\u3002\u7136\u540e\u7ee7\u7eed\u6267\u884c\u6b64\u64cd\u4f5c\uff0c\u4ece\u5e95\u81f3\u9876\u4fee\u590d\u5806\u4e2d\u7684\u5404\u4e2a\u8282\u70b9\uff0c\u76f4\u81f3\u8d8a\u8fc7\u6839\u8282\u70b9\u6216\u9047\u5230\u65e0\u987b\u4ea4\u6362\u7684\u8282\u70b9\u65f6\u7ed3\u675f\u3002

            <1><2><3><4><5><6><7><8><9>

            \u56fe\uff1a\u5143\u7d20\u5165\u5806\u6b65\u9aa4

            \u8bbe\u8282\u70b9\u603b\u6570\u4e3a \\(n\\) \uff0c\u5219\u6811\u7684\u9ad8\u5ea6\u4e3a \\(O(\\log n)\\) \u3002\u7531\u6b64\u53ef\u77e5\uff0c\u5806\u5316\u64cd\u4f5c\u7684\u5faa\u73af\u8f6e\u6570\u6700\u591a\u4e3a \\(O(\\log n)\\) \uff0c\u5143\u7d20\u5165\u5806\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_heap.java
            /* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n// \u6dfb\u52a0\u8282\u70b9\nmaxHeap.add(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nint p = parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || maxHeap.get(i) <= maxHeap.get(p))\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.cpp
            /* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n// \u6dfb\u52a0\u8282\u70b9\nmaxHeap.push_back(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nint p = parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || maxHeap[i] <= maxHeap[p])\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(maxHeap[i], maxHeap[p]);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.py
            def push(self, val: int):\n\"\"\"\u5143\u7d20\u5165\u5806\"\"\"\n# \u6dfb\u52a0\u8282\u70b9\nself.max_heap.append(val)\n# \u4ece\u5e95\u81f3\u9876\u5806\u5316\nself.sift_up(self.size() - 1)\ndef sift_up(self, i: int):\n\"\"\"\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316\"\"\"\nwhile True:\n# \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\np = self.parent(i)\n# \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif p < 0 or self.max_heap[i] <= self.max_heap[p]:\nbreak\n# \u4ea4\u6362\u4e24\u8282\u70b9\nself.swap(i, p)\n# \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p\n
            my_heap.go
            /* \u5143\u7d20\u5165\u5806 */\nfunc (h *maxHeap) push(val any) {\n// \u6dfb\u52a0\u8282\u70b9\nh.data = append(h.data, val)\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nh.siftUp(len(h.data) - 1)\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfunc (h *maxHeap) siftUp(i int) {\nfor true {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\np := h.parent(i)\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif p < 0 || h.data[i].(int) <= h.data[p].(int) {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nh.swap(i, p)\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p\n}\n}\n
            my_heap.js
            /* \u5143\u7d20\u5165\u5806 */\npush(val) {\n// \u6dfb\u52a0\u8282\u70b9\nthis.#maxHeap.push(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nthis.#siftUp(this.size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\n#siftUp(i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nconst p = this.#parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || this.#maxHeap[i] <= this.#maxHeap[p]) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nthis.#swap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.ts
            /* \u5143\u7d20\u5165\u5806 */\npush(val: number): void {\n// \u6dfb\u52a0\u8282\u70b9\nthis.maxHeap.push(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nthis.siftUp(this.size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nsiftUp(i: number): void {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nconst p = this.parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || this.maxHeap[i] <= this.maxHeap[p]) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nthis.swap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.c
            /* \u5143\u7d20\u5165\u5806 */\nvoid push(maxHeap *h, int val) {\n// \u9ed8\u8ba4\u60c5\u51b5\u4e0b\uff0c\u4e0d\u5e94\u8be5\u6dfb\u52a0\u8fd9\u4e48\u591a\u8282\u70b9\nif (h->size == MAX_SIZE) {\nprintf(\"heap is full!\");\nreturn;\n}\n// \u6dfb\u52a0\u8282\u70b9\nh->data[h->size] = val;\nh->size++;\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(h, h->size - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(maxHeap *h, int i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nint p = parent(h, i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || h->data[i] <= h->data[p]) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(h, i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.cs
            /* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n// \u6dfb\u52a0\u8282\u70b9\nmaxHeap.Add(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nint p = parent(i);\n// \u82e5\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\uff0c\u5219\u7ed3\u675f\u5806\u5316\nif (p < 0 || maxHeap[i] <= maxHeap[p])\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.swift
            /* \u5143\u7d20\u5165\u5806 */\nfunc push(val: Int) {\n// \u6dfb\u52a0\u8282\u70b9\nmaxHeap.append(val)\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(i: size() - 1)\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfunc siftUp(i: Int) {\nvar i = i\nwhile true {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nlet p = parent(i: i)\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif p < 0 || maxHeap[i] <= maxHeap[p] {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i: i, j: p)\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p\n}\n}\n
            my_heap.zig
            // \u5143\u7d20\u5165\u5806\nfn push(self: *Self, val: T) !void {\n// \u6dfb\u52a0\u8282\u70b9\ntry self.max_heap.?.append(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\ntry self.siftUp(self.size() - 1);\n}  // \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316\nfn siftUp(self: *Self, i_: usize) !void {\nvar i = i_;\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nvar p = parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 or self.max_heap.?.items[i] <= self.max_heap.?.items[p]) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\ntry self.swap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.dart
            /* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n// \u6dfb\u52a0\u8282\u70b9\n_maxHeap.add(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nint p = _parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || _maxHeap[i] <= _maxHeap[p]) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\n_swap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.rs
            /* \u5143\u7d20\u5165\u5806 */\nfn push(&mut self, val: i32) {\n// \u6dfb\u52a0\u8282\u70b9\nself.max_heap.push(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nself.sift_up(self.size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfn sift_up(&mut self, mut i: usize) {\nloop {\n// \u8282\u70b9 i \u5df2\u7ecf\u662f\u5806\u9876\u8282\u70b9\u4e86\uff0c\u7ed3\u675f\u5806\u5316\nif i == 0 {\nbreak;\n}\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nlet p = Self::parent(i);\n// \u5f53\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif self.max_heap[i] <= self.max_heap[p] {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nself.swap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            "},{"location":"chapter_heap/heap/#4","title":"4. \u00a0 \u5806\u9876\u5143\u7d20\u51fa\u5806","text":"

            \u5806\u9876\u5143\u7d20\u662f\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\uff0c\u5373\u5217\u8868\u9996\u5143\u7d20\u3002\u5982\u679c\u6211\u4eec\u76f4\u63a5\u4ece\u5217\u8868\u4e2d\u5220\u9664\u9996\u5143\u7d20\uff0c\u90a3\u4e48\u4e8c\u53c9\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u7d22\u5f15\u90fd\u4f1a\u53d1\u751f\u53d8\u5316\uff0c\u8fd9\u5c06\u4f7f\u5f97\u540e\u7eed\u4f7f\u7528\u5806\u5316\u4fee\u590d\u53d8\u5f97\u56f0\u96be\u3002\u4e3a\u4e86\u5c3d\u91cf\u51cf\u5c11\u5143\u7d20\u7d22\u5f15\u7684\u53d8\u52a8\uff0c\u6211\u4eec\u91c7\u53d6\u4ee5\u4e0b\u64cd\u4f5c\u6b65\u9aa4\uff1a

            1. \u4ea4\u6362\u5806\u9876\u5143\u7d20\u4e0e\u5806\u5e95\u5143\u7d20\uff08\u5373\u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff09\u3002
            2. \u4ea4\u6362\u5b8c\u6210\u540e\uff0c\u5c06\u5806\u5e95\u4ece\u5217\u8868\u4e2d\u5220\u9664\uff08\u6ce8\u610f\uff0c\u7531\u4e8e\u5df2\u7ecf\u4ea4\u6362\uff0c\u5b9e\u9645\u4e0a\u5220\u9664\u7684\u662f\u539f\u6765\u7684\u5806\u9876\u5143\u7d20\uff09\u3002
            3. \u4ece\u6839\u8282\u70b9\u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u6267\u884c\u5806\u5316\u3002

            \u987e\u540d\u601d\u4e49\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\u7684\u64cd\u4f5c\u65b9\u5411\u4e0e\u4ece\u5e95\u81f3\u9876\u5806\u5316\u76f8\u53cd\uff0c\u6211\u4eec\u5c06\u6839\u8282\u70b9\u7684\u503c\u4e0e\u5176\u4e24\u4e2a\u5b50\u8282\u70b9\u7684\u503c\u8fdb\u884c\u6bd4\u8f83\uff0c\u5c06\u6700\u5927\u7684\u5b50\u8282\u70b9\u4e0e\u6839\u8282\u70b9\u4ea4\u6362\uff1b\u7136\u540e\u5faa\u73af\u6267\u884c\u6b64\u64cd\u4f5c\uff0c\u76f4\u5230\u8d8a\u8fc7\u53f6\u8282\u70b9\u6216\u9047\u5230\u65e0\u987b\u4ea4\u6362\u7684\u8282\u70b9\u65f6\u7ed3\u675f\u3002

            <1><2><3><4><5><6><7><8><9><10>

            \u56fe\uff1a\u5806\u9876\u5143\u7d20\u51fa\u5806\u6b65\u9aa4

            \u4e0e\u5143\u7d20\u5165\u5806\u64cd\u4f5c\u76f8\u4f3c\uff0c\u5806\u9876\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u4e3a \\(O(\\log n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_heap.java
            /* \u5143\u7d20\u51fa\u5806 */\nint pop() {\n// \u5224\u7a7a\u5904\u7406\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(0, size() - 1);\n// \u5220\u9664\u8282\u70b9\nint val = maxHeap.remove(size() - 1);\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = left(i), r = right(i), ma = i;\nif (l < size() && maxHeap.get(l) > maxHeap.get(ma))\nma = l;\nif (r < size() && maxHeap.get(r) > maxHeap.get(ma))\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i)\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.cpp
            /* \u5143\u7d20\u51fa\u5806 */\nvoid pop() {\n// \u5224\u7a7a\u5904\u7406\nif (empty()) {\nthrow out_of_range(\"\u5806\u4e3a\u7a7a\");\n}\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(maxHeap[0], maxHeap[size() - 1]);\n// \u5220\u9664\u8282\u70b9\nmaxHeap.pop_back();\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(0);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = left(i), r = right(i), ma = i;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (l < size() && maxHeap[l] > maxHeap[ma])\nma = l;\nif (r < size() && maxHeap[r] > maxHeap[ma])\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i)\nbreak;\nswap(maxHeap[i], maxHeap[ma]);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.py
            def pop(self) -> int:\n\"\"\"\u5143\u7d20\u51fa\u5806\"\"\"\n# \u5224\u7a7a\u5904\u7406\nif self.is_empty():\nraise IndexError(\"\u5806\u4e3a\u7a7a\")\n# \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nself.swap(0, self.size() - 1)\n# \u5220\u9664\u8282\u70b9\nval = self.max_heap.pop()\n# \u4ece\u9876\u81f3\u5e95\u5806\u5316\nself.sift_down(0)\n# \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val\ndef sift_down(self, i: int):\n\"\"\"\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\"\"\"\nwhile True:\n# \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nl, r, ma = self.left(i), self.right(i), i\nif l < self.size() and self.max_heap[l] > self.max_heap[ma]:\nma = l\nif r < self.size() and self.max_heap[r] > self.max_heap[ma]:\nma = r\n# \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i:\nbreak\n# \u4ea4\u6362\u4e24\u8282\u70b9\nself.swap(i, ma)\n# \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma\n
            my_heap.go
            /* \u5143\u7d20\u51fa\u5806 */\nfunc (h *maxHeap) pop() any {\n// \u5224\u7a7a\u5904\u7406\nif h.isEmpty() {\nfmt.Println(\"error\")\nreturn nil\n}\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nh.swap(0, h.size()-1)\n// \u5220\u9664\u8282\u70b9\nval := h.data[len(h.data)-1]\nh.data = h.data[:len(h.data)-1]\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nh.siftDown(0)\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc (h *maxHeap) siftDown(i int) {\nfor true {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a max\nl, r, max := h.left(i), h.right(i), i\nif l < h.size() && h.data[l].(int) > h.data[max].(int) {\nmax = l\n}\nif r < h.size() && h.data[r].(int) > h.data[max].(int) {\nmax = r\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif max == i {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nh.swap(i, max)\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = max\n}\n}\n
            my_heap.js
            /* \u5143\u7d20\u51fa\u5806 */\npop() {\n// \u5224\u7a7a\u5904\u7406\nif (this.isEmpty()) throw new Error('\u5806\u4e3a\u7a7a');\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nthis.#swap(0, this.size() - 1);\n// \u5220\u9664\u8282\u70b9\nconst val = this.#maxHeap.pop();\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nthis.#siftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\n#siftDown(i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nconst l = this.#left(i),\nr = this.#right(i);\nlet ma = i;\nif (l < this.size() && this.#maxHeap[l] > this.#maxHeap[ma]) ma = l;\nif (r < this.size() && this.#maxHeap[r] > this.#maxHeap[ma]) ma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma === i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nthis.#swap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.ts
            /* \u5143\u7d20\u51fa\u5806 */\npop(): number {\n// \u5224\u7a7a\u5904\u7406\nif (this.isEmpty()) throw new RangeError('Heap is empty.');\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nthis.swap(0, this.size() - 1);\n// \u5220\u9664\u8282\u70b9\nconst val = this.maxHeap.pop();\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nthis.siftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nsiftDown(i: number): void {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nconst l = this.left(i),\nr = this.right(i);\nlet ma = i;\nif (l < this.size() && this.maxHeap[l] > this.maxHeap[ma]) ma = l;\nif (r < this.size() && this.maxHeap[r] > this.maxHeap[ma]) ma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma === i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nthis.swap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.c
            /* \u5143\u7d20\u51fa\u5806 */\nint pop(maxHeap *h) {\n// \u5224\u7a7a\u5904\u7406\nif (isEmpty(h)) {\nprintf(\"heap is empty!\");\nreturn INT_MAX;\n}\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(h, 0, size(h) - 1);\n// \u5220\u9664\u8282\u70b9\nint val = h->data[h->size - 1];\nh->size--;\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(h, 0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(maxHeap *h, int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a max\nint l = left(h, i);\nint r = right(h, i);\nint max = i;\nif (l < size(h) && h->data[l] > h->data[max]) {\nmax = l;\n}\nif (r < size(h) && h->data[r] > h->data[max]) {\nmax = r;\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (max == i) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(h, i, max);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = max;\n}\n}\n
            my_heap.cs
            /* \u5143\u7d20\u51fa\u5806 */\nint pop() {\n// \u5224\u7a7a\u5904\u7406\nif (isEmpty())\nthrow new IndexOutOfRangeException();\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(0, size() - 1);\n// \u5220\u9664\u8282\u70b9\nint val = maxHeap.Last();\nmaxHeap.RemoveAt(size() - 1);\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = left(i), r = right(i), ma = i;\nif (l < size() && maxHeap[l] > maxHeap[ma])\nma = l;\nif (r < size() && maxHeap[r] > maxHeap[ma])\nma = r;\n// \u82e5\u201c\u8282\u70b9 i \u6700\u5927\u201d\u6216\u201c\u8d8a\u8fc7\u53f6\u8282\u70b9\u201d\uff0c\u5219\u7ed3\u675f\u5806\u5316\nif (ma == i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.swift
            /* \u5143\u7d20\u51fa\u5806 */\nfunc pop() -> Int {\n// \u5224\u7a7a\u5904\u7406\nif isEmpty() {\nfatalError(\"\u5806\u4e3a\u7a7a\")\n}\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(i: 0, j: size() - 1)\n// \u5220\u9664\u8282\u70b9\nlet val = maxHeap.remove(at: size() - 1)\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(i: 0)\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(i: Int) {\nvar i = i\nwhile true {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet l = left(i: i)\nlet r = right(i: i)\nvar ma = i\nif l < size(), maxHeap[l] > maxHeap[ma] {\nma = l\n}\nif r < size(), maxHeap[r] > maxHeap[ma] {\nma = r\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i: i, j: ma)\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma\n}\n}\n
            my_heap.zig
            // \u5143\u7d20\u51fa\u5806\nfn pop(self: *Self) !T {\n// \u5224\u65ad\u5904\u7406\nif (self.isEmpty()) unreachable;\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\ntry self.swap(0, self.size() - 1);\n// \u5220\u9664\u8282\u70b9\nvar val = self.max_heap.?.pop();\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\ntry self.siftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n} // \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\nfn siftDown(self: *Self, i_: usize) !void {\nvar i = i_;\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nvar l = left(i);\nvar r = right(i);\nvar ma = i;\nif (l < self.size() and self.max_heap.?.items[l] > self.max_heap.?.items[ma]) ma = l;\nif (r < self.size() and self.max_heap.?.items[r] > self.max_heap.?.items[ma]) ma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\ntry self.swap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.dart
            /* \u5143\u7d20\u51fa\u5806 */\nint pop() {\n// \u5224\u7a7a\u5904\u7406\nif (isEmpty()) throw Exception('\u5806\u4e3a\u7a7a');\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n_swap(0, size() - 1);\n// \u5220\u9664\u8282\u70b9\nint val = _maxHeap.removeLast();\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = _left(i);\nint r = _right(i);\nint ma = i;\nif (l < size() && _maxHeap[l] > _maxHeap[ma]) ma = l;\nif (r < size() && _maxHeap[r] > _maxHeap[ma]) ma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\n_swap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.rs
            /* \u5143\u7d20\u51fa\u5806 */\nfn pop(&mut self) -> i32 {\n// \u5224\u7a7a\u5904\u7406\nif self.is_empty() {\npanic!(\"index out of bounds\");\n}\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nself.swap(0, self.size() - 1);\n// \u5220\u9664\u8282\u70b9\nlet val = self.max_heap.remove(self.size() - 1);\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nself.sift_down(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nval\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfn sift_down(&mut self, mut i: usize) {\nloop {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet (l, r, mut ma) = (Self::left(i), Self::right(i), i);\nif l < self.size() && self.max_heap[l] > self.max_heap[ma] {\nma = l;\n}\nif r < self.size() && self.max_heap[r] > self.max_heap[ma] {\nma = r;\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nself.swap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            "},{"location":"chapter_heap/heap/#813","title":"8.1.3 \u00a0 \u5806\u5e38\u89c1\u5e94\u7528","text":"
            • \u4f18\u5148\u961f\u5217\uff1a\u5806\u901a\u5e38\u4f5c\u4e3a\u5b9e\u73b0\u4f18\u5148\u961f\u5217\u7684\u9996\u9009\u6570\u636e\u7ed3\u6784\uff0c\u5176\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log n)\\) \uff0c\u800c\u5efa\u961f\u64cd\u4f5c\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4e9b\u64cd\u4f5c\u90fd\u975e\u5e38\u9ad8\u6548\u3002
            • \u5806\u6392\u5e8f\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u53ef\u4ee5\u7528\u5b83\u4eec\u5efa\u7acb\u4e00\u4e2a\u5806\uff0c\u7136\u540e\u4e0d\u65ad\u5730\u6267\u884c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\uff0c\u4ece\u800c\u5f97\u5230\u6709\u5e8f\u6570\u636e\u3002\u7136\u800c\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u4f7f\u7528\u4e00\u79cd\u66f4\u4f18\u96c5\u7684\u65b9\u5f0f\u5b9e\u73b0\u5806\u6392\u5e8f\uff0c\u8be6\u89c1\u540e\u7eed\u7684\u5806\u6392\u5e8f\u7ae0\u8282\u3002
            • \u83b7\u53d6\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\uff1a\u8fd9\u662f\u4e00\u4e2a\u7ecf\u5178\u7684\u7b97\u6cd5\u95ee\u9898\uff0c\u540c\u65f6\u4e5f\u662f\u4e00\u79cd\u5178\u578b\u5e94\u7528\uff0c\u4f8b\u5982\u9009\u62e9\u70ed\u5ea6\u524d 10 \u7684\u65b0\u95fb\u4f5c\u4e3a\u5fae\u535a\u70ed\u641c\uff0c\u9009\u53d6\u9500\u91cf\u524d 10 \u7684\u5546\u54c1\u7b49\u3002
            "},{"location":"chapter_heap/summary/","title":"8.4 \u00a0 \u5c0f\u7ed3","text":"
            • \u5806\u662f\u4e00\u68f5\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u6839\u636e\u6210\u7acb\u6761\u4ef6\u53ef\u5206\u4e3a\u5927\u9876\u5806\u548c\u5c0f\u9876\u5806\u3002\u5927\uff08\u5c0f\uff09\u9876\u5806\u7684\u5806\u9876\u5143\u7d20\u662f\u6700\u5927\uff08\u5c0f\uff09\u7684\u3002
            • \u4f18\u5148\u961f\u5217\u7684\u5b9a\u4e49\u662f\u5177\u6709\u51fa\u961f\u4f18\u5148\u7ea7\u7684\u961f\u5217\uff0c\u901a\u5e38\u4f7f\u7528\u5806\u6765\u5b9e\u73b0\u3002
            • \u5806\u7684\u5e38\u7528\u64cd\u4f5c\u53ca\u5176\u5bf9\u5e94\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5305\u62ec\uff1a\u5143\u7d20\u5165\u5806 \\(O(\\log n)\\) \u3001\u5806\u9876\u5143\u7d20\u51fa\u5806 \\(O(\\log n)\\) \u548c\u8bbf\u95ee\u5806\u9876\u5143\u7d20 \\(O(1)\\) \u7b49\u3002
            • \u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u7528\u6570\u7ec4\u8868\u793a\uff0c\u56e0\u6b64\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u6570\u7ec4\u6765\u5b58\u50a8\u5806\u3002
            • \u5806\u5316\u64cd\u4f5c\u7528\u4e8e\u7ef4\u62a4\u5806\u7684\u6027\u8d28\uff0c\u5728\u5165\u5806\u548c\u51fa\u5806\u64cd\u4f5c\u4e2d\u90fd\u4f1a\u7528\u5230\u3002
            • \u8f93\u5165 \\(n\\) \u4e2a\u5143\u7d20\u5e76\u5efa\u5806\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(n)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002
            • Top-K \u662f\u4e00\u4e2a\u7ecf\u5178\u7b97\u6cd5\u95ee\u9898\uff0c\u53ef\u4ee5\u4f7f\u7528\u5806\u6570\u636e\u7ed3\u6784\u9ad8\u6548\u89e3\u51b3\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log k)\\) \u3002
            "},{"location":"chapter_heap/summary/#841-q-a","title":"8.4.1 \u00a0 Q & A","text":"

            \u6570\u636e\u7ed3\u6784\u7684\u201c\u5806\u201d\u4e0e\u5185\u5b58\u7ba1\u7406\u7684\u201c\u5806\u201d\u662f\u540c\u4e00\u4e2a\u6982\u5ff5\u5417\uff1f

            \u4e24\u8005\u4e0d\u662f\u540c\u4e00\u4e2a\u6982\u5ff5\uff0c\u53ea\u662f\u78b0\u5de7\u90fd\u53eb\u5806\u3002\u8ba1\u7b97\u673a\u7cfb\u7edf\u5185\u5b58\u4e2d\u7684\u5806\u662f\u52a8\u6001\u5185\u5b58\u5206\u914d\u7684\u4e00\u90e8\u5206\uff0c\u7a0b\u5e8f\u5728\u8fd0\u884c\u65f6\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u5b58\u50a8\u6570\u636e\u3002\u7a0b\u5e8f\u53ef\u4ee5\u8bf7\u6c42\u4e00\u5b9a\u91cf\u7684\u5806\u5185\u5b58\uff0c\u7528\u4e8e\u5b58\u50a8\u5982\u5bf9\u8c61\u548c\u6570\u7ec4\u7b49\u590d\u6742\u7ed3\u6784\u3002\u5f53\u8fd9\u4e9b\u6570\u636e\u4e0d\u518d\u9700\u8981\u65f6\uff0c\u7a0b\u5e8f\u9700\u8981\u91ca\u653e\u8fd9\u4e9b\u5185\u5b58\uff0c\u4ee5\u9632\u6b62\u5185\u5b58\u6cc4\u9732\u3002\u76f8\u8f83\u4e8e\u6808\u5185\u5b58\uff0c\u5806\u5185\u5b58\u7684\u7ba1\u7406\u548c\u4f7f\u7528\u9700\u8981\u66f4\u8c28\u614e\uff0c\u4e0d\u6070\u5f53\u7684\u4f7f\u7528\u53ef\u80fd\u4f1a\u5bfc\u81f4\u5185\u5b58\u6cc4\u9732\u548c\u91ce\u6307\u9488\u7b49\u95ee\u9898\u3002

            "},{"location":"chapter_heap/top_k/","title":"8.3 \u00a0 Top-K \u95ee\u9898","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u65e0\u5e8f\u6570\u7ec4 nums \uff0c\u8bf7\u8fd4\u56de\u6570\u7ec4\u4e2d\u524d \\(k\\) \u5927\u7684\u5143\u7d20\u3002

            \u5bf9\u4e8e\u8be5\u95ee\u9898\uff0c\u6211\u4eec\u5148\u4ecb\u7ecd\u4e24\u79cd\u601d\u8def\u6bd4\u8f83\u76f4\u63a5\u7684\u89e3\u6cd5\uff0c\u518d\u4ecb\u7ecd\u6548\u7387\u66f4\u9ad8\u7684\u5806\u89e3\u6cd5\u3002

            "},{"location":"chapter_heap/top_k/#831","title":"8.3.1 \u00a0 \u65b9\u6cd5\u4e00\uff1a\u904d\u5386\u9009\u62e9","text":"

            \u6211\u4eec\u53ef\u4ee5\u8fdb\u884c \\(k\\) \u8f6e\u904d\u5386\uff0c\u5206\u522b\u5728\u6bcf\u8f6e\u4e2d\u63d0\u53d6\u7b2c \\(1\\) , \\(2\\) , \\(\\cdots\\) , \\(k\\) \u5927\u7684\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nk)\\) \u3002

            \u8be5\u65b9\u6cd5\u53ea\u9002\u7528\u4e8e \\(k \\ll n\\) \u7684\u60c5\u51b5\uff0c\u56e0\u4e3a\u5f53 \\(k\\) \u4e0e \\(n\\) \u6bd4\u8f83\u63a5\u8fd1\u65f6\uff0c\u5176\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411\u4e8e \\(O(n^2)\\) \uff0c\u975e\u5e38\u8017\u65f6\u3002

            \u56fe\uff1a\u904d\u5386\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20

            Tip

            \u5f53 \\(k = n\\) \u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\uff0c\u7b49\u4ef7\u4e8e\u300c\u9009\u62e9\u6392\u5e8f\u300d\u7b97\u6cd5\u3002

            "},{"location":"chapter_heap/top_k/#832","title":"8.3.2 \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u6392\u5e8f","text":"

            \u6211\u4eec\u53ef\u4ee5\u5bf9\u6570\u7ec4 nums \u8fdb\u884c\u6392\u5e8f\uff0c\u5e76\u8fd4\u56de\u6700\u53f3\u8fb9\u7684 \\(k\\) \u4e2a\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002

            \u663e\u7136\uff0c\u8be5\u65b9\u6cd5\u201c\u8d85\u989d\u201d\u5b8c\u6210\u4efb\u52a1\u4e86\uff0c\u56e0\u4e3a\u6211\u4eec\u53ea\u9700\u8981\u627e\u51fa\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\u5373\u53ef\uff0c\u800c\u4e0d\u9700\u8981\u6392\u5e8f\u5176\u4ed6\u5143\u7d20\u3002

            \u56fe\uff1a\u6392\u5e8f\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20

            "},{"location":"chapter_heap/top_k/#833","title":"8.3.3 \u00a0 \u65b9\u6cd5\u4e09\uff1a\u5806","text":"

            \u6211\u4eec\u53ef\u4ee5\u57fa\u4e8e\u5806\u66f4\u52a0\u9ad8\u6548\u5730\u89e3\u51b3 Top-K \u95ee\u9898\uff0c\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u521d\u59cb\u5316\u4e00\u4e2a\u5c0f\u9876\u5806\uff0c\u5176\u5806\u9876\u5143\u7d20\u6700\u5c0f\u3002
            2. \u5148\u5c06\u6570\u7ec4\u7684\u524d \\(k\\) \u4e2a\u5143\u7d20\u4f9d\u6b21\u5165\u5806\u3002
            3. \u4ece\u7b2c \\(k + 1\\) \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\uff0c\u5e76\u5c06\u5f53\u524d\u5143\u7d20\u5165\u5806\u3002
            4. \u904d\u5386\u5b8c\u6210\u540e\uff0c\u5806\u4e2d\u4fdd\u5b58\u7684\u5c31\u662f\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\u3002
            <1><2><3><4><5><6><7><8><9>

            \u56fe\uff1a\u57fa\u4e8e\u5806\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20

            \u603b\u5171\u6267\u884c\u4e86 \\(n\\) \u8f6e\u5165\u5806\u548c\u51fa\u5806\uff0c\u5806\u7684\u6700\u5927\u957f\u5ea6\u4e3a \\(k\\) \uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log k)\\) \u3002\u8be5\u65b9\u6cd5\u7684\u6548\u7387\u5f88\u9ad8\uff0c\u5f53 \\(k\\) \u8f83\u5c0f\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411 \\(O(n)\\) \uff1b\u5f53 \\(k\\) \u8f83\u5927\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u4f1a\u8d85\u8fc7 \\(O(n \\log n)\\) \u3002

            \u53e6\u5916\uff0c\u8be5\u65b9\u6cd5\u9002\u7528\u4e8e\u52a8\u6001\u6570\u636e\u6d41\u7684\u4f7f\u7528\u573a\u666f\u3002\u5728\u4e0d\u65ad\u52a0\u5165\u6570\u636e\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u6301\u7eed\u7ef4\u62a4\u5806\u5185\u7684\u5143\u7d20\uff0c\u4ece\u800c\u5b9e\u73b0\u6700\u5927 \\(k\\) \u4e2a\u5143\u7d20\u7684\u52a8\u6001\u66f4\u65b0\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust top_k.java
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nQueue<Integer> topKHeap(int[] nums, int k) {\nQueue<Integer> heap = new PriorityQueue<Integer>();\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor (int i = 0; i < k; i++) {\nheap.offer(nums[i]);\n}\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor (int i = k; i < nums.length; i++) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif (nums[i] > heap.peek()) {\nheap.poll();\nheap.offer(nums[i]);\n}\n}\nreturn heap;\n}\n
            top_k.cpp
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\npriority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {\npriority_queue<int, vector<int>, greater<int>> heap;\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor (int i = 0; i < k; i++) {\nheap.push(nums[i]);\n}\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor (int i = k; i < nums.size(); i++) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif (nums[i] > heap.top()) {\nheap.pop();\nheap.push(nums[i]);\n}\n}\nreturn heap;\n}\n
            top_k.py
            def top_k_heap(nums: list[int], k: int) -> list[int]:\n\"\"\"\u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20\"\"\"\nheap = []\n# \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor i in range(k):\nheapq.heappush(heap, nums[i])\n# \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor i in range(k, len(nums)):\n# \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif nums[i] > heap[0]:\nheapq.heappop(heap)\nheapq.heappush(heap, nums[i])\nreturn heap\n
            top_k.go
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunc topKHeap(nums []int, k int) *minHeap {\nh := &minHeap{}\nheap.Init(h)\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor i := 0; i < k; i++ {\nheap.Push(h, nums[i])\n}\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor i := k; i < len(nums); i++ {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif nums[i] > h.Top().(int) {\nheap.Pop(h)\nheap.Push(h, nums[i])\n}\n}\nreturn h\n}\n
            top_k.js
            [class]{}-[func]{topKHeap}\n
            top_k.ts
            [class]{}-[func]{topKHeap}\n
            top_k.c
            [class]{}-[func]{topKHeap}\n
            top_k.cs
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nPriorityQueue<int, int> topKHeap(int[] nums, int k) {\nPriorityQueue<int, int> heap = new PriorityQueue<int, int>();\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor (int i = 0; i < k; i++) {\nheap.Enqueue(nums[i], nums[i]);\n}\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor (int i = k; i < nums.Length; i++) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif (nums[i] > heap.Peek()) {\nheap.Dequeue();\nheap.Enqueue(nums[i], nums[i]);\n}\n}\nreturn heap;\n}\n
            top_k.swift
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunc topKHeap(nums: [Int], k: Int) -> [Int] {\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nvar heap = Array(nums.prefix(k))\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor i in stride(from: k, to: nums.count, by: 1) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif nums[i] > heap.first! {\nheap.removeFirst()\nheap.insert(nums[i], at: 0)\n}\n}\nreturn heap\n}\n
            top_k.zig
            [class]{}-[func]{topKHeap}\n
            top_k.dart
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nMinHeap topKHeap(List<int> nums, int k) {\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nMinHeap heap = MinHeap(nums.sublist(0, k));\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor (int i = k; i < nums.length; i++) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif (nums[i] > heap.peek()) {\nheap.pop();\nheap.push(nums[i]);\n}\n}\nreturn heap;\n}\n
            top_k.rs
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfn top_k_heap(nums: Vec<i32>, k: usize) -> BinaryHeap<Reverse<i32>> {\n// Rust \u7684 BinaryHeap \u662f\u5927\u9876\u5806\uff0c\u4f7f\u7528 Reverse \u5c06\u5143\u7d20\u5927\u5c0f\u53cd\u8f6c\nlet mut heap = BinaryHeap::<Reverse<i32>>::new();\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor &num in nums.iter().take(k) {\nheap.push(Reverse(num));\n}\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor &num in nums.iter().skip(k) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif num > heap.peek().unwrap().0 {\nheap.pop();\nheap.push(Reverse(num));\n}\n}\nheap\n}\n
            "},{"location":"chapter_introduction/","title":"\u7b2c 1 \u7ae0 \u00a0 \u521d\u8bc6\u7b97\u6cd5","text":"

            Abstract

            \u4e00\u4f4d\u5c11\u5973\u7fe9\u7fe9\u8d77\u821e\uff0c\u4e0e\u6570\u636e\u4ea4\u7ec7\u5728\u4e00\u8d77\uff0c\u88d9\u6446\u4e0a\u98d8\u626c\u7740\u7b97\u6cd5\u7684\u65cb\u5f8b\u3002

            \u5979\u9080\u8bf7\u4f60\u5171\u821e\uff0c\u8bf7\u7d27\u8ddf\u5979\u7684\u6b65\u4f10\uff0c\u8e0f\u5165\u5145\u6ee1\u903b\u8f91\u4e0e\u7f8e\u611f\u7684\u7b97\u6cd5\u4e16\u754c\u3002

            "},{"location":"chapter_introduction/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 1.1 \u00a0 \u7b97\u6cd5\u65e0\u5904\u4e0d\u5728
            • 1.2 \u00a0 \u7b97\u6cd5\u662f\u4ec0\u4e48
            • 1.3 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_introduction/algorithms_are_everywhere/","title":"1.1 \u00a0 \u7b97\u6cd5\u65e0\u5904\u4e0d\u5728","text":"

            \u5f53\u6211\u4eec\u542c\u5230\u201c\u7b97\u6cd5\u201d\u8fd9\u4e2a\u8bcd\u65f6\uff0c\u5f88\u81ea\u7136\u5730\u4f1a\u60f3\u5230\u6570\u5b66\u3002\u7136\u800c\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u7b97\u6cd5\u5e76\u4e0d\u6d89\u53ca\u590d\u6742\u6570\u5b66\uff0c\u800c\u662f\u66f4\u591a\u5730\u4f9d\u8d56\u4e8e\u57fa\u672c\u903b\u8f91\uff0c\u8fd9\u4e9b\u903b\u8f91\u5728\u6211\u4eec\u7684\u65e5\u5e38\u751f\u6d3b\u4e2d\u5904\u5904\u53ef\u89c1\u3002

            \u5728\u6b63\u5f0f\u63a2\u8ba8\u7b97\u6cd5\u4e4b\u524d\uff0c\u6709\u4e00\u4e2a\u6709\u8da3\u7684\u4e8b\u5b9e\u503c\u5f97\u5206\u4eab\uff1a\u4f60\u5df2\u7ecf\u5728\u4e0d\u77e5\u4e0d\u89c9\u4e2d\u5b66\u4f1a\u4e86\u8bb8\u591a\u7b97\u6cd5\uff0c\u5e76\u4e60\u60ef\u5c06\u5b83\u4eec\u5e94\u7528\u5230\u65e5\u5e38\u751f\u6d3b\u4e2d\u4e86\u3002\u4e0b\u9762\uff0c\u6211\u5c06\u4e3e\u51e0\u4e2a\u5177\u4f53\u4f8b\u5b50\u6765\u8bc1\u5b9e\u8fd9\u4e00\u70b9\u3002

            \u4f8b\u4e00\uff1a\u67e5\u9605\u5b57\u5178\u3002\u5728\u5b57\u5178\u91cc\uff0c\u6bcf\u4e2a\u6c49\u5b57\u90fd\u5bf9\u5e94\u4e00\u4e2a\u62fc\u97f3\uff0c\u800c\u5b57\u5178\u662f\u6309\u7167\u62fc\u97f3\u5b57\u6bcd\u987a\u5e8f\u6392\u5217\u7684\u3002\u5047\u8bbe\u6211\u4eec\u9700\u8981\u67e5\u627e\u4e00\u4e2a\u62fc\u97f3\u9996\u5b57\u6bcd\u4e3a \\(r\\) \u7684\u5b57\uff0c\u901a\u5e38\u4f1a\u6309\u7167\u4e0b\u56fe\u6240\u793a\u7684\u65b9\u5f0f\u5b9e\u73b0\u3002

            1. \u7ffb\u5f00\u5b57\u5178\u7ea6\u4e00\u534a\u7684\u9875\u6570\uff0c\u67e5\u770b\u8be5\u9875\u7684\u9996\u5b57\u6bcd\u662f\u4ec0\u4e48\uff0c\u5047\u8bbe\u9996\u5b57\u6bcd\u4e3a \\(m\\) \u3002
            2. \u7531\u4e8e\u5728\u62fc\u97f3\u5b57\u6bcd\u8868\u4e2d \\(r\\) \u4f4d\u4e8e \\(m\\) \u4e4b\u540e\uff0c\u6240\u4ee5\u6392\u9664\u5b57\u5178\u524d\u534a\u90e8\u5206\uff0c\u67e5\u627e\u8303\u56f4\u7f29\u5c0f\u5230\u540e\u534a\u90e8\u5206\u3002
            3. \u4e0d\u65ad\u91cd\u590d\u6b65\u9aa4 1. \u548c \u6b65\u9aa4 2. \uff0c\u76f4\u81f3\u627e\u5230\u62fc\u97f3\u9996\u5b57\u6bcd\u4e3a \\(r\\) \u7684\u9875\u7801\u4e3a\u6b62\u3002
            <1><2><3><4><5>

            \u56fe\uff1a\u67e5\u5b57\u5178\u6b65\u9aa4

            \u67e5\u9605\u5b57\u5178\u8fd9\u4e2a\u5c0f\u5b66\u751f\u5fc5\u5907\u6280\u80fd\uff0c\u5b9e\u9645\u4e0a\u5c31\u662f\u8457\u540d\u7684\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u3002\u4ece\u6570\u636e\u7ed3\u6784\u7684\u89d2\u5ea6\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u5b57\u5178\u89c6\u4e3a\u4e00\u4e2a\u5df2\u6392\u5e8f\u7684\u300c\u6570\u7ec4\u300d\uff1b\u4ece\u7b97\u6cd5\u7684\u89d2\u5ea6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u4e0a\u8ff0\u67e5\u5b57\u5178\u7684\u4e00\u7cfb\u5217\u64cd\u4f5c\u770b\u4f5c\u662f\u300c\u4e8c\u5206\u67e5\u627e\u300d\u3002

            \u4f8b\u4e8c\uff1a\u6574\u7406\u6251\u514b\u3002\u6211\u4eec\u5728\u6253\u724c\u65f6\uff0c\u6bcf\u5c40\u90fd\u9700\u8981\u6574\u7406\u6251\u514b\u724c\uff0c\u4f7f\u5176\u4ece\u5c0f\u5230\u5927\u6392\u5217\uff0c\u5b9e\u73b0\u6d41\u7a0b\u5982\u4e0b\u56fe\u6240\u793a\u3002

            1. \u5c06\u6251\u514b\u724c\u5212\u5206\u4e3a\u201c\u6709\u5e8f\u201d\u548c\u201c\u65e0\u5e8f\u201d\u4e24\u90e8\u5206\uff0c\u5e76\u5047\u8bbe\u521d\u59cb\u72b6\u6001\u4e0b\u6700\u5de6 1 \u5f20\u6251\u514b\u724c\u5df2\u7ecf\u6709\u5e8f\u3002
            2. \u5728\u65e0\u5e8f\u90e8\u5206\u62bd\u51fa\u4e00\u5f20\u6251\u514b\u724c\uff0c\u63d2\u5165\u81f3\u6709\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\uff1b\u5b8c\u6210\u540e\u6700\u5de6 2 \u5f20\u6251\u514b\u5df2\u7ecf\u6709\u5e8f\u3002
            3. \u4e0d\u65ad\u5faa\u73af\u6b65\u9aa4 2. \uff0c\u6bcf\u4e00\u8f6e\u5c06\u4e00\u5f20\u6251\u514b\u724c\u4ece\u65e0\u5e8f\u90e8\u5206\u63d2\u5165\u81f3\u6709\u5e8f\u90e8\u5206\uff0c\u76f4\u81f3\u6240\u6709\u6251\u514b\u724c\u90fd\u6709\u5e8f\u3002

            \u56fe\uff1a\u6251\u514b\u6392\u5e8f\u6b65\u9aa4

            \u4e0a\u8ff0\u6574\u7406\u6251\u514b\u724c\u7684\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u300c\u63d2\u5165\u6392\u5e8f\u300d\u7b97\u6cd5\uff0c\u5b83\u5728\u5904\u7406\u5c0f\u578b\u6570\u636e\u96c6\u65f6\u975e\u5e38\u9ad8\u6548\u3002\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u7684\u6392\u5e8f\u5e93\u51fd\u6570\u4e2d\u90fd\u5b58\u5728\u63d2\u5165\u6392\u5e8f\u7684\u8eab\u5f71\u3002

            \u4f8b\u4e09\uff1a\u8d27\u5e01\u627e\u96f6\u3002\u5047\u8bbe\u6211\u4eec\u5728\u8d85\u5e02\u8d2d\u4e70\u4e86 \\(69\\) \u5143\u7684\u5546\u54c1\uff0c\u7ed9\u6536\u94f6\u5458\u4ed8\u4e86 \\(100\\) \u5143\uff0c\u5219\u6536\u94f6\u5458\u9700\u8981\u627e\u6211\u4eec \\(31\\) \u5143\u3002\u4ed6\u4f1a\u5f88\u81ea\u7136\u5730\u5b8c\u6210\u5982\u4e0b\u56fe\u6240\u793a\u7684\u601d\u8003\u3002

            1. \u53ef\u9009\u9879\u662f\u6bd4 \\(31\\) \u5143\u9762\u503c\u66f4\u5c0f\u7684\u8d27\u5e01\uff0c\u5305\u62ec \\(1\\) \u5143\u3001\\(5\\) \u5143\u3001\\(10\\) \u5143\u3001\\(20\\) \u5143\u3002
            2. \u4ece\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(20\\) \u5143\uff0c\u5269\u4f59 \\(31 - 20 = 11\\) \u5143\u3002
            3. \u4ece\u5269\u4f59\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(10\\) \u5143\uff0c\u5269\u4f59 \\(11 - 10 = 1\\) \u5143\u3002
            4. \u4ece\u5269\u4f59\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(1\\) \u5143\uff0c\u5269\u4f59 \\(1 - 1 = 0\\) \u5143\u3002
            5. \u5b8c\u6210\u627e\u96f6\uff0c\u65b9\u6848\u4e3a \\(20 + 10 + 1 = 31\\) \u5143\u3002

            \u56fe\uff1a\u8d27\u5e01\u627e\u96f6\u8fc7\u7a0b

            \u5728\u4ee5\u4e0a\u6b65\u9aa4\u4e2d\uff0c\u6211\u4eec\u6bcf\u4e00\u6b65\u90fd\u91c7\u53d6\u5f53\u524d\u770b\u6765\u6700\u597d\u7684\u9009\u62e9\uff08\u5c3d\u53ef\u80fd\u7528\u5927\u9762\u989d\u7684\u8d27\u5e01\uff09\uff0c\u6700\u7ec8\u5f97\u5230\u4e86\u53ef\u884c\u7684\u627e\u96f6\u65b9\u6848\u3002\u4ece\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\u8fd9\u79cd\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u300c\u8d2a\u5fc3\u7b97\u6cd5\u300d\u3002

            \u5c0f\u5230\u70f9\u996a\u4e00\u9053\u83dc\uff0c\u5927\u5230\u661f\u9645\u822a\u884c\uff0c\u51e0\u4e4e\u6240\u6709\u95ee\u9898\u7684\u89e3\u51b3\u90fd\u79bb\u4e0d\u5f00\u7b97\u6cd5\u3002\u8ba1\u7b97\u673a\u7684\u51fa\u73b0\u4f7f\u6211\u4eec\u80fd\u591f\u901a\u8fc7\u7f16\u7a0b\u5c06\u6570\u636e\u7ed3\u6784\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\uff0c\u540c\u65f6\u7f16\u5199\u4ee3\u7801\u8c03\u7528 CPU \u548c GPU \u6267\u884c\u7b97\u6cd5\u3002\u8fd9\u6837\u4e00\u6765\uff0c\u6211\u4eec\u5c31\u80fd\u628a\u751f\u6d3b\u4e2d\u7684\u95ee\u9898\u8f6c\u79fb\u5230\u8ba1\u7b97\u673a\u4e0a\uff0c\u4ee5\u66f4\u9ad8\u6548\u7684\u65b9\u5f0f\u89e3\u51b3\u5404\u79cd\u590d\u6742\u95ee\u9898\u3002

            Tip

            \u9605\u8bfb\u81f3\u6b64\uff0c\u5982\u679c\u4f60\u5bf9\u6570\u636e\u7ed3\u6784\u3001\u7b97\u6cd5\u3001\u6570\u7ec4\u548c\u4e8c\u5206\u67e5\u627e\u7b49\u6982\u5ff5\u4ecd\u611f\u5230\u4e00\u77e5\u534a\u89e3\uff0c\u8bf7\u7ee7\u7eed\u5f80\u4e0b\u9605\u8bfb\uff0c\u56e0\u4e3a\u8fd9\u6b63\u662f\u672c\u4e66\u5b58\u5728\u7684\u610f\u4e49\u3002\u63a5\u4e0b\u6765\uff0c\u8fd9\u672c\u4e66\u5c06\u5f15\u5bfc\u4f60\u4e00\u6b65\u6b65\u6df1\u5165\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u77e5\u8bc6\u6bbf\u5802\u3002

            "},{"location":"chapter_introduction/summary/","title":"1.3 \u00a0 \u5c0f\u7ed3","text":"
            • \u7b97\u6cd5\u5728\u65e5\u5e38\u751f\u6d3b\u4e2d\u65e0\u5904\u4e0d\u5728\uff0c\u5e76\u4e0d\u662f\u9065\u4e0d\u53ef\u53ca\u7684\u9ad8\u6df1\u77e5\u8bc6\u3002\u5b9e\u9645\u4e0a\uff0c\u6211\u4eec\u5df2\u7ecf\u5728\u4e0d\u77e5\u4e0d\u89c9\u4e2d\u5b66\u4f1a\u4e86\u8bb8\u591a\u7b97\u6cd5\uff0c\u7528\u4ee5\u89e3\u51b3\u751f\u6d3b\u4e2d\u7684\u5927\u5c0f\u95ee\u9898\u3002
            • \u67e5\u9605\u5b57\u5178\u7684\u539f\u7406\u4e0e\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u76f8\u4e00\u81f4\u3002\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u4f53\u73b0\u4e86\u5206\u800c\u6cbb\u4e4b\u7684\u91cd\u8981\u7b97\u6cd5\u601d\u60f3\u3002
            • \u6574\u7406\u6251\u514b\u7684\u8fc7\u7a0b\u4e0e\u63d2\u5165\u6392\u5e8f\u7b97\u6cd5\u975e\u5e38\u7c7b\u4f3c\u3002\u63d2\u5165\u6392\u5e8f\u7b97\u6cd5\u9002\u5408\u6392\u5e8f\u5c0f\u578b\u6570\u636e\u96c6\u3002
            • \u8d27\u5e01\u627e\u96f6\u7684\u6b65\u9aa4\u672c\u8d28\u4e0a\u662f\u8d2a\u5fc3\u7b97\u6cd5\uff0c\u6bcf\u4e00\u6b65\u90fd\u91c7\u53d6\u5f53\u524d\u770b\u6765\u7684\u6700\u597d\u7684\u9009\u62e9\u3002
            • \u7b97\u6cd5\u662f\u5728\u6709\u9650\u65f6\u95f4\u5185\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u7684\u4e00\u7ec4\u6307\u4ee4\u6216\u64cd\u4f5c\u6b65\u9aa4\uff0c\u800c\u6570\u636e\u7ed3\u6784\u662f\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u548c\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\u3002
            • \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7d27\u5bc6\u76f8\u8fde\u3002\u6570\u636e\u7ed3\u6784\u662f\u7b97\u6cd5\u7684\u57fa\u77f3\uff0c\u800c\u7b97\u6cd5\u5219\u662f\u53d1\u6325\u6570\u636e\u7ed3\u6784\u4f5c\u7528\u7684\u821e\u53f0\u3002
            • \u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7c7b\u6bd4\u4e3a\u62fc\u88c5\u79ef\u6728\uff0c\u79ef\u6728\u4ee3\u8868\u6570\u636e\uff0c\u79ef\u6728\u7684\u5f62\u72b6\u548c\u8fde\u63a5\u65b9\u5f0f\u4ee3\u8868\u6570\u636e\u7ed3\u6784\uff0c\u62fc\u88c5\u79ef\u6728\u7684\u6b65\u9aa4\u5219\u5bf9\u5e94\u7b97\u6cd5\u3002
            "},{"location":"chapter_introduction/what_is_dsa/","title":"1.2 \u00a0 \u7b97\u6cd5\u662f\u4ec0\u4e48","text":""},{"location":"chapter_introduction/what_is_dsa/#121","title":"1.2.1 \u00a0 \u7b97\u6cd5\u5b9a\u4e49","text":"

            \u300c\u7b97\u6cd5 algorithm\u300d\u662f\u5728\u6709\u9650\u65f6\u95f4\u5185\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u7684\u4e00\u7ec4\u6307\u4ee4\u6216\u64cd\u4f5c\u6b65\u9aa4\uff0c\u5b83\u5177\u6709\u4ee5\u4e0b\u7279\u6027\uff1a

            • \u95ee\u9898\u662f\u660e\u786e\u7684\uff0c\u5305\u542b\u6e05\u6670\u7684\u8f93\u5165\u548c\u8f93\u51fa\u5b9a\u4e49\u3002
            • \u5177\u6709\u53ef\u884c\u6027\uff0c\u80fd\u591f\u5728\u6709\u9650\u6b65\u9aa4\u3001\u65f6\u95f4\u548c\u5185\u5b58\u7a7a\u95f4\u4e0b\u5b8c\u6210\u3002
            • \u5404\u6b65\u9aa4\u90fd\u6709\u786e\u5b9a\u7684\u542b\u4e49\uff0c\u76f8\u540c\u7684\u8f93\u5165\u548c\u8fd0\u884c\u6761\u4ef6\u4e0b\uff0c\u8f93\u51fa\u59cb\u7ec8\u76f8\u540c\u3002
            "},{"location":"chapter_introduction/what_is_dsa/#122","title":"1.2.2 \u00a0 \u6570\u636e\u7ed3\u6784\u5b9a\u4e49","text":"

            \u300c\u6570\u636e\u7ed3\u6784 data structure\u300d\u662f\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u548c\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\uff0c\u5b83\u7684\u8bbe\u8ba1\u76ee\u6807\u5982\u4e0b\uff1a

            • \u7a7a\u95f4\u5360\u7528\u5c3d\u91cf\u51cf\u5c11\uff0c\u8282\u7701\u8ba1\u7b97\u673a\u5185\u5b58\u3002
            • \u6570\u636e\u64cd\u4f5c\u5c3d\u53ef\u80fd\u5feb\u901f\uff0c\u6db5\u76d6\u6570\u636e\u8bbf\u95ee\u3001\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66f4\u65b0\u7b49\u3002
            • \u63d0\u4f9b\u7b80\u6d01\u7684\u6570\u636e\u8868\u793a\u548c\u903b\u8f91\u4fe1\u606f\uff0c\u4ee5\u4fbf\u4f7f\u5f97\u7b97\u6cd5\u9ad8\u6548\u8fd0\u884c\u3002

            \u6570\u636e\u7ed3\u6784\u8bbe\u8ba1\u662f\u4e00\u4e2a\u5145\u6ee1\u6743\u8861\u7684\u8fc7\u7a0b\u3002\u5982\u679c\u60f3\u8981\u5728\u67d0\u65b9\u9762\u53d6\u5f97\u63d0\u5347\uff0c\u5f80\u5f80\u9700\u8981\u5728\u53e6\u4e00\u65b9\u9762\u4f5c\u51fa\u59a5\u534f\uff0c\u4f8b\u5982\uff1a

            • \u94fe\u8868\u76f8\u8f83\u4e8e\u6570\u7ec4\uff0c\u5728\u6570\u636e\u6dfb\u52a0\u548c\u5220\u9664\u64cd\u4f5c\u4e0a\u66f4\u52a0\u4fbf\u6377\uff0c\u4f46\u727a\u7272\u4e86\u6570\u636e\u8bbf\u95ee\u901f\u5ea6\u3002
            • \u56fe\u76f8\u8f83\u4e8e\u94fe\u8868\uff0c\u63d0\u4f9b\u4e86\u66f4\u4e30\u5bcc\u7684\u903b\u8f91\u4fe1\u606f\uff0c\u4f46\u9700\u8981\u5360\u7528\u66f4\u5927\u7684\u5185\u5b58\u7a7a\u95f4\u3002
            "},{"location":"chapter_introduction/what_is_dsa/#123","title":"1.2.3 \u00a0 \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u5173\u7cfb","text":"

            \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u9ad8\u5ea6\u76f8\u5173\u3001\u7d27\u5bc6\u7ed3\u5408\uff0c\u5177\u4f53\u8868\u73b0\u5728\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762\u3002

            • \u6570\u636e\u7ed3\u6784\u662f\u7b97\u6cd5\u7684\u57fa\u77f3\u3002\u6570\u636e\u7ed3\u6784\u4e3a\u7b97\u6cd5\u63d0\u4f9b\u4e86\u7ed3\u6784\u5316\u5b58\u50a8\u7684\u6570\u636e\uff0c\u4ee5\u53ca\u7528\u4e8e\u64cd\u4f5c\u6570\u636e\u7684\u65b9\u6cd5\u3002
            • \u7b97\u6cd5\u662f\u6570\u636e\u7ed3\u6784\u53d1\u6325\u4f5c\u7528\u7684\u821e\u53f0\u3002\u6570\u636e\u7ed3\u6784\u672c\u8eab\u4ec5\u5b58\u50a8\u6570\u636e\u4fe1\u606f\uff0c\u901a\u8fc7\u7ed3\u5408\u7b97\u6cd5\u624d\u80fd\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u3002
            • \u7279\u5b9a\u7b97\u6cd5\u901a\u5e38\u4f1a\u6709\u5bf9\u5e94\u6700\u4f18\u7684\u6570\u636e\u7ed3\u6784\u3002\u7b97\u6cd5\u901a\u5e38\u53ef\u4ee5\u57fa\u4e8e\u4e0d\u540c\u7684\u6570\u636e\u7ed3\u6784\u8fdb\u884c\u5b9e\u73b0\uff0c\u4f46\u6700\u7ec8\u6267\u884c\u6548\u7387\u53ef\u80fd\u76f8\u5dee\u5f88\u5927\u3002

            \u56fe\uff1a\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u5173\u7cfb

            \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u72b9\u5982\u4e0a\u56fe\u6240\u793a\u7684\u62fc\u88c5\u79ef\u6728\u3002\u4e00\u5957\u79ef\u6728\uff0c\u9664\u4e86\u5305\u542b\u8bb8\u591a\u96f6\u4ef6\u4e4b\u5916\uff0c\u8fd8\u9644\u6709\u8be6\u7ec6\u7684\u7ec4\u88c5\u8bf4\u660e\u4e66\u3002\u6211\u4eec\u6309\u7167\u8bf4\u660e\u4e66\u4e00\u6b65\u6b65\u64cd\u4f5c\uff0c\u5c31\u80fd\u7ec4\u88c5\u51fa\u7cbe\u7f8e\u7684\u79ef\u6728\u6a21\u578b\u3002

            \u56fe\uff1a\u62fc\u88c5\u79ef\u6728

            \u4e24\u8005\u7684\u8be6\u7ec6\u5bf9\u5e94\u5173\u7cfb\u5982\u4e0b\u8868\u6240\u793a\u3002

            \u8868\uff1a\u5c06\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7c7b\u6bd4\u4e3a\u79ef\u6728

            \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5 \u62fc\u88c5\u79ef\u6728 \u8f93\u5165\u6570\u636e \u672a\u62fc\u88c5\u7684\u79ef\u6728 \u6570\u636e\u7ed3\u6784 \u79ef\u6728\u7ec4\u7ec7\u5f62\u5f0f\uff0c\u5305\u62ec\u5f62\u72b6\u3001\u5927\u5c0f\u3001\u8fde\u63a5\u65b9\u5f0f\u7b49 \u7b97\u6cd5 \u628a\u79ef\u6728\u62fc\u6210\u76ee\u6807\u5f62\u6001\u7684\u4e00\u7cfb\u5217\u64cd\u4f5c\u6b65\u9aa4 \u8f93\u51fa\u6570\u636e \u79ef\u6728\u6a21\u578b

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u662f\u72ec\u7acb\u4e8e\u7f16\u7a0b\u8bed\u8a00\u7684\u3002\u6b63\u56e0\u5982\u6b64\uff0c\u672c\u4e66\u5f97\u4ee5\u63d0\u4f9b\u591a\u79cd\u7f16\u7a0b\u8bed\u8a00\u7684\u5b9e\u73b0\u3002

            \u7ea6\u5b9a\u4fd7\u6210\u7684\u7b80\u79f0

            \u5728\u5b9e\u9645\u8ba8\u8bba\u65f6\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u300c\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u300d\u7b80\u79f0\u4e3a\u300c\u7b97\u6cd5\u300d\u3002\u6bd4\u5982\u4f17\u6240\u5468\u77e5\u7684 LeetCode \u7b97\u6cd5\u9898\u76ee\uff0c\u5b9e\u9645\u4e0a\u540c\u65f6\u8003\u5bdf\u4e86\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u4e24\u65b9\u9762\u7684\u77e5\u8bc6\u3002

            "},{"location":"chapter_preface/","title":"\u7b2c 0 \u7ae0 \u00a0 \u524d\u8a00","text":"

            Abstract

            \u7b97\u6cd5\u72b9\u5982\u7f8e\u5999\u7684\u4ea4\u54cd\u4e50\uff0c\u6bcf\u4e00\u884c\u4ee3\u7801\u90fd\u50cf\u97f5\u5f8b\u822c\u6d41\u6dcc\u3002

            \u613f\u8fd9\u672c\u4e66\u5728\u4f60\u7684\u8111\u6d77\u4e2d\u8f7b\u8f7b\u54cd\u8d77\uff0c\u7559\u4e0b\u72ec\u7279\u800c\u6df1\u523b\u7684\u65cb\u5f8b\u3002

            "},{"location":"chapter_preface/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 0.1 \u00a0 \u5173\u4e8e\u672c\u4e66
            • 0.2 \u00a0 \u5982\u4f55\u4f7f\u7528\u672c\u4e66
            • 0.3 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_preface/about_the_book/","title":"0.1 \u00a0 \u5173\u4e8e\u672c\u4e66","text":"

            \u672c\u9879\u76ee\u65e8\u5728\u521b\u5efa\u4e00\u672c\u5f00\u6e90\u514d\u8d39\u3001\u65b0\u624b\u53cb\u597d\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5165\u95e8\u6559\u7a0b\u3002

            • \u5168\u4e66\u91c7\u7528\u52a8\u753b\u56fe\u89e3\uff0c\u7ed3\u6784\u5316\u5730\u8bb2\u89e3\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u77e5\u8bc6\uff0c\u5185\u5bb9\u6e05\u6670\u6613\u61c2\u3001\u5b66\u4e60\u66f2\u7ebf\u5e73\u6ed1\u3002
            • \u7b97\u6cd5\u6e90\u4ee3\u7801\u7686\u53ef\u4e00\u952e\u8fd0\u884c\uff0c\u652f\u6301 Java, C++, Python, Go, JS, TS, C#, Swift, Zig \u7b49\u8bed\u8a00\u3002
            • \u9f13\u52b1\u8bfb\u8005\u5728\u7ae0\u8282\u8ba8\u8bba\u533a\u4e92\u5e2e\u4e92\u52a9\u3001\u5171\u540c\u8fdb\u6b65\uff0c\u63d0\u95ee\u4e0e\u8bc4\u8bba\u901a\u5e38\u53ef\u5728\u4e24\u65e5\u5185\u5f97\u5230\u56de\u590d\u3002
            "},{"location":"chapter_preface/about_the_book/#011","title":"0.1.1 \u00a0 \u8bfb\u8005\u5bf9\u8c61","text":"

            \u82e5\u60a8\u662f\u7b97\u6cd5\u521d\u5b66\u8005\uff0c\u4ece\u672a\u63a5\u89e6\u8fc7\u7b97\u6cd5\uff0c\u6216\u8005\u5df2\u7ecf\u6709\u4e00\u4e9b\u5237\u9898\u7ecf\u9a8c\uff0c\u5bf9\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u6709\u6a21\u7cca\u7684\u8ba4\u8bc6\uff0c\u5728\u4f1a\u4e0e\u4e0d\u4f1a\u4e4b\u95f4\u53cd\u590d\u6a2a\u8df3\uff0c\u90a3\u4e48\u8fd9\u672c\u4e66\u6b63\u662f\u4e3a\u60a8\u91cf\u8eab\u5b9a\u5236\uff01

            \u5982\u679c\u60a8\u5df2\u7ecf\u79ef\u7d2f\u4e00\u5b9a\u5237\u9898\u91cf\uff0c\u719f\u6089\u5927\u90e8\u5206\u9898\u578b\uff0c\u90a3\u4e48\u672c\u4e66\u53ef\u52a9\u60a8\u56de\u987e\u4e0e\u68b3\u7406\u7b97\u6cd5\u77e5\u8bc6\u4f53\u7cfb\uff0c\u4ed3\u5e93\u6e90\u4ee3\u7801\u53ef\u4ee5\u88ab\u5f53\u4f5c\u201c\u5237\u9898\u5de5\u5177\u5e93\u201d\u6216\u201c\u7b97\u6cd5\u5b57\u5178\u201d\u6765\u4f7f\u7528\u3002

            \u82e5\u60a8\u662f\u7b97\u6cd5\u5927\u795e\uff0c\u6211\u4eec\u671f\u5f85\u6536\u5230\u60a8\u7684\u5b9d\u8d35\u5efa\u8bae\uff0c\u6216\u8005\u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c\u3002

            \u524d\u7f6e\u6761\u4ef6

            \u60a8\u9700\u8981\u81f3\u5c11\u5177\u5907\u4efb\u4e00\u8bed\u8a00\u7684\u7f16\u7a0b\u57fa\u7840\uff0c\u80fd\u591f\u9605\u8bfb\u548c\u7f16\u5199\u7b80\u5355\u4ee3\u7801\u3002

            "},{"location":"chapter_preface/about_the_book/#012","title":"0.1.2 \u00a0 \u5185\u5bb9\u7ed3\u6784","text":"

            \u672c\u4e66\u4e3b\u8981\u5185\u5bb9\u5305\u62ec\uff1a

            • \u590d\u6742\u5ea6\u5206\u6790\uff1a\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u7684\u8bc4\u4ef7\u7ef4\u5ea6\u4e0e\u65b9\u6cd5\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u3001\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u3001\u5e38\u89c1\u7c7b\u578b\u3001\u793a\u4f8b\u7b49\u3002
            • \u6570\u636e\u7ed3\u6784\uff1a\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff0c\u6570\u636e\u7ed3\u6784\u7684\u5206\u7c7b\u65b9\u6cd5\u3002\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u6563\u5217\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u7684\u5b9a\u4e49\u3001\u4f18\u7f3a\u70b9\u3001\u5e38\u7528\u64cd\u4f5c\u3001\u5e38\u89c1\u7c7b\u578b\u3001\u5178\u578b\u5e94\u7528\u3001\u5b9e\u73b0\u65b9\u6cd5\u7b49\u3002
            • \u7b97\u6cd5\uff1a\u641c\u7d22\u3001\u6392\u5e8f\u3001\u5206\u6cbb\u3001\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u3001\u8d2a\u5fc3\u7b49\u7b97\u6cd5\u7684\u5b9a\u4e49\u3001\u4f18\u7f3a\u70b9\u3001\u6548\u7387\u3001\u5e94\u7528\u573a\u666f\u3001\u89e3\u9898\u6b65\u9aa4\u3001\u793a\u4f8b\u9898\u76ee\u7b49\u3002

            \u56fe\uff1aHello \u7b97\u6cd5\u5185\u5bb9\u7ed3\u6784

            "},{"location":"chapter_preface/about_the_book/#013","title":"0.1.3 \u00a0 \u81f4\u8c22","text":"

            \u5728\u672c\u4e66\u7684\u521b\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u5f97\u5230\u4e86\u8bb8\u591a\u4eba\u7684\u5e2e\u52a9\uff0c\u5305\u62ec\u4f46\u4e0d\u9650\u4e8e\uff1a

            • \u611f\u8c22\u6211\u5728\u516c\u53f8\u7684\u5bfc\u5e08\u674e\u6c50\u535a\u58eb\uff0c\u5728\u4e00\u6b21\u7545\u8c08\u4e2d\u60a8\u9f13\u52b1\u6211\u201c\u5feb\u884c\u52a8\u8d77\u6765\u201d\uff0c\u575a\u5b9a\u4e86\u6211\u5199\u8fd9\u672c\u4e66\u7684\u51b3\u5fc3\u3002
            • \u611f\u8c22\u6211\u7684\u5973\u670b\u53cb\u6ce1\u6ce1\u4f5c\u4e3a\u672c\u4e66\u7684\u9996\u4f4d\u8bfb\u8005\uff0c\u4ece\u7b97\u6cd5\u5c0f\u767d\u7684\u89d2\u5ea6\u63d0\u51fa\u8bb8\u591a\u5b9d\u8d35\u5efa\u8bae\uff0c\u4f7f\u5f97\u672c\u4e66\u66f4\u9002\u5408\u65b0\u624b\u9605\u8bfb\u3002
            • \u611f\u8c22\u817e\u5b9d\u3001\u7426\u5b9d\u3001\u98de\u5b9d\u4e3a\u672c\u4e66\u8d77\u4e86\u4e00\u4e2a\u5bcc\u6709\u521b\u610f\u7684\u540d\u5b57\uff0c\u5524\u8d77\u5927\u5bb6\u5199\u4e0b\u7b2c\u4e00\u884c\u4ee3\u7801 \"Hello World!\" \u7684\u7f8e\u597d\u56de\u5fc6\u3002
            • \u611f\u8c22\u82cf\u6f7c\u4e3a\u672c\u4e66\u8bbe\u8ba1\u4e86\u7cbe\u7f8e\u7684\u5c01\u9762\u548c LOGO\uff0c\u5e76\u5728\u6211\u7684\u5f3a\u8feb\u75c7\u4e0b\u591a\u6b21\u8010\u5fc3\u4fee\u6539\u3002
            • \u611f\u8c22 @squidfunk \u63d0\u4f9b\u7684\u5199\u4f5c\u6392\u7248\u5efa\u8bae\uff0c\u4ee5\u53ca\u6770\u51fa\u7684\u5f00\u6e90\u9879\u76ee Material-for-MkDocs \u3002

            \u5728\u5199\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u9605\u8bfb\u4e86\u8bb8\u591a\u5173\u4e8e\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u6559\u6750\u548c\u6587\u7ae0\u3002\u8fd9\u4e9b\u4f5c\u54c1\u4e3a\u672c\u4e66\u63d0\u4f9b\u4e86\u4f18\u79c0\u7684\u8303\u672c\uff0c\u786e\u4fdd\u4e86\u672c\u4e66\u5185\u5bb9\u7684\u51c6\u786e\u6027\u4e0e\u54c1\u8d28\u3002\u5728\u6b64\u611f\u8c22\u6240\u6709\u8001\u5e08\u548c\u524d\u8f88\u4eec\u7684\u6770\u51fa\u8d21\u732e\uff01

            \u672c\u4e66\u5021\u5bfc\u624b\u8111\u5e76\u7528\u7684\u5b66\u4e60\u65b9\u5f0f\uff0c\u5728\u8fd9\u4e00\u70b9\u4e0a\u6df1\u53d7\u300a\u52a8\u624b\u5b66\u6df1\u5ea6\u5b66\u4e60\u300b\u7684\u542f\u53d1\u3002\u5728\u6b64\u5411\u5404\u4f4d\u8bfb\u8005\u5f3a\u70c8\u63a8\u8350\u8fd9\u672c\u4f18\u79c0\u8457\u4f5c\u3002

            \u8877\u5fc3\u611f\u8c22\u6211\u7684\u7236\u6bcd\uff0c\u6b63\u662f\u4f60\u4eec\u4e00\u76f4\u4ee5\u6765\u7684\u652f\u6301\u4e0e\u9f13\u52b1\uff0c\u8ba9\u6211\u6709\u673a\u4f1a\u505a\u8fd9\u4ef6\u5bcc\u6709\u8da3\u5473\u7684\u4e8b\u3002

            "},{"location":"chapter_preface/suggestions/","title":"0.2 \u00a0 \u5982\u4f55\u4f7f\u7528\u672c\u4e66","text":"

            Tip

            \u4e3a\u4e86\u83b7\u5f97\u6700\u4f73\u7684\u9605\u8bfb\u4f53\u9a8c\uff0c\u5efa\u8bae\u60a8\u901a\u8bfb\u672c\u8282\u5185\u5bb9\u3002

            "},{"location":"chapter_preface/suggestions/#021","title":"0.2.1 \u00a0 \u884c\u6587\u98ce\u683c\u7ea6\u5b9a","text":"
            • \u6807\u9898\u540e\u6807\u6ce8 * \u7684\u662f\u9009\u8bfb\u7ae0\u8282\uff0c\u5185\u5bb9\u76f8\u5bf9\u56f0\u96be\u3002\u5982\u679c\u4f60\u7684\u65f6\u95f4\u6709\u9650\uff0c\u5efa\u8bae\u53ef\u4ee5\u5148\u8df3\u8fc7\u3002
            • \u6587\u7ae0\u4e2d\u7684\u91cd\u8981\u540d\u8bcd\u4f1a\u7528 \u300c \u300d \u62ec\u53f7\u6807\u6ce8\uff0c\u4f8b\u5982 \u300c\u6570\u7ec4 Array\u300d \u3002\u8bf7\u52a1\u5fc5\u8bb0\u4f4f\u8fd9\u4e9b\u540d\u8bcd\uff0c\u5305\u62ec\u82f1\u6587\u7ffb\u8bd1\uff0c\u4ee5\u4fbf\u540e\u7eed\u9605\u8bfb\u6587\u732e\u65f6\u4f7f\u7528\u3002
            • \u52a0\u7c97\u7684\u6587\u5b57 \u8868\u793a\u91cd\u70b9\u5185\u5bb9\u6216\u603b\u7ed3\u6027\u8bed\u53e5\uff0c\u8fd9\u7c7b\u6587\u5b57\u503c\u5f97\u7279\u522b\u5173\u6ce8\u3002
            • \u4e13\u6709\u540d\u8bcd\u548c\u6709\u7279\u6307\u542b\u4e49\u7684\u8bcd\u53e5\u4f1a\u4f7f\u7528 \u201c\u53cc\u5f15\u53f7\u201d \u6807\u6ce8\uff0c\u4ee5\u907f\u514d\u6b67\u4e49\u3002
            • \u6d89\u53ca\u5230\u7f16\u7a0b\u8bed\u8a00\u4e4b\u95f4\u4e0d\u4e00\u81f4\u7684\u540d\u8bcd\uff0c\u672c\u4e66\u5747\u4ee5 Python \u4e3a\u51c6\uff0c\u4f8b\u5982\u4f7f\u7528 \\(\\text{None}\\) \u6765\u8868\u793a\u201c\u7a7a\u201d\u3002
            • \u672c\u4e66\u90e8\u5206\u653e\u5f03\u4e86\u7f16\u7a0b\u8bed\u8a00\u7684\u6ce8\u91ca\u89c4\u8303\uff0c\u4ee5\u6362\u53d6\u66f4\u52a0\u7d27\u51d1\u7684\u5185\u5bb9\u6392\u7248\u3002\u6ce8\u91ca\u4e3b\u8981\u5206\u4e3a\u4e09\u79cd\u7c7b\u578b\uff1a\u6807\u9898\u6ce8\u91ca\u3001\u5185\u5bb9\u6ce8\u91ca\u3001\u591a\u884c\u6ce8\u91ca\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            \"\"\"\u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49\"\"\"\n# \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\"\"\"\n\u591a\u884c\n\u6ce8\u91ca\n\"\"\"\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            // \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n// \u591a\u884c\n// \u6ce8\u91ca\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            \n
            "},{"location":"chapter_preface/suggestions/#022","title":"0.2.2 \u00a0 \u5728\u52a8\u753b\u56fe\u89e3\u4e2d\u9ad8\u6548\u5b66\u4e60","text":"

            \u76f8\u8f83\u4e8e\u6587\u5b57\uff0c\u89c6\u9891\u548c\u56fe\u7247\u5177\u6709\u66f4\u9ad8\u7684\u4fe1\u606f\u5bc6\u5ea6\u548c\u7ed3\u6784\u5316\u7a0b\u5ea6\uff0c\u66f4\u6613\u4e8e\u7406\u89e3\u3002\u5728\u672c\u4e66\u4e2d\uff0c\u91cd\u70b9\u548c\u96be\u70b9\u77e5\u8bc6\u5c06\u4e3b\u8981\u901a\u8fc7\u52a8\u753b\u548c\u56fe\u89e3\u5f62\u5f0f\u5c55\u793a\uff0c\u800c\u6587\u5b57\u5219\u4f5c\u4e3a\u52a8\u753b\u548c\u56fe\u7247\u7684\u89e3\u91ca\u4e0e\u8865\u5145\u3002

            \u5728\u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u5982\u679c\u53d1\u73b0\u67d0\u6bb5\u5185\u5bb9\u63d0\u4f9b\u4e86\u52a8\u753b\u6216\u56fe\u89e3\uff0c\u5efa\u8bae\u4ee5\u56fe\u4e3a\u4e3b\u7ebf\uff0c\u4ee5\u6587\u5b57\uff08\u901a\u5e38\u4f4d\u4e8e\u56fe\u50cf\u4e0a\u65b9\uff09\u4e3a\u8f85\uff0c\u7efc\u5408\u4e24\u8005\u6765\u7406\u89e3\u5185\u5bb9\u3002

            \u56fe\uff1a\u52a8\u753b\u56fe\u89e3\u793a\u4f8b

            "},{"location":"chapter_preface/suggestions/#023","title":"0.2.3 \u00a0 \u5728\u4ee3\u7801\u5b9e\u8df5\u4e2d\u52a0\u6df1\u7406\u89e3","text":"

            \u672c\u4e66\u7684\u914d\u5957\u4ee3\u7801\u88ab\u6258\u7ba1\u5728 GitHub \u4ed3\u5e93\u3002\u6e90\u4ee3\u7801\u9644\u6709\u6d4b\u8bd5\u6837\u4f8b\uff0c\u53ef\u4e00\u952e\u8fd0\u884c\u3002

            \u5982\u679c\u65f6\u95f4\u5141\u8bb8\uff0c\u5efa\u8bae\u4f60\u53c2\u7167\u4ee3\u7801\u81ea\u884c\u6572\u4e00\u904d\u3002\u5982\u679c\u5b66\u4e60\u65f6\u95f4\u6709\u9650\uff0c\u8bf7\u81f3\u5c11\u901a\u8bfb\u5e76\u8fd0\u884c\u6240\u6709\u4ee3\u7801\u3002

            \u4e0e\u9605\u8bfb\u4ee3\u7801\u76f8\u6bd4\uff0c\u7f16\u5199\u4ee3\u7801\u7684\u8fc7\u7a0b\u5f80\u5f80\u80fd\u5e26\u6765\u66f4\u591a\u6536\u83b7\u3002\u52a8\u624b\u5b66\uff0c\u624d\u662f\u771f\u7684\u5b66\u3002

            \u56fe\uff1a\u8fd0\u884c\u4ee3\u7801\u793a\u4f8b

            \u7b2c\u4e00\u6b65\uff1a\u5b89\u88c5\u672c\u5730\u7f16\u7a0b\u73af\u5883\u3002\u8bf7\u53c2\u7167\u9644\u5f55\u6559\u7a0b\u8fdb\u884c\u5b89\u88c5\uff0c\u5982\u679c\u5df2\u5b89\u88c5\u5219\u53ef\u8df3\u8fc7\u6b64\u6b65\u9aa4\u3002

            \u7b2c\u4e8c\u6b65\uff1a\u4e0b\u8f7d\u4ee3\u7801\u4ed3\u3002\u5982\u679c\u5df2\u7ecf\u5b89\u88c5 Git \uff0c\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u514b\u9686\u672c\u4ed3\u5e93\u3002

            git clone https://github.com/krahets/hello-algo.git\n

            \u5f53\u7136\uff0c\u4f60\u4e5f\u53ef\u4ee5\u70b9\u51fb\u201cDownload ZIP\u201d\u76f4\u63a5\u4e0b\u8f7d\u4ee3\u7801\u538b\u7f29\u5305\uff0c\u7136\u540e\u5728\u672c\u5730\u89e3\u538b\u5373\u53ef\u3002

            \u56fe\uff1a\u514b\u9686\u4ed3\u5e93\u4e0e\u4e0b\u8f7d\u4ee3\u7801

            \u7b2c\u4e09\u6b65\uff1a\u8fd0\u884c\u6e90\u4ee3\u7801\u3002\u5982\u679c\u4ee3\u7801\u5757\u9876\u90e8\u6807\u6709\u6587\u4ef6\u540d\u79f0\uff0c\u5219\u53ef\u4ee5\u5728\u4ed3\u5e93\u7684 codes \u6587\u4ef6\u5939\u4e2d\u627e\u5230\u76f8\u5e94\u7684\u6e90\u4ee3\u7801\u6587\u4ef6\u3002\u6e90\u4ee3\u7801\u6587\u4ef6\u5c06\u5e2e\u52a9\u4f60\u8282\u7701\u4e0d\u5fc5\u8981\u7684\u8c03\u8bd5\u65f6\u95f4\uff0c\u8ba9\u4f60\u80fd\u591f\u4e13\u6ce8\u4e8e\u5b66\u4e60\u5185\u5bb9\u3002

            \u56fe\uff1a\u4ee3\u7801\u5757\u4e0e\u5bf9\u5e94\u7684\u6e90\u4ee3\u7801\u6587\u4ef6

            "},{"location":"chapter_preface/suggestions/#024","title":"0.2.4 \u00a0 \u5728\u63d0\u95ee\u8ba8\u8bba\u4e2d\u5171\u540c\u6210\u957f","text":"

            \u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u8bf7\u4e0d\u8981\u201c\u60ef\u7740\u201d\u90a3\u4e9b\u6ca1\u5b66\u660e\u767d\u7684\u77e5\u8bc6\u70b9\u3002\u6b22\u8fce\u5728\u8bc4\u8bba\u533a\u63d0\u51fa\u4f60\u7684\u95ee\u9898\uff0c\u6211\u548c\u5176\u4ed6\u5c0f\u4f19\u4f34\u4eec\u5c06\u7aed\u8bda\u4e3a\u4f60\u89e3\u7b54\uff0c\u4e00\u822c\u60c5\u51b5\u4e0b\u53ef\u5728\u4e24\u5929\u5185\u5f97\u5230\u56de\u590d\u3002

            \u540c\u65f6\uff0c\u4e5f\u5e0c\u671b\u60a8\u80fd\u5728\u8bc4\u8bba\u533a\u591a\u82b1\u4e9b\u65f6\u95f4\u3002\u4e00\u65b9\u9762\uff0c\u60a8\u53ef\u4ee5\u4e86\u89e3\u5927\u5bb6\u9047\u5230\u7684\u95ee\u9898\uff0c\u4ece\u800c\u67e5\u6f0f\u8865\u7f3a\uff0c\u8fd9\u5c06\u6709\u52a9\u4e8e\u6fc0\u53d1\u66f4\u6df1\u5165\u7684\u601d\u8003\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u5e0c\u671b\u60a8\u80fd\u6177\u6168\u5730\u56de\u7b54\u5176\u4ed6\u5c0f\u4f19\u4f34\u7684\u95ee\u9898\u3001\u5206\u4eab\u60a8\u7684\u89c1\u89e3\uff0c\u8ba9\u5927\u5bb6\u5171\u540c\u5b66\u4e60\u548c\u8fdb\u6b65\u3002

            \u56fe\uff1a\u8bc4\u8bba\u533a\u793a\u4f8b

            "},{"location":"chapter_preface/suggestions/#025","title":"0.2.5 \u00a0 \u7b97\u6cd5\u5b66\u4e60\u8def\u7ebf","text":"

            \u4ece\u603b\u4f53\u4e0a\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5b66\u4e60\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u8fc7\u7a0b\u5212\u5206\u4e3a\u4e09\u4e2a\u9636\u6bb5\uff1a

            1. \u7b97\u6cd5\u5165\u95e8\u3002\u6211\u4eec\u9700\u8981\u719f\u6089\u5404\u79cd\u6570\u636e\u7ed3\u6784\u7684\u7279\u70b9\u548c\u7528\u6cd5\uff0c\u5b66\u4e60\u4e0d\u540c\u7b97\u6cd5\u7684\u539f\u7406\u3001\u6d41\u7a0b\u3001\u7528\u9014\u548c\u6548\u7387\u7b49\u65b9\u9762\u5185\u5bb9\u3002
            2. \u5237\u7b97\u6cd5\u9898\u3002\u5efa\u8bae\u4ece\u70ed\u95e8\u9898\u76ee\u5f00\u5237\uff0c\u5982\u5251\u6307 Offer\u548cLeetCode Hot 100\uff0c\u5148\u79ef\u7d2f\u81f3\u5c11 100 \u9053\u9898\u76ee\uff0c\u719f\u6089\u4e3b\u6d41\u7684\u7b97\u6cd5\u95ee\u9898\u3002\u521d\u6b21\u5237\u9898\u65f6\uff0c\u201c\u77e5\u8bc6\u9057\u5fd8\u201d\u53ef\u80fd\u662f\u4e00\u4e2a\u6311\u6218\uff0c\u4f46\u8bf7\u653e\u5fc3\uff0c\u8fd9\u662f\u5f88\u6b63\u5e38\u7684\u3002\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u201c\u827e\u5bbe\u6d69\u65af\u9057\u5fd8\u66f2\u7ebf\u201d\u6765\u590d\u4e60\u9898\u76ee\uff0c\u901a\u5e38\u5728\u8fdb\u884c 3-5 \u8f6e\u7684\u91cd\u590d\u540e\uff0c\u5c31\u80fd\u5c06\u5176\u7262\u8bb0\u5728\u5fc3\u3002
            3. \u642d\u5efa\u77e5\u8bc6\u4f53\u7cfb\u3002\u5728\u5b66\u4e60\u65b9\u9762\uff0c\u6211\u4eec\u53ef\u4ee5\u9605\u8bfb\u7b97\u6cd5\u4e13\u680f\u6587\u7ae0\u3001\u89e3\u9898\u6846\u67b6\u548c\u7b97\u6cd5\u6559\u6750\uff0c\u4ee5\u4e0d\u65ad\u4e30\u5bcc\u77e5\u8bc6\u4f53\u7cfb\u3002\u5728\u5237\u9898\u65b9\u9762\uff0c\u53ef\u4ee5\u5c1d\u8bd5\u91c7\u7528\u8fdb\u9636\u5237\u9898\u7b56\u7565\uff0c\u5982\u6309\u4e13\u9898\u5206\u7c7b\u3001\u4e00\u9898\u591a\u89e3\u3001\u4e00\u89e3\u591a\u9898\u7b49\uff0c\u76f8\u5173\u7684\u5237\u9898\u5fc3\u5f97\u53ef\u4ee5\u5728\u5404\u4e2a\u793e\u533a\u627e\u5230\u3002

            \u4f5c\u4e3a\u4e00\u672c\u5165\u95e8\u6559\u7a0b\uff0c\u672c\u4e66\u5185\u5bb9\u4e3b\u8981\u6db5\u76d6\u201c\u7b2c\u4e00\u9636\u6bb5\u201d\uff0c\u65e8\u5728\u5e2e\u52a9\u4f60\u66f4\u9ad8\u6548\u5730\u5c55\u5f00\u7b2c\u4e8c\u548c\u7b2c\u4e09\u9636\u6bb5\u7684\u5b66\u4e60\u3002

            \u56fe\uff1a\u7b97\u6cd5\u5b66\u4e60\u8def\u7ebf

            "},{"location":"chapter_preface/summary/","title":"0.3 \u00a0 \u5c0f\u7ed3","text":"
            • \u672c\u4e66\u7684\u4e3b\u8981\u53d7\u4f17\u662f\u7b97\u6cd5\u521d\u5b66\u8005\u3002\u5982\u679c\u5df2\u6709\u4e00\u5b9a\u57fa\u7840\uff0c\u672c\u4e66\u80fd\u5e2e\u52a9\u60a8\u7cfb\u7edf\u56de\u987e\u7b97\u6cd5\u77e5\u8bc6\uff0c\u4e66\u5185\u6e90\u4ee3\u7801\u4e5f\u53ef\u4f5c\u4e3a\u201c\u5237\u9898\u5de5\u5177\u5e93\u201d\u4f7f\u7528\u3002
            • \u4e66\u4e2d\u5185\u5bb9\u4e3b\u8981\u5305\u62ec\u590d\u6742\u5ea6\u5206\u6790\u3001\u6570\u636e\u7ed3\u6784\u3001\u7b97\u6cd5\u4e09\u90e8\u5206\uff0c\u6db5\u76d6\u4e86\u8be5\u9886\u57df\u7684\u5927\u90e8\u5206\u4e3b\u9898\u3002
            • \u5bf9\u4e8e\u7b97\u6cd5\u65b0\u624b\uff0c\u5728\u521d\u5b66\u9636\u6bb5\u9605\u8bfb\u4e00\u672c\u5165\u95e8\u4e66\u7c4d\u81f3\u5173\u91cd\u8981\uff0c\u53ef\u4ee5\u5c11\u8d70\u8bb8\u591a\u5f2f\u8def\u3002
            • \u4e66\u5185\u7684\u52a8\u753b\u548c\u56fe\u89e3\u901a\u5e38\u7528\u4e8e\u4ecb\u7ecd\u91cd\u70b9\u548c\u96be\u70b9\u77e5\u8bc6\u3002\u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u5e94\u7ed9\u4e88\u8fd9\u4e9b\u5185\u5bb9\u66f4\u591a\u5173\u6ce8\u3002
            • \u5b9e\u8df5\u4e43\u5b66\u4e60\u7f16\u7a0b\u4e4b\u6700\u4f73\u9014\u5f84\u3002\u5f3a\u70c8\u5efa\u8bae\u8fd0\u884c\u6e90\u4ee3\u7801\u5e76\u4eb2\u81ea\u6572\u6253\u4ee3\u7801\u3002
            • \u672c\u4e66\u7f51\u9875\u7248\u7684\u6bcf\u4e2a\u7ae0\u8282\u90fd\u8bbe\u6709\u8ba8\u8bba\u533a\uff0c\u6b22\u8fce\u968f\u65f6\u5206\u4eab\u4f60\u7684\u7591\u60d1\u4e0e\u89c1\u89e3\u3002
            "},{"location":"chapter_reference/","title":"\u53c2\u8003\u6587\u732e","text":"

            [1] Thomas H. Cormen, et al. Introduction to Algorithms (3rd Edition).

            [2] Aditya Bhargava. Grokking Algorithms: An Illustrated Guide for Programmers and Other Curious People (1st Edition).

            [3] \u4e25\u851a\u654f. \u6570\u636e\u7ed3\u6784\uff08C \u8bed\u8a00\u7248\uff09.

            [4] \u9093\u4fca\u8f89. \u6570\u636e\u7ed3\u6784\uff08C++ \u8bed\u8a00\u7248\uff0c\u7b2c\u4e09\u7248\uff09.

            [5] \u9a6c\u514b \u827e\u4f26 \u7ef4\u65af\u8457\uff0c\u9648\u8d8a\u8bd1. \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5206\u6790\uff1aJava\u8bed\u8a00\u63cf\u8ff0\uff08\u7b2c\u4e09\u7248\uff09.

            [6] \u7a0b\u6770. \u5927\u8bdd\u6570\u636e\u7ed3\u6784.

            [7] \u738b\u4e89. \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u4e4b\u7f8e.

            [8] Gayle Laakmann McDowell. Cracking the Coding Interview: 189 Programming Questions and Solutions (6th Edition).

            [9] Aston Zhang, et al. Dive into Deep Learning.

            "},{"location":"chapter_searching/","title":"\u7b2c 10 \u7ae0 \u00a0 \u641c\u7d22","text":"

            Abstract

            \u641c\u7d22\u662f\u4e00\u573a\u672a\u77e5\u7684\u5192\u9669\uff0c\u6211\u4eec\u6216\u8bb8\u9700\u8981\u8d70\u904d\u795e\u79d8\u7a7a\u95f4\u7684\u6bcf\u4e2a\u89d2\u843d\uff0c\u53c8\u6216\u8bb8\u53ef\u4ee5\u5feb\u901f\u9501\u5b9a\u76ee\u6807\u3002

            \u5728\u8fd9\u573a\u5bfb\u89c5\u4e4b\u65c5\u4e2d\uff0c\u6bcf\u4e00\u6b21\u63a2\u7d22\u90fd\u53ef\u80fd\u5f97\u5230\u4e00\u4e2a\u672a\u66fe\u6599\u60f3\u7684\u7b54\u6848\u3002

            "},{"location":"chapter_searching/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 10.1 \u00a0 \u4e8c\u5206\u67e5\u627e
            • 10.2 \u00a0 \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9
            • 10.3 \u00a0 \u4e8c\u5206\u67e5\u627e\u8fb9\u754c
            • 10.4 \u00a0 \u54c8\u5e0c\u4f18\u5316\u7b56\u7565
            • 10.5 \u00a0 \u91cd\u8bc6\u641c\u7d22\u7b97\u6cd5
            • 10.6 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_searching/binary_search/","title":"10.1 \u00a0 \u4e8c\u5206\u67e5\u627e","text":"

            \u300c\u4e8c\u5206\u67e5\u627e Binary Search\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5206\u6cbb\u601d\u60f3\u7684\u9ad8\u6548\u641c\u7d22\u7b97\u6cd5\u3002\u5b83\u5229\u7528\u6570\u636e\u7684\u6709\u5e8f\u6027\uff0c\u6bcf\u8f6e\u51cf\u5c11\u4e00\u534a\u641c\u7d22\u8303\u56f4\uff0c\u76f4\u81f3\u627e\u5230\u76ee\u6807\u5143\u7d20\u6216\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u4e3a\u6b62\u3002

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5143\u7d20\u6309\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u6392\u5217\uff0c\u6570\u7ec4\u4e0d\u5305\u542b\u91cd\u590d\u5143\u7d20\u3002\u8bf7\u67e5\u627e\u5e76\u8fd4\u56de\u5143\u7d20 target \u5728\u8be5\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15\u3002\u82e5\u6570\u7ec4\u4e0d\u5305\u542b\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002

            \u56fe\uff1a\u4e8c\u5206\u67e5\u627e\u793a\u4f8b\u6570\u636e

            \u5bf9\u4e8e\u4e0a\u8ff0\u95ee\u9898\uff0c\u6211\u4eec\u5148\u521d\u59cb\u5316\u6307\u9488 \\(i = 0\\) \u548c \\(j = n - 1\\) \uff0c\u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u548c\u5c3e\u5143\u7d20\uff0c\u4ee3\u8868\u641c\u7d22\u533a\u95f4 \\([0, n - 1]\\) \u3002\u8bf7\u6ce8\u610f\uff0c\u4e2d\u62ec\u53f7\u8868\u793a\u95ed\u533a\u95f4\uff0c\u5176\u5305\u542b\u8fb9\u754c\u503c\u672c\u8eab\u3002

            \u63a5\u4e0b\u6765\uff0c\u5faa\u73af\u6267\u884c\u4ee5\u4e0b\u4e24\u4e2a\u6b65\u9aa4\uff1a

            1. \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 \\(m = \\lfloor {(i + j) / 2} \\rfloor\\) \uff0c\u5176\u4e2d \\(\\lfloor \\space \\rfloor\\) \u8868\u793a\u5411\u4e0b\u53d6\u6574\u64cd\u4f5c\u3002
            2. \u5224\u65ad nums[m] \u548c target \u7684\u5927\u5c0f\u5173\u7cfb\uff0c\u5206\u4e3a\u4e09\u79cd\u60c5\u51b5\uff1a
              1. \u5f53 nums[m] < target \u65f6\uff0c\u8bf4\u660e target \u5728\u533a\u95f4 \\([m + 1, j]\\) \u4e2d\uff0c\u56e0\u6b64\u6267\u884c \\(i = m + 1\\) \u3002
              2. \u5f53 nums[m] > target \u65f6\uff0c\u8bf4\u660e target \u5728\u533a\u95f4 \\([i, m - 1]\\) \u4e2d\uff0c\u56e0\u6b64\u6267\u884c \\(j = m - 1\\) \u3002
              3. \u5f53 nums[m] = target \u65f6\uff0c\u8bf4\u660e\u627e\u5230 target \uff0c\u56e0\u6b64\u8fd4\u56de\u7d22\u5f15 \\(m\\) \u3002

            \u82e5\u6570\u7ec4\u4e0d\u5305\u542b\u76ee\u6807\u5143\u7d20\uff0c\u641c\u7d22\u533a\u95f4\u6700\u7ec8\u4f1a\u7f29\u5c0f\u4e3a\u7a7a\u3002\u6b64\u65f6\u8fd4\u56de \\(-1\\) \u3002

            <1><2><3><4><5><6><7>

            \u56fe\uff1abinary_search_step1

            \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e \\(i\\) \u548c \\(j\\) \u90fd\u662f int \u7c7b\u578b\uff0c\u56e0\u6b64 \\(i + j\\) \u53ef\u80fd\u4f1a\u8d85\u51fa int \u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u3002\u4e3a\u4e86\u907f\u514d\u5927\u6570\u8d8a\u754c\uff0c\u6211\u4eec\u901a\u5e38\u91c7\u7528\u516c\u5f0f \\(m = \\lfloor {i + (j - i) / 2} \\rfloor\\) \u6765\u8ba1\u7b97\u4e2d\u70b9\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search.java
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(int[] nums, int target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nint i = 0, j = nums.length - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.cpp
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(vector<int> &nums, int target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nint i = 0, j = nums.size() - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.py
            def binary_search(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09\"\"\"\n# \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\ni, j = 0, len(nums) - 1\n# \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile i <= j:\n# \u7406\u8bba\u4e0a Python \u7684\u6570\u5b57\u53ef\u4ee5\u65e0\u9650\u5927\uff08\u53d6\u51b3\u4e8e\u5185\u5b58\u5927\u5c0f\uff09\uff0c\u65e0\u987b\u8003\u8651\u5927\u6570\u8d8a\u754c\u95ee\u9898\nm = (i + j) // 2  # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target:\ni = m + 1  # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\nelif nums[m] > target:\nj = m - 1  # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nelse:\nreturn m  # \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn -1  # \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n
            binary_search.go
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunc binarySearch(nums []int, target int) int {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\ni, j := 0, len(nums)-1\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nfor i <= j {\nm := i + (j-i)/2      // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1\n} else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1\n} else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1\n}\n
            binary_search.js
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunction binarySearch(nums, target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nlet i = 0,\nj = nums.length - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m \uff0c\u4f7f\u7528 parseInt() \u5411\u4e0b\u53d6\u6574\nconst m = parseInt(i + (j - i) / 2);\nif (nums[m] < target)\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\nelse if (nums[m] > target)\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\nelse return m; // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.ts
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunction binarySearch(nums: number[], target: number): number {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nlet i = 0,\nj = nums.length - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nconst m = Math.floor(i + (j - i) / 2);\nif (nums[m] < target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\n} else if (nums[m] > target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\nreturn -1; // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n}\n
            binary_search.c
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(int *nums, int len, int target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nint i = 0, j = len - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.cs
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(int[] nums, int target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nint i = 0, j = nums.Length - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nint m = i + (j - i) / 2;   // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)      // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\nelse                       // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.swift
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunc binarySearch(nums: [Int], target: Int) -> Int {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nvar i = 0\nvar j = nums.count - 1\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile i <= j {\nlet m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1\n} else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1\n} else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1\n}\n
            binary_search.zig
            // \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09\nfn binarySearch(comptime T: type, nums: std.ArrayList(T), target: T) T {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nvar i: usize = 0;\nvar j: usize = nums.items.len - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nvar m = i + (j - i) / 2;                // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums.items[m] < target) {           // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\n} else if (nums.items[m] > target) {    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\n} else {                                // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn @intCast(m);\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.dart
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(List<int> nums, int target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nint i = 0, j = nums.length - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nint m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\n} else if (nums[m] > target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.rs
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfn binary_search(nums: &[i32], target: i32) -> i32 {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nlet mut i = 0;\nlet mut j = nums.len() as i32 - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile i <= j {\nlet m = i + (j - i) / 2;      // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m as usize] < target {         // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\n} else if nums[m as usize] > target {  // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\n} else {                      // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}                       }\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n

            \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u3002\u6bcf\u8f6e\u7f29\u5c0f\u4e00\u534a\u533a\u95f4\uff0c\u56e0\u6b64\u4e8c\u5206\u5faa\u73af\u6b21\u6570\u4e3a \\(\\log_2 n\\) \u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002\u6307\u9488 i , j \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7a7a\u95f4\u3002

            "},{"location":"chapter_searching/binary_search/#1011","title":"10.1.1 \u00a0 \u533a\u95f4\u8868\u793a\u65b9\u6cd5","text":"

            \u9664\u4e86\u4e0a\u8ff0\u7684\u53cc\u95ed\u533a\u95f4\u5916\uff0c\u5e38\u89c1\u7684\u533a\u95f4\u8868\u793a\u8fd8\u6709\u201c\u5de6\u95ed\u53f3\u5f00\u201d\u533a\u95f4\uff0c\u5b9a\u4e49\u4e3a \\([0, n)\\) \uff0c\u5373\u5de6\u8fb9\u754c\u5305\u542b\u81ea\u8eab\uff0c\u53f3\u8fb9\u754c\u4e0d\u5305\u542b\u81ea\u8eab\u3002\u5728\u8be5\u8868\u793a\u4e0b\uff0c\u533a\u95f4 \\([i, j]\\) \u5728 \\(i = j\\) \u65f6\u4e3a\u7a7a\u3002

            \u6211\u4eec\u53ef\u4ee5\u57fa\u4e8e\u8be5\u8868\u793a\u5b9e\u73b0\u5177\u6709\u76f8\u540c\u529f\u80fd\u7684\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search.java
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nint binarySearchLCRO(int[] nums, int target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nint i = 0, j = nums.length;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.cpp
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nint binarySearchLCRO(vector<int> &nums, int target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nint i = 0, j = nums.size();\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.py
            def binary_search_lcro(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09\"\"\"\n# \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\ni, j = 0, len(nums)\n# \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile i < j:\nm = (i + j) // 2  # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target:\ni = m + 1  # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\nelif nums[m] > target:\nj = m  # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nelse:\nreturn m  # \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn -1  # \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n
            binary_search.go
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nfunc binarySearchLCRO(nums []int, target int) int {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\ni, j := 0, len(nums)\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nfor i < j {\nm := i + (j-i)/2      // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1\n} else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m\n} else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1\n}\n
            binary_search.js
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nfunction binarySearchLCRO(nums, target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nlet i = 0,\nj = nums.length;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m \uff0c\u4f7f\u7528 parseInt() \u5411\u4e0b\u53d6\u6574\nconst m = parseInt(i + (j - i) / 2);\nif (nums[m] < target)\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\nelse if (nums[m] > target)\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nelse return m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.ts
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nfunction binarySearchLCRO(nums: number[], target: number): number {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nlet i = 0,\nj = nums.length;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nconst m = Math.floor(i + (j - i) / 2);\nif (nums[m] < target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\n} else if (nums[m] > target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\nreturn -1; // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n}\n
            binary_search.c
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nint binarySearchLCRO(int *nums, int len, int target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nint i = 0, j = len;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.cs
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nint binarySearchLCRO(int[] nums, int target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nint i = 0, j = nums.Length;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\nint m = i + (j - i) / 2;   // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)      // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\nelse                       // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.swift
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nfunc binarySearchLCRO(nums: [Int], target: Int) -> Int {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nvar i = 0\nvar j = nums.count\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile i < j {\nlet m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1\n} else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m\n} else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1\n}\n
            binary_search.zig
            // \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09\nfn binarySearchLCRO(comptime T: type, nums: std.ArrayList(T), target: T) T {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nvar i: usize = 0;\nvar j: usize = nums.items.len;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nvar m = i + (j - i) / 2;                // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums.items[m] < target) {           // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\n} else if (nums.items[m] > target) {    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\n} else {                                // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn @intCast(m);\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.dart
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint binarySearchLCRO(List<int> nums, int target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nint i = 0, j = nums.length;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\nint m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\n} else if (nums[m] > target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.rs
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nfn binary_search_lcro(nums: &[i32], target: i32) -> i32 {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nlet mut i = 0;\nlet mut j = nums.len() as i32;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile i < j {\nlet m = i + (j - i) / 2;      // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m as usize] < target {         // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\n} else if nums[m as usize] > target {  // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m - 1;\n} else {                      // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}                       }\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5728\u4e24\u79cd\u533a\u95f4\u8868\u793a\u4e0b\uff0c\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u7684\u521d\u59cb\u5316\u3001\u5faa\u73af\u6761\u4ef6\u548c\u7f29\u5c0f\u533a\u95f4\u64cd\u4f5c\u7686\u6709\u6240\u4e0d\u540c\u3002

            \u5728\u201c\u53cc\u95ed\u533a\u95f4\u201d\u8868\u793a\u6cd5\u4e2d\uff0c\u7531\u4e8e\u5de6\u53f3\u8fb9\u754c\u90fd\u88ab\u5b9a\u4e49\u4e3a\u95ed\u533a\u95f4\uff0c\u56e0\u6b64\u6307\u9488 \\(i\\) \u548c \\(j\\) \u7f29\u5c0f\u533a\u95f4\u64cd\u4f5c\u4e5f\u662f\u5bf9\u79f0\u7684\u3002\u8fd9\u6837\u66f4\u4e0d\u5bb9\u6613\u51fa\u9519\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u901a\u5e38\u91c7\u7528\u201c\u53cc\u95ed\u533a\u95f4\u201d\u7684\u5199\u6cd5\u3002

            \u56fe\uff1a\u4e24\u79cd\u533a\u95f4\u5b9a\u4e49

            "},{"location":"chapter_searching/binary_search/#1012","title":"10.1.2 \u00a0 \u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"

            \u4e8c\u5206\u67e5\u627e\u5728\u65f6\u95f4\u548c\u7a7a\u95f4\u65b9\u9762\u90fd\u6709\u8f83\u597d\u7684\u6027\u80fd\uff1a

            • \u4e8c\u5206\u67e5\u627e\u7684\u65f6\u95f4\u6548\u7387\u9ad8\u3002\u5728\u5927\u6570\u636e\u91cf\u4e0b\uff0c\u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5177\u6709\u663e\u8457\u4f18\u52bf\u3002\u4f8b\u5982\uff0c\u5f53\u6570\u636e\u5927\u5c0f \\(n = 2^{20}\\) \u65f6\uff0c\u7ebf\u6027\u67e5\u627e\u9700\u8981 \\(2^{20} = 1048576\\) \u8f6e\u5faa\u73af\uff0c\u800c\u4e8c\u5206\u67e5\u627e\u4ec5\u9700 \\(\\log_2 2^{20} = 20\\) \u8f6e\u5faa\u73af\u3002
            • \u4e8c\u5206\u67e5\u627e\u65e0\u987b\u989d\u5916\u7a7a\u95f4\u3002\u76f8\u8f83\u4e8e\u9700\u8981\u501f\u52a9\u989d\u5916\u7a7a\u95f4\u7684\u641c\u7d22\u7b97\u6cd5\uff08\u4f8b\u5982\u54c8\u5e0c\u67e5\u627e\uff09\uff0c\u4e8c\u5206\u67e5\u627e\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\u3002

            \u7136\u800c\uff0c\u4e8c\u5206\u67e5\u627e\u5e76\u975e\u9002\u7528\u4e8e\u6240\u6709\u60c5\u51b5\uff0c\u539f\u56e0\u5982\u4e0b\uff1a

            • \u4e8c\u5206\u67e5\u627e\u4ec5\u9002\u7528\u4e8e\u6709\u5e8f\u6570\u636e\u3002\u82e5\u8f93\u5165\u6570\u636e\u65e0\u5e8f\uff0c\u4e3a\u4e86\u4f7f\u7528\u4e8c\u5206\u67e5\u627e\u800c\u4e13\u95e8\u8fdb\u884c\u6392\u5e8f\uff0c\u5f97\u4e0d\u507f\u5931\u3002\u56e0\u4e3a\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u4e3a \\(O(n \\log n)\\) \uff0c\u6bd4\u7ebf\u6027\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u90fd\u66f4\u9ad8\u3002\u5bf9\u4e8e\u9891\u7e41\u63d2\u5165\u5143\u7d20\u7684\u573a\u666f\uff0c\u4e3a\u4fdd\u6301\u6570\u7ec4\u6709\u5e8f\u6027\uff0c\u9700\u8981\u5c06\u5143\u7d20\u63d2\u5165\u5230\u7279\u5b9a\u4f4d\u7f6e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u4e5f\u662f\u975e\u5e38\u6602\u8d35\u7684\u3002
            • \u4e8c\u5206\u67e5\u627e\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u3002\u4e8c\u5206\u67e5\u627e\u9700\u8981\u8df3\u8dc3\u5f0f\uff08\u975e\u8fde\u7eed\u5730\uff09\u8bbf\u95ee\u5143\u7d20\uff0c\u800c\u5728\u94fe\u8868\u4e2d\u6267\u884c\u8df3\u8dc3\u5f0f\u8bbf\u95ee\u7684\u6548\u7387\u8f83\u4f4e\uff0c\u56e0\u6b64\u4e0d\u9002\u5408\u5e94\u7528\u5728\u94fe\u8868\u6216\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u3002
            • \u5c0f\u6570\u636e\u91cf\u4e0b\uff0c\u7ebf\u6027\u67e5\u627e\u6027\u80fd\u66f4\u4f73\u3002\u5728\u7ebf\u6027\u67e5\u627e\u4e2d\uff0c\u6bcf\u8f6e\u53ea\u9700\u8981 1 \u6b21\u5224\u65ad\u64cd\u4f5c\uff1b\u800c\u5728\u4e8c\u5206\u67e5\u627e\u4e2d\uff0c\u9700\u8981 1 \u6b21\u52a0\u6cd5\u30011 \u6b21\u9664\u6cd5\u30011 ~ 3 \u6b21\u5224\u65ad\u64cd\u4f5c\u30011 \u6b21\u52a0\u6cd5\uff08\u51cf\u6cd5\uff09\uff0c\u5171 4 ~ 6 \u4e2a\u5355\u5143\u64cd\u4f5c\uff1b\u56e0\u6b64\uff0c\u5f53\u6570\u636e\u91cf \\(n\\) \u8f83\u5c0f\u65f6\uff0c\u7ebf\u6027\u67e5\u627e\u53cd\u800c\u6bd4\u4e8c\u5206\u67e5\u627e\u66f4\u5feb\u3002
            "},{"location":"chapter_searching/binary_search_edge/","title":"10.3 \u00a0 \u4e8c\u5206\u67e5\u627e\u8fb9\u754c","text":""},{"location":"chapter_searching/binary_search_edge/#1031","title":"10.3.1 \u00a0 \u67e5\u627e\u5de6\u8fb9\u754c","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \uff0c\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\u3002\u8bf7\u8fd4\u56de\u6570\u7ec4\u4e2d\u6700\u5de6\u4e00\u4e2a\u5143\u7d20 target \u7684\u7d22\u5f15\u3002\u82e5\u6570\u7ec4\u4e2d\u4e0d\u5305\u542b\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002

            \u56de\u5fc6\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\u7684\u65b9\u6cd5\uff0c\u641c\u7d22\u5b8c\u6210\u540e \\(i\\) \u6307\u5411\u6700\u5de6\u4e00\u4e2a target \uff0c\u56e0\u6b64\u67e5\u627e\u63d2\u5165\u70b9\u672c\u8d28\u4e0a\u662f\u5728\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target \u7684\u7d22\u5f15\u3002

            \u8003\u8651\u901a\u8fc7\u67e5\u627e\u63d2\u5165\u70b9\u7684\u51fd\u6570\u5b9e\u73b0\u67e5\u627e\u5de6\u8fb9\u754c\u3002\u8bf7\u6ce8\u610f\uff0c\u6570\u7ec4\u4e2d\u53ef\u80fd\u4e0d\u5305\u542b target \uff0c\u6b64\u65f6\u6709\u4e24\u79cd\u53ef\u80fd\uff1a

            1. \u63d2\u5165\u70b9\u7684\u7d22\u5f15 \\(i\\) \u8d8a\u754c\uff1b
            2. \u5143\u7d20 nums[i] \u4e0e target \u4e0d\u76f8\u7b49\uff1b

            \u5f53\u9047\u5230\u4ee5\u4e0a\u4e24\u79cd\u60c5\u51b5\u65f6\uff0c\u76f4\u63a5\u8fd4\u56de \\(-1\\) \u5373\u53ef\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_edge.java
            /* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(int[] nums, int target) {\n// \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\nint i = binary_search_insertion.binarySearchInsertion(nums, target);\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (i == nums.length || nums[i] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i;\n}\n
            binary_search_edge.cpp
            /* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(vector<int> &nums, int target) {\n// \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\nint i = binarySearchInsertion(nums, target);\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (i == nums.size() || nums[i] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i;\n}\n
            binary_search_edge.py
            def binary_search_left_edge(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target\"\"\"\n# \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\ni = binary_search_insertion(nums, target)\n# \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif i == len(nums) or nums[i] != target:\nreturn -1\n# \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i\n
            binary_search_edge.go
            [class]{}-[func]{binarySearchLeftEdge}\n
            binary_search_edge.js
            [class]{}-[func]{binarySearchLeftEdge}\n
            binary_search_edge.ts
            [class]{}-[func]{binarySearchLeftEdge}\n
            binary_search_edge.c
            [class]{}-[func]{binarySearchLeftEdge}\n
            binary_search_edge.cs
            /* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(int[] nums, int target) {\n// \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\nint i = binary_search_insertion.binarySearchInsertion(nums, target);\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (i == nums.Length || nums[i] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i;\n}\n
            binary_search_edge.swift
            /* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfunc binarySearchLeftEdge(nums: [Int], target: Int) -> Int {\n// \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\nlet i = binarySearchInsertion(nums: nums, target: target)\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif i == nums.count || nums[i] != target {\nreturn -1\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i\n}\n
            binary_search_edge.zig
            [class]{}-[func]{binarySearchLeftEdge}\n
            binary_search_edge.dart
            /* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(List<int> nums, int target) {\n// \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\nint i = binarySearchInsertion(nums, target);\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (i == nums.length || nums[i] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i;\n}\n
            binary_search_edge.rs
            [class]{}-[func]{binary_search_left_edge}\n
            "},{"location":"chapter_searching/binary_search_edge/#1032","title":"10.3.2 \u00a0 \u67e5\u627e\u53f3\u8fb9\u754c","text":"

            \u90a3\u4e48\u5982\u4f55\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target \u5462\uff1f\u6700\u76f4\u63a5\u7684\u65b9\u5f0f\u662f\u4fee\u6539\u4ee3\u7801\uff0c\u66ff\u6362\u5728 nums[m] == target \u60c5\u51b5\u4e0b\u7684\u6307\u9488\u6536\u7f29\u64cd\u4f5c\u3002\u4ee3\u7801\u5728\u6b64\u7701\u7565\uff0c\u6709\u5174\u8da3\u7684\u540c\u5b66\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u3002

            \u4e0b\u9762\u6211\u4eec\u4ecb\u7ecd\u4e24\u79cd\u66f4\u52a0\u53d6\u5de7\u7684\u65b9\u6cd5\u3002

            "},{"location":"chapter_searching/binary_search_edge/#1","title":"1. \u00a0 \u590d\u7528\u67e5\u627e\u5de6\u8fb9\u754c","text":"

            \u5b9e\u9645\u4e0a\uff0c\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u67e5\u627e\u6700\u5de6\u5143\u7d20\u7684\u51fd\u6570\u6765\u67e5\u627e\u6700\u53f3\u5143\u7d20\uff0c\u5177\u4f53\u65b9\u6cd5\u4e3a\uff1a\u5c06\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\u3002

            \u67e5\u627e\u5b8c\u6210\u540e\uff0c\u6307\u9488 \\(i\\) \u6307\u5411\u6700\u5de6\u4e00\u4e2a target + 1\uff08\u5982\u679c\u5b58\u5728\uff09\uff0c\u800c \\(j\\) \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0c\u56e0\u6b64\u8fd4\u56de \\(j\\) \u5373\u53ef\u3002

            \u56fe\uff1a\u5c06\u67e5\u627e\u53f3\u8fb9\u754c\u8f6c\u5316\u4e3a\u67e5\u627e\u5de6\u8fb9\u754c

            \u8bf7\u6ce8\u610f\uff0c\u8fd4\u56de\u7684\u63d2\u5165\u70b9\u662f \\(i\\) \uff0c\u56e0\u6b64\u9700\u8981\u5c06\u5176\u51cf \\(1\\) \uff0c\u4ece\u800c\u83b7\u5f97 \\(j\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_edge.java
            /* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(int[] nums, int target) {\n// \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\nint i = binary_search_insertion.binarySearchInsertion(nums, target + 1);\n// j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nint j = i - 1;\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (j == -1 || nums[j] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j;\n}\n
            binary_search_edge.cpp
            /* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(vector<int> &nums, int target) {\n// \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\nint i = binarySearchInsertion(nums, target + 1);\n// j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nint j = i - 1;\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (j == -1 || nums[j] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j;\n}\n
            binary_search_edge.py
            def binary_search_right_edge(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target\"\"\"\n# \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\ni = binary_search_insertion(nums, target + 1)\n# j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nj = i - 1\n# \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif j == -1 or nums[j] != target:\nreturn -1\n# \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j\n
            binary_search_edge.go
            [class]{}-[func]{binarySearchRightEdge}\n
            binary_search_edge.js
            [class]{}-[func]{binarySearchRightEdge}\n
            binary_search_edge.ts
            [class]{}-[func]{binarySearchRightEdge}\n
            binary_search_edge.c
            [class]{}-[func]{binarySearchRightEdge}\n
            binary_search_edge.cs
            /* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(int[] nums, int target) {\n// \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\nint i = binary_search_insertion.binarySearchInsertion(nums, target + 1);\n// j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nint j = i - 1;\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (j == -1 || nums[j] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j;\n}\n
            binary_search_edge.swift
            /* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfunc binarySearchRightEdge(nums: [Int], target: Int) -> Int {\n// \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\nlet i = binarySearchInsertion(nums: nums, target: target + 1)\n// j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nlet j = i - 1\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif j == -1 || nums[j] != target {\nreturn -1\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j\n}\n
            binary_search_edge.zig
            [class]{}-[func]{binarySearchRightEdge}\n
            binary_search_edge.dart
            /* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(List<int> nums, int target) {\n// \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\nint i = binarySearchInsertion(nums, target + 1);\n// j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nint j = i - 1;\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (j == -1 || nums[j] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j;\n}\n
            binary_search_edge.rs
            [class]{}-[func]{binary_search_right_edge}\n
            "},{"location":"chapter_searching/binary_search_edge/#2","title":"2. \u00a0 \u8f6c\u5316\u4e3a\u67e5\u627e\u5143\u7d20","text":"

            \u6211\u4eec\u77e5\u9053\uff0c\u5f53\u6570\u7ec4\u4e0d\u5305\u542b target \u65f6\uff0c\u6700\u540e \\(i\\) , \\(j\\) \u4f1a\u5206\u522b\u6307\u5411\u9996\u4e2a\u5927\u4e8e\u3001\u5c0f\u4e8e target \u7684\u5143\u7d20\u3002

            \u6839\u636e\u4e0a\u8ff0\u7ed3\u8bba\uff0c\u6211\u4eec\u53ef\u4ee5\u6784\u9020\u4e00\u4e2a\u6570\u7ec4\u4e2d\u4e0d\u5b58\u5728\u7684\u5143\u7d20\uff0c\u7528\u4e8e\u67e5\u627e\u5de6\u53f3\u8fb9\u754c\uff1a

            • \u67e5\u627e\u6700\u5de6\u4e00\u4e2a target \uff1a\u53ef\u4ee5\u8f6c\u5316\u4e3a\u67e5\u627e target - 0.5 \uff0c\u5e76\u8fd4\u56de\u6307\u9488 \\(i\\) \u3002
            • \u67e5\u627e\u6700\u53f3\u4e00\u4e2a target \uff1a\u53ef\u4ee5\u8f6c\u5316\u4e3a\u67e5\u627e target + 0.5 \uff0c\u5e76\u8fd4\u56de\u6307\u9488 \\(j\\) \u3002

            \u56fe\uff1a\u5c06\u67e5\u627e\u8fb9\u754c\u8f6c\u5316\u4e3a\u67e5\u627e\u5143\u7d20

            \u4ee3\u7801\u5728\u6b64\u7701\u7565\uff0c\u503c\u5f97\u6ce8\u610f\u7684\u6709\uff1a

            • \u7ed9\u5b9a\u6570\u7ec4\u4e0d\u5305\u542b\u5c0f\u6570\uff0c\u8fd9\u610f\u5473\u7740\u6211\u4eec\u65e0\u987b\u5173\u5fc3\u5982\u4f55\u5904\u7406\u76f8\u7b49\u7684\u60c5\u51b5\u3002
            • \u56e0\u4e3a\u8be5\u65b9\u6cd5\u5f15\u5165\u4e86\u5c0f\u6570\uff0c\u6240\u4ee5\u9700\u8981\u5c06\u51fd\u6570\u4e2d\u7684\u53d8\u91cf target \u6539\u4e3a\u6d6e\u70b9\u6570\u7c7b\u578b\u3002
            "},{"location":"chapter_searching/binary_search_insertion/","title":"10.2 \u00a0 \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9","text":"

            \u4e8c\u5206\u67e5\u627e\u4e0d\u4ec5\u53ef\u7528\u4e8e\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff0c\u8fd8\u5177\u6709\u8bb8\u591a\u53d8\u79cd\u95ee\u9898\uff0c\u6bd4\u5982\u641c\u7d22\u76ee\u6807\u5143\u7d20\u7684\u63d2\u5165\u4f4d\u7f6e\u3002

            "},{"location":"chapter_searching/binary_search_insertion/#1021","title":"10.2.1 \u00a0 \u65e0\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u5143\u7d20 target \uff0c\u6570\u7ec4\u4e0d\u5b58\u5728\u91cd\u590d\u5143\u7d20\u3002\u73b0\u5c06 target \u63d2\u5165\u5230\u6570\u7ec4 nums \u4e2d\uff0c\u5e76\u4fdd\u6301\u5176\u6709\u5e8f\u6027\u3002\u82e5\u6570\u7ec4\u4e2d\u5df2\u5b58\u5728\u5143\u7d20 target \uff0c\u5219\u63d2\u5165\u5230\u5176\u5de6\u65b9\u3002\u8bf7\u8fd4\u56de\u63d2\u5165\u540e target \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15\u3002

            \u56fe\uff1a\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\u793a\u4f8b\u6570\u636e

            \u5982\u679c\u60f3\u8981\u590d\u7528\u4e0a\u8282\u7684\u4e8c\u5206\u67e5\u627e\u4ee3\u7801\uff0c\u5219\u9700\u8981\u56de\u7b54\u4ee5\u4e0b\u4e24\u4e2a\u95ee\u9898\u3002

            \u95ee\u9898\u4e00\uff1a\u5f53\u6570\u7ec4\u4e2d\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u70b9\u7684\u7d22\u5f15\u662f\u5426\u662f\u8be5\u5143\u7d20\u7684\u7d22\u5f15\uff1f

            \u9898\u76ee\u8981\u6c42\u5c06 target \u63d2\u5165\u5230\u76f8\u7b49\u5143\u7d20\u7684\u5de6\u8fb9\uff0c\u8fd9\u610f\u5473\u7740\u65b0\u63d2\u5165\u7684 target \u66ff\u6362\u4e86\u539f\u6765 target \u7684\u4f4d\u7f6e\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u5f53\u6570\u7ec4\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u70b9\u7684\u7d22\u5f15\u5c31\u662f\u8be5 target \u7684\u7d22\u5f15\u3002

            \u95ee\u9898\u4e8c\uff1a\u5f53\u6570\u7ec4\u4e2d\u4e0d\u5b58\u5728 target \u65f6\uff0c\u63d2\u5165\u70b9\u662f\u54ea\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\uff1f

            \u8fdb\u4e00\u6b65\u601d\u8003\u4e8c\u5206\u67e5\u627e\u8fc7\u7a0b\uff1a\u5f53 nums[m] < target \u65f6 \\(i\\) \u79fb\u52a8\uff0c\u8fd9\u610f\u5473\u7740\u6307\u9488 \\(i\\) \u5728\u5411\u5927\u4e8e\u7b49\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002\u540c\u7406\uff0c\u6307\u9488 \\(j\\) \u59cb\u7ec8\u5728\u5411\u5c0f\u4e8e\u7b49\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002

            \u56e0\u6b64\u4e8c\u5206\u7ed3\u675f\u65f6\u4e00\u5b9a\u6709\uff1a\\(i\\) \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\uff0c\\(j\\) \u6307\u5411\u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u3002\u6613\u5f97\u5f53\u6570\u7ec4\u4e0d\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u7d22\u5f15\u4e3a \\(i\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_insertion.java
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(int[] nums, int target) {\nint i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nreturn m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n}\n}\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.cpp
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(vector<int> &nums, int target) {\nint i = 0, j = nums.size() - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nreturn m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n}\n}\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.py
            def binary_search_insertion_simple(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09\"\"\"\ni, j = 0, len(nums) - 1  # \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile i <= j:\nm = (i + j) // 2  # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target:\ni = m + 1  # target \u5728\u533a\u95f4 [m+1, j] \u4e2d\nelif nums[m] > target:\nj = m - 1  # target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nelse:\nreturn m  # \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n# \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i\n
            binary_search_insertion.go
            [class]{}-[func]{binarySearchInsertionSimple}\n
            binary_search_insertion.js
            [class]{}-[func]{binarySearchInsertionSimple}\n
            binary_search_insertion.ts
            [class]{}-[func]{binarySearchInsertionSimple}\n
            binary_search_insertion.c
            [class]{}-[func]{binarySearchInsertionSimple}\n
            binary_search_insertion.cs
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(int[] nums, int target) {\nint i = 0, j = nums.Length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nreturn m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n}\n}\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.swift
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertionSimple(nums: [Int], target: Int) -> Int {\nvar i = 0, j = nums.count - 1 // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile i <= j {\nlet m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target {\ni = m + 1 // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if nums[m] > target {\nj = m - 1 // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nreturn m // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n}\n}\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i\n}\n
            binary_search_insertion.zig
            [class]{}-[func]{binarySearchInsertionSimple}\n
            binary_search_insertion.dart
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(List<int> nums, int target) {\nint i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nreturn m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n}\n}\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.rs
            [class]{}-[func]{binary_search_insertion}\n
            "},{"location":"chapter_searching/binary_search_insertion/#1022","title":"10.2.2 \u00a0 \u5b58\u5728\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u5728\u4e0a\u4e00\u9898\u7684\u57fa\u7840\u4e0a\uff0c\u89c4\u5b9a\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u5176\u4f59\u4e0d\u53d8\u3002

            \u5047\u8bbe\u6570\u7ec4\u4e2d\u5b58\u5728\u591a\u4e2a target \uff0c\u5219\u666e\u901a\u4e8c\u5206\u67e5\u627e\u53ea\u80fd\u8fd4\u56de\u5176\u4e2d\u4e00\u4e2a target \u7684\u7d22\u5f15\uff0c\u800c\u65e0\u6cd5\u786e\u5b9a\u8be5\u5143\u7d20\u7684\u5de6\u8fb9\u548c\u53f3\u8fb9\u8fd8\u6709\u591a\u5c11 target\u3002

            \u9898\u76ee\u8981\u6c42\u5c06\u76ee\u6807\u5143\u7d20\u63d2\u5165\u5230\u6700\u5de6\u8fb9\uff0c\u6240\u4ee5\u6211\u4eec\u9700\u8981\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5de6\u4e00\u4e2a target \u7684\u7d22\u5f15\u3002\u521d\u6b65\u8003\u8651\u901a\u8fc7\u4ee5\u4e0b\u4e24\u6b65\u5b9e\u73b0\uff1a

            1. \u6267\u884c\u4e8c\u5206\u67e5\u627e\uff0c\u5f97\u5230\u4efb\u610f\u4e00\u4e2a target \u7684\u7d22\u5f15\uff0c\u8bb0\u4e3a \\(k\\) \u3002
            2. \u4ece\u7d22\u5f15 \\(k\\) \u5f00\u59cb\uff0c\u5411\u5de6\u8fdb\u884c\u7ebf\u6027\u904d\u5386\uff0c\u5f53\u627e\u5230\u6700\u5de6\u8fb9\u7684 target \u65f6\u8fd4\u56de\u3002

            \u56fe\uff1a\u7ebf\u6027\u67e5\u627e\u91cd\u590d\u5143\u7d20\u7684\u63d2\u5165\u70b9

            \u6b64\u65b9\u6cd5\u867d\u7136\u53ef\u7528\uff0c\u4f46\u5176\u5305\u542b\u7ebf\u6027\u67e5\u627e\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u5f53\u6570\u7ec4\u4e2d\u5b58\u5728\u5f88\u591a\u91cd\u590d\u7684 target \u65f6\uff0c\u8be5\u65b9\u6cd5\u6548\u7387\u5f88\u4f4e\u3002

            \u73b0\u8003\u8651\u4fee\u6539\u4e8c\u5206\u67e5\u627e\u4ee3\u7801\u3002\u6574\u4f53\u6d41\u7a0b\u4e0d\u53d8\uff0c\u6bcf\u8f6e\u5148\u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 \\(m\\) \uff0c\u518d\u5224\u65ad target \u548c nums[m] \u5927\u5c0f\u5173\u7cfb\uff1a

            1. \u5f53 nums[m] < target \u6216 nums[m] > target \u65f6\uff0c\u8bf4\u660e\u8fd8\u6ca1\u6709\u627e\u5230 target \uff0c\u56e0\u6b64\u91c7\u7528\u666e\u901a\u4e8c\u5206\u67e5\u627e\u7684\u7f29\u5c0f\u533a\u95f4\u64cd\u4f5c\uff0c\u4ece\u800c\u4f7f\u6307\u9488 \\(i\\) \u548c \\(j\\) \u5411 target \u9760\u8fd1\u3002
            2. \u5f53 nums[m] == target \u65f6\uff0c\u8bf4\u660e\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 \\([i, m - 1]\\) \u4e2d\uff0c\u56e0\u6b64\u91c7\u7528 \\(j = m - 1\\) \u6765\u7f29\u5c0f\u533a\u95f4\uff0c\u4ece\u800c\u4f7f\u6307\u9488 \\(j\\) \u5411\u5c0f\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002

            \u5faa\u73af\u5b8c\u6210\u540e\uff0c\\(i\\) \u6307\u5411\u6700\u5de6\u8fb9\u7684 target \uff0c\\(j\\) \u6307\u5411\u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\uff0c\u56e0\u6b64\u7d22\u5f15 \\(i\\) \u5c31\u662f\u63d2\u5165\u70b9\u3002

            <1><2><3><4><5><6><7><8>

            \u56fe\uff1a\u4e8c\u5206\u67e5\u627e\u91cd\u590d\u5143\u7d20\u7684\u63d2\u5165\u70b9\u7684\u6b65\u9aa4

            \u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u5224\u65ad\u5206\u652f nums[m] > target \u548c nums[m] == target \u7684\u64cd\u4f5c\u76f8\u540c\uff0c\u56e0\u6b64\u4e24\u8005\u53ef\u4ee5\u5408\u5e76\u3002

            \u5373\u4fbf\u5982\u6b64\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u5c06\u5224\u65ad\u6761\u4ef6\u4fdd\u6301\u5c55\u5f00\uff0c\u56e0\u4e3a\u5176\u903b\u8f91\u66f4\u52a0\u6e05\u6670\u3001\u53ef\u8bfb\u6027\u66f4\u597d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_insertion.java
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(int[] nums, int target) {\nint i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nj = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n}\n}\n// \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.cpp
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(vector<int> &nums, int target) {\nint i = 0, j = nums.size() - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nj = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n}\n}\n// \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.py
            def binary_search_insertion(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09\"\"\"\ni, j = 0, len(nums) - 1  # \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile i <= j:\nm = (i + j) // 2  # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target:\ni = m + 1  # target \u5728\u533a\u95f4 [m+1, j] \u4e2d\nelif nums[m] > target:\nj = m - 1  # target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nelse:\nj = m - 1  # \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n# \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i\n
            binary_search_insertion.go
            [class]{}-[func]{binarySearchInsertion}\n
            binary_search_insertion.js
            [class]{}-[func]{binarySearchInsertion}\n
            binary_search_insertion.ts
            [class]{}-[func]{binarySearchInsertion}\n
            binary_search_insertion.c
            [class]{}-[func]{binarySearchInsertion}\n
            binary_search_insertion.cs
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(int[] nums, int target) {\nint i = 0, j = nums.Length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nj = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n}\n}\n// \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.swift
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertion(nums: [Int], target: Int) -> Int {\nvar i = 0, j = nums.count - 1 // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile i <= j {\nlet m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target {\ni = m + 1 // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if nums[m] > target {\nj = m - 1 // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nj = m - 1 // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n}\n}\n// \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i\n}\n
            binary_search_insertion.zig
            [class]{}-[func]{binarySearchInsertion}\n
            binary_search_insertion.dart
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(List<int> nums, int target) {\nint i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nj = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n}\n}\n// \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.rs
            [class]{}-[func]{binary_search_insertion}\n

            Tip

            \u672c\u8282\u7684\u4ee3\u7801\u90fd\u662f\u201c\u53cc\u95ed\u533a\u95f4\u201d\u5199\u6cd5\u3002\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u201c\u5de6\u95ed\u53f3\u5f00\u201d\u5199\u6cd5\u3002

            \u603b\u7684\u6765\u770b\uff0c\u4e8c\u5206\u67e5\u627e\u65e0\u975e\u5c31\u662f\u7ed9\u6307\u9488 \\(i\\) , \\(j\\) \u5206\u522b\u8bbe\u5b9a\u641c\u7d22\u76ee\u6807\uff0c\u76ee\u6807\u53ef\u80fd\u662f\u4e00\u4e2a\u5177\u4f53\u7684\u5143\u7d20\uff08\u4f8b\u5982 target \uff09\uff0c\u4e5f\u53ef\u80fd\u662f\u4e00\u4e2a\u5143\u7d20\u8303\u56f4\uff08\u4f8b\u5982\u5c0f\u4e8e target \u7684\u5143\u7d20\uff09\u3002

            \u5728\u4e0d\u65ad\u7684\u5faa\u73af\u4e8c\u5206\u4e2d\uff0c\u6307\u9488 \\(i\\) , \\(j\\) \u90fd\u9010\u6e10\u903c\u8fd1\u9884\u5148\u8bbe\u5b9a\u7684\u76ee\u6807\u3002\u6700\u7ec8\uff0c\u5b83\u4eec\u6216\u662f\u6210\u529f\u627e\u5230\u7b54\u6848\uff0c\u6216\u662f\u8d8a\u8fc7\u8fb9\u754c\u540e\u505c\u6b62\u3002

            "},{"location":"chapter_searching/replace_linear_by_hashing/","title":"10.4 \u00a0 \u54c8\u5e0c\u4f18\u5316\u7b56\u7565","text":"

            \u5728\u7b97\u6cd5\u9898\u4e2d\uff0c\u6211\u4eec\u5e38\u901a\u8fc7\u5c06\u7ebf\u6027\u67e5\u627e\u66ff\u6362\u4e3a\u54c8\u5e0c\u67e5\u627e\u6765\u964d\u4f4e\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u7b97\u6cd5\u9898\u6765\u52a0\u6df1\u7406\u89e3\u3002

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u5143\u7d20 target \uff0c\u8bf7\u5728\u6570\u7ec4\u4e2d\u641c\u7d22\u201c\u548c\u201d\u4e3a target \u7684\u4e24\u4e2a\u5143\u7d20\uff0c\u5e76\u8fd4\u56de\u5b83\u4eec\u7684\u6570\u7ec4\u7d22\u5f15\u3002\u8fd4\u56de\u4efb\u610f\u4e00\u4e2a\u89e3\u5373\u53ef\u3002

            "},{"location":"chapter_searching/replace_linear_by_hashing/#1041","title":"10.4.1 \u00a0 \u7ebf\u6027\u67e5\u627e\uff1a\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4","text":"

            \u8003\u8651\u76f4\u63a5\u904d\u5386\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\u3002\u5f00\u542f\u4e00\u4e2a\u4e24\u5c42\u5faa\u73af\uff0c\u5728\u6bcf\u8f6e\u4e2d\u5224\u65ad\u4e24\u4e2a\u6574\u6570\u7684\u548c\u662f\u5426\u4e3a target \uff0c\u82e5\u662f\uff0c\u5219\u8fd4\u56de\u5b83\u4eec\u7684\u7d22\u5f15\u3002

            \u56fe\uff1a\u7ebf\u6027\u67e5\u627e\u6c42\u89e3\u4e24\u6570\u4e4b\u548c

            JavaC++PythonGoJSTSCC#SwiftZigDartRust two_sum.java
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint[] twoSumBruteForce(int[] nums, int target) {\nint size = nums.length;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (int i = 0; i < size - 1; i++) {\nfor (int j = i + 1; j < size; j++) {\nif (nums[i] + nums[j] == target)\nreturn new int[] { i, j };\n}\n}\nreturn new int[0];\n}\n
            two_sum.cpp
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nvector<int> twoSumBruteForce(vector<int> &nums, int target) {\nint size = nums.size();\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (int i = 0; i < size - 1; i++) {\nfor (int j = i + 1; j < size; j++) {\nif (nums[i] + nums[j] == target)\nreturn {i, j};\n}\n}\nreturn {};\n}\n
            two_sum.py
            def two_sum_brute_force(nums: list[int], target: int) -> list[int]:\n\"\"\"\u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e\"\"\"\n# \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor i in range(len(nums) - 1):\nfor j in range(i + 1, len(nums)):\nif nums[i] + nums[j] == target:\nreturn [i, j]\nreturn []\n
            two_sum.go
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunc twoSumBruteForce(nums []int, target int) []int {\nsize := len(nums)\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor i := 0; i < size-1; i++ {\nfor j := i + 1; i < size; j++ {\nif nums[i]+nums[j] == target {\nreturn []int{i, j}\n}\n}\n}\nreturn nil\n}\n
            two_sum.js
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunction twoSumBruteForce(nums, target) {\nconst n = nums.length;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (let i = 0; i < n; i++) {\nfor (let j = i + 1; j < n; j++) {\nif (nums[i] + nums[j] === target) {\nreturn [i, j];\n}\n}\n}\nreturn [];\n}\n
            two_sum.ts
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunction twoSumBruteForce(nums: number[], target: number): number[] {\nconst n = nums.length;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (let i = 0; i < n; i++) {\nfor (let j = i + 1; j < n; j++) {\nif (nums[i] + nums[j] === target) {\nreturn [i, j];\n}\n}\n}\nreturn [];\n}\n
            two_sum.c
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint *twoSumBruteForce(int *nums, int numsSize, int target, int *returnSize) {\nfor (int i = 0; i < numsSize; ++i) {\nfor (int j = i + 1; j < numsSize; ++j) {\nif (nums[i] + nums[j] == target) {\nint *res = malloc(sizeof(int) * 2);\nres[0] = i, res[1] = j;\n*returnSize = 2;\nreturn res;\n}\n}\n}\n*returnSize = 0;\nreturn NULL;\n}\n
            two_sum.cs
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint[] twoSumBruteForce(int[] nums, int target) {\nint size = nums.Length;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (int i = 0; i < size - 1; i++) {\nfor (int j = i + 1; j < size; j++) {\nif (nums[i] + nums[j] == target)\nreturn new int[] { i, j };\n}\n}\nreturn Array.Empty<int>();\n}\n
            two_sum.swift
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunc twoSumBruteForce(nums: [Int], target: Int) -> [Int] {\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor i in nums.indices.dropLast() {\nfor j in nums.indices.dropFirst(i + 1) {\nif nums[i] + nums[j] == target {\nreturn [i, j]\n}\n}\n}\nreturn [0]\n}\n
            two_sum.zig
            // \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e\nfn twoSumBruteForce(nums: []i32, target: i32) ?[2]i32 {\nvar size: usize = nums.len;\nvar i: usize = 0;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nwhile (i < size - 1) : (i += 1) {\nvar j = i + 1;\nwhile (j < size) : (j += 1) {\nif (nums[i] + nums[j] == target) {\nreturn [_]i32{@intCast(i), @intCast(j)};\n}\n}\n}\nreturn null;\n}\n
            two_sum.dart
            /* \u65b9\u6cd5\u4e00\uff1a \u66b4\u529b\u679a\u4e3e */\nList<int> twoSumBruteForce(List<int> nums, int target) {\nint size = nums.length;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (var i = 0; i < size - 1; i++) {\nfor (var j = i + 1; j < size; j++) {\nif (nums[i] + nums[j] == target) return [i, j];\n}\n}\nreturn [0];\n}\n
            two_sum.rs
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\npub fn two_sum_brute_force(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {\nlet size = nums.len();\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor i in 0..size - 1 {\nfor j in i + 1..size {\nif nums[i] + nums[j] == target {\nreturn Some(vec![i as i32, j as i32]);\n}\n}\n}\nNone\n}\n

            \u6b64\u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff0c\u5728\u5927\u6570\u636e\u91cf\u4e0b\u975e\u5e38\u8017\u65f6\u3002

            "},{"location":"chapter_searching/replace_linear_by_hashing/#1042","title":"10.4.2 \u00a0 \u54c8\u5e0c\u67e5\u627e\uff1a\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4","text":"

            \u8003\u8651\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\uff0c\u952e\u503c\u5bf9\u5206\u522b\u4e3a\u6570\u7ec4\u5143\u7d20\u548c\u5143\u7d20\u7d22\u5f15\u3002\u5faa\u73af\u904d\u5386\u6570\u7ec4\uff0c\u6bcf\u8f6e\u6267\u884c\uff1a

            1. \u5224\u65ad\u6570\u5b57 target - nums[i] \u662f\u5426\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u82e5\u662f\u5219\u76f4\u63a5\u8fd4\u56de\u8fd9\u4e24\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\u3002
            2. \u5c06\u952e\u503c\u5bf9 nums[i] \u548c\u7d22\u5f15 i \u6dfb\u52a0\u8fdb\u54c8\u5e0c\u8868\u3002
            <1><2><3>

            \u56fe\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868\u6c42\u89e3\u4e24\u6570\u4e4b\u548c

            \u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff0c\u4ec5\u9700\u5355\u5c42\u5faa\u73af\u5373\u53ef\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust two_sum.java
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint[] twoSumHashTable(int[] nums, int target) {\nint size = nums.length;\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nMap<Integer, Integer> dic = new HashMap<>();\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (int i = 0; i < size; i++) {\nif (dic.containsKey(target - nums[i])) {\nreturn new int[] { dic.get(target - nums[i]), i };\n}\ndic.put(nums[i], i);\n}\nreturn new int[0];\n}\n
            two_sum.cpp
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nvector<int> twoSumHashTable(vector<int> &nums, int target) {\nint size = nums.size();\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nunordered_map<int, int> dic;\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (int i = 0; i < size; i++) {\nif (dic.find(target - nums[i]) != dic.end()) {\nreturn {dic[target - nums[i]], i};\n}\ndic.emplace(nums[i], i);\n}\nreturn {};\n}\n
            two_sum.py
            def two_sum_hash_table(nums: list[int], target: int) -> list[int]:\n\"\"\"\u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868\"\"\"\n# \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\ndic = {}\n# \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor i in range(len(nums)):\nif target - nums[i] in dic:\nreturn [dic[target - nums[i]], i]\ndic[nums[i]] = i\nreturn []\n
            two_sum.go
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunc twoSumHashTable(nums []int, target int) []int {\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nhashTable := map[int]int{}\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor idx, val := range nums {\nif preIdx, ok := hashTable[target-val]; ok {\nreturn []int{preIdx, idx}\n}\nhashTable[val] = idx\n}\nreturn nil\n}\n
            two_sum.js
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunction twoSumHashTable(nums, target) {\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nlet m = {};\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (let i = 0; i < nums.length; i++) {\nif (m[target - nums[i]] !== undefined) {\nreturn [m[target-nums[i]], i];\n} else {\nm[nums[i]] = i;\n}\n}\nreturn [];\n}\n
            two_sum.ts
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunction twoSumHashTable(nums: number[], target: number): number[] {\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nlet m: Map<number, number> = new Map();\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (let i = 0; i < nums.length; i++) {\nlet index = m.get(target - nums[i]);\nif (index !== undefined) {\nreturn [index, i];\n} else {\nm.set(nums[i], i);\n}\n}\nreturn [];\n}\n
            two_sum.c
            /* \u54c8\u5e0c\u8868 */\nstruct hashTable {\nint key;\nint val;\nUT_hash_handle hh; // \u57fa\u4e8e uthash.h \u5b9e\u73b0\n};\ntypedef struct hashTable hashTable;\n/* \u54c8\u5e0c\u8868\u67e5\u8be2 */\nhashTable *find(hashTable *h, int key) {\nhashTable *tmp;\nHASH_FIND_INT(h, &key, tmp);\nreturn tmp;\n}\n/* \u54c8\u5e0c\u8868\u5143\u7d20\u63d2\u5165 */\nvoid insert(hashTable *h, int key, int val) {\nhashTable *t = find(h, key);\nif (t == NULL) {\nhashTable *tmp = malloc(sizeof(hashTable));\ntmp->key = key, tmp->val = val;\nHASH_ADD_INT(h, key, tmp);\n} else {\nt->val = val;\n}\n}\n/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint *twoSumHashTable(int *nums, int numsSize, int target, int *returnSize) {\nhashTable *hashtable = NULL;\nfor (int i = 0; i < numsSize; i++) {\nhashTable *t = find(hashtable, target - nums[i]);\nif (t != NULL) {\nint *res = malloc(sizeof(int) * 2);\nres[0] = t->val, res[1] = i;\n*returnSize = 2;\nreturn res;\n}\ninsert(hashtable, nums[i], i);\n}\n*returnSize = 0;\nreturn NULL;\n}\n
            two_sum.cs
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint[] twoSumHashTable(int[] nums, int target) {\nint size = nums.Length;\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nDictionary<int, int> dic = new();\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (int i = 0; i < size; i++) {\nif (dic.ContainsKey(target - nums[i])) {\nreturn new int[] { dic[target - nums[i]], i };\n}\ndic.Add(nums[i], i);\n}\nreturn Array.Empty<int>();\n}\n
            two_sum.swift
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunc twoSumHashTable(nums: [Int], target: Int) -> [Int] {\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nvar dic: [Int: Int] = [:]\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor i in nums.indices {\nif let j = dic[target - nums[i]] {\nreturn [j, i]\n}\ndic[nums[i]] = i\n}\nreturn [0]\n}\n
            two_sum.zig
            // \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868\nfn twoSumHashTable(nums: []i32, target: i32) !?[2]i32 {\nvar size: usize = nums.len;\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nvar dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);\ndefer dic.deinit();\nvar i: usize = 0;\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nwhile (i < size) : (i += 1) {\nif (dic.contains(target - nums[i])) {\nreturn [_]i32{dic.get(target - nums[i]).?, @intCast(i)};\n}\ntry dic.put(nums[i], @intCast(i));\n}\nreturn null;\n}\n
            two_sum.dart
            /* \u65b9\u6cd5\u4e8c\uff1a \u8f85\u52a9\u54c8\u5e0c\u8868 */\nList<int> twoSumHashTable(List<int> nums, int target) {\nint size = nums.length;\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nMap<int, int> dic = HashMap();\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (var i = 0; i < size; i++) {\nif (dic.containsKey(target - nums[i])) {\nreturn [dic[target - nums[i]]!, i];\n}\ndic.putIfAbsent(nums[i], () => i);\n}\nreturn [0];\n}\n
            two_sum.rs
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\npub fn two_sum_hash_table(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nlet mut dic = HashMap::new();\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (i, num) in nums.iter().enumerate() {\nmatch dic.get(&(target - num)) {\nSome(v) => return Some(vec![*v as i32, i as i32]),\nNone => dic.insert(num, i as i32)\n};\n}\nNone\n}\n

            \u6b64\u65b9\u6cd5\u901a\u8fc7\u54c8\u5e0c\u67e5\u627e\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n^2)\\) \u964d\u4f4e\u81f3 \\(O(n)\\) \uff0c\u5927\u5e45\u63d0\u5347\u8fd0\u884c\u6548\u7387\u3002

            \u7531\u4e8e\u9700\u8981\u7ef4\u62a4\u4e00\u4e2a\u989d\u5916\u7684\u54c8\u5e0c\u8868\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u5c3d\u7ba1\u5982\u6b64\uff0c\u8be5\u65b9\u6cd5\u7684\u6574\u4f53\u65f6\u7a7a\u6548\u7387\u66f4\u4e3a\u5747\u8861\uff0c\u56e0\u6b64\u5b83\u662f\u672c\u9898\u7684\u6700\u4f18\u89e3\u6cd5\u3002

            "},{"location":"chapter_searching/searching_algorithm_revisited/","title":"10.5 \u00a0 \u91cd\u8bc6\u641c\u7d22\u7b97\u6cd5","text":"

            \u300c\u641c\u7d22\u7b97\u6cd5 Searching Algorithm\u300d\u7528\u4e8e\u5728\u6570\u636e\u7ed3\u6784\uff08\u4f8b\u5982\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6811\u6216\u56fe\uff09\u4e2d\u641c\u7d22\u4e00\u4e2a\u6216\u4e00\u7ec4\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u5143\u7d20\u3002

            \u6839\u636e\u5b9e\u73b0\u601d\u8def\uff0c\u641c\u7d22\u7b97\u6cd5\u603b\u4f53\u53ef\u5206\u4e3a\u4e24\u79cd\uff1a

            • \u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u6765\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\uff0c\u4f8b\u5982\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6811\u548c\u56fe\u7684\u904d\u5386\u7b49\u3002
            • \u5229\u7528\u6570\u636e\u7ec4\u7ec7\u7ed3\u6784\u6216\u6570\u636e\u5305\u542b\u7684\u5148\u9a8c\u4fe1\u606f\uff0c\u5b9e\u73b0\u9ad8\u6548\u5143\u7d20\u67e5\u627e\uff0c\u4f8b\u5982\u4e8c\u5206\u67e5\u627e\u3001\u54c8\u5e0c\u67e5\u627e\u548c\u4e8c\u53c9\u641c\u7d22\u6811\u67e5\u627e\u7b49\u3002

            \u4e0d\u96be\u53d1\u73b0\uff0c\u8fd9\u4e9b\u77e5\u8bc6\u70b9\u90fd\u5df2\u5728\u524d\u9762\u7684\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u56e0\u6b64\u641c\u7d22\u7b97\u6cd5\u5bf9\u4e8e\u6211\u4eec\u6765\u8bf4\u5e76\u4e0d\u964c\u751f\u3002\u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5c06\u4ece\u66f4\u52a0\u7cfb\u7edf\u7684\u89c6\u89d2\u5207\u5165\uff0c\u91cd\u65b0\u5ba1\u89c6\u641c\u7d22\u7b97\u6cd5\u3002

            "},{"location":"chapter_searching/searching_algorithm_revisited/#1051","title":"10.5.1 \u00a0 \u66b4\u529b\u641c\u7d22","text":"

            \u66b4\u529b\u641c\u7d22\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u7684\u6bcf\u4e2a\u5143\u7d20\u6765\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002

            • \u300c\u7ebf\u6027\u641c\u7d22\u300d\u9002\u7528\u4e8e\u6570\u7ec4\u548c\u94fe\u8868\u7b49\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002\u5b83\u4ece\u6570\u636e\u7ed3\u6784\u7684\u4e00\u7aef\u5f00\u59cb\uff0c\u9010\u4e2a\u8bbf\u95ee\u5143\u7d20\uff0c\u76f4\u5230\u627e\u5230\u76ee\u6807\u5143\u7d20\u6216\u5230\u8fbe\u53e6\u4e00\u7aef\u4ecd\u6ca1\u6709\u627e\u5230\u76ee\u6807\u5143\u7d20\u4e3a\u6b62\u3002
            • \u300c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u300d\u548c\u300c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u300d\u662f\u56fe\u548c\u6811\u7684\u4e24\u79cd\u904d\u5386\u7b56\u7565\u3002\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u4ece\u521d\u59cb\u8282\u70b9\u5f00\u59cb\u9010\u5c42\u641c\u7d22\uff0c\u7531\u8fd1\u53ca\u8fdc\u5730\u8bbf\u95ee\u5404\u4e2a\u8282\u70b9\u3002\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u662f\u4ece\u521d\u59cb\u8282\u70b9\u5f00\u59cb\uff0c\u6cbf\u7740\u4e00\u6761\u8def\u5f84\u8d70\u5230\u5934\u4e3a\u6b62\uff0c\u518d\u56de\u6eaf\u5e76\u5c1d\u8bd5\u5176\u4ed6\u8def\u5f84\uff0c\u76f4\u5230\u904d\u5386\u5b8c\u6574\u4e2a\u6570\u636e\u7ed3\u6784\u3002

            \u66b4\u529b\u641c\u7d22\u7684\u4f18\u70b9\u662f\u7b80\u5355\u4e14\u901a\u7528\u6027\u597d\uff0c\u65e0\u987b\u5bf9\u6570\u636e\u505a\u9884\u5904\u7406\u548c\u501f\u52a9\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\u3002

            \u7136\u800c\uff0c\u6b64\u7c7b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u5143\u7d20\u6570\u91cf\uff0c\u56e0\u6b64\u5728\u6570\u636e\u91cf\u8f83\u5927\u7684\u60c5\u51b5\u4e0b\u6027\u80fd\u8f83\u5dee\u3002

            "},{"location":"chapter_searching/searching_algorithm_revisited/#1052","title":"10.5.2 \u00a0 \u81ea\u9002\u5e94\u641c\u7d22","text":"

            \u81ea\u9002\u5e94\u641c\u7d22\u5229\u7528\u6570\u636e\u7684\u7279\u6709\u5c5e\u6027\uff08\u4f8b\u5982\u6709\u5e8f\u6027\uff09\u6765\u4f18\u5316\u641c\u7d22\u8fc7\u7a0b\uff0c\u4ece\u800c\u66f4\u9ad8\u6548\u5730\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002

            • \u300c\u4e8c\u5206\u67e5\u627e\u300d\u5229\u7528\u6570\u636e\u7684\u6709\u5e8f\u6027\u5b9e\u73b0\u9ad8\u6548\u67e5\u627e\uff0c\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u3002
            • \u300c\u54c8\u5e0c\u67e5\u627e\u300d\u5229\u7528\u54c8\u5e0c\u8868\u5c06\u641c\u7d22\u6570\u636e\u548c\u76ee\u6807\u6570\u636e\u5efa\u7acb\u4e3a\u952e\u503c\u5bf9\u6620\u5c04\uff0c\u4ece\u800c\u5b9e\u73b0\u67e5\u8be2\u64cd\u4f5c\u3002
            • \u300c\u6811\u67e5\u627e\u300d\u5728\u7279\u5b9a\u7684\u6811\u7ed3\u6784\uff08\u4f8b\u5982\u4e8c\u53c9\u641c\u7d22\u6811\uff09\u4e2d\uff0c\u57fa\u4e8e\u6bd4\u8f83\u8282\u70b9\u503c\u6765\u5feb\u901f\u6392\u9664\u8282\u70b9\uff0c\u4ece\u800c\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002

            \u6b64\u7c7b\u7b97\u6cd5\u7684\u4f18\u70b9\u662f\u6548\u7387\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe\u5230 \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \u3002

            \u7136\u800c\uff0c\u4f7f\u7528\u8fd9\u4e9b\u7b97\u6cd5\u5f80\u5f80\u9700\u8981\u5bf9\u6570\u636e\u8fdb\u884c\u9884\u5904\u7406\u3002\u4f8b\u5982\uff0c\u4e8c\u5206\u67e5\u627e\u9700\u8981\u9884\u5148\u5bf9\u6570\u7ec4\u8fdb\u884c\u6392\u5e8f\uff0c\u54c8\u5e0c\u67e5\u627e\u548c\u6811\u67e5\u627e\u90fd\u9700\u8981\u501f\u52a9\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\uff0c\u7ef4\u62a4\u8fd9\u4e9b\u6570\u636e\u7ed3\u6784\u4e5f\u9700\u8981\u989d\u5916\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u5f00\u652f\u3002

            Note

            \u81ea\u9002\u5e94\u641c\u7d22\u7b97\u6cd5\u5e38\u88ab\u79f0\u4e3a\u67e5\u627e\u7b97\u6cd5\uff0c\u4e3b\u8981\u5173\u6ce8\u5728\u7279\u5b9a\u6570\u636e\u7ed3\u6784\u4e2d\u5feb\u901f\u68c0\u7d22\u76ee\u6807\u5143\u7d20\u3002

            "},{"location":"chapter_searching/searching_algorithm_revisited/#1053","title":"10.5.3 \u00a0 \u641c\u7d22\u65b9\u6cd5\u9009\u53d6","text":"

            \u7ed9\u5b9a\u5927\u5c0f\u4e3a \\(n\\) \u7684\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u7ebf\u6027\u641c\u7d22\u3001\u4e8c\u5206\u67e5\u627e\u3001\u6811\u67e5\u627e\u3001\u54c8\u5e0c\u67e5\u627e\u7b49\u591a\u79cd\u65b9\u6cd5\u5728\u8be5\u6570\u636e\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\u3002\u5404\u4e2a\u65b9\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u5982\u4e0b\u56fe\u6240\u793a\u3002

            \u56fe\uff1a\u591a\u79cd\u641c\u7d22\u7b56\u7565

            \u4e0a\u8ff0\u51e0\u79cd\u65b9\u6cd5\u7684\u64cd\u4f5c\u6548\u7387\u4e0e\u7279\u6027\u5982\u4e0b\u8868\u6240\u793a\u3002

            \u8868\uff1a\u67e5\u627e\u7b97\u6cd5\u6548\u7387\u5bf9\u6bd4

            \u7ebf\u6027\u641c\u7d22 \u4e8c\u5206\u67e5\u627e \u6811\u67e5\u627e \u54c8\u5e0c\u67e5\u627e \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u63d2\u5165\u5143\u7d20 \\(O(1)\\) \\(O(n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u989d\u5916\u7a7a\u95f4 \\(O(1)\\) \\(O(1)\\) \\(O(n)\\) \\(O(n)\\) \u6570\u636e\u9884\u5904\u7406 / \u6392\u5e8f \\(O(n \\log n)\\) \u5efa\u6811 \\(O(n \\log n)\\) \u5efa\u54c8\u5e0c\u8868 \\(O(n)\\) \u6570\u636e\u662f\u5426\u6709\u5e8f \u65e0\u5e8f \u6709\u5e8f \u6709\u5e8f \u65e0\u5e8f

            \u9664\u4e86\u4ee5\u4e0a\u8868\u683c\u5185\u5bb9\uff0c\u641c\u7d22\u7b97\u6cd5\u7684\u9009\u62e9\u8fd8\u53d6\u51b3\u4e8e\u6570\u636e\u4f53\u91cf\u3001\u641c\u7d22\u6027\u80fd\u8981\u6c42\u3001\u6570\u636e\u67e5\u8be2\u4e0e\u66f4\u65b0\u9891\u7387\u7b49\u3002

            \u7ebf\u6027\u641c\u7d22

            • \u901a\u7528\u6027\u8f83\u597d\uff0c\u65e0\u987b\u4efb\u4f55\u6570\u636e\u9884\u5904\u7406\u64cd\u4f5c\u3002\u5047\u5982\u6211\u4eec\u4ec5\u9700\u67e5\u8be2\u4e00\u6b21\u6570\u636e\uff0c\u90a3\u4e48\u5176\u4ed6\u4e09\u79cd\u65b9\u6cd5\u7684\u6570\u636e\u9884\u5904\u7406\u7684\u65f6\u95f4\u6bd4\u7ebf\u6027\u641c\u7d22\u7684\u65f6\u95f4\u8fd8\u8981\u66f4\u957f\u3002
            • \u9002\u7528\u4e8e\u4f53\u91cf\u8f83\u5c0f\u7684\u6570\u636e\uff0c\u6b64\u60c5\u51b5\u4e0b\u65f6\u95f4\u590d\u6742\u5ea6\u5bf9\u6548\u7387\u5f71\u54cd\u8f83\u5c0f\u3002
            • \u9002\u7528\u4e8e\u6570\u636e\u66f4\u65b0\u9891\u7387\u8f83\u9ad8\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u8be5\u65b9\u6cd5\u4e0d\u9700\u8981\u5bf9\u6570\u636e\u8fdb\u884c\u4efb\u4f55\u989d\u5916\u7ef4\u62a4\u3002

            \u4e8c\u5206\u67e5\u627e

            • \u9002\u7528\u4e8e\u5927\u6570\u636e\u91cf\u7684\u60c5\u51b5\uff0c\u6548\u7387\u8868\u73b0\u7a33\u5b9a\uff0c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u3002
            • \u6570\u636e\u91cf\u4e0d\u80fd\u8fc7\u5927\uff0c\u56e0\u4e3a\u5b58\u50a8\u6570\u7ec4\u9700\u8981\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u3002
            • \u4e0d\u9002\u7528\u4e8e\u9ad8\u9891\u589e\u5220\u6570\u636e\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u7ef4\u62a4\u6709\u5e8f\u6570\u7ec4\u7684\u5f00\u9500\u8f83\u5927\u3002

            \u54c8\u5e0c\u67e5\u627e

            • \u9002\u5408\u5bf9\u67e5\u8be2\u6027\u80fd\u8981\u6c42\u5f88\u9ad8\u7684\u573a\u666f\uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
            • \u4e0d\u9002\u5408\u9700\u8981\u6709\u5e8f\u6570\u636e\u6216\u8303\u56f4\u67e5\u627e\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u65e0\u6cd5\u7ef4\u62a4\u6570\u636e\u7684\u6709\u5e8f\u6027\u3002
            • \u5bf9\u54c8\u5e0c\u51fd\u6570\u548c\u54c8\u5e0c\u51b2\u7a81\u5904\u7406\u7b56\u7565\u7684\u4f9d\u8d56\u6027\u8f83\u9ad8\uff0c\u5177\u6709\u8f83\u5927\u7684\u6027\u80fd\u52a3\u5316\u98ce\u9669\u3002
            • \u4e0d\u9002\u5408\u6570\u636e\u91cf\u8fc7\u5927\u7684\u60c5\u51b5\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u9700\u8981\u989d\u5916\u7a7a\u95f4\u6765\u6700\u5927\u7a0b\u5ea6\u5730\u51cf\u5c11\u51b2\u7a81\uff0c\u4ece\u800c\u63d0\u4f9b\u826f\u597d\u7684\u67e5\u8be2\u6027\u80fd\u3002

            \u6811\u67e5\u627e

            • \u9002\u7528\u4e8e\u6d77\u91cf\u6570\u636e\uff0c\u56e0\u4e3a\u6811\u8282\u70b9\u5728\u5185\u5b58\u4e2d\u662f\u79bb\u6563\u5b58\u50a8\u7684\u3002
            • \u9002\u5408\u9700\u8981\u7ef4\u62a4\u6709\u5e8f\u6570\u636e\u6216\u8303\u56f4\u67e5\u627e\u7684\u573a\u666f\u3002
            • \u5728\u6301\u7eed\u589e\u5220\u8282\u70b9\u7684\u8fc7\u7a0b\u4e2d\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u53ef\u80fd\u4ea7\u751f\u503e\u659c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n)\\) \u3002
            • \u82e5\u4f7f\u7528 AVL \u6811\u6216\u7ea2\u9ed1\u6811\uff0c\u5219\u5404\u9879\u64cd\u4f5c\u53ef\u5728 \\(O(\\log n)\\) \u6548\u7387\u4e0b\u7a33\u5b9a\u8fd0\u884c\uff0c\u4f46\u7ef4\u62a4\u6811\u5e73\u8861\u7684\u64cd\u4f5c\u4f1a\u589e\u52a0\u989d\u5916\u5f00\u9500\u3002
            "},{"location":"chapter_searching/summary/","title":"10.6 \u00a0 \u5c0f\u7ed3","text":"
            • \u4e8c\u5206\u67e5\u627e\u4f9d\u8d56\u4e8e\u6570\u636e\u7684\u6709\u5e8f\u6027\uff0c\u901a\u8fc7\u5faa\u73af\u9010\u6b65\u7f29\u51cf\u4e00\u534a\u641c\u7d22\u533a\u95f4\u6765\u5b9e\u73b0\u67e5\u627e\u3002\u5b83\u8981\u6c42\u8f93\u5165\u6570\u636e\u6709\u5e8f\uff0c\u4e14\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u6216\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u3002
            • \u66b4\u529b\u641c\u7d22\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u6765\u5b9a\u4f4d\u6570\u636e\u3002\u7ebf\u6027\u641c\u7d22\u9002\u7528\u4e8e\u6570\u7ec4\u548c\u94fe\u8868\uff0c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u548c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u9002\u7528\u4e8e\u56fe\u548c\u6811\u3002\u6b64\u7c7b\u7b97\u6cd5\u901a\u7528\u6027\u597d\uff0c\u65e0\u987b\u5bf9\u6570\u636e\u9884\u5904\u7406\uff0c\u4f46\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u8f83\u9ad8\u3002
            • \u54c8\u5e0c\u67e5\u627e\u3001\u6811\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u5c5e\u4e8e\u9ad8\u6548\u641c\u7d22\u65b9\u6cd5\uff0c\u53ef\u5728\u7279\u5b9a\u6570\u636e\u7ed3\u6784\u4e2d\u5feb\u901f\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002\u6b64\u7c7b\u7b97\u6cd5\u6548\u7387\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \uff0c\u4f46\u901a\u5e38\u9700\u8981\u501f\u52a9\u989d\u5916\u6570\u636e\u7ed3\u6784\u3002
            • \u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u5bf9\u6570\u636e\u4f53\u91cf\u3001\u641c\u7d22\u6027\u80fd\u8981\u6c42\u3001\u6570\u636e\u67e5\u8be2\u548c\u66f4\u65b0\u9891\u7387\u7b49\u56e0\u7d20\u8fdb\u884c\u5177\u4f53\u5206\u6790\uff0c\u4ece\u800c\u9009\u62e9\u5408\u9002\u7684\u641c\u7d22\u65b9\u6cd5\u3002
            • \u7ebf\u6027\u641c\u7d22\u9002\u7528\u4e8e\u5c0f\u578b\u6216\u9891\u7e41\u66f4\u65b0\u7684\u6570\u636e\uff1b\u4e8c\u5206\u67e5\u627e\u9002\u7528\u4e8e\u5927\u578b\u3001\u6392\u5e8f\u7684\u6570\u636e\uff1b\u54c8\u5e0c\u67e5\u627e\u9002\u5408\u5bf9\u67e5\u8be2\u6548\u7387\u8981\u6c42\u8f83\u9ad8\u4e14\u65e0\u987b\u8303\u56f4\u67e5\u8be2\u7684\u6570\u636e\uff1b\u6811\u67e5\u627e\u9002\u7528\u4e8e\u9700\u8981\u7ef4\u62a4\u987a\u5e8f\u548c\u652f\u6301\u8303\u56f4\u67e5\u8be2\u7684\u5927\u578b\u52a8\u6001\u6570\u636e\u3002
            • \u7528\u54c8\u5e0c\u67e5\u627e\u66ff\u6362\u7ebf\u6027\u67e5\u627e\u662f\u4e00\u79cd\u5e38\u7528\u7684\u4f18\u5316\u8fd0\u884c\u65f6\u95f4\u7684\u7b56\u7565\uff0c\u53ef\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u4f4e\u81f3 \\(O(1)\\) \u3002
            "},{"location":"chapter_sorting/","title":"\u7b2c 11 \u7ae0 \u00a0 \u6392\u5e8f","text":"

            Abstract

            \u6392\u5e8f\u72b9\u5982\u4e00\u628a\u5c06\u6df7\u4e71\u53d8\u4e3a\u79e9\u5e8f\u7684\u9b54\u6cd5\u94a5\u5319\uff0c\u4f7f\u6211\u4eec\u80fd\u4ee5\u66f4\u9ad8\u6548\u7684\u65b9\u5f0f\u7406\u89e3\u4e0e\u5904\u7406\u6570\u636e\u3002

            \u65e0\u8bba\u662f\u7b80\u5355\u7684\u5347\u5e8f\uff0c\u8fd8\u662f\u590d\u6742\u7684\u5206\u7c7b\u6392\u5217\uff0c\u6392\u5e8f\u90fd\u5411\u6211\u4eec\u5c55\u793a\u4e86\u6570\u636e\u7684\u548c\u8c10\u7f8e\u611f\u3002

            "},{"location":"chapter_sorting/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 11.1 \u00a0 \u6392\u5e8f\u7b97\u6cd5
            • 11.2 \u00a0 \u9009\u62e9\u6392\u5e8f
            • 11.3 \u00a0 \u5192\u6ce1\u6392\u5e8f
            • 11.4 \u00a0 \u63d2\u5165\u6392\u5e8f
            • 11.5 \u00a0 \u5feb\u901f\u6392\u5e8f
            • 11.6 \u00a0 \u5f52\u5e76\u6392\u5e8f
            • 11.7 \u00a0 \u5806\u6392\u5e8f
            • 11.8 \u00a0 \u6876\u6392\u5e8f
            • 11.9 \u00a0 \u8ba1\u6570\u6392\u5e8f
            • 11.10 \u00a0 \u57fa\u6570\u6392\u5e8f
            • 11.11 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_sorting/bubble_sort/","title":"11.3 \u00a0 \u5192\u6ce1\u6392\u5e8f","text":"

            \u300c\u5192\u6ce1\u6392\u5e8f Bubble Sort\u300d\u901a\u8fc7\u8fde\u7eed\u5730\u6bd4\u8f83\u4e0e\u4ea4\u6362\u76f8\u90bb\u5143\u7d20\u5b9e\u73b0\u6392\u5e8f\u3002\u8fd9\u4e2a\u8fc7\u7a0b\u5c31\u50cf\u6c14\u6ce1\u4ece\u5e95\u90e8\u5347\u5230\u9876\u90e8\u4e00\u6837\uff0c\u56e0\u6b64\u5f97\u540d\u5192\u6ce1\u6392\u5e8f\u3002

            \u6211\u4eec\u53ef\u4ee5\u5229\u7528\u5143\u7d20\u4ea4\u6362\u64cd\u4f5c\u6a21\u62df\u4e0a\u8ff0\u8fc7\u7a0b\uff1a\u4ece\u6570\u7ec4\u6700\u5de6\u7aef\u5f00\u59cb\u5411\u53f3\u904d\u5386\uff0c\u4f9d\u6b21\u6bd4\u8f83\u76f8\u90bb\u5143\u7d20\u5927\u5c0f\uff0c\u5982\u679c\u201c\u5de6\u5143\u7d20 > \u53f3\u5143\u7d20\u201d\u5c31\u4ea4\u6362\u5b83\u4fe9\u3002\u904d\u5386\u5b8c\u6210\u540e\uff0c\u6700\u5927\u7684\u5143\u7d20\u4f1a\u88ab\u79fb\u52a8\u5230\u6570\u7ec4\u7684\u6700\u53f3\u7aef\u3002

            <1><2><3><4><5><6><7>

            \u56fe\uff1a\u5229\u7528\u5143\u7d20\u4ea4\u6362\u64cd\u4f5c\u6a21\u62df\u5192\u6ce1

            "},{"location":"chapter_sorting/bubble_sort/#1131","title":"11.3.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u6b65\u9aa4\u4e3a\uff1a

            1. \u9996\u5148\uff0c\u5bf9 \\(n\\) \u4e2a\u5143\u7d20\u6267\u884c\u201c\u5192\u6ce1\u201d\uff0c\u5c06\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\uff0c
            2. \u63a5\u4e0b\u6765\uff0c\u5bf9\u5269\u4f59 \\(n - 1\\) \u4e2a\u5143\u7d20\u6267\u884c\u201c\u5192\u6ce1\u201d\uff0c\u5c06\u7b2c\u4e8c\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\u3002
            3. \u4ee5\u6b64\u7c7b\u63a8\uff0c\u7ecf\u8fc7 \\(n - 1\\) \u8f6e\u201c\u5192\u6ce1\u201d\u540e\uff0c\u524d \\(n - 1\\) \u5927\u7684\u5143\u7d20\u90fd\u88ab\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\u3002
            4. \u4ec5\u5269\u7684\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u662f\u6700\u5c0f\u5143\u7d20\uff0c\u65e0\u987b\u6392\u5e8f\uff0c\u56e0\u6b64\u6570\u7ec4\u6392\u5e8f\u5b8c\u6210\u3002

            \u56fe\uff1a\u5192\u6ce1\u6392\u5e8f\u6d41\u7a0b

            JavaC++PythonGoJSTSCC#SwiftZigDartRust bubble_sort.java
            /* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.cpp
            /* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(vector<int> &nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.size() - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n// \u8fd9\u91cc\u4f7f\u7528\u4e86 std::swap() \u51fd\u6570\nswap(nums[j], nums[j + 1]);\n}\n}\n}\n}\n
            bubble_sort.py
            def bubble_sort(nums: list[int]):\n\"\"\"\u5192\u6ce1\u6392\u5e8f\"\"\"\nn = len(nums)\n# \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in range(n - 1, 0, -1):\n# \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in range(i):\nif nums[j] > nums[j + 1]:\n# \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nnums[j], nums[j + 1] = nums[j + 1], nums[j]\n
            bubble_sort.go
            /* \u5192\u6ce1\u6392\u5e8f */\nfunc bubbleSort(nums []int) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i := len(nums) - 1; i > 0; i-- {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor j := 0; j < i; j++ {\nif nums[j] > nums[j+1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nnums[j], nums[j+1] = nums[j+1], nums[j]\n}\n}\n}\n}\n
            bubble_sort.js
            /* \u5192\u6ce1\u6392\u5e8f */\nfunction bubbleSort(nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.ts
            /* \u5192\u6ce1\u6392\u5e8f */\nfunction bubbleSort(nums: number[]): void {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.c
            /* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(int nums[], int size) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = 0; i < size - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < size - 1 - i; j++) {\nif (nums[j] > nums[j + 1]) {\nint temp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = temp;\n}\n}\n}\n}\n
            bubble_sort.cs
            /* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.Length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.swift
            /* \u5192\u6ce1\u6392\u5e8f */\nfunc bubbleSort(nums: inout [Int]) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in stride(from: nums.count - 1, to: 0, by: -1) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in stride(from: 0, to: i, by: 1) {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j]\nnums[j] = nums[j + 1]\nnums[j + 1] = tmp\n}\n}\n}\n}\n
            bubble_sort.zig
            // \u5192\u6ce1\u6392\u5e8f\nfn bubbleSort(nums: []i32) void {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nvar i: usize = nums.len - 1;\nwhile (i > 0) : (i -= 1) {\nvar j: usize = 0;\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nwhile (j < i) : (j += 1) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nvar tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.dart
            /* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(List<int> nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.rs
            /* \u5192\u6ce1\u6392\u5e8f */\nfn bubble_sort(nums: &mut [i32]) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in (1..nums.len()).rev() {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in 0..i {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            "},{"location":"chapter_sorting/bubble_sort/#1132","title":"11.3.2 \u00a0 \u6548\u7387\u4f18\u5316","text":"

            \u6211\u4eec\u53d1\u73b0\uff0c\u5982\u679c\u67d0\u8f6e\u201c\u5192\u6ce1\u201d\u4e2d\u6ca1\u6709\u6267\u884c\u4efb\u4f55\u4ea4\u6362\u64cd\u4f5c\uff0c\u8bf4\u660e\u6570\u7ec4\u5df2\u7ecf\u5b8c\u6210\u6392\u5e8f\uff0c\u53ef\u76f4\u63a5\u8fd4\u56de\u7ed3\u679c\u3002\u56e0\u6b64\uff0c\u53ef\u4ee5\u589e\u52a0\u4e00\u4e2a\u6807\u5fd7\u4f4d flag \u6765\u76d1\u6d4b\u8fd9\u79cd\u60c5\u51b5\uff0c\u4e00\u65e6\u51fa\u73b0\u5c31\u7acb\u5373\u8fd4\u56de\u3002

            \u7ecf\u8fc7\u4f18\u5316\uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u6700\u5dee\u548c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(n^2)\\) \uff1b\u4f46\u5f53\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u6709\u5e8f\u65f6\uff0c\u53ef\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust bubble_sort.java
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09 */\nvoid bubbleSortWithFlag(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.length - 1; i > 0; i--) {\nboolean flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag)\nbreak; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.cpp
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(vector<int> &nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.size() - 1; i > 0; i--) {\nbool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n// \u8fd9\u91cc\u4f7f\u7528\u4e86 std::swap() \u51fd\u6570\nswap(nums[j], nums[j + 1]);\nflag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag)\nbreak; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.py
            def bubble_sort_with_flag(nums: list[int]):\n\"\"\"\u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09\"\"\"\nn = len(nums)\n# \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in range(n - 1, 0, -1):\nflag = False  # \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n# \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in range(i):\nif nums[j] > nums[j + 1]:\n# \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nnums[j], nums[j + 1] = nums[j + 1], nums[j]\nflag = True  # \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\nif not flag:\nbreak  # \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n
            bubble_sort.go
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunc bubbleSortWithFlag(nums []int) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i := len(nums) - 1; i > 0; i-- {\nflag := false // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor j := 0; j < i; j++ {\nif nums[j] > nums[j+1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nnums[j], nums[j+1] = nums[j+1], nums[j]\nflag = true // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif flag == false { // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\nbreak\n}\n}\n}\n
            bubble_sort.js
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunction bubbleSortWithFlag(nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\nlet flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.ts
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunction bubbleSortWithFlag(nums: number[]): void {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\nlet flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.c
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(int nums[], int size) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = 0; i < size - 1; i++) {\nbool flag = false;\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < size - 1 - i; j++) {\nif (nums[j] > nums[j + 1]) {\nint temp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = temp;\nflag = true;\n}\n}\nif (!flag)\nbreak;\n}\n}\n
            bubble_sort.cs
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.Length - 1; i > 0; i--) {\nbool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true;  // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag) break;     // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.swift
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunc bubbleSortWithFlag(nums: inout [Int]) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in stride(from: nums.count - 1, to: 0, by: -1) {\nvar flag = false // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\nfor j in stride(from: 0, to: i, by: 1) {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j]\nnums[j] = nums[j + 1]\nnums[j + 1] = tmp\nflag = true // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif !flag { // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\nbreak\n}\n}\n}\n
            bubble_sort.zig
            // \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09\nfn bubbleSortWithFlag(nums: []i32) void {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nvar i: usize = nums.len - 1;\nwhile (i > 0) : (i -= 1) {\nvar flag = false;   // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\nvar j: usize = 0;\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nwhile (j < i) : (j += 1) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nvar tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true;\n}\n}\nif (!flag) break;   // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.dart
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(List<int> nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.length - 1; i > 0; i--) {\nbool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.rs
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09 */\nfn bubble_sort_with_flag(nums: &mut [i32]) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in (1..nums.len()).rev() {\nlet mut flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in 0..i {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true;  // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif !flag {break};  // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            "},{"location":"chapter_sorting/bubble_sort/#1133","title":"11.3.3 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3001\u81ea\u9002\u5e94\u6392\u5e8f \uff1a\u5404\u8f6e\u201c\u5192\u6ce1\u201d\u904d\u5386\u7684\u6570\u7ec4\u957f\u5ea6\u4f9d\u6b21\u4e3a \\(n - 1\\) , \\(n - 2\\) , \\(\\cdots\\) , \\(2\\) , \\(1\\) \uff0c\u603b\u548c\u4e3a \\(\\frac{(n - 1) n}{2}\\) \u3002\u5728\u5f15\u5165 flag \u4f18\u5316\u540e\uff0c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe\u5230 \\(O(n)\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3001\u539f\u5730\u6392\u5e8f\uff1a\u6307\u9488 \\(i\\) , \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
            • \u7a33\u5b9a\u6392\u5e8f\uff1a\u7531\u4e8e\u5728\u201c\u5192\u6ce1\u201d\u4e2d\u9047\u5230\u76f8\u7b49\u5143\u7d20\u4e0d\u4ea4\u6362\u3002
            "},{"location":"chapter_sorting/bucket_sort/","title":"11.8 \u00a0 \u6876\u6392\u5e8f","text":"

            \u524d\u8ff0\u7684\u51e0\u79cd\u6392\u5e8f\u7b97\u6cd5\u90fd\u5c5e\u4e8e\u201c\u57fa\u4e8e\u6bd4\u8f83\u7684\u6392\u5e8f\u7b97\u6cd5\u201d\uff0c\u5b83\u4eec\u901a\u8fc7\u6bd4\u8f83\u5143\u7d20\u95f4\u7684\u5927\u5c0f\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u6b64\u7c7b\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u65e0\u6cd5\u8d85\u8d8a \\(O(n \\log n)\\) \u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c06\u63a2\u8ba8\u51e0\u79cd\u201c\u975e\u6bd4\u8f83\u6392\u5e8f\u7b97\u6cd5\u201d\uff0c\u5b83\u4eec\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230\u7ebf\u6027\u9636\u3002

            \u300c\u6876\u6392\u5e8f Bucket Sort\u300d\u662f\u5206\u6cbb\u601d\u60f3\u7684\u4e00\u4e2a\u5178\u578b\u5e94\u7528\u3002\u5b83\u901a\u8fc7\u8bbe\u7f6e\u4e00\u4e9b\u5177\u6709\u5927\u5c0f\u987a\u5e8f\u7684\u6876\uff0c\u6bcf\u4e2a\u6876\u5bf9\u5e94\u4e00\u4e2a\u6570\u636e\u8303\u56f4\uff0c\u5c06\u6570\u636e\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff1b\u7136\u540e\uff0c\u5728\u6bcf\u4e2a\u6876\u5185\u90e8\u5206\u522b\u6267\u884c\u6392\u5e8f\uff1b\u6700\u7ec8\u6309\u7167\u6876\u7684\u987a\u5e8f\u5c06\u6240\u6709\u6570\u636e\u5408\u5e76\u3002

            "},{"location":"chapter_sorting/bucket_sort/#1181","title":"11.8.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u8003\u8651\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\uff0c\u5143\u7d20\u662f\u8303\u56f4 \\([0, 1)\\) \u7684\u6d6e\u70b9\u6570\u3002\u6876\u6392\u5e8f\u7684\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u521d\u59cb\u5316 \\(k\\) \u4e2a\u6876\uff0c\u5c06 \\(n\\) \u4e2a\u5143\u7d20\u5206\u914d\u5230 \\(k\\) \u4e2a\u6876\u4e2d\u3002
            2. \u5bf9\u6bcf\u4e2a\u6876\u5206\u522b\u6267\u884c\u6392\u5e8f\uff08\u672c\u6587\u91c7\u7528\u7f16\u7a0b\u8bed\u8a00\u7684\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff09\u3002
            3. \u6309\u7167\u6876\u7684\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\uff0c\u5408\u5e76\u7ed3\u679c\u3002

            \u56fe\uff1a\u6876\u6392\u5e8f\u7b97\u6cd5\u6d41\u7a0b

            JavaC++PythonGoJSTSCC#SwiftZigDartRust bucket_sort.java
            /* \u6876\u6392\u5e8f */\nvoid bucketSort(float[] nums) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nint k = nums.length / 2;\nList<List<Float>> buckets = new ArrayList<>();\nfor (int i = 0; i < k; i++) {\nbuckets.add(new ArrayList<>());\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (float num : nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nint i = (int) (num * k);\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets.get(i).add(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (List<Float> bucket : buckets) {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nCollections.sort(bucket);\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nint i = 0;\nfor (List<Float> bucket : buckets) {\nfor (float num : bucket) {\nnums[i++] = num;\n}\n}\n}\n
            bucket_sort.cpp
            /* \u6876\u6392\u5e8f */\nvoid bucketSort(vector<float> &nums) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nint k = nums.size() / 2;\nvector<vector<float>> buckets(k);\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (float num : nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nint i = num * k;\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 bucket_idx\nbuckets[i].push_back(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (vector<float> &bucket : buckets) {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nsort(bucket.begin(), bucket.end());\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nint i = 0;\nfor (vector<float> &bucket : buckets) {\nfor (float num : bucket) {\nnums[i++] = num;\n}\n}\n}\n
            bucket_sort.py
            def bucket_sort(nums: list[float]):\n\"\"\"\u6876\u6392\u5e8f\"\"\"\n# \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nk = len(nums) // 2\nbuckets = [[] for _ in range(k)]\n# 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor num in nums:\n# \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\ni = int(num * k)\n# \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].append(num)\n# 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor bucket in buckets:\n# \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbucket.sort()\n# 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\ni = 0\nfor bucket in buckets:\nfor num in bucket:\nnums[i] = num\ni += 1\n
            bucket_sort.go
            /* \u6876\u6392\u5e8f */\nfunc bucketSort(nums []float64) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nk := len(nums) / 2\nbuckets := make([][]float64, k)\nfor i := 0; i < k; i++ {\nbuckets[i] = make([]float64, 0)\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor _, num := range nums {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\ni := int(num * float64(k))\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i] = append(buckets[i], num)\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor i := 0; i < k; i++ {\n// \u4f7f\u7528\u5185\u7f6e\u5207\u7247\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nsort.Float64s(buckets[i])\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\ni := 0\nfor _, bucket := range buckets {\nfor _, num := range bucket {\nnums[i] = num\ni++\n}\n}\n}\n
            bucket_sort.js
            /* \u6876\u6392\u5e8f */\nfunction bucketSort(nums) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nconst k = nums.length / 2;\nconst buckets = [];\nfor (let i = 0; i < k; i++) {\nbuckets.push([]);\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (const num of nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nconst i = Math.floor(num * k);\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].push(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (const bucket of buckets) {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbucket.sort((a, b) => a - b);\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nlet i = 0;\nfor (const bucket of buckets) {\nfor (const num of bucket) {\nnums[i++] = num;\n}\n}\n}\n
            bucket_sort.ts
            /* \u6876\u6392\u5e8f */\nfunction bucketSort(nums: number[]): void {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nconst k = nums.length / 2;\nconst buckets: number[][] = [];\nfor (let i = 0; i < k; i++) {\nbuckets.push([]);\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (const num of nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nconst i = Math.floor(num * k);\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].push(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (const bucket of buckets) {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbucket.sort((a, b) => a - b);\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nlet i = 0;\nfor (const bucket of buckets) {\nfor (const num of bucket) {\nnums[i++] = num;\n}\n}\n}\n
            bucket_sort.c
            /* \u6876\u6392\u5e8f */\nvoid bucketSort(float nums[], int size) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nint k = size / 2;\nfloat **buckets = calloc(k, sizeof(float *));\nfor (int i = 0; i < k; i++) {\n// \u6bcf\u4e2a\u6876\u6700\u591a\u53ef\u4ee5\u5206\u914d k \u4e2a\u5143\u7d20\nbuckets[i] = calloc(ARRAY_SIZE, sizeof(float));\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (int i = 0; i < size; i++) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nint bucket_idx = nums[i] * k;\nint j = 0;\n// \u5982\u679c\u6876\u4e2d\u6709\u6570\u636e\u4e14\u6570\u636e\u5c0f\u4e8e\u5f53\u524d\u503c nums[i], \u8981\u5c06\u5176\u653e\u5230\u5f53\u524d\u6876\u7684\u540e\u9762\uff0c\u76f8\u5f53\u4e8e cpp \u4e2d\u7684 push_back\nwhile (buckets[bucket_idx][j] > 0 && buckets[bucket_idx][j] < nums[i]) {\nj++;\n}\nfloat temp = nums[i];\nwhile (j < ARRAY_SIZE && buckets[bucket_idx][j] > 0) {\nswap(&temp, &buckets[bucket_idx][j]);\nj++;\n}\nbuckets[bucket_idx][j] = temp;\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (int i = 0; i < k; i++) {\nqsort(buckets[i], ARRAY_SIZE, sizeof(float), compare_float);\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nfor (int i = 0, j = 0; j < k; j++) {\nfor (int l = 0; l < ARRAY_SIZE; l++) {\nif (buckets[j][l] > 0) {\nnums[i++] = buckets[j][l];\n}\n}\n}\n// \u91ca\u653e\u4e0a\u8ff0\u5206\u914d\u7684\u5185\u5b58\nfor (int i = 0; i < k; i++) {\nfree(buckets[i]);\n}\nfree(buckets);\n}\n
            bucket_sort.cs
            /* \u6876\u6392\u5e8f */\nvoid bucketSort(float[] nums) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nint k = nums.Length / 2;\nList<List<float>> buckets = new List<List<float>>();\nfor (int i = 0; i < k; i++) {\nbuckets.Add(new List<float>());\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nforeach (float num in nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nint i = (int) (num * k);\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].Add(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nforeach (List<float> bucket in buckets) {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbucket.Sort();\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nint j = 0;\nforeach (List<float> bucket in buckets) {\nforeach (float num in bucket) {\nnums[j++] = num;\n}\n}\n}\n
            bucket_sort.swift
            /* \u6876\u6392\u5e8f */\nfunc bucketSort(nums: inout [Double]) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nlet k = nums.count / 2\nvar buckets = (0 ..< k).map { _ in [Double]() }\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor num in nums {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nlet i = Int(num * Double(k))\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].append(num)\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor i in buckets.indices {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbuckets[i].sort()\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nvar i = nums.startIndex\nfor bucket in buckets {\nfor num in bucket {\nnums[i] = num\nnums.formIndex(after: &i)\n}\n}\n}\n
            bucket_sort.zig
            [class]{}-[func]{bucketSort}\n
            bucket_sort.dart
            /* \u6876\u6392\u5e8f */\nvoid bucketSort(List<double> nums) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nint k = nums.length ~/ 2;\nList<List<double>> buckets = List.generate(k, (index) => []);\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (double num in nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nint i = (num * k).toInt();\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 bucket_idx\nbuckets[i].add(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (List<double> bucket in buckets) {\nbucket.sort();\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nint i = 0;\nfor (List<double> bucket in buckets) {\nfor (double num in bucket) {\nnums[i++] = num;\n}\n}\n}\n
            bucket_sort.rs
            /* \u6876\u6392\u5e8f */\nfn bucket_sort(nums: &mut [f64]) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nlet k = nums.len() / 2;\nlet mut buckets = vec![vec![]; k];\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor &mut num in &mut *nums {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nlet i = (num * k as f64) as usize;\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].push(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor bucket in &mut buckets {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbucket.sort_by(|a, b| a.partial_cmp(b).unwrap());\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nlet mut i = 0;\nfor bucket in &mut buckets {\nfor &mut num in bucket {\nnums[i] = num;\ni += 1;\n}\n}\n}\n

            \u6876\u6392\u5e8f\u7684\u9002\u7528\u573a\u666f\u662f\u4ec0\u4e48\uff1f

            \u6876\u6392\u5e8f\u9002\u7528\u4e8e\u5904\u7406\u4f53\u91cf\u5f88\u5927\u7684\u6570\u636e\u3002\u4f8b\u5982\uff0c\u8f93\u5165\u6570\u636e\u5305\u542b 100 \u4e07\u4e2a\u5143\u7d20\uff0c\u7531\u4e8e\u7a7a\u95f4\u9650\u5236\uff0c\u7cfb\u7edf\u5185\u5b58\u65e0\u6cd5\u4e00\u6b21\u6027\u52a0\u8f7d\u6240\u6709\u6570\u636e\u3002\u6b64\u65f6\uff0c\u53ef\u4ee5\u5c06\u6570\u636e\u5206\u6210 1000 \u4e2a\u6876\uff0c\u7136\u540e\u5206\u522b\u5bf9\u6bcf\u4e2a\u6876\u8fdb\u884c\u6392\u5e8f\uff0c\u6700\u540e\u5c06\u7ed3\u679c\u5408\u5e76\u3002

            "},{"location":"chapter_sorting/bucket_sort/#1182","title":"11.8.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n + k)\\) \uff1a\u5047\u8bbe\u5143\u7d20\u5728\u5404\u4e2a\u6876\u5185\u5e73\u5747\u5206\u5e03\uff0c\u90a3\u4e48\u6bcf\u4e2a\u6876\u5185\u7684\u5143\u7d20\u6570\u91cf\u4e3a \\(\\frac{n}{k}\\) \u3002\u5047\u8bbe\u6392\u5e8f\u5355\u4e2a\u6876\u4f7f\u7528 \\(O(\\frac{n}{k} \\log\\frac{n}{k})\\) \u65f6\u95f4\uff0c\u5219\u6392\u5e8f\u6240\u6709\u6876\u4f7f\u7528 \\(O(n \\log\\frac{n}{k})\\) \u65f6\u95f4\u3002\u5f53\u6876\u6570\u91cf \\(k\\) \u6bd4\u8f83\u5927\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5219\u8d8b\u5411\u4e8e \\(O(n)\\) \u3002\u5408\u5e76\u7ed3\u679c\u65f6\u9700\u8981\u904d\u5386\u6240\u6709\u6876\u548c\u5143\u7d20\uff0c\u82b1\u8d39 \\(O(n + k)\\) \u65f6\u95f4\u3002
            • \u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5728\u6700\u574f\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u6570\u636e\u88ab\u5206\u914d\u5230\u4e00\u4e2a\u6876\u4e2d\uff0c\u4e14\u6392\u5e8f\u8be5\u6876\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n + k)\\) \u3001\u975e\u539f\u5730\u6392\u5e8f \uff1a\u9700\u8981\u501f\u52a9 \\(k\\) \u4e2a\u6876\u548c\u603b\u5171 \\(n\\) \u4e2a\u5143\u7d20\u7684\u989d\u5916\u7a7a\u95f4\u3002
            • \u6876\u6392\u5e8f\u662f\u5426\u7a33\u5b9a\u53d6\u51b3\u4e8e\u6392\u5e8f\u6876\u5185\u5143\u7d20\u7684\u7b97\u6cd5\u662f\u5426\u7a33\u5b9a\u3002
            "},{"location":"chapter_sorting/bucket_sort/#1183","title":"11.8.3 \u00a0 \u5982\u4f55\u5b9e\u73b0\u5e73\u5747\u5206\u914d","text":"

            \u6876\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7406\u8bba\u4e0a\u53ef\u4ee5\u8fbe\u5230 \\(O(n)\\) \uff0c\u5173\u952e\u5728\u4e8e\u5c06\u5143\u7d20\u5747\u5300\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff0c\u56e0\u4e3a\u5b9e\u9645\u6570\u636e\u5f80\u5f80\u4e0d\u662f\u5747\u5300\u5206\u5e03\u7684\u3002\u4f8b\u5982\uff0c\u6211\u4eec\u60f3\u8981\u5c06\u6dd8\u5b9d\u4e0a\u7684\u6240\u6709\u5546\u54c1\u6309\u4ef7\u683c\u8303\u56f4\u5e73\u5747\u5206\u914d\u5230 10 \u4e2a\u6876\u4e2d\uff0c\u4f46\u5546\u54c1\u4ef7\u683c\u5206\u5e03\u4e0d\u5747\uff0c\u4f4e\u4e8e 100 \u5143\u7684\u975e\u5e38\u591a\uff0c\u9ad8\u4e8e 1000 \u5143\u7684\u975e\u5e38\u5c11\u3002\u82e5\u5c06\u4ef7\u683c\u533a\u95f4\u5e73\u5747\u5212\u5206\u4e3a 10 \u4efd\uff0c\u5404\u4e2a\u6876\u4e2d\u7684\u5546\u54c1\u6570\u91cf\u5dee\u8ddd\u4f1a\u975e\u5e38\u5927\u3002

            \u4e3a\u5b9e\u73b0\u5e73\u5747\u5206\u914d\uff0c\u6211\u4eec\u53ef\u4ee5\u5148\u8bbe\u5b9a\u4e00\u4e2a\u5927\u81f4\u7684\u5206\u754c\u7ebf\uff0c\u5c06\u6570\u636e\u7c97\u7565\u5730\u5206\u5230 3 \u4e2a\u6876\u4e2d\u3002\u5206\u914d\u5b8c\u6bd5\u540e\uff0c\u518d\u5c06\u5546\u54c1\u8f83\u591a\u7684\u6876\u7ee7\u7eed\u5212\u5206\u4e3a 3 \u4e2a\u6876\uff0c\u76f4\u81f3\u6240\u6709\u6876\u4e2d\u7684\u5143\u7d20\u6570\u91cf\u5927\u81f4\u76f8\u7b49\u3002\u8fd9\u79cd\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u521b\u5efa\u4e00\u4e2a\u9012\u5f52\u6811\uff0c\u4f7f\u53f6\u8282\u70b9\u7684\u503c\u5c3d\u53ef\u80fd\u5e73\u5747\u3002\u5f53\u7136\uff0c\u4e0d\u4e00\u5b9a\u8981\u6bcf\u8f6e\u5c06\u6570\u636e\u5212\u5206\u4e3a 3 \u4e2a\u6876\uff0c\u5177\u4f53\u5212\u5206\u65b9\u5f0f\u53ef\u6839\u636e\u6570\u636e\u7279\u70b9\u7075\u6d3b\u9009\u62e9\u3002

            \u56fe\uff1a\u9012\u5f52\u5212\u5206\u6876

            \u5982\u679c\u6211\u4eec\u63d0\u524d\u77e5\u9053\u5546\u54c1\u4ef7\u683c\u7684\u6982\u7387\u5206\u5e03\uff0c\u5219\u53ef\u4ee5\u6839\u636e\u6570\u636e\u6982\u7387\u5206\u5e03\u8bbe\u7f6e\u6bcf\u4e2a\u6876\u7684\u4ef7\u683c\u5206\u754c\u7ebf\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u6570\u636e\u5206\u5e03\u5e76\u4e0d\u4e00\u5b9a\u9700\u8981\u7279\u610f\u7edf\u8ba1\uff0c\u4e5f\u53ef\u4ee5\u6839\u636e\u6570\u636e\u7279\u70b9\u91c7\u7528\u67d0\u79cd\u6982\u7387\u6a21\u578b\u8fdb\u884c\u8fd1\u4f3c\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u6211\u4eec\u5047\u8bbe\u5546\u54c1\u4ef7\u683c\u670d\u4ece\u6b63\u6001\u5206\u5e03\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5408\u7406\u5730\u8bbe\u5b9a\u4ef7\u683c\u533a\u95f4\uff0c\u4ece\u800c\u5c06\u5546\u54c1\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\u3002

            \u56fe\uff1a\u6839\u636e\u6982\u7387\u5206\u5e03\u5212\u5206\u6876

            "},{"location":"chapter_sorting/counting_sort/","title":"11.9 \u00a0 \u8ba1\u6570\u6392\u5e8f","text":"

            \u300c\u8ba1\u6570\u6392\u5e8f Counting Sort\u300d\u901a\u8fc7\u7edf\u8ba1\u5143\u7d20\u6570\u91cf\u6765\u5b9e\u73b0\u6392\u5e8f\uff0c\u901a\u5e38\u5e94\u7528\u4e8e\u6574\u6570\u6570\u7ec4\u3002

            "},{"location":"chapter_sorting/counting_sort/#1191","title":"11.9.1 \u00a0 \u7b80\u5355\u5b9e\u73b0","text":"

            \u5148\u6765\u770b\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u3002\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5176\u4e2d\u7684\u5143\u7d20\u90fd\u662f\u201c\u975e\u8d1f\u6574\u6570\u201d\u3002\u8ba1\u6570\u6392\u5e8f\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u904d\u5386\u6570\u7ec4\uff0c\u627e\u51fa\u6570\u7ec4\u4e2d\u7684\u6700\u5927\u6570\u5b57\uff0c\u8bb0\u4e3a \\(m\\) \uff0c\u7136\u540e\u521b\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(m + 1\\) \u7684\u8f85\u52a9\u6570\u7ec4 counter \u3002
            2. \u501f\u52a9 counter \u7edf\u8ba1 nums \u4e2d\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\uff0c\u5176\u4e2d counter[num] \u5bf9\u5e94\u6570\u5b57 num \u7684\u51fa\u73b0\u6b21\u6570\u3002\u7edf\u8ba1\u65b9\u6cd5\u5f88\u7b80\u5355\uff0c\u53ea\u9700\u904d\u5386 nums\uff08\u8bbe\u5f53\u524d\u6570\u5b57\u4e3a num\uff09\uff0c\u6bcf\u8f6e\u5c06 counter[num] \u589e\u52a0 \\(1\\) \u5373\u53ef\u3002
            3. \u7531\u4e8e counter \u7684\u5404\u4e2a\u7d22\u5f15\u5929\u7136\u6709\u5e8f\uff0c\u56e0\u6b64\u76f8\u5f53\u4e8e\u6240\u6709\u6570\u5b57\u5df2\u7ecf\u88ab\u6392\u5e8f\u597d\u4e86\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u904d\u5386 counter \uff0c\u6839\u636e\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\uff0c\u5c06\u5b83\u4eec\u6309\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u586b\u5165 nums \u5373\u53ef\u3002

            \u56fe\uff1a\u8ba1\u6570\u6392\u5e8f\u6d41\u7a0b

            JavaC++PythonGoJSTSCC#SwiftZigDartRust counting_sort.java
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(int[] nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num : nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint[] counter = new int[m + 1];\nfor (int num : nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nint i = 0;\nfor (int num = 0; num < m + 1; num++) {\nfor (int j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.cpp
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(vector<int> &nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num : nums) {\nm = max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nvector<int> counter(m + 1, 0);\nfor (int num : nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nint i = 0;\nfor (int num = 0; num < m + 1; num++) {\nfor (int j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.py
            def counting_sort_naive(nums: list[int]):\n\"\"\"\u8ba1\u6570\u6392\u5e8f\"\"\"\n# \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\n# 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nm = 0\nfor num in nums:\nm = max(m, num)\n# 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n# counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\ncounter = [0] * (m + 1)\nfor num in nums:\ncounter[num] += 1\n# 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\ni = 0\nfor num in range(m + 1):\nfor _ in range(counter[num]):\nnums[i] = num\ni += 1\n
            counting_sort.go
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunc countingSortNaive(nums []int) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nm := 0\nfor _, num := range nums {\nif num > m {\nm = num\n}\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\ncounter := make([]int, m+1)\nfor _, num := range nums {\ncounter[num]++\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nfor i, num := 0, 0; num < m+1; num++ {\nfor j := 0; j < counter[num]; j++ {\nnums[i] = num\ni++\n}\n}\n}\n
            counting_sort.js
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunction countingSortNaive(nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = 0;\nfor (const num of nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nconst counter = new Array(m + 1).fill(0);\nfor (const num of nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nlet i = 0;\nfor (let num = 0; num < m + 1; num++) {\nfor (let j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.ts
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunction countingSortNaive(nums: number[]): void {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = 0;\nfor (const num of nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nconst counter: number[] = new Array<number>(m + 1).fill(0);\nfor (const num of nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nlet i = 0;\nfor (let num = 0; num < m + 1; num++) {\nfor (let j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.c
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(int nums[], int size) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int i = 0; i < size; i++) {\nif (nums[i] > m) {\nm = nums[i];\n}\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint *counter = malloc(sizeof(int) * m);\nfor (int i = 0; i < size; i++) {\ncounter[nums[i]]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nint i = 0;\nfor (int num = 0; num < m + 1; num++) {\nfor (int j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.cs
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(int[] nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nforeach (int num in nums) {\nm = Math.Max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint[] counter = new int[m + 1];\nforeach (int num in nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nint i = 0;\nfor (int num = 0; num < m + 1; num++) {\nfor (int j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.swift
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunc countingSortNaive(nums: inout [Int]) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = nums.max()!\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nvar counter = Array(repeating: 0, count: m + 1)\nfor num in nums {\ncounter[num] += 1\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nvar i = 0\nfor num in stride(from: 0, to: m + 1, by: 1) {\nfor _ in stride(from: 0, to: counter[num], by: 1) {\nnums[i] = num\ni += 1\n}\n}\n}\n
            counting_sort.zig
            [class]{}-[func]{countingSortNaive}\n
            counting_sort.dart
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(List<int> nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num in nums) {\nm = max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nList<int> counter = List.filled(m + 1, 0);\nfor (int num in nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nint i = 0;\nfor (int num = 0; num < m + 1; num++) {\nfor (int j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.rs
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfn counting_sort_naive(nums: &mut [i32]) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = *nums.into_iter().max().unwrap();\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nlet mut counter = vec![0; m as usize + 1];\nfor &num in &*nums {\ncounter[num as usize] += 1;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nlet mut i = 0;\nfor num in 0..m + 1 {\nfor _ in 0..counter[num as usize] {\nnums[i] = num;\ni += 1;\n}\n}\n}\n

            \u8ba1\u6570\u6392\u5e8f\u4e0e\u6876\u6392\u5e8f\u7684\u8054\u7cfb

            \u4ece\u6876\u6392\u5e8f\u7684\u89d2\u5ea6\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u8ba1\u6570\u6392\u5e8f\u4e2d\u7684\u8ba1\u6570\u6570\u7ec4 counter \u7684\u6bcf\u4e2a\u7d22\u5f15\u89c6\u4e3a\u4e00\u4e2a\u6876\uff0c\u5c06\u7edf\u8ba1\u6570\u91cf\u7684\u8fc7\u7a0b\u770b\u4f5c\u662f\u5c06\u5404\u4e2a\u5143\u7d20\u5206\u914d\u5230\u5bf9\u5e94\u7684\u6876\u4e2d\u3002\u672c\u8d28\u4e0a\uff0c\u8ba1\u6570\u6392\u5e8f\u662f\u6876\u6392\u5e8f\u5728\u6574\u578b\u6570\u636e\u4e0b\u7684\u4e00\u4e2a\u7279\u4f8b\u3002

            "},{"location":"chapter_sorting/counting_sort/#1192","title":"11.9.2 \u00a0 \u5b8c\u6574\u5b9e\u73b0","text":"

            \u7ec6\u5fc3\u7684\u540c\u5b66\u53ef\u80fd\u53d1\u73b0\uff0c\u5982\u679c\u8f93\u5165\u6570\u636e\u662f\u5bf9\u8c61\uff0c\u4e0a\u8ff0\u6b65\u9aa4 3. \u5c31\u5931\u6548\u4e86\u3002\u4f8b\u5982\uff0c\u8f93\u5165\u6570\u636e\u662f\u5546\u54c1\u5bf9\u8c61\uff0c\u6211\u4eec\u60f3\u8981\u6309\u7167\u5546\u54c1\u4ef7\u683c\uff08\u7c7b\u7684\u6210\u5458\u53d8\u91cf\uff09\u5bf9\u5546\u54c1\u8fdb\u884c\u6392\u5e8f\uff0c\u800c\u4e0a\u8ff0\u7b97\u6cd5\u53ea\u80fd\u7ed9\u51fa\u4ef7\u683c\u7684\u6392\u5e8f\u7ed3\u679c\u3002

            \u90a3\u4e48\u5982\u4f55\u624d\u80fd\u5f97\u5230\u539f\u6570\u636e\u7684\u6392\u5e8f\u7ed3\u679c\u5462\uff1f\u6211\u4eec\u9996\u5148\u8ba1\u7b97 counter \u7684\u300c\u524d\u7f00\u548c\u300d\u3002\u987e\u540d\u601d\u4e49\uff0c\u7d22\u5f15 i \u5904\u7684\u524d\u7f00\u548c prefix[i] \u7b49\u4e8e\u6570\u7ec4\u524d i \u4e2a\u5143\u7d20\u4e4b\u548c\uff0c\u5373

            \\[ \\text{prefix}[i] = \\sum_{j=0}^i \\text{counter[j]} \\]

            \u524d\u7f00\u548c\u5177\u6709\u660e\u786e\u7684\u610f\u4e49\uff0cprefix[num] - 1 \u4ee3\u8868\u5143\u7d20 num \u5728\u7ed3\u679c\u6570\u7ec4 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\u3002\u8fd9\u4e2a\u4fe1\u606f\u975e\u5e38\u5173\u952e\uff0c\u56e0\u4e3a\u5b83\u544a\u8bc9\u6211\u4eec\u5404\u4e2a\u5143\u7d20\u5e94\u8be5\u51fa\u73b0\u5728\u7ed3\u679c\u6570\u7ec4\u7684\u54ea\u4e2a\u4f4d\u7f6e\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5012\u5e8f\u904d\u5386\u539f\u6570\u7ec4 nums \u7684\u6bcf\u4e2a\u5143\u7d20 num \uff0c\u5728\u6bcf\u8f6e\u8fed\u4ee3\u4e2d\u6267\u884c\uff1a

            1. \u5c06 num \u586b\u5165\u6570\u7ec4 res \u7684\u7d22\u5f15 prefix[num] - 1 \u5904\u3002
            2. \u4ee4\u524d\u7f00\u548c prefix[num] \u51cf\u5c0f \\(1\\) \uff0c\u4ece\u800c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\u3002

            \u904d\u5386\u5b8c\u6210\u540e\uff0c\u6570\u7ec4 res \u4e2d\u5c31\u662f\u6392\u5e8f\u597d\u7684\u7ed3\u679c\uff0c\u6700\u540e\u4f7f\u7528 res \u8986\u76d6\u539f\u6570\u7ec4 nums \u5373\u53ef\u3002

            <1><2><3><4><5><6><7><8>

            \u56fe\uff1a\u8ba1\u6570\u6392\u5e8f\u6b65\u9aa4

            \u8ba1\u6570\u6392\u5e8f\u7684\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust counting_sort.java
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(int[] nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num : nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint[] counter = new int[m + 1];\nfor (int num : nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (int i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nint n = nums.length;\nint[] res = new int[n];\nfor (int i = n - 1; i >= 0; i--) {\nint num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n
            counting_sort.cpp
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(vector<int> &nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num : nums) {\nm = max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nvector<int> counter(m + 1, 0);\nfor (int num : nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (int i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nint n = nums.size();\nvector<int> res(n);\nfor (int i = n - 1; i >= 0; i--) {\nint num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--;              // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nnums = res;\n}\n
            counting_sort.py
            def counting_sort(nums: list[int]):\n\"\"\"\u8ba1\u6570\u6392\u5e8f\"\"\"\n# \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\n# 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nm = max(nums)\n# 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n# counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\ncounter = [0] * (m + 1)\nfor num in nums:\ncounter[num] += 1\n# 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n# \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor i in range(m):\ncounter[i + 1] += counter[i]\n# 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n# \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nn = len(nums)\nres = [0] * n\nfor i in range(n - 1, -1, -1):\nnum = nums[i]\nres[counter[num] - 1] = num  # \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num] -= 1  # \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n# \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in range(n):\nnums[i] = res[i]\n
            counting_sort.go
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunc countingSort(nums []int) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nm := 0\nfor _, num := range nums {\nif num > m {\nm = num\n}\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\ncounter := make([]int, m+1)\nfor _, num := range nums {\ncounter[num]++\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor i := 0; i < m; i++ {\ncounter[i+1] += counter[i]\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nn := len(nums)\nres := make([]int, n)\nfor i := n - 1; i >= 0; i-- {\nnum := nums[i]\n// \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\nres[counter[num]-1] = num\n// \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\ncounter[num]--\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\ncopy(nums, res)\n}\n
            counting_sort.js
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunction countingSort(nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = 0;\nfor (const num of nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nconst counter = new Array(m + 1).fill(0);\nfor (const num of nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (let i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nconst n = nums.length;\nconst res = new Array(n);\nfor (let i = n - 1; i >= 0; i--) {\nconst num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (let i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n
            counting_sort.ts
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunction countingSort(nums: number[]): void {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = 0;\nfor (const num of nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nconst counter: number[] = new Array<number>(m + 1).fill(0);\nfor (const num of nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (let i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nconst n = nums.length;\nconst res: number[] = new Array<number>(n);\nfor (let i = n - 1; i >= 0; i--) {\nconst num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (let i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n
            counting_sort.c
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(int nums[], int size) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int i = 0; i < size; i++) {\nif (nums[i] > m) {\nm = nums[i];\n}\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint *counter = malloc(sizeof(int) * m);\nfor (int i = 0; i < size; i++) {\ncounter[nums[i]]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (int i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nint *res = malloc(sizeof(int) * size);\nfor (int i = size - 1; i >= 0; i--) {\nint num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--;              // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nmemcpy(nums, res, size * sizeof(int));\n}\n
            counting_sort.cs
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(int[] nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nforeach (int num in nums) {\nm = Math.Max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint[] counter = new int[m + 1];\nforeach (int num in nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (int i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nint n = nums.Length;\nint[] res = new int[n];\nfor (int i = n - 1; i >= 0; i--) {\nint num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n
            counting_sort.swift
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunc countingSort(nums: inout [Int]) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = nums.max()!\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nvar counter = Array(repeating: 0, count: m + 1)\nfor num in nums {\ncounter[num] += 1\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor i in stride(from: 0, to: m, by: 1) {\ncounter[i + 1] += counter[i]\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nvar res = Array(repeating: 0, count: nums.count)\nfor i in stride(from: nums.count - 1, through: 0, by: -1) {\nlet num = nums[i]\nres[counter[num] - 1] = num // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num] -= 1 // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in stride(from: 0, to: nums.count, by: 1) {\nnums[i] = res[i]\n}\n}\n
            counting_sort.zig
            [class]{}-[func]{countingSort}\n
            counting_sort.dart
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(List<int> nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num in nums) {\nm = max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nList<int> counter = List.filled(m + 1, 0);\nfor (int num in nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (int i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nint n = nums.length;\nList<int> res = List.filled(n, 0);\nfor (int i = n - 1; i >= 0; i--) {\nint num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nnums.setAll(0, res);\n}\n
            counting_sort.rs
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfn counting_sort(nums: &mut [i32]) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = *nums.into_iter().max().unwrap();\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nlet mut counter = vec![0; m as usize + 1];\nfor &num in &*nums {\ncounter[num as usize] += 1;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor i in 0..m as usize {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nlet n = nums.len();\nlet mut res = vec![0; n];\nfor i in (0..n).rev() {\nlet num = nums[i];\nres[counter[num as usize] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num as usize] -= 1; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in 0..n {\nnums[i] = res[i];\n}\n}\n
            "},{"location":"chapter_sorting/counting_sort/#1193","title":"11.9.3 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n + m)\\) \uff1a\u6d89\u53ca\u904d\u5386 nums \u548c\u904d\u5386 counter \uff0c\u90fd\u4f7f\u7528\u7ebf\u6027\u65f6\u95f4\u3002\u4e00\u822c\u60c5\u51b5\u4e0b \\(n \\gg m\\) \uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u4e8e \\(O(n)\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n + m)\\) \u3001\u975e\u539f\u5730\u6392\u5e8f \uff1a\u501f\u52a9\u4e86\u957f\u5ea6\u5206\u522b\u4e3a \\(n\\) \u548c \\(m\\) \u7684\u6570\u7ec4 res \u548c counter \u3002
            • \u7a33\u5b9a\u6392\u5e8f\uff1a\u7531\u4e8e\u5411 res \u4e2d\u586b\u5145\u5143\u7d20\u7684\u987a\u5e8f\u662f\u201c\u4ece\u53f3\u5411\u5de6\u201d\u7684\uff0c\u56e0\u6b64\u5012\u5e8f\u904d\u5386 nums \u53ef\u4ee5\u907f\u514d\u6539\u53d8\u76f8\u7b49\u5143\u7d20\u4e4b\u95f4\u7684\u76f8\u5bf9\u4f4d\u7f6e\uff0c\u4ece\u800c\u5b9e\u73b0\u7a33\u5b9a\u6392\u5e8f\u3002\u5b9e\u9645\u4e0a\uff0c\u6b63\u5e8f\u904d\u5386 nums \u4e5f\u53ef\u4ee5\u5f97\u5230\u6b63\u786e\u7684\u6392\u5e8f\u7ed3\u679c\uff0c\u4f46\u7ed3\u679c\u662f\u975e\u7a33\u5b9a\u7684\u3002
            "},{"location":"chapter_sorting/counting_sort/#1194","title":"11.9.4 \u00a0 \u5c40\u9650\u6027","text":"

            \u770b\u5230\u8fd9\u91cc\uff0c\u4f60\u4e5f\u8bb8\u4f1a\u89c9\u5f97\u8ba1\u6570\u6392\u5e8f\u975e\u5e38\u5de7\u5999\uff0c\u4ec5\u901a\u8fc7\u7edf\u8ba1\u6570\u91cf\u5c31\u53ef\u4ee5\u5b9e\u73b0\u9ad8\u6548\u7684\u6392\u5e8f\u5de5\u4f5c\u3002\u7136\u800c\uff0c\u4f7f\u7528\u8ba1\u6570\u6392\u5e8f\u7684\u524d\u7f6e\u6761\u4ef6\u76f8\u5bf9\u8f83\u4e3a\u4e25\u683c\u3002

            \u8ba1\u6570\u6392\u5e8f\u53ea\u9002\u7528\u4e8e\u975e\u8d1f\u6574\u6570\u3002\u82e5\u60f3\u8981\u5c06\u5176\u7528\u4e8e\u5176\u4ed6\u7c7b\u578b\u7684\u6570\u636e\uff0c\u9700\u8981\u786e\u4fdd\u8fd9\u4e9b\u6570\u636e\u53ef\u4ee5\u88ab\u8f6c\u6362\u4e3a\u975e\u8d1f\u6574\u6570\uff0c\u5e76\u4e14\u5728\u8f6c\u6362\u8fc7\u7a0b\u4e2d\u4e0d\u80fd\u6539\u53d8\u5404\u4e2a\u5143\u7d20\u4e4b\u95f4\u7684\u76f8\u5bf9\u5927\u5c0f\u5173\u7cfb\u3002\u4f8b\u5982\uff0c\u5bf9\u4e8e\u5305\u542b\u8d1f\u6570\u7684\u6574\u6570\u6570\u7ec4\uff0c\u53ef\u4ee5\u5148\u7ed9\u6240\u6709\u6570\u5b57\u52a0\u4e0a\u4e00\u4e2a\u5e38\u6570\uff0c\u5c06\u5168\u90e8\u6570\u5b57\u8f6c\u5316\u4e3a\u6b63\u6570\uff0c\u6392\u5e8f\u5b8c\u6210\u540e\u518d\u8f6c\u6362\u56de\u53bb\u5373\u53ef\u3002

            \u8ba1\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u636e\u91cf\u5927\u4f46\u6570\u636e\u8303\u56f4\u8f83\u5c0f\u7684\u60c5\u51b5\u3002\u6bd4\u5982\uff0c\u5728\u4e0a\u8ff0\u793a\u4f8b\u4e2d \\(m\\) \u4e0d\u80fd\u592a\u5927\uff0c\u5426\u5219\u4f1a\u5360\u7528\u8fc7\u591a\u7a7a\u95f4\u3002\u800c\u5f53 \\(n \\ll m\\) \u65f6\uff0c\u8ba1\u6570\u6392\u5e8f\u4f7f\u7528 \\(O(m)\\) \u65f6\u95f4\uff0c\u53ef\u80fd\u6bd4 \\(O(n \\log n)\\) \u7684\u6392\u5e8f\u7b97\u6cd5\u8fd8\u8981\u6162\u3002

            "},{"location":"chapter_sorting/heap_sort/","title":"11.7 \u00a0 \u5806\u6392\u5e8f","text":"

            Tip

            \u9605\u8bfb\u672c\u8282\u524d\uff0c\u8bf7\u786e\u4fdd\u5df2\u5b66\u5b8c\u300c\u5806\u300d\u7ae0\u8282\u3002

            \u300c\u5806\u6392\u5e8f Heap Sort\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5806\u6570\u636e\u7ed3\u6784\u5b9e\u73b0\u7684\u9ad8\u6548\u6392\u5e8f\u7b97\u6cd5\u3002\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u5df2\u7ecf\u5b66\u8fc7\u7684\u201c\u5efa\u5806\u64cd\u4f5c\u201d\u548c\u201c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u201d\u5b9e\u73b0\u5806\u6392\u5e8f\uff1a

            1. \u8f93\u5165\u6570\u7ec4\u5e76\u5efa\u7acb\u5c0f\u9876\u5806\uff0c\u6b64\u65f6\u6700\u5c0f\u5143\u7d20\u4f4d\u4e8e\u5806\u9876\u3002
            2. \u4e0d\u65ad\u6267\u884c\u51fa\u5806\u64cd\u4f5c\uff0c\u4f9d\u6b21\u8bb0\u5f55\u51fa\u5806\u5143\u7d20\uff0c\u5373\u53ef\u5f97\u5230\u4ece\u5c0f\u5230\u5927\u6392\u5e8f\u7684\u5e8f\u5217\u3002

            \u4ee5\u4e0a\u65b9\u6cd5\u867d\u7136\u53ef\u884c\uff0c\u4f46\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u989d\u5916\u6570\u7ec4\u6765\u4fdd\u5b58\u5f39\u51fa\u7684\u5143\u7d20\uff0c\u6bd4\u8f83\u6d6a\u8d39\u7a7a\u95f4\u3002\u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u4e00\u79cd\u66f4\u52a0\u4f18\u96c5\u7684\u5b9e\u73b0\u65b9\u5f0f\u3002

            "},{"location":"chapter_sorting/heap_sort/#1171","title":"11.7.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u5806\u6392\u5e8f\u7684\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u8f93\u5165\u6570\u7ec4\u5e76\u5efa\u7acb\u5927\u9876\u5806\u3002\u5b8c\u6210\u540e\uff0c\u6700\u5927\u5143\u7d20\u4f4d\u4e8e\u5806\u9876\u3002
            2. \u5c06\u5806\u9876\u5143\u7d20\uff08\u7b2c\u4e00\u4e2a\u5143\u7d20\uff09\u4e0e\u5806\u5e95\u5143\u7d20\uff08\u6700\u540e\u4e00\u4e2a\u5143\u7d20\uff09\u4ea4\u6362\u3002\u5b8c\u6210\u4ea4\u6362\u540e\uff0c\u5806\u7684\u957f\u5ea6\u51cf \\(1\\) \uff0c\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u52a0 \\(1\\) \u3002
            3. \u4ece\u5806\u9876\u5143\u7d20\u5f00\u59cb\uff0c\u4ece\u9876\u5230\u5e95\u6267\u884c\u5806\u5316\u64cd\u4f5c\uff08Sift Down\uff09\u3002\u5b8c\u6210\u5806\u5316\u540e\uff0c\u5806\u7684\u6027\u8d28\u5f97\u5230\u4fee\u590d\u3002
            4. \u5faa\u73af\u6267\u884c\u7b2c 2. \u548c 3. \u6b65\u3002\u5faa\u73af \\(n - 1\\) \u8f6e\u540e\uff0c\u5373\u53ef\u5b8c\u6210\u6570\u7ec4\u6392\u5e8f\u3002

            \u5b9e\u9645\u4e0a\uff0c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u4e2d\u4e5f\u5305\u542b\u7b2c 2. \u548c 3. \u6b65\uff0c\u53ea\u662f\u591a\u4e86\u4e00\u4e2a\u5f39\u51fa\u5143\u7d20\u7684\u6b65\u9aa4\u3002

            <1><2><3><4><5><6><7><8><9><10><11><12>

            \u56fe\uff1a\u5806\u6392\u5e8f\u6b65\u9aa4

            \u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u6211\u4eec\u4f7f\u7528\u4e86\u4e0e\u5806\u7ae0\u8282\u76f8\u540c\u7684\u4ece\u9876\u81f3\u5e95\u5806\u5316\uff08Sift Down\uff09\u7684\u51fd\u6570\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e\u5806\u7684\u957f\u5ea6\u4f1a\u968f\u7740\u63d0\u53d6\u6700\u5927\u5143\u7d20\u800c\u51cf\u5c0f\uff0c\u56e0\u6b64\u6211\u4eec\u9700\u8981\u7ed9 Sift Down \u51fd\u6570\u6dfb\u52a0\u4e00\u4e2a\u957f\u5ea6\u53c2\u6570 \\(n\\) \uff0c\u7528\u4e8e\u6307\u5b9a\u5806\u7684\u5f53\u524d\u6709\u6548\u957f\u5ea6\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust heap_sort.java
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int[] nums, int n, int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = 2 * i + 1;\nint r = 2 * i + 2;\nint ma = i;\nif (l < n && nums[l] > nums[ma])\nma = l;\nif (r < n && nums[r] > nums[ma])\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i)\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nint temp = nums[i];\nnums[i] = nums[ma];\nnums[ma] = temp;\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nvoid heapSort(int[] nums) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = nums.length / 2 - 1; i >= 0; i--) {\nsiftDown(nums, nums.length, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (int i = nums.length - 1; i > 0; i--) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nint tmp = nums[0];\nnums[0] = nums[i];\nnums[i] = tmp;\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.cpp
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(vector<int> &nums, int n, int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = 2 * i + 1;\nint r = 2 * i + 2;\nint ma = i;\nif (l < n && nums[l] > nums[ma])\nma = l;\nif (r < n && nums[r] > nums[ma])\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(nums[i], nums[ma]);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nvoid heapSort(vector<int> &nums) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = nums.size() / 2 - 1; i >= 0; --i) {\nsiftDown(nums, nums.size(), i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (int i = nums.size() - 1; i > 0; --i) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(nums[0], nums[i]);\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.py
            def sift_down(nums: list[int], n: int, i: int):\n\"\"\"\u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\"\"\"\nwhile True:\n# \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nl = 2 * i + 1\nr = 2 * i + 2\nma = i\nif l < n and nums[l] > nums[ma]:\nma = l\nif r < n and nums[r] > nums[ma]:\nma = r\n# \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i:\nbreak\n# \u4ea4\u6362\u4e24\u8282\u70b9\nnums[i], nums[ma] = nums[ma], nums[i]\n# \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma\ndef heap_sort(nums: list[int]):\n\"\"\"\u5806\u6392\u5e8f\"\"\"\n# \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in range(len(nums) // 2 - 1, -1, -1):\nsift_down(nums, len(nums), i)\n# \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor i in range(len(nums) - 1, 0, -1):\n# \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nnums[0], nums[i] = nums[i], nums[0]\n# \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsift_down(nums, i, 0)\n
            heap_sort.go
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(nums *[]int, n, i int) {\nfor true {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nl := 2*i + 1\nr := 2*i + 2\nma := i\nif l < n && (*nums)[l] > (*nums)[ma] {\nma = l\n}\nif r < n && (*nums)[r] > (*nums)[ma] {\nma = r\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\n(*nums)[i], (*nums)[ma] = (*nums)[ma], (*nums)[i]\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma\n}\n}\n/* \u5806\u6392\u5e8f */\nfunc heapSort(nums *[]int) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i := len(*nums)/2 - 1; i >= 0; i-- {\nsiftDown(nums, len(*nums), i)\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor i := len(*nums) - 1; i > 0; i-- {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n(*nums)[0], (*nums)[i] = (*nums)[i], (*nums)[0]\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0)\n}\n}\n
            heap_sort.js
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunction siftDown(nums, n, i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet l = 2 * i + 1;\nlet r = 2 * i + 2;\nlet ma = i;\nif (l < n && nums[l] > nums[ma]) {\nma = l;\n}\nif (r < n && nums[r] > nums[ma]) {\nma = r;\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma === i) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\n[nums[i], nums[ma]] = [nums[ma], nums[i]];\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nfunction heapSort(nums) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {\nsiftDown(nums, nums.length, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n[nums[0], nums[i]] = [nums[i], nums[0]];\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.ts
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunction siftDown(nums: number[], n: number, i: number): void {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet l = 2 * i + 1;\nlet r = 2 * i + 2;\nlet ma = i;\nif (l < n && nums[l] > nums[ma]) {\nma = l;\n}\nif (r < n && nums[r] > nums[ma]) {\nma = r;\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma === i) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\n[nums[i], nums[ma]] = [nums[ma], nums[i]];\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nfunction heapSort(nums: number[]): void {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {\nsiftDown(nums, nums.length, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n[nums[0], nums[i]] = [nums[i], nums[0]];\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.c
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int nums[], int n, int i) {\nwhile (1) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = 2 * i + 1;\nint r = 2 * i + 2;\nint ma = i;\nif (l < n && nums[l] > nums[ma])\nma = l;\nif (r < n && nums[r] > nums[ma])\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nint temp = nums[i];\nnums[i] = nums[ma];\nnums[ma] = temp;\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nvoid heapSort(int nums[], int n) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = n / 2 - 1; i >= 0; --i) {\nsiftDown(nums, n, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (int i = n - 1; i > 0; --i) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nint tmp = nums[0];\nnums[0] = nums[i];\nnums[i] = tmp;\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.cs
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int[] nums, int n, int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = 2 * i + 1;\nint r = 2 * i + 2;\nint ma = i;\nif (l < n && nums[l] > nums[ma])\nma = l;\nif (r < n && nums[r] > nums[ma])\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i)\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\n(nums[ma], nums[i]) = (nums[i], nums[ma]);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nvoid heapSort(int[] nums) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = nums.Length / 2 - 1; i >= 0; i--) {\nsiftDown(nums, nums.Length, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (int i = nums.Length - 1; i > 0; i--) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n(nums[i], nums[0]) = (nums[0], nums[i]);\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.swift
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(nums: inout [Int], n: Int, i: Int) {\nvar i = i\nwhile true {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet l = 2 * i + 1\nlet r = 2 * i + 2\nvar ma = i\nif l < n, nums[l] > nums[ma] {\nma = l\n}\nif r < n, nums[r] > nums[ma] {\nma = r\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nnums.swapAt(i, ma)\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma\n}\n}\n/* \u5806\u6392\u5e8f */\nfunc heapSort(nums: inout [Int]) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in stride(from: nums.count / 2 - 1, through: 0, by: -1) {\nsiftDown(nums: &nums, n: nums.count, i: i)\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor i in stride(from: nums.count - 1, to: 0, by: -1) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nnums.swapAt(0, i)\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums: &nums, n: i, i: 0)\n}\n}\n
            heap_sort.zig
            [class]{}-[func]{siftDown}\n[class]{}-[func]{heapSort}\n
            heap_sort.dart
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(List<int> nums, int n, int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = 2 * i + 1;\nint r = 2 * i + 2;\nint ma = i;\nif (l < n && nums[l] > nums[ma]) ma = l;\nif (r < n && nums[r] > nums[ma]) ma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nint temp = nums[i];\nnums[i] = nums[ma];\nnums[ma] = temp;\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nvoid heapSort(List<int> nums) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = nums.length ~/ 2 - 1; i >= 0; i--) {\nsiftDown(nums, nums.length, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (int i = nums.length - 1; i > 0; i--) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nint tmp = nums[0];\nnums[0] = nums[i];\nnums[i] = tmp;\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.rs
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfn sift_down(nums: &mut [i32], n: usize, mut i: usize) {\nloop {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet l = 2 * i + 1;\nlet r = 2 * i + 2;\nlet mut ma = i;\nif l < n && nums[l] > nums[ma] {\nma = l;\n}\nif r < n && nums[r] > nums[ma] {\nma = r;\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nlet temp = nums[i];\nnums[i] = nums[ma];\nnums[ma] = temp;\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nfn heap_sort(nums: &mut [i32]) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in (0..=nums.len() / 2 - 1).rev() {\nsift_down(nums, nums.len(), i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor i in (1..=nums.len() - 1).rev() {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nlet tmp = nums[0];\nnums[0] = nums[i];\nnums[i] = tmp;\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsift_down(nums, i, 0);\n}\n}\n
            "},{"location":"chapter_sorting/heap_sort/#1172","title":"11.7.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\log n)\\) \u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f \uff1a\u5efa\u5806\u64cd\u4f5c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002\u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \uff0c\u5171\u5faa\u73af \\(n - 1\\) \u8f6e\u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(1)\\) \u3001\u539f\u5730\u6392\u5e8f \uff1a\u51e0\u4e2a\u6307\u9488\u53d8\u91cf\u4f7f\u7528 \\(O(1)\\) \u7a7a\u95f4\u3002\u5143\u7d20\u4ea4\u6362\u548c\u5806\u5316\u64cd\u4f5c\u90fd\u662f\u5728\u539f\u6570\u7ec4\u4e0a\u8fdb\u884c\u7684\u3002
            • \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u4ea4\u6362\u5806\u9876\u5143\u7d20\u548c\u5806\u5e95\u5143\u7d20\u65f6\uff0c\u76f8\u7b49\u5143\u7d20\u7684\u76f8\u5bf9\u4f4d\u7f6e\u53ef\u80fd\u53d1\u751f\u53d8\u5316\u3002
            "},{"location":"chapter_sorting/insertion_sort/","title":"11.4 \u00a0 \u63d2\u5165\u6392\u5e8f","text":"

            \u300c\u63d2\u5165\u6392\u5e8f Insertion Sort\u300d\u662f\u4e00\u79cd\u7b80\u5355\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u5b83\u7684\u5de5\u4f5c\u539f\u7406\u4e0e\u624b\u52a8\u6574\u7406\u4e00\u526f\u724c\u7684\u8fc7\u7a0b\u975e\u5e38\u76f8\u4f3c\u3002

            \u5177\u4f53\u6765\u8bf4\uff0c\u6211\u4eec\u5728\u672a\u6392\u5e8f\u533a\u95f4\u9009\u62e9\u4e00\u4e2a\u57fa\u51c6\u5143\u7d20\uff0c\u5c06\u8be5\u5143\u7d20\u4e0e\u5176\u5de6\u4fa7\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u5143\u7d20\u9010\u4e00\u6bd4\u8f83\u5927\u5c0f\uff0c\u5e76\u5c06\u8be5\u5143\u7d20\u63d2\u5165\u5230\u6b63\u786e\u7684\u4f4d\u7f6e\u3002

            \u56de\u5fc6\u6570\u7ec4\u7684\u5143\u7d20\u63d2\u5165\u64cd\u4f5c\uff0c\u8bbe\u57fa\u51c6\u5143\u7d20\u4e3a base \uff0c\u6211\u4eec\u9700\u8981\u5c06\u4ece\u76ee\u6807\u7d22\u5f15\u5230 base \u4e4b\u95f4\u7684\u6240\u6709\u5143\u7d20\u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\uff0c\u7136\u540e\u518d\u5c06 base \u8d4b\u503c\u7ed9\u76ee\u6807\u7d22\u5f15\u3002

            \u56fe\uff1a\u5355\u6b21\u63d2\u5165\u64cd\u4f5c

            "},{"location":"chapter_sorting/insertion_sort/#1141","title":"11.4.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u63d2\u5165\u6392\u5e8f\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6570\u7ec4\u7684\u7b2c 1 \u4e2a\u5143\u7d20\u5df2\u5b8c\u6210\u6392\u5e8f\u3002
            2. \u9009\u53d6\u6570\u7ec4\u7684\u7b2c 2 \u4e2a\u5143\u7d20\u4f5c\u4e3a base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6570\u7ec4\u7684\u524d 2 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
            3. \u9009\u53d6\u7b2c 3 \u4e2a\u5143\u7d20\u4f5c\u4e3a base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6570\u7ec4\u7684\u524d 3 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
            4. \u4ee5\u6b64\u7c7b\u63a8\uff0c\u5728\u6700\u540e\u4e00\u8f6e\u4e2d\uff0c\u9009\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u4f5c\u4e3a base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6240\u6709\u5143\u7d20\u5747\u5df2\u6392\u5e8f\u3002

            \u56fe\uff1a\u63d2\u5165\u6392\u5e8f\u6d41\u7a0b

            JavaC++PythonGoJSTSCC#SwiftZigDartRust insertion_sort.java
            /* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (int i = 1; i < nums.length; i++) {\nint base = nums[i], j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = base;        // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.cpp
            /* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(vector<int> &nums) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (int i = 1; i < nums.size(); i++) {\nint base = nums[i], j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.py
            def insertion_sort(nums: list[int]):\n\"\"\"\u63d2\u5165\u6392\u5e8f\"\"\"\n# \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u533a\u95f4\u4e3a [0, i-1]\nfor i in range(1, len(nums)):\nbase = nums[i]\nj = i - 1\n# \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u533a\u95f4 [0, i-1] \u4e2d\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile j >= 0 and nums[j] > base:\nnums[j + 1] = nums[j]  # \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj -= 1\nnums[j + 1] = base  # \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n
            insertion_sort.go
            /* \u63d2\u5165\u6392\u5e8f */\nfunc insertionSort(nums []int) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i := 1; i < len(nums); i++ {\nbase := nums[i]\nj := i - 1\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nfor j >= 0 && nums[j] > base {\nnums[j+1] = nums[j] // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--\n}\nnums[j+1] = base // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.js
            /* \u63d2\u5165\u6392\u5e8f */\nfunction insertionSort(nums) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (let i = 1; i < nums.length; i++) {\nlet base = nums[i],\nj = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.ts
            /* \u63d2\u5165\u6392\u5e8f */\nfunction insertionSort(nums: number[]): void {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (let i = 1; i < nums.length; i++) {\nconst base = nums[i];\nlet j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.c
            /* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(int nums[], int size) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (int i = 1; i < size; i++) {\nint base = nums[i], j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\n// \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nnums[j + 1] = nums[j];\nj--;\n}\n// \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\nnums[j + 1] = base;\n}\n}\n
            insertion_sort.cs
            /* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (int i = 1; i < nums.Length; i++) {\nint bas = nums[i], j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > bas) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = bas;         // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.swift
            /* \u63d2\u5165\u6392\u5e8f */\nfunc insertionSort(nums: inout [Int]) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor i in stride(from: 1, to: nums.count, by: 1) {\nlet base = nums[i]\nvar j = i - 1\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile j >= 0, nums[j] > base {\nnums[j + 1] = nums[j] // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj -= 1\n}\nnums[j + 1] = base // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.zig
            // \u63d2\u5165\u6392\u5e8f\nfn insertionSort(nums: []i32) void {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nvar i: usize = 1;\nwhile (i < nums.len) : (i += 1) {\nvar base = nums[i];\nvar j: usize = i;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 1 and nums[j - 1] > base) : (j -= 1) {\nnums[j] = nums[j - 1];  // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n}\nnums[j] = base;             // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.dart
            /* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(List<int> nums) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (int i = 1; i < nums.length; i++) {\nint base = nums[i], j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.rs
            /* \u63d2\u5165\u6392\u5e8f */\nfn insertion_sort(nums: &mut [i32]) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor i in 1..nums.len() {\nlet (base, mut j) = (nums[i],  (i - 1) as i32);\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile j >= 0 && nums[j as usize] > base {\nnums[(j + 1) as usize] = nums[j as usize]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj -= 1;\n}\nnums[(j + 1) as usize] = base;  // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            "},{"location":"chapter_sorting/insertion_sort/#1142","title":"11.4.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n^2)\\) \u3001\u81ea\u9002\u5e94\u6392\u5e8f \uff1a\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6bcf\u6b21\u63d2\u5165\u64cd\u4f5c\u5206\u522b\u9700\u8981\u5faa\u73af \\(n - 1\\) , \\(n-2\\) , \\(\\cdots\\) , \\(2\\) , \\(1\\) \u6b21\uff0c\u6c42\u548c\u5f97\u5230 \\(\\frac{(n - 1) n}{2}\\) \uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002\u5728\u9047\u5230\u6709\u5e8f\u6570\u636e\u65f6\uff0c\u63d2\u5165\u64cd\u4f5c\u4f1a\u63d0\u524d\u7ec8\u6b62\u3002\u5f53\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u6709\u5e8f\u65f6\uff0c\u63d2\u5165\u6392\u5e8f\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(1)\\) \u3001\u539f\u5730\u6392\u5e8f \uff1a\u6307\u9488 \\(i\\) , \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
            • \u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u63d2\u5165\u64cd\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u4eec\u4f1a\u5c06\u5143\u7d20\u63d2\u5165\u5230\u76f8\u7b49\u5143\u7d20\u7684\u53f3\u4fa7\uff0c\u4e0d\u4f1a\u6539\u53d8\u5b83\u4eec\u7684\u987a\u5e8f\u3002
            "},{"location":"chapter_sorting/insertion_sort/#1143","title":"11.4.3 \u00a0 \u63d2\u5165\u6392\u5e8f\u4f18\u52bf","text":"

            \u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u800c\u6211\u4eec\u5373\u5c06\u5b66\u4e60\u7684\u5feb\u901f\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u5c3d\u7ba1\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u6bd4\u5feb\u901f\u6392\u5e8f\u66f4\u9ad8\uff0c\u4f46\u5728\u6570\u636e\u91cf\u8f83\u5c0f\u7684\u60c5\u51b5\u4e0b\uff0c\u63d2\u5165\u6392\u5e8f\u901a\u5e38\u66f4\u5feb\u3002

            \u8fd9\u4e2a\u7ed3\u8bba\u4e0e\u7ebf\u6027\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u7684\u9002\u7528\u60c5\u51b5\u7684\u7ed3\u8bba\u7c7b\u4f3c\u3002\u5feb\u901f\u6392\u5e8f\u8fd9\u7c7b \\(O(n \\log n)\\) \u7684\u7b97\u6cd5\u5c5e\u4e8e\u57fa\u4e8e\u5206\u6cbb\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u5f80\u5f80\u5305\u542b\u66f4\u591a\u5355\u5143\u8ba1\u7b97\u64cd\u4f5c\u3002\u800c\u5728\u6570\u636e\u91cf\u8f83\u5c0f\u65f6\uff0c\\(n^2\\) \u548c \\(n \\log n\\) \u7684\u6570\u503c\u6bd4\u8f83\u63a5\u8fd1\uff0c\u590d\u6742\u5ea6\u4e0d\u5360\u4e3b\u5bfc\u4f5c\u7528\uff1b\u6bcf\u8f6e\u4e2d\u7684\u5355\u5143\u64cd\u4f5c\u6570\u91cf\u8d77\u5230\u51b3\u5b9a\u6027\u56e0\u7d20\u3002

            \u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\uff08\u4f8b\u5982 Java\uff09\u7684\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\u90fd\u91c7\u7528\u4e86\u63d2\u5165\u6392\u5e8f\uff0c\u5927\u81f4\u601d\u8def\u4e3a\uff1a\u5bf9\u4e8e\u957f\u6570\u7ec4\uff0c\u91c7\u7528\u57fa\u4e8e\u5206\u6cbb\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u4f8b\u5982\u5feb\u901f\u6392\u5e8f\uff1b\u5bf9\u4e8e\u77ed\u6570\u7ec4\uff0c\u76f4\u63a5\u4f7f\u7528\u63d2\u5165\u6392\u5e8f\u3002

            \u867d\u7136\u5192\u6ce1\u6392\u5e8f\u3001\u9009\u62e9\u6392\u5e8f\u548c\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n^2)\\) \uff0c\u4f46\u5728\u5b9e\u9645\u60c5\u51b5\u4e2d\uff0c\u63d2\u5165\u6392\u5e8f\u7684\u4f7f\u7528\u9891\u7387\u663e\u8457\u9ad8\u4e8e\u5192\u6ce1\u6392\u5e8f\u548c\u9009\u62e9\u6392\u5e8f\u3002\u8fd9\u662f\u56e0\u4e3a\uff1a

            • \u5192\u6ce1\u6392\u5e8f\u57fa\u4e8e\u5143\u7d20\u4ea4\u6362\u5b9e\u73b0\uff0c\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u4e34\u65f6\u53d8\u91cf\uff0c\u5171\u6d89\u53ca 3 \u4e2a\u5355\u5143\u64cd\u4f5c\uff1b\u63d2\u5165\u6392\u5e8f\u57fa\u4e8e\u5143\u7d20\u8d4b\u503c\u5b9e\u73b0\uff0c\u4ec5\u9700 1 \u4e2a\u5355\u5143\u64cd\u4f5c\u3002\u56e0\u6b64\uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u8ba1\u7b97\u5f00\u9500\u901a\u5e38\u6bd4\u63d2\u5165\u6392\u5e8f\u66f4\u9ad8\u3002
            • \u9009\u62e9\u6392\u5e8f\u5728\u4efb\u4f55\u60c5\u51b5\u4e0b\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n^2)\\) \u3002\u5982\u679c\u7ed9\u5b9a\u4e00\u7ec4\u90e8\u5206\u6709\u5e8f\u7684\u6570\u636e\uff0c\u63d2\u5165\u6392\u5e8f\u901a\u5e38\u6bd4\u9009\u62e9\u6392\u5e8f\u6548\u7387\u66f4\u9ad8\u3002
            • \u9009\u62e9\u6392\u5e8f\u4e0d\u7a33\u5b9a\uff0c\u65e0\u6cd5\u5e94\u7528\u4e8e\u591a\u7ea7\u6392\u5e8f\u3002
            "},{"location":"chapter_sorting/merge_sort/","title":"11.6 \u00a0 \u5f52\u5e76\u6392\u5e8f","text":"

            \u300c\u5f52\u5e76\u6392\u5e8f Merge Sort\u300d\u57fa\u4e8e\u5206\u6cbb\u601d\u60f3\u5b9e\u73b0\u6392\u5e8f\uff0c\u5305\u542b\u201c\u5212\u5206\u201d\u548c\u201c\u5408\u5e76\u201d\u4e24\u4e2a\u9636\u6bb5\uff1a

            1. \u5212\u5206\u9636\u6bb5\uff1a\u901a\u8fc7\u9012\u5f52\u4e0d\u65ad\u5730\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5904\u5206\u5f00\uff0c\u5c06\u957f\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u8f6c\u6362\u4e3a\u77ed\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u3002
            2. \u5408\u5e76\u9636\u6bb5\uff1a\u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u5212\u5206\uff0c\u5f00\u59cb\u5408\u5e76\uff0c\u6301\u7eed\u5730\u5c06\u5de6\u53f3\u4e24\u4e2a\u8f83\u77ed\u7684\u6709\u5e8f\u6570\u7ec4\u5408\u5e76\u4e3a\u4e00\u4e2a\u8f83\u957f\u7684\u6709\u5e8f\u6570\u7ec4\uff0c\u76f4\u81f3\u7ed3\u675f\u3002

            \u56fe\uff1a\u5f52\u5e76\u6392\u5e8f\u7684\u5212\u5206\u4e0e\u5408\u5e76\u9636\u6bb5

            "},{"location":"chapter_sorting/merge_sort/#1161","title":"11.6.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u201c\u5212\u5206\u9636\u6bb5\u201d\u4ece\u9876\u81f3\u5e95\u9012\u5f52\u5730\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5207\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff1a

            1. \u8ba1\u7b97\u6570\u7ec4\u4e2d\u70b9 mid \uff0c\u9012\u5f52\u5212\u5206\u5de6\u5b50\u6570\u7ec4\uff08\u533a\u95f4 [left, mid] \uff09\u548c\u53f3\u5b50\u6570\u7ec4\uff08\u533a\u95f4 [mid + 1, right] \uff09\u3002
            2. \u9012\u5f52\u6267\u884c\u6b65\u9aa4 1. \uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u533a\u95f4\u957f\u5ea6\u4e3a 1 \u65f6\uff0c\u7ec8\u6b62\u9012\u5f52\u5212\u5206\u3002

            \u201c\u5408\u5e76\u9636\u6bb5\u201d\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u5408\u5e76\u4e3a\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\u3002\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4ece\u957f\u5ea6\u4e3a 1 \u7684\u5b50\u6570\u7ec4\u5f00\u59cb\u5408\u5e76\uff0c\u5408\u5e76\u9636\u6bb5\u4e2d\u7684\u6bcf\u4e2a\u5b50\u6570\u7ec4\u90fd\u662f\u6709\u5e8f\u7684\u3002

            <1><2><3><4><5><6><7><8><9><10>

            \u56fe\uff1a\u5f52\u5e76\u6392\u5e8f\u6b65\u9aa4

            \u89c2\u5bdf\u53d1\u73b0\uff0c\u5f52\u5e76\u6392\u5e8f\u7684\u9012\u5f52\u987a\u5e8f\u4e0e\u4e8c\u53c9\u6811\u7684\u540e\u5e8f\u904d\u5386\u76f8\u540c\uff0c\u5177\u4f53\u6765\u770b\uff1a

            • \u540e\u5e8f\u904d\u5386\uff1a\u5148\u9012\u5f52\u5de6\u5b50\u6811\uff0c\u518d\u9012\u5f52\u53f3\u5b50\u6811\uff0c\u6700\u540e\u5904\u7406\u6839\u8282\u70b9\u3002
            • \u5f52\u5e76\u6392\u5e8f\uff1a\u5148\u9012\u5f52\u5de6\u5b50\u6570\u7ec4\uff0c\u518d\u9012\u5f52\u53f3\u5b50\u6570\u7ec4\uff0c\u6700\u540e\u5904\u7406\u5408\u5e76\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust merge_sort.java
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nvoid merge(int[] nums, int left, int mid, int right) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nint[] tmp = Arrays.copyOfRange(nums, left, right + 1);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint leftStart = left - left, leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint rightStart = mid + 1 - left, rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nint i = leftStart, j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (int k = left; k <= right; k++) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd)\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if (j > rightEnd || tmp[i] <= tmp[j])\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse\nnums[k] = tmp[j++];\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(int[] nums, int left, int right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right)\nreturn;                      // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nint mid = (left + right) / 2;    // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid);      // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.cpp
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nvoid merge(vector<int> &nums, int left, int mid, int right) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nvector<int> tmp(nums.begin() + left, nums.begin() + right + 1);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint leftStart = left - left, leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint rightStart = mid + 1 - left, rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nint i = leftStart, j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (int k = left; k <= right; k++) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd)\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if (j > rightEnd || tmp[i] <= tmp[j])\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse\nnums[k] = tmp[j++];\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(vector<int> &nums, int left, int right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right)\nreturn; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nint mid = (left + right) / 2;    // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid);      // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.py
            def merge(nums: list[int], left: int, mid: int, right: int):\n\"\"\"\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\"\"\"\n# \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n# \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\n# \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\ntmp = list(nums[left : right + 1])\n# \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nleft_start = 0\nleft_end = mid - left\n# \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nright_start = mid + 1 - left\nright_end = right - left\n# i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\ni = left_start\nj = right_start\n# \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor k in range(left, right + 1):\n# \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif i > left_end:\nnums[k] = tmp[j]\nj += 1\n# \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelif j > right_end or tmp[i] <= tmp[j]:\nnums[k] = tmp[i]\ni += 1\n# \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse:\nnums[k] = tmp[j]\nj += 1\ndef merge_sort(nums: list[int], left: int, right: int):\n\"\"\"\u5f52\u5e76\u6392\u5e8f\"\"\"\n# \u7ec8\u6b62\u6761\u4ef6\nif left >= right:\nreturn  # \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n# \u5212\u5206\u9636\u6bb5\nmid = (left + right) // 2  # \u8ba1\u7b97\u4e2d\u70b9\nmerge_sort(nums, left, mid)  # \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmerge_sort(nums, mid + 1, right)  # \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n# \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right)\n
            merge_sort.go
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfunc merge(nums []int, left, mid, right int) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4 \u501f\u52a9 copy \u6a21\u5757\ntmp := make([]int, right-left+1)\nfor i := left; i <= right; i++ {\ntmp[i-left] = nums[i]\n}\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nleftStart, leftEnd := left-left, mid-left\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nrightStart, rightEnd := mid+1-left, right-left\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\ni, j := leftStart, rightStart\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor k := left; k <= right; k++ {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif i > leftEnd {\nnums[k] = tmp[j]\nj++\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\n} else if j > rightEnd || tmp[i] <= tmp[j] {\nnums[k] = tmp[i]\ni++\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\n} else {\nnums[k] = tmp[j]\nj++\n}\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nfunc mergeSort(nums []int, left, right int) {\n// \u7ec8\u6b62\u6761\u4ef6\nif left >= right {\nreturn\n}\n// \u5212\u5206\u9636\u6bb5\nmid := (left + right) / 2\nmergeSort(nums, left, mid)\nmergeSort(nums, mid+1, right)\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right)\n}\n
            merge_sort.js
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfunction merge(nums, left, mid, right) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nlet tmp = nums.slice(left, right + 1);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet leftStart = left - left,\nleftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet rightStart = mid + 1 - left,\nrightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nlet i = leftStart,\nj = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (let k = left; k <= right; k++) {\nif (i > leftEnd) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nnums[k] = tmp[j++];\n} else if (j > rightEnd || tmp[i] <= tmp[j]) {\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nnums[k] = tmp[i++];\n} else {\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nnums[k] = tmp[j++];\n}\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nfunction mergeSort(nums, left, right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nlet mid = Math.floor((left + right) / 2); // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.ts
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfunction merge(nums: number[], left: number, mid: number, right: number): void {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nlet tmp = nums.slice(left, right + 1);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet leftStart = left - left,\nleftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet rightStart = mid + 1 - left,\nrightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nlet i = leftStart,\nj = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (let k = left; k <= right; k++) {\nif (i > leftEnd) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\n} else if (j > rightEnd || tmp[i] <= tmp[j]) {\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\n} else {\nnums[k] = tmp[j++];\n}\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nfunction mergeSort(nums: number[], left: number, right: number): void {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nlet mid = Math.floor((left + right) / 2); // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.c
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nvoid merge(int *nums, int left, int mid, int right) {\nint index;\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nint tmp[right + 1 - left];\nfor (index = left; index < right + 1; index++) {\ntmp[index - left] = nums[index];\n}\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint leftStart = left - left, leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint rightStart = mid + 1 - left, rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nint i = leftStart, j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (int k = left; k <= right; k++) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd)\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if (j > rightEnd || tmp[i] <= tmp[j])\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse\nnums[k] = tmp[j++];\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(int *nums, int left, int right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right)\nreturn; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nint mid = (left + right) / 2;    // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid);      // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.cs
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nvoid merge(int[] nums, int left, int mid, int right) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nint[] tmp = nums[left..(right + 1)];\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15  \nint leftStart = left - left, leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15       \nint rightStart = mid + 1 - left, rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nint i = leftStart, j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (int k = left; k <= right; k++) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd)\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if (j > rightEnd || tmp[i] <= tmp[j])\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse\nnums[k] = tmp[j++];\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(int[] nums, int left, int right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right) return;       // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nint mid = (left + right) / 2;    // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid);      // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.swift
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfunc merge(nums: inout [Int], left: Int, mid: Int, right: Int) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nlet tmp = Array(nums[left ..< (right + 1)])\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet leftStart = left - left\nlet leftEnd = mid - left\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet rightStart = mid + 1 - left\nlet rightEnd = right - left\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nvar i = leftStart\nvar j = rightStart\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor k in left ... right {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif i > leftEnd {\nnums[k] = tmp[j]\nj += 1\n}\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if j > rightEnd || tmp[i] <= tmp[j] {\nnums[k] = tmp[i]\ni += 1\n}\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse {\nnums[k] = tmp[j]\nj += 1\n}\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nfunc mergeSort(nums: inout [Int], left: Int, right: Int) {\n// \u7ec8\u6b62\u6761\u4ef6\nif left >= right { // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nreturn\n}\n// \u5212\u5206\u9636\u6bb5\nlet mid = (left + right) / 2 // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums: &nums, left: left, right: mid) // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums: &nums, left: mid + 1, right: right) // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums: &nums, left: left, mid: mid, right: right)\n}\n
            merge_sort.zig
            // \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfn merge(nums: []i32, left: usize, mid: usize, right: usize) !void {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nvar mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);\ndefer mem_arena.deinit();\nconst mem_allocator = mem_arena.allocator();\nvar tmp = try mem_allocator.alloc(i32, right + 1 - left);\nstd.mem.copy(i32, tmp, nums[left..right+1]);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15  \nvar leftStart = left - left;\nvar leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15       \nvar rightStart = mid + 1 - left;\nvar rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nvar i = leftStart;\nvar j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nvar k = left;\nwhile (k <= right) : (k += 1) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd) {\nnums[k] = tmp[j];\nj += 1;\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\n} else if  (j > rightEnd or tmp[i] <= tmp[j]) {\nnums[k] = tmp[i];\ni += 1;\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\n} else {\nnums[k] = tmp[j];\nj += 1;\n}\n}\n}\n// \u5f52\u5e76\u6392\u5e8f\nfn mergeSort(nums: []i32, left: usize, right: usize) !void {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right) return;              // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nvar mid = (left + right) / 2;           // \u8ba1\u7b97\u4e2d\u70b9\ntry mergeSort(nums, left, mid);         // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\ntry mergeSort(nums, mid + 1, right);    // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\ntry merge(nums, left, mid, right);\n}\n
            merge_sort.dart
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nvoid merge(List<int> nums, int left, int mid, int right) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nList<int> tmp = nums.sublist(left, right + 1);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint leftStart = left - left, leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint rightStart = mid + 1 - left, rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nint i = leftStart, j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (int k = left; k <= right; k++) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd)\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if (j > rightEnd || tmp[i] <= tmp[j])\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse\nnums[k] = tmp[j++];\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(List<int> nums, int left, int right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nint mid = (left + right) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.rs
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfn merge(nums: &mut [i32], left: usize, mid: usize, right: usize) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nlet tmp: Vec<i32> = nums[left..right + 1].to_vec();\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet (left_start, left_end) = (left - left, mid - left);\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet (right_start, right_end) = (mid + 1 - left, right-left);\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nlet (mut l_corrent, mut r_corrent) = (left_start, right_start);\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor k in left..right + 1 {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif l_corrent > left_end {\nnums[k] = tmp[r_corrent];\nr_corrent += 1;\n}\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if r_corrent > right_end || tmp[l_corrent] <= tmp[r_corrent] {\nnums[k] = tmp[l_corrent];\nl_corrent += 1;\n}\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse {\nnums[k] = tmp[r_corrent];\nr_corrent += 1;\n}\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nfn merge_sort(left: usize, right: usize, nums: &mut [i32]) {\n// \u7ec8\u6b62\u6761\u4ef6\nif left >= right { return; }       // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nlet mid = (left + right) / 2;     // \u8ba1\u7b97\u4e2d\u70b9\nmerge_sort(left, mid, nums);      // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmerge_sort(mid + 1, right, nums);  // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n

            \u5408\u5e76\u65b9\u6cd5 merge() \u4ee3\u7801\u4e2d\u7684\u96be\u70b9\u5305\u62ec\uff1a

            • \u5728\u9605\u8bfb\u4ee3\u7801\u65f6\uff0c\u9700\u8981\u7279\u522b\u6ce8\u610f\u5404\u4e2a\u53d8\u91cf\u7684\u542b\u4e49\u3002nums \u7684\u5f85\u5408\u5e76\u533a\u95f4\u4e3a [left, right] \uff0c\u4f46\u7531\u4e8e tmp \u4ec5\u590d\u5236\u4e86 nums \u8be5\u533a\u95f4\u7684\u5143\u7d20\uff0c\u56e0\u6b64 tmp \u5bf9\u5e94\u533a\u95f4\u4e3a [0, right - left] \u3002
            • \u5728\u6bd4\u8f83 tmp[i] \u548c tmp[j] \u7684\u5927\u5c0f\u65f6\uff0c\u8fd8\u9700\u8003\u8651\u5b50\u6570\u7ec4\u904d\u5386\u5b8c\u6210\u540e\u7684\u7d22\u5f15\u8d8a\u754c\u95ee\u9898\uff0c\u5373 i > leftEnd \u548c j > rightEnd \u7684\u60c5\u51b5\u3002\u7d22\u5f15\u8d8a\u754c\u7684\u4f18\u5148\u7ea7\u662f\u6700\u9ad8\u7684\uff0c\u5982\u679c\u5de6\u5b50\u6570\u7ec4\u5df2\u7ecf\u88ab\u5408\u5e76\u5b8c\u4e86\uff0c\u90a3\u4e48\u4e0d\u9700\u8981\u7ee7\u7eed\u6bd4\u8f83\uff0c\u76f4\u63a5\u5408\u5e76\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u5373\u53ef\u3002
            "},{"location":"chapter_sorting/merge_sort/#1162","title":"11.6.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\log n)\\) \u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f \uff1a\u5212\u5206\u4ea7\u751f\u9ad8\u5ea6\u4e3a \\(\\log n\\) \u7684\u9012\u5f52\u6811\uff0c\u6bcf\u5c42\u5408\u5e76\u7684\u603b\u64cd\u4f5c\u6570\u91cf\u4e3a \\(n\\) \uff0c\u56e0\u6b64\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3001\u975e\u539f\u5730\u6392\u5e8f \uff1a\u9012\u5f52\u6df1\u5ea6\u4e3a \\(\\log n\\) \uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\u3002\u5408\u5e76\u64cd\u4f5c\u9700\u8981\u501f\u52a9\u8f85\u52a9\u6570\u7ec4\u5b9e\u73b0\uff0c\u4f7f\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
            • \u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u5408\u5e76\u8fc7\u7a0b\u4e2d\uff0c\u76f8\u7b49\u5143\u7d20\u7684\u6b21\u5e8f\u4fdd\u6301\u4e0d\u53d8\u3002
            "},{"location":"chapter_sorting/merge_sort/#1163","title":"11.6.3 \u00a0 \u94fe\u8868\u6392\u5e8f *","text":"

            \u5f52\u5e76\u6392\u5e8f\u5728\u6392\u5e8f\u94fe\u8868\u65f6\u5177\u6709\u663e\u8457\u4f18\u52bf\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(1)\\) \uff0c\u539f\u56e0\u5982\u4e0b\uff1a

            • \u7531\u4e8e\u94fe\u8868\u4ec5\u9700\u6539\u53d8\u6307\u9488\u5c31\u53ef\u5b9e\u73b0\u8282\u70b9\u7684\u589e\u5220\u64cd\u4f5c\uff0c\u56e0\u6b64\u5408\u5e76\u9636\u6bb5\uff08\u5c06\u4e24\u4e2a\u77ed\u6709\u5e8f\u94fe\u8868\u5408\u5e76\u4e3a\u4e00\u4e2a\u957f\u6709\u5e8f\u94fe\u8868\uff09\u65e0\u987b\u521b\u5efa\u8f85\u52a9\u94fe\u8868\u3002
            • \u901a\u8fc7\u4f7f\u7528\u201c\u8fed\u4ee3\u5212\u5206\u201d\u66ff\u4ee3\u201c\u9012\u5f52\u5212\u5206\u201d\uff0c\u53ef\u7701\u53bb\u9012\u5f52\u4f7f\u7528\u7684\u6808\u5e27\u7a7a\u95f4\u3002

            \u5177\u4f53\u5b9e\u73b0\u7ec6\u8282\u6bd4\u8f83\u590d\u6742\uff0c\u6709\u5174\u8da3\u7684\u540c\u5b66\u53ef\u4ee5\u67e5\u9605\u76f8\u5173\u8d44\u6599\u8fdb\u884c\u5b66\u4e60\u3002

            "},{"location":"chapter_sorting/quick_sort/","title":"11.5 \u00a0 \u5feb\u901f\u6392\u5e8f","text":"

            \u300c\u5feb\u901f\u6392\u5e8f Quick Sort\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5206\u6cbb\u601d\u60f3\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u8fd0\u884c\u9ad8\u6548\uff0c\u5e94\u7528\u5e7f\u6cdb\u3002

            \u5feb\u901f\u6392\u5e8f\u7684\u6838\u5fc3\u64cd\u4f5c\u662f\u300c\u54e8\u5175\u5212\u5206\u300d\uff0c\u5176\u76ee\u6807\u662f\uff1a\u9009\u62e9\u6570\u7ec4\u4e2d\u7684\u67d0\u4e2a\u5143\u7d20\u4f5c\u4e3a\u201c\u57fa\u51c6\u6570\u201d\uff0c\u5c06\u6240\u6709\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\u79fb\u5230\u5176\u5de6\u4fa7\uff0c\u800c\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\u79fb\u5230\u5176\u53f3\u4fa7\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u54e8\u5175\u5212\u5206\u7684\u6d41\u7a0b\u4e3a\uff1a

            1. \u9009\u53d6\u6570\u7ec4\u6700\u5de6\u7aef\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\uff0c\u521d\u59cb\u5316\u4e24\u4e2a\u6307\u9488 i \u548c j \u5206\u522b\u6307\u5411\u6570\u7ec4\u7684\u4e24\u7aef\u3002
            2. \u8bbe\u7f6e\u4e00\u4e2a\u5faa\u73af\uff0c\u5728\u6bcf\u8f6e\u4e2d\u4f7f\u7528 i\uff08j\uff09\u5206\u522b\u5bfb\u627e\u7b2c\u4e00\u4e2a\u6bd4\u57fa\u51c6\u6570\u5927\uff08\u5c0f\uff09\u7684\u5143\u7d20\uff0c\u7136\u540e\u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\u3002
            3. \u5faa\u73af\u6267\u884c\u6b65\u9aa4 2. \uff0c\u76f4\u5230 i \u548c j \u76f8\u9047\u65f6\u505c\u6b62\uff0c\u6700\u540e\u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u4e2a\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\u3002

            \u54e8\u5175\u5212\u5206\u5b8c\u6210\u540e\uff0c\u539f\u6570\u7ec4\u88ab\u5212\u5206\u6210\u4e09\u90e8\u5206\uff1a\u5de6\u5b50\u6570\u7ec4\u3001\u57fa\u51c6\u6570\u3001\u53f3\u5b50\u6570\u7ec4\uff0c\u4e14\u6ee1\u8db3\u201c\u5de6\u5b50\u6570\u7ec4\u4efb\u610f\u5143\u7d20 \\(\\leq\\) \u57fa\u51c6\u6570 \\(\\leq\\) \u53f3\u5b50\u6570\u7ec4\u4efb\u610f\u5143\u7d20\u201d\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u63a5\u4e0b\u6765\u53ea\u9700\u5bf9\u8fd9\u4e24\u4e2a\u5b50\u6570\u7ec4\u8fdb\u884c\u6392\u5e8f\u3002

            <1><2><3><4><5><6><7><8><9>

            \u56fe\uff1a\u54e8\u5175\u5212\u5206\u6b65\u9aa4

            \u5feb\u901f\u6392\u5e8f\u7684\u5206\u6cbb\u601d\u60f3

            \u54e8\u5175\u5212\u5206\u7684\u5b9e\u8d28\u662f\u5c06\u4e00\u4e2a\u8f83\u957f\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u7b80\u5316\u4e3a\u4e24\u4e2a\u8f83\u77ed\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust quick_sort.java
            /* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(int[] nums, int i, int j) {\nint tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\nint partition(int[] nums, int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--;          // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;             // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.cpp
            /* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(vector<int> &nums, int i, int j) {\nint tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\nint partition(vector<int> &nums, int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;            // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.py
            def partition(self, nums: list[int], left: int, right: int) -> int:\n\"\"\"\u54e8\u5175\u5212\u5206\"\"\"\n# \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\ni, j = left, right\nwhile i < j:\nwhile i < j and nums[j] >= nums[left]:\nj -= 1  # \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile i < j and nums[i] <= nums[left]:\ni += 1  # \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n# \u5143\u7d20\u4ea4\u6362\nnums[i], nums[j] = nums[j], nums[i]\n# \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nnums[i], nums[left] = nums[left], nums[i]\nreturn i  # \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n
            quick_sort.go
            /* \u54e8\u5175\u5212\u5206 */\nfunc (q *quickSort) partition(nums []int, left, right int) int {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\ni, j := left, right\nfor i < j {\nfor i < j && nums[j] >= nums[left] {\nj-- // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nfor i < j && nums[i] <= nums[left] {\ni++ // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\n// \u5143\u7d20\u4ea4\u6362\nnums[i], nums[j] = nums[j], nums[i]\n}\n// \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nnums[i], nums[left] = nums[left], nums[i]\nreturn i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.js
            /* \u5143\u7d20\u4ea4\u6362 */\nswap(nums, i, j) {\nlet tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\npartition(nums, left, right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet i = left,\nj = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) {\nj -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile (i < j && nums[i] <= nums[left]) {\ni += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\n// \u5143\u7d20\u4ea4\u6362\nthis.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nthis.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.ts
            /* \u5143\u7d20\u4ea4\u6362 */\nswap(nums: number[], i: number, j: number): void {\nlet tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\npartition(nums: number[], left: number, right: number): number {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet i = left,\nj = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) {\nj -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile (i < j && nums[i] <= nums[left]) {\ni += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\n// \u5143\u7d20\u4ea4\u6362\nthis.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nthis.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.c
            /* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(int nums[], int i, int j) {\nint tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u5feb\u901f\u6392\u5e8f\u7c7b */\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u54e8\u5175\u5212\u5206\nint partition(int nums[], int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) {\n// \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nj--;\n}\nwhile (i < j && nums[i] <= nums[left]) {\n// \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\ni++;\n}\n// \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\nswap(nums, i, j);\n}\n// \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nswap(nums, i, left);\n// \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\nreturn i;\n}\n
            quick_sort.cs
            /* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(int[] nums, int i, int j) {\nint tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\nint partition(int[] nums, int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--;          // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;             // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.swift
            /* \u5143\u7d20\u4ea4\u6362 */\nfunc swap(nums: inout [Int], i: Int, j: Int) {\nlet tmp = nums[i]\nnums[i] = nums[j]\nnums[j] = tmp\n}\n/* \u54e8\u5175\u5212\u5206 */\nfunc partition(nums: inout [Int], left: Int, right: Int) -> Int {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nvar i = left\nvar j = right\nwhile i < j {\nwhile i < j, nums[j] >= nums[left] {\nj -= 1 // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile i < j, nums[i] <= nums[left] {\ni += 1 // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nswap(nums: &nums, i: i, j: j) // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums: &nums, i: i, j: left) // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.zig
            // \u5143\u7d20\u4ea4\u6362\nfn swap(nums: []i32, i: usize, j: usize) void {\nvar tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n// \u54e8\u5175\u5212\u5206\nfn partition(nums: []i32, left: usize, right: usize) usize {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nvar i = left;\nvar j = right;\nwhile (i < j) {\nwhile (i < j and nums[j] >= nums[left]) j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j and nums[i] <= nums[left]) i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j);   // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);    // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;               // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.dart
            /* \u5143\u7d20\u4ea4\u6362 */\nvoid _swap(List<int> nums, int i, int j) {\nint tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\nint _partition(List<int> nums, int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n_swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\n_swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.rs
            /* \u54e8\u5175\u5212\u5206 */\nfn partition(nums: &mut [i32], left: usize, right: usize) -> usize {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet (mut i, mut j) = (left, right);\nwhile i < j {\nwhile i < j && nums[j] >= nums[left] {\nj -= 1;      // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile i < j && nums[i] <= nums[left] {\ni += 1;      // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nnums.swap(i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nnums.swap(i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\ni                    // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            "},{"location":"chapter_sorting/quick_sort/#1151","title":"11.5.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"
            1. \u9996\u5148\uff0c\u5bf9\u539f\u6570\u7ec4\u6267\u884c\u4e00\u6b21\u300c\u54e8\u5175\u5212\u5206\u300d\uff0c\u5f97\u5230\u672a\u6392\u5e8f\u7684\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u3002
            2. \u7136\u540e\uff0c\u5bf9\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u5206\u522b\u9012\u5f52\u6267\u884c\u300c\u54e8\u5175\u5212\u5206\u300d\u3002
            3. \u6301\u7eed\u9012\u5f52\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\uff0c\u4ece\u800c\u5b8c\u6210\u6574\u4e2a\u6570\u7ec4\u7684\u6392\u5e8f\u3002

            \u56fe\uff1a\u5feb\u901f\u6392\u5e8f\u6d41\u7a0b

            JavaC++PythonGoJSTSCC#SwiftZigDartRust quick_sort.java
            /* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(int[] nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right)\nreturn;\n// \u54e8\u5175\u5212\u5206\nint pivot = partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.cpp
            /* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(vector<int> &nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right)\nreturn;\n// \u54e8\u5175\u5212\u5206\nint pivot = partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.py
            def quick_sort(self, nums: list[int], left: int, right: int):\n\"\"\"\u5feb\u901f\u6392\u5e8f\"\"\"\n# \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif left >= right:\nreturn\n# \u54e8\u5175\u5212\u5206\npivot = self.partition(nums, left, right)\n# \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nself.quick_sort(nums, left, pivot - 1)\nself.quick_sort(nums, pivot + 1, right)\n
            quick_sort.go
            /* \u5feb\u901f\u6392\u5e8f */\nfunc (q *quickSort) quickSort(nums []int, left, right int) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif left >= right {\nreturn\n}\n// \u54e8\u5175\u5212\u5206\npivot := q.partition(nums, left, right)\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nq.quickSort(nums, left, pivot-1)\nq.quickSort(nums, pivot+1, right)\n}\n
            quick_sort.js
            /* \u5feb\u901f\u6392\u5e8f */\nquickSort(nums, left, right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right) return;\n// \u54e8\u5175\u5212\u5206\nconst pivot = this.partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nthis.quickSort(nums, left, pivot - 1);\nthis.quickSort(nums, pivot + 1, right);\n}\n
            quick_sort.ts
            /* \u5feb\u901f\u6392\u5e8f */\nquickSort(nums: number[], left: number, right: number): void {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right) {\nreturn;\n}\n// \u54e8\u5175\u5212\u5206\nconst pivot = this.partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nthis.quickSort(nums, left, pivot - 1);\nthis.quickSort(nums, pivot + 1, right);\n}\n
            quick_sort.c
            /* \u5feb\u901f\u6392\u5e8f\u7c7b */\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u54e8\u5175\u5212\u5206\nint partition(int nums[], int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) {\n// \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nj--;\n}\nwhile (i < j && nums[i] <= nums[left]) {\n// \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\ni++;\n}\n// \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\nswap(nums, i, j);\n}\n// \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nswap(nums, i, left);\n// \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\nreturn i;\n}\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u5feb\u901f\u6392\u5e8f\nvoid quickSort(int nums[], int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right) {\nreturn;\n}\n// \u54e8\u5175\u5212\u5206\nint pivot = partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.cs
            /* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(int[] nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right)\nreturn;\n// \u54e8\u5175\u5212\u5206\nint pivot = partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.swift
            /* \u5feb\u901f\u6392\u5e8f */\nfunc quickSort(nums: inout [Int], left: Int, right: Int) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif left >= right {\nreturn\n}\n// \u54e8\u5175\u5212\u5206\nlet pivot = partition(nums: &nums, left: left, right: right)\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums: &nums, left: left, right: pivot - 1)\nquickSort(nums: &nums, left: pivot + 1, right: right)\n}\n
            quick_sort.zig
            // \u5feb\u901f\u6392\u5e8f\nfn quickSort(nums: []i32, left: usize, right: usize) void {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right) return;\n// \u54e8\u5175\u5212\u5206\nvar pivot = partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.dart
            /* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(List<int> nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right) return;\n// \u54e8\u5175\u5212\u5206\nint pivot = _partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.rs
            /* \u5feb\u901f\u6392\u5e8f */\npub fn quick_sort(left: i32, right: i32, nums: &mut [i32]) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif left >= right {\nreturn;\n}\n// \u54e8\u5175\u5212\u5206\nlet pivot = Self::partition(nums, left as usize, right as usize) as i32;\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nSelf::quick_sort(left, pivot - 1, nums);\nSelf::quick_sort(pivot + 1, right, nums);\n}\n
            "},{"location":"chapter_sorting/quick_sort/#1152","title":"11.5.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\log n)\\) \u3001\u81ea\u9002\u5e94\u6392\u5e8f \uff1a\u5728\u5e73\u5747\u60c5\u51b5\u4e0b\uff0c\u54e8\u5175\u5212\u5206\u7684\u9012\u5f52\u5c42\u6570\u4e3a \\(\\log n\\) \uff0c\u6bcf\u5c42\u4e2d\u7684\u603b\u5faa\u73af\u6570\u4e3a \\(n\\) \uff0c\u603b\u4f53\u4f7f\u7528 \\(O(n \\log n)\\) \u65f6\u95f4\u3002\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u90fd\u5c06\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\u5212\u5206\u4e3a\u957f\u5ea6\u4e3a \\(0\\) \u548c \\(n - 1\\) \u7684\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u6b64\u65f6\u9012\u5f52\u5c42\u6570\u8fbe\u5230 \\(n\\) \u5c42\uff0c\u6bcf\u5c42\u4e2d\u7684\u5faa\u73af\u6570\u4e3a \\(n\\) \uff0c\u603b\u4f53\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3001\u539f\u5730\u6392\u5e8f \uff1a\u5728\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u5012\u5e8f\u7684\u60c5\u51b5\u4e0b\uff0c\u8fbe\u5230\u6700\u5dee\u9012\u5f52\u6df1\u5ea6 \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002\u6392\u5e8f\u64cd\u4f5c\u662f\u5728\u539f\u6570\u7ec4\u4e0a\u8fdb\u884c\u7684\uff0c\u672a\u501f\u52a9\u989d\u5916\u6570\u7ec4\u3002
            • \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u54e8\u5175\u5212\u5206\u7684\u6700\u540e\u4e00\u6b65\uff0c\u57fa\u51c6\u6570\u53ef\u80fd\u4f1a\u88ab\u4ea4\u6362\u81f3\u76f8\u7b49\u5143\u7d20\u7684\u53f3\u4fa7\u3002
            "},{"location":"chapter_sorting/quick_sort/#1153","title":"11.5.3 \u00a0 \u5feb\u6392\u4e3a\u4ec0\u4e48\u5feb\uff1f","text":"

            \u4ece\u540d\u79f0\u4e0a\u5c31\u80fd\u770b\u51fa\uff0c\u5feb\u901f\u6392\u5e8f\u5728\u6548\u7387\u65b9\u9762\u5e94\u8be5\u5177\u6709\u4e00\u5b9a\u7684\u4f18\u52bf\u3002\u5c3d\u7ba1\u5feb\u901f\u6392\u5e8f\u7684\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e0e\u300c\u5f52\u5e76\u6392\u5e8f\u300d\u548c\u300c\u5806\u6392\u5e8f\u300d\u76f8\u540c\uff0c\u4f46\u901a\u5e38\u5feb\u901f\u6392\u5e8f\u7684\u6548\u7387\u66f4\u9ad8\uff0c\u539f\u56e0\u5982\u4e0b\uff1a

            • \u51fa\u73b0\u6700\u5dee\u60c5\u51b5\u7684\u6982\u7387\u5f88\u4f4e\uff1a\u867d\u7136\u5feb\u901f\u6392\u5e8f\u7684\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u6ca1\u6709\u5f52\u5e76\u6392\u5e8f\u7a33\u5b9a\uff0c\u4f46\u5728\u7edd\u5927\u591a\u6570\u60c5\u51b5\u4e0b\uff0c\u5feb\u901f\u6392\u5e8f\u80fd\u5728 \\(O(n \\log n)\\) \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e0b\u8fd0\u884c\u3002
            • \u7f13\u5b58\u4f7f\u7528\u6548\u7387\u9ad8\uff1a\u5728\u6267\u884c\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u65f6\uff0c\u7cfb\u7edf\u53ef\u5c06\u6574\u4e2a\u5b50\u6570\u7ec4\u52a0\u8f7d\u5230\u7f13\u5b58\uff0c\u56e0\u6b64\u8bbf\u95ee\u5143\u7d20\u7684\u6548\u7387\u8f83\u9ad8\u3002\u800c\u50cf\u300c\u5806\u6392\u5e8f\u300d\u8fd9\u7c7b\u7b97\u6cd5\u9700\u8981\u8df3\u8dc3\u5f0f\u8bbf\u95ee\u5143\u7d20\uff0c\u4ece\u800c\u7f3a\u4e4f\u8fd9\u4e00\u7279\u6027\u3002
            • \u590d\u6742\u5ea6\u7684\u5e38\u6570\u7cfb\u6570\u4f4e\uff1a\u5728\u4e0a\u8ff0\u4e09\u79cd\u7b97\u6cd5\u4e2d\uff0c\u5feb\u901f\u6392\u5e8f\u7684\u6bd4\u8f83\u3001\u8d4b\u503c\u3001\u4ea4\u6362\u7b49\u64cd\u4f5c\u7684\u603b\u6570\u91cf\u6700\u5c11\u3002\u8fd9\u4e0e\u300c\u63d2\u5165\u6392\u5e8f\u300d\u6bd4\u300c\u5192\u6ce1\u6392\u5e8f\u300d\u66f4\u5feb\u7684\u539f\u56e0\u7c7b\u4f3c\u3002
            "},{"location":"chapter_sorting/quick_sort/#1154","title":"11.5.4 \u00a0 \u57fa\u51c6\u6570\u4f18\u5316","text":"

            \u5feb\u901f\u6392\u5e8f\u5728\u67d0\u4e9b\u8f93\u5165\u4e0b\u7684\u65f6\u95f4\u6548\u7387\u53ef\u80fd\u964d\u4f4e\u3002\u4e3e\u4e00\u4e2a\u6781\u7aef\u4f8b\u5b50\uff0c\u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u662f\u5b8c\u5168\u5012\u5e8f\u7684\uff0c\u7531\u4e8e\u6211\u4eec\u9009\u62e9\u6700\u5de6\u7aef\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\uff0c\u90a3\u4e48\u5728\u54e8\u5175\u5212\u5206\u5b8c\u6210\u540e\uff0c\u57fa\u51c6\u6570\u88ab\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u53f3\u7aef\uff0c\u5bfc\u81f4\u5de6\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(n - 1\\) \u3001\u53f3\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(0\\) \u3002\u5982\u6b64\u9012\u5f52\u4e0b\u53bb\uff0c\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u540e\u7684\u53f3\u5b50\u6570\u7ec4\u957f\u5ea6\u90fd\u4e3a \\(0\\) \uff0c\u5206\u6cbb\u7b56\u7565\u5931\u6548\uff0c\u5feb\u901f\u6392\u5e8f\u9000\u5316\u4e3a\u300c\u5192\u6ce1\u6392\u5e8f\u300d\u3002

            \u4e3a\u4e86\u5c3d\u91cf\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u53d1\u751f\uff0c\u6211\u4eec\u53ef\u4ee5\u4f18\u5316\u54e8\u5175\u5212\u5206\u4e2d\u7684\u57fa\u51c6\u6570\u7684\u9009\u53d6\u7b56\u7565\u3002\u4f8b\u5982\uff0c\u6211\u4eec\u53ef\u4ee5\u968f\u673a\u9009\u53d6\u4e00\u4e2a\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\u3002\u7136\u800c\uff0c\u5982\u679c\u8fd0\u6c14\u4e0d\u4f73\uff0c\u6bcf\u6b21\u90fd\u9009\u5230\u4e0d\u7406\u60f3\u7684\u57fa\u51c6\u6570\uff0c\u6548\u7387\u4ecd\u7136\u4e0d\u5c3d\u5982\u4eba\u610f\u3002

            \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u751f\u6210\u7684\u662f\u201c\u4f2a\u968f\u673a\u6570\u201d\u3002\u5982\u679c\u6211\u4eec\u9488\u5bf9\u4f2a\u968f\u673a\u6570\u5e8f\u5217\u6784\u5efa\u4e00\u4e2a\u7279\u5b9a\u7684\u6d4b\u8bd5\u6837\u4f8b\uff0c\u90a3\u4e48\u5feb\u901f\u6392\u5e8f\u7684\u6548\u7387\u4ecd\u7136\u53ef\u80fd\u52a3\u5316\u3002

            \u4e3a\u4e86\u8fdb\u4e00\u6b65\u6539\u8fdb\uff0c\u6211\u4eec\u53ef\u4ee5\u5728\u6570\u7ec4\u4e2d\u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\uff08\u901a\u5e38\u4e3a\u6570\u7ec4\u7684\u9996\u3001\u5c3e\u3001\u4e2d\u70b9\u5143\u7d20\uff09\uff0c\u5e76\u5c06\u8fd9\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\u4f5c\u4e3a\u57fa\u51c6\u6570\u3002\u8fd9\u6837\u4e00\u6765\uff0c\u57fa\u51c6\u6570\u201c\u65e2\u4e0d\u592a\u5c0f\u4e5f\u4e0d\u592a\u5927\u201d\u7684\u6982\u7387\u5c06\u5927\u5e45\u63d0\u5347\u3002\u5f53\u7136\uff0c\u6211\u4eec\u8fd8\u53ef\u4ee5\u9009\u53d6\u66f4\u591a\u5019\u9009\u5143\u7d20\uff0c\u4ee5\u8fdb\u4e00\u6b65\u63d0\u9ad8\u7b97\u6cd5\u7684\u7a33\u5065\u6027\u3002\u91c7\u7528\u8fd9\u79cd\u65b9\u6cd5\u540e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n^2)\\) \u7684\u6982\u7387\u5927\u5927\u964d\u4f4e\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust quick_sort.java
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint medianThree(int[] nums, int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint partition(int[] nums, int left, int right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint med = medianThree(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--;          // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;             // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.cpp
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint medianThree(vector<int> &nums, int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint partition(vector<int> &nums, int left, int right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint med = medianThree(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;            // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.py
            def median_three(self, nums: list[int], left: int, mid: int, right: int) -> int:\n\"\"\"\u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\"\"\"\n# \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n# \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif (nums[left] < nums[mid]) ^ (nums[left] < nums[right]):\nreturn left\nelif (nums[mid] < nums[left]) ^ (nums[mid] < nums[right]):\nreturn mid\nreturn right\ndef partition(self, nums: list[int], left: int, right: int) -> int:\n\"\"\"\u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09\"\"\"\n# \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nmed = self.median_three(nums, left, (left + right) // 2, right)\n# \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nnums[left], nums[med] = nums[med], nums[left]\n# \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\ni, j = left, right\nwhile i < j:\nwhile i < j and nums[j] >= nums[left]:\nj -= 1  # \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile i < j and nums[i] <= nums[left]:\ni += 1  # \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n# \u5143\u7d20\u4ea4\u6362\nnums[i], nums[j] = nums[j], nums[i]\n# \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nnums[i], nums[left] = nums[left], nums[i]\nreturn i  # \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n
            quick_sort.go
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfunc (q *quickSortMedian) medianThree(nums []int, left, mid, right int) int {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\uff08!= \u5728\u8fd9\u91cc\u8d77\u5230\u5f02\u6216\u7684\u4f5c\u7528\uff09\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif (nums[left] < nums[mid]) != (nums[left] < nums[right]) {\nreturn left\n} else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {\nreturn mid\n}\nreturn right\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09*/\nfunc (q *quickSortMedian) partition(nums []int, left, right int) int {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nmed := q.medianThree(nums, left, (left+right)/2, right)\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nnums[left], nums[med] = nums[med], nums[left]\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\ni, j := left, right\nfor i < j {\nfor i < j && nums[j] >= nums[left] {\nj-- //\u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nfor i < j && nums[i] <= nums[left] {\ni++ //\u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\n//\u5143\u7d20\u4ea4\u6362\nnums[i], nums[j] = nums[j], nums[i]\n}\n//\u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nnums[i], nums[left] = nums[left], nums[i]\nreturn i //\u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.js
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nmedianThree(nums, left, mid, right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right])) return left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse return right;\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\npartition(nums, left, right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nlet med = this.medianThree(\nnums,\nleft,\nMath.floor((left + right) / 2),\nright\n);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nthis.swap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet i = left,\nj = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nthis.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nthis.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.ts
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nmedianThree(\nnums: number[],\nleft: number,\nmid: number,\nright: number\n): number {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif (Number(nums[left] < nums[mid]) ^ Number(nums[left] < nums[right])) {\nreturn left;\n} else if (\nNumber(nums[mid] < nums[left]) ^ Number(nums[mid] < nums[right])\n) {\nreturn mid;\n} else {\nreturn right;\n}\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\npartition(nums: number[], left: number, right: number): number {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nlet med = this.medianThree(\nnums,\nleft,\nMath.floor((left + right) / 2),\nright\n);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nthis.swap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet i = left,\nj = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) {\nj--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile (i < j && nums[i] <= nums[left]) {\ni++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nthis.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nthis.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.c
            /* \u5feb\u901f\u6392\u5e8f\u7c7b\uff08\u4e2d\u4f4d\u57fa\u51c6\u6570\u4f18\u5316\uff09 */\n// \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint medianThree(int nums[], int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n/* \u5feb\u901f\u6392\u5e8f\u7c7b\uff08\u4e2d\u4f4d\u57fa\u51c6\u6570\u4f18\u5316\uff09 */\n// \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint medianThree(int nums[], int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n// \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09\nint partitionMedian(int nums[], int left, int right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint med = medianThree(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;            // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.cs
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint medianThree(int[] nums, int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint partition(int[] nums, int left, int right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint med = medianThree(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--;          // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;             // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.swift
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfunc medianThree(nums: [Int], left: Int, mid: Int, right: Int) -> Int {\nif (nums[left] < nums[mid]) != (nums[left] < nums[right]) {\nreturn left\n} else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {\nreturn mid\n} else {\nreturn right\n}\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nfunc partitionMedian(nums: inout [Int], left: Int, right: Int) -> Int {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nlet med = medianThree(nums: nums, left: left, mid: (left + right) / 2, right: right)\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums: &nums, i: left, j: med)\nreturn partition(nums: &nums, left: left, right: right)\n}\n
            quick_sort.zig
            // \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nfn medianThree(nums: []i32, left: usize, mid: usize, right: usize) usize {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) != (nums[left] < nums[right])) {\nreturn left;\n} else if ((nums[mid] < nums[left]) != (nums[mid] < nums[right])) {\nreturn mid;\n} else {\nreturn right;\n}\n}\n// \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09\nfn partition(nums: []i32, left: usize, right: usize) usize {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nvar med = medianThree(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nvar i = left;\nvar j = right;\nwhile (i < j) {\nwhile (i < j and nums[j] >= nums[left]) j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j and nums[i] <= nums[left]) i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j);   // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);    // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;               // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.dart
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint _medianThree(List<int> nums, int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint _partition(List<int> nums, int left, int right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint med = _medianThree(nums, left, (left + right) ~/ 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n_swap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n_swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\n_swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.rs
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfn median_three(nums: &mut [i32], left: usize, mid: usize, right: usize) -> usize {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif (nums[left] < nums[mid]) ^ (nums[left] < nums[right]) {\nreturn left;\n} else if (nums[mid] < nums[left]) ^ (nums[mid] < nums[right]) {\nreturn mid;\n} right\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nfn partition(nums: &mut [i32], left: usize, right: usize) -> usize {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nlet med = Self::median_three(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nnums.swap(left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet (mut i, mut j) = (left, right);\nwhile i < j {\nwhile i < j && nums[j] >= nums[left] {\nj -= 1;      // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile i < j && nums[i] <= nums[left] {\ni += 1;      // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nnums.swap(i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nnums.swap(i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\ni                    // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            "},{"location":"chapter_sorting/quick_sort/#1155","title":"11.5.5 \u00a0 \u5c3e\u9012\u5f52\u4f18\u5316","text":"

            \u5728\u67d0\u4e9b\u8f93\u5165\u4e0b\uff0c\u5feb\u901f\u6392\u5e8f\u53ef\u80fd\u5360\u7528\u7a7a\u95f4\u8f83\u591a\u3002\u4ee5\u5b8c\u5168\u5012\u5e8f\u7684\u8f93\u5165\u6570\u7ec4\u4e3a\u4f8b\uff0c\u7531\u4e8e\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u540e\u53f3\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(0\\) \uff0c\u9012\u5f52\u6811\u7684\u9ad8\u5ea6\u4f1a\u8fbe\u5230 \\(n - 1\\) \uff0c\u6b64\u65f6\u9700\u8981\u5360\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\u3002

            \u4e3a\u4e86\u9632\u6b62\u6808\u5e27\u7a7a\u95f4\u7684\u7d2f\u79ef\uff0c\u6211\u4eec\u53ef\u4ee5\u5728\u6bcf\u8f6e\u54e8\u5175\u6392\u5e8f\u5b8c\u6210\u540e\uff0c\u6bd4\u8f83\u4e24\u4e2a\u5b50\u6570\u7ec4\u7684\u957f\u5ea6\uff0c\u4ec5\u5bf9\u8f83\u77ed\u7684\u5b50\u6570\u7ec4\u8fdb\u884c\u9012\u5f52\u3002\u7531\u4e8e\u8f83\u77ed\u5b50\u6570\u7ec4\u7684\u957f\u5ea6\u4e0d\u4f1a\u8d85\u8fc7 \\(\\frac{n}{2}\\) \uff0c\u56e0\u6b64\u8fd9\u79cd\u65b9\u6cd5\u80fd\u786e\u4fdd\u9012\u5f52\u6df1\u5ea6\u4e0d\u8d85\u8fc7 \\(\\log n\\) \uff0c\u4ece\u800c\u5c06\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(\\log n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust quick_sort.java
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(int[] nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nint pivot = partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.cpp
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(vector<int> &nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nint pivot = partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1;                 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1;                 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.py
            def quick_sort(self, nums: list[int], left: int, right: int):\n\"\"\"\u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\"\"\"\n# \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile left < right:\n# \u54e8\u5175\u5212\u5206\u64cd\u4f5c\npivot = self.partition(nums, left, right)\n# \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif pivot - left < right - pivot:\nself.quick_sort(nums, left, pivot - 1)  # \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1  # \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\nelse:\nself.quick_sort(nums, pivot + 1, right)  # \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1  # \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n
            quick_sort.go
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09*/\nfunc (q *quickSortTailCall) quickSort(nums []int, left, right int) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nfor left < right {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\npivot := q.partition(nums, left, right)\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif pivot-left < right-pivot {\nq.quickSort(nums, left, pivot-1) // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1                 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nq.quickSort(nums, pivot+1, right) // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1                 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.js
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nquickSort(nums, left, right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nlet pivot = this.partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nthis.quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nthis.quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.ts
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nquickSort(nums: number[], left: number, right: number): void {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nlet pivot = this.partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nthis.quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nthis.quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.c
            /* \u5feb\u901f\u6392\u5e8f\u7c7b\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\n// \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\nvoid quickSortTailCall(int nums[], int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nint pivot = partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSortTailCall(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1;                         // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSortTailCall(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1;                         // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.cs
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(int[] nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nint pivot = partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSort(nums, left, pivot - 1);  // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1;  // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.swift
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nfunc quickSortTailCall(nums: inout [Int], left: Int, right: Int) {\nvar left = left\nvar right = right\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile left < right {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nlet pivot = partition(nums: &nums, left: left, right: right)\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left) < (right - pivot) {\nquickSortTailCall(nums: &nums, left: left, right: pivot - 1) // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSortTailCall(nums: &nums, left: pivot + 1, right: right) // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.zig
            // \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\nfn quickSort(nums: []i32, left_: usize, right_: usize) void {\nvar left = left_;\nvar right = right_;\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nvar pivot = partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSort(nums, left, pivot - 1);   // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1;                   // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSort(nums, pivot + 1, right);  // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1;                  // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.dart
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(List<int> nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nint pivot = _partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.rs
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\npub fn quick_sort(mut left: i32, mut right: i32, nums: &mut [i32]) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile left < right {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nlet pivot = Self::partition(nums, left as usize, right as usize) as i32;\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif  pivot - left < right - pivot {\nSelf::quick_sort(left, pivot - 1, nums);  // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1;  // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nSelf::quick_sort(pivot + 1, right, nums); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            "},{"location":"chapter_sorting/radix_sort/","title":"11.10 \u00a0 \u57fa\u6570\u6392\u5e8f","text":"

            \u4e0a\u4e00\u8282\u6211\u4eec\u4ecb\u7ecd\u4e86\u8ba1\u6570\u6392\u5e8f\uff0c\u5b83\u9002\u7528\u4e8e\u6570\u636e\u91cf \\(n\\) \u8f83\u5927\u4f46\u6570\u636e\u8303\u56f4 \\(m\\) \u8f83\u5c0f\u7684\u60c5\u51b5\u3002\u5047\u8bbe\u6211\u4eec\u9700\u8981\u5bf9 \\(n = 10^6\\) \u4e2a\u5b66\u53f7\u8fdb\u884c\u6392\u5e8f\uff0c\u800c\u5b66\u53f7\u662f\u4e00\u4e2a \\(8\\) \u4f4d\u6570\u5b57\uff0c\u8fd9\u610f\u5473\u7740\u6570\u636e\u8303\u56f4 \\(m = 10^8\\) \u975e\u5e38\u5927\uff0c\u4f7f\u7528\u8ba1\u6570\u6392\u5e8f\u9700\u8981\u5206\u914d\u5927\u91cf\u5185\u5b58\u7a7a\u95f4\uff0c\u800c\u57fa\u6570\u6392\u5e8f\u53ef\u4ee5\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u3002

            \u300c\u57fa\u6570\u6392\u5e8f Radix Sort\u300d\u7684\u6838\u5fc3\u601d\u60f3\u4e0e\u8ba1\u6570\u6392\u5e8f\u4e00\u81f4\uff0c\u4e5f\u901a\u8fc7\u7edf\u8ba1\u4e2a\u6570\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u5728\u6b64\u57fa\u7840\u4e0a\uff0c\u57fa\u6570\u6392\u5e8f\u5229\u7528\u6570\u5b57\u5404\u4f4d\u4e4b\u95f4\u7684\u9012\u8fdb\u5173\u7cfb\uff0c\u4f9d\u6b21\u5bf9\u6bcf\u4e00\u4f4d\u8fdb\u884c\u6392\u5e8f\uff0c\u4ece\u800c\u5f97\u5230\u6700\u7ec8\u7684\u6392\u5e8f\u7ed3\u679c\u3002

            "},{"location":"chapter_sorting/radix_sort/#11101","title":"11.10.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u4ee5\u5b66\u53f7\u6570\u636e\u4e3a\u4f8b\uff0c\u5047\u8bbe\u6570\u5b57\u7684\u6700\u4f4e\u4f4d\u662f\u7b2c \\(1\\) \u4f4d\uff0c\u6700\u9ad8\u4f4d\u662f\u7b2c \\(8\\) \u4f4d\uff0c\u57fa\u6570\u6392\u5e8f\u7684\u6b65\u9aa4\u5982\u4e0b\uff1a

            1. \u521d\u59cb\u5316\u4f4d\u6570 \\(k = 1\\) \u3002
            2. \u5bf9\u5b66\u53f7\u7684\u7b2c \\(k\\) \u4f4d\u6267\u884c\u300c\u8ba1\u6570\u6392\u5e8f\u300d\u3002\u5b8c\u6210\u540e\uff0c\u6570\u636e\u4f1a\u6839\u636e\u7b2c \\(k\\) \u4f4d\u4ece\u5c0f\u5230\u5927\u6392\u5e8f\u3002
            3. \u5c06 \\(k\\) \u589e\u52a0 \\(1\\) \uff0c\u7136\u540e\u8fd4\u56de\u6b65\u9aa4 2. \u7ee7\u7eed\u8fed\u4ee3\uff0c\u76f4\u5230\u6240\u6709\u4f4d\u90fd\u6392\u5e8f\u5b8c\u6210\u540e\u7ed3\u675f\u3002

            \u56fe\uff1a\u57fa\u6570\u6392\u5e8f\u7b97\u6cd5\u6d41\u7a0b

            \u4e0b\u9762\u6765\u5256\u6790\u4ee3\u7801\u5b9e\u73b0\u3002\u5bf9\u4e8e\u4e00\u4e2a \\(d\\) \u8fdb\u5236\u7684\u6570\u5b57 \\(x\\) \uff0c\u8981\u83b7\u53d6\u5176\u7b2c \\(k\\) \u4f4d \\(x_k\\) \uff0c\u53ef\u4ee5\u4f7f\u7528\u4ee5\u4e0b\u8ba1\u7b97\u516c\u5f0f\uff1a

            \\[ x_k = \\lfloor\\frac{x}{d^{k-1}}\\rfloor \\bmod d \\]

            \u5176\u4e2d \\(\\lfloor a \\rfloor\\) \u8868\u793a\u5bf9\u6d6e\u70b9\u6570 \\(a\\) \u5411\u4e0b\u53d6\u6574\uff0c\u800c \\(\\bmod \\space d\\) \u8868\u793a\u5bf9 \\(d\\) \u53d6\u4f59\u3002\u5bf9\u4e8e\u5b66\u53f7\u6570\u636e\uff0c\\(d = 10\\) \u4e14 \\(k \\in [1, 8]\\) \u3002

            \u6b64\u5916\uff0c\u6211\u4eec\u9700\u8981\u5c0f\u5e45\u6539\u52a8\u8ba1\u6570\u6392\u5e8f\u4ee3\u7801\uff0c\u4f7f\u4e4b\u53ef\u4ee5\u6839\u636e\u6570\u5b57\u7684\u7b2c \\(k\\) \u4f4d\u8fdb\u884c\u6392\u5e8f\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust radix_sort.java
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(int[] nums, int exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nint[] counter = new int[10];\nint n = nums.length;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (int i = 0; i < n; i++) {\nint d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++;                // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (int i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nint[] res = new int[n];\nfor (int i = n - 1; i >= 0; i--) {\nint d = digit(nums[i], exp);\nint j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i];       // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--;           // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++)\nnums[i] = res[i];\n}\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(int[] nums) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nint m = Integer.MIN_VALUE;\nfor (int num : nums)\nif (num > m)\nm = num;\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (int exp = 1; exp <= m; exp *= 10)\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n
            radix_sort.cpp
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(vector<int> &nums, int exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nvector<int> counter(10, 0);\nint n = nums.size();\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (int i = 0; i < n; i++) {\nint d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++;                // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (int i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nvector<int> res(n, 0);\nfor (int i = n - 1; i >= 0; i--) {\nint d = digit(nums[i], exp);\nint j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i];       // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--;           // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++)\nnums[i] = res[i];\n}\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(vector<int> &nums) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nint m = *max_element(nums.begin(), nums.end());\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (int exp = 1; exp <= m; exp *= 10)\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n
            radix_sort.py
            def digit(num: int, exp: int) -> int:\n\"\"\"\u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1)\"\"\"\n# \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num // exp) % 10\ndef counting_sort_digit(nums: list[int], exp: int):\n\"\"\"\u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09\"\"\"\n# \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\ncounter = [0] * 10\nn = len(nums)\n# \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor i in range(n):\nd = digit(nums[i], exp)  # \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d] += 1  # \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n# \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor i in range(1, 10):\ncounter[i] += counter[i - 1]\n# \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nres = [0] * n\nfor i in range(n - 1, -1, -1):\nd = digit(nums[i], exp)\nj = counter[d] - 1  # \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]  # \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d] -= 1  # \u5c06 d \u7684\u6570\u91cf\u51cf 1\n# \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in range(n):\nnums[i] = res[i]\ndef radix_sort(nums: list[int]):\n\"\"\"\u57fa\u6570\u6392\u5e8f\"\"\"\n# \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nm = max(nums)\n# \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nexp = 1\nwhile exp <= m:\n# \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n# k = 1 -> exp = 1\n# k = 2 -> exp = 10\n# \u5373 exp = 10^(k-1)\ncounting_sort_digit(nums, exp)\nexp *= 10\n
            radix_sort.go
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunc digit(num, exp int) int {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num / exp) % 10\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunc countingSortDigit(nums []int, exp int) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\ncounter := make([]int, 10)\nn := len(nums)\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor i := 0; i < n; i++ {\nd := digit(nums[i], exp) // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++             // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor i := 1; i < 10; i++ {\ncounter[i] += counter[i-1]\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nres := make([]int, n)\nfor i := n - 1; i >= 0; i-- {\nd := digit(nums[i], exp)\nj := counter[d] - 1 // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]    // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--        // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i := 0; i < n; i++ {\nnums[i] = res[i]\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nfunc radixSort(nums []int) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nmax := math.MinInt\nfor _, num := range nums {\nif num > max {\nmax = num\n}\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor exp := 1; max >= exp; exp *= 10 {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp)\n}\n}\n
            radix_sort.js
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunction digit(num, exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn Math.floor(num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunction countingSortDigit(nums, exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nconst counter = new Array(10).fill(0);\nconst n = nums.length;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (let i = 0; i < n; i++) {\nconst d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (let i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nconst res = new Array(n).fill(0);\nfor (let i = n - 1; i >= 0; i--) {\nconst d = digit(nums[i], exp);\nconst j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (let i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nfunction radixSort(nums) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nlet m = Number.MIN_VALUE;\nfor (const num of nums) {\nif (num > m) {\nm = num;\n}\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (let exp = 1; exp <= m; exp *= 10) {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n}\n
            radix_sort.ts
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunction digit(num: number, exp: number): number {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn Math.floor(num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunction countingSortDigit(nums: number[], exp: number): void {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nconst counter = new Array(10).fill(0);\nconst n = nums.length;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (let i = 0; i < n; i++) {\nconst d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (let i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nconst res = new Array(n).fill(0);\nfor (let i = n - 1; i >= 0; i--) {\nconst d = digit(nums[i], exp);\nconst j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (let i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nfunction radixSort(nums: number[]): void {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nlet m = Number.MIN_VALUE;\nfor (const num of nums) {\nif (num > m) {\nm = num;\n}\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (let exp = 1; exp <= m; exp *= 10) {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n}\n
            radix_sort.c
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(int nums[], int size, int exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nint *counter = (int *)malloc((sizeof(int) * 10));\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (int i = 0; i < size; i++) {\n// \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\nint d = digit(nums[i], exp);\n// \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\ncounter[d]++;\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (int i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nint *res = (int *)malloc(sizeof(int) * size);\nfor (int i = size - 1; i >= 0; i--) {\nint d = digit(nums[i], exp);\nint j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i];       // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--;           // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < size; i++) {\nnums[i] = res[i];\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(int nums[], int size) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nint max = INT32_MIN;\nfor (size_t i = 0; i < size - 1; i++) {\nif (nums[i] > max) {\nmax = nums[i];\n}\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (int exp = 1; max >= exp; exp *= 10)\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, size, exp);\n}\n
            radix_sort.cs
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(int[] nums, int exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nint[] counter = new int[10];\nint n = nums.Length;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (int i = 0; i < n; i++) {\nint d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++;                // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (int i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nint[] res = new int[n];\nfor (int i = n - 1; i >= 0; i--) {\nint d = digit(nums[i], exp);\nint j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i];       // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--;           // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(int[] nums) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nint m = int.MinValue;\nforeach (int num in nums) {\nif (num > m) m = num;\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (int exp = 1; exp <= m; exp *= 10) {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n}\n
            radix_sort.swift
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunc digit(num: Int, exp: Int) -> Int {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n(num / exp) % 10\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunc countingSortDigit(nums: inout [Int], exp: Int) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nvar counter = Array(repeating: 0, count: 10)\nlet n = nums.count\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor i in nums.indices {\nlet d = digit(num: nums[i], exp: exp) // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d] += 1 // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor i in 1 ..< 10 {\ncounter[i] += counter[i - 1]\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nvar res = Array(repeating: 0, count: n)\nfor i in stride(from: n - 1, through: 0, by: -1) {\nlet d = digit(num: nums[i], exp: exp)\nlet j = counter[d] - 1 // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i] // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d] -= 1 // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in nums.indices {\nnums[i] = res[i]\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nfunc radixSort(nums: inout [Int]) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nvar m = Int.min\nfor num in nums {\nif num > m {\nm = num\n}\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor exp in sequence(first: 1, next: { m >= ($0 * 10) ? $0 * 10 : nil }) {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums: &nums, exp: exp)\n}\n}\n
            radix_sort.zig
            // \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1)\nfn digit(num: i32, exp: i32) i32 {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn @mod(@divFloor(num, exp), 10);\n}\n// \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09\nfn countingSortDigit(nums: []i32, exp: i32) !void {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nvar mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);\n// defer mem_arena.deinit();\nconst mem_allocator = mem_arena.allocator();\nvar counter = try mem_allocator.alloc(usize, 10);\n@memset(counter, 0);\nvar n = nums.len;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (nums) |num| {\nvar d: u32 = @bitCast(digit(num, exp)); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d] += 1; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nvar i: usize = 1;\nwhile (i < 10) : (i += 1) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nvar res = try mem_allocator.alloc(i32, n);\ni = n - 1;\nwhile (i >= 0) : (i -= 1) {\nvar d: u32 = @bitCast(digit(nums[i], exp));\nvar j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i];       // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d] -= 1;        // \u5c06 d \u7684\u6570\u91cf\u51cf 1\nif (i == 0) break;\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\ni = 0;\nwhile (i < n) : (i += 1) {\nnums[i] = res[i];\n}\n}\n// \u57fa\u6570\u6392\u5e8f\nfn radixSort(nums: []i32) !void {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nvar m: i32 = std.math.minInt(i32);\nfor (nums) |num| {\nif (num > m) m = num;\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nvar exp: i32 = 1;\nwhile (exp <= m) : (exp *= 10) {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ntry countingSortDigit(nums, exp);    }\n} 
            radix_sort.dart
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num ~/ exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(List<int> nums, int exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nList<int> counter = List<int>.filled(10, 0);\nint n = nums.length;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (int i = 0; i < n; i++) {\nint d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (int i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nList<int> res = List<int>.filled(n, 0);\nfor (int i = n - 1; i >= 0; i--) {\nint d = digit(nums[i], exp);\nint j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++) nums[i] = res[i];\n}\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(List<int> nums) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n// dart \u4e2d int \u7684\u957f\u5ea6\u662f 64 \u4f4d\u7684\nint m = -1 << 63;\nfor (int num in nums) if (num > m) m = num;\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (int exp = 1; exp <= m; exp *= 10)\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n
            radix_sort.rs
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfn digit(num: i32, exp: i32) -> usize {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn ((num / exp) % 10) as usize;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfn counting_sort_digit(nums: &mut [i32], exp: i32) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nlet mut counter = [0; 10];\nlet n = nums.len();\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor i in 0..n {\nlet d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d] += 1; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor i in 1..10 {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nlet mut res = vec![0; n];\nfor i in (0..n).rev() {\nlet d = digit(nums[i], exp);\nlet j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d] -= 1; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in 0..n {\nnums[i] = res[i];\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nfn radix_sort(nums: &mut [i32]) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nlet m = *nums.into_iter().max().unwrap();\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nlet mut exp = 1;\nwhile exp <= m {\ncounting_sort_digit(nums, exp);\nexp *= 10;\n}\n}\n

            \u4e3a\u4ec0\u4e48\u4ece\u6700\u4f4e\u4f4d\u5f00\u59cb\u6392\u5e8f\uff1f

            \u5728\u8fde\u7eed\u7684\u6392\u5e8f\u8f6e\u6b21\u4e2d\uff0c\u540e\u4e00\u8f6e\u6392\u5e8f\u4f1a\u8986\u76d6\u524d\u4e00\u8f6e\u6392\u5e8f\u7684\u7ed3\u679c\u3002\u4e3e\u4f8b\u6765\u8bf4\uff0c\u5982\u679c\u7b2c\u4e00\u8f6e\u6392\u5e8f\u7ed3\u679c \\(a < b\\) \uff0c\u800c\u7b2c\u4e8c\u8f6e\u6392\u5e8f\u7ed3\u679c \\(a > b\\) \uff0c\u90a3\u4e48\u7b2c\u4e8c\u8f6e\u7684\u7ed3\u679c\u5c06\u53d6\u4ee3\u7b2c\u4e00\u8f6e\u7684\u7ed3\u679c\u3002\u7531\u4e8e\u6570\u5b57\u7684\u9ad8\u4f4d\u4f18\u5148\u7ea7\u9ad8\u4e8e\u4f4e\u4f4d\uff0c\u6211\u4eec\u5e94\u8be5\u5148\u6392\u5e8f\u4f4e\u4f4d\u518d\u6392\u5e8f\u9ad8\u4f4d\u3002

            "},{"location":"chapter_sorting/radix_sort/#11102","title":"11.10.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"

            \u76f8\u8f83\u4e8e\u8ba1\u6570\u6392\u5e8f\uff0c\u57fa\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u503c\u8303\u56f4\u8f83\u5927\u7684\u60c5\u51b5\uff0c\u4f46\u524d\u63d0\u662f\u6570\u636e\u5fc5\u987b\u53ef\u4ee5\u8868\u793a\u4e3a\u56fa\u5b9a\u4f4d\u6570\u7684\u683c\u5f0f\uff0c\u4e14\u4f4d\u6570\u4e0d\u80fd\u8fc7\u5927\u3002\u4f8b\u5982\uff0c\u6d6e\u70b9\u6570\u4e0d\u9002\u5408\u4f7f\u7528\u57fa\u6570\u6392\u5e8f\uff0c\u56e0\u4e3a\u5176\u4f4d\u6570 \\(k\\) \u8fc7\u5927\uff0c\u53ef\u80fd\u5bfc\u81f4\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(nk) \\gg O(n^2)\\) \u3002

            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(nk)\\) \uff1a\u8bbe\u6570\u636e\u91cf\u4e3a \\(n\\) \u3001\u6570\u636e\u4e3a \\(d\\) \u8fdb\u5236\u3001\u6700\u5927\u4f4d\u6570\u4e3a \\(k\\) \uff0c\u5219\u5bf9\u67d0\u4e00\u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\u4f7f\u7528 \\(O(n + d)\\) \u65f6\u95f4\uff0c\u6392\u5e8f\u6240\u6709 \\(k\\) \u4f4d\u4f7f\u7528 \\(O((n + d)k)\\) \u65f6\u95f4\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\\(d\\) \u548c \\(k\\) \u90fd\u76f8\u5bf9\u8f83\u5c0f\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411 \\(O(n)\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n + d)\\) \u3001\u975e\u539f\u5730\u6392\u5e8f \uff1a\u4e0e\u8ba1\u6570\u6392\u5e8f\u76f8\u540c\uff0c\u57fa\u6570\u6392\u5e8f\u9700\u8981\u501f\u52a9\u957f\u5ea6\u4e3a \\(n\\) \u548c \\(d\\) \u7684\u6570\u7ec4 res \u548c counter \u3002
            • \u7a33\u5b9a\u6392\u5e8f\uff1a\u4e0e\u8ba1\u6570\u6392\u5e8f\u76f8\u540c\u3002
            "},{"location":"chapter_sorting/selection_sort/","title":"11.2 \u00a0 \u9009\u62e9\u6392\u5e8f","text":"

            \u300c\u9009\u62e9\u6392\u5e8f Selection Sort\u300d\u7684\u5de5\u4f5c\u539f\u7406\u975e\u5e38\u76f4\u63a5\uff1a\u5f00\u542f\u4e00\u4e2a\u5faa\u73af\uff0c\u6bcf\u8f6e\u4ece\u672a\u6392\u5e8f\u533a\u95f4\u9009\u62e9\u6700\u5c0f\u7684\u5143\u7d20\uff0c\u5c06\u5176\u653e\u5230\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u672b\u5c3e\u3002

            \u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u9009\u62e9\u6392\u5e8f\u7684\u7b97\u6cd5\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6240\u6709\u5143\u7d20\u672a\u6392\u5e8f\uff0c\u5373\u672a\u6392\u5e8f\uff08\u7d22\u5f15\uff09\u533a\u95f4\u4e3a \\([0, n-1]\\) \u3002
            2. \u9009\u53d6\u533a\u95f4 \\([0, n-1]\\) \u4e2d\u7684\u6700\u5c0f\u5143\u7d20\uff0c\u5c06\u5176\u4e0e\u7d22\u5f15 \\(0\\) \u5904\u5143\u7d20\u4ea4\u6362\u3002\u5b8c\u6210\u540e\uff0c\u6570\u7ec4\u524d 1 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
            3. \u9009\u53d6\u533a\u95f4 \\([1, n-1]\\) \u4e2d\u7684\u6700\u5c0f\u5143\u7d20\uff0c\u5c06\u5176\u4e0e\u7d22\u5f15 \\(1\\) \u5904\u5143\u7d20\u4ea4\u6362\u3002\u5b8c\u6210\u540e\uff0c\u6570\u7ec4\u524d 2 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
            4. \u4ee5\u6b64\u7c7b\u63a8\u3002\u7ecf\u8fc7 \\(n - 1\\) \u8f6e\u9009\u62e9\u4e0e\u4ea4\u6362\u540e\uff0c\u6570\u7ec4\u524d \\(n - 1\\) \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
            5. \u4ec5\u5269\u7684\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u662f\u6700\u5927\u5143\u7d20\uff0c\u65e0\u987b\u6392\u5e8f\uff0c\u56e0\u6b64\u6570\u7ec4\u6392\u5e8f\u5b8c\u6210\u3002
            <1><2><3><4><5><6><7><8><9><10><11>

            \u56fe\uff1a\u9009\u62e9\u6392\u5e8f\u6b65\u9aa4

            \u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u7528 \\(k\\) \u6765\u8bb0\u5f55\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust selection_sort.java
            /* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(int[] nums) {\nint n = nums.length;\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (int i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nint k = i;\nfor (int j = i + 1; j < n; j++) {\nif (nums[j] < nums[k])\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nint temp = nums[i];\nnums[i] = nums[k];\nnums[k] = temp;\n}\n}\n
            selection_sort.cpp
            /* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(vector<int> &nums) {\nint n = nums.size();\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (int i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nint k = i;\nfor (int j = i + 1; j < n; j++) {\nif (nums[j] < nums[k])\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nswap(nums[i], nums[k]);\n}\n}\n
            selection_sort.py
            def selection_sort(nums: list[int]):\n\"\"\"\u9009\u62e9\u6392\u5e8f\"\"\"\nn = len(nums)\n# \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor i in range(n - 1):\n# \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nk = i\nfor j in range(i + 1, n):\nif nums[j] < nums[k]:\nk = j  # \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n# \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nnums[i], nums[k] = nums[k], nums[i]\n
            selection_sort.go
            /* \u9009\u62e9\u6392\u5e8f */\nfunc selectionSort(nums []int) {\nn := len(nums)\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor i := 0; i < n-1; i++ {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nk := i\nfor j := i + 1; j < n; j++ {\nif nums[j] < nums[k] {\n// \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\nk = j\n}\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nnums[i], nums[k] = nums[k], nums[i]\n}\n}\n
            selection_sort.js
            /* \u9009\u62e9\u6392\u5e8f */\nfunction selectionSort(nums) {\nlet n = nums.length;\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (let i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nlet k = i;\nfor (let j = i + 1; j < n; j++) {\nif (nums[j] < nums[k]) {\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n[nums[i], nums[k]] = [nums[k], nums[i]];\n}\n}\n
            selection_sort.ts
            /* \u9009\u62e9\u6392\u5e8f */\nfunction selectionSort(nums: number[]): void {\nlet n = nums.length;\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (let i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nlet k = i;\nfor (let j = i + 1; j < n; j++) {\nif (nums[j] < nums[k]) {\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n[nums[i], nums[k]] = [nums[k], nums[i]];\n}\n}\n
            selection_sort.c
            /* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(int nums[], int n) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (int i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nint k = i;\nfor (int j = i + 1; j < n; j++) {\nif (nums[j] < nums[k])\nk = j;  // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nint temp = nums[i];\nnums[i] = nums[k];\nnums[k] = temp;\n}\n}\n
            selection_sort.cs
            /* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(int[] nums) {\nint n = nums.Length;\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (int i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nint k = i;\nfor (int j = i + 1; j < n; j++) {\nif (nums[j] < nums[k])\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n(nums[k], nums[i]) = (nums[i], nums[k]);\n}\n}\n
            selection_sort.swift
            /* \u9009\u62e9\u6392\u5e8f */\nfunc selectionSort(nums: inout [Int]) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor i in nums.indices.dropLast() {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nvar k = i\nfor j in nums.indices.dropFirst(i + 1) {\nif nums[j] < nums[k] {\nk = j // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nnums.swapAt(i, k)\n}\n}\n
            selection_sort.zig
            [class]{}-[func]{selectionSort}\n
            selection_sort.dart
            /* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(List<int> nums) {\nint n = nums.length;\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (int i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nint k = i;\nfor (int j = i + 1; j < n; j++) {\nif (nums[j] < nums[k]) k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nint temp = nums[i];\nnums[i] = nums[k];\nnums[k] = temp;\n}\n}\n
            selection_sort.rs
            /* \u9009\u62e9\u6392\u5e8f */\nfn selection_sort(nums: &mut [i32]) {\nlet n = nums.len();\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor i in 0..n-1 {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nlet mut k = i;\nfor j in i+1..n {\nif nums[j] < nums[k] {\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nnums.swap(i, k);\n}\n}\n
            "},{"location":"chapter_sorting/selection_sort/#1121","title":"11.2.1 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5916\u5faa\u73af\u5171 \\(n - 1\\) \u8f6e\uff0c\u7b2c\u4e00\u8f6e\u7684\u672a\u6392\u5e8f\u533a\u95f4\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u6700\u540e\u4e00\u8f6e\u7684\u672a\u6392\u5e8f\u533a\u95f4\u957f\u5ea6\u4e3a \\(2\\) \uff0c\u5373\u5404\u8f6e\u5916\u5faa\u73af\u5206\u522b\u5305\u542b \\(n\\) , \\(n - 1\\) , \\(\\cdots\\) , \\(2\\) \u8f6e\u5185\u5faa\u73af\uff0c\u6c42\u548c\u4e3a \\(\\frac{(n - 1)(n + 2)}{2}\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(1)\\) \u3001\u539f\u5730\u6392\u5e8f\uff1a\u6307\u9488 \\(i\\) , \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
            • \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u4ea4\u6362\u5143\u7d20\u65f6\uff0c\u6709\u53ef\u80fd\u5c06 nums[i] \u4ea4\u6362\u81f3\u5176\u76f8\u7b49\u5143\u7d20\u7684\u53f3\u8fb9\uff0c\u5bfc\u81f4\u4e24\u8005\u7684\u76f8\u5bf9\u987a\u5e8f\u53d1\u751f\u6539\u53d8\u3002

            \u56fe\uff1a\u9009\u62e9\u6392\u5e8f\u975e\u7a33\u5b9a\u793a\u4f8b

            "},{"location":"chapter_sorting/sorting_algorithm/","title":"11.1 \u00a0 \u6392\u5e8f\u7b97\u6cd5","text":"

            \u300c\u6392\u5e8f\u7b97\u6cd5 Sorting Algorithm\u300d\u7528\u4e8e\u5bf9\u4e00\u7ec4\u6570\u636e\u6309\u7167\u7279\u5b9a\u987a\u5e8f\u8fdb\u884c\u6392\u5217\u3002\u6392\u5e8f\u7b97\u6cd5\u6709\u7740\u5e7f\u6cdb\u7684\u5e94\u7528\uff0c\u56e0\u4e3a\u6709\u5e8f\u6570\u636e\u901a\u5e38\u80fd\u591f\u88ab\u66f4\u6709\u6548\u5730\u67e5\u627e\u3001\u5206\u6790\u548c\u5904\u7406\u3002

            \u5728\u6392\u5e8f\u7b97\u6cd5\u4e2d\uff0c\u6570\u636e\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u6570\u3001\u6d6e\u70b9\u6570\u3001\u5b57\u7b26\u6216\u5b57\u7b26\u4e32\u7b49\uff1b\u987a\u5e8f\u7684\u5224\u65ad\u89c4\u5219\u53ef\u6839\u636e\u9700\u6c42\u8bbe\u5b9a\uff0c\u5982\u6570\u5b57\u5927\u5c0f\u3001\u5b57\u7b26 ASCII \u7801\u987a\u5e8f\u6216\u81ea\u5b9a\u4e49\u89c4\u5219\u3002

            \u56fe\uff1a\u6570\u636e\u7c7b\u578b\u548c\u5224\u65ad\u89c4\u5219\u793a\u4f8b

            "},{"location":"chapter_sorting/sorting_algorithm/#1111","title":"11.1.1 \u00a0 \u8bc4\u4ef7\u7ef4\u5ea6","text":"

            \u8fd0\u884c\u6548\u7387\uff1a\u6211\u4eec\u671f\u671b\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5c3d\u91cf\u4f4e\uff0c\u4e14\u603b\u4f53\u64cd\u4f5c\u6570\u91cf\u8f83\u5c11\uff08\u5373\u65f6\u95f4\u590d\u6742\u5ea6\u4e2d\u7684\u5e38\u6570\u9879\u964d\u4f4e\uff09\u3002\u5bf9\u4e8e\u5927\u6570\u636e\u91cf\u60c5\u51b5\uff0c\u8fd0\u884c\u6548\u7387\u663e\u5f97\u5c24\u4e3a\u91cd\u8981\u3002

            \u5c31\u5730\u6027\uff1a\u987e\u540d\u601d\u4e49\uff0c\u300c\u539f\u5730\u6392\u5e8f\u300d\u901a\u8fc7\u5728\u539f\u6570\u7ec4\u4e0a\u76f4\u63a5\u64cd\u4f5c\u5b9e\u73b0\u6392\u5e8f\uff0c\u65e0\u987b\u501f\u52a9\u989d\u5916\u7684\u8f85\u52a9\u6570\u7ec4\uff0c\u4ece\u800c\u8282\u7701\u5185\u5b58\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u539f\u5730\u6392\u5e8f\u7684\u6570\u636e\u642c\u8fd0\u64cd\u4f5c\u8f83\u5c11\uff0c\u8fd0\u884c\u901f\u5ea6\u4e5f\u66f4\u5feb\u3002

            \u7a33\u5b9a\u6027\uff1a\u300c\u7a33\u5b9a\u6392\u5e8f\u300d\u5728\u5b8c\u6210\u6392\u5e8f\u540e\uff0c\u76f8\u7b49\u5143\u7d20\u5728\u6570\u7ec4\u4e2d\u7684\u76f8\u5bf9\u987a\u5e8f\u4e0d\u53d1\u751f\u6539\u53d8\u3002\u7a33\u5b9a\u6392\u5e8f\u662f\u4f18\u826f\u7279\u6027\uff0c\u4e5f\u662f\u591a\u7ea7\u6392\u5e8f\u573a\u666f\u7684\u5fc5\u8981\u6761\u4ef6\u3002

            \u5047\u8bbe\u6211\u4eec\u6709\u4e00\u4e2a\u5b58\u50a8\u5b66\u751f\u4fe1\u606f\u7684\u8868\u683c\uff0c\u7b2c 1, 2 \u5217\u5206\u522b\u662f\u59d3\u540d\u548c\u5e74\u9f84\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u300c\u975e\u7a33\u5b9a\u6392\u5e8f\u300d\u53ef\u80fd\u5bfc\u81f4\u8f93\u5165\u6570\u636e\u7684\u6709\u5e8f\u6027\u4e27\u5931\u3002

            # \u8f93\u5165\u6570\u636e\u662f\u6309\u7167\u59d3\u540d\u6392\u5e8f\u597d\u7684\n# (name, age)\n('A', 19)\n('B', 18)\n('C', 21)\n('D', 19)\n('E', 23)\n# \u5047\u8bbe\u4f7f\u7528\u975e\u7a33\u5b9a\u6392\u5e8f\u7b97\u6cd5\u6309\u5e74\u9f84\u6392\u5e8f\u5217\u8868\uff0c\n# \u7ed3\u679c\u4e2d ('D', 19) \u548c ('A', 19) \u7684\u76f8\u5bf9\u4f4d\u7f6e\u6539\u53d8\uff0c\n# \u8f93\u5165\u6570\u636e\u6309\u59d3\u540d\u6392\u5e8f\u7684\u6027\u8d28\u4e22\u5931\n('B', 18)\n('D', 19)\n('A', 19)\n('C', 21)\n('E', 23)\n

            \u81ea\u9002\u5e94\u6027\uff1a\u300c\u81ea\u9002\u5e94\u6392\u5e8f\u300d\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u53d7\u8f93\u5165\u6570\u636e\u7684\u5f71\u54cd\uff0c\u5373\u6700\u4f73\u3001\u6700\u5dee\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5e76\u4e0d\u5b8c\u5168\u76f8\u7b49\u3002

            \u81ea\u9002\u5e94\u6027\u9700\u8981\u6839\u636e\u5177\u4f53\u60c5\u51b5\u6765\u8bc4\u4f30\u3002\u5982\u679c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u5dee\u4e8e\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u8bf4\u660e\u6392\u5e8f\u7b97\u6cd5\u5728\u67d0\u4e9b\u6570\u636e\u4e0b\u6027\u80fd\u53ef\u80fd\u52a3\u5316\uff0c\u56e0\u6b64\u88ab\u89c6\u4e3a\u8d1f\u9762\u5c5e\u6027\uff1b\u800c\u5982\u679c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u4e8e\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u5219\u88ab\u89c6\u4e3a\u6b63\u9762\u5c5e\u6027\u3002

            \u662f\u5426\u57fa\u4e8e\u6bd4\u8f83\uff1a\u300c\u57fa\u4e8e\u6bd4\u8f83\u7684\u6392\u5e8f\u300d\u4f9d\u8d56\u4e8e\u6bd4\u8f83\u8fd0\u7b97\u7b26\uff08\\(<\\) , \\(=\\) , \\(>\\)\uff09\u6765\u5224\u65ad\u5143\u7d20\u7684\u76f8\u5bf9\u987a\u5e8f\uff0c\u4ece\u800c\u6392\u5e8f\u6574\u4e2a\u6570\u7ec4\uff0c\u7406\u8bba\u6700\u4f18\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u800c\u300c\u975e\u6bd4\u8f83\u6392\u5e8f\u300d\u4e0d\u4f7f\u7528\u6bd4\u8f83\u8fd0\u7b97\u7b26\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe \\(O(n)\\) \uff0c\u4f46\u5176\u901a\u7528\u6027\u76f8\u5bf9\u8f83\u5dee\u3002

            "},{"location":"chapter_sorting/sorting_algorithm/#1112","title":"11.1.2 \u00a0 \u7406\u60f3\u6392\u5e8f\u7b97\u6cd5","text":"

            \u8fd0\u884c\u5feb\u3001\u539f\u5730\u3001\u7a33\u5b9a\u3001\u6b63\u5411\u81ea\u9002\u5e94\u3001\u901a\u7528\u6027\u597d\u3002\u663e\u7136\uff0c\u8fc4\u4eca\u4e3a\u6b62\u5c1a\u672a\u53d1\u73b0\u517c\u5177\u4ee5\u4e0a\u6240\u6709\u7279\u6027\u7684\u6392\u5e8f\u7b97\u6cd5\u3002\u56e0\u6b64\uff0c\u5728\u9009\u62e9\u6392\u5e8f\u7b97\u6cd5\u65f6\uff0c\u9700\u8981\u6839\u636e\u5177\u4f53\u7684\u6570\u636e\u7279\u70b9\u548c\u95ee\u9898\u9700\u6c42\u6765\u51b3\u5b9a\u3002

            \u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c06\u5171\u540c\u5b66\u4e60\u5404\u79cd\u6392\u5e8f\u7b97\u6cd5\uff0c\u5e76\u57fa\u4e8e\u4e0a\u8ff0\u8bc4\u4ef7\u7ef4\u5ea6\u5bf9\u5404\u4e2a\u6392\u5e8f\u7b97\u6cd5\u7684\u4f18\u7f3a\u70b9\u8fdb\u884c\u5206\u6790\u3002

            "},{"location":"chapter_sorting/summary/","title":"11.11 \u00a0 \u5c0f\u7ed3","text":"
            • \u5192\u6ce1\u6392\u5e8f\u901a\u8fc7\u4ea4\u6362\u76f8\u90bb\u5143\u7d20\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u901a\u8fc7\u6dfb\u52a0\u4e00\u4e2a\u6807\u5fd7\u4f4d\u6765\u5b9e\u73b0\u63d0\u524d\u8fd4\u56de\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5192\u6ce1\u6392\u5e8f\u7684\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u5230 \\(O(n)\\) \u3002
            • \u63d2\u5165\u6392\u5e8f\u6bcf\u8f6e\u5c06\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u5143\u7d20\u63d2\u5165\u5230\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u6b63\u786e\u4f4d\u7f6e\uff0c\u4ece\u800c\u5b8c\u6210\u6392\u5e8f\u3002\u867d\u7136\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u4f46\u7531\u4e8e\u5355\u5143\u64cd\u4f5c\u76f8\u5bf9\u8f83\u5c11\uff0c\u5b83\u5728\u5c0f\u6570\u636e\u91cf\u7684\u6392\u5e8f\u4efb\u52a1\u4e2d\u975e\u5e38\u53d7\u6b22\u8fce\u3002
            • \u5feb\u901f\u6392\u5e8f\u57fa\u4e8e\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u5b9e\u73b0\u6392\u5e8f\u3002\u5728\u54e8\u5175\u5212\u5206\u4e2d\uff0c\u6709\u53ef\u80fd\u6bcf\u6b21\u90fd\u9009\u53d6\u5230\u6700\u5dee\u7684\u57fa\u51c6\u6570\uff0c\u5bfc\u81f4\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n^2)\\) \u3002\u5f15\u5165\u4e2d\u4f4d\u6570\u57fa\u51c6\u6570\u6216\u968f\u673a\u57fa\u51c6\u6570\u53ef\u4ee5\u964d\u4f4e\u8fd9\u79cd\u52a3\u5316\u7684\u6982\u7387\u3002\u5c3e\u9012\u5f52\u65b9\u6cd5\u53ef\u4ee5\u6709\u6548\u5730\u51cf\u5c11\u9012\u5f52\u6df1\u5ea6\uff0c\u5c06\u7a7a\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u5230 \\(O(\\log n)\\) \u3002
            • \u5f52\u5e76\u6392\u5e8f\u5305\u62ec\u5212\u5206\u548c\u5408\u5e76\u4e24\u4e2a\u9636\u6bb5\uff0c\u5178\u578b\u5730\u4f53\u73b0\u4e86\u5206\u6cbb\u7b56\u7565\u3002\u5728\u5f52\u5e76\u6392\u5e8f\u4e2d\uff0c\u6392\u5e8f\u6570\u7ec4\u9700\u8981\u521b\u5efa\u8f85\u52a9\u6570\u7ec4\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff1b\u7136\u800c\u6392\u5e8f\u94fe\u8868\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(1)\\) \u3002
            • \u6876\u6392\u5e8f\u5305\u542b\u4e09\u4e2a\u6b65\u9aa4\uff1a\u6570\u636e\u5206\u6876\u3001\u6876\u5185\u6392\u5e8f\u548c\u5408\u5e76\u7ed3\u679c\u3002\u5b83\u540c\u6837\u4f53\u73b0\u4e86\u5206\u6cbb\u7b56\u7565\uff0c\u9002\u7528\u4e8e\u6570\u636e\u4f53\u91cf\u5f88\u5927\u7684\u60c5\u51b5\u3002\u6876\u6392\u5e8f\u7684\u5173\u952e\u5728\u4e8e\u5bf9\u6570\u636e\u8fdb\u884c\u5e73\u5747\u5206\u914d\u3002
            • \u8ba1\u6570\u6392\u5e8f\u662f\u6876\u6392\u5e8f\u7684\u4e00\u4e2a\u7279\u4f8b\uff0c\u5b83\u901a\u8fc7\u7edf\u8ba1\u6570\u636e\u51fa\u73b0\u7684\u6b21\u6570\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u8ba1\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u636e\u91cf\u5927\u4f46\u6570\u636e\u8303\u56f4\u6709\u9650\u7684\u60c5\u51b5\uff0c\u5e76\u4e14\u8981\u6c42\u6570\u636e\u80fd\u591f\u8f6c\u6362\u4e3a\u6b63\u6574\u6570\u3002
            • \u57fa\u6570\u6392\u5e8f\u901a\u8fc7\u9010\u4f4d\u6392\u5e8f\u6765\u5b9e\u73b0\u6570\u636e\u6392\u5e8f\uff0c\u8981\u6c42\u6570\u636e\u80fd\u591f\u8868\u793a\u4e3a\u56fa\u5b9a\u4f4d\u6570\u7684\u6570\u5b57\u3002
            • \u603b\u7684\u6765\u8bf4\uff0c\u6211\u4eec\u5e0c\u671b\u627e\u5230\u4e00\u79cd\u6392\u5e8f\u7b97\u6cd5\uff0c\u5177\u6709\u9ad8\u6548\u7387\u3001\u7a33\u5b9a\u3001\u539f\u5730\u4ee5\u53ca\u6b63\u5411\u81ea\u9002\u5e94\u6027\u7b49\u4f18\u70b9\u3002\u7136\u800c\uff0c\u6b63\u5982\u5176\u4ed6\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u4e00\u6837\uff0c\u6ca1\u6709\u4e00\u79cd\u6392\u5e8f\u7b97\u6cd5\u80fd\u591f\u540c\u65f6\u6ee1\u8db3\u6240\u6709\u8fd9\u4e9b\u6761\u4ef6\u3002\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u6839\u636e\u6570\u636e\u7684\u7279\u6027\u6765\u9009\u62e9\u5408\u9002\u7684\u6392\u5e8f\u7b97\u6cd5\u3002

            \u56fe\uff1a\u6392\u5e8f\u7b97\u6cd5\u5bf9\u6bd4

            "},{"location":"chapter_sorting/summary/#11111-q-a","title":"11.11.1 \u00a0 Q & A","text":"

            \u6392\u5e8f\u7b97\u6cd5\u7a33\u5b9a\u6027\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u662f\u5fc5\u987b\u7684\uff1f

            \u5728\u73b0\u5b9e\u4e2d\uff0c\u6211\u4eec\u6709\u53ef\u80fd\u662f\u5728\u5bf9\u8c61\u7684\u67d0\u4e2a\u5c5e\u6027\u4e0a\u8fdb\u884c\u6392\u5e8f\u3002\u4f8b\u5982\uff0c\u5b66\u751f\u6709\u59d3\u540d\u548c\u8eab\u9ad8\u4e24\u4e2a\u5c5e\u6027\uff0c\u6211\u4eec\u5e0c\u671b\u5b9e\u73b0\u4e00\u4e2a\u591a\u7ea7\u6392\u5e8f/

            \u5148\u6309\u7167\u59d3\u540d\u8fdb\u884c\u6392\u5e8f\uff0c\u5f97\u5230 (A, 180) (B, 185) (C, 170) (D, 170) \uff1b\u63a5\u4e0b\u6765\u5bf9\u8eab\u9ad8\u8fdb\u884c\u6392\u5e8f\u3002\u7531\u4e8e\u6392\u5e8f\u7b97\u6cd5\u4e0d\u7a33\u5b9a\uff0c\u6211\u4eec\u53ef\u80fd\u5f97\u5230 (D, 170) (C, 170) (A, 180) (B, 185) \u3002

            \u53ef\u4ee5\u53d1\u73b0\uff0c\u5b66\u751f D \u548c C \u7684\u4f4d\u7f6e\u53d1\u751f\u4e86\u4ea4\u6362\uff0c\u59d3\u540d\u7684\u6709\u5e8f\u6027\u88ab\u7834\u574f\u4e86\uff0c\u800c\u8fd9\u662f\u6211\u4eec\u4e0d\u5e0c\u671b\u770b\u5230\u7684\u3002

            \u54e8\u5175\u5212\u5206\u4e2d\u201c\u4ece\u53f3\u5f80\u5de6\u67e5\u627e\u201d\u4e0e\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u7684\u987a\u5e8f\u53ef\u4ee5\u4ea4\u6362\u5417\uff1f

            \u4e0d\u884c\uff0c\u5f53\u6211\u4eec\u4ee5\u6700\u5de6\u7aef\u5143\u7d20\u4e3a\u57fa\u51c6\u6570\u65f6\uff0c\u5fc5\u987b\u5148\u201c\u4ece\u53f3\u5f80\u5de6\u67e5\u627e\u201d\u518d\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u3002\u8fd9\u4e2a\u7ed3\u8bba\u6709\u4e9b\u53cd\u76f4\u89c9\uff0c\u6211\u4eec\u6765\u5256\u6790\u4e00\u4e0b\u539f\u56e0\u3002

            \u54e8\u5175\u5212\u5206 partition() \u7684\u6700\u540e\u4e00\u6b65\u662f\u4ea4\u6362 nums[left] \u548c nums[i] \u3002\u5b8c\u6210\u4ea4\u6362\u540e\uff0c\u57fa\u51c6\u6570\u5de6\u8fb9\u7684\u5143\u7d20\u90fd <= \u57fa\u51c6\u6570\uff0c\u8fd9\u5c31\u8981\u6c42\u6700\u540e\u4e00\u6b65\u4ea4\u6362\u524d nums[left] >= nums[i] \u5fc5\u987b\u6210\u7acb\u3002\u5047\u8bbe\u6211\u4eec\u5148\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\uff0c\u90a3\u4e48\u5982\u679c\u627e\u4e0d\u5230\u6bd4\u57fa\u51c6\u6570\u66f4\u5c0f\u7684\u5143\u7d20\uff0c\u5219\u4f1a\u5728 i == j \u65f6\u8df3\u51fa\u5faa\u73af\uff0c\u6b64\u65f6\u53ef\u80fd nums[j] == nums[i] > nums[left]\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u6b64\u65f6\u6700\u540e\u4e00\u6b65\u4ea4\u6362\u64cd\u4f5c\u4f1a\u628a\u4e00\u4e2a\u6bd4\u57fa\u51c6\u6570\u66f4\u5927\u7684\u5143\u7d20\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\uff0c\u5bfc\u81f4\u54e8\u5175\u5212\u5206\u5931\u8d25\u3002

            \u4e3e\u4e2a\u4f8b\u5b50\uff0c\u7ed9\u5b9a\u6570\u7ec4 [0, 0, 0, 0, 1] \uff0c\u5982\u679c\u5148\u201c\u4ece\u5de6\u5411\u53f3\u67e5\u627e\u201d\uff0c\u54e8\u5175\u5212\u5206\u540e\u6570\u7ec4\u4e3a [1, 0, 0, 0, 0] \uff0c\u8fd9\u4e2a\u7ed3\u679c\u662f\u4e0d\u6b63\u786e\u7684\u3002

            \u518d\u6df1\u5165\u601d\u8003\u4e00\u4e0b\uff0c\u5982\u679c\u6211\u4eec\u9009\u62e9 nums[right] \u4e3a\u57fa\u51c6\u6570\uff0c\u90a3\u4e48\u6b63\u597d\u53cd\u8fc7\u6765\uff0c\u5fc5\u987b\u5148\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u3002

            \u5173\u4e8e\u5c3e\u9012\u5f52\u4f18\u5316\uff0c\u4e3a\u4ec0\u4e48\u9009\u77ed\u7684\u6570\u7ec4\u80fd\u4fdd\u8bc1\u9012\u5f52\u6df1\u5ea6\u4e0d\u8d85\u8fc7 \\(\\log n\\) \uff1f

            \u9012\u5f52\u6df1\u5ea6\u5c31\u662f\u5f53\u524d\u672a\u8fd4\u56de\u7684\u9012\u5f52\u65b9\u6cd5\u7684\u6570\u91cf\u3002\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u6211\u4eec\u5c06\u539f\u6570\u7ec4\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\u3002\u5728\u5c3e\u9012\u5f52\u4f18\u5316\u540e\uff0c\u5411\u4e0b\u9012\u5f52\u7684\u5b50\u6570\u7ec4\u957f\u5ea6\u6700\u5927\u4e3a\u539f\u6570\u7ec4\u7684\u4e00\u534a\u957f\u5ea6\u3002\u5047\u8bbe\u6700\u5dee\u60c5\u51b5\uff0c\u4e00\u76f4\u4e3a\u4e00\u534a\u957f\u5ea6\uff0c\u90a3\u4e48\u6700\u7ec8\u7684\u9012\u5f52\u6df1\u5ea6\u5c31\u662f \\(\\log n\\) \u3002

            \u56de\u987e\u539f\u59cb\u7684\u5feb\u901f\u6392\u5e8f\uff0c\u6211\u4eec\u6709\u53ef\u80fd\u4f1a\u8fde\u7eed\u5730\u9012\u5f52\u957f\u5ea6\u8f83\u5927\u7684\u6570\u7ec4\uff0c\u6700\u5dee\u60c5\u51b5\u4e0b\u4e3a \\(n, n - 1, n - 2, ..., 2, 1\\) \uff0c\u4ece\u800c\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \u3002\u5c3e\u9012\u5f52\u4f18\u5316\u53ef\u4ee5\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u7684\u51fa\u73b0\u3002

            \u5f53\u6570\u7ec4\u4e2d\u6240\u6709\u5143\u7d20\u90fd\u76f8\u7b49\u65f6\uff0c\u5feb\u901f\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(n^2)\\) \u5417\uff1f\u8be5\u5982\u4f55\u5904\u7406\u8fd9\u79cd\u9000\u5316\u60c5\u51b5\uff1f

            \u662f\u7684\u3002\u8fd9\u79cd\u60c5\u51b5\u53ef\u4ee5\u8003\u8651\u901a\u8fc7\u54e8\u5175\u5212\u5206\u5c06\u6570\u7ec4\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\uff1a\u5c0f\u4e8e\u3001\u7b49\u4e8e\u3001\u5927\u4e8e\u57fa\u51c6\u6570\u3002\u4ec5\u5411\u4e0b\u9012\u5f52\u5c0f\u4e8e\u548c\u5927\u4e8e\u7684\u4e24\u90e8\u5206\u3002\u5728\u8be5\u65b9\u6cd5\u4e0b\uff0c\u8f93\u5165\u5143\u7d20\u5168\u90e8\u76f8\u7b49\u7684\u6570\u7ec4\uff0c\u4ec5\u4e00\u8f6e\u54e8\u5175\u5212\u5206\u5373\u53ef\u5b8c\u6210\u6392\u5e8f\u3002

            \u6876\u6392\u5e8f\u7684\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\u4ec0\u4e48\u662f \\(O(n^2)\\) \uff1f

            \u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u5143\u7d20\u88ab\u5206\u81f3\u540c\u4e00\u4e2a\u6876\u4e2d\u3002\u5982\u679c\u6211\u4eec\u91c7\u7528\u4e00\u4e2a \\(O(n^2)\\) \u7b97\u6cd5\u6765\u6392\u5e8f\u8fd9\u4e9b\u5143\u7d20\uff0c\u5219\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002

            "},{"location":"chapter_stack_and_queue/","title":"\u7b2c 5 \u7ae0 \u00a0 \u6808\u4e0e\u961f\u5217","text":"

            Abstract

            \u6808\u5982\u540c\u53e0\u732b\u732b\uff0c\u800c\u961f\u5217\u5c31\u50cf\u732b\u732b\u6392\u961f\u3002

            \u4e24\u8005\u5206\u522b\u4ee3\u8868\u7740\u5148\u5165\u540e\u51fa\u548c\u5148\u5165\u5148\u51fa\u7684\u903b\u8f91\u5173\u7cfb\u3002

            "},{"location":"chapter_stack_and_queue/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 5.1 \u00a0 \u6808
            • 5.2 \u00a0 \u961f\u5217
            • 5.3 \u00a0 \u53cc\u5411\u961f\u5217
            • 5.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_stack_and_queue/deque/","title":"5.3 \u00a0 \u53cc\u5411\u961f\u5217","text":"

            \u5bf9\u4e8e\u961f\u5217\uff0c\u6211\u4eec\u4ec5\u80fd\u5728\u5934\u90e8\u5220\u9664\u6216\u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u3002\u7136\u800c\uff0c\u300c\u53cc\u5411\u961f\u5217 Deque\u300d\u63d0\u4f9b\u4e86\u66f4\u9ad8\u7684\u7075\u6d3b\u6027\uff0c\u5141\u8bb8\u5728\u5934\u90e8\u548c\u5c3e\u90e8\u6267\u884c\u5143\u7d20\u7684\u6dfb\u52a0\u6216\u5220\u9664\u64cd\u4f5c\u3002

            \u56fe\uff1a\u53cc\u5411\u961f\u5217\u7684\u64cd\u4f5c

            "},{"location":"chapter_stack_and_queue/deque/#531","title":"5.3.1 \u00a0 \u53cc\u5411\u961f\u5217\u5e38\u7528\u64cd\u4f5c","text":"

            \u53cc\u5411\u961f\u5217\u7684\u5e38\u7528\u64cd\u4f5c\u5982\u4e0b\u8868\u6240\u793a\uff0c\u5177\u4f53\u7684\u65b9\u6cd5\u540d\u79f0\u9700\u8981\u6839\u636e\u6240\u4f7f\u7528\u7684\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002

            \u8868\uff1a\u53cc\u5411\u961f\u5217\u64cd\u4f5c\u6548\u7387

            \u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 pushFirst() \u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u9996 \\(O(1)\\) pushLast() \u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u5c3e \\(O(1)\\) popFirst() \u5220\u9664\u961f\u9996\u5143\u7d20 \\(O(1)\\) popLast() \u5220\u9664\u961f\u5c3e\u5143\u7d20 \\(O(1)\\) peekFirst() \u8bbf\u95ee\u961f\u9996\u5143\u7d20 \\(O(1)\\) peekLast() \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 \\(O(1)\\)

            \u540c\u6837\u5730\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u4e2d\u5df2\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\u7c7b\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust deque.java
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\nDeque<Integer> deque = new LinkedList<>();\n/* \u5143\u7d20\u5165\u961f */\ndeque.offerLast(2);   // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.offerLast(5);\ndeque.offerLast(4);\ndeque.offerFirst(3);  // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.offerFirst(1);\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.peekFirst();  // \u961f\u9996\u5143\u7d20\nint peekLast = deque.peekLast();    // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\nint popFirst = deque.pollFirst();  // \u961f\u9996\u5143\u7d20\u51fa\u961f\nint popLast = deque.pollLast();    // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.size();\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = deque.isEmpty();\n
            deque.cpp
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\ndeque<int> deque;\n/* \u5143\u7d20\u5165\u961f */\ndeque.push_back(2);   // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.push_back(5);\ndeque.push_back(4);\ndeque.push_front(3);  // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.push_front(1);\n/* \u8bbf\u95ee\u5143\u7d20 */\nint front = deque.front(); // \u961f\u9996\u5143\u7d20\nint back = deque.back();   // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\ndeque.pop_front();  // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.pop_back();   // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.size();\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty = deque.empty();\n
            deque.py
            # \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217\ndeque: Deque[int] = collections.deque()\n# \u5143\u7d20\u5165\u961f\ndeque.append(2)      # \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.append(5)\ndeque.append(4)\ndeque.appendleft(3)  # \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.appendleft(1)\n# \u8bbf\u95ee\u5143\u7d20\nfront: int = deque[0]  # \u961f\u9996\u5143\u7d20\nrear: int = deque[-1]  # \u961f\u5c3e\u5143\u7d20\n# \u5143\u7d20\u51fa\u961f\npop_front: int = deque.popleft()  # \u961f\u9996\u5143\u7d20\u51fa\u961f\npop_rear: int = deque.pop()       # \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n# \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nsize: int = len(deque)\n# \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(deque) == 0\n
            deque_test.go
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 Go \u4e2d\uff0c\u5c06 list \u4f5c\u4e3a\u53cc\u5411\u961f\u5217\u4f7f\u7528\ndeque := list.New()\n/* \u5143\u7d20\u5165\u961f */\ndeque.PushBack(2)      // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.PushBack(5)\ndeque.PushBack(4)\ndeque.PushFront(3)     // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.PushFront(1)\n/* \u8bbf\u95ee\u5143\u7d20 */\nfront := deque.Front() // \u961f\u9996\u5143\u7d20\nrear := deque.Back()   // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\ndeque.Remove(front)    // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.Remove(rear)     // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize := deque.Len()\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty := deque.Len() == 0\n
            deque.js
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// JavaScript \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u7aef\u961f\u5217\uff0c\u53ea\u80fd\u628a Array \u5f53\u4f5c\u53cc\u7aef\u961f\u5217\u6765\u4f7f\u7528\nconst deque = [];\n/* \u5143\u7d20\u5165\u961f */\ndeque.push(2);\ndeque.push(5);\ndeque.push(4);\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cunshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\ndeque.unshift(3);\ndeque.unshift(1);\nconsole.log(\"\u53cc\u5411\u961f\u5217 deque = \", deque);\n/* \u8bbf\u95ee\u5143\u7d20 */\nconst peekFirst = deque[0];\nconsole.log(\"\u961f\u9996\u5143\u7d20 peekFirst = \" + peekFirst);\nconst peekLast = deque[deque.length - 1];\nconsole.log(\"\u961f\u5c3e\u5143\u7d20 peekLast = \" + peekLast);\n/* \u5143\u7d20\u51fa\u961f */\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst popFront = deque.shift();\nconsole.log(\"\u961f\u9996\u51fa\u961f\u5143\u7d20 popFront = \" + popFront + \"\uff0c\u961f\u9996\u51fa\u961f\u540e deque = \" + deque);\nconst popBack = deque.pop();\nconsole.log(\"\u961f\u5c3e\u51fa\u961f\u5143\u7d20 popBack = \" + popBack + \"\uff0c\u961f\u5c3e\u51fa\u961f\u540e deque = \" + deque);\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = deque.length;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u957f\u5ea6 size = \" + size);\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst isEmpty = size === 0;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a = \" + isEmpty);\n
            deque.ts
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// TypeScript \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u7aef\u961f\u5217\uff0c\u53ea\u80fd\u628a Array \u5f53\u4f5c\u53cc\u7aef\u961f\u5217\u6765\u4f7f\u7528\nconst deque: number[] = [];\n/* \u5143\u7d20\u5165\u961f */\ndeque.push(2);\ndeque.push(5);\ndeque.push(4);\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cunshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\ndeque.unshift(3);\ndeque.unshift(1);\nconsole.log(\"\u53cc\u5411\u961f\u5217 deque = \", deque);\n/* \u8bbf\u95ee\u5143\u7d20 */\nconst peekFirst: number = deque[0];\nconsole.log(\"\u961f\u9996\u5143\u7d20 peekFirst = \" + peekFirst);\nconst peekLast: number = deque[deque.length - 1];\nconsole.log(\"\u961f\u5c3e\u5143\u7d20 peekLast = \" + peekLast);\n/* \u5143\u7d20\u51fa\u961f */\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst popFront: number = deque.shift() as number;\nconsole.log(\"\u961f\u9996\u51fa\u961f\u5143\u7d20 popFront = \" + popFront + \"\uff0c\u961f\u9996\u51fa\u961f\u540e deque = \" + deque);\nconst popBack: number = deque.pop() as number;\nconsole.log(\"\u961f\u5c3e\u51fa\u961f\u5143\u7d20 popBack = \" + popBack + \"\uff0c\u961f\u5c3e\u51fa\u961f\u540e deque = \" + deque);\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nconst size: number = deque.length;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u957f\u5ea6 size = \" + size);\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst isEmpty: boolean = size === 0;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a = \" + isEmpty);\n
            deque.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u53cc\u5411\u961f\u5217\n
            deque.cs
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 C# \u4e2d\uff0c\u5c06\u94fe\u8868 LinkedList \u770b\u4f5c\u53cc\u5411\u961f\u5217\u6765\u4f7f\u7528\nLinkedList<int> deque = new LinkedList<int>();\n/* \u5143\u7d20\u5165\u961f */\ndeque.AddLast(2);   // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.AddLast(5);\ndeque.AddLast(4);\ndeque.AddFirst(3);  // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.AddFirst(1);\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.First.Value;  // \u961f\u9996\u5143\u7d20\nint peekLast = deque.Last.Value;    // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\ndeque.RemoveFirst();  // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.RemoveLast();   // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.Count;\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = deque.Count == 0;\n
            deque.swift
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u5411\u961f\u5217\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u53cc\u5411\u961f\u5217\u6765\u4f7f\u7528\nvar deque: [Int] = []\n/* \u5143\u7d20\u5165\u961f */\ndeque.append(2) // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.append(5)\ndeque.append(4)\ndeque.insert(3, at: 0) // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.insert(1, at: 0)\n/* \u8bbf\u95ee\u5143\u7d20 */\nlet peekFirst = deque.first! // \u961f\u9996\u5143\u7d20\nlet peekLast = deque.last! // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\n// \u4f7f\u7528 Array \u6a21\u62df\u65f6 popFirst \u7684\u590d\u6742\u5ea6\u4e3a O(n)\nlet popFirst = deque.removeFirst() // \u961f\u9996\u5143\u7d20\u51fa\u961f\nlet popLast = deque.removeLast() // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = deque.count\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = deque.isEmpty\n
            deque.zig
            \n
            deque.dart
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 Dart \u4e2d\uff0cQueue \u88ab\u5b9a\u4e49\u4e3a\u53cc\u5411\u961f\u5217\nQueue<int> deque = Queue<int>();\n/* \u5143\u7d20\u5165\u961f */\ndeque.addLast(2);  // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.addLast(5);\ndeque.addLast(4);\ndeque.addFirst(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.addFirst(1);\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.first; // \u961f\u9996\u5143\u7d20\nint peekLast = deque.last;   // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\nint popFirst = deque.removeFirst(); // \u961f\u9996\u5143\u7d20\u51fa\u961f\nint popLast = deque.removeLast();   // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.length;\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = deque.isEmpty;W\n
            deque.rs
            \n
            "},{"location":"chapter_stack_and_queue/deque/#532","title":"5.3.2 \u00a0 \u53cc\u5411\u961f\u5217\u5b9e\u73b0 *","text":"

            \u53cc\u5411\u961f\u5217\u7684\u5b9e\u73b0\u4e0e\u961f\u5217\u7c7b\u4f3c\uff0c\u53ef\u4ee5\u9009\u62e9\u94fe\u8868\u6216\u6570\u7ec4\u4f5c\u4e3a\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002

            "},{"location":"chapter_stack_and_queue/deque/#1","title":"1. \u00a0 \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u7684\u5b9e\u73b0","text":"

            \u56de\u987e\u4e0a\u4e00\u8282\u5185\u5bb9\uff0c\u6211\u4eec\u4f7f\u7528\u666e\u901a\u5355\u5411\u94fe\u8868\u6765\u5b9e\u73b0\u961f\u5217\uff0c\u56e0\u4e3a\u5b83\u53ef\u4ee5\u65b9\u4fbf\u5730\u5220\u9664\u5934\u8282\u70b9\uff08\u5bf9\u5e94\u51fa\u961f\u64cd\u4f5c\uff09\u548c\u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0\u65b0\u8282\u70b9\uff08\u5bf9\u5e94\u5165\u961f\u64cd\u4f5c\uff09\u3002

            \u5bf9\u4e8e\u53cc\u5411\u961f\u5217\u800c\u8a00\uff0c\u5934\u90e8\u548c\u5c3e\u90e8\u90fd\u53ef\u4ee5\u6267\u884c\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u53cc\u5411\u961f\u5217\u9700\u8981\u5b9e\u73b0\u53e6\u4e00\u4e2a\u5bf9\u79f0\u65b9\u5411\u7684\u64cd\u4f5c\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u91c7\u7528\u300c\u53cc\u5411\u94fe\u8868\u300d\u4f5c\u4e3a\u53cc\u5411\u961f\u5217\u7684\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002

            \u6211\u4eec\u5c06\u53cc\u5411\u94fe\u8868\u7684\u5934\u8282\u70b9\u548c\u5c3e\u8282\u70b9\u89c6\u4e3a\u53cc\u5411\u961f\u5217\u7684\u961f\u9996\u548c\u961f\u5c3e\uff0c\u540c\u65f6\u5b9e\u73b0\u5728\u4e24\u7aef\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u7684\u529f\u80fd\u3002

            LinkedListDequepushLast()pushFirst()popLast()popFirst()

            \u56fe\uff1a\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c

            \u4ee5\u4e0b\u662f\u5177\u4f53\u5b9e\u73b0\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linkedlist_deque.java
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\nint val; // \u8282\u70b9\u503c\nListNode next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\nListNode prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\nListNode(int val) {\nthis.val = val;\nprev = next = null;\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\nprivate ListNode front, rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\nprivate int queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\npublic LinkedListDeque() {\nfront = rear = null;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f\u64cd\u4f5c */\nprivate void push(int num, boolean isFront) {\nListNode node = new ListNode(num);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (isEmpty())\nfront = rear = node;\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelse if (isFront) {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nfront.prev = node;\nnode.next = front;\nfront = node; // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nrear.next = node;\nnode.prev = rear;\nrear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\npublic void pushFirst(int num) {\npush(num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\npublic void pushLast(int num) {\npush(num, false);\n}\n/* \u51fa\u961f\u64cd\u4f5c */\nprivate Integer pop(boolean isFront) {\n// \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de null\nif (isEmpty())\nreturn null;\nint val;\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif (isFront) {\nval = front.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nListNode fNext = front.next;\nif (fNext != null) {\nfNext.prev = null;\nfront.next = null;\n}\nfront = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n} else {\nval = rear.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nListNode rPrev = rear.prev;\nif (rPrev != null) {\nrPrev.next = null;\nrear.prev = null;\n}\nrear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n}\n/* \u961f\u9996\u51fa\u961f */\npublic Integer popFirst() {\nreturn pop(true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\npublic Integer popLast() {\nreturn pop(false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic Integer peekFirst() {\nreturn isEmpty() ? null : front.val;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npublic Integer peekLast() {\nreturn isEmpty() ? null : rear.val;\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\npublic int[] toArray() {\nListNode node = front;\nint[] res = new int[size()];\nfor (int i = 0; i < res.length; i++) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_deque.cpp
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nstruct DoublyListNode {\nint val;              // \u8282\u70b9\u503c\nDoublyListNode *next; // \u540e\u7ee7\u8282\u70b9\u6307\u9488\nDoublyListNode *prev; // \u524d\u9a71\u8282\u70b9\u6307\u9488\nDoublyListNode(int val) : val(val), prev(nullptr), next(nullptr) {\n}\n};\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\nprivate:\nDoublyListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\nint queSize = 0;              // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nLinkedListDeque() : front(nullptr), rear(nullptr) {\n}\n/* \u6790\u6784\u65b9\u6cd5 */\n~LinkedListDeque() {\n// \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\nDoublyListNode *pre, *cur = front;\nwhile (cur != nullptr) {\npre = cur;\ncur = cur->next;\ndelete pre;\n}\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f\u64cd\u4f5c */\nvoid push(int num, bool isFront) {\nDoublyListNode *node = new DoublyListNode(num);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (isEmpty())\nfront = rear = node;\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelse if (isFront) {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nfront->prev = node;\nnode->next = front;\nfront = node; // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nrear->next = node;\nnode->prev = rear;\nrear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(int num) {\npush(num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(int num) {\npush(num, false);\n}\n/* \u51fa\u961f\u64cd\u4f5c */\nint pop(bool isFront) {\n// \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de -1\nif (isEmpty())\nreturn -1;\nint val;\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif (isFront) {\nval = front->val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nDoublyListNode *fNext = front->next;\nif (fNext != nullptr) {\nfNext->prev = nullptr;\nfront->next = nullptr;\ndelete front;\n}\nfront = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n} else {\nval = rear->val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nDoublyListNode *rPrev = rear->prev;\nif (rPrev != nullptr) {\nrPrev->next = nullptr;\nrear->prev = nullptr;\ndelete rear;\n}\nrear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n}\n/* \u961f\u9996\u51fa\u961f */\nint popFirst() {\nreturn pop(true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast() {\nreturn pop(false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst() {\nreturn isEmpty() ? -1 : front->val;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast() {\nreturn isEmpty() ? -1 : rear->val;\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nvector<int> toVector() {\nDoublyListNode *node = front;\nvector<int> res(size());\nfor (int i = 0; i < res.size(); i++) {\nres[i] = node->val;\nnode = node->next;\n}\nreturn res;\n}\n};\n
            linkedlist_deque.py
            class ListNode:\n\"\"\"\u53cc\u5411\u94fe\u8868\u8282\u70b9\"\"\"\ndef __init__(self, val: int):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.val: int = val\nself.next: ListNode | None = None  # \u540e\u7ee7\u8282\u70b9\u5f15\u7528\nself.prev: ListNode | None = None  # \u524d\u9a71\u8282\u70b9\u5f15\u7528\nclass LinkedListDeque:\n\"\"\"\u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.front: ListNode | None = None  # \u5934\u8282\u70b9 front\nself.rear: ListNode | None = None  # \u5c3e\u8282\u70b9 rear\nself.__size: int = 0  # \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\"\"\"\nreturn self.__size\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn self.size() == 0\ndef push(self, num: int, is_front: bool):\n\"\"\"\u5165\u961f\u64cd\u4f5c\"\"\"\nnode = ListNode(num)\n# \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif self.is_empty():\nself.front = self.rear = node\n# \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelif is_front:\n# \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nself.front.prev = node\nnode.next = self.front\nself.front = node  # \u66f4\u65b0\u5934\u8282\u70b9\n# \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\nelse:\n# \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nself.rear.next = node\nnode.prev = self.rear\nself.rear = node  # \u66f4\u65b0\u5c3e\u8282\u70b9\nself.__size += 1  # \u66f4\u65b0\u961f\u5217\u957f\u5ea6\ndef push_first(self, num: int):\n\"\"\"\u961f\u9996\u5165\u961f\"\"\"\nself.push(num, True)\ndef push_last(self, num: int):\n\"\"\"\u961f\u5c3e\u5165\u961f\"\"\"\nself.push(num, False)\ndef pop(self, is_front: bool) -> int:\n\"\"\"\u51fa\u961f\u64cd\u4f5c\"\"\"\n# \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de None\nif self.is_empty():\nreturn None\n# \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif is_front:\nval: int = self.front.val  # \u6682\u5b58\u5934\u8282\u70b9\u503c\n# \u5220\u9664\u5934\u8282\u70b9\nfnext: ListNode | None = self.front.next\nif fnext != None:\nfnext.prev = None\nself.front.next = None\nself.front = fnext  # \u66f4\u65b0\u5934\u8282\u70b9\n# \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nelse:\nval: int = self.rear.val  # \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n# \u5220\u9664\u5c3e\u8282\u70b9\nrprev: ListNode | None = self.rear.prev\nif rprev != None:\nrprev.next = None\nself.rear.prev = None\nself.rear = rprev  # \u66f4\u65b0\u5c3e\u8282\u70b9\nself.__size -= 1  # \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val\ndef pop_first(self) -> int:\n\"\"\"\u961f\u9996\u51fa\u961f\"\"\"\nreturn self.pop(True)\ndef pop_last(self) -> int:\n\"\"\"\u961f\u5c3e\u51fa\u961f\"\"\"\nreturn self.pop(False)\ndef peek_first(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\nreturn None if self.is_empty() else self.front.val\ndef peek_last(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\"\"\"\nreturn None if self.is_empty() else self.rear.val\ndef to_array(self) -> list[int]:\n\"\"\"\u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\"\"\"\nnode = self.front\nres = [0] * self.size()\nfor i in range(self.size()):\nres[i] = node.val\nnode = node.next\nreturn res\n
            linkedlist_deque.go
            /* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntype linkedListDeque struct {\n// \u4f7f\u7528\u5185\u7f6e\u5305 list\ndata *list.List\n}\n/* \u521d\u59cb\u5316\u53cc\u7aef\u961f\u5217 */\nfunc newLinkedListDeque() *linkedListDeque {\nreturn &linkedListDeque{\ndata: list.New(),\n}\n}\n/* \u961f\u9996\u5143\u7d20\u5165\u961f */\nfunc (s *linkedListDeque) pushFirst(value any) {\ns.data.PushFront(value)\n}\n/* \u961f\u5c3e\u5143\u7d20\u5165\u961f */\nfunc (s *linkedListDeque) pushLast(value any) {\ns.data.PushBack(value)\n}\n/* \u961f\u9996\u5143\u7d20\u51fa\u961f */\nfunc (s *linkedListDeque) popFirst() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Front()\ns.data.Remove(e)\nreturn e.Value\n}\n/* \u961f\u5c3e\u5143\u7d20\u51fa\u961f */\nfunc (s *linkedListDeque) popLast() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Back()\ns.data.Remove(e)\nreturn e.Value\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (s *linkedListDeque) peekFirst() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Front()\nreturn e.Value\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc (s *linkedListDeque) peekLast() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Back()\nreturn e.Value\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (s *linkedListDeque) size() int {\nreturn s.data.Len()\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListDeque) isEmpty() bool {\nreturn s.data.Len() == 0\n}\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListDeque) toList() *list.List {\nreturn s.data\n}\n
            linkedlist_deque.js
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\nprev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\nnext; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\nval; // \u8282\u70b9\u503c\nconstructor(val) {\nthis.val = val;\nthis.next = null;\nthis.prev = null;\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n#front; // \u5934\u8282\u70b9 front\n#rear; // \u5c3e\u8282\u70b9 rear\n#queSize; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nconstructor() {\nthis.#front = null;\nthis.#rear = null;\nthis.#queSize = 0;\n}\n/* \u961f\u5c3e\u5165\u961f\u64cd\u4f5c */\npushLast(val) {\nconst node = new ListNode(val);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (this.#queSize === 0) {\nthis.#front = node;\nthis.#rear = node;\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nthis.#rear.next = node;\nnode.prev = this.#rear;\nthis.#rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nthis.#queSize++;\n}\n/* \u961f\u9996\u5165\u961f\u64cd\u4f5c */\npushFirst(val) {\nconst node = new ListNode(val);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (this.#queSize === 0) {\nthis.#front = node;\nthis.#rear = node;\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nthis.#front.prev = node;\nnode.next = this.#front;\nthis.#front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n}\nthis.#queSize++;\n}\n/* \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c */\npopLast() {\nif (this.#queSize === 0) {\nreturn null;\n}\nconst value = this.#rear.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nlet temp = this.#rear.prev;\nif (temp !== null) {\ntemp.next = null;\nthis.#rear.prev = null;\n}\nthis.#rear = temp; // \u66f4\u65b0\u5c3e\u8282\u70b9\nthis.#queSize--;\nreturn value;\n}\n/* \u961f\u9996\u51fa\u961f\u64cd\u4f5c */\npopFirst() {\nif (this.#queSize === 0) {\nreturn null;\n}\nconst value = this.#front.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nlet temp = this.#front.next;\nif (temp !== null) {\ntemp.prev = null;\nthis.#front.next = null;\n}\nthis.#front = temp; // \u66f4\u65b0\u5934\u8282\u70b9\nthis.#queSize--;\nreturn value;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npeekLast() {\nreturn this.#queSize === 0 ? null : this.#rear.val;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeekFirst() {\nreturn this.#queSize === 0 ? null : this.#front.val;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize() {\nreturn this.#queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty() {\nreturn this.#queSize === 0;\n}\n/* \u6253\u5370\u53cc\u5411\u961f\u5217 */\nprint() {\nconst arr = [];\nlet temp = this.#front;\nwhile (temp !== null) {\narr.push(temp.val);\ntemp = temp.next;\n}\nconsole.log('[' + arr.join(', ') + ']');\n}\n}\n
            linkedlist_deque.ts
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\nprev: ListNode; // \u524d\u9a71\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\nnext: ListNode; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\nval: number; // \u8282\u70b9\u503c\nconstructor(val: number) {\nthis.val = val;\nthis.next = null;\nthis.prev = null;\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\nprivate front: ListNode; // \u5934\u8282\u70b9 front\nprivate rear: ListNode; // \u5c3e\u8282\u70b9 rear\nprivate queSize: number; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nconstructor() {\nthis.front = null;\nthis.rear = null;\nthis.queSize = 0;\n}\n/* \u961f\u5c3e\u5165\u961f\u64cd\u4f5c */\npushLast(val: number): void {\nconst node: ListNode = new ListNode(val);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (this.queSize === 0) {\nthis.front = node;\nthis.rear = node;\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nthis.rear.next = node;\nnode.prev = this.rear;\nthis.rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nthis.queSize++;\n}\n/* \u961f\u9996\u5165\u961f\u64cd\u4f5c */\npushFirst(val: number): void {\nconst node: ListNode = new ListNode(val);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (this.queSize === 0) {\nthis.front = node;\nthis.rear = node;\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nthis.front.prev = node;\nnode.next = this.front;\nthis.front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n}\nthis.queSize++;\n}\n/* \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c */\npopLast(): number {\nif (this.queSize === 0) {\nreturn null;\n}\nconst value: number = this.rear.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nlet temp: ListNode = this.rear.prev;\nif (temp !== null) {\ntemp.next = null;\nthis.rear.prev = null;\n}\nthis.rear = temp; // \u66f4\u65b0\u5c3e\u8282\u70b9\nthis.queSize--;\nreturn value;\n}\n/* \u961f\u9996\u51fa\u961f\u64cd\u4f5c */\npopFirst(): number {\nif (this.queSize === 0) {\nreturn null;\n}\nconst value: number = this.front.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nlet temp: ListNode = this.front.next;\nif (temp !== null) {\ntemp.prev = null;\nthis.front.next = null;\n}\nthis.front = temp; // \u66f4\u65b0\u5934\u8282\u70b9\nthis.queSize--;\nreturn value;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npeekLast(): number {\nreturn this.queSize === 0 ? null : this.rear.val;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeekFirst(): number {\nreturn this.queSize === 0 ? null : this.front.val;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize(): number {\nreturn this.queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty(): boolean {\nreturn this.queSize === 0;\n}\n/* \u6253\u5370\u53cc\u5411\u961f\u5217 */\nprint(): void {\nconst arr: number[] = [];\nlet temp: ListNode = this.front;\nwhile (temp !== null) {\narr.push(temp.val);\ntemp = temp.next;\n}\nconsole.log('[' + arr.join(', ') + ']');\n}\n}\n
            linkedlist_deque.c
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nstruct doublyListNode {\nint val;                     // \u8282\u70b9\u503c\nstruct doublyListNode *next; // \u540e\u7ee7\u8282\u70b9\nstruct doublyListNode *prev; // \u524d\u9a71\u8282\u70b9\n};\ntypedef struct doublyListNode doublyListNode;\n/* \u6784\u9020\u51fd\u6570 */\ndoublyListNode *newDoublyListNode(int num) {\ndoublyListNode *new = (doublyListNode *)malloc(sizeof(doublyListNode));\nnew->val = num;\nnew->next = NULL;\nnew->prev = NULL;\nreturn new;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delDoublyListNode(doublyListNode *node) {\nfree(node);\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nstruct linkedListDeque {\ndoublyListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\nint queSize;                  // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n};\ntypedef struct linkedListDeque linkedListDeque;\n/* \u6784\u9020\u51fd\u6570 */\nlinkedListDeque *newLinkedListDeque() {\nlinkedListDeque *deque = (linkedListDeque *)malloc(sizeof(linkedListDeque));\ndeque->front = NULL;\ndeque->rear = NULL;\ndeque->queSize = 0;\nreturn deque;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListdeque(linkedListDeque *deque) {\n// \u91ca\u653e\u6240\u6709\u8282\u70b9\nfor (int i = 0; i < deque->queSize && deque->front != NULL; i++) {\ndoublyListNode *tmp = deque->front;\ndeque->front = deque->front->next;\nfree(tmp);\n}\n// \u91ca\u653e deque \u7ed3\u6784\u4f53\nfree(deque);\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(linkedListDeque *deque) {\nreturn deque->queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(linkedListDeque *deque) {\nreturn (size(deque) == 0);\n}\n/* \u5165\u961f */\nvoid push(linkedListDeque *deque, int num, bool isFront) {\ndoublyListNode *node = newDoublyListNode(num);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411node\nif (empty(deque)) {\ndeque->front = deque->rear = node;\n}\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelse if (isFront) {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\ndeque->front->prev = node;\nnode->next = deque->front;\ndeque->front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n}\n// \u5bf9\u5c3e\u5165\u961f\u64cd\u4f5c\nelse {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\ndeque->rear->next = node;\nnode->prev = deque->rear;\ndeque->rear = node;\n}\ndeque->queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(linkedListDeque *deque, int num) {\npush(deque, num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(linkedListDeque *deque, int num) {\npush(deque, num, false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst(linkedListDeque *deque) {\nassert(size(deque) && deque->front);\nreturn deque->front->val;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast(linkedListDeque *deque) {\nassert(size(deque) && deque->rear);\nreturn deque->rear->val;\n}\n/* \u51fa\u961f */\nint pop(linkedListDeque *deque, bool isFront) {\nif (empty(deque))\nreturn -1;\nint val;\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif (isFront) {\nval = peekFirst(deque); // \u6682\u5b58\u5934\u8282\u70b9\u503c\ndoublyListNode *fNext = deque->front->next;\nif (fNext) {\nfNext->prev = NULL;\ndeque->front->next = NULL;\ndelDoublyListNode(deque->front);\n}\ndeque->front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n}\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nelse {\nval = peekLast(deque); // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\ndoublyListNode *rPrev = deque->rear->prev;\nif (rPrev) {\nrPrev->next = NULL;\ndeque->rear->prev = NULL;\ndelDoublyListNode(deque->rear);\n}\ndeque->rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\ndeque->queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n}\n/* \u961f\u9996\u51fa\u961f */\nint popFirst(linkedListDeque *deque) {\nreturn pop(deque, true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast(linkedListDeque *deque) {\nreturn pop(deque, false);\n}\n/* \u6253\u5370\u961f\u5217 */\nvoid printLinkedListDeque(linkedListDeque *deque) {\nint arr[deque->queSize];\n// \u62f7\u8d1d\u94fe\u8868\u4e2d\u7684\u6570\u636e\u5230\u6570\u7ec4\nint i;\ndoublyListNode *node;\nfor (i = 0, node = deque->front; i < deque->queSize; i++) {\narr[i] = node->val;\nnode = node->next;\n}\nprintArray(arr, deque->queSize);\n}\n
            linkedlist_deque.cs
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\npublic int val;       // \u8282\u70b9\u503c\npublic ListNode? next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\npublic ListNode? prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\npublic ListNode(int val) {\nthis.val = val;\nprev = null;\nnext = null;\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\nprivate ListNode? front, rear; // \u5934\u8282\u70b9 front, \u5c3e\u8282\u70b9 rear\nprivate int queSize = 0;      // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\npublic LinkedListDeque() {\nfront = null;\nrear = null;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f\u64cd\u4f5c */\nprivate void push(int num, bool isFront) {\nListNode node = new ListNode(num);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (isEmpty()) {\nfront = node;\nrear = node;\n}\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelse if (isFront) {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nfront.prev = node;\nnode.next = front;\nfront = node; // \u66f4\u65b0\u5934\u8282\u70b9                           \n}\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\nelse {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nrear.next = node;\nnode.prev = rear;\nrear = node;  // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\npublic void pushFirst(int num) {\npush(num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\npublic void pushLast(int num) {\npush(num, false);\n}\n/* \u51fa\u961f\u64cd\u4f5c */\nprivate int? pop(bool isFront) {\n// \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de null\nif (isEmpty()) {\nreturn null;\n}\nint val;\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif (isFront) {\nval = front.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nListNode fNext = front.next;\nif (fNext != null) {\nfNext.prev = null;\nfront.next = null;\n}\nfront = fNext;   // \u66f4\u65b0\u5934\u8282\u70b9\n}\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nelse {\nval = rear.val;  // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nListNode rPrev = rear.prev;\nif (rPrev != null) {\nrPrev.next = null;\nrear.prev = null;\n}\nrear = rPrev;    // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n}\n/* \u961f\u9996\u51fa\u961f */\npublic int? popFirst() {\nreturn pop(true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\npublic int? popLast() {\nreturn pop(false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int? peekFirst() {\nreturn isEmpty() ? null : front.val;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npublic int? peekLast() {\nreturn isEmpty() ? null : rear.val;\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\npublic int[] toArray() {\nListNode node = front;\nint[] res = new int[size()];\nfor (int i = 0; i < res.Length; i++) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_deque.swift
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\nvar val: Int // \u8282\u70b9\u503c\nvar next: ListNode? // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\nweak var prev: ListNode? // \u524d\u9a71\u8282\u70b9\u5f15\u7528\ninit(val: Int) {\nself.val = val\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\nprivate var front: ListNode? // \u5934\u8282\u70b9 front\nprivate var rear: ListNode? // \u5c3e\u8282\u70b9 rear\nprivate var queSize: Int // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\ninit() {\nqueSize = 0\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nfunc size() -> Int {\nqueSize\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nsize() == 0\n}\n/* \u5165\u961f\u64cd\u4f5c */\nprivate func push(num: Int, isFront: Bool) {\nlet node = ListNode(val: num)\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif isEmpty() {\nfront = node\nrear = node\n}\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelse if isFront {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nfront?.prev = node\nnode.next = front\nfront = node // \u66f4\u65b0\u5934\u8282\u70b9\n}\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\nelse {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nrear?.next = node\nnode.prev = rear\nrear = node // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize += 1 // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\nfunc pushFirst(num: Int) {\npush(num: num, isFront: true)\n}\n/* \u961f\u5c3e\u5165\u961f */\nfunc pushLast(num: Int) {\npush(num: num, isFront: false)\n}\n/* \u51fa\u961f\u64cd\u4f5c */\nprivate func pop(isFront: Bool) -> Int {\nif isEmpty() {\nfatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n}\nlet val: Int\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif isFront {\nval = front!.val // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nlet fNext = front?.next\nif fNext != nil {\nfNext?.prev = nil\nfront?.next = nil\n}\nfront = fNext // \u66f4\u65b0\u5934\u8282\u70b9\n}\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nelse {\nval = rear!.val // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nlet rPrev = rear?.prev\nif rPrev != nil {\nrPrev?.next = nil\nrear?.prev = nil\n}\nrear = rPrev // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize -= 1 // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val\n}\n/* \u961f\u9996\u51fa\u961f */\nfunc popFirst() -> Int {\npop(isFront: true)\n}\n/* \u961f\u5c3e\u51fa\u961f */\nfunc popLast() -> Int {\npop(isFront: false)\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc peekFirst() -> Int? {\nisEmpty() ? nil : front?.val\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc peekLast() -> Int? {\nisEmpty() ? nil : rear?.val\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nfunc toArray() -> [Int] {\nvar node = front\nvar res = Array(repeating: 0, count: size())\nfor i in res.indices {\nres[i] = node!.val\nnode = node?.next\n}\nreturn res\n}\n}\n
            linkedlist_deque.zig
            // \u53cc\u5411\u94fe\u8868\u8282\u70b9\nfn ListNode(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nval: T = undefined,     // \u8282\u70b9\u503c\nnext: ?*Self = null,    // \u540e\u7ee7\u8282\u70b9\u6307\u9488\nprev: ?*Self = null,    // \u524d\u9a71\u8282\u70b9\u6307\u9488\n// Initialize a list node with specific value\npub fn init(self: *Self, x: i32) void {\nself.val = x;\nself.next = null;\nself.prev = null;\n}\n};\n}\n// \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\nfn LinkedListDeque(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nfront: ?*ListNode(T) = null,                    // \u5934\u8282\u70b9 front\nrear: ?*ListNode(T) = null,                     // \u5c3e\u8282\u70b9 rear\nque_size: usize = 0,                             // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nmem_arena: ?std.heap.ArenaAllocator = null,\nmem_allocator: std.mem.Allocator = undefined,   // \u5185\u5b58\u5206\u914d\u5668\n// \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u961f\u5217\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator) !void {\nif (self.mem_arena == null) {\nself.mem_arena = std.heap.ArenaAllocator.init(allocator);\nself.mem_allocator = self.mem_arena.?.allocator();\n}\nself.front = null;\nself.rear = null;\nself.que_size = 0;\n}\n// \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.mem_arena == null) return;\nself.mem_arena.?.deinit();\n}\n// \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\npub fn size(self: *Self) usize {\nreturn self.que_size;\n}\n// \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\npub fn isEmpty(self: *Self) bool {\nreturn self.size() == 0;\n}\n// \u5165\u961f\u64cd\u4f5c\npub fn push(self: *Self, num: T, is_front: bool) !void {\nvar node = try self.mem_allocator.create(ListNode(T));\nnode.init(num);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (self.isEmpty()) {\nself.front = node;\nself.rear = node;\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\n} else if (is_front) {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nself.front.?.prev = node;\nnode.next = self.front;\nself.front = node;  // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nself.rear.?.next = node;\nnode.prev = self.rear;\nself.rear = node;   // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nself.que_size += 1;      // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n} // \u961f\u9996\u5165\u961f\npub fn pushFirst(self: *Self, num: T) !void {\ntry self.push(num, true);\n} // \u961f\u5c3e\u5165\u961f\npub fn pushLast(self: *Self, num: T) !void {\ntry self.push(num, false);\n} // \u51fa\u961f\u64cd\u4f5c\npub fn pop(self: *Self, is_front: bool) T {\nif (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\nvar val: T = undefined;\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif (is_front) {\nval = self.front.?.val;     // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nvar fNext = self.front.?.next;\nif (fNext != null) {\nfNext.?.prev = null;\nself.front.?.next = null;\n}\nself.front = fNext;         // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n} else {\nval = self.rear.?.val;      // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nvar rPrev = self.rear.?.prev;\nif (rPrev != null) {\nrPrev.?.next = null;\nself.rear.?.prev = null;\n}\nself.rear = rPrev;          // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nself.que_size -= 1;              // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n} // \u961f\u9996\u51fa\u961f\npub fn popFirst(self: *Self) T {\nreturn self.pop(true);\n} // \u961f\u5c3e\u51fa\u961f\npub fn popLast(self: *Self) T {\nreturn self.pop(false);\n} // \u8bbf\u95ee\u961f\u9996\u5143\u7d20\npub fn peekFirst(self: *Self) T {\nif (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\nreturn self.front.?.val;\n}  // \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\npub fn peekLast(self: *Self) T {\nif (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\nreturn self.rear.?.val;\n}\n// \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\npub fn toArray(self: *Self) ![]T {\nvar node = self.front;\nvar res = try self.mem_allocator.alloc(T, self.size());\n@memset(res, @as(T, 0));\nvar i: usize = 0;\nwhile (i < res.len) : (i += 1) {\nres[i] = node.?.val;\nnode = node.?.next;\n}\nreturn res;\n}\n};\n}\n
            linkedlist_deque.dart
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\nint val; // \u8282\u70b9\u503c\nListNode? next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\nListNode? prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\nListNode(this.val, {this.next, this.prev});\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u5bf9\u5217 */\nclass LinkedListDeque {\nlate ListNode? _front; // \u5934\u8282\u70b9 _front\nlate ListNode? _rear; // \u5c3e\u8282\u70b9 _rear\nint _queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nLinkedListDeque() {\nthis._front = null;\nthis._rear = null;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u957f\u5ea6 */\nint size() {\nreturn this._queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f\u64cd\u4f5c */\nvoid push(int num, bool isFront) {\nfinal ListNode node = ListNode(num);\nif (isEmpty()) {\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 _front\uff0c_rear \u90fd\u6307\u5411 node\n_front = _rear = node;\n} else if (isFront) {\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n_front!.prev = node;\nnode.next = _front;\n_front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n} else {\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n_rear!.next = node;\nnode.prev = _rear;\n_rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\n_queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(int num) {\npush(num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(int num) {\npush(num, false);\n}\n/* \u51fa\u961f\u64cd\u4f5c */\nint? pop(bool isFront) {\n// \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de null\nif (isEmpty()) {\nreturn null;\n}\nfinal int val;\nif (isFront) {\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nval = _front!.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nListNode? fNext = _front!.next;\nif (fNext != null) {\nfNext.prev = null;\n_front!.next = null;\n}\n_front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n} else {\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nval = _rear!.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nListNode? rPrev = _rear!.prev;\nif (rPrev != null) {\nrPrev.next = null;\n_rear!.prev = null;\n}\n_rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\n_queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n}\n/* \u961f\u9996\u51fa\u961f */\nint? popFirst() {\nreturn pop(true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint? popLast() {\nreturn pop(false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint? peekFirst() {\nreturn _front?.val;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint? peekLast() {\nreturn _rear?.val;\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nList<int> toArray() {\nListNode? node = _front;\nfinal List<int> res = [];\nfor (int i = 0; i < _queSize; i++) {\nres.add(node!.val);\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_deque.rs
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\npub struct ListNode<T> {\npub val: T,                                 // \u8282\u70b9\u503c\npub next: Option<Rc<RefCell<ListNode<T>>>>, // \u540e\u7ee7\u8282\u70b9\u6307\u9488\npub prev: Option<Rc<RefCell<ListNode<T>>>>, // \u524d\u9a71\u8282\u70b9\u6307\u9488\n}\nimpl<T> ListNode<T> {\npub fn new(val: T) -> Rc<RefCell<ListNode<T>>> {\nRc::new(RefCell::new(ListNode {\nval,\nnext: None,\nprev: None,\n}))\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\n#[allow(dead_code)]\npub struct LinkedListDeque<T> {\nfront: Option<Rc<RefCell<ListNode<T>>>>,    // \u5934\u8282\u70b9 front\nrear: Option<Rc<RefCell<ListNode<T>>>>,     // \u5c3e\u8282\u70b9 rear \nque_size: usize,                            // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n}\nimpl<T: Copy> LinkedListDeque<T> {\npub fn new() -> Self {\nSelf {\nfront: None,\nrear: None,\nque_size: 0, }\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npub fn size(&self) -> usize {\nreturn self.que_size;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npub fn is_empty(&self) -> bool {\nreturn self.size() == 0;\n}\n/* \u5165\u961f\u64cd\u4f5c */\npub fn push(&mut self, num: T, is_front: bool) {\nlet node = ListNode::new(num);\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nif is_front {\nmatch self.front.take() {\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nNone => {\nself.rear = Some(node.clone());\nself.front = Some(node);\n}\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nSome(old_front) => {\nold_front.borrow_mut().prev = Some(node.clone());\nnode.borrow_mut().next = Some(old_front);\nself.front = Some(node); // \u66f4\u65b0\u5934\u8282\u70b9\n}\n}\n} // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\nelse {\nmatch self.rear.take() {\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nNone => {\nself.front = Some(node.clone());\nself.rear = Some(node);\n}\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nSome(old_rear) => {\nold_rear.borrow_mut().next = Some(node.clone());\nnode.borrow_mut().prev = Some(old_rear);\nself.rear = Some(node); // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\n}\n}\nself.que_size += 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\npub fn push_first(&mut self, num: T) {\nself.push(num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\npub fn push_last(&mut self, num: T) {\nself.push(num, false);\n}\n/* \u51fa\u961f\u64cd\u4f5c */\npub fn pop(&mut self, is_front: bool) -> Option<T> {\n// \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de None\nif self.is_empty() { return None };\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif is_front {\nself.front.take().map(|old_front| {\nmatch old_front.borrow_mut().next.take() {\nSome(new_front) => {\nnew_front.borrow_mut().prev.take();\nself.front = Some(new_front);   // \u66f4\u65b0\u5934\u8282\u70b9\n}\nNone => {\nself.rear.take();\n}\n}\nself.que_size -= 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nRc::try_unwrap(old_front).ok().unwrap().into_inner().val\n})\n} // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nelse {\nself.rear.take().map(|old_rear| {\nmatch old_rear.borrow_mut().prev.take() {\nSome(new_rear) => {\nnew_rear.borrow_mut().next.take();\nself.rear = Some(new_rear);     // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nNone => {\nself.front.take();\n}\n}\nself.que_size -= 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nRc::try_unwrap(old_rear).ok().unwrap().into_inner().val\n})\n}\n}\n/* \u961f\u9996\u51fa\u961f */\npub fn pop_first(&mut self) -> Option<T> {\nreturn self.pop(true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\npub fn pop_last(&mut self) -> Option<T> {\nreturn self.pop(false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npub fn peek_first(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\nself.front.as_ref()\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npub fn peek_last(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\nself.rear.as_ref()\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\npub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\nif let Some(node) = head {\nlet mut nums = self.to_array(node.borrow().next.as_ref());\nnums.insert(0, node.borrow().val);\nreturn nums;\n}\nreturn Vec::new();\n}\n}\n
            "},{"location":"chapter_stack_and_queue/deque/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"

            \u4e0e\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u961f\u5217\u7c7b\u4f3c\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u4f7f\u7528\u73af\u5f62\u6570\u7ec4\u6765\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u3002\u5728\u961f\u5217\u7684\u5b9e\u73b0\u57fa\u7840\u4e0a\uff0c\u4ec5\u9700\u589e\u52a0\u201c\u961f\u9996\u5165\u961f\u201d\u548c\u201c\u961f\u5c3e\u51fa\u961f\u201d\u7684\u65b9\u6cd5\u3002

            ArrayDequepushLast()pushFirst()popLast()popFirst()

            \u56fe\uff1a\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c

            \u4ee5\u4e0b\u662f\u5177\u4f53\u5b9e\u73b0\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array_deque.java
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nprivate int[] nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate int queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\npublic ArrayDeque(int capacity) {\nthis.nums = new int[capacity];\nfront = queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\npublic int capacity() {\nreturn nums.length;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn queSize == 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nprivate int index(int i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + capacity()) % capacity();\n}\n/* \u961f\u9996\u5165\u961f */\npublic void pushFirst(int num) {\nif (queSize == capacity()) {\nSystem.out.println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nfront = index(front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nnums[front] = num;\nqueSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\npublic void pushLast(int num) {\nif (queSize == capacity()) {\nSystem.out.println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nint rear = index(front + queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\npublic int popFirst() {\nint num = peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfront = index(front + 1);\nqueSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\npublic int popLast() {\nint num = peekLast();\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peekFirst() {\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\nreturn nums[front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npublic int peekLast() {\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nint last = index(front + queSize - 1);\nreturn nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\npublic int[] toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] res = new int[queSize];\nfor (int i = 0, j = front; i < queSize; i++, j++) {\nres[i] = nums[index(j)];\n}\nreturn res;\n}\n}\n
            array_deque.cpp
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nprivate:\nvector<int> nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nint front;        // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nint queSize;      // \u53cc\u5411\u961f\u5217\u957f\u5ea6\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nArrayDeque(int capacity) {\nnums.resize(capacity);\nfront = queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity() {\nreturn nums.size();\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn queSize == 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nint index(int i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + capacity()) % capacity();\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(int num) {\nif (queSize == capacity()) {\ncout << \"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\" << endl;\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nfront = index(front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nnums[front] = num;\nqueSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(int num) {\nif (queSize == capacity()) {\ncout << \"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\" << endl;\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nint rear = index(front + queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\nint popFirst() {\nint num = peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfront = index(front + 1);\nqueSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast() {\nint num = peekLast();\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst() {\nif (isEmpty())\nthrow out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\nreturn nums[front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast() {\nif (isEmpty())\nthrow out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nint last = index(front + queSize - 1);\nreturn nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nvector<int> toVector() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvector<int> res(queSize);\nfor (int i = 0, j = front; i < queSize; i++, j++) {\nres[i] = nums[index(j)];\n}\nreturn res;\n}\n};\n
            array_deque.py
            class ArrayDeque:\n\"\"\"\u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\"\"\"\ndef __init__(self, capacity: int):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__nums: list[int] = [0] * capacity\nself.__front: int = 0\nself.__size: int = 0\ndef capacity(self) -> int:\n\"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf\"\"\"\nreturn len(self.__nums)\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\"\"\"\nreturn self.__size\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn self.__size == 0\ndef index(self, i: int) -> int:\n\"\"\"\u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15\"\"\"\n# \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n# \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n# \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + self.capacity()) % self.capacity()\ndef push_first(self, num: int):\n\"\"\"\u961f\u9996\u5165\u961f\"\"\"\nif self.__size == self.capacity():\nprint(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n# \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n# \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nself.__front = self.index(self.__front - 1)\n# \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nself.__nums[self.__front] = num\nself.__size += 1\ndef push_last(self, num: int):\n\"\"\"\u961f\u5c3e\u5165\u961f\"\"\"\nif self.__size == self.capacity():\nprint(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n# \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nrear = self.index(self.__front + self.__size)\n# \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nself.__nums[rear] = num\nself.__size += 1\ndef pop_first(self) -> int:\n\"\"\"\u961f\u9996\u51fa\u961f\"\"\"\nnum = self.peek_first()\n# \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nself.__front = self.index(self.__front + 1)\nself.__size -= 1\nreturn num\ndef pop_last(self) -> int:\n\"\"\"\u961f\u5c3e\u51fa\u961f\"\"\"\nnum = self.peek_last()\nself.__size -= 1\nreturn num\ndef peek_first(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\nif self.is_empty():\nraise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\nreturn self.__nums[self.__front]\ndef peek_last(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\"\"\"\nif self.is_empty():\nraise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n# \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nlast = self.index(self.__front + self.__size - 1)\nreturn self.__nums[last]\ndef to_array(self) -> list[int]:\n\"\"\"\u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\"\"\"\n# \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nres = []\nfor i in range(self.__size):\nres.append(self.__nums[self.index(self.__front + i)])\nreturn res\n
            array_deque.go
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntype arrayDeque struct {\nnums        []int // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nfront       int   // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nqueSize     int   // \u53cc\u5411\u961f\u5217\u957f\u5ea6\nqueCapacity int   // \u961f\u5217\u5bb9\u91cf\uff08\u5373\u6700\u5927\u5bb9\u7eb3\u5143\u7d20\u6570\u91cf\uff09\n}\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newArrayDeque(queCapacity int) *arrayDeque {\nreturn &arrayDeque{\nnums:        make([]int, queCapacity),\nqueCapacity: queCapacity,\nfront:       0,\nqueSize:     0,\n}\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (q *arrayDeque) size() int {\nreturn q.queSize\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (q *arrayDeque) isEmpty() bool {\nreturn q.queSize == 0\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nfunc (q *arrayDeque) index(i int) int {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + q.queCapacity) % q.queCapacity\n}\n/* \u961f\u9996\u5165\u961f */\nfunc (q *arrayDeque) pushFirst(num int) {\nif q.queSize == q.queCapacity {\nfmt.Println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nq.front = q.index(q.front - 1)\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nq.nums[q.front] = num\nq.queSize++\n}\n/* \u961f\u5c3e\u5165\u961f */\nfunc (q *arrayDeque) pushLast(num int) {\nif q.queSize == q.queCapacity {\nfmt.Println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nrear := q.index(q.front + q.queSize)\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nq.nums[rear] = num\nq.queSize++\n}\n/* \u961f\u9996\u51fa\u961f */\nfunc (q *arrayDeque) popFirst() any {\nnum := q.peekFirst()\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nq.front = q.index(q.front + 1)\nq.queSize--\nreturn num\n}\n/* \u961f\u5c3e\u51fa\u961f */\nfunc (q *arrayDeque) popLast() any {\nnum := q.peekLast()\nq.queSize--\nreturn num\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (q *arrayDeque) peekFirst() any {\nif q.isEmpty() {\nreturn nil\n}\nreturn q.nums[q.front]\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc (q *arrayDeque) peekLast() any {\nif q.isEmpty() {\nreturn nil\n}\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nlast := q.index(q.front + q.queSize - 1)\nreturn q.nums[last]\n}\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (q *arrayDeque) toSlice() []int {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nres := make([]int, q.queSize)\nfor i, j := 0, q.front; i < q.queSize; i++ {\nres[i] = q.nums[q.index(j)]\nj++\n}\nreturn res\n}\n
            array_deque.js
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n#nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n#front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n#queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(capacity) {\nthis.#nums = new Array(capacity);\nthis.#front = 0;\nthis.#queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\ncapacity() {\nreturn this.#nums.length;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize() {\nreturn this.#queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty() {\nreturn this.#queSize === 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nindex(i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + this.capacity()) % this.capacity();\n}\n/* \u961f\u9996\u5165\u961f */\npushFirst(num) {\nif (this.#queSize === this.capacity()) {\nconsole.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nthis.#front = this.index(this.#front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nthis.#nums[this.#front] = num;\nthis.#queSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\npushLast(num) {\nif (this.#queSize === this.capacity()) {\nconsole.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nconst rear = this.index(this.#front + this.#queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nthis.#nums[rear] = num;\nthis.#queSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\npopFirst() {\nconst num = this.peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nthis.#front = this.index(this.#front + 1);\nthis.#queSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\npopLast() {\nconst num = this.peekLast();\nthis.#queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeekFirst() {\nif (this.isEmpty()) throw new Error('The Deque Is Empty.');\nreturn this.#nums[this.#front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npeekLast() {\nif (this.isEmpty()) throw new Error('The Deque Is Empty.');\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nconst last = this.index(this.#front + this.#queSize - 1);\nreturn this.#nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\ntoArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst res = [];\nfor (let i = 0, j = this.#front; i < this.#queSize; i++, j++) {\nres[i] = this.#nums[this.index(j)];\n}\nreturn res;\n}\n}\n
            array_deque.ts
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nprivate nums: number[]; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate front: number; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate queSize: number; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(capacity: number) {\nthis.nums = new Array(capacity);\nthis.front = 0;\nthis.queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\ncapacity(): number {\nreturn this.nums.length;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize(): number {\nreturn this.queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty(): boolean {\nreturn this.queSize === 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nindex(i: number): number {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + this.capacity()) % this.capacity();\n}\n/* \u961f\u9996\u5165\u961f */\npushFirst(num: number): void {\nif (this.queSize === this.capacity()) {\nconsole.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nthis.front = this.index(this.front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nthis.nums[this.front] = num;\nthis.queSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\npushLast(num: number): void {\nif (this.queSize === this.capacity()) {\nconsole.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nconst rear: number = this.index(this.front + this.queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nthis.nums[rear] = num;\nthis.queSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\npopFirst(): number {\nconst num: number = this.peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nthis.front = this.index(this.front + 1);\nthis.queSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\npopLast(): number {\nconst num: number = this.peekLast();\nthis.queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeekFirst(): number {\nif (this.isEmpty()) throw new Error('The Deque Is Empty.');\nreturn this.nums[this.front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npeekLast(): number {\nif (this.isEmpty()) throw new Error('The Deque Is Empty.');\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nconst last = this.index(this.front + this.queSize - 1);\nreturn this.nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\ntoArray(): number[] {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst res: number[] = [];\nfor (let i = 0, j = this.front; i < this.queSize; i++, j++) {\nres[i] = this.nums[this.index(j)];\n}\nreturn res;\n}\n}\n
            array_deque.c
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nstruct arrayDeque {\nint *nums;       // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nint front;       // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nint queSize;     // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\nint queCapacity; // \u961f\u5217\u5bb9\u91cf\n};\ntypedef struct arrayDeque arrayDeque;\n/* \u6784\u9020\u51fd\u6570 */\narrayDeque *newArrayDeque(int capacity) {\narrayDeque *deque = (arrayDeque *)malloc(sizeof(arrayDeque));\n// \u521d\u59cb\u5316\u6570\u7ec4\ndeque->queCapacity = capacity;\ndeque->nums = (int *)malloc(sizeof(int) * deque->queCapacity);\ndeque->front = deque->queSize = 0;\nreturn deque;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayDeque(arrayDeque *deque) {\nfree(deque->nums);\ndeque->queCapacity = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity(arrayDeque *deque) {\nreturn deque->queCapacity;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size(arrayDeque *deque) {\nreturn deque->queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(arrayDeque *deque) {\nreturn deque->queSize == 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nint dequeIndex(arrayDeque *deque, int i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn ((i + capacity(deque)) % capacity(deque));\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(arrayDeque *deque, int num) {\nif (deque->queSize == capacity(deque)) {\nprintf(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\\r\\n\");\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u56de\u5230\u5c3e\u90e8\ndeque->front = dequeIndex(deque, deque->front - 1);\n// \u5c06 num \u6dfb\u52a0\u5230\u961f\u9996\ndeque->nums[deque->front] = num;\ndeque->queSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(arrayDeque *deque, int num) {\nif (deque->queSize == capacity(deque)) {\nprintf(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\\r\\n\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nint rear = dequeIndex(deque, deque->front + deque->queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque->nums[rear] = num;\ndeque->queSize++;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst(arrayDeque *deque) {\n// \u8bbf\u95ee\u5f02\u5e38\uff1a\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\nassert(empty(deque) == 0);\nreturn deque->nums[deque->front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast(arrayDeque *deque) {\n// \u8bbf\u95ee\u5f02\u5e38\uff1a\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\nassert(empty(deque) == 0);\nint last = dequeIndex(deque, deque->front + deque->queSize - 1);\nreturn deque->nums[last];\n}\n/* \u961f\u9996\u51fa\u961f */\nint popFirst(arrayDeque *deque) {\nint num = peekFirst(deque);\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\ndeque->front = dequeIndex(deque, deque->front + 1);\ndeque->queSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast(arrayDeque *deque) {\nint num = peekLast(deque);\ndeque->queSize--;\nreturn num;\n}\n/* \u6253\u5370\u961f\u5217 */\nvoid printArrayDeque(arrayDeque *deque) {\nint arr[deque->queSize];\n// \u62f7\u8d1d\nfor (int i = 0, j = deque->front; i < deque->queSize; i++, j++) {\narr[i] = deque->nums[j % deque->queCapacity];\n}\nprintArray(arr, deque->queSize);\n}\n
            array_deque.cs
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nprivate readonly int[] nums;  // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate int front;   // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate int queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\npublic ArrayDeque(int capacity) {\nthis.nums = new int[capacity];\nfront = queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\npublic int capacity() {\nreturn nums.Length;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn queSize == 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nprivate int index(int i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + capacity()) % capacity();\n}\n/* \u961f\u9996\u5165\u961f */\npublic void pushFirst(int num) {\nif (queSize == capacity()) {\nConsole.WriteLine(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nfront = index(front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nnums[front] = num;\nqueSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\npublic void pushLast(int num) {\nif (queSize == capacity()) {\nConsole.WriteLine(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nint rear = index(front + queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\npublic int popFirst() {\nint num = peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfront = index(front + 1);\nqueSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\npublic int popLast() {\nint num = peekLast();\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peekFirst() {\nif (isEmpty()) {\nthrow new InvalidOperationException();\n}\nreturn nums[front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npublic int peekLast() {\nif (isEmpty()) {\nthrow new InvalidOperationException();\n}\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nint last = index(front + queSize - 1);\nreturn nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\npublic int[] toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] res = new int[queSize];\nfor (int i = 0, j = front; i < queSize; i++, j++) {\nres[i] = nums[index(j)];\n}\nreturn res;\n}\n}\n
            array_deque.swift
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nprivate var nums: [Int] // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate var front: Int // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate var queSize: Int // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\ninit(capacity: Int) {\nnums = Array(repeating: 0, count: capacity)\nfront = 0\nqueSize = 0\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\nfunc capacity() -> Int {\nnums.count\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nfunc size() -> Int {\nqueSize\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nsize() == 0\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nprivate func index(i: Int) -> Int {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n(i + capacity()) % capacity()\n}\n/* \u961f\u9996\u5165\u961f */\nfunc pushFirst(num: Int) {\nif size() == capacity() {\nprint(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nfront = index(i: front - 1)\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nnums[front] = num\nqueSize += 1\n}\n/* \u961f\u5c3e\u5165\u961f */\nfunc pushLast(num: Int) {\nif size() == capacity() {\nprint(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nlet rear = index(i: front + size())\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num\nqueSize += 1\n}\n/* \u961f\u9996\u51fa\u961f */\nfunc popFirst() -> Int {\nlet num = peekFirst()\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfront = index(i: front + 1)\nqueSize -= 1\nreturn num\n}\n/* \u961f\u5c3e\u51fa\u961f */\nfunc popLast() -> Int {\nlet num = peekLast()\nqueSize -= 1\nreturn num\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc peekFirst() -> Int {\nif isEmpty() {\nfatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n}\nreturn nums[front]\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc peekLast() -> Int {\nif isEmpty() {\nfatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n}\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nlet last = index(i: front + size() - 1)\nreturn nums[last]\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nfunc toArray() -> [Int] {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvar res = Array(repeating: 0, count: size())\nfor (i, j) in sequence(first: (0, front), next: { $0 < self.size() - 1 ? ($0 + 1, $1 + 1) : nil }) {\nres[i] = nums[index(i: j)]\n}\nreturn res\n}\n}\n
            array_deque.zig
            [class]{ArrayDeque}-[func]{}\n
            array_deque.dart
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nlate List<int> _nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nlate int _front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nlate int _queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\nArrayDeque(int capacity) {\nthis._nums = List.filled(capacity, 0);\nthis._front = this._queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity() {\nreturn _nums.length;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn _queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn _queSize == 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nint index(int i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + capacity()) % capacity();\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(int num) {\nif (_queSize == capacity()) {\nthrow Exception(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 _front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n_front = index(_front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n_nums[_front] = num;\n_queSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(int num) {\nif (_queSize == capacity()) {\nthrow Exception(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nint rear = index(_front + _queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n_nums[rear] = num;\n_queSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\nint popFirst() {\nint num = peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n_front = index(_front + 1);\n_queSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast() {\nint num = peekLast();\n_queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst() {\nif (isEmpty()) {\nthrow Exception(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n}\nreturn _nums[_front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast() {\nif (isEmpty()) {\nthrow Exception(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n}\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nint last = index(_front + _queSize - 1);\nreturn _nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nList<int> toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nList<int> res = List.filled(_queSize, 0);\nfor (int i = 0, j = _front; i < _queSize; i++, j++) {\nres[i] = _nums[index(j)];\n}\nreturn res;\n}\n}\n
            array_deque.rs
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nstruct ArrayDeque {\nnums: Vec<i32>,     // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nfront: usize,       // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nque_size: usize,    // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n}\nimpl ArrayDeque {\n/* \u6784\u9020\u65b9\u6cd5 */\npub fn new(capacity: usize) -> Self {\nSelf {\nnums: vec![0; capacity],\nfront: 0,\nque_size: 0,\n}\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\npub fn capacity(&self) -> usize {\nself.nums.len()\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npub fn size(&self) -> usize {\nself.que_size\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npub fn is_empty(&self) -> bool {\nself.que_size == 0\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nfn index(&self, i: i32) -> usize {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn ((i + self.capacity() as i32) % self.capacity() as i32) as usize;\n}\n/* \u961f\u9996\u5165\u961f */\npub fn push_first(&mut self, num: i32) {\nif self.que_size == self.capacity() {\nprintln!(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nself.front = self.index(self.front as i32 - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nself.nums[self.front] = num;\nself.que_size += 1;\n}\n/* \u961f\u5c3e\u5165\u961f */\npub fn push_last(&mut self, num: i32) {\nif self.que_size == self.capacity() {\nprintln!(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nlet rear = self.index(self.front as i32 + self.que_size as i32);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nself.nums[rear] = num;\nself.que_size += 1;\n}\n/* \u961f\u9996\u51fa\u961f */\nfn pop_first(&mut self) -> i32 {\nlet num = self.peek_first();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nself.front = self.index(self.front as i32 + 1);\nself.que_size -= 1;\nnum\n}\n/* \u961f\u5c3e\u51fa\u961f */\nfn pop_last(&mut self) -> i32 {\nlet num = self.peek_last();\nself.que_size -= 1;\nnum\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfn peek_first(&self) -> i32 {\nif self.is_empty() { panic!(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\") };\nself.nums[self.front]\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfn peek_last(&self) -> i32 {\nif self.is_empty() { panic!(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\") };\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nlet last = self.index(self.front as i32 + self.que_size as i32 - 1);\nself.nums[last]\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nfn to_array(&self) -> Vec<i32> {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nlet mut res = vec![0; self.que_size];\nlet mut j = self.front;\nfor i in 0..self.que_size {\nres[i] = self.nums[self.index(j as i32)];\nj += 1;\n}\nres\n}\n}\n
            "},{"location":"chapter_stack_and_queue/deque/#533","title":"5.3.3 \u00a0 \u53cc\u5411\u961f\u5217\u5e94\u7528","text":"

            \u53cc\u5411\u961f\u5217\u517c\u5177\u6808\u4e0e\u961f\u5217\u7684\u903b\u8f91\uff0c\u56e0\u6b64\u5b83\u53ef\u4ee5\u5b9e\u73b0\u8fd9\u4e24\u8005\u7684\u6240\u6709\u5e94\u7528\u573a\u666f\uff0c\u540c\u65f6\u63d0\u4f9b\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\u3002

            \u6211\u4eec\u77e5\u9053\uff0c\u8f6f\u4ef6\u7684\u201c\u64a4\u9500\u201d\u529f\u80fd\u901a\u5e38\u4f7f\u7528\u6808\u6765\u5b9e\u73b0\uff1a\u7cfb\u7edf\u5c06\u6bcf\u6b21\u66f4\u6539\u64cd\u4f5c push \u5230\u6808\u4e2d\uff0c\u7136\u540e\u901a\u8fc7 pop \u5b9e\u73b0\u64a4\u9500\u3002\u7136\u800c\uff0c\u8003\u8651\u5230\u7cfb\u7edf\u8d44\u6e90\u7684\u9650\u5236\uff0c\u8f6f\u4ef6\u901a\u5e38\u4f1a\u9650\u5236\u64a4\u9500\u7684\u6b65\u6570\uff08\u4f8b\u5982\u4ec5\u5141\u8bb8\u4fdd\u5b58 \\(50\\) \u6b65\uff09\u3002\u5f53\u6808\u7684\u957f\u5ea6\u8d85\u8fc7 \\(50\\) \u65f6\uff0c\u8f6f\u4ef6\u9700\u8981\u5728\u6808\u5e95\uff08\u5373\u961f\u9996\uff09\u6267\u884c\u5220\u9664\u64cd\u4f5c\u3002\u4f46\u6808\u65e0\u6cd5\u5b9e\u73b0\u8be5\u529f\u80fd\uff0c\u6b64\u65f6\u5c31\u9700\u8981\u4f7f\u7528\u53cc\u5411\u961f\u5217\u6765\u66ff\u4ee3\u6808\u3002\u8bf7\u6ce8\u610f\uff0c\u201c\u64a4\u9500\u201d\u7684\u6838\u5fc3\u903b\u8f91\u4ecd\u7136\u9075\u5faa\u6808\u7684\u5148\u5165\u540e\u51fa\u539f\u5219\uff0c\u53ea\u662f\u53cc\u5411\u961f\u5217\u80fd\u591f\u66f4\u52a0\u7075\u6d3b\u5730\u5b9e\u73b0\u4e00\u4e9b\u989d\u5916\u903b\u8f91\u3002

            "},{"location":"chapter_stack_and_queue/queue/","title":"5.2 \u00a0 \u961f\u5217","text":"

            \u300c\u961f\u5217 Queue\u300d\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u5148\u51fa\uff08First In, First Out\uff09\u89c4\u5219\u7684\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002\u987e\u540d\u601d\u4e49\uff0c\u961f\u5217\u6a21\u62df\u4e86\u6392\u961f\u73b0\u8c61\uff0c\u5373\u65b0\u6765\u7684\u4eba\u4e0d\u65ad\u52a0\u5165\u961f\u5217\u7684\u5c3e\u90e8\uff0c\u800c\u4f4d\u4e8e\u961f\u5217\u5934\u90e8\u7684\u4eba\u9010\u4e2a\u79bb\u5f00\u3002

            \u6211\u4eec\u628a\u961f\u5217\u7684\u5934\u90e8\u79f0\u4e3a\u300c\u961f\u9996\u300d\uff0c\u5c3e\u90e8\u79f0\u4e3a\u300c\u961f\u5c3e\u300d\uff0c\u628a\u5c06\u5143\u7d20\u52a0\u5165\u961f\u5c3e\u7684\u64cd\u4f5c\u79f0\u4e3a\u300c\u5165\u961f\u300d\uff0c\u5220\u9664\u961f\u9996\u5143\u7d20\u7684\u64cd\u4f5c\u79f0\u4e3a\u300c\u51fa\u961f\u300d\u3002

            \u56fe\uff1a\u961f\u5217\u7684\u5148\u5165\u5148\u51fa\u89c4\u5219

            "},{"location":"chapter_stack_and_queue/queue/#521","title":"5.2.1 \u00a0 \u961f\u5217\u5e38\u7528\u64cd\u4f5c","text":"

            \u961f\u5217\u7684\u5e38\u89c1\u64cd\u4f5c\u5982\u4e0b\u8868\u6240\u793a\u3002\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u7684\u65b9\u6cd5\u540d\u79f0\u53ef\u80fd\u4f1a\u6709\u6240\u4e0d\u540c\u3002\u6211\u4eec\u5728\u6b64\u91c7\u7528\u4e0e\u6808\u76f8\u540c\u7684\u65b9\u6cd5\u547d\u540d\u3002

            \u8868\uff1a\u961f\u5217\u64cd\u4f5c\u6548\u7387

            \u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u961f\uff0c\u5373\u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u5c3e \\(O(1)\\) pop() \u961f\u9996\u5143\u7d20\u51fa\u961f \\(O(1)\\) peek() \u8bbf\u95ee\u961f\u9996\u5143\u7d20 \\(O(1)\\)

            \u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u4e2d\u73b0\u6210\u7684\u961f\u5217\u7c7b\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust queue.java
            /* \u521d\u59cb\u5316\u961f\u5217 */\nQueue<Integer> queue = new LinkedList<>();\n/* \u5143\u7d20\u5165\u961f */\nqueue.offer(1);\nqueue.offer(3);\nqueue.offer(2);\nqueue.offer(5);\nqueue.offer(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.peek();\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.poll();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.size();\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = queue.isEmpty();\n
            queue.cpp
            /* \u521d\u59cb\u5316\u961f\u5217 */\nqueue<int> queue;\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint front = queue.front();\n/* \u5143\u7d20\u51fa\u961f */\nqueue.pop();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.size();\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty = queue.empty();\n
            queue.py
            # \u521d\u59cb\u5316\u961f\u5217\n# \u5728 Python \u4e2d\uff0c\u6211\u4eec\u4e00\u822c\u5c06\u53cc\u5411\u961f\u5217\u7c7b deque \u770b\u4f5c\u961f\u5217\u4f7f\u7528\n# \u867d\u7136 queue.Queue() \u662f\u7eaf\u6b63\u7684\u961f\u5217\u7c7b\uff0c\u4f46\u4e0d\u592a\u597d\u7528\uff0c\u56e0\u6b64\u4e0d\u5efa\u8bae\nque: Deque[int] = collections.deque()\n# \u5143\u7d20\u5165\u961f\nque.append(1)\nque.append(3)\nque.append(2)\nque.append(5)\nque.append(4)\n# \u8bbf\u95ee\u961f\u9996\u5143\u7d20\nfront: int = que[0];\n# \u5143\u7d20\u51fa\u961f\npop: int = que.popleft()\n# \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\nsize: int = len(que)\n# \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(que) == 0\n
            queue_test.go
            /* \u521d\u59cb\u5316\u961f\u5217 */\n// \u5728 Go \u4e2d\uff0c\u5c06 list \u4f5c\u4e3a\u961f\u5217\u6765\u4f7f\u7528\nqueue := list.New()\n/* \u5143\u7d20\u5165\u961f */\nqueue.PushBack(1)\nqueue.PushBack(3)\nqueue.PushBack(2)\nqueue.PushBack(5)\nqueue.PushBack(4)\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek := queue.Front()\n/* \u5143\u7d20\u51fa\u961f */\npop := queue.Front()\nqueue.Remove(pop)\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nsize := queue.Len()\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty := queue.Len() == 0\n
            queue.js
            /* \u521d\u59cb\u5316\u961f\u5217 */\n// JavaScript \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528\nconst queue = [];\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nconst peek = queue[0];\n/* \u5143\u7d20\u51fa\u961f */\n// \u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 shift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst pop = queue.shift();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = queue.length;\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst empty = queue.length === 0;\n
            queue.ts
            /* \u521d\u59cb\u5316\u961f\u5217 */\n// TypeScript \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528 \nconst queue: number[] = [];\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nconst peek = queue[0];\n/* \u5143\u7d20\u51fa\u961f */\n// \u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 shift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst pop = queue.shift();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = queue.length;\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst empty = queue.length === 0;\n
            queue.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u961f\u5217\n
            queue.cs
            /* \u521d\u59cb\u5316\u961f\u5217 */\nQueue<int> queue = new();\n/* \u5143\u7d20\u5165\u961f */\nqueue.Enqueue(1);\nqueue.Enqueue(3);\nqueue.Enqueue(2);\nqueue.Enqueue(5);\nqueue.Enqueue(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.Peek();\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.Dequeue();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.Count;\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = queue.Count == 0;\n
            queue.swift
            /* \u521d\u59cb\u5316\u961f\u5217 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528\nvar queue: [Int] = []\n/* \u5143\u7d20\u5165\u961f */\nqueue.append(1)\nqueue.append(3)\nqueue.append(2)\nqueue.append(5)\nqueue.append(4)\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nlet peek = queue.first!\n/* \u5143\u7d20\u51fa\u961f */\n// \u7531\u4e8e\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 removeFirst \u7684\u590d\u6742\u5ea6\u4e3a O(n)\nlet pool = queue.removeFirst()\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = queue.count\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = queue.isEmpty\n
            queue.zig
            \n
            queue.dart
            /* \u521d\u59cb\u5316\u961f\u5217 */\n// \u5728 Dart \u4e2d\uff0c\u961f\u5217\u7c7b Qeque \u662f\u53cc\u5411\u961f\u5217\uff0c\u4e5f\u53ef\u4f5c\u4e3a\u961f\u5217\u4f7f\u7528\nQueue<int> queue = Queue();\n/* \u5143\u7d20\u5165\u961f */\nqueue.add(1);\nqueue.add(3);\nqueue.add(2);\nqueue.add(5);\nqueue.add(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.first;\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.removeFirst();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.length;\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = queue.isEmpty;\n
            queue.rs
            \n
            "},{"location":"chapter_stack_and_queue/queue/#522","title":"5.2.2 \u00a0 \u961f\u5217\u5b9e\u73b0","text":"

            \u4e3a\u4e86\u5b9e\u73b0\u961f\u5217\uff0c\u6211\u4eec\u9700\u8981\u4e00\u79cd\u6570\u636e\u7ed3\u6784\uff0c\u53ef\u4ee5\u5728\u4e00\u7aef\u6dfb\u52a0\u5143\u7d20\uff0c\u5e76\u5728\u53e6\u4e00\u7aef\u5220\u9664\u5143\u7d20\u3002\u56e0\u6b64\uff0c\u94fe\u8868\u548c\u6570\u7ec4\u90fd\u53ef\u4ee5\u7528\u6765\u5b9e\u73b0\u961f\u5217\u3002

            "},{"location":"chapter_stack_and_queue/queue/#1","title":"1. \u00a0 \u57fa\u4e8e\u94fe\u8868\u7684\u5b9e\u73b0","text":"

            \u5bf9\u4e8e\u94fe\u8868\u5b9e\u73b0\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u94fe\u8868\u7684\u300c\u5934\u8282\u70b9\u300d\u548c\u300c\u5c3e\u8282\u70b9\u300d\u5206\u522b\u89c6\u4e3a\u961f\u9996\u548c\u961f\u5c3e\uff0c\u89c4\u5b9a\u961f\u5c3e\u4ec5\u53ef\u6dfb\u52a0\u8282\u70b9\uff0c\u800c\u961f\u9996\u4ec5\u53ef\u5220\u9664\u8282\u70b9\u3002

            LinkedListQueuepush()pop()

            \u56fe\uff1a\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c

            \u4ee5\u4e0b\u662f\u7528\u94fe\u8868\u5b9e\u73b0\u961f\u5217\u7684\u793a\u4f8b\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linkedlist_queue.java
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nprivate ListNode front, rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\nprivate int queSize = 0;\npublic LinkedListQueue() {\nfront = null;\nrear = null;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f */\npublic void push(int num) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nListNode node = new ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (front == null) {\nfront = node;\nrear = node;\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n} else {\nrear.next = node;\nrear = node;\n}\nqueSize++;\n}\n/* \u51fa\u961f */\npublic int pop() {\nint num = peek();\n// \u5220\u9664\u5934\u8282\u70b9\nfront = front.next;\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peek() {\nif (size() == 0)\nthrow new IndexOutOfBoundsException();\nreturn front.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic int[] toArray() {\nListNode node = front;\nint[] res = new int[size()];\nfor (int i = 0; i < res.length; i++) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_queue.cpp
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nprivate:\nListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\nint queSize;\npublic:\nLinkedListQueue() {\nfront = nullptr;\nrear = nullptr;\nqueSize = 0;\n}\n~LinkedListQueue() {\n// \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\nfreeMemoryLinkedList(front);\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty() {\nreturn queSize == 0;\n}\n/* \u5165\u961f */\nvoid push(int num) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nListNode *node = new ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (front == nullptr) {\nfront = node;\nrear = node;\n}\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\nelse {\nrear->next = node;\nrear = node;\n}\nqueSize++;\n}\n/* \u51fa\u961f */\nvoid pop() {\nint num = peek();\n// \u5220\u9664\u5934\u8282\u70b9\nListNode *tmp = front;\nfront = front->next;\n// \u91ca\u653e\u5185\u5b58\ndelete tmp;\nqueSize--;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek() {\nif (size() == 0)\nthrow out_of_range(\"\u961f\u5217\u4e3a\u7a7a\");\nreturn front->val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Vector \u5e76\u8fd4\u56de */\nvector<int> toVector() {\nListNode *node = front;\nvector<int> res(size());\nfor (int i = 0; i < res.size(); i++) {\nres[i] = node->val;\nnode = node->next;\n}\nreturn res;\n}\n};\n
            linkedlist_queue.py
            class LinkedListQueue:\n\"\"\"\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__front: ListNode | None = None  # \u5934\u8282\u70b9 front\nself.__rear: ListNode | None = None  # \u5c3e\u8282\u70b9 rear\nself.__size: int = 0\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\"\"\"\nreturn self.__size\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn not self.__front\ndef push(self, num: int):\n\"\"\"\u5165\u961f\"\"\"\n# \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nnode = ListNode(num)\n# \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif self.__front is None:\nself.__front = node\nself.__rear = node\n# \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\nelse:\nself.__rear.next = node\nself.__rear = node\nself.__size += 1\ndef pop(self) -> int:\n\"\"\"\u51fa\u961f\"\"\"\nnum = self.peek()\n# \u5220\u9664\u5934\u8282\u70b9\nself.__front = self.__front.next\nself.__size -= 1\nreturn num\ndef peek(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\nif self.size() == 0:\nprint(\"\u961f\u5217\u4e3a\u7a7a\")\nreturn False\nreturn self.__front.val\ndef to_list(self) -> list[int]:\n\"\"\"\u8f6c\u5316\u4e3a\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\nqueue = []\ntemp = self.__front\nwhile temp:\nqueue.append(temp.val)\ntemp = temp.next\nreturn queue\n
            linkedlist_queue.go
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\ntype linkedListQueue struct {\n// \u4f7f\u7528\u5185\u7f6e\u5305 list \u6765\u5b9e\u73b0\u961f\u5217\ndata *list.List\n}\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newLinkedListQueue() *linkedListQueue {\nreturn &linkedListQueue{\ndata: list.New(),\n}\n}\n/* \u5165\u961f */\nfunc (s *linkedListQueue) push(value any) {\ns.data.PushBack(value)\n}\n/* \u51fa\u961f */\nfunc (s *linkedListQueue) pop() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Front()\ns.data.Remove(e)\nreturn e.Value\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (s *linkedListQueue) peek() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Front()\nreturn e.Value\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (s *linkedListQueue) size() int {\nreturn s.data.Len()\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListQueue) isEmpty() bool {\nreturn s.data.Len() == 0\n}\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListQueue) toList() *list.List {\nreturn s.data\n}\n
            linkedlist_queue.js
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n#front; // \u5934\u8282\u70b9 #front\n#rear; // \u5c3e\u8282\u70b9 #rear\n#queSize = 0;\nconstructor() {\nthis.#front = null;\nthis.#rear = null;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nget size() {\nreturn this.#queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty() {\nreturn this.size === 0;\n}\n/* \u5165\u961f */\npush(num) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nconst node = new ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (!this.#front) {\nthis.#front = node;\nthis.#rear = node;\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n} else {\nthis.#rear.next = node;\nthis.#rear = node;\n}\nthis.#queSize++;\n}\n/* \u51fa\u961f */\npop() {\nconst num = this.peek();\n// \u5220\u9664\u5934\u8282\u70b9\nthis.#front = this.#front.next;\nthis.#queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek() {\nif (this.size === 0) throw new Error('\u961f\u5217\u4e3a\u7a7a');\nreturn this.#front.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\ntoArray() {\nlet node = this.#front;\nconst res = new Array(this.size);\nfor (let i = 0; i < res.length; i++) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_queue.ts
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nprivate front: ListNode | null; // \u5934\u8282\u70b9 front\nprivate rear: ListNode | null; // \u5c3e\u8282\u70b9 rear\nprivate queSize: number = 0;\nconstructor() {\nthis.front = null;\nthis.rear = null;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nget size(): number {\nreturn this.queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty(): boolean {\nreturn this.size === 0;\n}\n/* \u5165\u961f */\npush(num: number): void {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nconst node = new ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (!this.front) {\nthis.front = node;\nthis.rear = node;\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n} else {\nthis.rear!.next = node;\nthis.rear = node;\n}\nthis.queSize++;\n}\n/* \u51fa\u961f */\npop(): number {\nconst num = this.peek();\nif (!this.front) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n// \u5220\u9664\u5934\u8282\u70b9\nthis.front = this.front.next;\nthis.queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek(): number {\nif (this.size === 0) throw new Error('\u961f\u5217\u4e3a\u7a7a');\nreturn this.front!.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\ntoArray(): number[] {\nlet node = this.front;\nconst res = new Array<number>(this.size);\nfor (let i = 0; i < res.length; i++) {\nres[i] = node!.val;\nnode = node!.next;\n}\nreturn res;\n}\n}\n
            linkedlist_queue.c
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nstruct linkedListQueue {\nListNode *front, *rear;\nint queSize;\n};\ntypedef struct linkedListQueue linkedListQueue;\n/* \u6784\u9020\u51fd\u6570 */\nlinkedListQueue *newLinkedListQueue() {\nlinkedListQueue *queue = (linkedListQueue *)malloc(sizeof(linkedListQueue));\nqueue->front = NULL;\nqueue->rear = NULL;\nqueue->queSize = 0;\nreturn queue;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListQueue(linkedListQueue *queue) {\n// \u91ca\u653e\u6240\u6709\u8282\u70b9\nfor (int i = 0; i < queue->queSize && queue->front != NULL; i++) {\nListNode *tmp = queue->front;\nqueue->front = queue->front->next;\nfree(tmp);\n}\n// \u91ca\u653e queue \u7ed3\u6784\u4f53\nfree(queue);\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(linkedListQueue *queue) {\nreturn queue->queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(linkedListQueue *queue) {\nreturn (size(queue) == 0);\n}\n/* \u5165\u961f */\nvoid push(linkedListQueue *queue, int num) {\n// \u5c3e\u8282\u70b9\u5904\u6dfb\u52a0 node\nListNode *node = newListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (queue->front == NULL) {\nqueue->front = node;\nqueue->rear = node;\n}\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\nelse {\nqueue->rear->next = node;\nqueue->rear = node;\n}\nqueue->queSize++;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek(linkedListQueue *queue) {\nassert(size(queue) && queue->front);\nreturn queue->front->val;\n}\n/* \u51fa\u961f */\nvoid pop(linkedListQueue *queue) {\nint num = peek(queue);\nListNode *tmp = queue->front;\nqueue->front = queue->front->next;\nfree(tmp);\nqueue->queSize--;\n}\n/* \u6253\u5370\u961f\u5217 */\nvoid printLinkedListQueue(linkedListQueue *queue) {\nint arr[queue->queSize];\n// \u62f7\u8d1d\u94fe\u8868\u4e2d\u7684\u6570\u636e\u5230\u6570\u7ec4\nint i;\nListNode *node;\nfor (i = 0, node = queue->front; i < queue->queSize && queue->front != queue->rear; i++) {\narr[i] = node->val;\nnode = node->next;\n}\nprintArray(arr, queue->queSize);\n}\n
            linkedlist_queue.cs
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nprivate ListNode? front, rear;  // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear \nprivate int queSize = 0;\npublic LinkedListQueue() {\nfront = null;\nrear = null;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f */\npublic void push(int num) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nListNode node = new ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (front == null) {\nfront = node;\nrear = node;\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n} else if (rear != null) {\nrear.next = node;\nrear = node;\n}\nqueSize++;\n}\n/* \u51fa\u961f */\npublic int pop() {\nint num = peek();\n// \u5220\u9664\u5934\u8282\u70b9\nfront = front?.next;\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peek() {\nif (size() == 0 || front == null)\nthrow new Exception();\nreturn front.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic int[] toArray() {\nif (front == null)\nreturn Array.Empty<int>();\nListNode node = front;\nint[] res = new int[size()];\nfor (int i = 0; i < res.Length; i++) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_queue.swift
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nprivate var front: ListNode? // \u5934\u8282\u70b9\nprivate var rear: ListNode? // \u5c3e\u8282\u70b9\nprivate var _size = 0\ninit() {}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc size() -> Int {\n_size\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nsize() == 0\n}\n/* \u5165\u961f */\nfunc push(num: Int) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nlet node = ListNode(x: num)\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif front == nil {\nfront = node\nrear = node\n}\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\nelse {\nrear?.next = node\nrear = node\n}\n_size += 1\n}\n/* \u51fa\u961f */\n@discardableResult\nfunc pop() -> Int {\nlet num = peek()\n// \u5220\u9664\u5934\u8282\u70b9\nfront = front?.next\n_size -= 1\nreturn num\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc peek() -> Int {\nif isEmpty() {\nfatalError(\"\u961f\u5217\u4e3a\u7a7a\")\n}\nreturn front!.val\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nfunc toArray() -> [Int] {\nvar node = front\nvar res = Array(repeating: 0, count: size())\nfor i in res.indices {\nres[i] = node!.val\nnode = node?.next\n}\nreturn res\n}\n}\n
            linkedlist_queue.zig
            // \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217\nfn LinkedListQueue(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nfront: ?*inc.ListNode(T) = null,                // \u5934\u8282\u70b9 front\nrear: ?*inc.ListNode(T) = null,                 // \u5c3e\u8282\u70b9 rear\nque_size: usize = 0,                            // \u961f\u5217\u7684\u957f\u5ea6\nmem_arena: ?std.heap.ArenaAllocator = null,\nmem_allocator: std.mem.Allocator = undefined,   // \u5185\u5b58\u5206\u914d\u5668\n// \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u961f\u5217\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator) !void {\nif (self.mem_arena == null) {\nself.mem_arena = std.heap.ArenaAllocator.init(allocator);\nself.mem_allocator = self.mem_arena.?.allocator();\n}\nself.front = null;\nself.rear = null;\nself.que_size = 0;\n}\n// \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.mem_arena == null) return;\nself.mem_arena.?.deinit();\n}\n// \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\npub fn size(self: *Self) usize {\nreturn self.que_size;\n}\n// \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\npub fn isEmpty(self: *Self) bool {\nreturn self.size() == 0;\n}\n// \u8bbf\u95ee\u961f\u9996\u5143\u7d20\npub fn peek(self: *Self) T {\nif (self.size() == 0) @panic(\"\u961f\u5217\u4e3a\u7a7a\");\nreturn self.front.?.val;\n}  // \u5165\u961f\npub fn push(self: *Self, num: T) !void {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nvar node = try self.mem_allocator.create(inc.ListNode(T));\nnode.init(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (self.front == null) {\nself.front = node;\nself.rear = node;\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n} else {\nself.rear.?.next = node;\nself.rear = node;\n}\nself.que_size += 1;\n} // \u51fa\u961f\npub fn pop(self: *Self) T {\nvar num = self.peek();\n// \u5220\u9664\u5934\u8282\u70b9\nself.front = self.front.?.next;\nself.que_size -= 1;\nreturn num;\n} // \u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4\npub fn toArray(self: *Self) ![]T {\nvar node = self.front;\nvar res = try self.mem_allocator.alloc(T, self.size());\n@memset(res, @as(T, 0));\nvar i: usize = 0;\nwhile (i < res.len) : (i += 1) {\nres[i] = node.?.val;\nnode = node.?.next;\n}\nreturn res;\n}\n};\n}\n
            linkedlist_queue.dart
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nListNode? _front; // \u5934\u8282\u70b9 _front\nListNode? _rear; // \u5c3e\u8282\u70b9 _rear\nint _queSize = 0; // \u961f\u5217\u957f\u5ea6\nLinkedListQueue() {\n_front = null;\n_rear = null;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn _queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn _queSize == 0;\n}\n/* \u5165\u961f */\nvoid push(int num) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nfinal node = ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (_front == null) {\n_front = node;\n_rear = node;\n} else {\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n_rear!.next = node;\n_rear = node;\n}\n_queSize++;\n}\n/* \u51fa\u961f */\nint pop() {\nfinal int num = peek();\n// \u5220\u9664\u5934\u8282\u70b9\n_front = _front!.next;\n_queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek() {\nif (_queSize == 0) {\nthrow Exception('\u961f\u5217\u4e3a\u7a7a');\n}\nreturn _front!.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nList<int> toArray() {\nListNode? node = _front;\nfinal List<int> queue = [];\nwhile (node != null) {\nqueue.add(node.val);\nnode = node.next;\n}\nreturn queue;\n}\n}\n
            linkedlist_queue.rs
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\n#[allow(dead_code)]\npub struct LinkedListQueue<T> {\nfront: Option<Rc<RefCell<ListNode<T>>>>,    // \u5934\u8282\u70b9 front\nrear: Option<Rc<RefCell<ListNode<T>>>>,     // \u5c3e\u8282\u70b9 rear \nque_size: usize,                            // \u961f\u5217\u7684\u957f\u5ea6\n}\nimpl<T: Copy> LinkedListQueue<T> {\npub fn new() -> Self {\nSelf {\nfront: None,\nrear: None,\nque_size: 0, }\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\npub fn size(&self) -> usize {\nreturn self.que_size;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npub fn is_empty(&self) -> bool {\nreturn self.size() == 0;\n}\n/* \u5165\u961f */\npub fn push(&mut self, num: T) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nlet new_rear = ListNode::new(num);\nmatch self.rear.take() {\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\nSome(old_rear) => {\nold_rear.borrow_mut().next = Some(new_rear.clone());\nself.rear = Some(new_rear);\n}\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nNone => {\nself.front = Some(new_rear.clone());\nself.rear = Some(new_rear);\n}\n}\nself.que_size += 1;\n}\n/* \u51fa\u961f */\npub fn pop(&mut self) -> Option<T> {\nself.front.take().map(|old_front| {\nmatch old_front.borrow_mut().next.take() {\nSome(new_front) => {\nself.front = Some(new_front);\n}\nNone => {\nself.rear.take();\n}\n}\nself.que_size -= 1;\nRc::try_unwrap(old_front).ok().unwrap().into_inner().val\n})\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npub fn peek(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\nself.front.as_ref()\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\nif let Some(node) = head {\nlet mut nums = self.to_array(node.borrow().next.as_ref());\nnums.insert(0, node.borrow().val);\nreturn nums;\n}\nreturn Vec::new();\n}\n}\n
            "},{"location":"chapter_stack_and_queue/queue/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"

            \u7531\u4e8e\u6570\u7ec4\u5220\u9664\u9996\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4f1a\u5bfc\u81f4\u51fa\u961f\u64cd\u4f5c\u6548\u7387\u8f83\u4f4e\u3002\u7136\u800c\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u7528\u4ee5\u4e0b\u5de7\u5999\u65b9\u6cd5\u6765\u907f\u514d\u8fd9\u4e2a\u95ee\u9898\u3002

            \u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e00\u4e2a\u53d8\u91cf front \u6307\u5411\u961f\u9996\u5143\u7d20\u7684\u7d22\u5f15\uff0c\u5e76\u7ef4\u62a4\u4e00\u4e2a\u53d8\u91cf queSize \u7528\u4e8e\u8bb0\u5f55\u961f\u5217\u957f\u5ea6\u3002\u5b9a\u4e49 rear = front + queSize \uff0c\u8fd9\u4e2a\u516c\u5f0f\u8ba1\u7b97\u51fa\u7684 rear \u6307\u5411\u961f\u5c3e\u5143\u7d20\u4e4b\u540e\u7684\u4e0b\u4e00\u4e2a\u4f4d\u7f6e\u3002

            \u57fa\u4e8e\u6b64\u8bbe\u8ba1\uff0c\u6570\u7ec4\u4e2d\u5305\u542b\u5143\u7d20\u7684\u6709\u6548\u533a\u95f4\u4e3a [front, rear - 1]\uff0c\u8fdb\u800c\uff1a

            • \u5bf9\u4e8e\u5165\u961f\u64cd\u4f5c\uff0c\u5c06\u8f93\u5165\u5143\u7d20\u8d4b\u503c\u7ed9 rear \u7d22\u5f15\u5904\uff0c\u5e76\u5c06 queSize \u589e\u52a0 1 \u3002
            • \u5bf9\u4e8e\u51fa\u961f\u64cd\u4f5c\uff0c\u53ea\u9700\u5c06 front \u589e\u52a0 1 \uff0c\u5e76\u5c06 queSize \u51cf\u5c11 1 \u3002

            \u53ef\u4ee5\u770b\u5230\uff0c\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u90fd\u53ea\u9700\u8fdb\u884c\u4e00\u6b21\u64cd\u4f5c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(1)\\) \u3002

            ArrayQueuepush()pop()

            \u56fe\uff1a\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c

            \u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\u4e00\u4e2a\u95ee\u9898\uff1a\u5728\u4e0d\u65ad\u8fdb\u884c\u5165\u961f\u548c\u51fa\u961f\u7684\u8fc7\u7a0b\u4e2d\uff0cfront \u548c rear \u90fd\u5728\u5411\u53f3\u79fb\u52a8\uff0c\u5f53\u5b83\u4eec\u5230\u8fbe\u6570\u7ec4\u5c3e\u90e8\u65f6\u5c31\u65e0\u6cd5\u7ee7\u7eed\u79fb\u52a8\u4e86\u3002\u4e3a\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u89c6\u4e3a\u9996\u5c3e\u76f8\u63a5\u7684\u300c\u73af\u5f62\u6570\u7ec4\u300d\u3002

            \u5bf9\u4e8e\u73af\u5f62\u6570\u7ec4\uff0c\u6211\u4eec\u9700\u8981\u8ba9 front \u6216 rear \u5728\u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u76f4\u63a5\u56de\u5230\u6570\u7ec4\u5934\u90e8\u7ee7\u7eed\u904d\u5386\u3002\u8fd9\u79cd\u5468\u671f\u6027\u89c4\u5f8b\u53ef\u4ee5\u901a\u8fc7\u201c\u53d6\u4f59\u64cd\u4f5c\u201d\u6765\u5b9e\u73b0\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array_queue.java
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nprivate int[] nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate int queSize; // \u961f\u5217\u957f\u5ea6\npublic ArrayQueue(int capacity) {\nnums = new int[capacity];\nfront = queSize = 0;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\npublic int capacity() {\nreturn nums.length;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn queSize == 0;\n}\n/* \u5165\u961f */\npublic void push(int num) {\nif (queSize == capacity()) {\nSystem.out.println(\"\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nint rear = (front + queSize) % capacity();\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u51fa\u961f */\npublic int pop() {\nint num = peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nfront = (front + 1) % capacity();\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peek() {\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\nreturn nums[front];\n}\n/* \u8fd4\u56de\u6570\u7ec4 */\npublic int[] toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] res = new int[queSize];\nfor (int i = 0, j = front; i < queSize; i++, j++) {\nres[i] = nums[j % capacity()];\n}\nreturn res;\n}\n}\n
            array_queue.cpp
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nprivate:\nint *nums;       // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nint front;       // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nint queSize;     // \u961f\u5217\u957f\u5ea6\nint queCapacity; // \u961f\u5217\u5bb9\u91cf\npublic:\nArrayQueue(int capacity) {\n// \u521d\u59cb\u5316\u6570\u7ec4\nnums = new int[capacity];\nqueCapacity = capacity;\nfront = queSize = 0;\n}\n~ArrayQueue() {\ndelete[] nums;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity() {\nreturn queCapacity;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty() {\nreturn size() == 0;\n}\n/* \u5165\u961f */\nvoid push(int num) {\nif (queSize == queCapacity) {\ncout << \"\u961f\u5217\u5df2\u6ee1\" << endl;\nreturn;\n}\n// \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nint rear = (front + queSize) % queCapacity;\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u51fa\u961f */\nvoid pop() {\nint num = peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nfront = (front + 1) % queCapacity;\nqueSize--;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek() {\nif (empty())\nthrow out_of_range(\"\u961f\u5217\u4e3a\u7a7a\");\nreturn nums[front];\n}\n/* \u5c06\u6570\u7ec4\u8f6c\u5316\u4e3a Vector \u5e76\u8fd4\u56de */\nvector<int> toVector() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvector<int> arr(queSize);\nfor (int i = 0, j = front; i < queSize; i++, j++) {\narr[i] = nums[j % queCapacity];\n}\nreturn arr;\n}\n};\n
            array_queue.py
            class ArrayQueue:\n\"\"\"\u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217\"\"\"\ndef __init__(self, size: int):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__nums: list[int] = [0] * size  # \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nself.__front: int = 0  # \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nself.__size: int = 0  # \u961f\u5217\u957f\u5ea6\ndef capacity(self) -> int:\n\"\"\"\u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf\"\"\"\nreturn len(self.__nums)\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\"\"\"\nreturn self.__size\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn self.__size == 0\ndef push(self, num: int):\n\"\"\"\u5165\u961f\"\"\"\nif self.__size == self.capacity():\nraise IndexError(\"\u961f\u5217\u5df2\u6ee1\")\n# \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n# \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nrear: int = (self.__front + self.__size) % self.capacity()\n# \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nself.__nums[rear] = num\nself.__size += 1\ndef pop(self) -> int:\n\"\"\"\u51fa\u961f\"\"\"\nnum: int = self.peek()\n# \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nself.__front = (self.__front + 1) % self.capacity()\nself.__size -= 1\nreturn num\ndef peek(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\nif self.is_empty():\nraise IndexError(\"\u961f\u5217\u4e3a\u7a7a\")\nreturn self.__nums[self.__front]\ndef to_list(self) -> list[int]:\n\"\"\"\u8fd4\u56de\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\nres = [0] * self.size()\nj: int = self.__front\nfor i in range(self.size()):\nres[i] = self.__nums[(j % self.capacity())]\nj += 1\nreturn res\n
            array_queue.go
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\ntype arrayQueue struct {\nnums        []int // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nfront       int   // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nqueSize     int   // \u961f\u5217\u957f\u5ea6\nqueCapacity int   // \u961f\u5217\u5bb9\u91cf\uff08\u5373\u6700\u5927\u5bb9\u7eb3\u5143\u7d20\u6570\u91cf\uff09\n}\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newArrayQueue(queCapacity int) *arrayQueue {\nreturn &arrayQueue{\nnums:        make([]int, queCapacity),\nqueCapacity: queCapacity,\nfront:       0,\nqueSize:     0,\n}\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (q *arrayQueue) size() int {\nreturn q.queSize\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (q *arrayQueue) isEmpty() bool {\nreturn q.queSize == 0\n}\n/* \u5165\u961f */\nfunc (q *arrayQueue) push(num int) {\n// \u5f53 rear == queCapacity \u8868\u793a\u961f\u5217\u5df2\u6ee1\nif q.queSize == q.queCapacity {\nreturn\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nrear := (q.front + q.queSize) % q.queCapacity\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nq.nums[rear] = num\nq.queSize++\n}\n/* \u51fa\u961f */\nfunc (q *arrayQueue) pop() any {\nnum := q.peek()\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nq.front = (q.front + 1) % q.queCapacity\nq.queSize--\nreturn num\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (q *arrayQueue) peek() any {\nif q.isEmpty() {\nreturn nil\n}\nreturn q.nums[q.front]\n}\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (q *arrayQueue) toSlice() []int {\nrear := (q.front + q.queSize)\nif rear >= q.queCapacity {\nrear %= q.queCapacity\nreturn append(q.nums[q.front:], q.nums[:rear]...)\n}\nreturn q.nums[q.front:rear]\n}\n
            array_queue.js
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n#nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n#front = 0; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n#queSize = 0; // \u961f\u5217\u957f\u5ea6\nconstructor(capacity) {\nthis.#nums = new Array(capacity);\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nget capacity() {\nreturn this.#nums.length;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nget size() {\nreturn this.#queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nempty() {\nreturn this.#queSize === 0;\n}\n/* \u5165\u961f */\npush(num) {\nif (this.size === this.capacity) {\nconsole.log('\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nconst rear = (this.#front + this.size) % this.capacity;\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nthis.#nums[rear] = num;\nthis.#queSize++;\n}\n/* \u51fa\u961f */\npop() {\nconst num = this.peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nthis.#front = (this.#front + 1) % this.capacity;\nthis.#queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek() {\nif (this.empty()) throw new Error('\u961f\u5217\u4e3a\u7a7a');\nreturn this.#nums[this.#front];\n}\n/* \u8fd4\u56de Array */\ntoArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst arr = new Array(this.size);\nfor (let i = 0, j = this.#front; i < this.size; i++, j++) {\narr[i] = this.#nums[j % this.capacity];\n}\nreturn arr;\n}\n}\n
            array_queue.ts
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nprivate nums: number[]; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate front: number; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate queSize: number; // \u961f\u5217\u957f\u5ea6\nconstructor(capacity: number) {\nthis.nums = new Array(capacity);\nthis.front = this.queSize = 0;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nget capacity(): number {\nreturn this.nums.length;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nget size(): number {\nreturn this.queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nempty(): boolean {\nreturn this.queSize === 0;\n}\n/* \u5165\u961f */\npush(num: number): void {\nif (this.size === this.capacity) {\nconsole.log('\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nconst rear = (this.front + this.queSize) % this.capacity;\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nthis.nums[rear] = num;\nthis.queSize++;\n}\n/* \u51fa\u961f */\npop(): number {\nconst num = this.peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nthis.front = (this.front + 1) % this.capacity;\nthis.queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek(): number {\nif (this.empty()) throw new Error('\u961f\u5217\u4e3a\u7a7a');\nreturn this.nums[this.front];\n}\n/* \u8fd4\u56de Array */\ntoArray(): number[] {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst arr = new Array(this.size);\nfor (let i = 0, j = this.front; i < this.size; i++, j++) {\narr[i] = this.nums[j % this.capacity];\n}\nreturn arr;\n}\n}\n
            array_queue.c
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nstruct arrayQueue {\nint *nums;       // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nint front;       // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nint queSize;     // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\nint queCapacity; // \u961f\u5217\u5bb9\u91cf\n};\ntypedef struct arrayQueue arrayQueue;\n/* \u6784\u9020\u51fd\u6570 */\narrayQueue *newArrayQueue(int capacity) {\narrayQueue *queue = (arrayQueue *)malloc(sizeof(arrayQueue));\n// \u521d\u59cb\u5316\u6570\u7ec4\nqueue->queCapacity = capacity;\nqueue->nums = (int *)malloc(sizeof(int) * queue->queCapacity);\nqueue->front = queue->queSize = 0;\nreturn queue;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayQueue(arrayQueue *queue) {\nfree(queue->nums);\nqueue->queCapacity = 0;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity(arrayQueue *queue) {\nreturn queue->queCapacity;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(arrayQueue *queue) {\nreturn queue->queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(arrayQueue *queue) {\nreturn queue->queSize == 0;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek(arrayQueue *queue) {\nassert(size(queue) != 0);\nreturn queue->nums[queue->front];\n}\n/* \u5165\u961f */\nvoid push(arrayQueue *queue, int num) {\nif (size(queue) == capacity(queue)) {\nprintf(\"\u961f\u5217\u5df2\u6ee1\\r\\n\");\nreturn;\n}\n// \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nint rear = (queue->front + queue->queSize) % queue->queCapacity;\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nqueue->nums[rear] = num;\nqueue->queSize++;\n}\n/* \u51fa\u961f */\nvoid pop(arrayQueue *queue) {\nint num = peek(queue);\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nqueue->front = (queue->front + 1) % queue->queCapacity;\nqueue->queSize--;\n}\n/* \u6253\u5370\u961f\u5217 */\nvoid printArrayQueue(arrayQueue *queue) {\nint arr[queue->queSize];\n// \u62f7\u8d1d\nfor (int i = 0, j = queue->front; i < queue->queSize; i++, j++) {\narr[i] = queue->nums[j % queue->queCapacity];\n}\nprintArray(arr, queue->queSize);\n}\n
            array_queue.cs
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nprivate int[] nums;  // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate int front;   // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate int queSize; // \u961f\u5217\u957f\u5ea6\npublic ArrayQueue(int capacity) {\nnums = new int[capacity];\nfront = queSize = 0;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\npublic int capacity() {\nreturn nums.Length;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn queSize == 0;\n}\n/* \u5165\u961f */\npublic void push(int num) {\nif (queSize == capacity()) {\nConsole.WriteLine(\"\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nint rear = (front + queSize) % capacity();\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u51fa\u961f */\npublic int pop() {\nint num = peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nfront = (front + 1) % capacity();\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peek() {\nif (isEmpty())\nthrow new Exception();\nreturn nums[front];\n}\n/* \u8fd4\u56de\u6570\u7ec4 */\npublic int[] toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] res = new int[queSize];\nfor (int i = 0, j = front; i < queSize; i++, j++) {\nres[i] = nums[j % this.capacity()];\n}\nreturn res;\n}\n}\n
            array_queue.swift
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nprivate var nums: [Int] // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate var front = 0 // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate var queSize = 0 // \u961f\u5217\u957f\u5ea6\ninit(capacity: Int) {\n// \u521d\u59cb\u5316\u6570\u7ec4\nnums = Array(repeating: 0, count: capacity)\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nfunc capacity() -> Int {\nnums.count\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc size() -> Int {\nqueSize\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nqueSize == 0\n}\n/* \u5165\u961f */\nfunc push(num: Int) {\nif size() == capacity() {\nprint(\"\u961f\u5217\u5df2\u6ee1\")\nreturn\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nlet rear = (front + queSize) % capacity()\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num\nqueSize += 1\n}\n/* \u51fa\u961f */\n@discardableResult\nfunc pop() -> Int {\nlet num = peek()\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nfront = (front + 1) % capacity()\nqueSize -= 1\nreturn num\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc peek() -> Int {\nif isEmpty() {\nfatalError(\"\u961f\u5217\u4e3a\u7a7a\")\n}\nreturn nums[front]\n}\n/* \u8fd4\u56de\u6570\u7ec4 */\nfunc toArray() -> [Int] {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvar res = Array(repeating: 0, count: queSize)\nfor (i, j) in sequence(first: (0, front), next: { $0 < self.queSize - 1 ? ($0 + 1, $1 + 1) : nil }) {\nres[i] = nums[j % capacity()]\n}\nreturn res\n}\n}\n
            array_queue.zig
            // \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217\nfn ArrayQueue(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nnums: []T = undefined,                          // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4     \ncap: usize = 0,                                 // \u961f\u5217\u5bb9\u91cf\nfront: usize = 0,                               // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nqueSize: usize = 0,                             // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\nmem_arena: ?std.heap.ArenaAllocator = null,\nmem_allocator: std.mem.Allocator = undefined,   // \u5185\u5b58\u5206\u914d\u5668\n// \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6570\u7ec4\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator, cap: usize) !void {\nif (self.mem_arena == null) {\nself.mem_arena = std.heap.ArenaAllocator.init(allocator);\nself.mem_allocator = self.mem_arena.?.allocator();\n}\nself.cap = cap;\nself.nums = try self.mem_allocator.alloc(T, self.cap);\n@memset(self.nums, @as(T, 0));\n}\n// \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.mem_arena == null) return;\nself.mem_arena.?.deinit();\n}\n// \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf\npub fn capacity(self: *Self) usize {\nreturn self.cap;\n}\n// \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\npub fn size(self: *Self) usize {\nreturn self.queSize;\n}\n// \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\npub fn isEmpty(self: *Self) bool {\nreturn self.queSize == 0;\n}\n// \u5165\u961f\npub fn push(self: *Self, num: T) !void {\nif (self.size() == self.capacity()) {\nstd.debug.print(\"\u961f\u5217\u5df2\u6ee1\\n\", .{});\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nvar rear = (self.front + self.queSize) % self.capacity();\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nself.nums[rear] = num;\nself.queSize += 1;\n} // \u51fa\u961f\npub fn pop(self: *Self) T {\nvar num = self.peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nself.front = (self.front + 1) % self.capacity();\nself.queSize -= 1;\nreturn num;\n} // \u8bbf\u95ee\u961f\u9996\u5143\u7d20\npub fn peek(self: *Self) T {\nif (self.isEmpty()) @panic(\"\u961f\u5217\u4e3a\u7a7a\");\nreturn self.nums[self.front];\n} // \u8fd4\u56de\u6570\u7ec4\npub fn toArray(self: *Self) ![]T {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvar res = try self.mem_allocator.alloc(T, self.size());\n@memset(res, @as(T, 0));\nvar i: usize = 0;\nvar j: usize = self.front;\nwhile (i < self.size()) : ({ i += 1; j += 1; }) {\nres[i] = self.nums[j % self.capacity()];\n}\nreturn res;\n}\n};\n}\n
            array_queue.dart
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nlate List<int> _nums; // \u7528\u4e8e\u50a8\u5b58\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nlate int _front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nlate int _queSize; // \u961f\u5217\u957f\u5ea6\nArrayQueue(int capacity) {\n_nums = List.filled(capacity, 0);\n_front = _queSize = 0;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nint capaCity() {\nreturn _nums.length;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn _queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn _queSize == 0;\n}\n/* \u5165\u961f */\nvoid push(int num) {\nif (_queSize == capaCity()) {\nthrow Exception(\"\u961f\u5217\u5df2\u6ee1\");\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nint rear = (_front + _queSize) % capaCity();\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n_nums[rear] = num;\n_queSize++;\n}\n/* \u51fa\u961f */\nint pop() {\nint num = peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n_front = (_front + 1) % capaCity();\n_queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek() {\nif (isEmpty()) {\nthrow Exception(\"\u961f\u5217\u4e3a\u7a7a\");\n}\nreturn _nums[_front];\n}\n/* \u8fd4\u56de Array */\nList<int> toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nfinal List<int> res = List.filled(_queSize, 0);\nfor (int i = 0, j = _front; i < _queSize; i++, j++) {\nres[i] = _nums[j % capaCity()];\n}\nreturn res;\n}\n}\n
            array_queue.rs
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nstruct ArrayQueue {\nnums: Vec<i32>,     // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nfront: i32,         // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nque_size: i32,      // \u961f\u5217\u957f\u5ea6\nque_capacity: i32,  // \u961f\u5217\u5bb9\u91cf\n}\nimpl ArrayQueue {\n/* \u6784\u9020\u65b9\u6cd5 */\nfn new(capacity: i32) -> ArrayQueue {\nArrayQueue {\nnums: vec![0; capacity as usize],\nfront: 0,\nque_size: 0,\nque_capacity: capacity,\n}\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nfn capacity(&self) -> i32 {\nself.que_capacity\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfn size(&self) -> i32 {\nself.que_size\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfn is_empty(&self) -> bool {\nself.que_size == 0\n}\n/* \u5165\u961f */\nfn push(&mut self, num: i32) {\nif self.que_size == self.capacity() {\nprintln!(\"\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nlet rear = (self.front + self.que_size) % self.que_capacity;\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nself.nums[rear as usize] = num;\nself.que_size += 1;\n}\n/* \u51fa\u961f */\nfn pop(&mut self) -> i32 {\nlet num = self.peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nself.front = (self.front + 1) % self.que_capacity;\nself.que_size -= 1;\nnum\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfn peek(&self) -> i32 {\nif self.is_empty() {\npanic!(\"index out of bounds\");\n}\nself.nums[self.front as usize]\n}\n/* \u8fd4\u56de\u6570\u7ec4 */\nfn to_vector(&self) -> Vec<i32> {\nlet cap = self.que_capacity;\nlet mut j = self.front;\nlet mut arr = vec![0; self.que_size as usize];\nfor i in 0..self.que_size {\narr[i as usize] = self.nums[(j % cap) as usize];\nj += 1;\n}\narr\n}\n}\n

            \u4ee5\u4e0a\u5b9e\u73b0\u7684\u961f\u5217\u4ecd\u7136\u5177\u6709\u5c40\u9650\u6027\uff0c\u5373\u5176\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002\u7136\u800c\uff0c\u8fd9\u4e2a\u95ee\u9898\u4e0d\u96be\u89e3\u51b3\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u66ff\u6362\u4e3a\u52a8\u6001\u6570\u7ec4\uff0c\u4ece\u800c\u5f15\u5165\u6269\u5bb9\u673a\u5236\u3002\u6709\u5174\u8da3\u7684\u540c\u5b66\u53ef\u4ee5\u5c1d\u8bd5\u81ea\u884c\u5b9e\u73b0\u3002

            \u4e24\u79cd\u5b9e\u73b0\u7684\u5bf9\u6bd4\u7ed3\u8bba\u4e0e\u6808\u4e00\u81f4\uff0c\u5728\u6b64\u4e0d\u518d\u8d58\u8ff0\u3002

            "},{"location":"chapter_stack_and_queue/queue/#523","title":"5.2.3 \u00a0 \u961f\u5217\u5178\u578b\u5e94\u7528","text":"
            • \u6dd8\u5b9d\u8ba2\u5355\u3002\u8d2d\u7269\u8005\u4e0b\u5355\u540e\uff0c\u8ba2\u5355\u5c06\u52a0\u5165\u961f\u5217\u4e2d\uff0c\u7cfb\u7edf\u968f\u540e\u4f1a\u6839\u636e\u987a\u5e8f\u4f9d\u6b21\u5904\u7406\u961f\u5217\u4e2d\u7684\u8ba2\u5355\u3002\u5728\u53cc\u5341\u4e00\u671f\u95f4\uff0c\u77ed\u65f6\u95f4\u5185\u4f1a\u4ea7\u751f\u6d77\u91cf\u8ba2\u5355\uff0c\u9ad8\u5e76\u53d1\u6210\u4e3a\u5de5\u7a0b\u5e08\u4eec\u9700\u8981\u91cd\u70b9\u653b\u514b\u7684\u95ee\u9898\u3002
            • \u5404\u7c7b\u5f85\u529e\u4e8b\u9879\u3002\u4efb\u4f55\u9700\u8981\u5b9e\u73b0\u201c\u5148\u6765\u540e\u5230\u201d\u529f\u80fd\u7684\u573a\u666f\uff0c\u4f8b\u5982\u6253\u5370\u673a\u7684\u4efb\u52a1\u961f\u5217\u3001\u9910\u5385\u7684\u51fa\u9910\u961f\u5217\u7b49\u3002\u961f\u5217\u5728\u8fd9\u4e9b\u573a\u666f\u4e2d\u53ef\u4ee5\u6709\u6548\u5730\u7ef4\u62a4\u5904\u7406\u987a\u5e8f\u3002
            "},{"location":"chapter_stack_and_queue/stack/","title":"5.1 \u00a0 \u6808","text":"

            \u300c\u6808 Stack\u300d\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u540e\u51fa\uff08First In, Last Out\uff09\u539f\u5219\u7684\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002

            \u6211\u4eec\u53ef\u4ee5\u5c06\u6808\u7c7b\u6bd4\u4e3a\u684c\u9762\u4e0a\u7684\u4e00\u645e\u76d8\u5b50\uff0c\u5982\u679c\u9700\u8981\u62ff\u51fa\u5e95\u90e8\u7684\u76d8\u5b50\uff0c\u5219\u9700\u8981\u5148\u5c06\u4e0a\u9762\u7684\u76d8\u5b50\u4f9d\u6b21\u53d6\u51fa\u3002\u6211\u4eec\u5c06\u76d8\u5b50\u66ff\u6362\u4e3a\u5404\u79cd\u7c7b\u578b\u7684\u5143\u7d20\uff08\u5982\u6574\u6570\u3001\u5b57\u7b26\u3001\u5bf9\u8c61\u7b49\uff09\uff0c\u5c31\u5f97\u5230\u4e86\u6808\u6570\u636e\u7ed3\u6784\u3002

            \u5728\u6808\u4e2d\uff0c\u6211\u4eec\u628a\u5806\u53e0\u5143\u7d20\u7684\u9876\u90e8\u79f0\u4e3a\u300c\u6808\u9876\u300d\uff0c\u5e95\u90e8\u79f0\u4e3a\u300c\u6808\u5e95\u300d\u3002\u5c06\u628a\u5143\u7d20\u6dfb\u52a0\u5230\u6808\u9876\u7684\u64cd\u4f5c\u53eb\u505a\u300c\u5165\u6808\u300d\uff0c\u800c\u5220\u9664\u6808\u9876\u5143\u7d20\u7684\u64cd\u4f5c\u53eb\u505a\u300c\u51fa\u6808\u300d\u3002

            \u56fe\uff1a\u6808\u7684\u5148\u5165\u540e\u51fa\u89c4\u5219

            "},{"location":"chapter_stack_and_queue/stack/#511","title":"5.1.1 \u00a0 \u6808\u5e38\u7528\u64cd\u4f5c","text":"

            \u6808\u7684\u5e38\u7528\u64cd\u4f5c\u5982\u4e0b\u8868\u6240\u793a\uff0c\u5177\u4f53\u7684\u65b9\u6cd5\u540d\u9700\u8981\u6839\u636e\u6240\u4f7f\u7528\u7684\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002\u5728\u6b64\uff0c\u6211\u4eec\u4ee5\u5e38\u89c1\u7684 push() , pop() , peek() \u547d\u540d\u4e3a\u4f8b\u3002

            \u8868\uff1a\u6808\u7684\u64cd\u4f5c\u6548\u7387

            \u65b9\u6cd5 \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u6808\uff08\u6dfb\u52a0\u81f3\u6808\u9876\uff09 \\(O(1)\\) pop() \u6808\u9876\u5143\u7d20\u51fa\u6808 \\(O(1)\\) peek() \u8bbf\u95ee\u6808\u9876\u5143\u7d20 \\(O(1)\\)

            \u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u5185\u7f6e\u7684\u6808\u7c7b\u3002\u7136\u800c\uff0c\u67d0\u4e9b\u8bed\u8a00\u53ef\u80fd\u6ca1\u6709\u4e13\u95e8\u63d0\u4f9b\u6808\u7c7b\uff0c\u8fd9\u65f6\u6211\u4eec\u53ef\u4ee5\u5c06\u8be5\u8bed\u8a00\u7684\u300c\u6570\u7ec4\u300d\u6216\u300c\u94fe\u8868\u300d\u89c6\u4f5c\u6808\u6765\u4f7f\u7528\uff0c\u5e76\u901a\u8fc7\u201c\u8111\u8865\u201d\u6765\u5ffd\u7565\u4e0e\u6808\u65e0\u5173\u7684\u64cd\u4f5c\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust stack.java
            /* \u521d\u59cb\u5316\u6808 */\nStack<Integer> stack = new Stack<>();\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.peek();\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.pop();\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.size();\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = stack.isEmpty();\n
            stack.cpp
            /* \u521d\u59cb\u5316\u6808 */\nstack<int> stack;\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint top = stack.top();\n/* \u5143\u7d20\u51fa\u6808 */\nstack.pop(); // \u65e0\u8fd4\u56de\u503c\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.size();\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool empty = stack.empty();\n
            stack.py
            # \u521d\u59cb\u5316\u6808\n# Python \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a List \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nstack: list[int] = []\n# \u5143\u7d20\u5165\u6808\nstack.append(1)\nstack.append(3)\nstack.append(2)\nstack.append(5)\nstack.append(4)\n# \u8bbf\u95ee\u6808\u9876\u5143\u7d20\npeek: int = stack[-1]\n# \u5143\u7d20\u51fa\u6808\npop: int = stack.pop()\n# \u83b7\u53d6\u6808\u7684\u957f\u5ea6\nsize: int = len(stack)\n# \u5224\u65ad\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(stack) == 0\n
            stack_test.go
            /* \u521d\u59cb\u5316\u6808 */\n// \u5728 Go \u4e2d\uff0c\u63a8\u8350\u5c06 Slice \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nvar stack []int\n/* \u5143\u7d20\u5165\u6808 */\nstack = append(stack, 1)\nstack = append(stack, 3)\nstack = append(stack, 2)\nstack = append(stack, 5)\nstack = append(stack, 4)\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npeek := stack[len(stack)-1]\n/* \u5143\u7d20\u51fa\u6808 */\npop := stack[len(stack)-1]\nstack = stack[:len(stack)-1]\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nsize := len(stack)\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nisEmpty := len(stack) == 0\n
            stack.js
            /* \u521d\u59cb\u5316\u6808 */\n// Javascript \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nconst stack = [];\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nconst peek = stack[stack.length-1];\n/* \u5143\u7d20\u51fa\u6808 */\nconst pop = stack.pop();\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nconst size = stack.length;\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nconst is_empty = stack.length === 0;\n
            stack.ts
            /* \u521d\u59cb\u5316\u6808 */\n// Typescript \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nconst stack: number[] = [];\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nconst peek = stack[stack.length - 1];\n/* \u5143\u7d20\u51fa\u6808 */\nconst pop = stack.pop();\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nconst size = stack.length;\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nconst is_empty = stack.length === 0;\n
            stack.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u6808\n
            stack.cs
            /* \u521d\u59cb\u5316\u6808 */\nStack<int> stack = new ();\n/* \u5143\u7d20\u5165\u6808 */\nstack.Push(1);\nstack.Push(3);\nstack.Push(2);\nstack.Push(5);\nstack.Push(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.Peek();\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.Pop();\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.Count;\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = stack.Count == 0;\n
            stack.swift
            /* \u521d\u59cb\u5316\u6808 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nvar stack: [Int] = []\n/* \u5143\u7d20\u5165\u6808 */\nstack.append(1)\nstack.append(3)\nstack.append(2)\nstack.append(5)\nstack.append(4)\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nlet peek = stack.last!\n/* \u5143\u7d20\u51fa\u6808 */\nlet pop = stack.removeLast()\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nlet size = stack.count\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = stack.isEmpty\n
            stack.zig
            \n
            stack.dart
            /* \u521d\u59cb\u5316\u6808 */\n// Dart \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a List \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nList<int> stack = [];\n/* \u5143\u7d20\u5165\u6808 */\nstack.add(1);\nstack.add(3);\nstack.add(2);\nstack.add(5);\nstack.add(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.last;\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.removeLast();\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.length;\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = stack.isEmpty;\n
            stack.rs
            \n
            "},{"location":"chapter_stack_and_queue/stack/#512","title":"5.1.2 \u00a0 \u6808\u7684\u5b9e\u73b0","text":"

            \u4e3a\u4e86\u6df1\u5165\u4e86\u89e3\u6808\u7684\u8fd0\u884c\u673a\u5236\uff0c\u6211\u4eec\u6765\u5c1d\u8bd5\u81ea\u5df1\u5b9e\u73b0\u4e00\u4e2a\u6808\u7c7b\u3002

            \u6808\u9075\u5faa\u5148\u5165\u540e\u51fa\u7684\u539f\u5219\uff0c\u56e0\u6b64\u6211\u4eec\u53ea\u80fd\u5728\u6808\u9876\u6dfb\u52a0\u6216\u5220\u9664\u5143\u7d20\u3002\u7136\u800c\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u90fd\u53ef\u4ee5\u5728\u4efb\u610f\u4f4d\u7f6e\u6dfb\u52a0\u548c\u5220\u9664\u5143\u7d20\uff0c\u56e0\u6b64\u6808\u53ef\u4ee5\u88ab\u89c6\u4e3a\u4e00\u79cd\u53d7\u9650\u5236\u7684\u6570\u7ec4\u6216\u94fe\u8868\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u6211\u4eec\u53ef\u4ee5\u201c\u5c4f\u853d\u201d\u6570\u7ec4\u6216\u94fe\u8868\u7684\u90e8\u5206\u65e0\u5173\u64cd\u4f5c\uff0c\u4f7f\u5176\u5bf9\u5916\u8868\u73b0\u7684\u903b\u8f91\u7b26\u5408\u6808\u7684\u7279\u6027\u3002

            "},{"location":"chapter_stack_and_queue/stack/#1","title":"1. \u00a0 \u57fa\u4e8e\u94fe\u8868\u7684\u5b9e\u73b0","text":"

            \u4f7f\u7528\u94fe\u8868\u6765\u5b9e\u73b0\u6808\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u94fe\u8868\u7684\u5934\u8282\u70b9\u89c6\u4e3a\u6808\u9876\uff0c\u5c3e\u8282\u70b9\u89c6\u4e3a\u6808\u5e95\u3002

            \u5bf9\u4e8e\u5165\u6808\u64cd\u4f5c\uff0c\u6211\u4eec\u53ea\u9700\u5c06\u5143\u7d20\u63d2\u5165\u94fe\u8868\u5934\u90e8\uff0c\u8fd9\u79cd\u8282\u70b9\u63d2\u5165\u65b9\u6cd5\u88ab\u79f0\u4e3a\u201c\u5934\u63d2\u6cd5\u201d\u3002\u800c\u5bf9\u4e8e\u51fa\u6808\u64cd\u4f5c\uff0c\u53ea\u9700\u5c06\u5934\u8282\u70b9\u4ece\u94fe\u8868\u4e2d\u5220\u9664\u5373\u53ef\u3002

            LinkedListStackpush()pop()

            \u56fe\uff1a\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u6808\u7684\u5165\u6808\u51fa\u6808\u64cd\u4f5c

            \u4ee5\u4e0b\u662f\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u6808\u7684\u793a\u4f8b\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linkedlist_stack.java
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nprivate ListNode stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nprivate int stkSize = 0; // \u6808\u7684\u957f\u5ea6\npublic LinkedListStack() {\nstackPeek = null;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\npublic int size() {\nreturn stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u6808 */\npublic void push(int num) {\nListNode node = new ListNode(num);\nnode.next = stackPeek;\nstackPeek = node;\nstkSize++;\n}\n/* \u51fa\u6808 */\npublic int pop() {\nint num = peek();\nstackPeek = stackPeek.next;\nstkSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npublic int peek() {\nif (size() == 0)\nthrow new IndexOutOfBoundsException();\nreturn stackPeek.val;\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic int[] toArray() {\nListNode node = stackPeek;\nint[] res = new int[size()];\nfor (int i = res.length - 1; i >= 0; i--) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_stack.cpp
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nprivate:\nListNode *stackTop; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nint stkSize;        // \u6808\u7684\u957f\u5ea6\npublic:\nLinkedListStack() {\nstackTop = nullptr;\nstkSize = 0;\n}\n~LinkedListStack() {\n// \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\nfreeMemoryLinkedList(stackTop);\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size() {\nreturn stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool empty() {\nreturn size() == 0;\n}\n/* \u5165\u6808 */\nvoid push(int num) {\nListNode *node = new ListNode(num);\nnode->next = stackTop;\nstackTop = node;\nstkSize++;\n}\n/* \u51fa\u6808 */\nvoid pop() {\nint num = top();\nListNode *tmp = stackTop;\nstackTop = stackTop->next;\n// \u91ca\u653e\u5185\u5b58\ndelete tmp;\nstkSize--;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint top() {\nif (size() == 0)\nthrow out_of_range(\"\u6808\u4e3a\u7a7a\");\nreturn stackTop->val;\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nvector<int> toVector() {\nListNode *node = stackTop;\nvector<int> res(size());\nfor (int i = res.size() - 1; i >= 0; i--) {\nres[i] = node->val;\nnode = node->next;\n}\nreturn res;\n}\n};\n
            linkedlist_stack.py
            class LinkedListStack:\n\"\"\"\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__peek: ListNode | None = None\nself.__size: int = 0\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u6808\u7684\u957f\u5ea6\"\"\"\nreturn self.__size\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn not self.__peek\ndef push(self, val: int):\n\"\"\"\u5165\u6808\"\"\"\nnode = ListNode(val)\nnode.next = self.__peek\nself.__peek = node\nself.__size += 1\ndef pop(self) -> int:\n\"\"\"\u51fa\u6808\"\"\"\nnum: int = self.peek()\nself.__peek = self.__peek.next\nself.__size -= 1\nreturn num\ndef peek(self) -> int:\n\"\"\"\u8bbf\u95ee\u6808\u9876\u5143\u7d20\"\"\"\n# \u5224\u7a7a\u5904\u7406\nif not self.__peek:\nreturn None\nreturn self.__peek.val\ndef to_list(self) -> list[int]:\n\"\"\"\u8f6c\u5316\u4e3a\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\narr = []\nnode = self.__peek\nwhile node:\narr.append(node.val)\nnode = node.next\narr.reverse()\nreturn arr\n
            linkedlist_stack.go
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\ntype linkedListStack struct {\n// \u4f7f\u7528\u5185\u7f6e\u5305 list \u6765\u5b9e\u73b0\u6808\ndata *list.List\n}\n/* \u521d\u59cb\u5316\u6808 */\nfunc newLinkedListStack() *linkedListStack {\nreturn &linkedListStack{\ndata: list.New(),\n}\n}\n/* \u5165\u6808 */\nfunc (s *linkedListStack) push(value int) {\ns.data.PushBack(value)\n}\n/* \u51fa\u6808 */\nfunc (s *linkedListStack) pop() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Back()\ns.data.Remove(e)\nreturn e.Value\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nfunc (s *linkedListStack) peek() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Back()\nreturn e.Value\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nfunc (s *linkedListStack) size() int {\nreturn s.data.Len()\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListStack) isEmpty() bool {\nreturn s.data.Len() == 0\n}\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListStack) toList() *list.List {\nreturn s.data\n}\n
            linkedlist_stack.js
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n#stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n#stkSize = 0; // \u6808\u7684\u957f\u5ea6\nconstructor() {\nthis.#stackPeek = null;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nget size() {\nreturn this.#stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nisEmpty() {\nreturn this.size === 0;\n}\n/* \u5165\u6808 */\npush(num) {\nconst node = new ListNode(num);\nnode.next = this.#stackPeek;\nthis.#stackPeek = node;\nthis.#stkSize++;\n}\n/* \u51fa\u6808 */\npop() {\nconst num = this.peek();\nthis.#stackPeek = this.#stackPeek.next;\nthis.#stkSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npeek() {\nif (!this.#stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.#stackPeek.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\ntoArray() {\nlet node = this.#stackPeek;\nconst res = new Array(this.size);\nfor (let i = res.length - 1; i >= 0; i--) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_stack.ts
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nprivate stackPeek: ListNode | null; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nprivate stkSize: number = 0; // \u6808\u7684\u957f\u5ea6\nconstructor() {\nthis.stackPeek = null;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nget size(): number {\nreturn this.stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nisEmpty(): boolean {\nreturn this.size === 0;\n}\n/* \u5165\u6808 */\npush(num: number): void {\nconst node = new ListNode(num);\nnode.next = this.stackPeek;\nthis.stackPeek = node;\nthis.stkSize++;\n}\n/* \u51fa\u6808 */\npop(): number {\nconst num = this.peek();\nif (!this.stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\nthis.stackPeek = this.stackPeek.next;\nthis.stkSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npeek(): number {\nif (!this.stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.stackPeek.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\ntoArray(): number[] {\nlet node = this.stackPeek;\nconst res = new Array<number>(this.size);\nfor (let i = res.length - 1; i >= 0; i--) {\nres[i] = node!.val;\nnode = node!.next;\n}\nreturn res;\n}\n}\n
            linkedlist_stack.c
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nstruct linkedListStack {\nListNode *top; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nint size;      // \u6808\u7684\u957f\u5ea6\n};\ntypedef struct linkedListStack linkedListStack;\n/* \u6784\u9020\u51fd\u6570 */\nlinkedListStack *newLinkedListStack() {\nlinkedListStack *s = malloc(sizeof(linkedListStack));\ns->top = NULL;\ns->size = 0;\nreturn s;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListStack(linkedListStack *s) {\nwhile (s->top) {\nListNode *n = s->top->next;\nfree(s->top);\ns->top = n;\n}\nfree(s);\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size(linkedListStack *s) {\nassert(s);\nreturn s->size;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty(linkedListStack *s) {\nassert(s);\nreturn size(s) == 0;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek(linkedListStack *s) {\nassert(s);\nassert(size(s) != 0);\nreturn s->top->val;\n}\n/* \u5165\u6808 */\nvoid push(linkedListStack *s, int num) {\nassert(s);\nListNode *node = (ListNode *)malloc(sizeof(ListNode));\nnode->next = s->top; // \u66f4\u65b0\u65b0\u52a0\u8282\u70b9\u6307\u9488\u57df\nnode->val = num;     // \u66f4\u65b0\u65b0\u52a0\u8282\u70b9\u6570\u636e\u57df\ns->top = node;       // \u66f4\u65b0\u6808\u9876\ns->size++;           // \u66f4\u65b0\u6808\u5927\u5c0f\n}\n/* \u51fa\u6808 */\nint pop(linkedListStack *s) {\nif (s->size == 0) {\nprintf(\"stack is empty.\\n\");\nreturn INT_MAX;\n}\nassert(s);\nint val = peek(s);\nListNode *tmp = s->top;\ns->top = s->top->next;\n// \u91ca\u653e\u5185\u5b58\nfree(tmp);\ns->size--;\nreturn val;\n}\n
            linkedlist_stack.cs
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nprivate ListNode? stackPeek;  // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nprivate int stkSize = 0;   // \u6808\u7684\u957f\u5ea6\npublic LinkedListStack() {\nstackPeek = null;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\npublic int size() {\nreturn stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u6808 */\npublic void push(int num) {\nListNode node = new ListNode(num);\nnode.next = stackPeek;\nstackPeek = node;\nstkSize++;\n}\n/* \u51fa\u6808 */\npublic int pop() {\nif (stackPeek == null)\nthrow new Exception();\nint num = peek();\nstackPeek = stackPeek.next;\nstkSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npublic int peek() {\nif (size() == 0 || stackPeek == null)\nthrow new Exception();\nreturn stackPeek.val;\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic int[] toArray() {\nif (stackPeek == null)\nreturn Array.Empty<int>();\nListNode node = stackPeek;\nint[] res = new int[size()];\nfor (int i = res.Length - 1; i >= 0; i--) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_stack.swift
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nprivate var _peek: ListNode? // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nprivate var _size = 0 // \u6808\u7684\u957f\u5ea6\ninit() {}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nfunc size() -> Int {\n_size\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nsize() == 0\n}\n/* \u5165\u6808 */\nfunc push(num: Int) {\nlet node = ListNode(x: num)\nnode.next = _peek\n_peek = node\n_size += 1\n}\n/* \u51fa\u6808 */\n@discardableResult\nfunc pop() -> Int {\nlet num = peek()\n_peek = _peek?.next\n_size -= 1\nreturn num\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nfunc peek() -> Int {\nif isEmpty() {\nfatalError(\"\u6808\u4e3a\u7a7a\")\n}\nreturn _peek!.val\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nfunc toArray() -> [Int] {\nvar node = _peek\nvar res = Array(repeating: 0, count: _size)\nfor i in sequence(first: res.count - 1, next: { $0 >= 0 + 1 ? $0 - 1 : nil }) {\nres[i] = node!.val\nnode = node?.next\n}\nreturn res\n}\n}\n
            linkedlist_stack.zig
            // \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\nfn LinkedListStack(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nstack_top: ?*inc.ListNode(T) = null,             // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nstk_size: usize = 0,                             // \u6808\u7684\u957f\u5ea6\nmem_arena: ?std.heap.ArenaAllocator = null,\nmem_allocator: std.mem.Allocator = undefined,    // \u5185\u5b58\u5206\u914d\u5668\n// \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6808\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator) !void {\nif (self.mem_arena == null) {\nself.mem_arena = std.heap.ArenaAllocator.init(allocator);\nself.mem_allocator = self.mem_arena.?.allocator();\n}\nself.stack_top = null;\nself.stk_size = 0;\n}\n// \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.mem_arena == null) return;\nself.mem_arena.?.deinit();\n}\n// \u83b7\u53d6\u6808\u7684\u957f\u5ea6\npub fn size(self: *Self) usize {\nreturn self.stk_size;\n}\n// \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\npub fn isEmpty(self: *Self) bool {\nreturn self.size() == 0;\n}\n// \u8bbf\u95ee\u6808\u9876\u5143\u7d20\npub fn peek(self: *Self) T {\nif (self.size() == 0) @panic(\"\u6808\u4e3a\u7a7a\");\nreturn self.stack_top.?.val;\n}  // \u5165\u6808\npub fn push(self: *Self, num: T) !void {\nvar node = try self.mem_allocator.create(inc.ListNode(T));\nnode.init(num);\nnode.next = self.stack_top;\nself.stack_top = node;\nself.stk_size += 1;\n} // \u51fa\u6808\npub fn pop(self: *Self) T {\nvar num = self.peek();\nself.stack_top = self.stack_top.?.next;\nself.stk_size -= 1;\nreturn num;\n} // \u5c06\u6808\u8f6c\u6362\u4e3a\u6570\u7ec4\npub fn toArray(self: *Self) ![]T {\nvar node = self.stack_top;\nvar res = try self.mem_allocator.alloc(T, self.size());\n@memset(res, @as(T, 0));\nvar i: usize = 0;\nwhile (i < res.len) : (i += 1) {\nres[res.len - i - 1] = node.?.val;\nnode = node.?.next;\n}\nreturn res;\n}\n};\n}\n
            linkedlist_stack.dart
            /* \u57fa\u4e8e\u94fe\u8868\u7c7b\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nListNode? _stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nint _stkSize = 0; // \u6808\u7684\u957f\u5ea6\nLinkedListStack() {\n_stackPeek = null;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size() {\nreturn _stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn _stkSize == 0;\n}\n/* \u5165\u6808 */\nvoid push(int num) {\nfinal ListNode node = ListNode(num);\nnode.next = _stackPeek;\n_stackPeek = node;\n_stkSize++;\n}\n/* \u51fa\u6808 */\nint pop() {\nfinal int num = peek();\n_stackPeek = _stackPeek!.next;\n_stkSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek() {\nif (_stackPeek == null) {\nthrow Exception(\"\u6808\u4e3a\u7a7a\");\n}\nreturn _stackPeek!.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a List \u5e76\u8fd4\u56de */\nList<int> toList() {\nListNode? node = _stackPeek;\nList<int> list = [];\nwhile (node != null) {\nlist.add(node.val);\nnode = node.next;\n}\nlist = list.reversed.toList();\nreturn list;\n}\n}\n
            linkedlist_stack.rs
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\n#[allow(dead_code)]\npub struct LinkedListStack<T> {\nstack_peek: Option<Rc<RefCell<ListNode<T>>>>,   // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nstk_size: usize,                                // \u6808\u7684\u957f\u5ea6\n}\nimpl<T: Copy> LinkedListStack<T> {\npub fn new() -> Self {\nSelf {\nstack_peek: None,\nstk_size: 0,\n}\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\npub fn size(&self) -> usize {\nreturn self.stk_size;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\npub fn is_empty(&self) -> bool {\nreturn self.size() == 0;\n}\n/* \u5165\u6808 */\npub fn push(&mut self, num: T) {\nlet node = ListNode::new(num);\nnode.borrow_mut().next = self.stack_peek.take();\nself.stack_peek = Some(node);\nself.stk_size += 1;\n}\n/* \u51fa\u6808 */\npub fn pop(&mut self) -> Option<T> {\nself.stack_peek.take().map(|old_head| {\nmatch old_head.borrow_mut().next.take() {\nSome(new_head) => {\nself.stack_peek = Some(new_head);\n}\nNone => {\nself.stack_peek = None;\n}\n}\nself.stk_size -= 1;\nRc::try_unwrap(old_head).ok().unwrap().into_inner().val\n})\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npub fn peek(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\nself.stack_peek.as_ref()\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\nif let Some(node) = head {\nlet mut nums = self.to_array(node.borrow().next.as_ref());\nnums.push(node.borrow().val);\nreturn nums;\n}\nreturn Vec::new();\n}\n}\n
            "},{"location":"chapter_stack_and_queue/stack/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"

            \u5728\u57fa\u4e8e\u300c\u6570\u7ec4\u300d\u5b9e\u73b0\u6808\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u7684\u5c3e\u90e8\u4f5c\u4e3a\u6808\u9876\u3002\u5728\u8fd9\u6837\u7684\u8bbe\u8ba1\u4e0b\uff0c\u5165\u6808\u4e0e\u51fa\u6808\u64cd\u4f5c\u5c31\u5206\u522b\u5bf9\u5e94\u5728\u6570\u7ec4\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u4e0e\u5220\u9664\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(1)\\) \u3002

            ArrayStackpush()pop()

            \u56fe\uff1a\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u6808\u7684\u5165\u6808\u51fa\u6808\u64cd\u4f5c

            \u7531\u4e8e\u5165\u6808\u7684\u5143\u7d20\u53ef\u80fd\u4f1a\u6e90\u6e90\u4e0d\u65ad\u5730\u589e\u52a0\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u52a8\u6001\u6570\u7ec4\uff0c\u8fd9\u6837\u5c31\u65e0\u987b\u81ea\u884c\u5904\u7406\u6570\u7ec4\u6269\u5bb9\u95ee\u9898\u3002\u4ee5\u4e0b\u4e3a\u793a\u4f8b\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array_stack.java
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nprivate ArrayList<Integer> stack;\npublic ArrayStack() {\n// \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\nstack = new ArrayList<>();\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\npublic int size() {\nreturn stack.size();\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u6808 */\npublic void push(int num) {\nstack.add(num);\n}\n/* \u51fa\u6808 */\npublic int pop() {\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\nreturn stack.remove(size() - 1);\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npublic int peek() {\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\nreturn stack.get(size() - 1);\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic Object[] toArray() {\nreturn stack.toArray();\n}\n}\n
            array_stack.cpp
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nprivate:\nvector<int> stack;\npublic:\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size() {\nreturn stack.size();\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool empty() {\nreturn stack.empty();\n}\n/* \u5165\u6808 */\nvoid push(int num) {\nstack.push_back(num);\n}\n/* \u51fa\u6808 */\nvoid pop() {\nint oldTop = top();\nstack.pop_back();\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint top() {\nif (empty())\nthrow out_of_range(\"\u6808\u4e3a\u7a7a\");\nreturn stack.back();\n}\n/* \u8fd4\u56de Vector */\nvector<int> toVector() {\nreturn stack;\n}\n};\n
            array_stack.py
            class ArrayStack:\n\"\"\"\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__stack: list[int] = []\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u6808\u7684\u957f\u5ea6\"\"\"\nreturn len(self.__stack)\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn self.__stack == []\ndef push(self, item: int):\n\"\"\"\u5165\u6808\"\"\"\nself.__stack.append(item)\ndef pop(self) -> int:\n\"\"\"\u51fa\u6808\"\"\"\nif self.is_empty():\nraise IndexError(\"\u6808\u4e3a\u7a7a\")\nreturn self.__stack.pop()\ndef peek(self) -> int:\n\"\"\"\u8bbf\u95ee\u6808\u9876\u5143\u7d20\"\"\"\nif self.is_empty():\nraise IndexError(\"\u6808\u4e3a\u7a7a\")\nreturn self.__stack[-1]\ndef to_list(self) -> list[int]:\n\"\"\"\u8fd4\u56de\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\nreturn self.__stack\n
            array_stack.go
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\ntype arrayStack struct {\ndata []int // \u6570\u636e\n}\n/* \u521d\u59cb\u5316\u6808 */\nfunc newArrayStack() *arrayStack {\nreturn &arrayStack{\n// \u8bbe\u7f6e\u6808\u7684\u957f\u5ea6\u4e3a 0\uff0c\u5bb9\u91cf\u4e3a 16\ndata: make([]int, 0, 16),\n}\n}\n/* \u6808\u7684\u957f\u5ea6 */\nfunc (s *arrayStack) size() int {\nreturn len(s.data)\n}\n/* \u6808\u662f\u5426\u4e3a\u7a7a */\nfunc (s *arrayStack) isEmpty() bool {\nreturn s.size() == 0\n}\n/* \u5165\u6808 */\nfunc (s *arrayStack) push(v int) {\n// \u5207\u7247\u4f1a\u81ea\u52a8\u6269\u5bb9\ns.data = append(s.data, v)\n}\n/* \u51fa\u6808 */\nfunc (s *arrayStack) pop() any {\nval := s.peek()\ns.data = s.data[:len(s.data)-1]\nreturn val\n}\n/* \u83b7\u53d6\u6808\u9876\u5143\u7d20 */\nfunc (s *arrayStack) peek() any {\nif s.isEmpty() {\nreturn nil\n}\nval := s.data[len(s.data)-1]\nreturn val\n}\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (s *arrayStack) toSlice() []int {\nreturn s.data\n}\n
            array_stack.js
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n#stack;\nconstructor() {\nthis.#stack = [];\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nget size() {\nreturn this.#stack.length;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nempty() {\nreturn this.#stack.length === 0;\n}\n/* \u5165\u6808 */\npush(num) {\nthis.#stack.push(num);\n}\n/* \u51fa\u6808 */\npop() {\nif (this.empty()) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.#stack.pop();\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\ntop() {\nif (this.empty()) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.#stack[this.#stack.length - 1];\n}\n/* \u8fd4\u56de Array */\ntoArray() {\nreturn this.#stack;\n}\n}\n
            array_stack.ts
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nprivate stack: number[];\nconstructor() {\nthis.stack = [];\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nget size(): number {\nreturn this.stack.length;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nempty(): boolean {\nreturn this.stack.length === 0;\n}\n/* \u5165\u6808 */\npush(num: number): void {\nthis.stack.push(num);\n}\n/* \u51fa\u6808 */\npop(): number | undefined {\nif (this.empty()) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.stack.pop();\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\ntop(): number | undefined {\nif (this.empty()) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.stack[this.stack.length - 1];\n}\n/* \u8fd4\u56de Array */\ntoArray() {\nreturn this.stack;\n}\n}\n
            array_stack.c
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nstruct arrayStack {\nint *data;\nint size;\n};\ntypedef struct arrayStack arrayStack;\n/* \u6784\u9020\u51fd\u6570 */\narrayStack *newArrayStack() {\narrayStack *s = malloc(sizeof(arrayStack));\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5927\u5bb9\u91cf\uff0c\u907f\u514d\u6269\u5bb9\ns->data = malloc(sizeof(int) * MAX_SIZE);\ns->size = 0;\nreturn s;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size(arrayStack *s) {\nreturn s->size;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty(arrayStack *s) {\nreturn s->size == 0;\n}\n/* \u5165\u6808 */\nvoid push(arrayStack *s, int num) {\nif (s->size == MAX_SIZE) {\nprintf(\"stack is full.\\n\");\nreturn;\n}\ns->data[s->size] = num;\ns->size++;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek(arrayStack *s) {\nif (s->size == 0) {\nprintf(\"stack is empty.\\n\");\nreturn INT_MAX;\n}\nreturn s->data[s->size - 1];\n}\n/* \u51fa\u6808 */\nint pop(arrayStack *s) {\nif (s->size == 0) {\nprintf(\"stack is empty.\\n\");\nreturn INT_MAX;\n}\nint val = peek(s);\ns->size--;\nreturn val;\n}\n
            array_stack.cs
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nprivate List<int> stack;\npublic ArrayStack() {\n// \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\nstack = new();\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\npublic int size() {\nreturn stack.Count();\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u6808 */\npublic void push(int num) {\nstack.Add(num);\n}\n/* \u51fa\u6808 */\npublic int pop() {\nif (isEmpty())\nthrow new Exception();\nvar val = peek();\nstack.RemoveAt(size() - 1);\nreturn val;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npublic int peek() {\nif (isEmpty())\nthrow new Exception();\nreturn stack[size() - 1];\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic int[] toArray() {\nreturn stack.ToArray();\n}\n}\n
            array_stack.swift
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nprivate var stack: [Int]\ninit() {\n// \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\nstack = []\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nfunc size() -> Int {\nstack.count\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nstack.isEmpty\n}\n/* \u5165\u6808 */\nfunc push(num: Int) {\nstack.append(num)\n}\n/* \u51fa\u6808 */\n@discardableResult\nfunc pop() -> Int {\nif isEmpty() {\nfatalError(\"\u6808\u4e3a\u7a7a\")\n}\nreturn stack.removeLast()\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nfunc peek() -> Int {\nif isEmpty() {\nfatalError(\"\u6808\u4e3a\u7a7a\")\n}\nreturn stack.last!\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nfunc toArray() -> [Int] {\nstack\n}\n}\n
            array_stack.zig
            // \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\nfn ArrayStack(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nstack: ?std.ArrayList(T) = null,     // \u6784\u9020\u65b9\u6cd5\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6808\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator) void {\nif (self.stack == null) {\nself.stack = std.ArrayList(T).init(allocator);\n}\n}\n// \u6790\u6784\u65b9\u6cd5\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.stack == null) return;\nself.stack.?.deinit();\n}\n// \u83b7\u53d6\u6808\u7684\u957f\u5ea6\npub fn size(self: *Self) usize {\nreturn self.stack.?.items.len;\n}\n// \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\npub fn isEmpty(self: *Self) bool {\nreturn self.size() == 0;\n}\n// \u8bbf\u95ee\u6808\u9876\u5143\u7d20\npub fn peek(self: *Self) T {\nif (self.isEmpty()) @panic(\"\u6808\u4e3a\u7a7a\");\nreturn self.stack.?.items[self.size() - 1];\n}  // \u5165\u6808\npub fn push(self: *Self, num: T) !void {\ntry self.stack.?.append(num);\n} // \u51fa\u6808\npub fn pop(self: *Self) T {\nvar num = self.stack.?.pop();\nreturn num;\n} // \u8fd4\u56de ArrayList\npub fn toList(self: *Self) std.ArrayList(T) {\nreturn self.stack.?;\n}\n};\n}\n
            array_stack.dart
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nlate List<int> _stack;\nArrayStack() {\n_stack = [];\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size() {\nreturn _stack.length;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn _stack.isEmpty;\n}\n/* \u5165\u6808 */\nvoid push(int num) {\n_stack.add(num);\n}\n/* \u51fa\u6808 */\nint pop() {\nif (isEmpty()) {\nthrow Exception(\"\u6808\u4e3a\u7a7a\");\n}\nreturn _stack.removeLast();\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek() {\nif (isEmpty()) {\nthrow Exception(\"\u6808\u4e3a\u7a7a\");\n}\nreturn _stack.last;\n}\n/* \u5c06\u6808\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nList<int> toArray() => _stack;\n}\n
            array_stack.rs
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nstruct ArrayStack<T> {\nstack: Vec<T>,\n}\nimpl<T> ArrayStack<T> {\n/* \u521d\u59cb\u5316\u6808 */\nfn new() -> ArrayStack<T> {\nArrayStack::<T> { stack: Vec::<T>::new() }\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nfn size(&self) -> usize {\nself.stack.len()\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nfn is_empty(&self) -> bool {\nself.size() == 0\n}\n/* \u5165\u6808 */\nfn push(&mut self, num: T) {\nself.stack.push(num);\n}\n/* \u51fa\u6808 */\nfn pop(&mut self) -> Option<T> {\nmatch self.stack.pop() {\nSome(num) => Some(num),\nNone => None,\n}\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nfn peek(&self) -> Option<&T> {\nif self.is_empty() { panic!(\"\u6808\u4e3a\u7a7a\") };\nself.stack.last()\n}\n/* \u8fd4\u56de &Vec */\nfn to_array(&self) -> &Vec<T> {\n&self.stack\n}\n}\n
            "},{"location":"chapter_stack_and_queue/stack/#513","title":"5.1.3 \u00a0 \u4e24\u79cd\u5b9e\u73b0\u5bf9\u6bd4","text":""},{"location":"chapter_stack_and_queue/stack/#1_1","title":"1. \u00a0 \u652f\u6301\u64cd\u4f5c","text":"

            \u4e24\u79cd\u5b9e\u73b0\u90fd\u652f\u6301\u6808\u5b9a\u4e49\u4e2d\u7684\u5404\u9879\u64cd\u4f5c\u3002\u6570\u7ec4\u5b9e\u73b0\u989d\u5916\u652f\u6301\u968f\u673a\u8bbf\u95ee\uff0c\u4f46\u8fd9\u5df2\u8d85\u51fa\u4e86\u6808\u7684\u5b9a\u4e49\u8303\u7574\uff0c\u56e0\u6b64\u4e00\u822c\u4e0d\u4f1a\u7528\u5230\u3002

            "},{"location":"chapter_stack_and_queue/stack/#2_1","title":"2. \u00a0 \u65f6\u95f4\u6548\u7387","text":"

            \u5728\u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0\u4e2d\uff0c\u5165\u6808\u548c\u51fa\u6808\u64cd\u4f5c\u90fd\u662f\u5728\u9884\u5148\u5206\u914d\u597d\u7684\u8fde\u7eed\u5185\u5b58\u4e2d\u8fdb\u884c\uff0c\u5177\u6709\u5f88\u597d\u7684\u7f13\u5b58\u672c\u5730\u6027\uff0c\u56e0\u6b64\u6548\u7387\u8f83\u9ad8\u3002\u7136\u800c\uff0c\u5982\u679c\u5165\u6808\u65f6\u8d85\u51fa\u6570\u7ec4\u5bb9\u91cf\uff0c\u4f1a\u89e6\u53d1\u6269\u5bb9\u673a\u5236\uff0c\u5bfc\u81f4\u8be5\u6b21\u5165\u6808\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53d8\u4e3a \\(O(n)\\) \u3002

            \u5728\u94fe\u8868\u5b9e\u73b0\u4e2d\uff0c\u94fe\u8868\u7684\u6269\u5bb9\u975e\u5e38\u7075\u6d3b\uff0c\u4e0d\u5b58\u5728\u4e0a\u8ff0\u6570\u7ec4\u6269\u5bb9\u65f6\u6548\u7387\u964d\u4f4e\u7684\u95ee\u9898\u3002\u4f46\u662f\uff0c\u5165\u6808\u64cd\u4f5c\u9700\u8981\u521d\u59cb\u5316\u8282\u70b9\u5bf9\u8c61\u5e76\u4fee\u6539\u6307\u9488\uff0c\u56e0\u6b64\u6548\u7387\u76f8\u5bf9\u8f83\u4f4e\u3002\u4e0d\u8fc7\uff0c\u5982\u679c\u5165\u6808\u5143\u7d20\u672c\u8eab\u5c31\u662f\u8282\u70b9\u5bf9\u8c61\uff0c\u90a3\u4e48\u53ef\u4ee5\u7701\u53bb\u521d\u59cb\u5316\u6b65\u9aa4\uff0c\u4ece\u800c\u63d0\u9ad8\u6548\u7387\u3002

            \u7efc\u4e0a\u6240\u8ff0\uff0c\u5f53\u5165\u6808\u4e0e\u51fa\u6808\u64cd\u4f5c\u7684\u5143\u7d20\u662f\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff08\u5982 int , double \uff09\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u51fa\u4ee5\u4e0b\u7ed3\u8bba\uff1a

            • \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\u5728\u89e6\u53d1\u6269\u5bb9\u65f6\u6548\u7387\u4f1a\u964d\u4f4e\uff0c\u4f46\u7531\u4e8e\u6269\u5bb9\u662f\u4f4e\u9891\u64cd\u4f5c\uff0c\u56e0\u6b64\u5e73\u5747\u6548\u7387\u66f4\u9ad8\u3002
            • \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\u53ef\u4ee5\u63d0\u4f9b\u66f4\u52a0\u7a33\u5b9a\u7684\u6548\u7387\u8868\u73b0\u3002
            "},{"location":"chapter_stack_and_queue/stack/#3","title":"3. \u00a0 \u7a7a\u95f4\u6548\u7387","text":"

            \u5728\u521d\u59cb\u5316\u5217\u8868\u65f6\uff0c\u7cfb\u7edf\u4f1a\u4e3a\u5217\u8868\u5206\u914d\u201c\u521d\u59cb\u5bb9\u91cf\u201d\uff0c\u8be5\u5bb9\u91cf\u53ef\u80fd\u8d85\u8fc7\u5b9e\u9645\u9700\u6c42\u3002\u5e76\u4e14\uff0c\u6269\u5bb9\u673a\u5236\u901a\u5e38\u662f\u6309\u7167\u7279\u5b9a\u500d\u7387\uff08\u4f8b\u5982 2 \u500d\uff09\u8fdb\u884c\u6269\u5bb9\uff0c\u6269\u5bb9\u540e\u7684\u5bb9\u91cf\u4e5f\u53ef\u80fd\u8d85\u51fa\u5b9e\u9645\u9700\u6c42\u3002\u56e0\u6b64\uff0c\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\u53ef\u80fd\u9020\u6210\u4e00\u5b9a\u7684\u7a7a\u95f4\u6d6a\u8d39\u3002

            \u7136\u800c\uff0c\u7531\u4e8e\u94fe\u8868\u8282\u70b9\u9700\u8981\u989d\u5916\u5b58\u50a8\u6307\u9488\uff0c\u56e0\u6b64\u94fe\u8868\u8282\u70b9\u5360\u7528\u7684\u7a7a\u95f4\u76f8\u5bf9\u8f83\u5927\u3002

            \u7efc\u4e0a\uff0c\u6211\u4eec\u4e0d\u80fd\u7b80\u5355\u5730\u786e\u5b9a\u54ea\u79cd\u5b9e\u73b0\u66f4\u52a0\u8282\u7701\u5185\u5b58\uff0c\u9700\u8981\u9488\u5bf9\u5177\u4f53\u60c5\u51b5\u8fdb\u884c\u5206\u6790\u3002

            "},{"location":"chapter_stack_and_queue/stack/#514","title":"5.1.4 \u00a0 \u6808\u5178\u578b\u5e94\u7528","text":"
            • \u6d4f\u89c8\u5668\u4e2d\u7684\u540e\u9000\u4e0e\u524d\u8fdb\u3001\u8f6f\u4ef6\u4e2d\u7684\u64a4\u9500\u4e0e\u53cd\u64a4\u9500\u3002\u6bcf\u5f53\u6211\u4eec\u6253\u5f00\u65b0\u7684\u7f51\u9875\uff0c\u6d4f\u89c8\u5668\u5c31\u4f1a\u5c06\u4e0a\u4e00\u4e2a\u7f51\u9875\u6267\u884c\u5165\u6808\uff0c\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u901a\u8fc7\u300c\u540e\u9000\u300d\u64cd\u4f5c\u56de\u5230\u4e0a\u4e00\u9875\u9762\u3002\u540e\u9000\u64cd\u4f5c\u5b9e\u9645\u4e0a\u662f\u5728\u6267\u884c\u51fa\u6808\u3002\u5982\u679c\u8981\u540c\u65f6\u652f\u6301\u540e\u9000\u548c\u524d\u8fdb\uff0c\u90a3\u4e48\u9700\u8981\u4e24\u4e2a\u6808\u6765\u914d\u5408\u5b9e\u73b0\u3002
            • \u7a0b\u5e8f\u5185\u5b58\u7ba1\u7406\u3002\u6bcf\u6b21\u8c03\u7528\u51fd\u6570\u65f6\uff0c\u7cfb\u7edf\u90fd\u4f1a\u5728\u6808\u9876\u6dfb\u52a0\u4e00\u4e2a\u6808\u5e27\uff0c\u7528\u4e8e\u8bb0\u5f55\u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u4fe1\u606f\u3002\u5728\u9012\u5f52\u51fd\u6570\u4e2d\uff0c\u5411\u4e0b\u9012\u63a8\u9636\u6bb5\u4f1a\u4e0d\u65ad\u6267\u884c\u5165\u6808\u64cd\u4f5c\uff0c\u800c\u5411\u4e0a\u56de\u6eaf\u9636\u6bb5\u5219\u4f1a\u6267\u884c\u51fa\u6808\u64cd\u4f5c\u3002
            "},{"location":"chapter_stack_and_queue/summary/","title":"5.4 \u00a0 \u5c0f\u7ed3","text":"
            • \u6808\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u540e\u51fa\u539f\u5219\u7684\u6570\u636e\u7ed3\u6784\uff0c\u53ef\u901a\u8fc7\u6570\u7ec4\u6216\u94fe\u8868\u6765\u5b9e\u73b0\u3002
            • \u4ece\u65f6\u95f4\u6548\u7387\u89d2\u5ea6\u770b\uff0c\u6808\u7684\u6570\u7ec4\u5b9e\u73b0\u5177\u6709\u8f83\u9ad8\u7684\u5e73\u5747\u6548\u7387\uff0c\u4f46\u5728\u6269\u5bb9\u8fc7\u7a0b\u4e2d\uff0c\u5355\u6b21\u5165\u6808\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u964d\u4f4e\u81f3 \\(O(n)\\) \u3002\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\u5177\u6709\u66f4\u4e3a\u7a33\u5b9a\u7684\u6548\u7387\u8868\u73b0\u3002
            • \u5728\u7a7a\u95f4\u6548\u7387\u65b9\u9762\uff0c\u6808\u7684\u6570\u7ec4\u5b9e\u73b0\u53ef\u80fd\u5bfc\u81f4\u4e00\u5b9a\u7a0b\u5ea6\u7684\u7a7a\u95f4\u6d6a\u8d39\u3002\u4f46\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u94fe\u8868\u8282\u70b9\u6240\u5360\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u6bd4\u6570\u7ec4\u5143\u7d20\u66f4\u5927\u3002
            • \u961f\u5217\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u5148\u51fa\u539f\u5219\u7684\u6570\u636e\u7ed3\u6784\uff0c\u540c\u6837\u53ef\u4ee5\u901a\u8fc7\u6570\u7ec4\u6216\u94fe\u8868\u6765\u5b9e\u73b0\u3002\u5728\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u7684\u5bf9\u6bd4\u4e0a\uff0c\u961f\u5217\u7684\u7ed3\u8bba\u4e0e\u524d\u8ff0\u6808\u7684\u7ed3\u8bba\u76f8\u4f3c\u3002
            • \u53cc\u5411\u961f\u5217\u662f\u4e00\u79cd\u5177\u6709\u66f4\u9ad8\u81ea\u7531\u5ea6\u7684\u961f\u5217\uff0c\u5b83\u5141\u8bb8\u5728\u4e24\u7aef\u8fdb\u884c\u5143\u7d20\u7684\u6dfb\u52a0\u548c\u5220\u9664\u64cd\u4f5c\u3002
            "},{"location":"chapter_stack_and_queue/summary/#541-q-a","title":"5.4.1 \u00a0 Q & A","text":"

            \u6d4f\u89c8\u5668\u7684\u524d\u8fdb\u540e\u9000\u662f\u5426\u662f\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\uff1f

            \u6d4f\u89c8\u5668\u7684\u524d\u8fdb\u540e\u9000\u529f\u80fd\u672c\u8d28\u4e0a\u662f\u201c\u6808\u201d\u7684\u4f53\u73b0\u3002\u5f53\u7528\u6237\u8bbf\u95ee\u4e00\u4e2a\u65b0\u9875\u9762\u65f6\uff0c\u8be5\u9875\u9762\u4f1a\u88ab\u6dfb\u52a0\u5230\u6808\u9876\uff1b\u5f53\u7528\u6237\u70b9\u51fb\u540e\u9000\u6309\u94ae\u65f6\uff0c\u8be5\u9875\u9762\u4f1a\u4ece\u6808\u9876\u5f39\u51fa\u3002\u4f7f\u7528\u53cc\u5411\u961f\u5217\u53ef\u4ee5\u65b9\u4fbf\u5b9e\u73b0\u4e00\u4e9b\u989d\u5916\u64cd\u4f5c\uff0c\u8fd9\u4e2a\u5728\u53cc\u5411\u961f\u5217\u7ae0\u8282\u6709\u63d0\u5230\u3002

            \u5728\u51fa\u6808\u540e\uff0c\u662f\u5426\u9700\u8981\u91ca\u653e\u51fa\u6808\u8282\u70b9\u7684\u5185\u5b58\uff1f

            \u5982\u679c\u540e\u7eed\u4ecd\u9700\u8981\u4f7f\u7528\u5f39\u51fa\u8282\u70b9\uff0c\u5219\u4e0d\u9700\u8981\u91ca\u653e\u5185\u5b58\u3002\u82e5\u4e4b\u540e\u4e0d\u9700\u8981\u7528\u5230\uff0cJava \u548c Python \u7b49\u8bed\u8a00\u62e5\u6709\u81ea\u52a8\u5783\u573e\u56de\u6536\u673a\u5236\uff0c\u56e0\u6b64\u4e0d\u9700\u8981\u624b\u52a8\u91ca\u653e\u5185\u5b58\uff1b\u5728 C \u548c C++ \u4e2d\u9700\u8981\u624b\u52a8\u91ca\u653e\u5185\u5b58\u3002

            \u53cc\u5411\u961f\u5217\u50cf\u662f\u4e24\u4e2a\u6808\u62fc\u63a5\u5728\u4e86\u4e00\u8d77\uff0c\u5b83\u7684\u7528\u9014\u662f\u4ec0\u4e48\uff1f

            \u53cc\u5411\u961f\u5217\u5c31\u50cf\u662f\u6808\u548c\u961f\u5217\u7684\u7ec4\u5408\uff0c\u6216\u8005\u662f\u4e24\u4e2a\u6808\u62fc\u5728\u4e86\u4e00\u8d77\u3002\u5b83\u8868\u73b0\u7684\u662f\u6808 + \u961f\u5217\u7684\u903b\u8f91\uff0c\u56e0\u6b64\u53ef\u4ee5\u5b9e\u73b0\u6808\u4e0e\u961f\u5217\u7684\u6240\u6709\u5e94\u7528\uff0c\u5e76\u4e14\u66f4\u52a0\u7075\u6d3b\u3002

            "},{"location":"chapter_tree/","title":"\u7b2c 7 \u7ae0 \u00a0 \u6811","text":"

            Abstract

            \u53c2\u5929\u5927\u6811\u5145\u6ee1\u751f\u547d\u529b\uff0c\u5176\u6839\u6df1\u53f6\u8302\uff0c\u5206\u679d\u6276\u758f\u3002

            \u5b83\u4e3a\u6211\u4eec\u5c55\u73b0\u4e86\u6570\u636e\u5206\u6cbb\u7684\u751f\u52a8\u5f62\u6001\u3002

            "},{"location":"chapter_tree/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 7.1 \u00a0 \u4e8c\u53c9\u6811
            • 7.2 \u00a0 \u4e8c\u53c9\u6811\u904d\u5386
            • 7.3 \u00a0 \u4e8c\u53c9\u6811\u6570\u7ec4\u8868\u793a
            • 7.4 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811
            • 7.5 \u00a0 AVL \u6811 *
            • 7.6 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_tree/array_representation_of_tree/","title":"7.3 \u00a0 \u4e8c\u53c9\u6811\u6570\u7ec4\u8868\u793a","text":"

            \u5728\u94fe\u8868\u8868\u793a\u4e0b\uff0c\u4e8c\u53c9\u6811\u7684\u5b58\u50a8\u5355\u5143\u4e3a\u8282\u70b9 TreeNode \uff0c\u8282\u70b9\u4e4b\u95f4\u901a\u8fc7\u6307\u9488\u76f8\u8fde\u63a5\u3002\u5728\u4e0a\u8282\u4e2d\uff0c\u6211\u4eec\u5b66\u4e60\u4e86\u5728\u94fe\u8868\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7684\u5404\u9879\u57fa\u672c\u64cd\u4f5c\u3002

            \u90a3\u4e48\uff0c\u80fd\u5426\u7528\u300c\u6570\u7ec4\u300d\u6765\u8868\u793a\u4e8c\u53c9\u6811\u5462\uff1f\u7b54\u6848\u662f\u80af\u5b9a\u7684\u3002

            "},{"location":"chapter_tree/array_representation_of_tree/#731","title":"7.3.1 \u00a0 \u8868\u793a\u5b8c\u7f8e\u4e8c\u53c9\u6811","text":"

            \u5148\u5206\u6790\u4e00\u4e2a\u7b80\u5355\u6848\u4f8b\u3002\u7ed9\u5b9a\u4e00\u4e2a\u5b8c\u7f8e\u4e8c\u53c9\u6811\uff0c\u6211\u4eec\u5c06\u6240\u6709\u8282\u70b9\u6309\u7167\u5c42\u5e8f\u904d\u5386\u7684\u987a\u5e8f\u5b58\u50a8\u5728\u4e00\u4e2a\u6570\u7ec4\u4e2d\uff0c\u5219\u6bcf\u4e2a\u8282\u70b9\u90fd\u5bf9\u5e94\u552f\u4e00\u7684\u6570\u7ec4\u7d22\u5f15\u3002

            \u6839\u636e\u5c42\u5e8f\u904d\u5386\u7684\u7279\u6027\uff0c\u6211\u4eec\u53ef\u4ee5\u63a8\u5bfc\u51fa\u7236\u8282\u70b9\u7d22\u5f15\u4e0e\u5b50\u8282\u70b9\u7d22\u5f15\u4e4b\u95f4\u7684\u201c\u6620\u5c04\u516c\u5f0f\u201d\uff1a\u82e5\u8282\u70b9\u7684\u7d22\u5f15\u4e3a \\(i\\) \uff0c\u5219\u8be5\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 1\\) \uff0c\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 2\\) \u3002

            \u56fe\uff1a\u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a

            \u6620\u5c04\u516c\u5f0f\u7684\u89d2\u8272\u76f8\u5f53\u4e8e\u94fe\u8868\u4e2d\u7684\u6307\u9488\u3002\u7ed9\u5b9a\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e00\u4e2a\u8282\u70b9\uff0c\u6211\u4eec\u90fd\u53ef\u4ee5\u901a\u8fc7\u6620\u5c04\u516c\u5f0f\u6765\u8bbf\u95ee\u5b83\u7684\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u3002

            "},{"location":"chapter_tree/array_representation_of_tree/#732","title":"7.3.2 \u00a0 \u8868\u793a\u4efb\u610f\u4e8c\u53c9\u6811","text":"

            \u7136\u800c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u4e00\u4e2a\u7279\u4f8b\uff0c\u5728\u4e8c\u53c9\u6811\u7684\u4e2d\u95f4\u5c42\uff0c\u901a\u5e38\u5b58\u5728\u8bb8\u591a \\(\\text{None}\\) \u3002\u7531\u4e8e\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5e76\u4e0d\u5305\u542b\u8fd9\u4e9b \\(\\text{None}\\) \uff0c\u56e0\u6b64\u6211\u4eec\u65e0\u6cd5\u4ec5\u51ed\u8be5\u5e8f\u5217\u6765\u63a8\u6d4b \\(\\text{None}\\) \u7684\u6570\u91cf\u548c\u5206\u5e03\u4f4d\u7f6e\u3002\u8fd9\u610f\u5473\u7740\u5b58\u5728\u591a\u79cd\u4e8c\u53c9\u6811\u7ed3\u6784\u90fd\u7b26\u5408\u8be5\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u3002\u663e\u7136\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u4e0a\u8ff0\u7684\u6570\u7ec4\u8868\u793a\u65b9\u6cd5\u5df2\u7ecf\u5931\u6548\u3002

            \u56fe\uff1a\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5bf9\u5e94\u591a\u79cd\u4e8c\u53c9\u6811\u53ef\u80fd\u6027

            \u4e3a\u4e86\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u5728\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u4e2d\u663e\u5f0f\u5730\u5199\u51fa\u6240\u6709 \\(\\text{None}\\) \u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u8fd9\u6837\u5904\u7406\u540e\uff0c\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5c31\u53ef\u4ee5\u552f\u4e00\u8868\u793a\u4e8c\u53c9\u6811\u4e86\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u7684\u5305\u88c5\u7c7b Integer \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nInteger[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u6700\u5927\u503c INT_MAX \u6807\u8bb0\u7a7a\u4f4d\nvector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};\n
            # \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a\n# \u4f7f\u7528 None \u6765\u8868\u793a\u7a7a\u4f4d\ntree = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 any \u7c7b\u578b\u7684\u5207\u7247, \u5c31\u53ef\u4ee5\u4f7f\u7528 nil \u6765\u6807\u8bb0\u7a7a\u4f4d\ntree := []any{1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15}\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 null \u6765\u8868\u793a\u7a7a\u4f4d\nlet tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 null \u6765\u8868\u793a\u7a7a\u4f4d\nlet tree: (number | null)[] = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u6700\u5927\u503c\u6807\u8bb0\u7a7a\u4f4d\uff0c\u56e0\u6b64\u8981\u6c42\u8282\u70b9\u503c\u4e0d\u80fd\u4e3a INT_MAX\nint tree[] = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nint?[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 Int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 nil \u6765\u6807\u8bb0\u7a7a\u4f4d\nlet tree: [Int?] = [1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15]\n
            \n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nList<int?> tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
            \n

            \u56fe\uff1a\u4efb\u610f\u7c7b\u578b\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u4f7f\u7528\u6570\u7ec4\u6765\u8868\u793a\u3002\u56de\u987e\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u5b9a\u4e49\uff0c\\(\\text{None}\\) \u53ea\u51fa\u73b0\u5728\u6700\u5e95\u5c42\u4e14\u9760\u53f3\u7684\u4f4d\u7f6e\uff0c\u56e0\u6b64\u6240\u6709 \\(\\text{None}\\) \u4e00\u5b9a\u51fa\u73b0\u5728\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u7684\u672b\u5c3e\u3002\u8fd9\u610f\u5473\u7740\u4f7f\u7528\u6570\u7ec4\u8868\u793a\u5b8c\u5168\u4e8c\u53c9\u6811\u65f6\uff0c\u53ef\u4ee5\u7701\u7565\u5b58\u50a8\u6240\u6709 \\(\\text{None}\\) \uff0c\u975e\u5e38\u65b9\u4fbf\u3002

            \u56fe\uff1a\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a

            \u5982\u4e0b\u4ee3\u7801\u7ed9\u51fa\u4e86\u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7684\u7b80\u5355\u5b9e\u73b0\uff0c\u5305\u62ec\u4ee5\u4e0b\u64cd\u4f5c\uff1a

            • \u7ed9\u5b9a\u67d0\u8282\u70b9\uff0c\u83b7\u53d6\u5b83\u7684\u503c\u3001\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u3001\u7236\u8282\u70b9\u3002
            • \u83b7\u53d6\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u3001\u540e\u5e8f\u904d\u5386\u3001\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust array_binary_tree.java
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\nprivate List<Integer> tree;\n/* \u6784\u9020\u65b9\u6cd5 */\npublic ArrayBinaryTree(List<Integer> arr) {\ntree = new ArrayList<>(arr);\n}\n/* \u8282\u70b9\u6570\u91cf */\npublic int size() {\nreturn tree.size();\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\npublic Integer val(int i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= size())\nreturn null;\nreturn tree.get(i);\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\npublic Integer left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\npublic Integer right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\npublic Integer parent(int i) {\nreturn (i - 1) / 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\npublic List<Integer> levelOrder() {\nList<Integer> res = new ArrayList<>();\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size(); i++) {\nif (val(i) != null)\nres.add(val(i));\n}\nreturn res;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nprivate void dfs(Integer i, String order, List<Integer> res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (val(i) == null)\nreturn;\n// \u524d\u5e8f\u904d\u5386\nif (order == \"pre\")\nres.add(val(i));\ndfs(left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order == \"in\")\nres.add(val(i));\ndfs(right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order == \"post\")\nres.add(val(i));\n}\n/* \u524d\u5e8f\u904d\u5386 */\npublic List<Integer> preOrder() {\nList<Integer> res = new ArrayList<>();\ndfs(0, \"pre\", res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\npublic List<Integer> inOrder() {\nList<Integer> res = new ArrayList<>();\ndfs(0, \"in\", res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\npublic List<Integer> postOrder() {\nList<Integer> res = new ArrayList<>();\ndfs(0, \"post\", res);\nreturn res;\n}\n}\n
            array_binary_tree.cpp
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nArrayBinaryTree(vector<int> arr) {\ntree = arr;\n}\n/* \u8282\u70b9\u6570\u91cf */\nint size() {\nreturn tree.size();\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nint val(int i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de INT_MAX \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= size())\nreturn INT_MAX;\nreturn tree[i];\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nint parent(int i) {\nreturn (i - 1) / 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nvector<int> levelOrder() {\nvector<int> res;\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size(); i++) {\nif (val(i) != INT_MAX)\nres.push_back(val(i));\n}\nreturn res;\n}\n/* \u524d\u5e8f\u904d\u5386 */\nvector<int> preOrder() {\nvector<int> res;\ndfs(0, \"pre\", res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvector<int> inOrder() {\nvector<int> res;\ndfs(0, \"in\", res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvector<int> postOrder() {\nvector<int> res;\ndfs(0, \"post\", res);\nreturn res;\n}\nprivate:\nvector<int> tree;\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nvoid dfs(int i, string order, vector<int> &res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (val(i) == INT_MAX)\nreturn;\n// \u524d\u5e8f\u904d\u5386\nif (order == \"pre\")\nres.push_back(val(i));\ndfs(left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order == \"in\")\nres.push_back(val(i));\ndfs(right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order == \"post\")\nres.push_back(val(i));\n}\n};\n
            array_binary_tree.py
            class ArrayBinaryTree:\n\"\"\"\u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b\"\"\"\ndef __init__(self, arr: list[int | None]):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__tree = list(arr)\ndef size(self):\n\"\"\"\u8282\u70b9\u6570\u91cf\"\"\"\nreturn len(self.__tree)\ndef val(self, i: int) -> int:\n\"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c\"\"\"\n# \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de None \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif i < 0 or i >= self.size():\nreturn None\nreturn self.__tree[i]\ndef left(self, i: int) -> int | None:\n\"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\nreturn 2 * i + 1\ndef right(self, i: int) -> int | None:\n\"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\nreturn 2 * i + 2\ndef parent(self, i: int) -> int | None:\n\"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\nreturn (i - 1) // 2\ndef level_order(self) -> list[int]:\n\"\"\"\u5c42\u5e8f\u904d\u5386\"\"\"\nself.res = []\n# \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor i in range(self.size()):\nif self.val(i) is not None:\nself.res.append(self.val(i))\nreturn self.res\ndef __dfs(self, i: int, order: str):\n\"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386\"\"\"\nif self.val(i) is None:\nreturn\n# \u524d\u5e8f\u904d\u5386\nif order == \"pre\":\nself.res.append(self.val(i))\nself.__dfs(self.left(i), order)\n# \u4e2d\u5e8f\u904d\u5386\nif order == \"in\":\nself.res.append(self.val(i))\nself.__dfs(self.right(i), order)\n# \u540e\u5e8f\u904d\u5386\nif order == \"post\":\nself.res.append(self.val(i))\ndef pre_order(self) -> list[int]:\n\"\"\"\u524d\u5e8f\u904d\u5386\"\"\"\nself.res = []\nself.__dfs(0, order=\"pre\")\nreturn self.res\ndef in_order(self) -> list[int]:\n\"\"\"\u4e2d\u5e8f\u904d\u5386\"\"\"\nself.res = []\nself.__dfs(0, order=\"in\")\nreturn self.res\ndef post_order(self) -> list[int]:\n\"\"\"\u540e\u5e8f\u904d\u5386\"\"\"\nself.res = []\nself.__dfs(0, order=\"post\")\nreturn self.res\n
            array_binary_tree.go
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\ntype arrayBinaryTree struct {\ntree []any\n}\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newArrayBinaryTree(arr []any) *arrayBinaryTree {\nreturn &arrayBinaryTree{\ntree: arr,\n}\n}\n/* \u8282\u70b9\u6570\u91cf */\nfunc (abt *arrayBinaryTree) size() int {\nreturn len(abt.tree)\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nfunc (abt *arrayBinaryTree) val(i int) any {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif i < 0 || i >= abt.size() {\nreturn nil\n}\nreturn abt.tree[i]\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) left(i int) int {\nreturn 2*i + 1\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) right(i int) int {\nreturn 2*i + 2\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) parent(i int) int {\nreturn (i - 1) / 2\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) levelOrder() []any {\nvar res []any\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor i := 0; i < abt.size(); i++ {\nif abt.val(i) != nil {\nres = append(res, abt.val(i))\n}\n}\nreturn res\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nfunc (abt *arrayBinaryTree) dfs(i int, order string, res *[]any) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif abt.val(i) == nil {\nreturn\n}\n// \u524d\u5e8f\u904d\u5386\nif order == \"pre\" {\n*res = append(*res, abt.val(i))\n}\nabt.dfs(abt.left(i), order, res)\n// \u4e2d\u5e8f\u904d\u5386\nif order == \"in\" {\n*res = append(*res, abt.val(i))\n}\nabt.dfs(abt.right(i), order, res)\n// \u540e\u5e8f\u904d\u5386\nif order == \"post\" {\n*res = append(*res, abt.val(i))\n}\n}\n/* \u524d\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) preOrder() []any {\nvar res []any\nabt.dfs(0, \"pre\", &res)\nreturn res\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) inOrder() []any {\nvar res []any\nabt.dfs(0, \"in\", &res)\nreturn res\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) postOrder() []any {\nvar res []any\nabt.dfs(0, \"post\", &res)\nreturn res\n}\n
            array_binary_tree.js
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n#tree;\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(arr) {\nthis.#tree = arr;\n}\n/* \u8282\u70b9\u6570\u91cf */\nsize() {\nreturn this.#tree.length;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nval(i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= this.size()) return null;\nreturn this.#tree[i];\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nleft(i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nright(i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nparent(i) {\nreturn (i - 1) / 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nlevelOrder() {\nlet res = [];\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (let i = 0; i < this.size(); i++) {\nif (this.val(i) !== null) res.push(this.val(i));\n}\nreturn res;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n#dfs(i, order, res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (this.val(i) === null) return;\n// \u524d\u5e8f\u904d\u5386\nif (order === 'pre') res.push(this.val(i));\nthis.#dfs(this.left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order === 'in') res.push(this.val(i));\nthis.#dfs(this.right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order === 'post') res.push(this.val(i));\n}\n/* \u524d\u5e8f\u904d\u5386 */\npreOrder() {\nconst res = [];\nthis.#dfs(0, 'pre', res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\ninOrder() {\nconst res = [];\nthis.#dfs(0, 'in', res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\npostOrder() {\nconst res = [];\nthis.#dfs(0, 'post', res);\nreturn res;\n}\n}\n
            array_binary_tree.ts
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n#tree: (number | null)[];\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(arr: (number | null)[]) {\nthis.#tree = arr;\n}\n/* \u8282\u70b9\u6570\u91cf */\nsize(): number {\nreturn this.#tree.length;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nval(i: number): number | null {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= this.size()) return null;\nreturn this.#tree[i];\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nleft(i: number): number {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nright(i: number): number {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nparent(i: number): number {\nreturn (i - 1) / 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nlevelOrder(): number[] {\nlet res = [];\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (let i = 0; i < this.size(); i++) {\nif (this.val(i) !== null) res.push(this.val(i));\n}\nreturn res;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n#dfs(i: number, order: Order, res: (number | null)[]): void {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (this.val(i) === null) return;\n// \u524d\u5e8f\u904d\u5386\nif (order === 'pre') res.push(this.val(i));\nthis.#dfs(this.left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order === 'in') res.push(this.val(i));\nthis.#dfs(this.right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order === 'post') res.push(this.val(i));\n}\n/* \u524d\u5e8f\u904d\u5386 */\npreOrder(): (number | null)[] {\nconst res = [];\nthis.#dfs(0, 'pre', res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\ninOrder(): (number | null)[] {\nconst res = [];\nthis.#dfs(0, 'in', res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\npostOrder(): (number | null)[] {\nconst res = [];\nthis.#dfs(0, 'post', res);\nreturn res;\n}\n}\n
            array_binary_tree.c
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nstruct arrayBinaryTree {\nvector *tree;\n};\ntypedef struct arrayBinaryTree arrayBinaryTree;\n/* \u6784\u9020\u51fd\u6570 */\narrayBinaryTree *newArrayBinaryTree(vector *arr) {\narrayBinaryTree *newABT = malloc(sizeof(arrayBinaryTree));\nnewABT->tree = arr;\nreturn newABT;\n}\n/* \u8282\u70b9\u6570\u91cf */\nint size(arrayBinaryTree *abt) {\nreturn abt->tree->size;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nint val(arrayBinaryTree *abt, int i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de INT_MAX \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= size(abt))\nreturn INT_MAX;\nreturn *(int *)abt->tree->data[i];\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nvoid dfs(arrayBinaryTree *abt, int i, const char *order, vector *res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (val(abt, i) == INT_MAX)\nreturn;\n// \u524d\u5e8f\u904d\u5386\nif (strcmp(order, \"pre\") == 0) {\nint tmp = val(abt, i);\nvectorPushback(res, &tmp, sizeof(tmp));\n}\ndfs(abt, left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (strcmp(order, \"in\") == 0) {\nint tmp = val(abt, i);\nvectorPushback(res, &tmp, sizeof(tmp));\n}\ndfs(abt, right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (strcmp(order, \"post\") == 0) {\nint tmp = val(abt, i);\nvectorPushback(res, &tmp, sizeof(tmp));\n}\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nvector *levelOrder(arrayBinaryTree *abt) {\nvector *res = newVector();\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size(abt); i++) {\nif (val(abt, i) != INT_MAX) {\nint tmp = val(abt, i);\nvectorPushback(res, &tmp, sizeof(int));\n}\n}\nreturn res;\n}\n/* \u524d\u5e8f\u904d\u5386 */\nvector *preOrder(arrayBinaryTree *abt) {\nvector *res = newVector();\ndfs(abt, 0, \"pre\", res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvector *inOrder(arrayBinaryTree *abt) {\nvector *res = newVector();\ndfs(abt, 0, \"in\", res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvector *postOrder(arrayBinaryTree *abt) {\nvector *res = newVector();\ndfs(abt, 0, \"post\", res);\nreturn res;\n}\n
            array_binary_tree.cs
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\nprivate List<int?> tree;\n/* \u6784\u9020\u65b9\u6cd5 */\npublic ArrayBinaryTree(List<int?> arr) {\ntree = new List<int?>(arr);\n}\n/* \u8282\u70b9\u6570\u91cf */\npublic int size() {\nreturn tree.Count;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\npublic int? val(int i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= size())\nreturn null;\nreturn tree[i];\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\npublic int left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\npublic int right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\npublic int parent(int i) {\nreturn (i - 1) / 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\npublic List<int> levelOrder() {\nList<int> res = new List<int>();\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size(); i++) {\nif (val(i).HasValue)\nres.Add(val(i).Value);\n}\nreturn res;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nprivate void dfs(int i, string order, List<int> res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (!val(i).HasValue)\nreturn;\n// \u524d\u5e8f\u904d\u5386\nif (order == \"pre\")\nres.Add(val(i).Value);\ndfs(left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order == \"in\")\nres.Add(val(i).Value);\ndfs(right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order == \"post\")\nres.Add(val(i).Value);\n}\n/* \u524d\u5e8f\u904d\u5386 */\npublic List<int> preOrder() {\nList<int> res = new List<int>();\ndfs(0, \"pre\", res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\npublic List<int> inOrder() {\nList<int> res = new List<int>();\ndfs(0, \"in\", res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\npublic List<int> postOrder() {\nList<int> res = new List<int>();\ndfs(0, \"post\", res);\nreturn res;\n}\n}\n
            array_binary_tree.swift
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\nprivate var tree: [Int?]\n/* \u6784\u9020\u65b9\u6cd5 */\ninit(arr: [Int?]) {\ntree = arr\n}\n/* \u8282\u70b9\u6570\u91cf */\nfunc size() -> Int {\ntree.count\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nfunc val(i: Int) -> Int? {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif i < 0 || i >= size() {\nreturn nil\n}\nreturn tree[i]\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc left(i: Int) -> Int {\n2 * i + 1\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc right(i: Int) -> Int {\n2 * i + 2\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc parent(i: Int) -> Int {\n(i - 1) / 2\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nfunc levelOrder() -> [Int] {\nvar res: [Int] = []\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor i in stride(from: 0, to: size(), by: 1) {\nif let val = val(i: i) {\nres.append(val)\n}\n}\nreturn res\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nprivate func dfs(i: Int, order: String, res: inout [Int]) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nguard let val = val(i: i) else {\nreturn\n}\n// \u524d\u5e8f\u904d\u5386\nif order == \"pre\" {\nres.append(val)\n}\ndfs(i: left(i: i), order: order, res: &res)\n// \u4e2d\u5e8f\u904d\u5386\nif order == \"in\" {\nres.append(val)\n}\ndfs(i: right(i: i), order: order, res: &res)\n// \u540e\u5e8f\u904d\u5386\nif order == \"post\" {\nres.append(val)\n}\n}\n/* \u524d\u5e8f\u904d\u5386 */\nfunc preOrder() -> [Int] {\nvar res: [Int] = []\ndfs(i: 0, order: \"pre\", res: &res)\nreturn res\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc inOrder() -> [Int] {\nvar res: [Int] = []\ndfs(i: 0, order: \"in\", res: &res)\nreturn res\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunc postOrder() -> [Int] {\nvar res: [Int] = []\ndfs(i: 0, order: \"post\", res: &res)\nreturn res\n}\n}\n
            array_binary_tree.zig
            [class]{ArrayBinaryTree}-[func]{}\n
            array_binary_tree.dart
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\nlate List<int?> _tree;\n/* \u6784\u9020\u65b9\u6cd5 */\nArrayBinaryTree(this._tree);\n/* \u8282\u70b9\u6570\u91cf */\nint size() {\nreturn _tree.length;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nint? val(int i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= size()) {\nreturn null;\n}\nreturn _tree[i];\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint? left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint? right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nint? parent(int i) {\nreturn (i - 1) ~/ 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nList<int> levelOrder() {\nList<int> res = [];\nfor (int i = 0; i < size(); i++) {\nif (val(i) != null) {\nres.add(val(i)!);\n}\n}\nreturn res;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nvoid dfs(int i, String order, List<int?> res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (val(i) == null) {\nreturn;\n}\n// \u524d\u5e8f\u904d\u5386\nif (order == 'pre') {\nres.add(val(i));\n}\ndfs(left(i)!, order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order == 'in') {\nres.add(val(i));\n}\ndfs(right(i)!, order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order == 'post') {\nres.add(val(i));\n}\n}\n/* \u524d\u5e8f\u904d\u5386 */\nList<int?> preOrder() {\nList<int?> res = [];\ndfs(0, 'pre', res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nList<int?> inOrder() {\nList<int?> res = [];\ndfs(0, 'in', res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\nList<int?> postOrder() {\nList<int?> res = [];\ndfs(0, 'post', res);\nreturn res;\n}\n}\n
            array_binary_tree.rs
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nstruct ArrayBinaryTree {\ntree: Vec<Option<i32>>,\n}\nimpl ArrayBinaryTree {\n/* \u6784\u9020\u65b9\u6cd5 */\nfn new(arr: Vec<Option<i32>>) -> Self {\nSelf { tree: arr }\n}\n/* \u8282\u70b9\u6570\u91cf */\nfn size(&self) -> i32 {\nself.tree.len() as i32\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nfn val(&self, i: i32) -> Option<i32> {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de None \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif i < 0 || i >= self.size() {\nNone\n} else {\nself.tree[i as usize]\n}\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfn left(&self, i: i32) -> i32 {\n2 * i + 1\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfn right(&self, i: i32) -> i32 {\n2 * i + 2\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfn parent(&self, i: i32) -> i32 {\n(i - 1) / 2\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nfn level_order(&self) -> Vec<i32> {\nlet mut res = vec![];\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor i in 0..self.size() {\nif let Some(val) = self.val(i) {\nres.push(val)\n}\n}\nres\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nfn dfs(&self, i: i32, order: &str, res: &mut Vec<i32>) {\nif self.val(i).is_none() {\nreturn;\n}\nlet val = self.val(i).unwrap();\n// \u524d\u5e8f\u904d\u5386\nif order == \"pre\" {\nres.push(val);\n}\nself.dfs(self.left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif order == \"in\" {\nres.push(val);\n}\nself.dfs(self.right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif order == \"post\" {\nres.push(val);\n}\n}\n/* \u524d\u5e8f\u904d\u5386 */\nfn pre_order(&self) -> Vec<i32> {\nlet mut res = vec![];\nself.dfs(0, \"pre\", &mut res);\nres\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfn in_order(&self) -> Vec<i32> {\nlet mut res = vec![];\nself.dfs(0, \"in\", &mut res);\nres\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfn post_order(&self) -> Vec<i32> {\nlet mut res = vec![];\nself.dfs(0, \"post\", &mut res);\nres\n}\n}\n
            "},{"location":"chapter_tree/array_representation_of_tree/#733","title":"7.3.3 \u00a0 \u4f18\u52bf\u4e0e\u5c40\u9650\u6027","text":"

            \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a\u7684\u4f18\u70b9\u5305\u62ec\uff1a

            • \u6570\u7ec4\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\uff0c\u5bf9\u7f13\u5b58\u53cb\u597d\uff0c\u8bbf\u95ee\u4e0e\u904d\u5386\u901f\u5ea6\u8f83\u5feb\u3002
            • \u4e0d\u9700\u8981\u5b58\u50a8\u6307\u9488\uff0c\u6bd4\u8f83\u8282\u7701\u7a7a\u95f4\u3002
            • \u5141\u8bb8\u968f\u673a\u8bbf\u95ee\u8282\u70b9\u3002

            \u7136\u800c\uff0c\u6570\u7ec4\u8868\u793a\u4e5f\u5177\u6709\u4e00\u4e9b\u5c40\u9650\u6027\uff1a

            • \u6570\u7ec4\u5b58\u50a8\u9700\u8981\u8fde\u7eed\u5185\u5b58\u7a7a\u95f4\uff0c\u56e0\u6b64\u4e0d\u9002\u5408\u5b58\u50a8\u6570\u636e\u91cf\u8fc7\u5927\u7684\u6811\u3002
            • \u589e\u5220\u8282\u70b9\u9700\u8981\u901a\u8fc7\u6570\u7ec4\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u5b9e\u73b0\uff0c\u6548\u7387\u8f83\u4f4e\u3002
            • \u5f53\u4e8c\u53c9\u6811\u4e2d\u5b58\u5728\u5927\u91cf \\(\\text{None}\\) \u65f6\uff0c\u6570\u7ec4\u4e2d\u5305\u542b\u7684\u8282\u70b9\u6570\u636e\u6bd4\u91cd\u8f83\u4f4e\uff0c\u7a7a\u95f4\u5229\u7528\u7387\u8f83\u4f4e\u3002
            "},{"location":"chapter_tree/avl_tree/","title":"7.5 \u00a0 AVL \u6811 *","text":"

            \u5728\u4e8c\u53c9\u641c\u7d22\u6811\u7ae0\u8282\u4e2d\uff0c\u6211\u4eec\u63d0\u5230\u4e86\u5728\u591a\u6b21\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u540e\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u53ef\u80fd\u9000\u5316\u4e3a\u94fe\u8868\u3002\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5c06\u4ece \\(O(\\log n)\\) \u6076\u5316\u4e3a \\(O(n)\\)\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u7ecf\u8fc7\u4e24\u6b21\u5220\u9664\u8282\u70b9\u64cd\u4f5c\uff0c\u8fd9\u4e2a\u4e8c\u53c9\u641c\u7d22\u6811\u4fbf\u4f1a\u9000\u5316\u4e3a\u94fe\u8868\u3002

            \u56fe\uff1aAVL \u6811\u5728\u5220\u9664\u8282\u70b9\u540e\u53d1\u751f\u9000\u5316

            \u518d\u4f8b\u5982\uff0c\u5728\u4ee5\u4e0b\u5b8c\u7f8e\u4e8c\u53c9\u6811\u4e2d\u63d2\u5165\u4e24\u4e2a\u8282\u70b9\u540e\uff0c\u6811\u5c06\u4e25\u91cd\u5411\u5de6\u503e\u659c\uff0c\u67e5\u627e\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u968f\u4e4b\u6076\u5316\u3002

            \u56fe\uff1aAVL \u6811\u5728\u63d2\u5165\u8282\u70b9\u540e\u53d1\u751f\u9000\u5316

            G. M. Adelson-Velsky \u548c E. M. Landis \u5728\u5176 1962 \u5e74\u53d1\u8868\u7684\u8bba\u6587 \"An algorithm for the organization of information\" \u4e2d\u63d0\u51fa\u4e86\u300cAVL \u6811\u300d\u3002\u8bba\u6587\u4e2d\u8be6\u7ec6\u63cf\u8ff0\u4e86\u4e00\u7cfb\u5217\u64cd\u4f5c\uff0c\u786e\u4fdd\u5728\u6301\u7eed\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u540e\uff0cAVL \u6811\u4e0d\u4f1a\u9000\u5316\uff0c\u4ece\u800c\u4f7f\u5f97\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4fdd\u6301\u5728 \\(O(\\log n)\\) \u7ea7\u522b\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u5728\u9700\u8981\u9891\u7e41\u8fdb\u884c\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u7684\u573a\u666f\u4e2d\uff0cAVL \u6811\u80fd\u59cb\u7ec8\u4fdd\u6301\u9ad8\u6548\u7684\u6570\u636e\u64cd\u4f5c\u6027\u80fd\uff0c\u5177\u6709\u5f88\u597d\u7684\u5e94\u7528\u4ef7\u503c\u3002

            "},{"location":"chapter_tree/avl_tree/#751-avl","title":"7.5.1 \u00a0 AVL \u6811\u5e38\u89c1\u672f\u8bed","text":"

            \u300cAVL \u6811\u300d\u65e2\u662f\u4e8c\u53c9\u641c\u7d22\u6811\u4e5f\u662f\u5e73\u8861\u4e8c\u53c9\u6811\uff0c\u540c\u65f6\u6ee1\u8db3\u8fd9\u4e24\u7c7b\u4e8c\u53c9\u6811\u7684\u6240\u6709\u6027\u8d28\uff0c\u56e0\u6b64\u4e5f\u88ab\u79f0\u4e3a\u300c\u5e73\u8861\u4e8c\u53c9\u641c\u7d22\u6811\u300d\u3002

            "},{"location":"chapter_tree/avl_tree/#1","title":"1. \u00a0 \u8282\u70b9\u9ad8\u5ea6","text":"

            \u5728\u64cd\u4f5c AVL \u6811\u65f6\uff0c\u6211\u4eec\u9700\u8981\u83b7\u53d6\u8282\u70b9\u7684\u9ad8\u5ea6\uff0c\u56e0\u6b64\u9700\u8981\u4e3a AVL \u6811\u7684\u8282\u70b9\u7c7b\u6dfb\u52a0 height \u53d8\u91cf\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\npublic int val;        // \u8282\u70b9\u503c\npublic int height;     // \u8282\u70b9\u9ad8\u5ea6\npublic TreeNode left;  // \u5de6\u5b50\u8282\u70b9\npublic TreeNode right; // \u53f3\u5b50\u8282\u70b9\npublic TreeNode(int x) { val = x; }\n}\n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nstruct TreeNode {\nint val{};          // \u8282\u70b9\u503c\nint height = 0;     // \u8282\u70b9\u9ad8\u5ea6\nTreeNode *left{};   // \u5de6\u5b50\u8282\u70b9\nTreeNode *right{};  // \u53f3\u5b50\u8282\u70b9\nTreeNode() = default;\nexplicit TreeNode(int x) : val(x){}\n};\n
            class TreeNode:\n\"\"\"AVL \u6811\u8282\u70b9\u7c7b\"\"\"\ndef __init__(self, val: int):\nself.val: int = val                    # \u8282\u70b9\u503c\nself.height: int = 0                   # \u8282\u70b9\u9ad8\u5ea6\nself.left: Optional[TreeNode] = None   # \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nself.right: Optional[TreeNode] = None  # \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n
            /* AVL \u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype TreeNode struct {\nVal    int       // \u8282\u70b9\u503c\nHeight int       // \u8282\u70b9\u9ad8\u5ea6\nLeft   *TreeNode // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nRight  *TreeNode // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nval; // \u8282\u70b9\u503c\nheight; //\u8282\u70b9\u9ad8\u5ea6\nleft; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\nright; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\nconstructor(val, left, right, height) {\nthis.val = val === undefined ? 0 : val;\nthis.height = height === undefined ? 0 : height;\nthis.left = left === undefined ? null : left;\nthis.right = right === undefined ? null : right;\n}\n}\n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nval: number;            // \u8282\u70b9\u503c\nheight: number;         // \u8282\u70b9\u9ad8\u5ea6\nleft: TreeNode | null;  // \u5de6\u5b50\u8282\u70b9\u6307\u9488\nright: TreeNode | null; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\nconstructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {\nthis.val = val === undefined ? 0 : val;\nthis.height = height === undefined ? 0 : height; this.left = left === undefined ? null : left; this.right = right === undefined ? null : right; }\n}\n
            /* AVL \u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\nint val;\nint height;\nstruct TreeNode *left;\nstruct TreeNode *right;\n};\ntypedef struct TreeNode TreeNode;\n/* \u6784\u9020\u51fd\u6570 */\nTreeNode *newTreeNode(int val) {\nTreeNode *node;\nnode = (TreeNode *)malloc(sizeof(TreeNode));\nnode->val = val;\nnode->height = 0;\nnode->left = NULL;\nnode->right = NULL;\nreturn node;\n}\n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\npublic int val;          // \u8282\u70b9\u503c\npublic int height;       // \u8282\u70b9\u9ad8\u5ea6\npublic TreeNode? left;   // \u5de6\u5b50\u8282\u70b9\npublic TreeNode? right;  // \u53f3\u5b50\u8282\u70b9\npublic TreeNode(int x) { val = x; }\n}\n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nvar val: Int // \u8282\u70b9\u503c\nvar height: Int // \u8282\u70b9\u9ad8\u5ea6\nvar left: TreeNode? // \u5de6\u5b50\u8282\u70b9\nvar right: TreeNode? // \u53f3\u5b50\u8282\u70b9\ninit(x: Int) {\nval = x\nheight = 0\n}\n}\n
            \n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nint val;         // \u8282\u70b9\u503c\nint height;      // \u8282\u70b9\u9ad8\u5ea6\nTreeNode? left;  // \u5de6\u5b50\u8282\u70b9\nTreeNode? right; // \u53f3\u5b50\u8282\u70b9\nTreeNode(this.val, [this.height = 0, this.left, this.right]);\n}\n
            \n

            \u300c\u8282\u70b9\u9ad8\u5ea6\u300d\u662f\u6307\u4ece\u8be5\u8282\u70b9\u5230\u6700\u8fdc\u53f6\u8282\u70b9\u7684\u8ddd\u79bb\uff0c\u5373\u6240\u7ecf\u8fc7\u7684\u201c\u8fb9\u201d\u7684\u6570\u91cf\u3002\u9700\u8981\u7279\u522b\u6ce8\u610f\u7684\u662f\uff0c\u53f6\u8282\u70b9\u7684\u9ad8\u5ea6\u4e3a 0 \uff0c\u800c\u7a7a\u8282\u70b9\u7684\u9ad8\u5ea6\u4e3a -1 \u3002\u6211\u4eec\u5c06\u521b\u5efa\u4e24\u4e2a\u5de5\u5177\u51fd\u6570\uff0c\u5206\u522b\u7528\u4e8e\u83b7\u53d6\u548c\u66f4\u65b0\u8282\u70b9\u7684\u9ad8\u5ea6\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node == null ? -1 : node.height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode node) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.height = Math.max(height(node.left), height(node.right)) + 1;\n}\n
            avl_tree.cpp
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode *node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node == nullptr ? -1 : node->height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode *node) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode->height = max(height(node->left), height(node->right)) + 1;\n}\n
            avl_tree.py
            def height(self, node: TreeNode | None) -> int:\n\"\"\"\u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6\"\"\"\n# \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nif node is not None:\nreturn node.height\nreturn -1\ndef __update_height(self, node: TreeNode | None):\n\"\"\"\u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\"\"\"\n# \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.height = max([self.height(node.left), self.height(node.right)]) + 1\n
            avl_tree.go
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfunc (t *aVLTree) height(node *TreeNode) int {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nif node != nil {\nreturn node.Height\n}\nreturn -1\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfunc (t *aVLTree) updateHeight(node *TreeNode) {\nlh := t.height(node.Left)\nrh := t.height(node.Right)\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nif lh > rh {\nnode.Height = lh + 1\n} else {\nnode.Height = rh + 1\n}\n}\n
            avl_tree.js
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nheight(node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node === null ? -1 : node.height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\n#updateHeight(node) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.height =\nMath.max(this.height(node.left), this.height(node.right)) + 1;\n}\n
            avl_tree.ts
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nheight(node: TreeNode): number {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node === null ? -1 : node.height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nupdateHeight(node: TreeNode): void {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.height =\nMath.max(this.height(node.left), this.height(node.right)) + 1;\n}\n
            avl_tree.c
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode *node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nif (node != NULL) {\nreturn node->height;\n}\nreturn -1;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode *node) {\nint lh = height(node->left);\nint rh = height(node->right);\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nif (lh > rh) {\nnode->height = lh + 1;\n} else {\nnode->height = rh + 1;\n}\n}\n
            avl_tree.cs
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode? node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node == null ? -1 : node.height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode node) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.height = Math.Max(height(node.left), height(node.right)) + 1;\n}\n
            avl_tree.swift
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfunc height(node: TreeNode?) -> Int {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nnode == nil ? -1 : node!.height\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfunc updateHeight(node: TreeNode?) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode?.height = max(height(node: node?.left), height(node: node?.right)) + 1\n}\n
            avl_tree.zig
            // \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6\nfn height(self: *Self, node: ?*inc.TreeNode(T)) i32 {\n_ = self;\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn if (node == null) -1 else node.?.height;\n}\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nfn updateHeight(self: *Self, node: ?*inc.TreeNode(T)) void {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.?.height = @max(self.height(node.?.left), self.height(node.?.right)) + 1;\n}\n
            avl_tree.dart
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode? node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node == null ? -1 : node.height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode? node) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode!.height = max(height(node.left), height(node.right)) + 1;\n}\n
            avl_tree.rs
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfn height(node: OptionTreeNodeRc) -> i32 {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nmatch node {\nSome(node) => node.borrow().height,\nNone => -1,\n}\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfn update_height(node: OptionTreeNodeRc) {\nif let Some(node) = node {\nlet left = node.borrow().left.clone();\nlet right = node.borrow().right.clone();\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.borrow_mut().height = std::cmp::max(Self::height(left), Self::height(right)) + 1;\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#2","title":"2. \u00a0 \u8282\u70b9\u5e73\u8861\u56e0\u5b50","text":"

            \u8282\u70b9\u7684\u300c\u5e73\u8861\u56e0\u5b50 Balance Factor\u300d\u5b9a\u4e49\u4e3a\u8282\u70b9\u5de6\u5b50\u6811\u7684\u9ad8\u5ea6\u51cf\u53bb\u53f3\u5b50\u6811\u7684\u9ad8\u5ea6\uff0c\u540c\u65f6\u89c4\u5b9a\u7a7a\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u4e3a 0 \u3002\u6211\u4eec\u540c\u6837\u5c06\u83b7\u53d6\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u7684\u529f\u80fd\u5c01\u88c5\u6210\u51fd\u6570\uff0c\u65b9\u4fbf\u540e\u7eed\u4f7f\u7528\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == null)\nreturn 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node.left) - height(node.right);\n}\n
            avl_tree.cpp
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode *node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == nullptr)\nreturn 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node->left) - height(node->right);\n}\n
            avl_tree.py
            def balance_factor(self, node: TreeNode | None) -> int:\n\"\"\"\u83b7\u53d6\u5e73\u8861\u56e0\u5b50\"\"\"\n# \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif node is None:\nreturn 0\n# \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn self.height(node.left) - self.height(node.right)\n
            avl_tree.go
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfunc (t *aVLTree) balanceFactor(node *TreeNode) int {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif node == nil {\nreturn 0\n}\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn t.height(node.Left) - t.height(node.Right)\n}\n
            avl_tree.js
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nbalanceFactor(node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node === null) return 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn this.height(node.left) - this.height(node.right);\n}\n
            avl_tree.ts
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nbalanceFactor(node: TreeNode): number {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node === null) return 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn this.height(node.left) - this.height(node.right);\n}\n
            avl_tree.c
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode *node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == NULL) {\nreturn 0;\n}\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node->left) - height(node->right);\n}\n
            avl_tree.cs
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode? node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == null) return 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node.left) - height(node.right);\n}\n
            avl_tree.swift
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfunc balanceFactor(node: TreeNode?) -> Int {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nguard let node = node else { return 0 }\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node: node.left) - height(node: node.right)\n}\n
            avl_tree.zig
            // \u83b7\u53d6\u5e73\u8861\u56e0\u5b50\nfn balanceFactor(self: *Self, node: ?*inc.TreeNode(T)) i32 {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == null) return 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn self.height(node.?.left) - self.height(node.?.right);\n}\n
            avl_tree.dart
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode? node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == null) return 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node.left) - height(node.right);\n}\n
            avl_tree.rs
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfn balance_factor(node: OptionTreeNodeRc) -> i32 {\nmatch node {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nNone => 0,\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nSome(node) => {\nSelf::height(node.borrow().left.clone()) - Self::height(node.borrow().right.clone())\n}\n}\n}\n

            Note

            \u8bbe\u5e73\u8861\u56e0\u5b50\u4e3a \\(f\\) \uff0c\u5219\u4e00\u68f5 AVL \u6811\u7684\u4efb\u610f\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u7686\u6ee1\u8db3 \\(-1 \\le f \\le 1\\) \u3002

            "},{"location":"chapter_tree/avl_tree/#752-avl","title":"7.5.2 \u00a0 AVL \u6811\u65cb\u8f6c","text":"

            AVL \u6811\u7684\u7279\u70b9\u5728\u4e8e\u300c\u65cb\u8f6c Rotation\u300d\u64cd\u4f5c\uff0c\u5b83\u80fd\u591f\u5728\u4e0d\u5f71\u54cd\u4e8c\u53c9\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u7684\u524d\u63d0\u4e0b\uff0c\u4f7f\u5931\u8861\u8282\u70b9\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u65cb\u8f6c\u64cd\u4f5c\u65e2\u80fd\u4fdd\u6301\u6811\u7684\u300c\u4e8c\u53c9\u641c\u7d22\u6811\u300d\u5c5e\u6027\uff0c\u4e5f\u80fd\u4f7f\u6811\u91cd\u65b0\u53d8\u4e3a\u300c\u5e73\u8861\u4e8c\u53c9\u6811\u300d\u3002

            \u6211\u4eec\u5c06\u5e73\u8861\u56e0\u5b50\u7edd\u5bf9\u503c \\(> 1\\) \u7684\u8282\u70b9\u79f0\u4e3a\u300c\u5931\u8861\u8282\u70b9\u300d\u3002\u6839\u636e\u8282\u70b9\u5931\u8861\u60c5\u51b5\u7684\u4e0d\u540c\uff0c\u65cb\u8f6c\u64cd\u4f5c\u5206\u4e3a\u56db\u79cd\uff1a\u53f3\u65cb\u3001\u5de6\u65cb\u3001\u5148\u53f3\u65cb\u540e\u5de6\u65cb\u3001\u5148\u5de6\u65cb\u540e\u53f3\u65cb\u3002\u4e0b\u9762\u6211\u4eec\u5c06\u8be6\u7ec6\u4ecb\u7ecd\u8fd9\u4e9b\u65cb\u8f6c\u64cd\u4f5c\u3002

            "},{"location":"chapter_tree/avl_tree/#1_1","title":"1. \u00a0 \u53f3\u65cb","text":"

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u8282\u70b9\u4e0b\u65b9\u4e3a\u5e73\u8861\u56e0\u5b50\u3002\u4ece\u5e95\u81f3\u9876\u770b\uff0c\u4e8c\u53c9\u6811\u4e2d\u9996\u4e2a\u5931\u8861\u8282\u70b9\u662f\u201c\u8282\u70b9 3\u201d\u3002\u6211\u4eec\u5173\u6ce8\u4ee5\u8be5\u5931\u8861\u8282\u70b9\u4e3a\u6839\u8282\u70b9\u7684\u5b50\u6811\uff0c\u5c06\u8be5\u8282\u70b9\u8bb0\u4e3a node \uff0c\u5176\u5de6\u5b50\u8282\u70b9\u8bb0\u4e3a child \uff0c\u6267\u884c\u300c\u53f3\u65cb\u300d\u64cd\u4f5c\u3002\u5b8c\u6210\u53f3\u65cb\u540e\uff0c\u5b50\u6811\u5df2\u7ecf\u6062\u590d\u5e73\u8861\uff0c\u5e76\u4e14\u4ecd\u7136\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u7279\u6027\u3002

            <1><2><3><4>

            \u56fe\uff1a\u53f3\u65cb\u64cd\u4f5c\u6b65\u9aa4

            \u6b64\u5916\uff0c\u5982\u679c\u8282\u70b9 child \u672c\u8eab\u6709\u53f3\u5b50\u8282\u70b9\uff08\u8bb0\u4e3a grandChild \uff09\uff0c\u5219\u9700\u8981\u5728\u300c\u53f3\u65cb\u300d\u4e2d\u6dfb\u52a0\u4e00\u6b65\uff1a\u5c06 grandChild \u4f5c\u4e3a node \u7684\u5de6\u5b50\u8282\u70b9\u3002

            \u56fe\uff1a\u6709 grandChild \u7684\u53f3\u65cb\u64cd\u4f5c

            \u201c\u5411\u53f3\u65cb\u8f6c\u201d\u662f\u4e00\u79cd\u5f62\u8c61\u5316\u7684\u8bf4\u6cd5\uff0c\u5b9e\u9645\u4e0a\u9700\u8981\u901a\u8fc7\u4fee\u6539\u8282\u70b9\u6307\u9488\u6765\u5b9e\u73b0\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode rightRotate(TreeNode node) {\nTreeNode child = node.left;\nTreeNode grandChild = child.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node;\nnode.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.cpp
            /* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode *rightRotate(TreeNode *node) {\nTreeNode *child = node->left;\nTreeNode *grandChild = child->right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild->right = node;\nnode->left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.py
            def __right_rotate(self, node: TreeNode | None) -> TreeNode | None:\n\"\"\"\u53f3\u65cb\u64cd\u4f5c\"\"\"\nchild = node.left\ngrand_child = child.right\n# \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node\nnode.left = grand_child\n# \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.__update_height(node)\nself.__update_height(child)\n# \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n
            avl_tree.go
            /* \u53f3\u65cb\u64cd\u4f5c */\nfunc (t *aVLTree) rightRotate(node *TreeNode) *TreeNode {\nchild := node.Left\ngrandChild := child.Right\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.Right = node\nnode.Left = grandChild\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nt.updateHeight(node)\nt.updateHeight(child)\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n}\n
            avl_tree.js
            /* \u53f3\u65cb\u64cd\u4f5c */\n#rightRotate(node) {\nconst child = node.left;\nconst grandChild = child.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node;\nnode.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nthis.#updateHeight(node);\nthis.#updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.ts
            /* \u53f3\u65cb\u64cd\u4f5c */\nrightRotate(node: TreeNode): TreeNode {\nconst child = node.left;\nconst grandChild = child.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node;\nnode.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nthis.updateHeight(node);\nthis.updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.c
            /* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode *rightRotate(TreeNode *node) {\nTreeNode *child, *grandChild;\nchild = node->left;\ngrandChild = child->right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild->right = node;\nnode->left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.cs
            /* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode? rightRotate(TreeNode? node) {\nTreeNode? child = node.left;\nTreeNode? grandChild = child?.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node;\nnode.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.swift
            /* \u53f3\u65cb\u64cd\u4f5c */\nfunc rightRotate(node: TreeNode?) -> TreeNode? {\nlet child = node?.left\nlet grandChild = child?.right\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild?.right = node\nnode?.left = grandChild\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node: node)\nupdateHeight(node: child)\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n}\n
            avl_tree.zig
            // \u53f3\u65cb\u64cd\u4f5c\nfn rightRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\nvar child = node.?.left;\nvar grandChild = child.?.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.?.right = node;\nnode.?.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.updateHeight(node);\nself.updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.dart
            /* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode? rightRotate(TreeNode? node) {\nTreeNode? child = node!.left;\nTreeNode? grandChild = child!.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node;\nnode.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.rs
            /* \u53f3\u65cb\u64cd\u4f5c */\nfn right_rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\nmatch node {\nSome(node) => {\nlet child = node.borrow().left.clone().unwrap();\nlet grand_child = child.borrow().right.clone();\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.borrow_mut().right = Some(node.clone());\nnode.borrow_mut().left = grand_child;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nSelf::update_height(Some(node));\nSelf::update_height(Some(child.clone()));\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nSome(child)\n}\nNone => None,\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#2_1","title":"2. \u00a0 \u5de6\u65cb","text":"

            \u76f8\u5e94\u7684\uff0c\u5982\u679c\u8003\u8651\u4e0a\u8ff0\u5931\u8861\u4e8c\u53c9\u6811\u7684\u201c\u955c\u50cf\u201d\uff0c\u5219\u9700\u8981\u6267\u884c\u300c\u5de6\u65cb\u300d\u64cd\u4f5c\u3002

            \u56fe\uff1a\u5de6\u65cb\u64cd\u4f5c

            \u540c\u7406\uff0c\u82e5\u8282\u70b9 child \u672c\u8eab\u6709\u5de6\u5b50\u8282\u70b9\uff08\u8bb0\u4e3a grandChild \uff09\uff0c\u5219\u9700\u8981\u5728\u300c\u5de6\u65cb\u300d\u4e2d\u6dfb\u52a0\u4e00\u6b65\uff1a\u5c06 grandChild \u4f5c\u4e3a node \u7684\u53f3\u5b50\u8282\u70b9\u3002

            \u56fe\uff1a\u6709 grandChild \u7684\u5de6\u65cb\u64cd\u4f5c

            \u53ef\u4ee5\u89c2\u5bdf\u5230\uff0c\u53f3\u65cb\u548c\u5de6\u65cb\u64cd\u4f5c\u5728\u903b\u8f91\u4e0a\u662f\u955c\u50cf\u5bf9\u79f0\u7684\uff0c\u5b83\u4eec\u5206\u522b\u89e3\u51b3\u7684\u4e24\u79cd\u5931\u8861\u60c5\u51b5\u4e5f\u662f\u5bf9\u79f0\u7684\u3002\u57fa\u4e8e\u5bf9\u79f0\u6027\uff0c\u6211\u4eec\u53ef\u4ee5\u8f7b\u677e\u5730\u4ece\u53f3\u65cb\u7684\u4ee3\u7801\u63a8\u5bfc\u51fa\u5de6\u65cb\u7684\u4ee3\u7801\u3002\u5177\u4f53\u5730\uff0c\u53ea\u9700\u5c06\u300c\u53f3\u65cb\u300d\u4ee3\u7801\u4e2d\u7684\u628a\u6240\u6709\u7684 left \u66ff\u6362\u4e3a right \uff0c\u5c06\u6240\u6709\u7684 right \u66ff\u6362\u4e3a left \uff0c\u5373\u53ef\u5f97\u5230\u300c\u5de6\u65cb\u300d\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode leftRotate(TreeNode node) {\nTreeNode child = node.right;\nTreeNode grandChild = child.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node;\nnode.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.cpp
            /* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode *leftRotate(TreeNode *node) {\nTreeNode *child = node->right;\nTreeNode *grandChild = child->left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild->left = node;\nnode->right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.py
            def __left_rotate(self, node: TreeNode | None) -> TreeNode | None:\n\"\"\"\u5de6\u65cb\u64cd\u4f5c\"\"\"\nchild = node.right\ngrand_child = child.left\n# \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node\nnode.right = grand_child\n# \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.__update_height(node)\nself.__update_height(child)\n# \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n
            avl_tree.go
            /* \u5de6\u65cb\u64cd\u4f5c */\nfunc (t *aVLTree) leftRotate(node *TreeNode) *TreeNode {\nchild := node.Right\ngrandChild := child.Left\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.Left = node\nnode.Right = grandChild\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nt.updateHeight(node)\nt.updateHeight(child)\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n}\n
            avl_tree.js
            /* \u5de6\u65cb\u64cd\u4f5c */\n#leftRotate(node) {\nconst child = node.right;\nconst grandChild = child.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node;\nnode.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nthis.#updateHeight(node);\nthis.#updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.ts
            /* \u5de6\u65cb\u64cd\u4f5c */\nleftRotate(node: TreeNode): TreeNode {\nconst child = node.right;\nconst grandChild = child.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node;\nnode.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nthis.updateHeight(node);\nthis.updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.c
            /* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode *leftRotate(TreeNode *node) {\nTreeNode *child, *grandChild;\nchild = node->right;\ngrandChild = child->left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild->left = node;\nnode->right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.cs
            /* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode? leftRotate(TreeNode? node) {\nTreeNode? child = node.right;\nTreeNode? grandChild = child?.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node;\nnode.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.swift
            /* \u5de6\u65cb\u64cd\u4f5c */\nfunc leftRotate(node: TreeNode?) -> TreeNode? {\nlet child = node?.right\nlet grandChild = child?.left\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild?.left = node\nnode?.right = grandChild\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node: node)\nupdateHeight(node: child)\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n}\n
            avl_tree.zig
            // \u5de6\u65cb\u64cd\u4f5c\nfn leftRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\nvar child = node.?.right;\nvar grandChild = child.?.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.?.left = node;\nnode.?.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.updateHeight(node);\nself.updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.dart
            /* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode? leftRotate(TreeNode? node) {\nTreeNode? child = node!.right;\nTreeNode? grandChild = child!.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node;\nnode.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.rs
            /* \u5de6\u65cb\u64cd\u4f5c */\nfn left_rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\nmatch node {\nSome(node) => {\nlet child = node.borrow().right.clone().unwrap();\nlet grand_child = child.borrow().left.clone();\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.borrow_mut().left = Some(node.clone());\nnode.borrow_mut().right = grand_child;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nSelf::update_height(Some(node));\nSelf::update_height(Some(child.clone()));\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nSome(child)\n}\nNone => None,\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#3","title":"3. \u00a0 \u5148\u5de6\u65cb\u540e\u53f3\u65cb","text":"

            \u5bf9\u4e8e\u4e0b\u56fe\u4e2d\u7684\u5931\u8861\u8282\u70b9 3\uff0c\u4ec5\u4f7f\u7528\u5de6\u65cb\u6216\u53f3\u65cb\u90fd\u65e0\u6cd5\u4f7f\u5b50\u6811\u6062\u590d\u5e73\u8861\u3002\u6b64\u65f6\u9700\u8981\u5148\u5de6\u65cb\u540e\u53f3\u65cb\uff0c\u5373\u5148\u5bf9 child \u6267\u884c\u300c\u5de6\u65cb\u300d\uff0c\u518d\u5bf9 node \u6267\u884c\u300c\u53f3\u65cb\u300d\u3002

            \u56fe\uff1a\u5148\u5de6\u65cb\u540e\u53f3\u65cb

            "},{"location":"chapter_tree/avl_tree/#4","title":"4. \u00a0 \u5148\u53f3\u65cb\u540e\u5de6\u65cb","text":"

            \u540c\u7406\uff0c\u5bf9\u4e8e\u4e0a\u8ff0\u5931\u8861\u4e8c\u53c9\u6811\u7684\u955c\u50cf\u60c5\u51b5\uff0c\u9700\u8981\u5148\u53f3\u65cb\u540e\u5de6\u65cb\uff0c\u5373\u5148\u5bf9 child \u6267\u884c\u300c\u53f3\u65cb\u300d\uff0c\u7136\u540e\u5bf9 node \u6267\u884c\u300c\u5de6\u65cb\u300d\u3002

            \u56fe\uff1a\u5148\u53f3\u65cb\u540e\u5de6\u65cb

            "},{"location":"chapter_tree/avl_tree/#5","title":"5. \u00a0 \u65cb\u8f6c\u7684\u9009\u62e9","text":"

            \u4e0b\u56fe\u5c55\u793a\u7684\u56db\u79cd\u5931\u8861\u60c5\u51b5\u4e0e\u4e0a\u8ff0\u6848\u4f8b\u9010\u4e2a\u5bf9\u5e94\uff0c\u5206\u522b\u9700\u8981\u91c7\u7528\u53f3\u65cb\u3001\u5de6\u65cb\u3001\u5148\u53f3\u540e\u5de6\u3001\u5148\u5de6\u540e\u53f3\u7684\u65cb\u8f6c\u64cd\u4f5c\u3002

            \u56fe\uff1aAVL \u6811\u7684\u56db\u79cd\u65cb\u8f6c\u60c5\u51b5

            \u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u901a\u8fc7\u5224\u65ad\u5931\u8861\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u4ee5\u53ca\u8f83\u9ad8\u4e00\u4fa7\u5b50\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u7684\u6b63\u8d1f\u53f7\uff0c\u6765\u786e\u5b9a\u5931\u8861\u8282\u70b9\u5c5e\u4e8e\u4e0a\u56fe\u4e2d\u7684\u54ea\u79cd\u60c5\u51b5\u3002

            \u8868\uff1a\u56db\u79cd\u65cb\u8f6c\u60c5\u51b5\u7684\u9009\u62e9\u6761\u4ef6

            \u5931\u8861\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50 \u5b50\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50 \u5e94\u91c7\u7528\u7684\u65cb\u8f6c\u65b9\u6cd5 \\(> 1\\) \uff08\u5373\u5de6\u504f\u6811\uff09 \\(\\geq 0\\) \u53f3\u65cb \\(> 1\\) \uff08\u5373\u5de6\u504f\u6811\uff09 \\(<0\\) \u5148\u5de6\u65cb\u540e\u53f3\u65cb \\(< -1\\) \uff08\u5373\u53f3\u504f\u6811\uff09 \\(\\leq 0\\) \u5de6\u65cb \\(< -1\\) \uff08\u5373\u53f3\u504f\u6811\uff09 \\(>0\\) \u5148\u53f3\u65cb\u540e\u5de6\u65cb

            \u4e3a\u4e86\u4fbf\u4e8e\u4f7f\u7528\uff0c\u6211\u4eec\u5c06\u65cb\u8f6c\u64cd\u4f5c\u5c01\u88c5\u6210\u4e00\u4e2a\u51fd\u6570\u3002\u6709\u4e86\u8fd9\u4e2a\u51fd\u6570\uff0c\u6211\u4eec\u5c31\u80fd\u5bf9\u5404\u79cd\u5931\u8861\u60c5\u51b5\u8fdb\u884c\u65cb\u8f6c\uff0c\u4f7f\u5931\u8861\u8282\u70b9\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode rotate(TreeNode node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nint balanceFactor = balanceFactor(node);\n// \u5de6\u504f\u6811\nif (balanceFactor > 1) {\nif (balanceFactor(node.left) >= 0) {\n// \u53f3\u65cb\nreturn rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = leftRotate(node.left);\nreturn rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (balanceFactor < -1) {\nif (balanceFactor(node.right) <= 0) {\n// \u5de6\u65cb\nreturn leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = rightRotate(node.right);\nreturn leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.cpp
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode *rotate(TreeNode *node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nint _balanceFactor = balanceFactor(node);\n// \u5de6\u504f\u6811\nif (_balanceFactor > 1) {\nif (balanceFactor(node->left) >= 0) {\n// \u53f3\u65cb\nreturn rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode->left = leftRotate(node->left);\nreturn rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (_balanceFactor < -1) {\nif (balanceFactor(node->right) <= 0) {\n// \u5de6\u65cb\nreturn leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode->right = rightRotate(node->right);\nreturn leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.py
            def __rotate(self, node: TreeNode | None) -> TreeNode | None:\n\"\"\"\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\"\"\"\n# \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nbalance_factor = self.balance_factor(node)\n# \u5de6\u504f\u6811\nif balance_factor > 1:\nif self.balance_factor(node.left) >= 0:\n# \u53f3\u65cb\nreturn self.__right_rotate(node)\nelse:\n# \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = self.__left_rotate(node.left)\nreturn self.__right_rotate(node)\n# \u53f3\u504f\u6811\nelif balance_factor < -1:\nif self.balance_factor(node.right) <= 0:\n# \u5de6\u65cb\nreturn self.__left_rotate(node)\nelse:\n# \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = self.__right_rotate(node.right)\nreturn self.__left_rotate(node)\n# \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node\n
            avl_tree.go
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfunc (t *aVLTree) rotate(node *TreeNode) *TreeNode {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n// Go \u63a8\u8350\u77ed\u53d8\u91cf\uff0c\u8fd9\u91cc bf \u6307\u4ee3 t.balanceFactor\nbf := t.balanceFactor(node)\n// \u5de6\u504f\u6811\nif bf > 1 {\nif t.balanceFactor(node.Left) >= 0 {\n// \u53f3\u65cb\nreturn t.rightRotate(node)\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.Left = t.leftRotate(node.Left)\nreturn t.rightRotate(node)\n}\n}\n// \u53f3\u504f\u6811\nif bf < -1 {\nif t.balanceFactor(node.Right) <= 0 {\n// \u5de6\u65cb\nreturn t.leftRotate(node)\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.Right = t.rightRotate(node.Right)\nreturn t.leftRotate(node)\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node\n}\n
            avl_tree.js
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n#rotate(node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nconst balanceFactor = this.balanceFactor(node);\n// \u5de6\u504f\u6811\nif (balanceFactor > 1) {\nif (this.balanceFactor(node.left) >= 0) {\n// \u53f3\u65cb\nreturn this.#rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = this.#leftRotate(node.left);\nreturn this.#rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (balanceFactor < -1) {\nif (this.balanceFactor(node.right) <= 0) {\n// \u5de6\u65cb\nreturn this.#leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = this.#rightRotate(node.right);\nreturn this.#leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.ts
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nrotate(node: TreeNode): TreeNode {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nconst balanceFactor = this.balanceFactor(node);\n// \u5de6\u504f\u6811\nif (balanceFactor > 1) {\nif (this.balanceFactor(node.left) >= 0) {\n// \u53f3\u65cb\nreturn this.rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = this.leftRotate(node.left);\nreturn this.rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (balanceFactor < -1) {\nif (this.balanceFactor(node.right) <= 0) {\n// \u5de6\u65cb\nreturn this.leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = this.rightRotate(node.right);\nreturn this.leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.c
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode *rotate(TreeNode *node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nint bf = balanceFactor(node);\n// \u5de6\u504f\u6811\nif (bf > 1) {\nif (balanceFactor(node->left) >= 0) {\n// \u53f3\u65cb\nreturn rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode->left = leftRotate(node->left);\nreturn rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (bf < -1) {\nif (balanceFactor(node->right) <= 0) {\n// \u5de6\u65cb\nreturn leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode->right = rightRotate(node->right);\nreturn leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.cs
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode? rotate(TreeNode? node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nint balanceFactorInt = balanceFactor(node);\n// \u5de6\u504f\u6811\nif (balanceFactorInt > 1) {\nif (balanceFactor(node.left) >= 0) {\n// \u53f3\u65cb\nreturn rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = leftRotate(node?.left);\nreturn rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (balanceFactorInt < -1) {\nif (balanceFactor(node.right) <= 0) {\n// \u5de6\u65cb\nreturn leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = rightRotate(node?.right);\nreturn leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.swift
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfunc rotate(node: TreeNode?) -> TreeNode? {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nlet balanceFactor = balanceFactor(node: node)\n// \u5de6\u504f\u6811\nif balanceFactor > 1 {\nif self.balanceFactor(node: node?.left) >= 0 {\n// \u53f3\u65cb\nreturn rightRotate(node: node)\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode?.left = leftRotate(node: node?.left)\nreturn rightRotate(node: node)\n}\n}\n// \u53f3\u504f\u6811\nif balanceFactor < -1 {\nif self.balanceFactor(node: node?.right) <= 0 {\n// \u5de6\u65cb\nreturn leftRotate(node: node)\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode?.right = rightRotate(node: node?.right)\nreturn leftRotate(node: node)\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node\n}\n
            avl_tree.zig
            // \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nfn rotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nvar balance_factor = self.balanceFactor(node);\n// \u5de6\u504f\u6811\nif (balance_factor > 1) {\nif (self.balanceFactor(node.?.left) >= 0) {\n// \u53f3\u65cb\nreturn self.rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.?.left = self.leftRotate(node.?.left);\nreturn self.rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (balance_factor < -1) {\nif (self.balanceFactor(node.?.right) <= 0) {\n// \u5de6\u65cb\nreturn self.leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.?.right = self.rightRotate(node.?.right);\nreturn self.leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.dart
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode? rotate(TreeNode? node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nint factor = balanceFactor(node);\n// \u5de6\u504f\u6811\nif (factor > 1) {\nif (balanceFactor(node!.left) >= 0) {\n// \u53f3\u65cb\nreturn rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = leftRotate(node.left);\nreturn rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (factor < -1) {\nif (balanceFactor(node!.right) <= 0) {\n// \u5de6\u65cb\nreturn leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = rightRotate(node.right);\nreturn leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.rs
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfn rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nlet balance_factor = Self::balance_factor(node.clone());\n// \u5de6\u504f\u6811\nif balance_factor > 1 {\nlet node = node.unwrap();\nif Self::balance_factor(node.borrow().left.clone()) >= 0 {\n// \u53f3\u65cb\nSelf::right_rotate(Some(node))\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nlet left = node.borrow().left.clone();\nnode.borrow_mut().left = Self::left_rotate(left);\nSelf::right_rotate(Some(node))\n}\n}\n// \u53f3\u504f\u6811\nelse if balance_factor < -1 {\nlet node = node.unwrap();\nif Self::balance_factor(node.borrow().right.clone()) <= 0 {\n// \u5de6\u65cb\nSelf::left_rotate(Some(node))\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nlet right = node.borrow().right.clone();\nnode.borrow_mut().right = Self::right_rotate(right);\nSelf::left_rotate(Some(node))\n}\n} else {\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nnode\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#753-avl","title":"7.5.3 \u00a0 AVL \u6811\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_tree/avl_tree/#1_2","title":"1. \u00a0 \u63d2\u5165\u8282\u70b9","text":"

            \u300cAVL \u6811\u300d\u7684\u8282\u70b9\u63d2\u5165\u64cd\u4f5c\u4e0e\u300c\u4e8c\u53c9\u641c\u7d22\u6811\u300d\u5728\u4e3b\u4f53\u4e0a\u7c7b\u4f3c\u3002\u552f\u4e00\u7684\u533a\u522b\u5728\u4e8e\uff0c\u5728 AVL \u6811\u4e2d\u63d2\u5165\u8282\u70b9\u540e\uff0c\u4ece\u8be5\u8282\u70b9\u5230\u6839\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u53ef\u80fd\u4f1a\u51fa\u73b0\u4e00\u7cfb\u5217\u5931\u8861\u8282\u70b9\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u9700\u8981\u4ece\u8fd9\u4e2a\u8282\u70b9\u5f00\u59cb\uff0c\u81ea\u5e95\u5411\u4e0a\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6240\u6709\u5931\u8861\u8282\u70b9\u6062\u590d\u5e73\u8861\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\nroot = insertHelper(root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode insertHelper(TreeNode node, int val) {\nif (node == null)\nreturn new TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node.val)\nnode.left = insertHelper(node.left, val);\nelse if (val > node.val)\nnode.right = insertHelper(node.right, val);\nelse\nreturn node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.cpp
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\nroot = insertHelper(root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode *insertHelper(TreeNode *node, int val) {\nif (node == nullptr)\nreturn new TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node->val)\nnode->left = insertHelper(node->left, val);\nelse if (val > node->val)\nnode->right = insertHelper(node->right, val);\nelse\nreturn node;    // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.py
            def insert(self, val):\n\"\"\"\u63d2\u5165\u8282\u70b9\"\"\"\nself.root = self.__insert_helper(self.root, val)\ndef __insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:\n\"\"\"\u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\"\"\"\nif node is None:\nreturn TreeNode(val)\n# 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9\nif val < node.val:\nnode.left = self.__insert_helper(node.left, val)\nelif val > node.val:\nnode.right = self.__insert_helper(node.right, val)\nelse:\n# \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node\n# \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.__update_height(node)\n# 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nreturn self.__rotate(node)\n
            avl_tree.go
            /* \u63d2\u5165\u8282\u70b9 */\nfunc (t *aVLTree) insert(val int) {\nt.root = t.insertHelper(t.root, val)\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nfunc (t *aVLTree) insertHelper(node *TreeNode, val int) *TreeNode {\nif node == nil {\nreturn NewTreeNode(val)\n}\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif val < node.Val.(int) {\nnode.Left = t.insertHelper(node.Left, val)\n} else if val > node.Val.(int) {\nnode.Right = t.insertHelper(node.Right, val)\n} else {\n// \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node\n}\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nt.updateHeight(node)\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = t.rotate(node)\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node\n}\n
            avl_tree.js
            /* \u63d2\u5165\u8282\u70b9 */\ninsert(val) {\nthis.root = this.#insertHelper(this.root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\n#insertHelper(node, val) {\nif (node === null) return new TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node.val) node.left = this.#insertHelper(node.left, val);\nelse if (val > node.val)\nnode.right = this.#insertHelper(node.right, val);\nelse return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nthis.#updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = this.#rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.ts
            /* \u63d2\u5165\u8282\u70b9 */\ninsert(val: number): void {\nthis.root = this.insertHelper(this.root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\ninsertHelper(node: TreeNode, val: number): TreeNode {\nif (node === null) return new TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node.val) {\nnode.left = this.insertHelper(node.left, val);\n} else if (val > node.val) {\nnode.right = this.insertHelper(node.right, val);\n} else {\nreturn node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n}\nthis.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = this.rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.c
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(aVLTree *tree, int val) {\ntree->root = insertHelper(tree->root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nTreeNode *insertHelper(TreeNode *node, int val) {\nif (node == NULL) {\nreturn newTreeNode(val);\n}\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node->val) {\nnode->left = insertHelper(node->left, val);\n} else if (val > node->val) {\nnode->right = insertHelper(node->right, val);\n} else {\n// \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.cs
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\nroot = insertHelper(root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? insertHelper(TreeNode? node, int val) {\nif (node == null) return new TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node.val)\nnode.left = insertHelper(node.left, val);\nelse if (val > node.val)\nnode.right = insertHelper(node.right, val);\nelse\nreturn node;     // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nupdateHeight(node);  // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.swift
            /* \u63d2\u5165\u8282\u70b9 */\nfunc insert(val: Int) {\nroot = insertHelper(node: root, val: val)\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfunc insertHelper(node: TreeNode?, val: Int) -> TreeNode? {\nvar node = node\nif node == nil {\nreturn TreeNode(x: val)\n}\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif val < node!.val {\nnode?.left = insertHelper(node: node?.left, val: val)\n} else if val > node!.val {\nnode?.right = insertHelper(node: node?.right, val: val)\n} else {\nreturn node // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n}\nupdateHeight(node: node) // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node: node)\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node\n}\n
            avl_tree.zig
            // \u63d2\u5165\u8282\u70b9\nfn insert(self: *Self, val: T) !void {\nself.root = (try self.insertHelper(self.root, val)).?;\n}\n// \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\nfn insertHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) !?*inc.TreeNode(T) {\nvar node = node_;\nif (node == null) {\nvar tmp_node = try self.mem_allocator.create(inc.TreeNode(T));\ntmp_node.init(val);\nreturn tmp_node;\n}\n// 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9\nif (val < node.?.val) {\nnode.?.left = try self.insertHelper(node.?.left, val);\n} else if (val > node.?.val) {\nnode.?.right = try self.insertHelper(node.?.right, val);\n} else {\nreturn node;            // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n}\nself.updateHeight(node);    // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n// 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nnode = self.rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.dart
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\nroot = insertHelper(root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? insertHelper(TreeNode? node, int val) {\nif (node == null) return TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node.val)\nnode.left = insertHelper(node.left, val);\nelse if (val > node.val)\nnode.right = insertHelper(node.right, val);\nelse\nreturn node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.rs
            /* \u63d2\u5165\u8282\u70b9 */\nfn insert(&mut self, val: i32) {\nself.root = Self::insert_helper(self.root.clone(), val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfn insert_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {\nmatch node {\nSome(mut node) => {\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nmatch {\nlet node_val = node.borrow().val;\nnode_val\n}\n.cmp(&val)\n{\nOrdering::Greater => {\nlet left = node.borrow().left.clone();\nnode.borrow_mut().left = Self::insert_helper(left, val);\n}\nOrdering::Less => {\nlet right = node.borrow().right.clone();\nnode.borrow_mut().right = Self::insert_helper(right, val);\n}\nOrdering::Equal => {\nreturn Some(node); // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n}\n}\nSelf::update_height(Some(node.clone())); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = Self::rotate(Some(node)).unwrap();\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nSome(node)\n}\nNone => Some(TreeNode::new(val)),\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#2_2","title":"2. \u00a0 \u5220\u9664\u8282\u70b9","text":"

            \u7c7b\u4f3c\u5730\uff0c\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u5220\u9664\u8282\u70b9\u65b9\u6cd5\u7684\u57fa\u7840\u4e0a\uff0c\u9700\u8981\u4ece\u5e95\u81f3\u9876\u5730\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6240\u6709\u5931\u8861\u8282\u70b9\u6062\u590d\u5e73\u8861\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\nroot = removeHelper(root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode removeHelper(TreeNode node, int val) {\nif (node == null)\nreturn null;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node.val)\nnode.left = removeHelper(node.left, val);\nelse if (val > node.val)\nnode.right = removeHelper(node.right, val);\nelse {\nif (node.left == null || node.right == null) {\nTreeNode child = node.left != null ? node.left : node.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == null)\nreturn null;\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse\nnode = child;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nTreeNode temp = node.right;\nwhile (temp.left != null) {\ntemp = temp.left;\n}\nnode.right = removeHelper(node.right, temp.val);\nnode.val = temp.val;\n}\n}\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.cpp
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\nroot = removeHelper(root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode *removeHelper(TreeNode *node, int val) {\nif (node == nullptr)\nreturn nullptr;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node->val)\nnode->left = removeHelper(node->left, val);\nelse if (val > node->val)\nnode->right = removeHelper(node->right, val);\nelse {\nif (node->left == nullptr || node->right == nullptr) {\nTreeNode *child = node->left != nullptr ? node->left : node->right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == nullptr) {\ndelete node;\nreturn nullptr;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse {\ndelete node;\nnode = child;\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nTreeNode *temp = node->right;\nwhile (temp->left != nullptr) {\ntemp = temp->left;\n}\nint tempVal = temp->val;\nnode->right = removeHelper(node->right, temp->val);\nnode->val = tempVal;\n}\n}\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.py
            def remove(self, val: int):\n\"\"\"\u5220\u9664\u8282\u70b9\"\"\"\nself.root = self.__remove_helper(self.root, val)\ndef __remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:\n\"\"\"\u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\"\"\"\nif node is None:\nreturn None\n# 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b\nif val < node.val:\nnode.left = self.__remove_helper(node.left, val)\nelif val > node.val:\nnode.right = self.__remove_helper(node.right, val)\nelse:\nif node.left is None or node.right is None:\nchild = node.left or node.right\n# \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif child is None:\nreturn None\n# \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse:\nnode = child\nelse:\n# \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\ntemp = node.right\nwhile temp.left is not None:\ntemp = temp.left\nnode.right = self.__remove_helper(node.right, temp.val)\nnode.val = temp.val\n# \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.__update_height(node)\n# 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nreturn self.__rotate(node)\n
            avl_tree.go
            /* \u5220\u9664\u8282\u70b9 */\nfunc (t *aVLTree) remove(val int) {\nt.root = t.removeHelper(t.root, val)\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nfunc (t *aVLTree) removeHelper(node *TreeNode, val int) *TreeNode {\nif node == nil {\nreturn nil\n}\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif val < node.Val.(int) {\nnode.Left = t.removeHelper(node.Left, val)\n} else if val > node.Val.(int) {\nnode.Right = t.removeHelper(node.Right, val)\n} else {\nif node.Left == nil || node.Right == nil {\nchild := node.Left\nif node.Right != nil {\nchild = node.Right\n}\nif child == nil {\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nreturn nil\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nnode = child\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\ntemp := node.Right\nfor temp.Left != nil {\ntemp = temp.Left\n}\nnode.Right = t.removeHelper(node.Right, temp.Val.(int))\nnode.Val = temp.Val\n}\n}\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nt.updateHeight(node)\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = t.rotate(node)\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node\n}\n
            avl_tree.js
            /* \u5220\u9664\u8282\u70b9 */\nremove(val) {\nthis.root = this.#removeHelper(this.root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\n#removeHelper(node, val) {\nif (node === null) return null;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node.val) node.left = this.#removeHelper(node.left, val);\nelse if (val > node.val)\nnode.right = this.#removeHelper(node.right, val);\nelse {\nif (node.left === null || node.right === null) {\nconst child = node.left !== null ? node.left : node.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child === null) return null;\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse node = child;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nlet temp = node.right;\nwhile (temp.left !== null) {\ntemp = temp.left;\n}\nnode.right = this.#removeHelper(node.right, temp.val);\nnode.val = temp.val;\n}\n}\nthis.#updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = this.#rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.ts
            /* \u5220\u9664\u8282\u70b9 */\nremove(val: number): void {\nthis.root = this.removeHelper(this.root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nremoveHelper(node: TreeNode, val: number): TreeNode {\nif (node === null) return null;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node.val) {\nnode.left = this.removeHelper(node.left, val);\n} else if (val > node.val) {\nnode.right = this.removeHelper(node.right, val);\n} else {\nif (node.left === null || node.right === null) {\nconst child = node.left !== null ? node.left : node.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child === null) {\nreturn null;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nnode = child;\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nlet temp = node.right;\nwhile (temp.left !== null) {\ntemp = temp.left;\n}\nnode.right = this.removeHelper(node.right, temp.val);\nnode.val = temp.val;\n}\n}\nthis.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = this.rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.c
            /* \u5220\u9664\u8282\u70b9 */\n// \u7531\u4e8e\u5f15\u5165\u4e86 stdio.h \uff0c\u6b64\u5904\u65e0\u6cd5\u4f7f\u7528 remove \u5173\u952e\u8bcd\nvoid removeNode(aVLTree *tree, int val) {\nTreeNode *root = removeHelper(tree->root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nTreeNode *removeHelper(TreeNode *node, int val) {\nTreeNode *child, *grandChild;\nif (node == NULL) {\nreturn NULL;\n}\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node->val) {\nnode->left = removeHelper(node->left, val);\n} else if (val > node->val) {\nnode->right = removeHelper(node->right, val);\n} else {\nif (node->left == NULL || node->right == NULL) {\nchild = node->left;\nif (node->right != NULL) {\nchild = node->right;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == NULL) {\nreturn NULL;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nnode = child;\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nTreeNode *temp = node->right;\nwhile (temp->left != NULL) {\ntemp = temp->left;\n}\nint tempVal = temp->val;\nnode->right = removeHelper(node->right, temp->val);\nnode->val = tempVal;\n}\n}\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.cs
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\nroot = removeHelper(root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? removeHelper(TreeNode? node, int val) {\nif (node == null) return null;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node.val)\nnode.left = removeHelper(node.left, val);\nelse if (val > node.val)\nnode.right = removeHelper(node.right, val);\nelse {\nif (node.left == null || node.right == null) {\nTreeNode? child = node.left != null ? node.left : node.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == null)\nreturn null;\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse\nnode = child;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nTreeNode? temp = node.right;\nwhile (temp.left != null) {\ntemp = temp.left;\n}\nnode.right = removeHelper(node.right, temp.val);\nnode.val = temp.val;\n}\n}\nupdateHeight(node);  // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.swift
            /* \u5220\u9664\u8282\u70b9 */\nfunc remove(val: Int) {\nroot = removeHelper(node: root, val: val)\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfunc removeHelper(node: TreeNode?, val: Int) -> TreeNode? {\nvar node = node\nif node == nil {\nreturn nil\n}\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif val < node!.val {\nnode?.left = removeHelper(node: node?.left, val: val)\n} else if val > node!.val {\nnode?.right = removeHelper(node: node?.right, val: val)\n} else {\nif node?.left == nil || node?.right == nil {\nlet child = node?.left != nil ? node?.left : node?.right\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif child == nil {\nreturn nil\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse {\nnode = child\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nvar temp = node?.right\nwhile temp?.left != nil {\ntemp = temp?.left\n}\nnode?.right = removeHelper(node: node?.right, val: temp!.val)\nnode?.val = temp!.val\n}\n}\nupdateHeight(node: node) // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node: node)\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node\n}\n
            avl_tree.zig
            // \u5220\u9664\u8282\u70b9\nfn remove(self: *Self, val: T) void {\nself.root = self.removeHelper(self.root, val).?;\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\nfn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) {\nvar node = node_;\nif (node == null) return null;\n// 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b\nif (val < node.?.val) {\nnode.?.left = self.removeHelper(node.?.left, val);\n} else if (val > node.?.val) {\nnode.?.right = self.removeHelper(node.?.right, val);\n} else {\nif (node.?.left == null or node.?.right == null) {\nvar child = if (node.?.left != null) node.?.left else node.?.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == null) {\nreturn null;\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n} else {\nnode = child;\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nvar temp = node.?.right;\nwhile (temp.?.left != null) {\ntemp = temp.?.left;\n}\nnode.?.right = self.removeHelper(node.?.right, temp.?.val);\nnode.?.val = temp.?.val;\n}\n}\nself.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n// 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nnode = self.rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.dart
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\nroot = removeHelper(root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? removeHelper(TreeNode? node, int val) {\nif (node == null) return null;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node.val)\nnode.left = removeHelper(node.left, val);\nelse if (val > node.val)\nnode.right = removeHelper(node.right, val);\nelse {\nif (node.left == null || node.right == null) {\nTreeNode? child = node.left ?? node.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == null)\nreturn null;\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse\nnode = child;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nTreeNode? temp = node.right;\nwhile (temp!.left != null) {\ntemp = temp.left;\n}\nnode.right = removeHelper(node.right, temp.val);\nnode.val = temp.val;\n}\n}\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.rs
            /* \u5220\u9664\u8282\u70b9 */\nfn remove(&self, val: i32) {\nSelf::remove_helper(self.root.clone(), val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfn remove_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {\nmatch node {\nSome(mut node) => {\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif val < node.borrow().val {\nlet left = node.borrow().left.clone();\nnode.borrow_mut().left = Self::remove_helper(left, val);\n} else if val > node.borrow().val {\nlet right = node.borrow().right.clone();\nnode.borrow_mut().right = Self::remove_helper(right, val);\n} else if node.borrow().left.is_none() || node.borrow().right.is_none() {\nlet child = if node.borrow().left.is_some() {\nnode.borrow().left.clone()\n} else {\nnode.borrow().right.clone()\n};\nmatch child {\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nNone => {\nreturn None;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nSome(child) => node = child,\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nlet mut temp = node.borrow().right.clone().unwrap();\nloop {\nlet temp_left = temp.borrow().left.clone();\nif temp_left.is_none() {\nbreak;\n}\ntemp = temp_left.unwrap();\n}\nlet right = node.borrow().right.clone();\nnode.borrow_mut().right = Self::remove_helper(right, temp.borrow().val);\nnode.borrow_mut().val = temp.borrow().val;\n}\nSelf::update_height(Some(node.clone())); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = Self::rotate(Some(node)).unwrap();\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nSome(node)\n}\nNone => None,\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#3_1","title":"3. \u00a0 \u67e5\u627e\u8282\u70b9","text":"

            AVL \u6811\u7684\u8282\u70b9\u67e5\u627e\u64cd\u4f5c\u4e0e\u4e8c\u53c9\u641c\u7d22\u6811\u4e00\u81f4\uff0c\u5728\u6b64\u4e0d\u518d\u8d58\u8ff0\u3002

            "},{"location":"chapter_tree/avl_tree/#754-avl","title":"7.5.4 \u00a0 AVL \u6811\u5178\u578b\u5e94\u7528","text":"
            • \u7ec4\u7ec7\u548c\u5b58\u50a8\u5927\u578b\u6570\u636e\uff0c\u9002\u7528\u4e8e\u9ad8\u9891\u67e5\u627e\u3001\u4f4e\u9891\u589e\u5220\u7684\u573a\u666f\u3002
            • \u7528\u4e8e\u6784\u5efa\u6570\u636e\u5e93\u4e2d\u7684\u7d22\u5f15\u7cfb\u7edf\u3002

            \u4e3a\u4ec0\u4e48\u7ea2\u9ed1\u6811\u6bd4 AVL \u6811\u66f4\u53d7\u6b22\u8fce\uff1f

            \u7ea2\u9ed1\u6811\u7684\u5e73\u8861\u6761\u4ef6\u76f8\u5bf9\u5bbd\u677e\uff0c\u56e0\u6b64\u5728\u7ea2\u9ed1\u6811\u4e2d\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\u6240\u9700\u7684\u65cb\u8f6c\u64cd\u4f5c\u76f8\u5bf9\u8f83\u5c11\uff0c\u5728\u8282\u70b9\u589e\u5220\u64cd\u4f5c\u4e0a\u7684\u5e73\u5747\u6548\u7387\u9ad8\u4e8e AVL \u6811\u3002

            "},{"location":"chapter_tree/binary_search_tree/","title":"7.4 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811","text":"

            \u300c\u4e8c\u53c9\u641c\u7d22\u6811 Binary Search Tree\u300d\u6ee1\u8db3\u4ee5\u4e0b\u6761\u4ef6\uff1a

            1. \u5bf9\u4e8e\u6839\u8282\u70b9\uff0c\u5de6\u5b50\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u503c \\(<\\) \u6839\u8282\u70b9\u7684\u503c \\(<\\) \u53f3\u5b50\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u503c\u3002
            2. \u4efb\u610f\u8282\u70b9\u7684\u5de6\u3001\u53f3\u5b50\u6811\u4e5f\u662f\u4e8c\u53c9\u641c\u7d22\u6811\uff0c\u5373\u540c\u6837\u6ee1\u8db3\u6761\u4ef6 1. \u3002

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811

            "},{"location":"chapter_tree/binary_search_tree/#741","title":"7.4.1 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u64cd\u4f5c","text":"

            \u6211\u4eec\u5c06\u4e8c\u53c9\u641c\u7d22\u6811\u5c01\u88c5\u4e3a\u4e00\u4e2a\u7c7b ArrayBinaryTree \uff0c\u5e76\u58f0\u660e\u4e00\u4e2a\u6210\u5458\u53d8\u91cf root \uff0c\u6307\u5411\u6811\u7684\u6839\u8282\u70b9\u3002

            "},{"location":"chapter_tree/binary_search_tree/#1","title":"1. \u00a0 \u67e5\u627e\u8282\u70b9","text":"

            \u7ed9\u5b9a\u76ee\u6807\u8282\u70b9\u503c num \uff0c\u53ef\u4ee5\u6839\u636e\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6027\u8d28\u6765\u67e5\u627e\u3002\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u8282\u70b9 cur \uff0c\u4ece\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9 root \u51fa\u53d1\uff0c\u5faa\u73af\u6bd4\u8f83\u8282\u70b9\u503c cur.val \u548c num \u4e4b\u95f4\u7684\u5927\u5c0f\u5173\u7cfb

            • \u82e5 cur.val < num \uff0c\u8bf4\u660e\u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\uff0c\u56e0\u6b64\u6267\u884c cur = cur.right \u3002
            • \u82e5 cur.val > num \uff0c\u8bf4\u660e\u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\uff0c\u56e0\u6b64\u6267\u884c cur = cur.left \u3002
            • \u82e5 cur.val = num \uff0c\u8bf4\u660e\u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\u5e76\u8fd4\u56de\u8be5\u8282\u70b9\u3002
            <1><2><3><4>

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u67e5\u627e\u8282\u70b9\u793a\u4f8b

            \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u67e5\u627e\u64cd\u4f5c\u4e0e\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u4e00\u81f4\uff0c\u90fd\u662f\u6bcf\u8f6e\u6392\u9664\u4e00\u534a\u60c5\u51b5\u3002\u5faa\u73af\u6b21\u6570\u6700\u591a\u4e3a\u4e8c\u53c9\u6811\u7684\u9ad8\u5ea6\uff0c\u5f53\u4e8c\u53c9\u6811\u5e73\u8861\u65f6\uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_tree.java
            /* \u67e5\u627e\u8282\u70b9 */\nTreeNode search(int num) {\nTreeNode cur = root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if (cur.val > num)\ncur = cur.left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse\nbreak;\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.cpp
            /* \u67e5\u627e\u8282\u70b9 */\nTreeNode *search(int num) {\nTreeNode *cur = root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != nullptr) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur->val < num)\ncur = cur->right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if (cur->val > num)\ncur = cur->left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse\nbreak;\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.py
            def search(self, num: int) -> TreeNode | None:\n\"\"\"\u67e5\u627e\u8282\u70b9\"\"\"\ncur: TreeNode | None = self.root\n# \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile cur is not None:\n# \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur.val < num:\ncur = cur.right\n# \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelif cur.val > num:\ncur = cur.left\n# \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse:\nbreak\nreturn cur\n
            binary_search_tree.go
            /* \u67e5\u627e\u8282\u70b9 */\nfunc (bst *binarySearchTree) search(num int) *TreeNode {\nnode := bst.root\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nfor node != nil {\nif node.Val.(int) < num {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nnode = node.Right\n} else if node.Val.(int) > num {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nnode = node.Left\n} else {\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nbreak\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn node\n}\n
            binary_search_tree.js
            /* \u67e5\u627e\u8282\u70b9 */\nfunction search(num) {\nlet cur = root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num) cur = cur.right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if (cur.val > num) cur = cur.left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse break;\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.ts
            /* \u67e5\u627e\u8282\u70b9 */\nfunction search(num: number): TreeNode | null {\nlet cur = root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\nif (cur.val < num) {\ncur = cur.right; // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n} else if (cur.val > num) {\ncur = cur.left; // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n} else {\nbreak; // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.c
            /* \u67e5\u627e\u8282\u70b9 */\nTreeNode *search(binarySearchTree *bst, int num) {\nTreeNode *cur = bst->root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != NULL) {\nif (cur->val < num) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\ncur = cur->right;\n} else if (cur->val > num) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\ncur = cur->left;\n} else {\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.cs
            /* \u67e5\u627e\u8282\u70b9 */\nTreeNode? search(int num) {\nTreeNode? cur = root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num) cur =\ncur.right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if (cur.val > num)\ncur = cur.left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse\nbreak;\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.swift
            /* \u67e5\u627e\u8282\u70b9 */\nfunc search(num: Int) -> TreeNode? {\nvar cur = root\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile cur != nil {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur!.val < num {\ncur = cur?.right\n}\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if cur!.val > num {\ncur = cur?.left\n}\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse {\nbreak\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur\n}\n
            binary_search_tree.zig
            // \u67e5\u627e\u8282\u70b9\nfn search(self: *Self, num: T) ?*inc.TreeNode(T) {\nvar cur = self.root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.?.val < num) {\ncur = cur.?.right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n} else if (cur.?.val > num) {\ncur = cur.?.left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n} else {\nbreak;\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.dart
            /* \u67e5\u627e\u8282\u70b9 */\nTreeNode? search(int num) {\nTreeNode? cur = _root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if (cur.val > num)\ncur = cur.left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse\nbreak;\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.rs
            /* \u67e5\u627e\u8282\u70b9 */\npub fn search(&self, num: i32) -> Option<TreeNodeRc> {\nlet mut cur = self.root.clone();\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile let Some(node) = cur.clone() {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif node.borrow().val < num {\ncur = node.borrow().right.clone();\n}\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if node.borrow().val > num {\ncur = node.borrow().left.clone();\n}\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse {\nbreak;\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\ncur\n}\n
            "},{"location":"chapter_tree/binary_search_tree/#2","title":"2. \u00a0 \u63d2\u5165\u8282\u70b9","text":"

            \u7ed9\u5b9a\u4e00\u4e2a\u5f85\u63d2\u5165\u5143\u7d20 num \uff0c\u4e3a\u4e86\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u201c\u5de6\u5b50\u6811 < \u6839\u8282\u70b9 < \u53f3\u5b50\u6811\u201d\u7684\u6027\u8d28\uff0c\u63d2\u5165\u64cd\u4f5c\u5206\u4e3a\u4e24\u6b65\uff1a

            1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff1a\u4e0e\u67e5\u627e\u64cd\u4f5c\u76f8\u4f3c\uff0c\u4ece\u6839\u8282\u70b9\u51fa\u53d1\uff0c\u6839\u636e\u5f53\u524d\u8282\u70b9\u503c\u548c num \u7684\u5927\u5c0f\u5173\u7cfb\u5faa\u73af\u5411\u4e0b\u641c\u7d22\uff0c\u76f4\u5230\u8d8a\u8fc7\u53f6\u8282\u70b9\uff08\u904d\u5386\u81f3 \\(\\text{None}\\) \uff09\u65f6\u8df3\u51fa\u5faa\u73af\u3002
            2. \u5728\u8be5\u4f4d\u7f6e\u63d2\u5165\u8282\u70b9\uff1a\u521d\u59cb\u5316\u8282\u70b9 num \uff0c\u5c06\u8be5\u8282\u70b9\u7f6e\u4e8e \\(\\text{None}\\) \u7684\u4f4d\u7f6e\u3002

            \u4e8c\u53c9\u641c\u7d22\u6811\u4e0d\u5141\u8bb8\u5b58\u5728\u91cd\u590d\u8282\u70b9\uff0c\u5426\u5219\u5c06\u8fdd\u53cd\u5176\u5b9a\u4e49\u3002\u56e0\u6b64\uff0c\u82e5\u5f85\u63d2\u5165\u8282\u70b9\u5728\u6811\u4e2d\u5df2\u5b58\u5728\uff0c\u5219\u4e0d\u6267\u884c\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\u3002

            \u56fe\uff1a\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u63d2\u5165\u8282\u70b9

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_tree.java
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == null)\nreturn;\nTreeNode cur = root, pre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur.val == num)\nreturn;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur.left;\n}\n// \u63d2\u5165\u8282\u70b9\nTreeNode node = new TreeNode(num);\nif (pre.val < num)\npre.right = node;\nelse\npre.left = node;\n}\n
            binary_search_tree.cpp
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == nullptr)\nreturn;\nTreeNode *cur = root, *pre = nullptr;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != nullptr) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur->val == num)\nreturn;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur->val < num)\ncur = cur->right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur->left;\n}\n// \u63d2\u5165\u8282\u70b9\nTreeNode *node = new TreeNode(num);\nif (pre->val < num)\npre->right = node;\nelse\npre->left = node;\n}\n
            binary_search_tree.py
            def insert(self, num: int):\n\"\"\"\u63d2\u5165\u8282\u70b9\"\"\"\n# \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif self.root is None:\nreturn\n# \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\ncur, pre = self.root, None\nwhile cur is not None:\n# \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif cur.val == num:\nreturn\npre = cur\n# \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur.val < num:\ncur = cur.right\n# \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse:\ncur = cur.left\n# \u63d2\u5165\u8282\u70b9\nnode = TreeNode(num)\nif pre.val < num:\npre.right = node\nelse:\npre.left = node\n
            binary_search_tree.go
            /* \u63d2\u5165\u8282\u70b9 */\nfunc (bst *binarySearchTree) insert(num int) {\ncur := bst.root\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif cur == nil {\nreturn\n}\n// \u5f85\u63d2\u5165\u8282\u70b9\u4e4b\u524d\u7684\u8282\u70b9\u4f4d\u7f6e\nvar pre *TreeNode = nil\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nfor cur != nil {\nif cur.Val == num {\nreturn\n}\npre = cur\nif cur.Val.(int) < num {\ncur = cur.Right\n} else {\ncur = cur.Left\n}\n}\n// \u63d2\u5165\u8282\u70b9\nnode := NewTreeNode(num)\nif pre.Val.(int) < num {\npre.Right = node\n} else {\npre.Left = node\n}\n}\n
            binary_search_tree.js
            /* \u63d2\u5165\u8282\u70b9 */\nfunction insert(num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root === null) return;\nlet cur = root,\npre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur.val === num) return;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num) cur = cur.right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse cur = cur.left;\n}\n// \u63d2\u5165\u8282\u70b9\nlet node = new TreeNode(num);\nif (pre.val < num) pre.right = node;\nelse pre.left = node;\n}\n
            binary_search_tree.ts
            /* \u63d2\u5165\u8282\u70b9 */\nfunction insert(num: number): void {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root === null) {\nreturn;\n}\nlet cur = root,\npre: TreeNode | null = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\nif (cur.val === num) {\nreturn; // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n}\npre = cur;\nif (cur.val < num) {\ncur = cur.right as TreeNode; // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n} else {\ncur = cur.left as TreeNode; // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n}\n}\n// \u63d2\u5165\u8282\u70b9\nlet node = new TreeNode(num);\nif (pre!.val < num) {\npre!.right = node;\n} else {\npre!.left = node;\n}\n}\n
            binary_search_tree.c
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(binarySearchTree *bst, int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (bst->root == NULL)\nreturn;\nTreeNode *cur = bst->root, *pre = NULL;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != NULL) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur->val == num) {\nreturn;\n}\npre = cur;\nif (cur->val < num) {\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\ncur = cur->right;\n} else {\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\ncur = cur->left;\n}\n}\n// \u63d2\u5165\u8282\u70b9\nTreeNode *node = newTreeNode(num);\nif (pre->val < num) {\npre->right = node;\n} else {\npre->left = node;\n}\n}\n
            binary_search_tree.cs
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == null)\nreturn;\nTreeNode? cur = root, pre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur.val == num)\nreturn;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur.left;\n}\n// \u63d2\u5165\u8282\u70b9\nTreeNode node = new TreeNode(num);\nif (pre != null) {\nif (pre.val < num)\npre.right = node;\nelse\npre.left = node;\n}\n}\n
            binary_search_tree.swift
            /* \u63d2\u5165\u8282\u70b9 */\nfunc insert(num: Int) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif root == nil {\nreturn\n}\nvar cur = root\nvar pre: TreeNode?\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile cur != nil {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif cur!.val == num {\nreturn\n}\npre = cur\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur!.val < num {\ncur = cur?.right\n}\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse {\ncur = cur?.left\n}\n}\n// \u63d2\u5165\u8282\u70b9\nlet node = TreeNode(x: num)\nif pre!.val < num {\npre?.right = node\n} else {\npre?.left = node\n}\n}\n
            binary_search_tree.zig
            // \u63d2\u5165\u8282\u70b9\nfn insert(self: *Self, num: T) !void {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (self.root == null) return;\nvar cur = self.root;\nvar pre: ?*inc.TreeNode(T) = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur.?.val == num) return;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.?.val < num) {\ncur = cur.?.right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n} else {\ncur = cur.?.left;\n}\n}\n// \u63d2\u5165\u8282\u70b9\nvar node = try self.mem_allocator.create(inc.TreeNode(T));\nnode.init(num);\nif (pre.?.val < num) {\npre.?.right = node;\n} else {\npre.?.left = node;\n}\n}\n
            binary_search_tree.dart
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (_root == null) return;\nTreeNode? cur = _root;\nTreeNode? pre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur.val == num) return;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur.left;\n}\n// \u63d2\u5165\u8282\u70b9\nTreeNode? node = TreeNode(num);\nif (pre!.val < num)\npre.right = node;\nelse\npre.left = node;\n}\n
            binary_search_tree.rs
            /* \u63d2\u5165\u8282\u70b9 */\npub fn insert(&mut self, num: i32) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif self.root.is_none() {\nreturn;\n}\nlet mut cur = self.root.clone();\nlet mut pre = None;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile let Some(node) = cur.clone() {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif node.borrow().val == num {\nreturn;\n}\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\npre = cur.clone();\nif node.borrow().val < num {\ncur = node.borrow().right.clone();\n}\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse {\ncur = node.borrow().left.clone();\n}\n}\n// \u63d2\u5165\u8282\u70b9\nlet node = TreeNode::new(num);\nlet pre = pre.unwrap();\nif pre.borrow().val < num {\npre.borrow_mut().right = Some(Rc::clone(&node));\n} else {\npre.borrow_mut().left = Some(Rc::clone(&node));\n}\n}\n

            \u4e3a\u4e86\u63d2\u5165\u8282\u70b9\uff0c\u6211\u4eec\u9700\u8981\u5229\u7528\u8f85\u52a9\u8282\u70b9 pre \u4fdd\u5b58\u4e0a\u4e00\u8f6e\u5faa\u73af\u7684\u8282\u70b9\uff0c\u8fd9\u6837\u5728\u904d\u5386\u81f3 \\(\\text{None}\\) \u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u83b7\u53d6\u5230\u5176\u7236\u8282\u70b9\uff0c\u4ece\u800c\u5b8c\u6210\u8282\u70b9\u63d2\u5165\u64cd\u4f5c\u3002

            \u4e0e\u67e5\u627e\u8282\u70b9\u76f8\u540c\uff0c\u63d2\u5165\u8282\u70b9\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\u3002

            "},{"location":"chapter_tree/binary_search_tree/#3","title":"3. \u00a0 \u5220\u9664\u8282\u70b9","text":"

            \u4e0e\u63d2\u5165\u8282\u70b9\u7c7b\u4f3c\uff0c\u6211\u4eec\u9700\u8981\u5728\u5220\u9664\u64cd\u4f5c\u540e\u7ef4\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u201c\u5de6\u5b50\u6811 < \u6839\u8282\u70b9 < \u53f3\u5b50\u6811\u201d\u7684\u6027\u8d28\u3002\u9996\u5148\uff0c\u6211\u4eec\u9700\u8981\u5728\u4e8c\u53c9\u6811\u4e2d\u6267\u884c\u67e5\u627e\u64cd\u4f5c\uff0c\u83b7\u53d6\u5f85\u5220\u9664\u8282\u70b9\u3002\u63a5\u4e0b\u6765\uff0c\u6839\u636e\u5f85\u5220\u9664\u8282\u70b9\u7684\u5b50\u8282\u70b9\u6570\u91cf\uff0c\u5220\u9664\u64cd\u4f5c\u9700\u5206\u4e3a\u4e09\u79cd\u60c5\u51b5\uff1a

            \u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(0\\) \u65f6\uff0c\u8868\u793a\u5f85\u5220\u9664\u8282\u70b9\u662f\u53f6\u8282\u70b9\uff0c\u53ef\u4ee5\u76f4\u63a5\u5220\u9664\u3002

            \u56fe\uff1a\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u5220\u9664\u8282\u70b9\uff08\u5ea6\u4e3a 0\uff09

            \u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(1\\) \u65f6\uff0c\u5c06\u5f85\u5220\u9664\u8282\u70b9\u66ff\u6362\u4e3a\u5176\u5b50\u8282\u70b9\u5373\u53ef\u3002

            \u56fe\uff1a\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u5220\u9664\u8282\u70b9\uff08\u5ea6\u4e3a 1\uff09

            \u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(2\\) \u65f6\uff0c\u6211\u4eec\u65e0\u6cd5\u76f4\u63a5\u5220\u9664\u5b83\uff0c\u800c\u9700\u8981\u4f7f\u7528\u4e00\u4e2a\u8282\u70b9\u66ff\u6362\u8be5\u8282\u70b9\u3002\u7531\u4e8e\u8981\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u201c\u5de6 \\(<\\) \u6839 \\(<\\) \u53f3\u201d\u7684\u6027\u8d28\uff0c\u56e0\u6b64\u8fd9\u4e2a\u8282\u70b9\u53ef\u4ee5\u662f\u53f3\u5b50\u6811\u7684\u6700\u5c0f\u8282\u70b9\u6216\u5de6\u5b50\u6811\u7684\u6700\u5927\u8282\u70b9\u3002

            \u5047\u8bbe\u6211\u4eec\u9009\u62e9\u53f3\u5b50\u6811\u7684\u6700\u5c0f\u8282\u70b9\uff08\u5373\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\uff09\uff0c\u5219\u5220\u9664\u64cd\u4f5c\u4e3a\uff1a

            1. \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\u5728\u201c\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u201d\u4e2d\u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\uff0c\u8bb0\u4e3a tmp \u3002
            2. \u5c06 tmp \u7684\u503c\u8986\u76d6\u5f85\u5220\u9664\u8282\u70b9\u7684\u503c\uff0c\u5e76\u5728\u6811\u4e2d\u9012\u5f52\u5220\u9664\u8282\u70b9 tmp \u3002
            <1><2><3><4>

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u5220\u9664\u8282\u70b9\u793a\u4f8b

            \u5220\u9664\u8282\u70b9\u64cd\u4f5c\u540c\u6837\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\uff0c\u5176\u4e2d\u67e5\u627e\u5f85\u5220\u9664\u8282\u70b9\u9700\u8981 \\(O(\\log n)\\) \u65f6\u95f4\uff0c\u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u540e\u7ee7\u8282\u70b9\u9700\u8981 \\(O(\\log n)\\) \u65f6\u95f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDart binary_search_tree.java
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == null)\nreturn;\nTreeNode cur = root, pre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur.val == num)\nbreak;\npre = cur;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur.left;\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur == null)\nreturn;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur.left == null || cur.right == null) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nTreeNode child = cur.left != null ? cur.left : cur.right;\n// \u5220\u9664\u8282\u70b9 cur\nif (cur != root) {\nif (pre.left == cur)\npre.left = child;\nelse\npre.right = child;\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child;\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nTreeNode tmp = cur.right;\nwhile (tmp.left != null) {\ntmp = tmp.left;\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(tmp.val);\n// \u7528 tmp \u8986\u76d6 cur\ncur.val = tmp.val;\n}\n}\n
            binary_search_tree.cpp
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == nullptr)\nreturn;\nTreeNode *cur = root, *pre = nullptr;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != nullptr) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur->val == num)\nbreak;\npre = cur;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur->val < num)\ncur = cur->right;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur->left;\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur == nullptr)\nreturn;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur->left == nullptr || cur->right == nullptr) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\nTreeNode *child = cur->left != nullptr ? cur->left : cur->right;\n// \u5220\u9664\u8282\u70b9 cur\nif (cur != root) {\nif (pre->left == cur)\npre->left = child;\nelse\npre->right = child;\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child;\n}\n// \u91ca\u653e\u5185\u5b58\ndelete cur;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nTreeNode *tmp = cur->right;\nwhile (tmp->left != nullptr) {\ntmp = tmp->left;\n}\nint tmpVal = tmp->val;\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(tmp->val);\n// \u7528 tmp \u8986\u76d6 cur\ncur->val = tmpVal;\n}\n}\n
            binary_search_tree.py
            def remove(self, num: int):\n\"\"\"\u5220\u9664\u8282\u70b9\"\"\"\n# \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif self.root is None:\nreturn\n# \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\ncur, pre = self.root, None\nwhile cur is not None:\n# \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif cur.val == num:\nbreak\npre = cur\n# \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur.val < num:\ncur = cur.right\n# \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse:\ncur = cur.left\n# \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif cur is None:\nreturn\n# \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif cur.left is None or cur.right is None:\n# \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nchild = cur.left or cur.right\n# \u5220\u9664\u8282\u70b9 cur\nif cur != self.root:\nif pre.left == cur:\npre.left = child\nelse:\npre.right = child\nelse:\n# \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nself.root = child\n# \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse:\n# \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\ntmp: TreeNode = cur.right\nwhile tmp.left is not None:\ntmp = tmp.left\n# \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nself.remove(tmp.val)\n# \u7528 tmp \u8986\u76d6 cur\ncur.val = tmp.val\n
            binary_search_tree.go
            /* \u5220\u9664\u8282\u70b9 */\nfunc (bst *binarySearchTree) remove(num int) {\ncur := bst.root\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif cur == nil {\nreturn\n}\n// \u5f85\u5220\u9664\u8282\u70b9\u4e4b\u524d\u7684\u8282\u70b9\u4f4d\u7f6e\nvar pre *TreeNode = nil\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nfor cur != nil {\nif cur.Val == num {\nbreak\n}\npre = cur\nif cur.Val.(int) < num {\n// \u5f85\u5220\u9664\u8282\u70b9\u5728\u53f3\u5b50\u6811\u4e2d\ncur = cur.Right\n} else {\n// \u5f85\u5220\u9664\u8282\u70b9\u5728\u5de6\u5b50\u6811\u4e2d\ncur = cur.Left\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif cur == nil {\nreturn\n}\n// \u5b50\u8282\u70b9\u6570\u4e3a 0 \u6216 1\nif cur.Left == nil || cur.Right == nil {\nvar child *TreeNode = nil\n// \u53d6\u51fa\u5f85\u5220\u9664\u8282\u70b9\u7684\u5b50\u8282\u70b9\nif cur.Left != nil {\nchild = cur.Left\n} else {\nchild = cur.Right\n}\n// \u5220\u9664\u8282\u70b9 cur\nif cur != bst.root {\nif pre.Left == cur {\npre.Left = child\n} else {\npre.Right = child\n}\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nbst.root = child\n}\n// \u5b50\u8282\u70b9\u6570\u4e3a 2\n} else {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d\u5f85\u5220\u9664\u8282\u70b9 cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\ntmp := cur.Right\nfor tmp.Left != nil {\ntmp = tmp.Left\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nbst.remove(tmp.Val.(int))\n// \u7528 tmp \u8986\u76d6 cur\ncur.Val = tmp.Val\n}\n}\n
            binary_search_tree.js
            /* \u5220\u9664\u8282\u70b9 */\nfunction remove(num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root === null) return;\nlet cur = root,\npre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur.val === num) break;\npre = cur;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num) cur = cur.right;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse cur = cur.left;\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur === null) return;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur.left === null || cur.right === null) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nlet child = cur.left !== null ? cur.left : cur.right;\n// \u5220\u9664\u8282\u70b9 cur\nif (cur != root) {\nif (pre.left === cur) pre.left = child;\nelse pre.right = child;\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child;\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nlet tmp = cur.right;\nwhile (tmp.left !== null) {\ntmp = tmp.left;\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(tmp.val);\n// \u7528 tmp \u8986\u76d6 cur\ncur.val = tmp.val;\n}\n}\n
            binary_search_tree.ts
            /* \u5220\u9664\u8282\u70b9 */\nfunction remove(num: number): void {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root === null) {\nreturn;\n}\nlet cur = root,\npre: TreeNode | null = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur.val === num) {\nbreak;\n}\npre = cur;\nif (cur.val < num) {\ncur = cur.right as TreeNode; // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n} else {\ncur = cur.left as TreeNode; // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur === null) {\nreturn;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur.left === null || cur.right === null) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nlet child = cur.left !== null ? cur.left : cur.right;\n// \u5220\u9664\u8282\u70b9 cur\nif (cur != root) {\nif (pre!.left === cur) {\npre!.left = child;\n} else {\npre!.right = child;\n}\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child;\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nlet tmp = cur.right;\nwhile (tmp.left !== null) {\ntmp = tmp.left;\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(tmp!.val);\n// \u7528 tmp \u8986\u76d6 cur\ncur.val = tmp.val;\n}\n}\n
            binary_search_tree.c
            /* \u5220\u9664\u8282\u70b9 */\n// \u7531\u4e8e\u5f15\u5165\u4e86 stdio.h \uff0c\u6b64\u5904\u65e0\u6cd5\u4f7f\u7528 remove \u5173\u952e\u8bcd\nvoid removeNode(binarySearchTree *bst, int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (bst->root == NULL)\nreturn;\nTreeNode *cur = bst->root, *pre = NULL;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != NULL) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur->val == num)\nbreak;\npre = cur;\nif (cur->val < num) {\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 root \u7684\u53f3\u5b50\u6811\u4e2d\ncur = cur->right;\n} else {\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 root \u7684\u5de6\u5b50\u6811\u4e2d\ncur = cur->left;\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur == NULL)\nreturn;\n// \u5224\u65ad\u5f85\u5220\u9664\u8282\u70b9\u662f\u5426\u5b58\u5728\u5b50\u8282\u70b9\nif (cur->left == NULL || cur->right == NULL) {\n/* \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1 */\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\nTreeNode *child = cur->left != NULL ? cur->left : cur->right;\n// \u5220\u9664\u8282\u70b9 cur\nif (pre->left == cur) {\npre->left = child;\n} else {\npre->right = child;\n}\n} else {\n/* \u5b50\u8282\u70b9\u6570\u91cf = 2 */\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nTreeNode *tmp = cur->right;\nwhile (tmp->left != NULL) {\ntmp = tmp->left;\n}\nint tmpVal = tmp->val;\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremoveNode(bst, tmp->val);\n// \u7528 tmp \u8986\u76d6 cur\ncur->val = tmpVal;\n}\n}\n
            binary_search_tree.cs
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == null)\nreturn;\nTreeNode? cur = root, pre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur.val == num)\nbreak;\npre = cur;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur.left;\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur == null || pre == null)\nreturn;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur.left == null || cur.right == null) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nTreeNode? child = cur.left != null ? cur.left : cur.right;\n// \u5220\u9664\u8282\u70b9 cur\nif (cur != root) {\nif (pre.left == cur)\npre.left = child;\nelse\npre.right = child;\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child;\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nTreeNode? tmp = cur.right;\nwhile (tmp.left != null) {\ntmp = tmp.left;\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(tmp.val);\n// \u7528 tmp \u8986\u76d6 cur\ncur.val = tmp.val;\n}\n}\n
            binary_search_tree.swift
            /* \u5220\u9664\u8282\u70b9 */\nfunc remove(num: Int) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif root == nil {\nreturn\n}\nvar cur = root\nvar pre: TreeNode?\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile cur != nil {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif cur!.val == num {\nbreak\n}\npre = cur\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur!.val < num {\ncur = cur?.right\n}\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse {\ncur = cur?.left\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif cur == nil {\nreturn\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif cur?.left == nil || cur?.right == nil {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nlet child = cur?.left != nil ? cur?.left : cur?.right\n// \u5220\u9664\u8282\u70b9 cur\nif cur !== root {\nif pre?.left === cur {\npre?.left = child\n} else {\npre?.right = child\n}\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nvar tmp = cur?.right\nwhile tmp?.left != nil {\ntmp = tmp?.left\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(num: tmp!.val)\n// \u7528 tmp \u8986\u76d6 cur\ncur?.val = tmp!.val\n}\n}\n
            binary_search_tree.zig
            // \u5220\u9664\u8282\u70b9\nfn remove(self: *Self, num: T) void {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (self.root == null) return;\nvar cur = self.root;\nvar pre: ?*inc.TreeNode(T) = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur.?.val == num) break;\npre = cur;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.?.val < num) {\ncur = cur.?.right;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n} else {\ncur = cur.?.left;\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur == null) return;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur.?.left == null or cur.?.right == null) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nvar child = if (cur.?.left != null) cur.?.left else cur.?.right;\n// \u5220\u9664\u8282\u70b9 cur\nif (pre.?.left == cur) {\npre.?.left = child;\n} else {\npre.?.right = child;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\n} else {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nvar tmp = cur.?.right;\nwhile (tmp.?.left != null) {\ntmp = tmp.?.left;\n}\nvar tmp_val = tmp.?.val;\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nself.remove(tmp.?.val);\n// \u7528 tmp \u8986\u76d6 cur\ncur.?.val = tmp_val;\n}\n}\n

            ```dart title=\"binary_search_tree.dart\" /* \u63d2\u5165\u8282\u70b9 */ void insert(int num) { // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de if (_root == null) return; TreeNode? cur = _root; TreeNode? pre = null; // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa while (cur != null) { // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de if (cur.val == num) return; pre = cur; // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d if (cur.val < num) cur = cur.right; // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d else cur = cur.left; } // \u63d2\u5165\u8282\u70b9 TreeNode? node = TreeNode(num); if (pre!.val < num) pre.right = node; else pre.left = node; }

            /* \u5220\u9664\u8282\u70b9 */ void remove(int num) { // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de if (_root == null) return;

              TreeNode? cur = _root;\n  TreeNode? pre = null;\n  // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n  while (cur != null) {\n    // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n    if (cur.val == num) break;\n    pre = cur;\n    // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n    if (cur.val < num)\n      cur = cur.right;\n    // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n    else\n      cur = cur.left;\n  }\n  // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n  if (cur == null) return;\n  // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n  if (cur.left == null || cur.right == null) {\n    // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n    TreeNode? child = cur.left ?? cur.right;\n    // \u5220\u9664\u8282\u70b9 cur\n    if (cur != _root) {\n      if (pre!.left == cur)\n        pre.left = child;\n      else\n        pre.right = child;\n    } else {\n      // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n      _root = child;\n    }\n  } else {\n    // \u5b50\u8282\u70b9\u6570\u91cf = 2\n    // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n    TreeNode? tmp = cur.right;\n    while (tmp!.left != null) {\n      tmp = tmp.left;\n    }\n    // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n    remove(tmp.val);\n    // \u7528 tmp \u8986\u76d6 cur\n    cur.val = tmp.val;\n  }\n}\n```\n
            Rust binary_search_tree.rs
            /* \u5220\u9664\u8282\u70b9 */\npub fn remove(&mut self, num: i32) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif self.root.is_none() { return; }\nlet mut cur = self.root.clone();\nlet mut pre = None;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile let Some(node) = cur.clone() {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif node.borrow().val == num {\nbreak;\n}\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\npre = cur.clone();\nif node.borrow().val < num {\ncur = node.borrow().right.clone();\n}\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse {\ncur = node.borrow().left.clone();\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif cur.is_none() {\nreturn;\n}\nlet cur = cur.unwrap();\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif cur.borrow().left.is_none() || cur.borrow().right.is_none() {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\nlet child = cur.borrow().left.clone().or_else(|| cur.borrow().right.clone());\nlet pre = pre.unwrap();\nlet left = pre.borrow().left.clone().unwrap();\n// \u5220\u9664\u8282\u70b9 cur\nif !Rc::ptr_eq(&cur, self.root.as_ref().unwrap()) {\nif Rc::ptr_eq(&left, &cur) {\npre.borrow_mut().left = child;\n} else {\npre.borrow_mut().right = child;\n}\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nself.root = child;\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nlet mut tmp = cur.borrow().right.clone();\nwhile let Some(node) = tmp.clone() {\nif node.borrow().left.is_some() {\ntmp = node.borrow().left.clone();\n} else {\nbreak;\n}\n}\nlet tmpval = tmp.unwrap().borrow().val;\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nself.remove(tmpval);\n// \u7528 tmp \u8986\u76d6 cur\ncur.borrow_mut().val = tmpval;\n}\n}\n
            "},{"location":"chapter_tree/binary_search_tree/#4","title":"4. \u00a0 \u6392\u5e8f","text":"

            \u6211\u4eec\u77e5\u9053\uff0c\u4e8c\u53c9\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u9075\u5faa\u201c\u5de6 \\(\\rightarrow\\) \u6839 \\(\\rightarrow\\) \u53f3\u201d\u7684\u904d\u5386\u987a\u5e8f\uff0c\u800c\u4e8c\u53c9\u641c\u7d22\u6811\u6ee1\u8db3\u201c\u5de6\u5b50\u8282\u70b9 \\(<\\) \u6839\u8282\u70b9 \\(<\\) \u53f3\u5b50\u8282\u70b9\u201d\u7684\u5927\u5c0f\u5173\u7cfb\u3002\u56e0\u6b64\uff0c\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u8fdb\u884c\u4e2d\u5e8f\u904d\u5386\u65f6\uff0c\u603b\u662f\u4f1a\u4f18\u5148\u904d\u5386\u4e0b\u4e00\u4e2a\u6700\u5c0f\u8282\u70b9\uff0c\u4ece\u800c\u5f97\u51fa\u4e00\u4e2a\u91cd\u8981\u6027\u8d28\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u662f\u5347\u5e8f\u7684\u3002

            \u5229\u7528\u4e2d\u5e8f\u904d\u5386\u5347\u5e8f\u7684\u6027\u8d28\uff0c\u6211\u4eec\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u83b7\u53d6\u6709\u5e8f\u6570\u636e\u4ec5\u9700 \\(O(n)\\) \u65f6\u95f4\uff0c\u65e0\u987b\u989d\u5916\u6392\u5e8f\uff0c\u975e\u5e38\u9ad8\u6548\u3002

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217

            "},{"location":"chapter_tree/binary_search_tree/#742","title":"7.4.2 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6548\u7387","text":"

            \u7ed9\u5b9a\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u8003\u8651\u4f7f\u7528\u6570\u7ec4\u6216\u4e8c\u53c9\u641c\u7d22\u6811\u5b58\u50a8\u3002

            \u89c2\u5bdf\u53ef\u77e5\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u5404\u9879\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u662f\u5bf9\u6570\u9636\uff0c\u5177\u6709\u7a33\u5b9a\u4e14\u9ad8\u6548\u7684\u6027\u80fd\u8868\u73b0\u3002\u53ea\u6709\u5728\u9ad8\u9891\u6dfb\u52a0\u3001\u4f4e\u9891\u67e5\u627e\u5220\u9664\u7684\u6570\u636e\u9002\u7528\u573a\u666f\u4e0b\uff0c\u6570\u7ec4\u6bd4\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6548\u7387\u66f4\u9ad8\u3002

            \u8868\uff1a\u6570\u7ec4\u4e0e\u641c\u7d22\u6811\u7684\u6548\u7387\u5bf9\u6bd4

            \u65e0\u5e8f\u6570\u7ec4 \u4e8c\u53c9\u641c\u7d22\u6811 \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\) \u63d2\u5165\u5143\u7d20 \\(O(1)\\) \\(O(\\log n)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\)

            \u5728\u7406\u60f3\u60c5\u51b5\u4e0b\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u662f\u201c\u5e73\u8861\u201d\u7684\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728 \\(\\log n\\) \u8f6e\u5faa\u73af\u5185\u67e5\u627e\u4efb\u610f\u8282\u70b9\u3002

            \u7136\u800c\uff0c\u5982\u679c\u6211\u4eec\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u4e0d\u65ad\u5730\u63d2\u5165\u548c\u5220\u9664\u8282\u70b9\uff0c\u53ef\u80fd\u5bfc\u81f4\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u94fe\u8868\uff0c\u8fd9\u65f6\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u4f1a\u9000\u5316\u4e3a \\(O(n)\\) \u3002

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u5e73\u8861\u4e0e\u9000\u5316

            "},{"location":"chapter_tree/binary_search_tree/#743","title":"7.4.3 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u5e38\u89c1\u5e94\u7528","text":"
            • \u7528\u4f5c\u7cfb\u7edf\u4e2d\u7684\u591a\u7ea7\u7d22\u5f15\uff0c\u5b9e\u73b0\u9ad8\u6548\u7684\u67e5\u627e\u3001\u63d2\u5165\u3001\u5220\u9664\u64cd\u4f5c\u3002
            • \u4f5c\u4e3a\u67d0\u4e9b\u641c\u7d22\u7b97\u6cd5\u7684\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002
            • \u7528\u4e8e\u5b58\u50a8\u6570\u636e\u6d41\uff0c\u4ee5\u4fdd\u6301\u5176\u6709\u5e8f\u72b6\u6001\u3002
            "},{"location":"chapter_tree/binary_tree/","title":"7.1 \u00a0 \u4e8c\u53c9\u6811","text":"

            \u300c\u4e8c\u53c9\u6811 Binary Tree\u300d\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u4ee3\u8868\u7740\u7956\u5148\u4e0e\u540e\u4ee3\u4e4b\u95f4\u7684\u6d3e\u751f\u5173\u7cfb\uff0c\u4f53\u73b0\u7740\u201c\u4e00\u5206\u4e3a\u4e8c\u201d\u7684\u5206\u6cbb\u903b\u8f91\u3002\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u4e8c\u53c9\u6811\u7684\u57fa\u672c\u5355\u5143\u662f\u8282\u70b9\uff0c\u6bcf\u4e2a\u8282\u70b9\u5305\u542b\uff1a\u503c\u3001\u5de6\u5b50\u8282\u70b9\u5f15\u7528\u3001\u53f3\u5b50\u8282\u70b9\u5f15\u7528\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nint val;         // \u8282\u70b9\u503c\nTreeNode left;   // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode right;  // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode(int x) { val = x; }\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\nint val;          // \u8282\u70b9\u503c\nTreeNode *left;   // \u5de6\u5b50\u8282\u70b9\u6307\u9488\nTreeNode *right;  // \u53f3\u5b50\u8282\u70b9\u6307\u9488\nTreeNode(int x) : val(x), left(nullptr), right(nullptr) {}\n};\n
            class TreeNode:\n\"\"\"\u4e8c\u53c9\u6811\u8282\u70b9\u7c7b\"\"\"\ndef __init__(self, val: int):\nself.val: int = val                   # \u8282\u70b9\u503c\nself.left: Optional[TreeNode] = None  # \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nself.right: Optional[TreeNode] = None # \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype TreeNode struct {\nVal   int\nLeft  *TreeNode\nRight *TreeNode\n}\n/* \u8282\u70b9\u521d\u59cb\u5316\u65b9\u6cd5 */\nfunc NewTreeNode(v int) *TreeNode {\nreturn &TreeNode{\nLeft:  nil, // \u5de6\u5b50\u8282\u70b9\u6307\u9488\nRight: nil, // \u53f3\u5b50\u8282\u70b9\u6307\u9488\nVal:   v,   // \u8282\u70b9\u503c\n}\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nfunction TreeNode(val, left, right) {\nthis.val = (val === undefined ? 0 : val); // \u8282\u70b9\u503c\nthis.left = (left === undefined ? null : left); // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nthis.right = (right === undefined ? null : right); // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nval: number;\nleft: TreeNode | null;\nright: TreeNode | null;\nconstructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {\nthis.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\nthis.left = left === undefined ? null : left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nthis.right = right === undefined ? null : right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\nint val;                // \u8282\u70b9\u503c\nint height;             // \u8282\u70b9\u9ad8\u5ea6\nstruct TreeNode *left;  // \u5de6\u5b50\u8282\u70b9\u6307\u9488\nstruct TreeNode *right; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n};\ntypedef struct TreeNode TreeNode;\n/* \u6784\u9020\u51fd\u6570 */\nTreeNode *newTreeNode(int val) {\nTreeNode *node;\nnode = (TreeNode *)malloc(sizeof(TreeNode));\nnode->val = val;\nnode->height = 0;\nnode->left = NULL;\nnode->right = NULL;\nreturn node;\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nint val;          // \u8282\u70b9\u503c\nTreeNode? left;   // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode? right;  // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode(int x) { val = x; }\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nvar val: Int // \u8282\u70b9\u503c\nvar left: TreeNode? // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nvar right: TreeNode? // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\ninit(x: Int) {\nval = x\n}\n}\n
            \n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nint val;         // \u8282\u70b9\u503c\nTreeNode? left;  // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode? right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode(this.val, [this.left, this.right]);\n}\n
            \n

            \u8282\u70b9\u7684\u4e24\u4e2a\u6307\u9488\u5206\u522b\u6307\u5411\u300c\u5de6\u5b50\u8282\u70b9\u300d\u548c\u300c\u53f3\u5b50\u8282\u70b9\u300d\uff0c\u540c\u65f6\u8be5\u8282\u70b9\u88ab\u79f0\u4e3a\u8fd9\u4e24\u4e2a\u5b50\u8282\u70b9\u7684\u300c\u7236\u8282\u70b9\u300d\u3002\u5f53\u7ed9\u5b9a\u4e00\u4e2a\u4e8c\u53c9\u6811\u7684\u8282\u70b9\u65f6\uff0c\u6211\u4eec\u5c06\u8be5\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u79f0\u4e3a\u8be5\u8282\u70b9\u7684\u300c\u5de6\u5b50\u6811\u300d\uff0c\u540c\u7406\u53ef\u5f97\u300c\u53f3\u5b50\u6811\u300d\u3002

            \u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u9664\u53f6\u8282\u70b9\u5916\uff0c\u5176\u4ed6\u6240\u6709\u8282\u70b9\u90fd\u5305\u542b\u5b50\u8282\u70b9\u548c\u975e\u7a7a\u5b50\u6811\u3002\u4f8b\u5982\uff0c\u5728\u4ee5\u4e0b\u793a\u4f8b\u4e2d\uff0c\u82e5\u5c06\u201c\u8282\u70b9 2\u201d\u89c6\u4e3a\u7236\u8282\u70b9\uff0c\u5219\u5176\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\u5206\u522b\u662f\u201c\u8282\u70b9 4\u201d\u548c\u201c\u8282\u70b9 5\u201d\uff0c\u5de6\u5b50\u6811\u662f\u201c\u8282\u70b9 4 \u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u201d\uff0c\u53f3\u5b50\u6811\u662f\u201c\u8282\u70b9 5 \u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u201d\u3002

            \u56fe\uff1a\u7236\u8282\u70b9\u3001\u5b50\u8282\u70b9\u3001\u5b50\u6811

            "},{"location":"chapter_tree/binary_tree/#711","title":"7.1.1 \u00a0 \u4e8c\u53c9\u6811\u5e38\u89c1\u672f\u8bed","text":"

            \u4e8c\u53c9\u6811\u6d89\u53ca\u7684\u672f\u8bed\u8f83\u591a\uff0c\u5efa\u8bae\u5c3d\u91cf\u7406\u89e3\u5e76\u8bb0\u4f4f\u3002

            • \u300c\u6839\u8282\u70b9 Root Node\u300d\uff1a\u4f4d\u4e8e\u4e8c\u53c9\u6811\u9876\u5c42\u7684\u8282\u70b9\uff0c\u6ca1\u6709\u7236\u8282\u70b9\u3002
            • \u300c\u53f6\u8282\u70b9 Leaf Node\u300d\uff1a\u6ca1\u6709\u5b50\u8282\u70b9\u7684\u8282\u70b9\uff0c\u5176\u4e24\u4e2a\u6307\u9488\u5747\u6307\u5411 \\(\\text{None}\\) \u3002
            • \u8282\u70b9\u7684\u300c\u5c42 Level\u300d\uff1a\u4ece\u9876\u81f3\u5e95\u9012\u589e\uff0c\u6839\u8282\u70b9\u6240\u5728\u5c42\u4e3a 1 \u3002
            • \u8282\u70b9\u7684\u300c\u5ea6 Degree\u300d\uff1a\u8282\u70b9\u7684\u5b50\u8282\u70b9\u7684\u6570\u91cf\u3002\u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u5ea6\u7684\u8303\u56f4\u662f 0, 1, 2 \u3002
            • \u300c\u8fb9 Edge\u300d\uff1a\u8fde\u63a5\u4e24\u4e2a\u8282\u70b9\u7684\u7ebf\u6bb5\uff0c\u5373\u8282\u70b9\u6307\u9488\u3002
            • \u4e8c\u53c9\u6811\u7684\u300c\u9ad8\u5ea6\u300d\uff1a\u4ece\u6839\u8282\u70b9\u5230\u6700\u8fdc\u53f6\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002
            • \u8282\u70b9\u7684\u300c\u6df1\u5ea6 Depth\u300d \uff1a\u4ece\u6839\u8282\u70b9\u5230\u8be5\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002
            • \u8282\u70b9\u7684\u300c\u9ad8\u5ea6 Height\u300d\uff1a\u4ece\u6700\u8fdc\u53f6\u8282\u70b9\u5230\u8be5\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002

            \u56fe\uff1a\u4e8c\u53c9\u6811\u7684\u5e38\u7528\u672f\u8bed

            \u9ad8\u5ea6\u4e0e\u6df1\u5ea6\u7684\u5b9a\u4e49

            \u8bf7\u6ce8\u610f\uff0c\u6211\u4eec\u901a\u5e38\u5c06\u300c\u9ad8\u5ea6\u300d\u548c\u300c\u6df1\u5ea6\u300d\u5b9a\u4e49\u4e3a\u201c\u8d70\u8fc7\u8fb9\u7684\u6570\u91cf\u201d\uff0c\u4f46\u6709\u4e9b\u9898\u76ee\u6216\u6559\u6750\u53ef\u80fd\u4f1a\u5c06\u5176\u5b9a\u4e49\u4e3a\u201c\u8d70\u8fc7\u8282\u70b9\u7684\u6570\u91cf\u201d\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u9ad8\u5ea6\u548c\u6df1\u5ea6\u90fd\u9700\u8981\u52a0 1 \u3002

            "},{"location":"chapter_tree/binary_tree/#712","title":"7.1.2 \u00a0 \u4e8c\u53c9\u6811\u57fa\u672c\u64cd\u4f5c","text":"

            \u521d\u59cb\u5316\u4e8c\u53c9\u6811\u3002\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u9996\u5148\u521d\u59cb\u5316\u8282\u70b9\uff0c\u7136\u540e\u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_tree.java
            // \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new TreeNode(1);\nTreeNode n2 = new TreeNode(2);\nTreeNode n3 = new TreeNode(3);\nTreeNode n4 = new TreeNode(4);\nTreeNode n5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
            binary_tree.cpp
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode* n1 = new TreeNode(1);\nTreeNode* n2 = new TreeNode(2);\nTreeNode* n3 = new TreeNode(3);\nTreeNode* n4 = new TreeNode(4);\nTreeNode* n5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1->left = n2;\nn1->right = n3;\nn2->left = n4;\nn2->right = n5;\n
            binary_tree.py
            # \u521d\u59cb\u5316\u4e8c\u53c9\u6811\n# \u521d\u59cb\u5316\u8282\u70b9\nn1 = TreeNode(val=1)\nn2 = TreeNode(val=2)\nn3 = TreeNode(val=3)\nn4 = TreeNode(val=4)\nn5 = TreeNode(val=5)\n# \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2\nn1.right = n3\nn2.left = n4\nn2.right = n5\n
            binary_tree.go
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nn1 := NewTreeNode(1)\nn2 := NewTreeNode(2)\nn3 := NewTreeNode(3)\nn4 := NewTreeNode(4)\nn5 := NewTreeNode(5)\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.Left = n2\nn1.Right = n3\nn2.Left = n4\nn2.Right = n5\n
            binary_tree.js
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = new TreeNode(1),\nn2 = new TreeNode(2),\nn3 = new TreeNode(3),\nn4 = new TreeNode(4),\nn5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
            binary_tree.ts
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = new TreeNode(1),\nn2 = new TreeNode(2),\nn3 = new TreeNode(3),\nn4 = new TreeNode(4),\nn5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
            binary_tree.c
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode *n1 = newTreeNode(1);\nTreeNode *n2 = newTreeNode(2);\nTreeNode *n3 = newTreeNode(3);\nTreeNode *n4 = newTreeNode(4);\nTreeNode *n5 = newTreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1->left = n2;\nn1->right = n3;\nn2->left = n4;\nn2->right = n5;\n
            binary_tree.cs
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new TreeNode(1);\nTreeNode n2 = new TreeNode(2);\nTreeNode n3 = new TreeNode(3);\nTreeNode n4 = new TreeNode(4);\nTreeNode n5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
            binary_tree.swift
            // \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = TreeNode(x: 1)\nlet n2 = TreeNode(x: 2)\nlet n3 = TreeNode(x: 3)\nlet n4 = TreeNode(x: 4)\nlet n5 = TreeNode(x: 5)\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2\nn1.right = n3\nn2.left = n4\nn2.right = n5\n
            binary_tree.zig
            \n
            binary_tree.dart
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new TreeNode(1);\nTreeNode n2 = new TreeNode(2);\nTreeNode n3 = new TreeNode(3);\nTreeNode n4 = new TreeNode(4);\nTreeNode n5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
            binary_tree.rs
            \n

            \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\u3002\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u901a\u8fc7\u4fee\u6539\u6307\u9488\u6765\u5b9e\u73b0\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\u3002

            \u56fe\uff1a\u5728\u4e8c\u53c9\u6811\u4e2d\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_tree.java
            TreeNode P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
            binary_tree.cpp
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode* P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1->left = P;\nP->left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1->left = n2;\n
            binary_tree.py
            # \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\np = TreeNode(0)\n# \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = p\np.left = n2\n# \u5220\u9664\u8282\u70b9 P\nn1.left = n2\n
            binary_tree.go
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\np := NewTreeNode(0)\nn1.Left = p\np.Left = n2\n// \u5220\u9664\u8282\u70b9 P\nn1.Left = n2\n
            binary_tree.js
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nlet P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
            binary_tree.ts
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nconst P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
            binary_tree.c
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode *P = newTreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1->left = P;\nP->left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1->left = n2;\n
            binary_tree.cs
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
            binary_tree.swift
            let P = TreeNode(x: 0)\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P\nP.left = n2\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2\n
            binary_tree.zig
            \n
            binary_tree.dart
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
            binary_tree.rs
            \n

            Note

            \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u63d2\u5165\u8282\u70b9\u53ef\u80fd\u4f1a\u6539\u53d8\u4e8c\u53c9\u6811\u7684\u539f\u6709\u903b\u8f91\u7ed3\u6784\uff0c\u800c\u5220\u9664\u8282\u70b9\u901a\u5e38\u610f\u5473\u7740\u5220\u9664\u8be5\u8282\u70b9\u53ca\u5176\u6240\u6709\u5b50\u6811\u3002\u56e0\u6b64\uff0c\u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u901a\u5e38\u662f\u7531\u4e00\u5957\u64cd\u4f5c\u914d\u5408\u5b8c\u6210\u7684\uff0c\u4ee5\u5b9e\u73b0\u6709\u5b9e\u9645\u610f\u4e49\u7684\u64cd\u4f5c\u3002

            "},{"location":"chapter_tree/binary_tree/#713","title":"7.1.3 \u00a0 \u5e38\u89c1\u4e8c\u53c9\u6811\u7c7b\u578b","text":""},{"location":"chapter_tree/binary_tree/#1","title":"1. \u00a0 \u5b8c\u7f8e\u4e8c\u53c9\u6811","text":"

            \u300c\u5b8c\u7f8e\u4e8c\u53c9\u6811 Perfect Binary Tree\u300d\u9664\u4e86\u6700\u5e95\u5c42\u5916\uff0c\u5176\u4f59\u6240\u6709\u5c42\u7684\u8282\u70b9\u90fd\u88ab\u5b8c\u5168\u586b\u6ee1\u3002\u5728\u5b8c\u7f8e\u4e8c\u53c9\u6811\u4e2d\uff0c\u53f6\u8282\u70b9\u7684\u5ea6\u4e3a \\(0\\) \uff0c\u5176\u4f59\u6240\u6709\u8282\u70b9\u7684\u5ea6\u90fd\u4e3a \\(2\\) \uff1b\u82e5\u6811\u9ad8\u5ea6\u4e3a \\(h\\) \uff0c\u5219\u8282\u70b9\u603b\u6570\u4e3a \\(2^{h+1} - 1\\) \uff0c\u5448\u73b0\u6807\u51c6\u7684\u6307\u6570\u7ea7\u5173\u7cfb\uff0c\u53cd\u6620\u4e86\u81ea\u7136\u754c\u4e2d\u5e38\u89c1\u7684\u7ec6\u80de\u5206\u88c2\u73b0\u8c61\u3002

            Tip

            \u5728\u4e2d\u6587\u793e\u533a\u4e2d\uff0c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u5e38\u88ab\u79f0\u4e3a\u300c\u6ee1\u4e8c\u53c9\u6811\u300d\uff0c\u8bf7\u6ce8\u610f\u533a\u5206\u3002

            \u56fe\uff1a\u5b8c\u7f8e\u4e8c\u53c9\u6811

            "},{"location":"chapter_tree/binary_tree/#2","title":"2. \u00a0 \u5b8c\u5168\u4e8c\u53c9\u6811","text":"

            \u300c\u5b8c\u5168\u4e8c\u53c9\u6811 Complete Binary Tree\u300d\u53ea\u6709\u6700\u5e95\u5c42\u7684\u8282\u70b9\u672a\u88ab\u586b\u6ee1\uff0c\u4e14\u6700\u5e95\u5c42\u8282\u70b9\u5c3d\u91cf\u9760\u5de6\u586b\u5145\u3002

            \u56fe\uff1a\u5b8c\u5168\u4e8c\u53c9\u6811

            "},{"location":"chapter_tree/binary_tree/#3","title":"3. \u00a0 \u5b8c\u6ee1\u4e8c\u53c9\u6811","text":"

            \u300c\u5b8c\u6ee1\u4e8c\u53c9\u6811 Full Binary Tree\u300d\u9664\u4e86\u53f6\u8282\u70b9\u4e4b\u5916\uff0c\u5176\u4f59\u6240\u6709\u8282\u70b9\u90fd\u6709\u4e24\u4e2a\u5b50\u8282\u70b9\u3002

            \u56fe\uff1a\u5b8c\u6ee1\u4e8c\u53c9\u6811

            "},{"location":"chapter_tree/binary_tree/#4","title":"4. \u00a0 \u5e73\u8861\u4e8c\u53c9\u6811","text":"

            \u300c\u5e73\u8861\u4e8c\u53c9\u6811 Balanced Binary Tree\u300d\u4e2d\u4efb\u610f\u8282\u70b9\u7684\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u7684\u9ad8\u5ea6\u4e4b\u5dee\u7684\u7edd\u5bf9\u503c\u4e0d\u8d85\u8fc7 1 \u3002

            \u56fe\uff1a\u5e73\u8861\u4e8c\u53c9\u6811

            "},{"location":"chapter_tree/binary_tree/#714","title":"7.1.4 \u00a0 \u4e8c\u53c9\u6811\u7684\u9000\u5316","text":"

            \u5f53\u4e8c\u53c9\u6811\u7684\u6bcf\u5c42\u8282\u70b9\u90fd\u88ab\u586b\u6ee1\u65f6\uff0c\u8fbe\u5230\u300c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u300d\uff1b\u800c\u5f53\u6240\u6709\u8282\u70b9\u90fd\u504f\u5411\u4e00\u4fa7\u65f6\uff0c\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u300c\u94fe\u8868\u300d\u3002

            • \u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u7406\u60f3\u60c5\u51b5\uff0c\u53ef\u4ee5\u5145\u5206\u53d1\u6325\u4e8c\u53c9\u6811\u201c\u5206\u6cbb\u201d\u7684\u4f18\u52bf\u3002
            • \u94fe\u8868\u5219\u662f\u53e6\u4e00\u4e2a\u6781\u7aef\uff0c\u5404\u9879\u64cd\u4f5c\u90fd\u53d8\u4e3a\u7ebf\u6027\u64cd\u4f5c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u9000\u5316\u81f3 \\(O(n)\\) \u3002

            \u56fe\uff1a\u4e8c\u53c9\u6811\u7684\u6700\u4f73\u4e0e\u6700\u5dee\u7ed3\u6784

            \u5982\u4e0b\u8868\u6240\u793a\uff0c\u5728\u6700\u4f73\u548c\u6700\u5dee\u7ed3\u6784\u4e0b\uff0c\u4e8c\u53c9\u6811\u7684\u53f6\u8282\u70b9\u6570\u91cf\u3001\u8282\u70b9\u603b\u6570\u3001\u9ad8\u5ea6\u7b49\u8fbe\u5230\u6781\u5927\u6216\u6781\u5c0f\u503c\u3002

            \u8868\uff1a\u4e8c\u53c9\u6811\u7684\u6700\u4f73\u4e0e\u6700\u5dee\u60c5\u51b5

            \u5b8c\u7f8e\u4e8c\u53c9\u6811 \u94fe\u8868 \u7b2c \\(i\\) \u5c42\u7684\u8282\u70b9\u6570\u91cf \\(2^{i-1}\\) \\(1\\) \u9ad8\u5ea6 \\(h\\) \u6811\u7684\u53f6\u8282\u70b9\u6570\u91cf \\(2^h\\) \\(1\\) \u9ad8\u5ea6 \\(h\\) \u6811\u7684\u8282\u70b9\u603b\u6570 \\(2^{h+1} - 1\\) \\(h + 1\\) \u8282\u70b9\u603b\u6570 \\(n\\) \u6811\u7684\u9ad8\u5ea6 \\(\\log_2 (n+1) - 1\\) \\(n - 1\\)"},{"location":"chapter_tree/binary_tree_traversal/","title":"7.2 \u00a0 \u4e8c\u53c9\u6811\u904d\u5386","text":"

            \u4ece\u7269\u7406\u7ed3\u6784\u7684\u89d2\u5ea6\u6765\u770b\uff0c\u6811\u662f\u4e00\u79cd\u57fa\u4e8e\u94fe\u8868\u7684\u6570\u636e\u7ed3\u6784\uff0c\u56e0\u6b64\u5176\u904d\u5386\u65b9\u5f0f\u662f\u901a\u8fc7\u6307\u9488\u9010\u4e2a\u8bbf\u95ee\u8282\u70b9\u3002\u7136\u800c\uff0c\u6811\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u8fd9\u4f7f\u5f97\u904d\u5386\u6811\u6bd4\u904d\u5386\u94fe\u8868\u66f4\u52a0\u590d\u6742\uff0c\u9700\u8981\u501f\u52a9\u641c\u7d22\u7b97\u6cd5\u6765\u5b9e\u73b0\u3002

            \u4e8c\u53c9\u6811\u5e38\u89c1\u7684\u904d\u5386\u65b9\u5f0f\u5305\u62ec\u5c42\u5e8f\u904d\u5386\u3001\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u548c\u540e\u5e8f\u904d\u5386\u7b49\u3002

            "},{"location":"chapter_tree/binary_tree_traversal/#721","title":"7.2.1 \u00a0 \u5c42\u5e8f\u904d\u5386","text":"

            \u300c\u5c42\u5e8f\u904d\u5386 Level-Order Traversal\u300d\u4ece\u9876\u90e8\u5230\u5e95\u90e8\u9010\u5c42\u904d\u5386\u4e8c\u53c9\u6811\uff0c\u5e76\u5728\u6bcf\u4e00\u5c42\u6309\u7167\u4ece\u5de6\u5230\u53f3\u7684\u987a\u5e8f\u8bbf\u95ee\u8282\u70b9\u3002

            \u5c42\u5e8f\u904d\u5386\u672c\u8d28\u4e0a\u5c5e\u4e8e\u300c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22 Breadth-First Traversal\u300d\uff0c\u5b83\u4f53\u73b0\u4e86\u4e00\u79cd\u201c\u4e00\u5708\u4e00\u5708\u5411\u5916\u6269\u5c55\u201d\u7684\u9010\u5c42\u641c\u7d22\u65b9\u5f0f\u3002

            \u56fe\uff1a\u4e8c\u53c9\u6811\u7684\u5c42\u5e8f\u904d\u5386

            \u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u901a\u5e38\u501f\u52a9\u300c\u961f\u5217\u300d\u6765\u5b9e\u73b0\u3002\u961f\u5217\u9075\u5faa\u201c\u5148\u8fdb\u5148\u51fa\u201d\u7684\u89c4\u5219\uff0c\u800c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u5219\u9075\u5faa\u201c\u9010\u5c42\u63a8\u8fdb\u201d\u7684\u89c4\u5219\uff0c\u4e24\u8005\u80cc\u540e\u7684\u601d\u60f3\u662f\u4e00\u81f4\u7684\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_tree_bfs.java
            /* \u5c42\u5e8f\u904d\u5386 */\nList<Integer> levelOrder(TreeNode root) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nQueue<TreeNode> queue = new LinkedList<>();\nqueue.add(root);\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nList<Integer> list = new ArrayList<>();\nwhile (!queue.isEmpty()) {\nTreeNode node = queue.poll(); // \u961f\u5217\u51fa\u961f\nlist.add(node.val);           // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left != null)\nqueue.offer(node.left);   // \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif (node.right != null)\nqueue.offer(node.right);  // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\nreturn list;\n}\n
            binary_tree_bfs.cpp
            /* \u5c42\u5e8f\u904d\u5386 */\nvector<int> levelOrder(TreeNode *root) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nqueue<TreeNode *> queue;\nqueue.push(root);\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nvector<int> vec;\nwhile (!queue.empty()) {\nTreeNode *node = queue.front();\nqueue.pop();              // \u961f\u5217\u51fa\u961f\nvec.push_back(node->val); // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node->left != nullptr)\nqueue.push(node->left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif (node->right != nullptr)\nqueue.push(node->right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\nreturn vec;\n}\n
            binary_tree_bfs.py
            def level_order(root: TreeNode | None) -> list[int]:\n\"\"\"\u5c42\u5e8f\u904d\u5386\"\"\"\n# \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nqueue: deque[TreeNode] = deque()\nqueue.append(root)\n# \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nres = []\nwhile queue:\nnode: TreeNode = queue.popleft()  # \u961f\u5217\u51fa\u961f\nres.append(node.val)  # \u4fdd\u5b58\u8282\u70b9\u503c\nif node.left is not None:\nqueue.append(node.left)  # \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif node.right is not None:\nqueue.append(node.right)  # \u53f3\u5b50\u8282\u70b9\u5165\u961f\nreturn res\n
            binary_tree_bfs.go
            /* \u5c42\u5e8f\u904d\u5386 */\nfunc levelOrder(root *TreeNode) []any {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nqueue := list.New()\nqueue.PushBack(root)\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5207\u7247\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nnums := make([]any, 0)\nfor queue.Len() > 0 {\n// \u961f\u5217\u51fa\u961f\nnode := queue.Remove(queue.Front()).(*TreeNode)\n// \u4fdd\u5b58\u8282\u70b9\u503c\nnums = append(nums, node.Val)\nif node.Left != nil {\n// \u5de6\u5b50\u8282\u70b9\u5165\u961f\nqueue.PushBack(node.Left)\n}\nif node.Right != nil {\n// \u53f3\u5b50\u8282\u70b9\u5165\u961f\nqueue.PushBack(node.Right)\n}\n}\nreturn nums\n}\n
            binary_tree_bfs.js
            /* \u5c42\u5e8f\u904d\u5386 */\nfunction levelOrder(root) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nconst queue = [root];\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nconst list = [];\nwhile (queue.length) {\nlet node = queue.shift(); // \u961f\u5217\u51fa\u961f\nlist.push(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left) queue.push(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif (node.right) queue.push(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\nreturn list;\n}\n
            binary_tree_bfs.ts
            /* \u5c42\u5e8f\u904d\u5386 */\nfunction levelOrder(root: TreeNode | null): number[] {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nconst queue = [root];\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nconst list: number[] = [];\nwhile (queue.length) {\nlet node = queue.shift() as TreeNode; // \u961f\u5217\u51fa\u961f\nlist.push(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left) {\nqueue.push(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n}\nif (node.right) {\nqueue.push(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\n}\nreturn list;\n}\n
            binary_tree_bfs.c
            /* \u5c42\u5e8f\u904d\u5386 */\nint *levelOrder(TreeNode *root, int *size) {\n/* \u8f85\u52a9\u961f\u5217 */\nint front, rear;\nint index, *arr;\nTreeNode *node;\nTreeNode **queue;\n/* \u8f85\u52a9\u961f\u5217 */\nqueue = (TreeNode **)malloc(sizeof(TreeNode *) * MAX_NODE_SIZE);\n// \u961f\u5217\u6307\u9488\nfront = 0, rear = 0;\n// \u52a0\u5165\u6839\u8282\u70b9\nqueue[rear++] = root;\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n/* \u8f85\u52a9\u6570\u7ec4 */\narr = (int *)malloc(sizeof(int) * MAX_NODE_SIZE);\n// \u6570\u7ec4\u6307\u9488\nindex = 0;\nwhile (front < rear) {\n// \u961f\u5217\u51fa\u961f\nnode = queue[front++];\n// \u4fdd\u5b58\u8282\u70b9\u503c\narr[index++] = node->val;\nif (node->left != NULL) {\n// \u5de6\u5b50\u8282\u70b9\u5165\u961f\nqueue[rear++] = node->left;\n}\nif (node->right != NULL) {\n// \u53f3\u5b50\u8282\u70b9\u5165\u961f\nqueue[rear++] = node->right;\n}\n}\n// \u66f4\u65b0\u6570\u7ec4\u957f\u5ea6\u7684\u503c\n*size = index;\narr = realloc(arr, sizeof(int) * (*size));\n// \u91ca\u653e\u8f85\u52a9\u6570\u7ec4\u7a7a\u95f4\nfree(queue);\nreturn arr;\n}\n
            binary_tree_bfs.cs
            /* \u5c42\u5e8f\u904d\u5386 */\nList<int> levelOrder(TreeNode root) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nQueue<TreeNode> queue = new();\nqueue.Enqueue(root);\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nList<int> list = new();\nwhile (queue.Count != 0) {\nTreeNode node = queue.Dequeue(); // \u961f\u5217\u51fa\u961f\nlist.Add(node.val);              // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left != null)\nqueue.Enqueue(node.left);    // \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif (node.right != null)\nqueue.Enqueue(node.right);   // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\nreturn list;\n}\n
            binary_tree_bfs.swift
            /* \u5c42\u5e8f\u904d\u5386 */\nfunc levelOrder(root: TreeNode) -> [Int] {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nvar queue: [TreeNode] = [root]\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nvar list: [Int] = []\nwhile !queue.isEmpty {\nlet node = queue.removeFirst() // \u961f\u5217\u51fa\u961f\nlist.append(node.val) // \u4fdd\u5b58\u8282\u70b9\u503c\nif let left = node.left {\nqueue.append(left) // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n}\nif let right = node.right {\nqueue.append(right) // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\n}\nreturn list\n}\n
            binary_tree_bfs.zig
            // \u5c42\u5e8f\u904d\u5386\nfn levelOrder(comptime T: type, mem_allocator: std.mem.Allocator, root: *inc.TreeNode(T)) !std.ArrayList(T) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nconst L = std.TailQueue(*inc.TreeNode(T));\nvar queue = L{};\nvar root_node = try mem_allocator.create(L.Node);\nroot_node.data = root;\nqueue.append(root_node); // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nvar list = std.ArrayList(T).init(std.heap.page_allocator);\nwhile (queue.len > 0) {\nvar queue_node = queue.popFirst().?;    // \u961f\u5217\u51fa\u961f\nvar node = queue_node.data;\ntry list.append(node.val);              // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left != null) {\nvar tmp_node = try mem_allocator.create(L.Node);\ntmp_node.data = node.left.?;\nqueue.append(tmp_node);             // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n}\nif (node.right != null) {\nvar tmp_node = try mem_allocator.create(L.Node);\ntmp_node.data = node.right.?;\nqueue.append(tmp_node);             // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}        }\nreturn list;\n}\n
            binary_tree_bfs.dart
            /* \u5c42\u5e8f\u904d\u5386 */\nList<int> levelOrder(TreeNode? root) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nQueue<TreeNode?> queue = Queue();\nqueue.add(root);\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nList<int> res = [];\nwhile (queue.isNotEmpty) {\nTreeNode? node = queue.removeFirst(); // \u961f\u5217\u51fa\u961f\nres.add(node!.val); // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left != null) queue.add(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif (node.right != null) queue.add(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\nreturn res;\n}\n
            binary_tree_bfs.rs
            /* \u5c42\u5e8f\u904d\u5386 */\nfn level_order(root: &Rc<RefCell<TreeNode>>) -> Vec<i32> {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u7ed3\u70b9\nlet mut que = VecDeque::new();\nque.push_back(Rc::clone(&root));\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nlet mut vec = Vec::new();\nwhile let Some(node) = que.pop_front() {                 // \u961f\u5217\u51fa\u961f\nvec.push(node.borrow().val);                         // \u4fdd\u5b58\u7ed3\u70b9\u503c\nif let Some(left) = node.borrow().left.as_ref() {\nque.push_back(Rc::clone(left));                  // \u5de6\u5b50\u7ed3\u70b9\u5165\u961f\n}\nif let Some(right) = node.borrow().right.as_ref() {\nque.push_back(Rc::clone(right));                 // \u53f3\u5b50\u7ed3\u70b9\u5165\u961f\n};\n}\nvec\n}\n

            \u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u6240\u6709\u8282\u70b9\u88ab\u8bbf\u95ee\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\uff0c\u5176\u4e2d \\(n\\) \u4e3a\u8282\u70b9\u6570\u91cf\u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6\uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u6ee1\u4e8c\u53c9\u6811\u65f6\uff0c\u904d\u5386\u5230\u6700\u5e95\u5c42\u4e4b\u524d\uff0c\u961f\u5217\u4e2d\u6700\u591a\u540c\u65f6\u5b58\u5728 \\(\\frac{n + 1}{2}\\) \u4e2a\u8282\u70b9\uff0c\u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002

            "},{"location":"chapter_tree/binary_tree_traversal/#722","title":"7.2.2 \u00a0 \u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386","text":"

            \u76f8\u5e94\u5730\uff0c\u524d\u5e8f\u3001\u4e2d\u5e8f\u548c\u540e\u5e8f\u904d\u5386\u90fd\u5c5e\u4e8e\u300c\u6df1\u5ea6\u4f18\u5148\u904d\u5386 Depth-First Traversal\u300d\uff0c\u5b83\u4f53\u73b0\u4e86\u4e00\u79cd\u201c\u5148\u8d70\u5230\u5c3d\u5934\uff0c\u518d\u56de\u6eaf\u7ee7\u7eed\u201d\u7684\u904d\u5386\u65b9\u5f0f\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5de6\u4fa7\u662f\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u793a\u610f\u56fe\uff0c\u53f3\u4e0a\u65b9\u662f\u5bf9\u5e94\u7684\u9012\u5f52\u4ee3\u7801\u3002\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u5c31\u50cf\u662f\u7ed5\u7740\u6574\u4e2a\u4e8c\u53c9\u6811\u7684\u5916\u56f4\u201c\u8d70\u201d\u4e00\u5708\uff0c\u5728\u8fd9\u4e2a\u8fc7\u7a0b\u4e2d\uff0c\u5728\u6bcf\u4e2a\u8282\u70b9\u90fd\u4f1a\u9047\u5230\u4e09\u4e2a\u4f4d\u7f6e\uff0c\u5206\u522b\u5bf9\u5e94\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u548c\u540e\u5e8f\u904d\u5386\u3002

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u524d\u3001\u4e2d\u3001\u540e\u5e8f\u904d\u5386

            \u4ee5\u4e0b\u7ed9\u51fa\u4e86\u5b9e\u73b0\u4ee3\u7801\uff0c\u8bf7\u914d\u5408\u4e0a\u56fe\u7406\u89e3\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u9012\u5f52\u8fc7\u7a0b\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_tree_dfs.java
            /* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode root) {\nif (root == null)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.add(root.val);\npreOrder(root.left);\npreOrder(root.right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode root) {\nif (root == null)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root.left);\nlist.add(root.val);\ninOrder(root.right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode root) {\nif (root == null)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root.left);\npostOrder(root.right);\nlist.add(root.val);\n}\n
            binary_tree_dfs.cpp
            /* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode *root) {\nif (root == nullptr)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nvec.push_back(root->val);\npreOrder(root->left);\npreOrder(root->right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode *root) {\nif (root == nullptr)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root->left);\nvec.push_back(root->val);\ninOrder(root->right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode *root) {\nif (root == nullptr)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root->left);\npostOrder(root->right);\nvec.push_back(root->val);\n}\n
            binary_tree_dfs.py
            def pre_order(root: TreeNode | None):\n\"\"\"\u524d\u5e8f\u904d\u5386\"\"\"\nif root is None:\nreturn\n# \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nres.append(root.val)\npre_order(root=root.left)\npre_order(root=root.right)\ndef in_order(root: TreeNode | None):\n\"\"\"\u4e2d\u5e8f\u904d\u5386\"\"\"\nif root is None:\nreturn\n# \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\nin_order(root=root.left)\nres.append(root.val)\nin_order(root=root.right)\ndef post_order(root: TreeNode | None):\n\"\"\"\u540e\u5e8f\u904d\u5386\"\"\"\nif root is None:\nreturn\n# \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npost_order(root=root.left)\npost_order(root=root.right)\nres.append(root.val)\n
            binary_tree_dfs.go
            /* \u524d\u5e8f\u904d\u5386 */\nfunc preOrder(node *TreeNode) {\nif node == nil {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nnums = append(nums, node.Val)\npreOrder(node.Left)\npreOrder(node.Right)\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc inOrder(node *TreeNode) {\nif node == nil {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(node.Left)\nnums = append(nums, node.Val)\ninOrder(node.Right)\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunc postOrder(node *TreeNode) {\nif node == nil {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(node.Left)\npostOrder(node.Right)\nnums = append(nums, node.Val)\n}\n
            binary_tree_dfs.js
            /* \u524d\u5e8f\u904d\u5386 */\nfunction preOrder(root) {\nif (root === null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.push(root.val);\npreOrder(root.left);\npreOrder(root.right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunction inOrder(root) {\nif (root === null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root.left);\nlist.push(root.val);\ninOrder(root.right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunction postOrder(root) {\nif (root === null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root.left);\npostOrder(root.right);\nlist.push(root.val);\n}\n
            binary_tree_dfs.ts
            /* \u524d\u5e8f\u904d\u5386 */\nfunction preOrder(root: TreeNode | null): void {\nif (root === null) {\nreturn;\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.push(root.val);\npreOrder(root.left);\npreOrder(root.right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunction inOrder(root: TreeNode | null): void {\nif (root === null) {\nreturn;\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root.left);\nlist.push(root.val);\ninOrder(root.right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunction postOrder(root: TreeNode | null): void {\nif (root === null) {\nreturn;\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root.left);\npostOrder(root.right);\nlist.push(root.val);\n}\n
            binary_tree_dfs.c
            /* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode *root, int *size) {\nif (root == NULL)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\narr[(*size)++] = root->val;\npreOrder(root->left, size);\npreOrder(root->right, size);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode *root, int *size) {\nif (root == NULL)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root->left, size);\narr[(*size)++] = root->val;\ninOrder(root->right, size);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode *root, int *size) {\nif (root == NULL)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root->left, size);\npostOrder(root->right, size);\narr[(*size)++] = root->val;\n}\n
            binary_tree_dfs.cs
            /* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode? root) {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.Add(root.val);\npreOrder(root.left);\npreOrder(root.right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode? root) {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root.left);\nlist.Add(root.val);\ninOrder(root.right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode? root) {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root.left);\npostOrder(root.right);\nlist.Add(root.val);\n}\n
            binary_tree_dfs.swift
            /* \u524d\u5e8f\u904d\u5386 */\nfunc preOrder(root: TreeNode?) {\nguard let root = root else {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.append(root.val)\npreOrder(root: root.left)\npreOrder(root: root.right)\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc inOrder(root: TreeNode?) {\nguard let root = root else {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root: root.left)\nlist.append(root.val)\ninOrder(root: root.right)\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunc postOrder(root: TreeNode?) {\nguard let root = root else {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root: root.left)\npostOrder(root: root.right)\nlist.append(root.val)\n}\n
            binary_tree_dfs.zig
            // \u524d\u5e8f\u904d\u5386\nfn preOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\ntry list.append(root.?.val);\ntry preOrder(T, root.?.left);\ntry preOrder(T, root.?.right);\n}\n// \u4e2d\u5e8f\u904d\u5386\nfn inOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ntry inOrder(T, root.?.left);\ntry list.append(root.?.val);\ntry inOrder(T, root.?.right);\n}\n// \u540e\u5e8f\u904d\u5386\nfn postOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\ntry postOrder(T, root.?.left);\ntry postOrder(T, root.?.right);\ntry list.append(root.?.val);\n}\n
            binary_tree_dfs.dart
            /* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode? node) {\nif (node == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.add(node.val);\npreOrder(node.left);\npreOrder(node.right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode? node) {\nif (node == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(node.left);\nlist.add(node.val);\ninOrder(node.right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode? node) {\nif (node == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(node.left);\npostOrder(node.right);\nlist.add(node.val);\n}\n
            binary_tree_dfs.rs
            /* \u524d\u5e8f\u904d\u5386 */\nfn pre_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\nlet mut result = vec![];\nif let Some(node) = root {\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u7ed3\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nresult.push(node.borrow().val);\nresult.append(&mut pre_order(node.borrow().left.as_ref()));\nresult.append(&mut pre_order(node.borrow().right.as_ref()));\n}\nresult\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfn in_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\nlet mut result = vec![];\nif let Some(node) = root {\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u7ed3\u70b9 -> \u53f3\u5b50\u6811\nresult.append(&mut in_order(node.borrow().left.as_ref()));\nresult.push(node.borrow().val);\nresult.append(&mut in_order(node.borrow().right.as_ref()));\n}\nresult\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfn post_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\nlet mut result = vec![];\nif let Some(node) = root {\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u7ed3\u70b9\nresult.append(&mut post_order(node.borrow().left.as_ref()));\nresult.append(&mut post_order(node.borrow().right.as_ref()));\nresult.push(node.borrow().val);\n}\nresult\n}\n

            \u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u6240\u6709\u8282\u70b9\u88ab\u8bbf\u95ee\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\uff0c\u5176\u4e2d \\(n\\) \u4e3a\u8282\u70b9\u6570\u91cf\u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6\uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u9012\u5f52\u6df1\u5ea6\u8fbe\u5230 \\(n\\) \uff0c\u7cfb\u7edf\u5360\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002

            Note

            \u6211\u4eec\u4e5f\u53ef\u4ee5\u4e0d\u4f7f\u7528\u9012\u5f52\uff0c\u4ec5\u57fa\u4e8e\u8fed\u4ee3\u5b9e\u73b0\u524d\u3001\u4e2d\u3001\u540e\u5e8f\u904d\u5386\uff0c\u6709\u5174\u8da3\u7684\u540c\u5b66\u53ef\u4ee5\u81ea\u884c\u7814\u7a76\u3002

            \u4e0b\u56fe\u5c55\u793a\u4e86\u524d\u5e8f\u904d\u5386\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b\uff0c\u5176\u53ef\u5206\u4e3a\u201c\u9012\u201d\u548c\u201c\u5f52\u201d\u4e24\u4e2a\u9006\u5411\u7684\u90e8\u5206\uff1a

            1. \u201c\u9012\u201d\u8868\u793a\u5f00\u542f\u65b0\u65b9\u6cd5\uff0c\u7a0b\u5e8f\u5728\u6b64\u8fc7\u7a0b\u4e2d\u8bbf\u95ee\u4e0b\u4e00\u4e2a\u8282\u70b9\u3002
            2. \u201c\u5f52\u201d\u8868\u793a\u51fd\u6570\u8fd4\u56de\uff0c\u4ee3\u8868\u5f53\u524d\u8282\u70b9\u5df2\u7ecf\u8bbf\u95ee\u5b8c\u6bd5\u3002
            <1><2><3><4><5><6><7><8><9><10><11>

            \u56fe\uff1a\u524d\u5e8f\u904d\u5386\u7684\u9012\u5f52\u8fc7\u7a0b

            "},{"location":"chapter_tree/summary/","title":"7.6 \u00a0 \u5c0f\u7ed3","text":"
            • \u4e8c\u53c9\u6811\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u4f53\u73b0\u201c\u4e00\u5206\u4e3a\u4e8c\u201d\u7684\u5206\u6cbb\u903b\u8f91\u3002\u6bcf\u4e2a\u4e8c\u53c9\u6811\u8282\u70b9\u5305\u542b\u4e00\u4e2a\u503c\u4ee5\u53ca\u4e24\u4e2a\u6307\u9488\uff0c\u5206\u522b\u6307\u5411\u5176\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\u3002
            • \u5bf9\u4e8e\u4e8c\u53c9\u6811\u4e2d\u7684\u67d0\u4e2a\u8282\u70b9\uff0c\u5176\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u53ca\u5176\u4ee5\u4e0b\u5f62\u6210\u7684\u6811\u88ab\u79f0\u4e3a\u8be5\u8282\u70b9\u7684\u5de6\uff08\u53f3\uff09\u5b50\u6811\u3002
            • \u4e8c\u53c9\u6811\u7684\u76f8\u5173\u672f\u8bed\u5305\u62ec\u6839\u8282\u70b9\u3001\u53f6\u8282\u70b9\u3001\u5c42\u3001\u5ea6\u3001\u8fb9\u3001\u9ad8\u5ea6\u548c\u6df1\u5ea6\u7b49\u3002
            • \u4e8c\u53c9\u6811\u7684\u521d\u59cb\u5316\u3001\u8282\u70b9\u63d2\u5165\u548c\u8282\u70b9\u5220\u9664\u64cd\u4f5c\u4e0e\u94fe\u8868\u64cd\u4f5c\u65b9\u6cd5\u7c7b\u4f3c\u3002
            • \u5e38\u89c1\u7684\u4e8c\u53c9\u6811\u7c7b\u578b\u6709\u5b8c\u7f8e\u4e8c\u53c9\u6811\u3001\u5b8c\u5168\u4e8c\u53c9\u6811\u3001\u6ee1\u4e8c\u53c9\u6811\u548c\u5e73\u8861\u4e8c\u53c9\u6811\u3002\u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u6700\u7406\u60f3\u7684\u72b6\u6001\uff0c\u800c\u94fe\u8868\u662f\u9000\u5316\u540e\u7684\u6700\u5dee\u72b6\u6001\u3002
            • \u4e8c\u53c9\u6811\u53ef\u4ee5\u7528\u6570\u7ec4\u8868\u793a\uff0c\u65b9\u6cd5\u662f\u5c06\u8282\u70b9\u503c\u548c\u7a7a\u4f4d\u6309\u5c42\u5e8f\u904d\u5386\u987a\u5e8f\u6392\u5217\uff0c\u5e76\u6839\u636e\u7236\u8282\u70b9\u4e0e\u5b50\u8282\u70b9\u4e4b\u95f4\u7684\u7d22\u5f15\u6620\u5c04\u5173\u7cfb\u6765\u5b9e\u73b0\u6307\u9488\u3002
            • \u4e8c\u53c9\u6811\u7684\u5c42\u5e8f\u904d\u5386\u662f\u4e00\u79cd\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u65b9\u6cd5\uff0c\u5b83\u4f53\u73b0\u4e86\u201c\u4e00\u5708\u4e00\u5708\u5411\u5916\u201d\u7684\u5206\u5c42\u904d\u5386\u65b9\u5f0f\uff0c\u901a\u5e38\u901a\u8fc7\u961f\u5217\u6765\u5b9e\u73b0\u3002
            • \u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386\u7686\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\uff0c\u5b83\u4eec\u4f53\u73b0\u4e86\u201c\u8d70\u5230\u5c3d\u5934\uff0c\u518d\u56de\u5934\u7ee7\u7eed\u201d\u7684\u56de\u6eaf\u904d\u5386\u65b9\u5f0f\uff0c\u901a\u5e38\u4f7f\u7528\u9012\u5f52\u6765\u5b9e\u73b0\u3002
            • \u4e8c\u53c9\u641c\u7d22\u6811\u662f\u4e00\u79cd\u9ad8\u6548\u7684\u5143\u7d20\u67e5\u627e\u6570\u636e\u7ed3\u6784\uff0c\u5176\u67e5\u627e\u3001\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log n)\\) \u3002\u5f53\u4e8c\u53c9\u641c\u7d22\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u5404\u9879\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u52a3\u5316\u81f3 \\(O(n)\\) \u3002
            • AVL \u6811\uff0c\u4e5f\u79f0\u4e3a\u5e73\u8861\u4e8c\u53c9\u641c\u7d22\u6811\uff0c\u5b83\u901a\u8fc7\u65cb\u8f6c\u64cd\u4f5c\uff0c\u786e\u4fdd\u5728\u4e0d\u65ad\u63d2\u5165\u548c\u5220\u9664\u8282\u70b9\u540e\uff0c\u6811\u4ecd\u7136\u4fdd\u6301\u5e73\u8861\u3002
            • AVL \u6811\u7684\u65cb\u8f6c\u64cd\u4f5c\u5305\u62ec\u53f3\u65cb\u3001\u5de6\u65cb\u3001\u5148\u53f3\u65cb\u518d\u5de6\u65cb\u3001\u5148\u5de6\u65cb\u518d\u53f3\u65cb\u3002\u5728\u63d2\u5165\u6216\u5220\u9664\u8282\u70b9\u540e\uff0cAVL \u6811\u4f1a\u4ece\u5e95\u5411\u9876\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002
            "},{"location":"chapter_tree/summary/#761-q-a","title":"7.6.1 \u00a0 Q & A","text":"

            \u5bf9\u4e8e\u53ea\u6709\u4e00\u4e2a\u8282\u70b9\u7684\u4e8c\u53c9\u6811\uff0c\u6811\u7684\u9ad8\u5ea6\u548c\u6839\u8282\u70b9\u7684\u6df1\u5ea6\u90fd\u662f \\(0\\) \u5417\uff1f

            \u662f\u7684\uff0c\u56e0\u4e3a\u9ad8\u5ea6\u548c\u6df1\u5ea6\u901a\u5e38\u5b9a\u4e49\u4e3a\u201c\u8d70\u8fc7\u8fb9\u7684\u6570\u91cf\u201d\u3002

            \u4e8c\u53c9\u6811\u4e2d\u7684\u63d2\u5165\u4e0e\u5220\u9664\u4e00\u822c\u90fd\u662f\u7531\u4e00\u5957\u64cd\u4f5c\u914d\u5408\u5b8c\u6210\u7684\uff0c\u8fd9\u91cc\u7684\u201c\u4e00\u5957\u64cd\u4f5c\u201d\u6307\u4ec0\u4e48\u5462\uff1f\u53ef\u4ee5\u7406\u89e3\u4e3a\u8d44\u6e90\u7684\u5b50\u8282\u70b9\u7684\u8d44\u6e90\u91ca\u653e\u5417\uff1f

            \u62ff\u4e8c\u53c9\u641c\u7d22\u6811\u6765\u4e3e\u4f8b\uff0c\u5220\u9664\u8282\u70b9\u64cd\u4f5c\u8981\u5206\u4e3a\u4e09\u79cd\u60c5\u51b5\u5904\u7406\uff0c\u5176\u4e2d\u6bcf\u79cd\u60c5\u51b5\u90fd\u9700\u8981\u8fdb\u884c\u591a\u4e2a\u6b65\u9aa4\u7684\u8282\u70b9\u64cd\u4f5c\u3002

            \u4e3a\u4ec0\u4e48 DFS \u904d\u5386\u4e8c\u53c9\u6811\u6709\u524d\u3001\u4e2d\u3001\u540e\u4e09\u79cd\u987a\u5e8f\uff0c\u5206\u522b\u6709\u4ec0\u4e48\u7528\u5462\uff1f

            DFS \u7684\u524d\u3001\u4e2d\u3001\u540e\u5e8f\u904d\u5386\u548c\u8bbf\u95ee\u6570\u7ec4\u7684\u987a\u5e8f\u7c7b\u4f3c\uff0c\u662f\u904d\u5386\u4e8c\u53c9\u6811\u7684\u57fa\u672c\u65b9\u6cd5\uff0c\u5229\u7528\u8fd9\u4e09\u79cd\u904d\u5386\u65b9\u6cd5\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\u4e00\u4e2a\u7279\u5b9a\u987a\u5e8f\u7684\u904d\u5386\u7ed3\u679c\u3002\u4f8b\u5982\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\uff0c\u7531\u4e8e\u7ed3\u70b9\u5927\u5c0f\u6ee1\u8db3 \u5de6\u5b50\u7ed3\u70b9\u503c < \u6839\u7ed3\u70b9\u503c < \u53f3\u5b50\u7ed3\u70b9\u503c \uff0c\u56e0\u6b64\u6211\u4eec\u53ea\u8981\u6309\u7167 \u5de6->\u6839->\u53f3 \u7684\u4f18\u5148\u7ea7\u904d\u5386\u6811\uff0c\u5c31\u53ef\u4ee5\u83b7\u5f97\u6709\u5e8f\u7684\u8282\u70b9\u5e8f\u5217\u3002

            \u53f3\u65cb\u64cd\u4f5c\u662f\u5904\u7406\u5931\u8861\u8282\u70b9 node , child , grand_child \u4e4b\u95f4\u7684\u5173\u7cfb\uff0c\u90a3 node \u7684\u7236\u8282\u70b9\u548c node \u539f\u6765\u7684\u8fde\u63a5\u4e0d\u9700\u8981\u7ef4\u62a4\u5417\uff1f\u53f3\u65cb\u64cd\u4f5c\u540e\u5c82\u4e0d\u662f\u65ad\u6389\u4e86\uff1f

            \u6211\u4eec\u9700\u8981\u4ece\u9012\u5f52\u7684\u89c6\u89d2\u6765\u770b\u8fd9\u4e2a\u95ee\u9898\u3002\u53f3\u65cb\u64cd\u4f5c right_rotate(root) \u4f20\u5165\u7684\u662f\u5b50\u6811\u7684\u6839\u8282\u70b9\uff0c\u6700\u7ec8 return child \u8fd4\u56de\u65cb\u8f6c\u4e4b\u540e\u7684\u5b50\u6811\u7684\u6839\u8282\u70b9\u3002\u5b50\u6811\u7684\u6839\u8282\u70b9\u548c\u5176\u7236\u8282\u70b9\u7684\u8fde\u63a5\u662f\u5728\u8be5\u51fd\u6570\u8fd4\u56de\u540e\u5b8c\u6210\u7684\uff0c\u4e0d\u5c5e\u4e8e\u53f3\u65cb\u64cd\u4f5c\u7684\u7ef4\u62a4\u8303\u56f4\u3002

            \u5728 C++ \u4e2d\uff0c\u51fd\u6570\u88ab\u5212\u5206\u5230 private \u548c public \u4e2d\uff0c\u8fd9\u65b9\u9762\u6709\u4ec0\u4e48\u8003\u91cf\u5417\uff1f\u4e3a\u4ec0\u4e48\u8981\u5c06 height() \u51fd\u6570\u548c updateHeight() \u51fd\u6570\u5206\u522b\u653e\u5728 public \u548c private \u4e2d\u5462\uff1f

            \u4e3b\u8981\u770b\u65b9\u6cd5\u7684\u4f7f\u7528\u8303\u56f4\uff0c\u5982\u679c\u65b9\u6cd5\u53ea\u5728\u7c7b\u5185\u90e8\u4f7f\u7528\uff0c\u90a3\u4e48\u5c31\u8bbe\u8ba1\u4e3a private \u3002\u4f8b\u5982\uff0c\u7528\u6237\u5355\u72ec\u8c03\u7528 updateHeight() \u662f\u6ca1\u6709\u610f\u4e49\u7684\uff0c\u5b83\u53ea\u662f\u63d2\u5165\u3001\u5220\u9664\u64cd\u4f5c\u4e2d\u7684\u4e00\u6b65\u3002\u800c height() \u662f\u8bbf\u95ee\u7ed3\u70b9\u9ad8\u5ea6\uff0c\u7c7b\u4f3c\u4e8e vector.size() \uff0c\u56e0\u6b64\u8bbe\u7f6e\u6210 public \u4ee5\u4fbf\u4f7f\u7528\u3002

            \u8bf7\u95ee\u5982\u4f55\u4ece\u4e00\u7ec4\u8f93\u5165\u6570\u636e\u6784\u5efa\u4e00\u4e2a\u4e8c\u53c9\u641c\u7d22\u6811\uff1f\u6839\u8282\u70b9\u7684\u9009\u62e9\u662f\u4e0d\u662f\u5f88\u91cd\u8981\uff1f

            \u662f\u7684\uff0c\u6784\u5efa\u6811\u7684\u65b9\u6cd5\u5df2\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4ee3\u7801\u4e2d\u7684 build_tree() \u65b9\u6cd5\u4e2d\u7ed9\u51fa\u3002\u81f3\u4e8e\u6839\u8282\u70b9\u7684\u9009\u62e9\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u8f93\u5165\u6570\u636e\u6392\u5e8f\uff0c\u7136\u540e\u7528\u4e2d\u70b9\u5143\u7d20\u4f5c\u4e3a\u6839\u8282\u70b9\uff0c\u518d\u9012\u5f52\u5730\u6784\u5efa\u5de6\u53f3\u5b50\u6811\u3002\u8fd9\u6837\u505a\u53ef\u4ee5\u6700\u5927\u7a0b\u5ea6\u4fdd\u8bc1\u6811\u7684\u5e73\u8861\u6027\u3002

            \u5728 Java \u4e2d\uff0c\u5b57\u7b26\u4e32\u5bf9\u6bd4\u662f\u5426\u4e00\u5b9a\u8981\u7528 equals() \u65b9\u6cd5\uff1f

            \u5728 Java \u4e2d\uff0c\u5bf9\u4e8e\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff0c== \u7528\u4e8e\u5bf9\u6bd4\u4e24\u4e2a\u53d8\u91cf\u7684\u503c\u662f\u5426\u76f8\u7b49\u3002\u5bf9\u4e8e\u5f15\u7528\u7c7b\u578b\uff0c\u4e24\u79cd\u7b26\u53f7\u7684\u5de5\u4f5c\u539f\u7406\u4e0d\u540c\uff1a

            • == \uff1a\u7528\u6765\u6bd4\u8f83\u4e24\u4e2a\u53d8\u91cf\u662f\u5426\u6307\u5411\u540c\u4e00\u4e2a\u5bf9\u8c61\uff0c\u5373\u5b83\u4eec\u5728\u5185\u5b58\u4e2d\u7684\u4f4d\u7f6e\u662f\u5426\u76f8\u540c\u3002
            • equals()\uff1a\u7528\u6765\u5bf9\u6bd4\u4e24\u4e2a\u5bf9\u8c61\u7684\u503c\u662f\u5426\u76f8\u7b49\u3002

            \u56e0\u6b64\u5982\u679c\u8981\u5bf9\u6bd4\u503c\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u7528 equals() \u3002\u7136\u800c\uff0c\u901a\u8fc7 String a = \"hi\"; String b = \"hi\"; \u521d\u59cb\u5316\u7684\u5b57\u7b26\u4e32\u90fd\u5b58\u50a8\u5728\u5b57\u7b26\u4e32\u5e38\u91cf\u6c60\u4e2d\uff0c\u5b83\u4eec\u6307\u5411\u540c\u4e00\u4e2a\u5bf9\u8c61\uff0c\u56e0\u6b64\u4e5f\u53ef\u4ee5\u7528 a == b \u6765\u6bd4\u8f83\u4e24\u4e2a\u5b57\u7b26\u4e32\u7684\u5185\u5bb9\u3002

            \u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u5230\u6700\u5e95\u5c42\u4e4b\u524d\uff0c\u961f\u5217\u4e2d\u7684\u8282\u70b9\u6570\u91cf\u662f \\(2^h\\) \u5417\uff1f

            \u662f\u7684\uff0c\u4f8b\u5982\u9ad8\u5ea6 \\(h = 2\\) \u7684\u6ee1\u4e8c\u53c9\u6811\uff0c\u5176\u8282\u70b9\u603b\u6570 \\(n = 7\\) \uff0c\u5219\u5e95\u5c42\u8282\u70b9\u6570\u91cf \\(4 = 2^h = (n + 1) / 2\\) \u3002

            "}]} \ No newline at end of file +{"config":{"lang":["en"],"separator":"[\\s\\u200b\\u3000\\-\u3001\u3002\uff0c\uff0e\uff1f\uff01\uff1b]+","pipeline":["stemmer"]},"docs":[{"location":"","title":"Home","text":"\u300a Hello \u7b97\u6cd5 \u300b

            \u52a8\u753b\u56fe\u89e3\u3001\u4e00\u952e\u8fd0\u884c\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u6559\u7a0b

            \u63a8\u8350\u8bed

            Quote

            \u201c\u4e00\u672c\u901a\u4fd7\u6613\u61c2\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5165\u95e8\u4e66\uff0c\u5f15\u5bfc\u8bfb\u8005\u624b\u8111\u5e76\u7528\u5730\u5b66\u4e60\uff0c\u5f3a\u70c8\u63a8\u8350\u7b97\u6cd5\u521d\u5b66\u8005\u9605\u8bfb\u3002\u201d

            \u2014\u2014 \u9093\u4fca\u8f89\uff0c\u6e05\u534e\u5927\u5b66\u8ba1\u7b97\u673a\u7cfb\u6559\u6388

            Quote

            \u201c\u5982\u679c\u6211\u5f53\u5e74\u5b66\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u65f6\u5019\u6709\u300aHello \u7b97\u6cd5\u300b\uff0c\u5b66\u8d77\u6765\u5e94\u8be5\u4f1a\u7b80\u5355 10 \u500d\uff01\u201d

            \u2014\u2014 \u674e\u6c90\uff0c\u4e9a\u9a6c\u900a\u8d44\u6df1\u9996\u5e2d\u79d1\u5b66\u5bb6

            \u5168\u4e66\u52a8\u753b\u56fe\u89e3

            \u5185\u5bb9\u6e05\u6670\u6613\u61c2\u3001\u5b66\u4e60\u66f2\u7ebf\u5e73\u6ed1\u7535\u8111\u3001\u5e73\u677f\u3001\u624b\u673a\u5168\u7ec8\u7aef\u9605\u8bfb

            \"A picture is worth a thousand words.\"

            \u201c\u4e00\u56fe\u80dc\u5343\u8a00\u201d

            \u4ee3\u7801\u4e00\u952e\u8fd0\u884c

            \u63d0\u4f9b\u5404\u4e2a\u7b97\u6cd5\u4e0e\u6570\u636e\u7ed3\u6784\u7684\u7b80\u6d01\u5b9e\u73b0\u4e0e\u6d4b\u8bd5\u6837\u4f8b\uff0c\u7686\u53ef\u76f4\u63a5\u8fd0\u884c\u652f\u6301 Java, C++, Python, Go, JS, TS, C#, Swift, Zig \u7b49\u8bed\u8a00

            \"Talk is cheap. Show me the code.\"

            \u201c\u5c11\u5439\u725b\uff0c\u770b\u4ee3\u7801\u201d

            \u53ef\u8ba8\u8bba\u4e0e\u63d0\u95ee

            \u9f13\u52b1\u5c0f\u4f19\u4f34\u4eec\u4e92\u5e2e\u4e92\u52a9\u3001\u5171\u540c\u6210\u957f\u63d0\u95ee\u4e0e\u8bc4\u8bba\u4e00\u822c\u80fd\u5728\u4e24\u65e5\u5185\u5f97\u5230\u56de\u590d

            \u201c\u8ffd\u98ce\u8d76\u6708\u83ab\u505c\u7559\uff0c\u5e73\u829c\u5c3d\u5904\u662f\u6625\u5c71\u201d

            \u4e00\u8d77\u52a0\u6cb9\uff01

            \u5e8f

            \u4e24\u5e74\u524d\uff0c\u6211\u5728\u529b\u6263\u4e0a\u5206\u4eab\u4e86\u300a\u5251\u6307 Offer\u300b\u7cfb\u5217\u9898\u89e3\uff0c\u53d7\u5230\u4e86\u8bb8\u591a\u540c\u5b66\u7684\u559c\u7231\u548c\u652f\u6301\u3002\u5728\u4e0e\u8bfb\u8005\u7684\u4ea4\u6d41\u671f\u95f4\uff0c\u6700\u5e38\u6536\u5230\u7684\u4e00\u4e2a\u95ee\u9898\u662f\u201c\u5982\u4f55\u5165\u95e8\u5b66\u4e60\u7b97\u6cd5\u201d\u3002\u9010\u6e10\u5730\uff0c\u6211\u5bf9\u8fd9\u4e2a\u95ee\u9898\u4ea7\u751f\u4e86\u6d53\u539a\u7684\u5174\u8da3\u3002

            \u4e24\u773c\u4e00\u62b9\u9ed1\u5730\u5237\u9898\u4f3c\u4e4e\u662f\u6700\u53d7\u6b22\u8fce\u7684\u65b9\u6cd5\uff0c\u7b80\u5355\u76f4\u63a5\u4e14\u6709\u6548\u3002\u7136\u800c\u5237\u9898\u5c31\u5982\u540c\u73a9\u201c\u626b\u96f7\u201d\u6e38\u620f\uff0c\u81ea\u5b66\u80fd\u529b\u5f3a\u7684\u540c\u5b66\u80fd\u591f\u987a\u5229\u5730\u5c06\u5730\u96f7\u9010\u4e2a\u6392\u6389\uff0c\u800c\u57fa\u7840\u4e0d\u8db3\u7684\u540c\u5b66\u5f88\u53ef\u80fd\u88ab\u70b8\u7684\u6ee1\u5934\u662f\u5305\uff0c\u5e76\u5728\u632b\u6298\u4e2d\u6b65\u6b65\u9000\u7f29\u3002\u901a\u8bfb\u6559\u6750\u4e66\u7c4d\u4e5f\u662f\u4e00\u79cd\u5e38\u89c1\u505a\u6cd5\uff0c\u4f46\u5bf9\u4e8e\u9762\u5411\u6c42\u804c\u7684\u540c\u5b66\u6765\u8bf4\uff0c\u6bd5\u4e1a\u5b63\u3001\u6295\u9012\u7b80\u5386\u3001\u51c6\u5907\u7b14\u8bd5\u9762\u8bd5\u5df2\u7ecf\u5360\u636e\u4e86\u5927\u90e8\u5206\u7cbe\u529b\uff0c\u539a\u91cd\u7684\u4e66\u7c4d\u5f80\u5f80\u53d8\u6210\u4e86\u4e00\u9879\u8270\u5de8\u7684\u6311\u6218\u3002

            \u5982\u679c\u4f60\u4e5f\u9762\u4e34\u7c7b\u4f3c\u7684\u56f0\u6270\uff0c\u90a3\u4e48\u5f88\u5e78\u8fd0\u8fd9\u672c\u4e66\u627e\u5230\u4e86\u4f60\u3002\u672c\u4e66\u662f\u6211\u5bf9\u6b64\u95ee\u9898\u7684\u7ed9\u51fa\u7684\u7b54\u6848\uff0c\u5373\u4f7f\u4e0d\u662f\u6700\u4f18\u89e3\uff0c\u4e5f\u81f3\u5c11\u662f\u4e00\u6b21\u79ef\u6781\u7684\u5c1d\u8bd5\u3002\u8fd9\u672c\u4e66\u867d\u7136\u4e0d\u8db3\u4ee5\u8ba9\u4f60\u76f4\u63a5\u62ff\u5230 Offer \uff0c\u4f46\u4f1a\u5f15\u5bfc\u4f60\u63a2\u7d22\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u201c\u77e5\u8bc6\u5730\u56fe\u201d\uff0c\u5e26\u4f60\u4e86\u89e3\u4e0d\u540c\u201c\u5730\u96f7\u201d\u7684\u5f62\u72b6\u5927\u5c0f\u548c\u5206\u5e03\u4f4d\u7f6e\uff0c\u8ba9\u4f60\u638c\u63e1\u5404\u79cd\u201c\u6392\u96f7\u65b9\u6cd5\u201d\u3002\u6709\u4e86\u8fd9\u4e9b\u672c\u9886\uff0c\u76f8\u4fe1\u4f60\u53ef\u4ee5\u66f4\u52a0\u81ea\u5982\u5730\u5e94\u5bf9\u5237\u9898\u548c\u9605\u8bfb\u6587\u732e\uff0c\u9010\u6b65\u6784\u5efa\u8d77\u5b8c\u6574\u7684\u77e5\u8bc6\u4f53\u7cfb\u3002

            \u4f5c\u8005\u7b80\u4ecb

            \u9773\u5b87\u680b (Krahets)\uff0c\u5927\u5382\u9ad8\u7ea7\u7b97\u6cd5\u5de5\u7a0b\u5e08\uff0c\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\u7855\u58eb\u3002\u529b\u6263\uff08LeetCode\uff09\u5168\u7f51\u9605\u8bfb\u91cf\u6700\u9ad8\u535a\u4e3b\uff0c\u5176 LeetBook\u300a\u56fe\u89e3\u7b97\u6cd5\u6570\u636e\u7ed3\u6784\u300b\u5df2\u88ab\u8ba2\u9605 24 \u4e07\u672c\u3002

            \u81f4\u8c22

            \u672c\u4e66\u5728\u5f00\u6e90\u793e\u533a\u4f17\u591a\u8d21\u732e\u8005\u7684\u5171\u540c\u52aa\u529b\u4e0b\u4e0d\u65ad\u6210\u957f\u3002\u611f\u8c22\u6bcf\u4e00\u4f4d\u6295\u5165\u65f6\u95f4\u4e0e\u7cbe\u529b\u7684\u64b0\u7a3f\u4eba\uff0c\u662f\u4ed6\u4eec\u7684\u65e0\u79c1\u5949\u732e\u4f7f\u8fd9\u672c\u4e66\u53d8\u5f97\u66f4\u597d\uff0c\u4ed6\u4eec\u662f\uff08\u6309\u7167 GitHub \u81ea\u52a8\u751f\u6210\u7684\u987a\u5e8f\uff09\uff1a

            \u672c\u4e66\u7684\u4ee3\u7801\u5ba1\u9605\u5de5\u4f5c\u7531 Gonglja, gvenusleo, justin\u2010tse, krahets, nuomi1, Reanon, sjinzh \u5b8c\u6210\uff08\u6309\u7167\u9996\u5b57\u6bcd\u987a\u5e8f\u6392\u5217\uff09\u3002\u611f\u8c22\u4ed6\u4eec\u4ed8\u51fa\u7684\u65f6\u95f4\u4e0e\u7cbe\u529b\uff0c\u6b63\u662f\u4ed6\u4eec\u786e\u4fdd\u4e86\u5404\u8bed\u8a00\u4ee3\u7801\u7684\u89c4\u8303\u4e0e\u7edf\u4e00\u3002

            GongljaC / C++ gvenusleoDart hpstoryC# justin-tseJS / TS krahetsJava / Python nuomi1Swift ReanonGo / C sjinzhRust / Zig"},{"location":"chapter_appendix/","title":"\u7b2c 16 \u7ae0 \u00a0 \u9644\u5f55","text":""},{"location":"chapter_appendix/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 16.1 \u00a0 \u7f16\u7a0b\u73af\u5883\u5b89\u88c5
            • 16.2 \u00a0 \u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c
            "},{"location":"chapter_appendix/contribution/","title":"16.2 \u00a0 \u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c","text":"

            \u7531\u4e8e\u4f5c\u8005\u80fd\u529b\u6709\u9650\uff0c\u4e66\u4e2d\u96be\u514d\u5b58\u5728\u4e00\u4e9b\u9057\u6f0f\u548c\u9519\u8bef\uff0c\u8bf7\u60a8\u8c05\u89e3\u3002\u5982\u679c\u60a8\u53d1\u73b0\u4e86\u7b14\u8bef\u3001\u5931\u6548\u94fe\u63a5\u3001\u5185\u5bb9\u7f3a\u5931\u3001\u6587\u5b57\u6b67\u4e49\u3001\u89e3\u91ca\u4e0d\u6e05\u6670\u6216\u884c\u6587\u7ed3\u6784\u4e0d\u5408\u7406\u7b49\u95ee\u9898\uff0c\u8bf7\u534f\u52a9\u6211\u4eec\u8fdb\u884c\u4fee\u6b63\uff0c\u4ee5\u5e2e\u52a9\u5176\u4ed6\u8bfb\u8005\u83b7\u5f97\u66f4\u4f18\u8d28\u7684\u5b66\u4e60\u8d44\u6e90\u3002

            \u6240\u6709\u64b0\u7a3f\u4eba\u7684 GitHub ID \u5c06\u5728\u4ed3\u5e93\u3001\u7f51\u9875\u7248\u548c PDF \u7248\u7684\u4e3b\u9875\u4e0a\u8fdb\u884c\u5c55\u793a\uff0c\u4ee5\u611f\u8c22\u4ed6\u4eec\u5bf9\u5f00\u6e90\u793e\u533a\u7684\u65e0\u79c1\u5949\u732e\u3002

            \u5f00\u6e90\u7684\u9b45\u529b

            \u7eb8\u8d28\u4e66\u7c4d\u7684\u4e24\u6b21\u5370\u5237\u7684\u95f4\u9694\u65f6\u95f4\u5f80\u5f80\u9700\u8981\u6570\u5e74\uff0c\u5185\u5bb9\u66f4\u65b0\u975e\u5e38\u4e0d\u65b9\u4fbf\u3002

            \u7136\u800c\u5728\u672c\u5f00\u6e90\u4e66\u4e2d\uff0c\u5185\u5bb9\u66f4\u8fed\u7684\u65f6\u95f4\u88ab\u7f29\u77ed\u81f3\u6570\u65e5\u751a\u81f3\u51e0\u4e2a\u5c0f\u65f6\u3002

            "},{"location":"chapter_appendix/contribution/#1621","title":"16.2.1 \u00a0 \u5185\u5bb9\u5fae\u8c03","text":"

            \u60a8\u53ef\u4ee5\u6309\u7167\u4ee5\u4e0b\u6b65\u9aa4\u4fee\u6539\u6587\u672c\u6216\u4ee3\u7801\uff1a

            1. \u70b9\u51fb\u9875\u9762\u7684\u53f3\u4e0a\u89d2\u7684\u201c\u7f16\u8f91\u56fe\u6807\u201d\uff0c\u5982\u679c\u9047\u5230\u201c\u9700\u8981 Fork \u6b64\u4ed3\u5e93\u201d\u7684\u63d0\u793a\uff0c\u8bf7\u540c\u610f\u8be5\u64cd\u4f5c\u3002
            2. \u4fee\u6539 Markdown \u6e90\u6587\u4ef6\u5185\u5bb9\uff0c\u68c0\u67e5\u5185\u5bb9\u7684\u6b63\u786e\u6027\uff0c\u5e76\u5c3d\u91cf\u4fdd\u6301\u6392\u7248\u683c\u5f0f\u7684\u7edf\u4e00\u3002
            3. \u5728\u9875\u9762\u5e95\u90e8\u586b\u5199\u4fee\u6539\u8bf4\u660e\uff0c\u7136\u540e\u70b9\u51fb\u201cPropose file change\u201d\u6309\u94ae\u3002\u9875\u9762\u8df3\u8f6c\u540e\uff0c\u70b9\u51fb\u201cCreate pull request\u201d\u6309\u94ae\u5373\u53ef\u53d1\u8d77\u62c9\u53d6\u8bf7\u6c42\u3002

            \u56fe\uff1a\u9875\u9762\u7f16\u8f91\u6309\u952e

            \u56fe\u7247\u65e0\u6cd5\u76f4\u63a5\u4fee\u6539\uff0c\u9700\u8981\u901a\u8fc7\u65b0\u5efa Issue \u6216\u8bc4\u8bba\u7559\u8a00\u6765\u63cf\u8ff0\u95ee\u9898\uff0c\u6211\u4eec\u4f1a\u5c3d\u5feb\u91cd\u65b0\u7ed8\u5236\u5e76\u66ff\u6362\u56fe\u7247\u3002

            "},{"location":"chapter_appendix/contribution/#1622","title":"16.2.2 \u00a0 \u5185\u5bb9\u521b\u4f5c","text":"

            \u5982\u679c\u60a8\u6709\u5174\u8da3\u53c2\u4e0e\u6b64\u5f00\u6e90\u9879\u76ee\uff0c\u5305\u62ec\u5c06\u4ee3\u7801\u7ffb\u8bd1\u6210\u5176\u4ed6\u7f16\u7a0b\u8bed\u8a00\u3001\u6269\u5c55\u6587\u7ae0\u5185\u5bb9\u7b49\uff0c\u90a3\u4e48\u9700\u8981\u5b9e\u65bd Pull Request \u5de5\u4f5c\u6d41\u7a0b\uff1a

            1. \u767b\u5f55 GitHub \uff0c\u5c06\u672c\u4ed3\u5e93 Fork \u5230\u4e2a\u4eba\u8d26\u53f7\u4e0b\u3002
            2. \u8fdb\u5165\u60a8\u7684 Fork \u4ed3\u5e93\u7f51\u9875\uff0c\u4f7f\u7528 git clone \u547d\u4ee4\u5c06\u4ed3\u5e93\u514b\u9686\u81f3\u672c\u5730\u3002
            3. \u5728\u672c\u5730\u8fdb\u884c\u5185\u5bb9\u521b\u4f5c\uff0c\u5e76\u8fdb\u884c\u5b8c\u6574\u6d4b\u8bd5\uff0c\u9a8c\u8bc1\u4ee3\u7801\u7684\u6b63\u786e\u6027\u3002
            4. \u5c06\u672c\u5730\u6240\u505a\u66f4\u6539 Commit \uff0c\u7136\u540e Push \u81f3\u8fdc\u7a0b\u4ed3\u5e93\u3002
            5. \u5237\u65b0\u4ed3\u5e93\u7f51\u9875\uff0c\u70b9\u51fb\u201cCreate pull request\u201d\u6309\u94ae\u5373\u53ef\u53d1\u8d77\u62c9\u53d6\u8bf7\u6c42\u3002
            "},{"location":"chapter_appendix/contribution/#1623-docker","title":"16.2.3 \u00a0 Docker \u90e8\u7f72","text":"

            \u6267\u884c\u4ee5\u4e0b Docker \u811a\u672c\uff0c\u7a0d\u7b49\u7247\u523b\uff0c\u5373\u53ef\u5728\u7f51\u9875 http://localhost:8000 \u8bbf\u95ee\u672c\u9879\u76ee\u3002

            git clone https://github.com/krahets/hello-algo.git\ncd hello-algo\ndocker-compose up -d\n

            \u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4\u5373\u53ef\u5220\u9664\u90e8\u7f72\u3002

            docker-compose down\n
            "},{"location":"chapter_appendix/installation/","title":"16.1 \u00a0 \u7f16\u7a0b\u73af\u5883\u5b89\u88c5","text":""},{"location":"chapter_appendix/installation/#1611-vscode","title":"16.1.1 \u00a0 VSCode","text":"

            \u672c\u4e66\u63a8\u8350\u4f7f\u7528\u5f00\u6e90\u8f7b\u91cf\u7684 VSCode \u4f5c\u4e3a\u672c\u5730 IDE \uff0c\u4e0b\u8f7d\u5e76\u5b89\u88c5 VSCode \u3002

            "},{"location":"chapter_appendix/installation/#1612-java","title":"16.1.2 \u00a0 Java \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 OpenJDK\uff08\u7248\u672c\u9700\u6ee1\u8db3 > JDK 9\uff09\u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 java \uff0c\u5b89\u88c5 Extension Pack for Java \u3002
            "},{"location":"chapter_appendix/installation/#1613-cc","title":"16.1.3 \u00a0 C/C++ \u73af\u5883","text":"
            1. Windows \u7cfb\u7edf\u9700\u8981\u5b89\u88c5 MinGW\uff08\u914d\u7f6e\u6559\u7a0b\uff09\uff0cMacOS \u81ea\u5e26 Clang \u65e0\u987b\u5b89\u88c5\u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 c++ \uff0c\u5b89\u88c5 C/C++ Extension Pack \u3002
            3. \uff08\u53ef\u9009\uff09\u6253\u5f00 Settings \u9875\u9762\uff0c\u641c\u7d22 Clang_format_fallback Style \u4ee3\u7801\u683c\u5f0f\u5316\u9009\u9879\uff0c\u8bbe\u7f6e\u4e3a { BasedOnStyle: Microsoft, BreakBeforeBraces: Attach } \u3002
            "},{"location":"chapter_appendix/installation/#1614-python","title":"16.1.4 \u00a0 Python \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 Miniconda3 \u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 python \uff0c\u5b89\u88c5 Python Extension Pack \u3002
            3. \uff08\u53ef\u9009\uff09\u5728\u547d\u4ee4\u884c\u8f93\u5165 pip install black \uff0c\u5b89\u88c5\u4ee3\u7801\u683c\u5f0f\u5316\u5de5\u5177\u3002
            "},{"location":"chapter_appendix/installation/#1615-go","title":"16.1.5 \u00a0 Go \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 go \u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 go \uff0c\u5b89\u88c5 Go \u3002
            3. \u5feb\u6377\u952e Ctrl + Shift + P \u547c\u51fa\u547d\u4ee4\u680f\uff0c\u8f93\u5165 go \uff0c\u9009\u62e9 Go: Install/Update Tools \uff0c\u5168\u90e8\u52fe\u9009\u5e76\u5b89\u88c5\u5373\u53ef\u3002
            "},{"location":"chapter_appendix/installation/#1616-javascript","title":"16.1.6 \u00a0 JavaScript \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 node.js \u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 javascript \uff0c\u5b89\u88c5 JavaScript (ES6) code snippets \u3002
            3. \uff08\u53ef\u9009\uff09\u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 Prettier \uff0c\u5b89\u88c5\u4ee3\u7801\u683c\u5f0f\u5316\u5de5\u5177\u3002
            "},{"location":"chapter_appendix/installation/#1617-c","title":"16.1.7 \u00a0 C# \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 .Net 6.0 \u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 C# Dev Kit \uff0c\u5b89\u88c5 C# Dev Kit \uff08\u914d\u7f6e\u6559\u7a0b\uff09\u3002
            3. \u4e5f\u53ef\u4f7f\u7528 Visual Studio\uff08\u5b89\u88c5\u6559\u7a0b\uff09\u3002
            "},{"location":"chapter_appendix/installation/#1618-swift","title":"16.1.8 \u00a0 Swift \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 Swift\u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 swift \uff0c\u5b89\u88c5 Swift for Visual Studio Code\u3002
            "},{"location":"chapter_appendix/installation/#1619-dart","title":"16.1.9 \u00a0 Dart \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 Dart \u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 dart \uff0c\u5b89\u88c5 Dart \u3002
            "},{"location":"chapter_appendix/installation/#16110-rust","title":"16.1.10 \u00a0 Rust \u73af\u5883","text":"
            1. \u4e0b\u8f7d\u5e76\u5b89\u88c5 Rust\u3002
            2. \u5728 VSCode \u7684\u63d2\u4ef6\u5e02\u573a\u4e2d\u641c\u7d22 rust \uff0c\u5b89\u88c5 rust-analyzer\u3002
            "},{"location":"chapter_array_and_linkedlist/","title":"\u7b2c 4 \u7ae0 \u00a0 \u6570\u7ec4\u4e0e\u94fe\u8868","text":"

            Abstract

            \u6570\u636e\u7ed3\u6784\u7684\u4e16\u754c\u5982\u540c\u4e00\u7779\u539a\u5b9e\u7684\u7816\u5899\u3002

            \u6570\u7ec4\u7684\u7816\u5757\u6574\u9f50\u6392\u5217\uff0c\u9010\u4e2a\u7d27\u8d34\u3002\u94fe\u8868\u7684\u7816\u5757\u5206\u6563\u5404\u5904\uff0c\u8fde\u63a5\u7684\u85e4\u8513\u81ea\u7531\u5730\u7a7f\u68ad\u4e8e\u7816\u7f1d\u4e4b\u95f4\u3002

            "},{"location":"chapter_array_and_linkedlist/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 4.1 \u00a0 \u6570\u7ec4
            • 4.2 \u00a0 \u94fe\u8868
            • 4.3 \u00a0 \u5217\u8868
            • 4.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_array_and_linkedlist/array/","title":"4.1 \u00a0 \u6570\u7ec4","text":"

            \u300c\u6570\u7ec4 array\u300d\u662f\u4e00\u79cd\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u5176\u5c06\u76f8\u540c\u7c7b\u578b\u5143\u7d20\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\u3002\u6211\u4eec\u5c06\u67d0\u4e2a\u5143\u7d20\u5728\u6570\u7ec4\u4e2d\u7684\u4f4d\u7f6e\u79f0\u4e3a\u8be5\u5143\u7d20\u7684\u300c\u7d22\u5f15 index\u300d\u3002

            \u56fe\uff1a\u6570\u7ec4\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f

            "},{"location":"chapter_array_and_linkedlist/array/#411","title":"4.1.1 \u00a0 \u6570\u7ec4\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/array/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u6570\u7ec4","text":"

            \u6211\u4eec\u53ef\u4ee5\u6839\u636e\u9700\u6c42\u9009\u7528\u6570\u7ec4\u7684\u4e24\u79cd\u521d\u59cb\u5316\u65b9\u5f0f\uff1a\u65e0\u521d\u59cb\u503c\u3001\u7ed9\u5b9a\u521d\u59cb\u503c\u3002\u5728\u672a\u6307\u5b9a\u521d\u59cb\u503c\u7684\u60c5\u51b5\u4e0b\uff0c\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4f1a\u5c06\u6570\u7ec4\u5143\u7d20\u521d\u59cb\u5316\u4e3a \\(0\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = { 1, 3, 2, 5, 4 };\n
            array.cpp
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\n// \u5b58\u50a8\u5728\u6808\u4e0a\nint arr[5];\nint nums[5] { 1, 3, 2, 5, 4 };\n// \u5b58\u50a8\u5728\u5806\u4e0a\uff08\u9700\u8981\u624b\u52a8\u91ca\u653e\u7a7a\u95f4\uff09\nint* arr1 = new int[5];\nint* nums1 = new int[5] { 1, 3, 2, 5, 4 };\n
            array.py
            # \u521d\u59cb\u5316\u6570\u7ec4\narr: list[int] = [0] * 5  # [ 0, 0, 0, 0, 0 ]\nnums: list[int] = [1, 3, 2, 5, 4]  \n
            array.go
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nvar arr [5]int\n// \u5728 Go \u4e2d\uff0c\u6307\u5b9a\u957f\u5ea6\u65f6\uff08[5]int\uff09\u4e3a\u6570\u7ec4\uff0c\u4e0d\u6307\u5b9a\u957f\u5ea6\u65f6\uff08[]int\uff09\u4e3a\u5207\u7247\n// \u7531\u4e8e Go \u7684\u6570\u7ec4\u88ab\u8bbe\u8ba1\u4e3a\u5728\u7f16\u8bd1\u671f\u786e\u5b9a\u957f\u5ea6\uff0c\u56e0\u6b64\u53ea\u80fd\u4f7f\u7528\u5e38\u91cf\u6765\u6307\u5b9a\u957f\u5ea6\n// \u4e3a\u4e86\u65b9\u4fbf\u5b9e\u73b0\u6269\u5bb9 extend() \u65b9\u6cd5\uff0c\u4ee5\u4e0b\u5c06\u5207\u7247\uff08Slice\uff09\u770b\u4f5c\u6570\u7ec4\uff08Array\uff09\nnums := []int{1, 3, 2, 5, 4}\n
            array.js
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nvar arr = new Array(5).fill(0);\nvar nums = [1, 3, 2, 5, 4];\n
            array.ts
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr: number[] = new Array(5).fill(0);\nlet nums: number[] = [1, 3, 2, 5, 4];\n
            array.c
            int arr[5] = { 0 }; // { 0, 0, 0, 0, 0 }\nint nums[5] = { 1, 3, 2, 5, 4 };\n
            array.cs
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nint[] arr = new int[5]; // { 0, 0, 0, 0, 0 }\nint[] nums = { 1, 3, 2, 5, 4 };\n
            array.swift
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr = Array(repeating: 0, count: 5) // [0, 0, 0, 0, 0]\nlet nums = [1, 3, 2, 5, 4]\n
            array.zig
            // \u521d\u59cb\u5316\u6570\u7ec4\nvar arr = [_]i32{0} ** 5; // { 0, 0, 0, 0, 0 }\nvar nums = [_]i32{ 1, 3, 2, 5, 4 };\n
            array.dart
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nList<int> arr = List.filled(5, 0); // [0, 0, 0, 0, 0]\nList<int> nums = [1, 3, 2, 5, 4];\n
            array.rs
            /* \u521d\u59cb\u5316\u6570\u7ec4 */\nlet arr: Vec<i32> = vec![0; 5]; // [0, 0, 0, 0, 0]\nlet nums: Vec<i32> = vec![1, 3, 2, 5, 4];\n
            "},{"location":"chapter_array_and_linkedlist/array/#2","title":"2. \u00a0 \u8bbf\u95ee\u5143\u7d20","text":"

            \u6570\u7ec4\u5143\u7d20\u88ab\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\uff0c\u8fd9\u610f\u5473\u7740\u8ba1\u7b97\u6570\u7ec4\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\u975e\u5e38\u5bb9\u6613\u3002\u7ed9\u5b9a\u6570\u7ec4\u5185\u5b58\u5730\u5740\uff08\u5373\u9996\u5143\u7d20\u5185\u5b58\u5730\u5740\uff09\u548c\u67d0\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4ee5\u4e0b\u516c\u5f0f\u8ba1\u7b97\u5f97\u5230\u8be5\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\uff0c\u4ece\u800c\u76f4\u63a5\u8bbf\u95ee\u6b64\u5143\u7d20\u3002

            # \u5143\u7d20\u5185\u5b58\u5730\u5740 = \u6570\u7ec4\u5185\u5b58\u5730\u5740\uff08\u9996\u5143\u7d20\u5185\u5b58\u5730\u5740\uff09 + \u5143\u7d20\u957f\u5ea6 * \u5143\u7d20\u7d22\u5f15\nelementAddr = firtstElementAddr + elementLength * elementIndex\n

            \u56fe\uff1a\u6570\u7ec4\u5143\u7d20\u7684\u5185\u5b58\u5730\u5740\u8ba1\u7b97

            \u89c2\u5bdf\u4e0a\u56fe\uff0c\u6211\u4eec\u53d1\u73b0\u6570\u7ec4\u9996\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\u4e3a \\(0\\) \uff0c\u8fd9\u4f3c\u4e4e\u6709\u4e9b\u53cd\u76f4\u89c9\uff0c\u56e0\u4e3a\u4ece \\(1\\) \u5f00\u59cb\u8ba1\u6570\u4f1a\u66f4\u81ea\u7136\u3002\u4f46\u4ece\u5730\u5740\u8ba1\u7b97\u516c\u5f0f\u7684\u89d2\u5ea6\u770b\uff0c\u7d22\u5f15\u7684\u542b\u4e49\u672c\u8d28\u4e0a\u662f\u5185\u5b58\u5730\u5740\u7684\u504f\u79fb\u91cf\u3002\u9996\u4e2a\u5143\u7d20\u7684\u5730\u5740\u504f\u79fb\u91cf\u662f \\(0\\) \uff0c\u56e0\u6b64\u5b83\u7684\u7d22\u5f15\u4e3a \\(0\\) \u4e5f\u662f\u5408\u7406\u7684\u3002

            \u5728\u6570\u7ec4\u4e2d\u8bbf\u95ee\u5143\u7d20\u662f\u975e\u5e38\u9ad8\u6548\u7684\uff0c\u6211\u4eec\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u968f\u673a\u8bbf\u95ee\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e00\u4e2a\u5143\u7d20\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int[] nums) {\n// \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nint randomIndex = ThreadLocalRandom.current().nextInt(0, nums.length);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nint randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.cpp
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n// \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nint randomIndex = rand() % size;\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nint randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.py
            def random_access(nums: list[int]) -> int:\n\"\"\"\u968f\u673a\u8bbf\u95ee\u5143\u7d20\"\"\"\n# \u5728\u533a\u95f4 [0, len(nums)-1] \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nrandom_index = random.randint(0, len(nums) - 1)\n# \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nrandom_num = nums[random_index]\nreturn random_num\n
            array.go
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums []int) (randomNum int) {\n// \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nrandomIndex := rand.Intn(len(nums))\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nrandomNum = nums[randomIndex]\nreturn\n}\n
            array.js
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums) {\n// \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nconst random_index = Math.floor(Math.random() * nums.length);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nconst random_num = nums[random_index];\nreturn random_num;\n}\n
            array.ts
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunction randomAccess(nums: number[]): number {\n// \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nconst random_index = Math.floor(Math.random() * nums.length);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nconst random_num = nums[random_index];\nreturn random_num;\n}\n
            array.c
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int *nums, int size) {\n// \u5728\u533a\u95f4 [0, size) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nint randomIndex = rand() % size;\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nint randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.cs
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(int[] nums) {\nRandom random = new();\n// \u5728\u533a\u95f4 [0, nums.Length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nint randomIndex = random.Next(nums.Length);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nint randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.swift
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfunc randomAccess(nums: [Int]) -> Int {\n// \u5728\u533a\u95f4 [0, nums.count) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nlet randomIndex = nums.indices.randomElement()!\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nlet randomNum = nums[randomIndex]\nreturn randomNum\n}\n
            array.zig
            // \u968f\u673a\u8bbf\u95ee\u5143\u7d20\nfn randomAccess(nums: []i32) i32 {\n// \u5728\u533a\u95f4 [0, nums.len) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6574\u6570\nvar randomIndex = std.crypto.random.intRangeLessThan(usize, 0, nums.len);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nvar randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.dart
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nint randomAccess(List nums) {\n// \u5728\u533a\u95f4 [0, nums.length) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nint randomIndex = Random().nextInt(nums.length);\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nint randomNum = nums[randomIndex];\nreturn randomNum;\n}\n
            array.rs
            /* \u968f\u673a\u8bbf\u95ee\u5143\u7d20 */\nfn random_access(nums: &[i32]) -> i32 {\n// \u5728\u533a\u95f4 [0, nums.len()) \u4e2d\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6570\u5b57\nlet random_index = rand::thread_rng().gen_range(0..nums.len());\n// \u83b7\u53d6\u5e76\u8fd4\u56de\u968f\u673a\u5143\u7d20\nlet random_num = nums[random_index];\nrandom_num\n}\n
            "},{"location":"chapter_array_and_linkedlist/array/#3","title":"3. \u00a0 \u63d2\u5165\u5143\u7d20","text":"

            \u6570\u7ec4\u5143\u7d20\u5728\u5185\u5b58\u4e2d\u662f\u201c\u7d27\u6328\u7740\u7684\u201d\uff0c\u5b83\u4eec\u4e4b\u95f4\u6ca1\u6709\u7a7a\u95f4\u518d\u5b58\u653e\u4efb\u4f55\u6570\u636e\u3002\u8fd9\u610f\u5473\u7740\u5982\u679c\u60f3\u8981\u5728\u6570\u7ec4\u4e2d\u95f4\u63d2\u5165\u4e00\u4e2a\u5143\u7d20\uff0c\u5219\u9700\u8981\u5c06\u8be5\u5143\u7d20\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u4e4b\u540e\u518d\u628a\u5143\u7d20\u8d4b\u503c\u7ed9\u8be5\u7d22\u5f15\u3002

            \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e\u6570\u7ec4\u7684\u957f\u5ea6\u662f\u56fa\u5b9a\u7684\uff0c\u56e0\u6b64\u63d2\u5165\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u4f1a\u5bfc\u81f4\u6570\u7ec4\u5c3e\u90e8\u5143\u7d20\u7684\u201c\u4e22\u5931\u201d\u3002\u6211\u4eec\u5c06\u8fd9\u4e2a\u95ee\u9898\u7684\u89e3\u51b3\u65b9\u6848\u7559\u5728\u5217\u8868\u7ae0\u8282\u4e2d\u8ba8\u8bba\u3002

            \u56fe\uff1a\u6570\u7ec4\u63d2\u5165\u5143\u7d20

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int[] nums, int num, int index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int i = nums.length - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.cpp
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int i = size - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.py
            def insert(nums: list[int], num: int, index: int):\n\"\"\"\u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\"\"\"\n# \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor i in range(len(nums) - 1, index, -1):\nnums[i] = nums[i - 1]\n# \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num\n
            array.go
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums []int, num int, index int) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor i := len(nums) - 1; i > index; i-- {\nnums[i] = nums[i-1]\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num\n}\n
            array.js
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums, num, index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (let i = nums.length - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.ts
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunction insert(nums: number[], num: number, index: number): void {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (let i = nums.length - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.c
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int *nums, int size, int num, int index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int i = size - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.cs
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(int[] nums, int num, int index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int i = nums.Length - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.swift
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfunc insert(nums: inout [Int], num: Int, index: Int) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor i in sequence(first: nums.count - 1, next: { $0 > index + 1 ? $0 - 1 : nil }) {\nnums[i] = nums[i - 1]\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num\n}\n
            array.zig
            // \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num\nfn insert(nums: []i32, num: i32, index: usize) void {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nvar i = nums.len - 1;\nwhile (i > index) : (i -= 1) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.dart
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nvoid insert(List nums, int num, int index) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (var i = nums.length - 1; i > index; i--) {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            array.rs
            /* \u5728\u6570\u7ec4\u7684\u7d22\u5f15 index \u5904\u63d2\u5165\u5143\u7d20 num */\nfn insert(nums: &mut Vec<i32>, num: i32, index: usize) {\n// \u628a\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor i in (index + 1..nums.len()).rev() {\nnums[i] = nums[i - 1];\n}\n// \u5c06 num \u8d4b\u7ed9 index \u5904\u5143\u7d20\nnums[index] = num;\n}\n
            "},{"location":"chapter_array_and_linkedlist/array/#4","title":"4. \u00a0 \u5220\u9664\u5143\u7d20","text":"

            \u540c\u7406\uff0c\u5982\u679c\u6211\u4eec\u60f3\u8981\u5220\u9664\u7d22\u5f15 \\(i\\) \u5904\u7684\u5143\u7d20\uff0c\u5219\u9700\u8981\u628a\u7d22\u5f15 \\(i\\) \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\u3002

            \u8bf7\u6ce8\u610f\uff0c\u5220\u9664\u5143\u7d20\u5b8c\u6210\u540e\uff0c\u539f\u5148\u672b\u5c3e\u7684\u5143\u7d20\u53d8\u5f97\u201c\u65e0\u610f\u4e49\u201d\u4e86\uff0c\u6240\u4ee5\u6211\u4eec\u65e0\u987b\u7279\u610f\u53bb\u4fee\u6539\u5b83\u3002

            \u56fe\uff1a\u6570\u7ec4\u5220\u9664\u5143\u7d20

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nvoid remove(int[] nums, int index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int i = index; i < nums.length - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.cpp
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nvoid remove(int *nums, int size, int index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int i = index; i < size - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.py
            def remove(nums: list[int], index: int):\n\"\"\"\u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20\"\"\"\n# \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor i in range(index, len(nums) - 1):\nnums[i] = nums[i + 1]\n
            array.go
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nfunc remove(nums []int, index int) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor i := index; i < len(nums)-1; i++ {\nnums[i] = nums[i+1]\n}\n}\n
            array.js
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nfunction remove(nums, index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (let i = index; i < nums.length - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.ts
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nfunction remove(nums: number[], index: number): void {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (let i = index; i < nums.length - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.c
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeItem(int *nums, int size, int index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int i = index; i < size - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.cs
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nvoid remove(int[] nums, int index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int i = index; i < nums.Length - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.swift
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nfunc remove(nums: inout [Int], index: Int) {\nlet count = nums.count\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor i in sequence(first: index, next: { $0 < count - 1 - 1 ? $0 + 1 : nil }) {\nnums[i] = nums[i + 1]\n}\n}\n
            array.zig
            // \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20\nfn remove(nums: []i32, index: usize) void {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nvar i = index;\nwhile (i < nums.len - 1) : (i += 1) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.dart
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nvoid remove(List nums, int index) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (var i = index; i < nums.length - 1; i++) {\nnums[i] = nums[i + 1];\n}\n}\n
            array.rs
            /* \u5220\u9664\u7d22\u5f15 index \u5904\u5143\u7d20 */\nfn remove(nums: &mut Vec<i32>, index: usize) {\n// \u628a\u7d22\u5f15 index \u4e4b\u540e\u7684\u6240\u6709\u5143\u7d20\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor i in index..nums.len() - 1 {\nnums[i] = nums[i + 1];\n}\n}\n

            \u603b\u7684\u6765\u770b\uff0c\u6570\u7ec4\u7684\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u6709\u4ee5\u4e0b\u7f3a\u70b9\uff1a

            • \u65f6\u95f4\u590d\u6742\u5ea6\u9ad8\uff1a\u6570\u7ec4\u7684\u63d2\u5165\u548c\u5220\u9664\u7684\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u6570\u7ec4\u957f\u5ea6\u3002
            • \u4e22\u5931\u5143\u7d20\uff1a\u7531\u4e8e\u6570\u7ec4\u7684\u957f\u5ea6\u4e0d\u53ef\u53d8\uff0c\u56e0\u6b64\u5728\u63d2\u5165\u5143\u7d20\u540e\uff0c\u8d85\u51fa\u6570\u7ec4\u957f\u5ea6\u8303\u56f4\u7684\u5143\u7d20\u4f1a\u4e22\u5931\u3002
            • \u5185\u5b58\u6d6a\u8d39\uff1a\u6211\u4eec\u53ef\u4ee5\u521d\u59cb\u5316\u4e00\u4e2a\u6bd4\u8f83\u957f\u7684\u6570\u7ec4\uff0c\u53ea\u7528\u524d\u9762\u4e00\u90e8\u5206\uff0c\u8fd9\u6837\u5728\u63d2\u5165\u6570\u636e\u65f6\uff0c\u4e22\u5931\u7684\u672b\u5c3e\u5143\u7d20\u90fd\u662f\u201c\u65e0\u610f\u4e49\u201d\u7684\uff0c\u4f46\u8fd9\u6837\u505a\u4e5f\u4f1a\u9020\u6210\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u7684\u6d6a\u8d39\u3002
            "},{"location":"chapter_array_and_linkedlist/array/#5","title":"5. \u00a0 \u904d\u5386\u6570\u7ec4","text":"

            \u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u6211\u4eec\u65e2\u53ef\u4ee5\u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\uff0c\u4e5f\u53ef\u4ee5\u76f4\u63a5\u904d\u5386\u83b7\u53d6\u6570\u7ec4\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int[] nums) {\nint count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < nums.length; i++) {\ncount++;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (int num : nums) {\ncount++;\n}\n}\n
            array.cpp
            /* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\nint count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size; i++) {\ncount++;\n}\n}\n
            array.py
            def traverse(nums: list[int]):\n\"\"\"\u904d\u5386\u6570\u7ec4\"\"\"\ncount = 0\n# \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor i in range(len(nums)):\ncount += 1\n# \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor num in nums:\ncount += 1\n# \u540c\u65f6\u904d\u5386\u6570\u636e\u7d22\u5f15\u548c\u5143\u7d20\nfor i, num in enumerate(nums):\ncount += 1\n
            array.go
            /* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums []int) {\ncount := 0\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor i := 0; i < len(nums); i++ {\ncount++\n}\ncount = 0\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor range nums {\ncount++\n}\n}\n
            array.js
            /* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums) {\nlet count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (let i = 0; i < nums.length; i++) {\ncount++;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (const num of nums) {\ncount += 1;\n}\n}\n
            array.ts
            /* \u904d\u5386\u6570\u7ec4 */\nfunction traverse(nums: number[]): void {\nlet count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (let i = 0; i < nums.length; i++) {\ncount++;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (const num of nums) {\ncount += 1;\n}\n}\n
            array.c
            /* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int *nums, int size) {\nint count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size; i++) {\ncount++;\n}\n}\n
            array.cs
            /* \u904d\u5386\u6570\u7ec4 */\nvoid traverse(int[] nums) {\nint count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < nums.Length; i++) {\ncount++;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nforeach (int num in nums) {\ncount++;\n}\n}\n
            array.swift
            /* \u904d\u5386\u6570\u7ec4 */\nfunc traverse(nums: [Int]) {\nvar count = 0\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor _ in nums.indices {\ncount += 1\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor _ in nums {\ncount += 1\n}\n}\n
            array.zig
            // \u904d\u5386\u6570\u7ec4\nfn traverse(nums: []i32) void {\nvar count: i32 = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nvar i: i32 = 0;\nwhile (i < nums.len) : (i += 1) {\ncount += 1;\n}\ncount = 0;\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (nums) |_| {\ncount += 1;\n}\n}\n
            array.dart
            /* \u904d\u5386\u6570\u7ec4\u5143\u7d20 */\nvoid traverse(List nums) {\nvar count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor (var i = 0; i < nums.length; i++) {\ncount++;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (var num in nums) {\ncount++;\n}\n// \u901a\u8fc7 forEach \u65b9\u6cd5\u904d\u5386\u6570\u7ec4\nnums.forEach((element) {\ncount++;\n});\n}\n
            array.rs
            /* \u904d\u5386\u6570\u7ec4 */\nfn traverse(nums: &[i32]) {\nlet mut _count = 0;\n// \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u6570\u7ec4\nfor _ in 0..nums.len() {\n_count += 1;\n}\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor _ in nums {\n_count += 1;\n}\n}\n
            "},{"location":"chapter_array_and_linkedlist/array/#6","title":"6. \u00a0 \u67e5\u627e\u5143\u7d20","text":"

            \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\u9700\u8981\u904d\u5386\u6570\u7ec4\uff0c\u6bcf\u8f6e\u5224\u65ad\u5143\u7d20\u503c\u662f\u5426\u5339\u914d\uff0c\u82e5\u5339\u914d\u5219\u8f93\u51fa\u5bf9\u5e94\u7d22\u5f15\u3002

            \u56e0\u4e3a\u6570\u7ec4\u662f\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u6240\u4ee5\u4e0a\u8ff0\u67e5\u627e\u64cd\u4f5c\u88ab\u79f0\u4e3a\u201c\u7ebf\u6027\u67e5\u627e\u201d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int[] nums, int target) {\nfor (int i = 0; i < nums.length; i++) {\nif (nums[i] == target)\nreturn i;\n}\nreturn -1;\n}\n
            array.cpp
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\nfor (int i = 0; i < size; i++) {\nif (nums[i] == target)\nreturn i;\n}\nreturn -1;\n}\n
            array.py
            def find(nums: list[int], target: int) -> int:\n\"\"\"\u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\"\"\"\nfor i in range(len(nums)):\nif nums[i] == target:\nreturn i\nreturn -1\n
            array.go
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums []int, target int) (index int) {\nindex = -1\nfor i := 0; i < len(nums); i++ {\nif nums[i] == target {\nindex = i\nbreak\n}\n}\nreturn\n}\n
            array.js
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums, target) {\nfor (let i = 0; i < nums.length; i++) {\nif (nums[i] === target) return i;\n}\nreturn -1;\n}\n
            array.ts
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunction find(nums: number[], target: number): number {\nfor (let i = 0; i < nums.length; i++) {\nif (nums[i] === target) {\nreturn i;\n}\n}\nreturn -1;\n}\n
            array.c
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int *nums, int size, int target) {\nfor (int i = 0; i < size; i++) {\nif (nums[i] == target)\nreturn i;\n}\nreturn -1;\n}\n
            array.cs
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(int[] nums, int target) {\nfor (int i = 0; i < nums.Length; i++) {\nif (nums[i] == target)\nreturn i;\n}\nreturn -1;\n}\n
            array.swift
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfunc find(nums: [Int], target: Int) -> Int {\nfor i in nums.indices {\nif nums[i] == target {\nreturn i\n}\n}\nreturn -1\n}\n
            array.zig
            // \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20\nfn find(nums: []i32, target: i32) i32 {\nfor (nums, 0..) |num, i| {\nif (num == target) return @intCast(i);\n}\nreturn -1;\n}\n
            array.dart
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nint find(List nums, int target) {\nfor (var i = 0; i < nums.length; i++) {\nif (nums[i] == target) return i;\n}\nreturn -1;\n}\n
            array.rs
            /* \u5728\u6570\u7ec4\u4e2d\u67e5\u627e\u6307\u5b9a\u5143\u7d20 */\nfn find(nums: &[i32], target: i32) -> Option<usize> {\nfor i in 0..nums.len() {\nif nums[i] == target {\nreturn Some(i);\n}\n}\nNone\n}\n
            "},{"location":"chapter_array_and_linkedlist/array/#7","title":"7. \u00a0 \u6269\u5bb9\u6570\u7ec4","text":"

            \u5728\u590d\u6742\u7684\u7cfb\u7edf\u73af\u5883\u4e2d\uff0c\u7a0b\u5e8f\u96be\u4ee5\u4fdd\u8bc1\u6570\u7ec4\u4e4b\u540e\u7684\u5185\u5b58\u7a7a\u95f4\u662f\u53ef\u7528\u7684\uff0c\u4ece\u800c\u65e0\u6cd5\u5b89\u5168\u5730\u6269\u5c55\u6570\u7ec4\u5bb9\u91cf\u3002\u56e0\u6b64\u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u6570\u7ec4\u7684\u957f\u5ea6\u662f\u4e0d\u53ef\u53d8\u7684\u3002

            \u5982\u679c\u6211\u4eec\u5e0c\u671b\u6269\u5bb9\u6570\u7ec4\uff0c\u5219\u9700\u91cd\u65b0\u5efa\u7acb\u4e00\u4e2a\u66f4\u5927\u7684\u6570\u7ec4\uff0c\u7136\u540e\u628a\u539f\u6570\u7ec4\u5143\u7d20\u4f9d\u6b21\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\u3002\u8fd9\u662f\u4e00\u4e2a \\(O(n)\\) \u7684\u64cd\u4f5c\uff0c\u5728\u6570\u7ec4\u5f88\u5927\u7684\u60c5\u51b5\u4e0b\u662f\u975e\u5e38\u8017\u65f6\u7684\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array.java
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] extend(int[] nums, int enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nint[] res = new int[nums.length + enlarge];\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (int i = 0; i < nums.length; i++) {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.cpp
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nint *res = new int[size + enlarge];\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (int i = 0; i < size; i++) {\nres[i] = nums[i];\n}\n// \u91ca\u653e\u5185\u5b58\ndelete[] nums;\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.py
            def extend(nums: list[int], enlarge: int) -> list[int]:\n\"\"\"\u6269\u5c55\u6570\u7ec4\u957f\u5ea6\"\"\"\n# \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nres = [0] * (len(nums) + enlarge)\n# \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor i in range(len(nums)):\nres[i] = nums[i]\n# \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res\n
            array.go
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums []int, enlarge int) []int {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nres := make([]int, len(nums)+enlarge)\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor i, num := range nums {\nres[i] = num\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res\n}\n
            array.js
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cJavaScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u662f\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums, enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nconst res = new Array(nums.length + enlarge).fill(0);\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (let i = 0; i < nums.length; i++) {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.ts
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\n// \u8bf7\u6ce8\u610f\uff0cTypeScript \u7684 Array \u662f\u52a8\u6001\u6570\u7ec4\uff0c\u53ef\u4ee5\u76f4\u63a5\u6269\u5c55\n// \u4e3a\u4e86\u65b9\u4fbf\u5b66\u4e60\uff0c\u672c\u51fd\u6570\u5c06 Array \u770b\u4f5c\u662f\u957f\u5ea6\u4e0d\u53ef\u53d8\u7684\u6570\u7ec4\nfunction extend(nums: number[], enlarge: number): number[] {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nconst res = new Array(nums.length + enlarge).fill(0);\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (let i = 0; i < nums.length; i++) {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.c
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint *extend(int *nums, int size, int enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nint *res = (int *)malloc(sizeof(int) * (size + enlarge));\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (int i = 0; i < size; i++) {\nres[i] = nums[i];\n}\n// \u521d\u59cb\u5316\u6269\u5c55\u540e\u7684\u7a7a\u95f4\nfor (int i = size; i < size + enlarge; i++) {\nres[i] = 0;\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.cs
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nint[] extend(int[] nums, int enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nint[] res = new int[nums.Length + enlarge];\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (int i = 0; i < nums.Length; i++) {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.swift
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfunc extend(nums: [Int], enlarge: Int) -> [Int] {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nvar res = Array(repeating: 0, count: nums.count + enlarge)\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor i in nums.indices {\nres[i] = nums[i]\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res\n}\n
            array.zig
            // \u6269\u5c55\u6570\u7ec4\u957f\u5ea6\nfn extend(mem_allocator: std.mem.Allocator, nums: []i32, enlarge: usize) ![]i32 {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nvar res = try mem_allocator.alloc(i32, nums.len + enlarge);\n@memset(res, 0);\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nstd.mem.copy(i32, res, nums);\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.dart
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nList extend(List nums, int enlarge) {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nList<int> res = List.filled(nums.length + enlarge, 0);\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (var i = 0; i < nums.length; i++) {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nreturn res;\n}\n
            array.rs
            /* \u6269\u5c55\u6570\u7ec4\u957f\u5ea6 */\nfn extend(nums: Vec<i32>, enlarge: usize) -> Vec<i32> {\n// \u521d\u59cb\u5316\u4e00\u4e2a\u6269\u5c55\u957f\u5ea6\u540e\u7684\u6570\u7ec4\nlet mut res: Vec<i32> = vec![0; nums.len() + enlarge];\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\nfor i in 0..nums.len() {\nres[i] = nums[i];\n}\n// \u8fd4\u56de\u6269\u5c55\u540e\u7684\u65b0\u6570\u7ec4\nres\n}\n
            "},{"location":"chapter_array_and_linkedlist/array/#412","title":"4.1.2 \u00a0 \u6570\u7ec4\u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"

            \u6570\u7ec4\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u5185\uff0c\u4e14\u5143\u7d20\u7c7b\u578b\u76f8\u540c\u3002\u8fd9\u5305\u542b\u4e30\u5bcc\u7684\u5148\u9a8c\u4fe1\u606f\uff0c\u7cfb\u7edf\u53ef\u4ee5\u5229\u7528\u8fd9\u4e9b\u4fe1\u606f\u6765\u4f18\u5316\u64cd\u4f5c\u548c\u8fd0\u884c\u6548\u7387\uff0c\u5305\u62ec\uff1a

            • \u7a7a\u95f4\u6548\u7387\u9ad8: \u6570\u7ec4\u4e3a\u6570\u636e\u5206\u914d\u4e86\u8fde\u7eed\u7684\u5185\u5b58\u5757\uff0c\u65e0\u987b\u989d\u5916\u7684\u7ed3\u6784\u5f00\u9500\u3002
            • \u652f\u6301\u968f\u673a\u8bbf\u95ee: \u6570\u7ec4\u5141\u8bb8\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u8bbf\u95ee\u4efb\u4f55\u5143\u7d20\u3002
            • \u7f13\u5b58\u5c40\u90e8\u6027: \u5f53\u8bbf\u95ee\u6570\u7ec4\u5143\u7d20\u65f6\uff0c\u8ba1\u7b97\u673a\u4e0d\u4ec5\u4f1a\u52a0\u8f7d\u5b83\uff0c\u8fd8\u4f1a\u7f13\u5b58\u5176\u5468\u56f4\u7684\u5176\u4ed6\u6570\u636e\uff0c\u4ece\u800c\u501f\u52a9\u9ad8\u901f\u7f13\u5b58\u6765\u63d0\u5347\u540e\u7eed\u64cd\u4f5c\u7684\u6267\u884c\u901f\u5ea6\u3002

            \u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u662f\u4e00\u628a\u53cc\u5203\u5251\uff0c\u5b83\u5bfc\u81f4\u7684\u7f3a\u70b9\u6709\uff1a

            • \u63d2\u5165\u4e0e\u5220\u9664\u6548\u7387\u4f4e:\u5f53\u6570\u7ec4\u4e2d\u5143\u7d20\u8f83\u591a\u65f6\uff0c\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u9700\u8981\u79fb\u52a8\u5927\u91cf\u7684\u5143\u7d20\u3002
            • \u957f\u5ea6\u4e0d\u53ef\u53d8: \u6570\u7ec4\u5728\u521d\u59cb\u5316\u540e\u957f\u5ea6\u5c31\u56fa\u5b9a\u4e86\uff0c\u6269\u5bb9\u6570\u7ec4\u9700\u8981\u5c06\u6240\u6709\u6570\u636e\u590d\u5236\u5230\u65b0\u6570\u7ec4\uff0c\u5f00\u9500\u5f88\u5927\u3002
            • \u7a7a\u95f4\u6d6a\u8d39: \u5982\u679c\u6570\u7ec4\u5206\u914d\u7684\u5927\u5c0f\u8d85\u8fc7\u4e86\u5b9e\u9645\u6240\u9700\uff0c\u90a3\u4e48\u591a\u4f59\u7684\u7a7a\u95f4\u5c31\u88ab\u6d6a\u8d39\u4e86\u3002
            "},{"location":"chapter_array_and_linkedlist/array/#413","title":"4.1.3 \u00a0 \u6570\u7ec4\u5178\u578b\u5e94\u7528","text":"

            \u6570\u7ec4\u662f\u4e00\u79cd\u57fa\u7840\u4e14\u5e38\u89c1\u7684\u6570\u636e\u7ed3\u6784\uff0c\u65e2\u9891\u7e41\u5e94\u7528\u5728\u5404\u7c7b\u7b97\u6cd5\u4e4b\u4e2d\uff0c\u4e5f\u53ef\u7528\u4e8e\u5b9e\u73b0\u5404\u79cd\u590d\u6742\u6570\u636e\u7ed3\u6784\uff0c\u4e3b\u8981\u5305\u62ec\uff1a

            • \u968f\u673a\u8bbf\u95ee\uff1a\u5982\u679c\u6211\u4eec\u60f3\u8981\u968f\u673a\u62bd\u53d6\u4e00\u4e9b\u6837\u672c\uff0c\u90a3\u4e48\u53ef\u4ee5\u7528\u6570\u7ec4\u5b58\u50a8\uff0c\u5e76\u751f\u6210\u4e00\u4e2a\u968f\u673a\u5e8f\u5217\uff0c\u6839\u636e\u7d22\u5f15\u5b9e\u73b0\u6837\u672c\u7684\u968f\u673a\u62bd\u53d6\u3002
            • \u6392\u5e8f\u548c\u641c\u7d22\uff1a\u6570\u7ec4\u662f\u6392\u5e8f\u548c\u641c\u7d22\u7b97\u6cd5\u6700\u5e38\u7528\u7684\u6570\u636e\u7ed3\u6784\u3002\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u4e8c\u5206\u67e5\u627e\u7b49\u90fd\u4e3b\u8981\u5728\u6570\u7ec4\u4e0a\u8fdb\u884c\u3002
            • \u67e5\u627e\u8868\uff1a\u5f53\u6211\u4eec\u9700\u8981\u5feb\u901f\u67e5\u627e\u4e00\u4e2a\u5143\u7d20\u6216\u8005\u9700\u8981\u67e5\u627e\u4e00\u4e2a\u5143\u7d20\u7684\u5bf9\u5e94\u5173\u7cfb\u65f6\uff0c\u53ef\u4ee5\u4f7f\u7528\u6570\u7ec4\u4f5c\u4e3a\u67e5\u627e\u8868\u3002\u5047\u5982\u6211\u4eec\u60f3\u8981\u5b9e\u73b0\u5b57\u7b26\u5230 ASCII \u7801\u7684\u6620\u5c04\uff0c\u5219\u53ef\u4ee5\u5c06\u5b57\u7b26\u7684 ASCII \u7801\u503c\u4f5c\u4e3a\u7d22\u5f15\uff0c\u5bf9\u5e94\u7684\u5143\u7d20\u5b58\u653e\u5728\u6570\u7ec4\u4e2d\u7684\u5bf9\u5e94\u4f4d\u7f6e\u3002
            • \u673a\u5668\u5b66\u4e60\uff1a\u795e\u7ecf\u7f51\u7edc\u4e2d\u5927\u91cf\u4f7f\u7528\u4e86\u5411\u91cf\u3001\u77e9\u9635\u3001\u5f20\u91cf\u4e4b\u95f4\u7684\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97\uff0c\u8fd9\u4e9b\u6570\u636e\u90fd\u662f\u4ee5\u6570\u7ec4\u7684\u5f62\u5f0f\u6784\u5efa\u7684\u3002\u6570\u7ec4\u662f\u795e\u7ecf\u7f51\u7edc\u7f16\u7a0b\u4e2d\u6700\u5e38\u4f7f\u7528\u7684\u6570\u636e\u7ed3\u6784\u3002
            • \u6570\u636e\u7ed3\u6784\u5b9e\u73b0\uff1a\u6570\u7ec4\u53ef\u4ee5\u7528\u4e8e\u5b9e\u73b0\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u5806\u3001\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u3002\u4f8b\u5982\uff0c\u56fe\u7684\u90bb\u63a5\u77e9\u9635\u8868\u793a\u5b9e\u9645\u4e0a\u662f\u4e00\u4e2a\u4e8c\u7ef4\u6570\u7ec4\u3002
            "},{"location":"chapter_array_and_linkedlist/linked_list/","title":"4.2 \u00a0 \u94fe\u8868","text":"

            \u5185\u5b58\u7a7a\u95f4\u662f\u6240\u6709\u7a0b\u5e8f\u7684\u516c\u5171\u8d44\u6e90\uff0c\u5728\u4e00\u4e2a\u590d\u6742\u7684\u7cfb\u7edf\u8fd0\u884c\u73af\u5883\u4e0b\uff0c\u7a7a\u95f2\u7684\u5185\u5b58\u7a7a\u95f4\u53ef\u80fd\u6563\u843d\u5728\u5185\u5b58\u5404\u5904\u3002\u6211\u4eec\u77e5\u9053\uff0c\u5b58\u50a8\u6570\u7ec4\u7684\u5185\u5b58\u7a7a\u95f4\u5fc5\u987b\u662f\u8fde\u7eed\u7684\uff0c\u800c\u5f53\u6570\u7ec4\u975e\u5e38\u5927\u65f6\uff0c\u5185\u5b58\u53ef\u80fd\u65e0\u6cd5\u63d0\u4f9b\u5982\u6b64\u5927\u7684\u8fde\u7eed\u7a7a\u95f4\u3002\u6b64\u65f6\u94fe\u8868\u7684\u7075\u6d3b\u6027\u4f18\u52bf\u5c31\u4f53\u73b0\u51fa\u6765\u4e86\u3002

            \u300c\u94fe\u8868 linked list\u300d\u662f\u4e00\u79cd\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u5176\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u90fd\u662f\u4e00\u4e2a\u8282\u70b9\u5bf9\u8c61\uff0c\u5404\u4e2a\u8282\u70b9\u901a\u8fc7\u201c\u5f15\u7528\u201d\u76f8\u8fde\u63a5\u3002\u5f15\u7528\u8bb0\u5f55\u4e86\u4e0b\u4e00\u4e2a\u8282\u70b9\u7684\u5185\u5b58\u5730\u5740\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5b83\u4ece\u5f53\u524d\u8282\u70b9\u8bbf\u95ee\u5230\u4e0b\u4e00\u4e2a\u8282\u70b9\u3002\u8fd9\u610f\u5473\u7740\u94fe\u8868\u7684\u5404\u4e2a\u8282\u70b9\u53ef\u4ee5\u88ab\u5206\u6563\u5b58\u50a8\u5728\u5185\u5b58\u5404\u5904\uff0c\u5b83\u4eec\u7684\u5185\u5b58\u5730\u5740\u662f\u65e0\u987b\u8fde\u7eed\u7684\u3002

            \u56fe\uff1a\u94fe\u8868\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f

            \u89c2\u5bdf\u4e0a\u56fe\uff0c\u94fe\u8868\u7684\u7ec4\u6210\u5355\u4f4d\u662f\u300c\u8282\u70b9 node\u300d\u5bf9\u8c61\u3002\u6bcf\u4e2a\u8282\u70b9\u90fd\u5305\u542b\u4e24\u9879\u6570\u636e\uff1a\u8282\u70b9\u7684\u201c\u503c\u201d\u548c\u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u201c\u5f15\u7528\u201d\u3002

            • \u94fe\u8868\u7684\u9996\u4e2a\u8282\u70b9\u88ab\u79f0\u4e3a\u201c\u5934\u8282\u70b9\u201d\uff0c\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u88ab\u79f0\u4e3a\u201c\u5c3e\u8282\u70b9\u201d\u3002
            • \u5c3e\u8282\u70b9\u6307\u5411\u7684\u662f\u201c\u7a7a\u201d\uff0c\u5b83\u5728 Java, C++, Python \u4e2d\u5206\u522b\u88ab\u8bb0\u4e3a \\(\\text{null}\\) , \\(\\text{nullptr}\\) , \\(\\text{None}\\) \u3002
            • \u5728 C, C++, Go, Rust \u7b49\u652f\u6301\u6307\u9488\u7684\u8bed\u8a00\u4e2d\uff0c\u4e0a\u8ff0\u7684\u201c\u5f15\u7528\u201d\u5e94\u88ab\u66ff\u6362\u4e3a\u201c\u6307\u9488\u201d\u3002

            \u94fe\u8868\u8282\u70b9 ListNode \u5982\u4ee5\u4e0b\u4ee3\u7801\u6240\u793a\u3002\u6bcf\u4e2a\u8282\u70b9\u9664\u4e86\u5305\u542b\u503c\uff0c\u8fd8\u9700\u989d\u5916\u4fdd\u5b58\u4e00\u4e2a\u5f15\u7528\uff08\u6307\u9488\uff09\u3002\u56e0\u6b64\u5728\u76f8\u540c\u6570\u636e\u91cf\u4e0b\uff0c\u94fe\u8868\u6bd4\u6570\u7ec4\u5360\u7528\u66f4\u591a\u7684\u5185\u5b58\u7a7a\u95f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val;        // \u8282\u70b9\u503c\nListNode next;  // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\nListNode(int x) { val = x; }  // \u6784\u9020\u51fd\u6570\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\nint val;         // \u8282\u70b9\u503c\nListNode *next;  // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\nListNode(int x) : val(x), next(nullptr) {}  // \u6784\u9020\u51fd\u6570\n};\n
            class ListNode:\n\"\"\"\u94fe\u8868\u8282\u70b9\u7c7b\"\"\"\ndef __init__(self, val: int):\nself.val: int = val                  # \u8282\u70b9\u503c\nself.next: Optional[ListNode] = None # \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n
            /* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype ListNode struct {\nVal  int       // \u8282\u70b9\u503c\nNext *ListNode // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n}\n// NewListNode \u6784\u9020\u51fd\u6570\uff0c\u521b\u5efa\u4e00\u4e2a\u65b0\u7684\u94fe\u8868\nfunc NewListNode(val int) *ListNode {\nreturn &ListNode{\nVal:  val,\nNext: nil,\n}\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nval;\nnext;\nconstructor(val, next) {\nthis.val = (val === undefined ? 0 : val);       // \u8282\u70b9\u503c\nthis.next = (next === undefined ? null : next); // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nval: number;\nnext: ListNode | null;\nconstructor(val?: number, next?: ListNode | null) {\nthis.val = val === undefined ? 0 : val;        // \u8282\u70b9\u503c\nthis.next = next === undefined ? null : next;  // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\nint val;               // \u8282\u70b9\u503c\nstruct ListNode *next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n};\ntypedef struct ListNode ListNode;\n/* \u6784\u9020\u51fd\u6570 */\nListNode *newListNode(int val) {\nListNode *node, *next;\nnode = (ListNode *) malloc(sizeof(ListNode));\nnode->val = val;\nnode->next = NULL;\nreturn node;\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val;         // \u8282\u70b9\u503c\nListNode next;   // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\nListNode(int x) => val = x;  //\u6784\u9020\u51fd\u6570\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nvar val: Int // \u8282\u70b9\u503c\nvar next: ListNode? // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\ninit(x: Int) { // \u6784\u9020\u51fd\u6570\nval = x\n}\n}\n
            // \u94fe\u8868\u8282\u70b9\u7c7b\npub fn ListNode(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nval: T = 0, // \u8282\u70b9\u503c\nnext: ?*Self = null, // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n// \u6784\u9020\u51fd\u6570\npub fn init(self: *Self, x: i32) void {\nself.val = x;\nself.next = null;\n}\n};\n}\n
            /* \u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val; // \u8282\u70b9\u503c\nListNode? next; // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\nListNode(this.val, [this.next]); // \u6784\u9020\u51fd\u6570\n}\n
            use std::rc::Rc;\nuse std::cell::RefCell;\n/* \u94fe\u8868\u8282\u70b9\u7c7b */\n#[derive(Debug)]\nstruct ListNode {\nval: i32, // \u8282\u70b9\u503c\nnext: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u6307\u9488\n}\n
            "},{"location":"chapter_array_and_linkedlist/linked_list/#421","title":"4.2.1 \u00a0 \u94fe\u8868\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/linked_list/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u94fe\u8868","text":"

            \u5efa\u7acb\u94fe\u8868\u5206\u4e3a\u4e24\u6b65\uff0c\u7b2c\u4e00\u6b65\u662f\u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\u5bf9\u8c61\uff0c\u7b2c\u4e8c\u6b65\u662f\u6784\u5efa\u5f15\u7528\u6307\u5411\u5173\u7cfb\u3002\u521d\u59cb\u5316\u5b8c\u6210\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u4ece\u94fe\u8868\u7684\u5934\u8282\u70b9\u51fa\u53d1\uff0c\u901a\u8fc7\u5f15\u7528\u6307\u5411 next \u4f9d\u6b21\u8bbf\u95ee\u6240\u6709\u8282\u70b9\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linked_list.java
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = new ListNode(1);\nListNode n1 = new ListNode(3);\nListNode n2 = new ListNode(2);\nListNode n3 = new ListNode(5);\nListNode n4 = new ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
            linked_list.cpp
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode* n0 = new ListNode(1);\nListNode* n1 = new ListNode(3);\nListNode* n2 = new ListNode(2);\nListNode* n3 = new ListNode(5);\nListNode* n4 = new ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
            linked_list.py
            # \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4\n# \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nn0 = ListNode(1)\nn1 = ListNode(3)\nn2 = ListNode(2)\nn3 = ListNode(5)\nn4 = ListNode(4)\n# \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
            linked_list.go
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nn0 := NewListNode(1)\nn1 := NewListNode(3)\nn2 := NewListNode(2)\nn3 := NewListNode(5)\nn4 := NewListNode(4)\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.Next = n1\nn1.Next = n2\nn2.Next = n3\nn3.Next = n4\n
            linked_list.js
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
            linked_list.ts
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nconst n0 = new ListNode(1);\nconst n1 = new ListNode(3);\nconst n2 = new ListNode(2);\nconst n3 = new ListNode(5);\nconst n4 = new ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
            linked_list.c
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode* n0 = newListNode(1);\nListNode* n1 = newListNode(3);\nListNode* n2 = newListNode(2);\nListNode* n3 = newListNode(5);\nListNode* n4 = newListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0->next = n1;\nn1->next = n2;\nn2->next = n3;\nn3->next = n4;\n
            linked_list.cs
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = new ListNode(1);\nListNode n1 = new ListNode(3);\nListNode n2 = new ListNode(2);\nListNode n3 = new ListNode(5);\nListNode n4 = new ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
            linked_list.swift
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nlet n0 = ListNode(x: 1)\nlet n1 = ListNode(x: 3)\nlet n2 = ListNode(x: 2)\nlet n3 = ListNode(x: 5)\nlet n4 = ListNode(x: 4)\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1\nn1.next = n2\nn2.next = n3\nn3.next = n4\n
            linked_list.zig
            // \u521d\u59cb\u5316\u94fe\u8868\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nvar n0 = inc.ListNode(i32){.val = 1};\nvar n1 = inc.ListNode(i32){.val = 3};\nvar n2 = inc.ListNode(i32){.val = 2};\nvar n3 = inc.ListNode(i32){.val = 5};\nvar n4 = inc.ListNode(i32){.val = 4};\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = &n1;\nn1.next = &n2;\nn2.next = &n3;\nn3.next = &n4;\n
            linked_list.dart
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\\\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nListNode n0 = ListNode(1);\nListNode n1 = ListNode(3);\nListNode n2 = ListNode(2);\nListNode n3 = ListNode(5);\nListNode n4 = ListNode(4);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.next = n1;\nn1.next = n2;\nn2.next = n3;\nn3.next = n4;\n
            linked_list.rs
            /* \u521d\u59cb\u5316\u94fe\u8868 1 -> 3 -> 2 -> 5 -> 4 */\n// \u521d\u59cb\u5316\u5404\u4e2a\u8282\u70b9\nlet n0 = Rc::new(RefCell::new(ListNode { val: 1, next: None }));\nlet n1 = Rc::new(RefCell::new(ListNode { val: 3, next: None }));\nlet n2 = Rc::new(RefCell::new(ListNode { val: 2, next: None }));\nlet n3 = Rc::new(RefCell::new(ListNode { val: 5, next: None }));\nlet n4 = Rc::new(RefCell::new(ListNode { val: 4, next: None }));\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\nn0.borrow_mut().next = Some(n1.clone());\nn1.borrow_mut().next = Some(n2.clone());\nn2.borrow_mut().next = Some(n3.clone());\nn3.borrow_mut().next = Some(n4.clone());\n

            \u6570\u7ec4\u6574\u4f53\u662f\u4e00\u4e2a\u53d8\u91cf\uff0c\u6bd4\u5982\u6570\u7ec4 nums \u5305\u542b\u5143\u7d20 nums[0] , nums[1] \u7b49\uff0c\u800c\u94fe\u8868\u662f\u7531\u591a\u4e2a\u72ec\u7acb\u7684\u8282\u70b9\u5bf9\u8c61\u7ec4\u6210\u7684\u3002\u6211\u4eec\u901a\u5e38\u5c06\u5934\u8282\u70b9\u5f53\u4f5c\u94fe\u8868\u7684\u4ee3\u79f0\uff0c\u6bd4\u5982\u4ee5\u4e0a\u4ee3\u7801\u4e2d\u7684\u94fe\u8868\u53ef\u88ab\u8bb0\u505a\u94fe\u8868 n0 \u3002

            "},{"location":"chapter_array_and_linkedlist/linked_list/#2","title":"2. \u00a0 \u63d2\u5165\u8282\u70b9","text":"

            \u5728\u94fe\u8868\u4e2d\u63d2\u5165\u8282\u70b9\u975e\u5e38\u5bb9\u6613\u3002\u5047\u8bbe\u6211\u4eec\u60f3\u5728\u76f8\u90bb\u7684\u4e24\u4e2a\u8282\u70b9 n0 , n1 \u4e4b\u95f4\u63d2\u5165\u4e00\u4e2a\u65b0\u8282\u70b9 P \uff0c\u5219\u53ea\u9700\u8981\u6539\u53d8\u4e24\u4e2a\u8282\u70b9\u5f15\u7528\uff08\u6307\u9488\uff09\u5373\u53ef\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002

            \u76f8\u6bd4\u4e4b\u4e0b\uff0c\u5728\u6570\u7ec4\u4e2d\u63d2\u5165\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5728\u5927\u6570\u636e\u91cf\u4e0b\u7684\u6548\u7387\u8f83\u4f4e\u3002

            \u56fe\uff1a\u94fe\u8868\u63d2\u5165\u8282\u70b9

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linked_list.java
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\nListNode n1 = n0.next;\nP.next = n1;\nn0.next = P;\n}\n
            linked_list.cpp
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\nListNode *n1 = n0->next;\nP->next = n1;\nn0->next = P;\n}\n
            linked_list.py
            def insert(n0: ListNode, P: ListNode):\n\"\"\"\u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\"\"\"\nn1 = n0.next\nP.next = n1\nn0.next = P\n
            linked_list.go
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insertNode(n0 *ListNode, P *ListNode) {\nn1 := n0.Next\nP.Next = n1\nn0.Next = P\n}\n
            linked_list.js
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0, P) {\nconst n1 = n0.next;\nP.next = n1;\nn0.next = P;\n}\n
            linked_list.ts
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunction insert(n0: ListNode, P: ListNode): void {\nconst n1 = n0.next;\nP.next = n1;\nn0.next = P;\n}\n
            linked_list.c
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode *n0, ListNode *P) {\nListNode *n1 = n0->next;\nP->next = n1;\nn0->next = P;\n}\n
            linked_list.cs
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\nListNode? n1 = n0.next;\nP.next = n1;\nn0.next = P;\n}\n
            linked_list.swift
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nfunc insert(n0: ListNode, P: ListNode) {\nlet n1 = n0.next\nP.next = n1\nn0.next = P\n}\n
            linked_list.zig
            // \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P\nfn insert(n0: ?*inc.ListNode(i32), P: ?*inc.ListNode(i32)) void {\nvar n1 = n0.?.next;\nP.?.next = n1;\nn0.?.next = P;\n}\n
            linked_list.dart
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\nvoid insert(ListNode n0, ListNode P) {\nListNode? n1 = n0.next;\nP.next = n1;\nn0.next = P;\n}\n
            linked_list.rs
            /* \u5728\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u63d2\u5165\u8282\u70b9 P */\n#[allow(non_snake_case)]\npub fn insert<T>(n0: &Rc<RefCell<ListNode<T>>>, P: Rc<RefCell<ListNode<T>>>) {\nlet n1 =  n0.borrow_mut().next.take();\nP.borrow_mut().next = n1;\nn0.borrow_mut().next = Some(P);\n}\n
            "},{"location":"chapter_array_and_linkedlist/linked_list/#3","title":"3. \u00a0 \u5220\u9664\u8282\u70b9","text":"

            \u5728\u94fe\u8868\u4e2d\u5220\u9664\u8282\u70b9\u4e5f\u975e\u5e38\u7b80\u4fbf\uff0c\u53ea\u9700\u6539\u53d8\u4e00\u4e2a\u8282\u70b9\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\u5373\u53ef\u3002

            \u8bf7\u6ce8\u610f\uff0c\u5c3d\u7ba1\u5728\u5220\u9664\u64cd\u4f5c\u5b8c\u6210\u540e\u8282\u70b9 P \u4ecd\u7136\u6307\u5411 n1 \uff0c\u4f46\u5b9e\u9645\u4e0a\u904d\u5386\u6b64\u94fe\u8868\u5df2\u7ecf\u65e0\u6cd5\u8bbf\u95ee\u5230 P \uff0c\u8fd9\u610f\u5473\u7740 P \u5df2\u7ecf\u4e0d\u518d\u5c5e\u4e8e\u8be5\u94fe\u8868\u4e86\u3002

            \u56fe\uff1a\u94fe\u8868\u5220\u9664\u8282\u70b9

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linked_list.java
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\nif (n0.next == null)\nreturn;\n// n0 -> P -> n1\nListNode P = n0.next;\nListNode n1 = P.next;\nn0.next = n1;\n}\n
            linked_list.cpp
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode *n0) {\nif (n0->next == nullptr)\nreturn;\n// n0 -> P -> n1\nListNode *P = n0->next;\nListNode *n1 = P->next;\nn0->next = n1;\n// \u91ca\u653e\u5185\u5b58\ndelete P;\n}\n
            linked_list.py
            def remove(n0: ListNode):\n\"\"\"\u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\"\"\"\nif not n0.next:\nreturn\n# n0 -> P -> n1\nP = n0.next\nn1 = P.next\nn0.next = n1\n
            linked_list.go
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc removeNode(n0 *ListNode) {\nif n0.Next == nil {\nreturn\n}\n// n0 -> P -> n1\nP := n0.Next\nn1 := P.Next\nn0.Next = n1\n}\n
            linked_list.js
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0) {\nif (!n0.next) return;\n// n0 -> P -> n1\nconst P = n0.next;\nconst n1 = P.next;\nn0.next = n1;\n}\n
            linked_list.ts
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunction remove(n0: ListNode): void {\nif (!n0.next) {\nreturn;\n}\n// n0 -> P -> n1\nconst P = n0.next;\nconst n1 = P.next;\nn0.next = n1;\n}\n
            linked_list.c
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nvoid removeNode(ListNode *n0) {\nif (!n0->next)\nreturn;\n// n0 -> P -> n1\nListNode *P = n0->next;\nListNode *n1 = P->next;\nn0->next = n1;\n// \u91ca\u653e\u5185\u5b58\nfree(P);\n}\n
            linked_list.cs
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\nif (n0.next == null)\nreturn;\n// n0 -> P -> n1\nListNode P = n0.next;\nListNode? n1 = P.next;\nn0.next = n1;\n}\n
            linked_list.swift
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nfunc remove(n0: ListNode) {\nif n0.next == nil {\nreturn\n}\n// n0 -> P -> n1\nlet P = n0.next\nlet n1 = P?.next\nn0.next = n1\nP?.next = nil\n}\n
            linked_list.zig
            // \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9\nfn remove(n0: ?*inc.ListNode(i32)) void {\nif (n0.?.next == null) return;\n// n0 -> P -> n1\nvar P = n0.?.next;\nvar n1 = P.?.next;\nn0.?.next = n1;\n}\n
            linked_list.dart
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\nvoid remove(ListNode n0) {\nif (n0.next == null) return;\n// n0 -> P -> n1\nListNode P = n0.next!;\nListNode? n1 = P.next;\nn0.next = n1;\n}\n
            linked_list.rs
            /* \u5220\u9664\u94fe\u8868\u7684\u8282\u70b9 n0 \u4e4b\u540e\u7684\u9996\u4e2a\u8282\u70b9 */\n#[allow(non_snake_case)]\npub fn remove<T>(n0: &Rc<RefCell<ListNode<T>>>) {\nif n0.borrow().next.is_none() {return};\n// n0 -> P -> n1\nlet P = n0.borrow_mut().next.take();\nif let Some(node) = P {\nlet n1 = node.borrow_mut().next.take();\nn0.borrow_mut().next = n1;\n}\n}\n
            "},{"location":"chapter_array_and_linkedlist/linked_list/#4","title":"4. \u00a0 \u8bbf\u95ee\u8282\u70b9","text":"

            \u5728\u94fe\u8868\u8bbf\u95ee\u8282\u70b9\u7684\u6548\u7387\u8f83\u4f4e\u3002\u5982\u4e0a\u8282\u6240\u8ff0\uff0c\u6211\u4eec\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u4e0b\u8bbf\u95ee\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u5143\u7d20\u3002\u94fe\u8868\u5219\u4e0d\u7136\uff0c\u7a0b\u5e8f\u9700\u8981\u4ece\u5934\u8282\u70b9\u51fa\u53d1\uff0c\u9010\u4e2a\u5411\u540e\u904d\u5386\uff0c\u76f4\u81f3\u627e\u5230\u76ee\u6807\u8282\u70b9\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u8bbf\u95ee\u94fe\u8868\u7684\u7b2c \\(i\\) \u4e2a\u8282\u70b9\u9700\u8981\u5faa\u73af \\(i - 1\\) \u8f6e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linked_list.java
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode access(ListNode head, int index) {\nfor (int i = 0; i < index; i++) {\nif (head == null)\nreturn null;\nhead = head.next;\n}\nreturn head;\n}\n
            linked_list.cpp
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\nfor (int i = 0; i < index; i++) {\nif (head == nullptr)\nreturn nullptr;\nhead = head->next;\n}\nreturn head;\n}\n
            linked_list.py
            def access(head: ListNode, index: int) -> ListNode | None:\n\"\"\"\u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\"\"\"\nfor _ in range(index):\nif not head:\nreturn None\nhead = head.next\nreturn head\n
            linked_list.go
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head *ListNode, index int) *ListNode {\nfor i := 0; i < index; i++ {\nif head == nil {\nreturn nil\n}\nhead = head.Next\n}\nreturn head\n}\n
            linked_list.js
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head, index) {\nfor (let i = 0; i < index; i++) {\nif (!head) {\nreturn null;\n}\nhead = head.next;\n}\nreturn head;\n}\n
            linked_list.ts
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunction access(head: ListNode | null, index: number): ListNode | null {\nfor (let i = 0; i < index; i++) {\nif (!head) {\nreturn null;\n}\nhead = head.next;\n}\nreturn head;\n}\n
            linked_list.c
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode *access(ListNode *head, int index) {\nwhile (head && head->next && index) {\nhead = head->next;\nindex--;\n}\nreturn head;\n}\n
            linked_list.cs
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? access(ListNode head, int index) {\nfor (int i = 0; i < index; i++) {\nif (head == null)\nreturn null;\nhead = head.next;\n}\nreturn head;\n}\n
            linked_list.swift
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nfunc access(head: ListNode, index: Int) -> ListNode? {\nvar head: ListNode? = head\nfor _ in 0 ..< index {\nif head == nil {\nreturn nil\n}\nhead = head?.next\n}\nreturn head\n}\n
            linked_list.zig
            // \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9\nfn access(node: ?*inc.ListNode(i32), index: i32) ?*inc.ListNode(i32) {\nvar head = node;\nvar i: i32 = 0;\nwhile (i < index) : (i += 1) {\nhead = head.?.next;\nif (head == null) return null;\n}\nreturn head;\n}\n
            linked_list.dart
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\nListNode? access(ListNode? head, int index) {\nfor (var i = 0; i < index; i++) {\nif (head == null) return null;\nhead = head.next;\n}\nreturn head;\n}\n
            linked_list.rs
            /* \u8bbf\u95ee\u94fe\u8868\u4e2d\u7d22\u5f15\u4e3a index \u7684\u8282\u70b9 */\npub fn access<T>(head: Rc<RefCell<ListNode<T>>>, index: i32) -> Rc<RefCell<ListNode<T>>> {\nif index <= 0 {return head};\nif let Some(node) = &head.borrow_mut().next {\nreturn access(node.clone(), index - 1);\n}\nreturn head;\n}\n
            "},{"location":"chapter_array_and_linkedlist/linked_list/#5","title":"5. \u00a0 \u67e5\u627e\u8282\u70b9","text":"

            \u904d\u5386\u94fe\u8868\uff0c\u67e5\u627e\u94fe\u8868\u5185\u503c\u4e3a target \u7684\u8282\u70b9\uff0c\u8f93\u51fa\u8282\u70b9\u5728\u94fe\u8868\u4e2d\u7684\u7d22\u5f15\u3002\u6b64\u8fc7\u7a0b\u4e5f\u5c5e\u4e8e\u7ebf\u6027\u67e5\u627e\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linked_list.java
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode head, int target) {\nint index = 0;\nwhile (head != null) {\nif (head.val == target)\nreturn index;\nhead = head.next;\nindex++;\n}\nreturn -1;\n}\n
            linked_list.cpp
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\nint index = 0;\nwhile (head != nullptr) {\nif (head->val == target)\nreturn index;\nhead = head->next;\nindex++;\n}\nreturn -1;\n}\n
            linked_list.py
            def find(head: ListNode, target: int) -> int:\n\"\"\"\u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\"\"\"\nindex = 0\nwhile head:\nif head.val == target:\nreturn index\nhead = head.next\nindex += 1\nreturn -1\n
            linked_list.go
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc findNode(head *ListNode, target int) int {\nindex := 0\nfor head != nil {\nif head.Val == target {\nreturn index\n}\nhead = head.Next\nindex++\n}\nreturn -1\n}\n
            linked_list.js
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head, target) {\nlet index = 0;\nwhile (head !== null) {\nif (head.val === target) {\nreturn index;\n}\nhead = head.next;\nindex += 1;\n}\nreturn -1;\n}\n
            linked_list.ts
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunction find(head: ListNode | null, target: number): number {\nlet index = 0;\nwhile (head !== null) {\nif (head.val === target) {\nreturn index;\n}\nhead = head.next;\nindex += 1;\n}\nreturn -1;\n}\n
            linked_list.c
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode *head, int target) {\nint index = 0;\nwhile (head) {\nif (head->val == target)\nreturn index;\nhead = head->next;\nindex++;\n}\nreturn -1;\n}\n
            linked_list.cs
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode head, int target) {\nint index = 0;\nwhile (head != null) {\nif (head.val == target)\nreturn index;\nhead = head.next;\nindex++;\n}\nreturn -1;\n}\n
            linked_list.swift
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nfunc find(head: ListNode, target: Int) -> Int {\nvar head: ListNode? = head\nvar index = 0\nwhile head != nil {\nif head?.val == target {\nreturn index\n}\nhead = head?.next\nindex += 1\n}\nreturn -1\n}\n
            linked_list.zig
            // \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9\nfn find(node: ?*inc.ListNode(i32), target: i32) i32 {\nvar head = node;\nvar index: i32 = 0;\nwhile (head != null) {\nif (head.?.val == target) return index;\nhead = head.?.next;\nindex += 1;\n}\nreturn -1;\n}\n
            linked_list.dart
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\nint find(ListNode? head, int target) {\nint index = 0;\nwhile (head != null) {\nif (head.val == target) {\nreturn index;\n}\nhead = head.next;\nindex++;\n}\nreturn -1;\n}\n
            linked_list.rs
            /* \u5728\u94fe\u8868\u4e2d\u67e5\u627e\u503c\u4e3a target \u7684\u9996\u4e2a\u8282\u70b9 */\npub fn find<T: PartialEq>(head: Rc<RefCell<ListNode<T>>>, target: T, index: i32) -> i32 {\nif head.borrow().val == target {return index};\nif let Some(node) = &head.borrow_mut().next {\nreturn find(node.clone(), target, index + 1);\n}\nreturn -1;\n}\n
            "},{"location":"chapter_array_and_linkedlist/linked_list/#422-vs","title":"4.2.2 \u00a0 \u6570\u7ec4 VS \u94fe\u8868","text":"

            \u4e0b\u8868\u603b\u7ed3\u5bf9\u6bd4\u4e86\u6570\u7ec4\u548c\u94fe\u8868\u7684\u5404\u9879\u7279\u70b9\u4e0e\u64cd\u4f5c\u6548\u7387\u3002\u7531\u4e8e\u5b83\u4eec\u91c7\u7528\u4e24\u79cd\u76f8\u53cd\u7684\u5b58\u50a8\u7b56\u7565\uff0c\u56e0\u6b64\u5404\u79cd\u6027\u8d28\u548c\u64cd\u4f5c\u6548\u7387\u4e5f\u5448\u73b0\u5bf9\u7acb\u7684\u7279\u70b9\u3002

            \u8868\uff1a\u6570\u7ec4\u4e0e\u94fe\u8868\u7684\u6548\u7387\u5bf9\u6bd4

            \u6570\u7ec4 \u94fe\u8868 \u5b58\u50a8\u65b9\u5f0f \u8fde\u7eed\u5185\u5b58\u7a7a\u95f4 \u79bb\u6563\u5185\u5b58\u7a7a\u95f4 \u7f13\u5b58\u5c40\u90e8\u6027 \u53cb\u597d \u4e0d\u53cb\u597d \u5bb9\u91cf\u6269\u5c55 \u957f\u5ea6\u4e0d\u53ef\u53d8 \u53ef\u7075\u6d3b\u6269\u5c55 \u5185\u5b58\u6548\u7387 \u5360\u7528\u5185\u5b58\u5c11\u3001\u6d6a\u8d39\u90e8\u5206\u7a7a\u95f4 \u5360\u7528\u5185\u5b58\u591a \u8bbf\u95ee\u5143\u7d20 \\(O(1)\\) \\(O(n)\\) \u6dfb\u52a0\u5143\u7d20 \\(O(n)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(1)\\)"},{"location":"chapter_array_and_linkedlist/linked_list/#423","title":"4.2.3 \u00a0 \u5e38\u89c1\u94fe\u8868\u7c7b\u578b","text":"

            \u5355\u5411\u94fe\u8868\u3002\u5373\u4e0a\u8ff0\u4ecb\u7ecd\u7684\u666e\u901a\u94fe\u8868\u3002\u5355\u5411\u94fe\u8868\u7684\u8282\u70b9\u5305\u542b\u503c\u548c\u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\u4e24\u9879\u6570\u636e\u3002\u6211\u4eec\u5c06\u9996\u4e2a\u8282\u70b9\u79f0\u4e3a\u5934\u8282\u70b9\uff0c\u5c06\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u6210\u4e3a\u5c3e\u8282\u70b9\uff0c\u5c3e\u8282\u70b9\u6307\u5411\u7a7a \\(\\text{None}\\) \u3002

            \u73af\u5f62\u94fe\u8868\u3002\u5982\u679c\u6211\u4eec\u4ee4\u5355\u5411\u94fe\u8868\u7684\u5c3e\u8282\u70b9\u6307\u5411\u5934\u8282\u70b9\uff08\u5373\u9996\u5c3e\u76f8\u63a5\uff09\uff0c\u5219\u5f97\u5230\u4e00\u4e2a\u73af\u5f62\u94fe\u8868\u3002\u5728\u73af\u5f62\u94fe\u8868\u4e2d\uff0c\u4efb\u610f\u8282\u70b9\u90fd\u53ef\u4ee5\u89c6\u4f5c\u5934\u8282\u70b9\u3002

            \u53cc\u5411\u94fe\u8868\u3002\u4e0e\u5355\u5411\u94fe\u8868\u76f8\u6bd4\uff0c\u53cc\u5411\u94fe\u8868\u8bb0\u5f55\u4e86\u4e24\u4e2a\u65b9\u5411\u7684\u5f15\u7528\u3002\u53cc\u5411\u94fe\u8868\u7684\u8282\u70b9\u5b9a\u4e49\u540c\u65f6\u5305\u542b\u6307\u5411\u540e\u7ee7\u8282\u70b9\uff08\u4e0b\u4e00\u4e2a\u8282\u70b9\uff09\u548c\u524d\u9a71\u8282\u70b9\uff08\u4e0a\u4e00\u4e2a\u8282\u70b9\uff09\u7684\u5f15\u7528\uff08\u6307\u9488\uff09\u3002\u76f8\u8f83\u4e8e\u5355\u5411\u94fe\u8868\uff0c\u53cc\u5411\u94fe\u8868\u66f4\u5177\u7075\u6d3b\u6027\uff0c\u53ef\u4ee5\u671d\u4e24\u4e2a\u65b9\u5411\u904d\u5386\u94fe\u8868\uff0c\u4f46\u76f8\u5e94\u5730\u4e5f\u9700\u8981\u5360\u7528\u66f4\u591a\u7684\u5185\u5b58\u7a7a\u95f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val;        // \u8282\u70b9\u503c\nListNode next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nListNode prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\nListNode(int x) { val = x; }  // \u6784\u9020\u51fd\u6570\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\nint val;         // \u8282\u70b9\u503c\nListNode *next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\nListNode *prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\nListNode(int x) : val(x), next(nullptr), prev(nullptr) {}  // \u6784\u9020\u51fd\u6570\n};\n
            class ListNode:\n\"\"\"\u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\"\"\"\ndef __init__(self, val: int):\nself.val: int = val                   # \u8282\u70b9\u503c\nself.next: Optional[ListNode] = None  # \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nself.prev: Optional[ListNode] = None  # \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype DoublyListNode struct {\nVal  int             // \u8282\u70b9\u503c\nNext *DoublyListNode // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\nPrev *DoublyListNode // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n}\n// NewDoublyListNode \u521d\u59cb\u5316\nfunc NewDoublyListNode(val int) *DoublyListNode {\nreturn &DoublyListNode{\nVal:  val,\nNext: nil,\nPrev: nil,\n}\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nval;\nnext;\nprev;\nconstructor(val, next, prev) {\nthis.val = val  ===  undefined ? 0 : val;        // \u8282\u70b9\u503c\nthis.next = next  ===  undefined ? null : next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nthis.prev = prev  ===  undefined ? null : prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nval: number;\nnext: ListNode | null;\nprev: ListNode | null;\nconstructor(val?: number, next?: ListNode | null, prev?: ListNode | null) {\nthis.val = val  ===  undefined ? 0 : val;        // \u8282\u70b9\u503c\nthis.next = next  ===  undefined ? null : next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nthis.prev = prev  ===  undefined ? null : prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct ListNode {\nint val;               // \u8282\u70b9\u503c\nstruct ListNode *next; // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\nstruct ListNode *prev; // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n};\ntypedef struct ListNode ListNode;\n/* \u6784\u9020\u51fd\u6570 */\nListNode *newListNode(int val) {\nListNode *node, *next;\nnode = (ListNode *) malloc(sizeof(ListNode));\nnode->val = val;\nnode->next = NULL;\nnode->prev = NULL;\nreturn node;\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val;        // \u8282\u70b9\u503c\nListNode next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nListNode prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\nListNode(int x) => val = x;  // \u6784\u9020\u51fd\u6570\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nvar val: Int // \u8282\u70b9\u503c\nvar next: ListNode? // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nvar prev: ListNode? // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\ninit(x: Int) { // \u6784\u9020\u51fd\u6570\nval = x\n}\n}\n
            // \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\npub fn ListNode(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nval: T = 0, // \u8282\u70b9\u503c\nnext: ?*Self = null, // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\nprev: ?*Self = null, // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n// \u6784\u9020\u51fd\u6570\npub fn init(self: *Self, x: i32) void {\nself.val = x;\nself.next = null;\nself.prev = null;\n}\n};\n}\n
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b */\nclass ListNode {\nint val;        // \u8282\u70b9\u503c\nListNode next;  // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u5f15\u7528\nListNode prev;  // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u5f15\u7528\nListNode(this.val, [this.next, this.prev]);  // \u6784\u9020\u51fd\u6570\n}\n
            use std::rc::Rc;\nuse std::cell::RefCell;\n/* \u53cc\u5411\u94fe\u8868\u8282\u70b9\u7c7b\u578b */\n#[derive(Debug)]\nstruct ListNode {\nval: i32, // \u8282\u70b9\u503c\nnext: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u540e\u7ee7\u8282\u70b9\u7684\u6307\u9488\nprev: Option<Rc<RefCell<ListNode>>>, // \u6307\u5411\u524d\u9a71\u8282\u70b9\u7684\u6307\u9488\n}\n/* \u6784\u9020\u51fd\u6570 */\nimpl ListNode {\nfn new(val: i32) -> Self {\nListNode {\nval,\nnext: None,\nprev: None,\n}\n}\n}\n

            \u56fe\uff1a\u5e38\u89c1\u94fe\u8868\u79cd\u7c7b

            "},{"location":"chapter_array_and_linkedlist/linked_list/#424","title":"4.2.4 \u00a0 \u94fe\u8868\u5178\u578b\u5e94\u7528","text":"

            \u5355\u5411\u94fe\u8868\u901a\u5e38\u7528\u4e8e\u5b9e\u73b0\u6808\u3001\u961f\u5217\u3001\u6563\u5217\u8868\u548c\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u3002

            • \u6808\u4e0e\u961f\u5217\uff1a\u5f53\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u90fd\u5728\u94fe\u8868\u7684\u4e00\u7aef\u8fdb\u884c\u65f6\uff0c\u5b83\u8868\u73b0\u51fa\u5148\u8fdb\u540e\u51fa\u7684\u7684\u7279\u6027\uff0c\u5bf9\u5e94\u6808\uff1b\u5f53\u63d2\u5165\u64cd\u4f5c\u5728\u94fe\u8868\u7684\u4e00\u7aef\u8fdb\u884c\uff0c\u5220\u9664\u64cd\u4f5c\u5728\u94fe\u8868\u7684\u53e6\u4e00\u7aef\u8fdb\u884c\uff0c\u5b83\u8868\u73b0\u51fa\u5148\u8fdb\u5148\u51fa\u7684\u7279\u6027\uff0c\u5bf9\u5e94\u961f\u5217\u3002
            • \u6563\u5217\u8868\uff1a\u94fe\u5730\u5740\u6cd5\u662f\u89e3\u51b3\u54c8\u5e0c\u51b2\u7a81\u7684\u4e3b\u6d41\u65b9\u6848\u4e4b\u4e00\uff0c\u5728\u8be5\u65b9\u6848\u4e2d\uff0c\u6240\u6709\u51b2\u7a81\u7684\u5143\u7d20\u90fd\u4f1a\u88ab\u653e\u5230\u4e00\u4e2a\u94fe\u8868\u4e2d\u3002
            • \u56fe\uff1a\u90bb\u63a5\u8868\u662f\u8868\u793a\u56fe\u7684\u4e00\u79cd\u5e38\u7528\u65b9\u5f0f\uff0c\u5728\u5176\u4e2d\uff0c\u56fe\u7684\u6bcf\u4e2a\u9876\u70b9\u90fd\u4e0e\u4e00\u4e2a\u94fe\u8868\u76f8\u5173\u8054\uff0c\u94fe\u8868\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u90fd\u4ee3\u8868\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u5176\u4ed6\u9876\u70b9\u3002

            \u53cc\u5411\u94fe\u8868\u5e38\u88ab\u7528\u4e8e\u9700\u8981\u5feb\u901f\u67e5\u627e\u524d\u4e00\u4e2a\u548c\u4e0b\u4e00\u4e2a\u5143\u7d20\u7684\u573a\u666f\u3002

            • \u9ad8\u7ea7\u6570\u636e\u7ed3\u6784\uff1a\u6bd4\u5982\u5728\u7ea2\u9ed1\u6811\u3001B \u6811\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u8bbf\u95ee\u8282\u70b9\u7684\u7236\u8282\u70b9\uff0c\u8fd9\u53ef\u4ee5\u901a\u8fc7\u5728\u8282\u70b9\u4e2d\u4fdd\u5b58\u4e00\u4e2a\u6307\u5411\u7236\u8282\u70b9\u7684\u5f15\u7528\u6765\u5b9e\u73b0\uff0c\u7c7b\u4f3c\u4e8e\u53cc\u5411\u94fe\u8868\u3002
            • \u6d4f\u89c8\u5668\u5386\u53f2\uff1a\u5728\u7f51\u9875\u6d4f\u89c8\u5668\u4e2d\uff0c\u5f53\u7528\u6237\u70b9\u51fb\u524d\u8fdb\u6216\u540e\u9000\u6309\u94ae\u65f6\uff0c\u6d4f\u89c8\u5668\u9700\u8981\u77e5\u9053\u7528\u6237\u8bbf\u95ee\u8fc7\u7684\u524d\u4e00\u4e2a\u548c\u540e\u4e00\u4e2a\u7f51\u9875\u3002\u53cc\u5411\u94fe\u8868\u7684\u7279\u6027\u4f7f\u5f97\u8fd9\u79cd\u64cd\u4f5c\u53d8\u5f97\u7b80\u5355\u3002
            • LRU \u7b97\u6cd5\uff1a\u5728\u7f13\u5b58\u6dd8\u6c70\u7b97\u6cd5\uff08LRU\uff09\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u5feb\u901f\u627e\u5230\u6700\u8fd1\u6700\u5c11\u4f7f\u7528\u7684\u6570\u636e\uff0c\u4ee5\u53ca\u652f\u6301\u5feb\u901f\u5730\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u3002\u8fd9\u65f6\u5019\u4f7f\u7528\u53cc\u5411\u94fe\u8868\u5c31\u975e\u5e38\u5408\u9002\u3002

            \u5faa\u73af\u94fe\u8868\u5e38\u88ab\u7528\u4e8e\u9700\u8981\u5468\u671f\u6027\u64cd\u4f5c\u7684\u573a\u666f\uff0c\u6bd4\u5982\u64cd\u4f5c\u7cfb\u7edf\u7684\u8d44\u6e90\u8c03\u5ea6\u3002

            • \u65f6\u95f4\u7247\u8f6e\u8f6c\u8c03\u5ea6\u7b97\u6cd5\uff1a\u5728\u64cd\u4f5c\u7cfb\u7edf\u4e2d\uff0c\u65f6\u95f4\u7247\u8f6e\u8f6c\u8c03\u5ea6\u7b97\u6cd5\u662f\u4e00\u79cd\u5e38\u89c1\u7684 CPU \u8c03\u5ea6\u7b97\u6cd5\uff0c\u5b83\u9700\u8981\u5bf9\u4e00\u7ec4\u8fdb\u7a0b\u8fdb\u884c\u5faa\u73af\u3002\u6bcf\u4e2a\u8fdb\u7a0b\u88ab\u8d4b\u4e88\u4e00\u4e2a\u65f6\u95f4\u7247\uff0c\u5f53\u65f6\u95f4\u7247\u7528\u5b8c\u65f6\uff0cCPU \u5c06\u5207\u6362\u5230\u4e0b\u4e00\u4e2a\u8fdb\u7a0b\u3002\u8fd9\u79cd\u5faa\u73af\u7684\u64cd\u4f5c\u5c31\u53ef\u4ee5\u901a\u8fc7\u5faa\u73af\u94fe\u8868\u6765\u5b9e\u73b0\u3002
            • \u6570\u636e\u7f13\u51b2\u533a\uff1a\u5728\u67d0\u4e9b\u6570\u636e\u7f13\u51b2\u533a\u7684\u5b9e\u73b0\u4e2d\uff0c\u4e5f\u53ef\u80fd\u4f1a\u4f7f\u7528\u5230\u5faa\u73af\u94fe\u8868\u3002\u6bd4\u5982\u5728\u97f3\u9891\u3001\u89c6\u9891\u64ad\u653e\u5668\u4e2d\uff0c\u6570\u636e\u6d41\u53ef\u80fd\u4f1a\u88ab\u5206\u6210\u591a\u4e2a\u7f13\u51b2\u5757\u5e76\u653e\u5165\u4e00\u4e2a\u5faa\u73af\u94fe\u8868\uff0c\u4ee5\u4fbf\u5b9e\u73b0\u65e0\u7f1d\u64ad\u653e\u3002
            "},{"location":"chapter_array_and_linkedlist/list/","title":"4.3 \u00a0 \u5217\u8868","text":"

            \u6570\u7ec4\u957f\u5ea6\u4e0d\u53ef\u53d8\u5bfc\u81f4\u5b9e\u7528\u6027\u964d\u4f4e\u3002\u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u53ef\u80fd\u4e8b\u5148\u65e0\u6cd5\u786e\u5b9a\u9700\u8981\u5b58\u50a8\u591a\u5c11\u6570\u636e\uff0c\u8fd9\u4f7f\u6570\u7ec4\u957f\u5ea6\u7684\u9009\u62e9\u53d8\u5f97\u56f0\u96be\u3002\u82e5\u957f\u5ea6\u8fc7\u5c0f\uff0c\u9700\u8981\u5728\u6301\u7eed\u6dfb\u52a0\u6570\u636e\u65f6\u9891\u7e41\u6269\u5bb9\u6570\u7ec4\uff1b\u82e5\u957f\u5ea6\u8fc7\u5927\uff0c\u5219\u4f1a\u9020\u6210\u5185\u5b58\u7a7a\u95f4\u7684\u6d6a\u8d39\u3002

            \u4e3a\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u51fa\u73b0\u4e86\u4e00\u79cd\u88ab\u79f0\u4e3a\u300c\u52a8\u6001\u6570\u7ec4 dynamic array\u300d\u7684\u6570\u636e\u7ed3\u6784\uff0c\u5373\u957f\u5ea6\u53ef\u53d8\u7684\u6570\u7ec4\uff0c\u4e5f\u5e38\u88ab\u79f0\u4e3a\u300c\u5217\u8868 list\u300d\u3002\u5217\u8868\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\uff0c\u7ee7\u627f\u4e86\u6570\u7ec4\u7684\u4f18\u70b9\uff0c\u5e76\u4e14\u53ef\u4ee5\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u52a8\u6001\u6269\u5bb9\u3002\u6211\u4eec\u53ef\u4ee5\u5728\u5217\u8868\u4e2d\u81ea\u7531\u5730\u6dfb\u52a0\u5143\u7d20\uff0c\u800c\u65e0\u987b\u62c5\u5fc3\u8d85\u8fc7\u5bb9\u91cf\u9650\u5236\u3002

            "},{"location":"chapter_array_and_linkedlist/list/#431","title":"4.3.1 \u00a0 \u5217\u8868\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_array_and_linkedlist/list/#1","title":"1. \u00a0 \u521d\u59cb\u5316\u5217\u8868","text":"

            \u6211\u4eec\u901a\u5e38\u4f7f\u7528\u201c\u65e0\u521d\u59cb\u503c\u201d\u548c\u201c\u6709\u521d\u59cb\u503c\u201d\u8fd9\u4e24\u79cd\u521d\u59cb\u5316\u65b9\u6cd5\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<Integer> list1 = new ArrayList<>();\n// \u6709\u521d\u59cb\u503c\uff08\u6ce8\u610f\u6570\u7ec4\u7684\u5143\u7d20\u7c7b\u578b\u9700\u4e3a int[] \u7684\u5305\u88c5\u7c7b Integer[]\uff09\nInteger[] numbers = new Integer[] { 1, 3, 2, 5, 4 };\nList<Integer> list = new ArrayList<>(Arrays.asList(numbers));\n
            list.cpp
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u9700\u6ce8\u610f\uff0cC++ \u4e2d vector \u5373\u662f\u672c\u6587\u63cf\u8ff0\u7684 list\n// \u65e0\u521d\u59cb\u503c\nvector<int> list1;\n// \u6709\u521d\u59cb\u503c\nvector<int> list = { 1, 3, 2, 5, 4 };\n
            list.py
            # \u521d\u59cb\u5316\u5217\u8868\n# \u65e0\u521d\u59cb\u503c\nlist1: list[int] = []\n# \u6709\u521d\u59cb\u503c\nlist: list[int] = [1, 3, 2, 5, 4]\n
            list_test.go
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nlist1 := []int\n// \u6709\u521d\u59cb\u503c\nlist := []int{1, 3, 2, 5, 4}\n
            list.js
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nconst list1 = [];\n// \u6709\u521d\u59cb\u503c\nconst list = [1, 3, 2, 5, 4];\n
            list.ts
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nconst list1: number[] = [];\n// \u6709\u521d\u59cb\u503c\nconst list: number[] = [1, 3, 2, 5, 4];\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<int> list1 = new ();\n// \u6709\u521d\u59cb\u503c\nint[] numbers = new int[] { 1, 3, 2, 5, 4 };\nList<int> list = numbers.ToList();\n
            list.swift
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nlet list1: [Int] = []\n// \u6709\u521d\u59cb\u503c\nvar list = [1, 3, 2, 5, 4]\n
            list.zig
            // \u521d\u59cb\u5316\u5217\u8868\nvar list = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer list.deinit();\ntry list.appendSlice(&[_]i32{ 1, 3, 2, 5, 4 });\n
            list.dart
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nList<int> list1 = [];\n// \u6709\u521d\u59cb\u503c\nList<int> list = [1, 3, 2, 5, 4];\n
            list.rs
            /* \u521d\u59cb\u5316\u5217\u8868 */\n// \u65e0\u521d\u59cb\u503c\nlet list1: Vec<i32> = Vec::new();\n// \u6709\u521d\u59cb\u503c\nlet list2: Vec<i32> = vec![1, 3, 2, 5, 4];\n
            "},{"location":"chapter_array_and_linkedlist/list/#2","title":"2. \u00a0 \u8bbf\u95ee\u5143\u7d20","text":"

            \u5217\u8868\u672c\u8d28\u4e0a\u662f\u6570\u7ec4\uff0c\u56e0\u6b64\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u8bbf\u95ee\u548c\u66f4\u65b0\u5143\u7d20\uff0c\u6548\u7387\u5f88\u9ad8\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u8bbf\u95ee\u5143\u7d20 */\nint num = list.get(1);  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist.set(1, 0);  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.cpp
            /* \u8bbf\u95ee\u5143\u7d20 */\nint num = list[1];  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.py
            # \u8bbf\u95ee\u5143\u7d20\nnum: int = list[1]  # \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n# \u66f4\u65b0\u5143\u7d20\nlist[1] = 0    # \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list_test.go
            /* \u8bbf\u95ee\u5143\u7d20 */\nnum := list[1]  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0     // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.js
            /* \u8bbf\u95ee\u5143\u7d20 */\nconst num = list[1];  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.ts
            /* \u8bbf\u95ee\u5143\u7d20 */\nconst num: number = list[1];  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u8bbf\u95ee\u5143\u7d20 */\nint num = list[1];  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.swift
            /* \u8bbf\u95ee\u5143\u7d20 */\nlet num = list[1] // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0 // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.zig
            // \u8bbf\u95ee\u5143\u7d20\nvar num = list.items[1]; // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n// \u66f4\u65b0\u5143\u7d20\nlist.items[1] = 0; // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0  \n
            list.dart
            /* \u8bbf\u95ee\u5143\u7d20 */\nint num = list[1];  // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;  // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            list.rs
            /* \u8bbf\u95ee\u5143\u7d20 */\nlet num: i32 = list[1];    // \u8bbf\u95ee\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\n/* \u66f4\u65b0\u5143\u7d20 */\nlist[1] = 0;               // \u5c06\u7d22\u5f15 1 \u5904\u7684\u5143\u7d20\u66f4\u65b0\u4e3a 0\n
            "},{"location":"chapter_array_and_linkedlist/list/#3","title":"3. \u00a0 \u63d2\u5165\u4e0e\u5220\u9664\u5143\u7d20","text":"

            \u76f8\u8f83\u4e8e\u6570\u7ec4\uff0c\u5217\u8868\u53ef\u4ee5\u81ea\u7531\u5730\u6dfb\u52a0\u4e0e\u5220\u9664\u5143\u7d20\u3002\u5728\u5217\u8868\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff0c\u4f46\u63d2\u5165\u548c\u5220\u9664\u5143\u7d20\u7684\u6548\u7387\u4ecd\u4e0e\u6570\u7ec4\u76f8\u540c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.clear();\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.add(1);\nlist.add(3);\nlist.add(2);\nlist.add(5);\nlist.add(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.add(3, 6);  // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist.remove(3);  // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.cpp
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.clear();\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.push_back(1);\nlist.push_back(3);\nlist.push_back(2);\nlist.push_back(5);\nlist.push_back(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.insert(list.begin() + 3, 6);  // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist.erase(list.begin() + 3);      // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.py
            # \u6e05\u7a7a\u5217\u8868\nlist.clear()\n# \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\nlist.append(1)\nlist.append(3)\nlist.append(2)\nlist.append(5)\nlist.append(4)\n# \u4e2d\u95f4\u63d2\u5165\u5143\u7d20\nlist.insert(3, 6)  # \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n# \u5220\u9664\u5143\u7d20\nlist.pop(3)        # \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list_test.go
            /* \u6e05\u7a7a\u5217\u8868 */\nlist = nil\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist = append(list, 1)\nlist = append(list, 3)\nlist = append(list, 2)\nlist = append(list, 5)\nlist = append(list, 4)\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist = append(list[:3], append([]int{6}, list[3:]...)...) // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist = append(list[:3], list[4:]...) // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.js
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.length = 0;\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.push(1);\nlist.push(3);\nlist.push(2);\nlist.push(5);\nlist.push(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.splice(3, 0, 6);\n/* \u5220\u9664\u5143\u7d20 */\nlist.splice(3, 1);\n
            list.ts
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.length = 0;\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.push(1);\nlist.push(3);\nlist.push(2);\nlist.push(5);\nlist.push(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.splice(3, 0, 6);\n/* \u5220\u9664\u5143\u7d20 */\nlist.splice(3, 1);\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.Clear();\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.Add(1);\nlist.Add(3);\nlist.Add(2);\nlist.Add(5);\nlist.Add(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.Insert(3, 6);\n/* \u5220\u9664\u5143\u7d20 */\nlist.RemoveAt(3);\n
            list.swift
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.removeAll()\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.append(1)\nlist.append(3)\nlist.append(2)\nlist.append(5)\nlist.append(4)\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.insert(6, at: 3) // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist.remove(at: 3) // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.zig
            // \u6e05\u7a7a\u5217\u8868\nlist.clearRetainingCapacity();\n// \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\ntry list.append(1);\ntry list.append(3);\ntry list.append(2);\ntry list.append(5);\ntry list.append(4);\n// \u4e2d\u95f4\u63d2\u5165\u5143\u7d20\ntry list.insert(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n// \u5220\u9664\u5143\u7d20\n_ = list.orderedRemove(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.dart
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.clear();\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.add(1);\nlist.add(3);\nlist.add(2);\nlist.add(5);\nlist.add(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.insert(3, 6); // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist.removeAt(3); // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            list.rs
            /* \u6e05\u7a7a\u5217\u8868 */\nlist.clear();\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nlist.push(1);\nlist.push(3);\nlist.push(2);\nlist.push(5);\nlist.push(4);\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nlist.insert(3, 6);  // \u5728\u7d22\u5f15 3 \u5904\u63d2\u5165\u6570\u5b57 6\n/* \u5220\u9664\u5143\u7d20 */\nlist.remove(3);    // \u5220\u9664\u7d22\u5f15 3 \u5904\u7684\u5143\u7d20\n
            "},{"location":"chapter_array_and_linkedlist/list/#4","title":"4. \u00a0 \u904d\u5386\u5217\u8868","text":"

            \u4e0e\u6570\u7ec4\u4e00\u6837\uff0c\u5217\u8868\u53ef\u4ee5\u6839\u636e\u7d22\u5f15\u904d\u5386\uff0c\u4e5f\u53ef\u4ee5\u76f4\u63a5\u904d\u5386\u5404\u5143\u7d20\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < list.size(); i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (int n : list) {\ncount++;\n}\n
            list.cpp
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < list.size(); i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (int n : list) {\ncount++;\n}\n
            list.py
            # \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868\ncount = 0\nfor i in range(len(list)):\ncount += 1\n# \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20\ncount = 0\nfor n in list:\ncount += 1\n
            list_test.go
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\ncount := 0\nfor i := 0; i < len(list); i++ {\ncount++\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0\nfor range list {\ncount++\n}\n
            list.js
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nlet count = 0;\nfor (let i = 0; i < list.length; i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (const n of list) {\ncount++;\n}\n
            list.ts
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nlet count = 0;\nfor (let i = 0; i < list.length; i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (const n of list) {\ncount++;\n}\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < list.Count; i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nforeach (int n in list) {\ncount++;\n}\n
            list.swift
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nvar count = 0\nfor _ in list.indices {\ncount += 1\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0\nfor _ in list {\ncount += 1\n}\n
            list.zig
            // \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868\nvar count: i32 = 0;\nvar i: i32 = 0;\nwhile (i < list.items.len) : (i += 1) {\ncount += 1;\n}\n// \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20\ncount = 0;\nfor (list.items) |_| {\ncount += 1;\n}\n
            list.dart
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nint count = 0;\nfor (int i = 0; i < list.length; i++) {\ncount++;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\ncount = 0;\nfor (int n in list) {\ncount++;\n}\n
            list.rs
            /* \u901a\u8fc7\u7d22\u5f15\u904d\u5386\u5217\u8868 */\nlet mut count = 0;\nfor (index, value) in list.iter().enumerate() {\ncount += 1;\n}\n/* \u76f4\u63a5\u904d\u5386\u5217\u8868\u5143\u7d20 */\nlet mut count = 0;\nfor value in list.iter() {\ncount += 1;\n}\n
            "},{"location":"chapter_array_and_linkedlist/list/#5","title":"5. \u00a0 \u62fc\u63a5\u5217\u8868","text":"

            \u7ed9\u5b9a\u4e00\u4e2a\u65b0\u5217\u8868 list1 \uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u8be5\u5217\u8868\u62fc\u63a5\u5230\u539f\u5217\u8868\u7684\u5c3e\u90e8\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<Integer> list1 = new ArrayList<>(Arrays.asList(new Integer[] { 6, 8, 7, 10, 9 }));\nlist.addAll(list1);  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.cpp
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nvector<int> list1 = { 6, 8, 7, 10, 9 };\n// \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\nlist.insert(list.end(), list1.begin(), list1.end());\n
            list.py
            # \u62fc\u63a5\u4e24\u4e2a\u5217\u8868\nlist1: list[int] = [6, 8, 7, 10, 9]\nlist += list1  # \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list_test.go
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nlist1 := []int{6, 8, 7, 10, 9}\nlist = append(list, list1...)  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.js
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nconst list1 = [6, 8, 7, 10, 9];\nlist.push(...list1);  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.ts
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nconst list1: number[] = [6, 8, 7, 10, 9];\nlist.push(...list1);  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<int> list1 = new() { 6, 8, 7, 10, 9 };\nlist.AddRange(list1);  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.swift
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nlet list1 = [6, 8, 7, 10, 9]\nlist.append(contentsOf: list1) // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.zig
            // \u62fc\u63a5\u4e24\u4e2a\u5217\u8868\nvar list1 = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer list1.deinit();\ntry list1.appendSlice(&[_]i32{ 6, 8, 7, 10, 9 });\ntry list.insertSlice(list.items.len, list1.items); // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.dart
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nList<int> list1 = [6, 8, 7, 10, 9];\nlist.addAll(list1);  // \u5c06\u5217\u8868 list1 \u62fc\u63a5\u5230 list \u4e4b\u540e\n
            list.rs
            /* \u62fc\u63a5\u4e24\u4e2a\u5217\u8868 */\nlet list1: Vec<i32> = vec![6, 8, 7, 10, 9];\nlist.extend(list1);\n
            "},{"location":"chapter_array_and_linkedlist/list/#6","title":"6. \u00a0 \u6392\u5e8f\u5217\u8868","text":"

            \u5b8c\u6210\u5217\u8868\u6392\u5e8f\u540e\uff0c\u6211\u4eec\u4fbf\u53ef\u4ee5\u4f7f\u7528\u5728\u6570\u7ec4\u7c7b\u7b97\u6cd5\u9898\u4e2d\u7ecf\u5e38\u8003\u5bdf\u7684\u201c\u4e8c\u5206\u67e5\u627e\u201d\u548c\u201c\u53cc\u6307\u9488\u201d\u7b97\u6cd5\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust list.java
            /* \u6392\u5e8f\u5217\u8868 */\nCollections.sort(list);  // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.cpp
            /* \u6392\u5e8f\u5217\u8868 */\nsort(list.begin(), list.end());  // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.py
            # \u6392\u5e8f\u5217\u8868\nlist.sort()  # \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list_test.go
            /* \u6392\u5e8f\u5217\u8868 */\nsort.Ints(list)  // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.js
            /* \u6392\u5e8f\u5217\u8868 */  list.sort((a, b) => a - b);  // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.ts
            /* \u6392\u5e8f\u5217\u8868 */\nlist.sort((a, b) => a - b);  // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u52a8\u6001\u6570\u7ec4\n
            list.cs
            /* \u6392\u5e8f\u5217\u8868 */\nlist.Sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.swift
            /* \u6392\u5e8f\u5217\u8868 */\nlist.sort() // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.zig
            // \u6392\u5e8f\u5217\u8868\nstd.sort.sort(i32, list.items, {}, comptime std.sort.asc(i32));\n
            list.dart
            /* \u6392\u5e8f\u5217\u8868 */\nlist.sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            list.rs
            /* \u6392\u5e8f\u5217\u8868 */\nlist.sort(); // \u6392\u5e8f\u540e\uff0c\u5217\u8868\u5143\u7d20\u4ece\u5c0f\u5230\u5927\u6392\u5217\n
            "},{"location":"chapter_array_and_linkedlist/list/#432","title":"4.3.2 \u00a0 \u5217\u8868\u5b9e\u73b0","text":"

            \u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u90fd\u63d0\u4f9b\u5185\u7f6e\u7684\u5217\u8868\uff0c\u4f8b\u5982 Java, C++, Python \u7b49\u3002\u5b83\u4eec\u7684\u5b9e\u73b0\u6bd4\u8f83\u590d\u6742\uff0c\u5404\u4e2a\u53c2\u6570\u7684\u8bbe\u5b9a\u4e5f\u975e\u5e38\u6709\u8003\u7a76\uff0c\u4f8b\u5982\u521d\u59cb\u5bb9\u91cf\u3001\u6269\u5bb9\u500d\u6570\u7b49\u3002\u611f\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u67e5\u9605\u6e90\u7801\u8fdb\u884c\u5b66\u4e60\u3002

            \u4e3a\u4e86\u5e2e\u52a9\u4f60\u7406\u89e3\u5217\u8868\u7684\u5de5\u4f5c\u539f\u7406\uff0c\u6211\u4eec\u5728\u6b64\u63d0\u4f9b\u4e00\u4e2a\u7b80\u6613\u7248\u5217\u8868\u5b9e\u73b0\uff0c\u91cd\u70b9\u5305\u62ec\uff1a

            • \u521d\u59cb\u5bb9\u91cf\uff1a\u9009\u53d6\u4e00\u4e2a\u5408\u7406\u7684\u6570\u7ec4\u521d\u59cb\u5bb9\u91cf\u3002\u5728\u672c\u793a\u4f8b\u4e2d\uff0c\u6211\u4eec\u9009\u62e9 10 \u4f5c\u4e3a\u521d\u59cb\u5bb9\u91cf\u3002
            • \u6570\u91cf\u8bb0\u5f55\uff1a\u58f0\u660e\u4e00\u4e2a\u53d8\u91cf size\uff0c\u7528\u4e8e\u8bb0\u5f55\u5217\u8868\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff0c\u5e76\u968f\u7740\u5143\u7d20\u63d2\u5165\u548c\u5220\u9664\u5b9e\u65f6\u66f4\u65b0\u3002\u6839\u636e\u6b64\u53d8\u91cf\uff0c\u6211\u4eec\u53ef\u4ee5\u5b9a\u4f4d\u5217\u8868\u5c3e\u90e8\uff0c\u4ee5\u53ca\u5224\u65ad\u662f\u5426\u9700\u8981\u6269\u5bb9\u3002
            • \u6269\u5bb9\u673a\u5236\uff1a\u82e5\u63d2\u5165\u5143\u7d20\u65f6\u5217\u8868\u5bb9\u91cf\u5df2\u6ee1\uff0c\u5219\u9700\u8981\u8fdb\u884c\u6269\u5bb9\u3002\u9996\u5148\u6839\u636e\u6269\u5bb9\u500d\u6570\u521b\u5efa\u4e00\u4e2a\u66f4\u5927\u7684\u6570\u7ec4\uff0c\u518d\u5c06\u5f53\u524d\u6570\u7ec4\u7684\u6240\u6709\u5143\u7d20\u4f9d\u6b21\u79fb\u52a8\u81f3\u65b0\u6570\u7ec4\u3002\u5728\u672c\u793a\u4f8b\u4e2d\uff0c\u6211\u4eec\u89c4\u5b9a\u6bcf\u6b21\u5c06\u6570\u7ec4\u6269\u5bb9\u81f3\u4e4b\u524d\u7684 2 \u500d\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_list.java
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nprivate int[] nums; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nprivate int capacity = 10; // \u5217\u8868\u5bb9\u91cf\nprivate int size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nprivate int extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\npublic MyList() {\nnums = new int[capacity];\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\npublic int size() {\nreturn size;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\npublic int capacity() {\nreturn capacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\npublic int get(int index) {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 || index >= size)\nthrow new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\nreturn nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\npublic void set(int index, int num) {\nif (index < 0 || index >= size)\nthrow new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\nnums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\npublic void add(int num) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (size == capacity())\nextendCapacity();\nnums[size] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nsize++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\npublic void insert(int index, int num) {\nif (index < 0 || index >= size)\nthrow new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (size == capacity())\nextendCapacity();\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int j = size - 1; j >= index; j--) {\nnums[j + 1] = nums[j];\n}\nnums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nsize++;\n}\n/* \u5220\u9664\u5143\u7d20 */\npublic int remove(int index) {\nif (index < 0 || index >= size)\nthrow new IndexOutOfBoundsException(\"\u7d22\u5f15\u8d8a\u754c\");\nint num = nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int j = index; j < size - 1; j++) {\nnums[j] = nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nsize--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\npublic void extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nnums = Arrays.copyOf(nums, capacity() * extendRatio);\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\ncapacity = nums.length;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\npublic int[] toArray() {\nint size = size();\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] nums = new int[size];\nfor (int i = 0; i < size; i++) {\nnums[i] = get(i);\n}\nreturn nums;\n}\n}\n
            my_list.cpp
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nprivate:\nint *nums;             // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nint numsCapacity = 10; // \u5217\u8868\u5bb9\u91cf\nint numsSize = 0;      // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nint extendRatio = 2;   // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nMyList() {\nnums = new int[numsCapacity];\n}\n/* \u6790\u6784\u65b9\u6cd5 */\n~MyList() {\ndelete[] nums;\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\nint size() {\nreturn numsSize;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nint capacity() {\nreturn numsCapacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\nint get(int index) {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 || index >= size())\nthrow out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\nreturn nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nvoid set(int index, int num) {\nif (index < 0 || index >= size())\nthrow out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\nnums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nvoid add(int num) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (size() == capacity())\nextendCapacity();\nnums[size()] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nvoid insert(int index, int num) {\nif (index < 0 || index >= size())\nthrow out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (size() == capacity())\nextendCapacity();\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int j = size() - 1; j >= index; j--) {\nnums[j + 1] = nums[j];\n}\nnums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize++;\n}\n/* \u5220\u9664\u5143\u7d20 */\nint remove(int index) {\nif (index < 0 || index >= size())\nthrow out_of_range(\"\u7d22\u5f15\u8d8a\u754c\");\nint num = nums[index];\n// \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int j = index; j < size() - 1; j++) {\nnums[j] = nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\nvoid extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\nint newCapacity = capacity() * extendRatio;\nint *tmp = nums;\nnums = new int[newCapacity];\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nfor (int i = 0; i < size(); i++) {\nnums[i] = tmp[i];\n}\n// \u91ca\u653e\u5185\u5b58\ndelete[] tmp;\nnumsCapacity = newCapacity;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Vector \u7528\u4e8e\u6253\u5370 */\nvector<int> toVector() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvector<int> vec(size());\nfor (int i = 0; i < size(); i++) {\nvec[i] = nums[i];\n}\nreturn vec;\n}\n};\n
            my_list.py
            class MyList:\n\"\"\"\u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__capacity: int = 10  # \u5217\u8868\u5bb9\u91cf\nself.__nums: list[int] = [0] * self.__capacity  # \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nself.__size: int = 0  # \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nself.__extend_ratio: int = 2  # \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\"\"\"\nreturn self.__size\ndef capacity(self) -> int:\n\"\"\"\u83b7\u53d6\u5217\u8868\u5bb9\u91cf\"\"\"\nreturn self.__capacity\ndef get(self, index: int) -> int:\n\"\"\"\u8bbf\u95ee\u5143\u7d20\"\"\"\n# \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif index < 0 or index >= self.__size:\nraise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\nreturn self.__nums[index]\ndef set(self, num: int, index: int):\n\"\"\"\u66f4\u65b0\u5143\u7d20\"\"\"\nif index < 0 or index >= self.__size:\nraise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\nself.__nums[index] = num\ndef add(self, num: int):\n\"\"\"\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\"\"\"\n# \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif self.size() == self.capacity():\nself.extend_capacity()\nself.__nums[self.__size] = num\nself.__size += 1\ndef insert(self, num: int, index: int):\n\"\"\"\u4e2d\u95f4\u63d2\u5165\u5143\u7d20\"\"\"\nif index < 0 or index >= self.__size:\nraise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\n# \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif self.__size == self.capacity():\nself.extend_capacity()\n# \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor j in range(self.__size - 1, index - 1, -1):\nself.__nums[j + 1] = self.__nums[j]\nself.__nums[index] = num\n# \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.__size += 1\ndef remove(self, index: int) -> int:\n\"\"\"\u5220\u9664\u5143\u7d20\"\"\"\nif index < 0 or index >= self.__size:\nraise IndexError(\"\u7d22\u5f15\u8d8a\u754c\")\nnum = self.__nums[index]\n# \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor j in range(index, self.__size - 1):\nself.__nums[j] = self.__nums[j + 1]\n# \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.__size -= 1\n# \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num\ndef extend_capacity(self):\n\"\"\"\u5217\u8868\u6269\u5bb9\"\"\"\n# \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 __extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nself.__nums = self.__nums + [0] * self.capacity() * (self.__extend_ratio - 1)\n# \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nself.__capacity = len(self.__nums)\ndef to_array(self) -> list[int]:\n\"\"\"\u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868\"\"\"\nreturn self.__nums[: self.__size]\n
            my_list.go
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\ntype myList struct {\nnumsCapacity int\nnums         []int\nnumsSize     int\nextendRatio  int\n}\n/* \u6784\u9020\u51fd\u6570 */\nfunc newMyList() *myList {\nreturn &myList{\nnumsCapacity: 10,              // \u5217\u8868\u5bb9\u91cf\nnums:         make([]int, 10), // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nnumsSize:     0,               // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nextendRatio:  2,               // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n}\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09 */\nfunc (l *myList) size() int {\nreturn l.numsSize\n}\n/*  \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nfunc (l *myList) capacity() int {\nreturn l.numsCapacity\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\nfunc (l *myList) get(index int) int {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif index < 0 || index >= l.numsSize {\npanic(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nreturn l.nums[index]\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nfunc (l *myList) set(num, index int) {\nif index < 0 || index >= l.numsSize {\npanic(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nl.nums[index] = num\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nfunc (l *myList) add(num int) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif l.numsSize == l.numsCapacity {\nl.extendCapacity()\n}\nl.nums[l.numsSize] = num\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nl.numsSize++\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nfunc (l *myList) insert(num, index int) {\nif index < 0 || index >= l.numsSize {\npanic(\"\u7d22\u5f15\u8d8a\u754c\")\n}\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif l.numsSize == l.numsCapacity {\nl.extendCapacity()\n}\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor j := l.numsSize - 1; j >= index; j-- {\nl.nums[j+1] = l.nums[j]\n}\nl.nums[index] = num\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nl.numsSize++\n}\n/* \u5220\u9664\u5143\u7d20 */\nfunc (l *myList) remove(index int) int {\nif index < 0 || index >= l.numsSize {\npanic(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nnum := l.nums[index]\n// \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor j := index; j < l.numsSize-1; j++ {\nl.nums[j] = l.nums[j+1]\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nl.numsSize--\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num\n}\n/* \u5217\u8868\u6269\u5bb9 */\nfunc (l *myList) extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nl.nums = append(l.nums, make([]int, l.numsCapacity*(l.extendRatio-1))...)\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nl.numsCapacity = len(l.nums)\n}\n/* \u8fd4\u56de\u6709\u6548\u957f\u5ea6\u7684\u5217\u8868 */\nfunc (l *myList) toArray() []int {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nreturn l.nums[:l.numsSize]\n}\n
            my_list.js
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\n#nums = new Array(); // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\n#capacity = 10; // \u5217\u8868\u5bb9\u91cf\n#size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\n#extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.#nums = new Array(this.#capacity);\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\nsize() {\nreturn this.#size;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\ncapacity() {\nreturn this.#capacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\nget(index) {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nreturn this.#nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nset(index, num) {\nif (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nthis.#nums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nadd(num) {\n// \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\nif (this.#size === this.#capacity) {\nthis.extendCapacity();\n}\n// \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\nthis.#nums[this.#size] = num;\nthis.#size++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\ninsert(index, num) {\nif (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (this.#size === this.#capacity) {\nthis.extendCapacity();\n}\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (let j = this.#size - 1; j >= index; j--) {\nthis.#nums[j + 1] = this.#nums[j];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nthis.#nums[index] = num;\nthis.#size++;\n}\n/* \u5220\u9664\u5143\u7d20 */\nremove(index) {\nif (index < 0 || index >= this.#size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nlet num = this.#nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (let j = index; j < this.#size - 1; j++) {\nthis.#nums[j] = this.#nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nthis.#size--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\nextendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nthis.#nums = this.#nums.concat(\nnew Array(this.capacity() * (this.#extendRatio - 1))\n);\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nthis.#capacity = this.#nums.length;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\ntoArray() {\nlet size = this.size();\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst nums = new Array(size);\nfor (let i = 0; i < size; i++) {\nnums[i] = this.get(i);\n}\nreturn nums;\n}\n}\n
            my_list.ts
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nprivate nums: Array<number>; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nprivate _capacity: number = 10; // \u5217\u8868\u5bb9\u91cf\nprivate _size: number = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nprivate extendRatio: number = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.nums = new Array(this._capacity);\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\npublic size(): number {\nreturn this._size;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\npublic capacity(): number {\nreturn this._capacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\npublic get(index: number): number {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nreturn this.nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\npublic set(index: number, num: number): void {\nif (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nthis.nums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\npublic add(num: number): void {\n// \u5982\u679c\u957f\u5ea6\u7b49\u4e8e\u5bb9\u91cf\uff0c\u5219\u9700\u8981\u6269\u5bb9\nif (this._size === this._capacity) this.extendCapacity();\n// \u5c06\u65b0\u5143\u7d20\u6dfb\u52a0\u5230\u5217\u8868\u5c3e\u90e8\nthis.nums[this._size] = num;\nthis._size++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\npublic insert(index: number, num: number): void {\nif (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (this._size === this._capacity) {\nthis.extendCapacity();\n}\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (let j = this._size - 1; j >= index; j--) {\nthis.nums[j + 1] = this.nums[j];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nthis.nums[index] = num;\nthis._size++;\n}\n/* \u5220\u9664\u5143\u7d20 */\npublic remove(index: number): number {\nif (index < 0 || index >= this._size) throw new Error('\u7d22\u5f15\u8d8a\u754c');\nlet num = this.nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (let j = index; j < this._size - 1; j++) {\nthis.nums[j] = this.nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nthis._size--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\npublic extendCapacity(): void {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nthis.nums = this.nums.concat(\nnew Array(this.capacity() * (this.extendRatio - 1))\n);\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nthis._capacity = this.nums.length;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\npublic toArray(): number[] {\nlet size = this.size();\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst nums = new Array(size);\nfor (let i = 0; i < size; i++) {\nnums[i] = this.get(i);\n}\nreturn nums;\n}\n}\n
            my_list.c
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nstruct myList {\nint *nums;       // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nint capacity;    // \u5217\u8868\u5bb9\u91cf\nint size;        // \u5217\u8868\u5927\u5c0f\nint extendRatio; // \u5217\u8868\u6bcf\u6b21\u6269\u5bb9\u7684\u500d\u6570\n};\ntypedef struct myList myList;\n/* \u6784\u9020\u51fd\u6570 */\nmyList *newMyList() {\nmyList *list = malloc(sizeof(myList));\nlist->capacity = 10;\nlist->nums = malloc(sizeof(int) * list->capacity);\nlist->size = 0;\nlist->extendRatio = 2;\nreturn list;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delMyList(myList *list) {\nfree(list->nums);\nfree(list);\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6 */\nint size(myList *list) {\nreturn list->size;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nint capacity(myList *list) {\nreturn list->capacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\nint get(myList *list, int index) {\nassert(index >= 0 && index < list->size);\nreturn list->nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nvoid set(myList *list, int index, int num) {\nassert(index >= 0 && index < list->size);\nlist->nums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nvoid add(myList *list, int num) {\nif (size(list) == capacity(list)) {\nextendCapacity(list); // \u6269\u5bb9\n}\nlist->nums[size(list)] = num;\nlist->size++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nvoid insert(myList *list, int index, int num) {\nassert(index >= 0 && index < size(list));\nfor (int i = size(list); i > index; --i) {\nlist->nums[i] = list->nums[i - 1];\n}\nlist->nums[index] = num;\nlist->size++;\n}\n/* \u5220\u9664\u5143\u7d20 */\n// \u6ce8\u610f\uff1astdio.h \u5360\u7528\u4e86 remove \u5173\u952e\u8bcd\nint removeNum(myList *list, int index) {\nassert(index >= 0 && index < size(list));\nint num = list->nums[index];\nfor (int i = index; i < size(list) - 1; i++) {\nlist->nums[i] = list->nums[i + 1];\n}\nlist->size--;\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\nvoid extendCapacity(myList *list) {\n// \u5148\u5206\u914d\u7a7a\u95f4\nint newCapacity = capacity(list) * list->extendRatio;\nint *extend = (int *)malloc(sizeof(int) * newCapacity);\nint *temp = list->nums;\n// \u62f7\u8d1d\u65e7\u6570\u636e\u5230\u65b0\u6570\u636e\nfor (int i = 0; i < size(list); i++)\nextend[i] = list->nums[i];\n// \u91ca\u653e\u65e7\u6570\u636e\nfree(temp);\n// \u66f4\u65b0\u65b0\u6570\u636e\nlist->nums = extend;\nlist->capacity = newCapacity;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a Array \u7528\u4e8e\u6253\u5370 */\nint *toArray(myList *list) {\nreturn list->nums;\n}\n
            my_list.cs
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nprivate int[] nums;           // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nprivate int numsCapacity = 10;    // \u5217\u8868\u5bb9\u91cf\nprivate int numsSize = 0;         // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nprivate int extendRatio = 2;  // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\npublic MyList() {\nnums = new int[numsCapacity];\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\npublic int size() {\nreturn numsSize;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\npublic int capacity() {\nreturn numsCapacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\npublic int get(int index) {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 || index >= numsSize)\nthrow new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\nreturn nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\npublic void set(int index, int num) {\nif (index < 0 || index >= numsSize)\nthrow new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\nnums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\npublic void add(int num) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (numsSize == numsCapacity)\nextendCapacity();\nnums[numsSize] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\npublic void insert(int index, int num) {\nif (index < 0 || index >= numsSize)\nthrow new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (numsSize == numsCapacity)\nextendCapacity();\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (int j = numsSize - 1; j >= index; j--) {\nnums[j + 1] = nums[j];\n}\nnums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize++;\n}\n/* \u5220\u9664\u5143\u7d20 */\npublic int remove(int index) {\nif (index < 0 || index >= numsSize)\nthrow new IndexOutOfRangeException(\"\u7d22\u5f15\u8d8a\u754c\");\nint num = nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (int j = index; j < numsSize - 1; j++) {\nnums[j] = nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nnumsSize--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\npublic void extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a numsCapacity * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nArray.Resize(ref nums, numsCapacity * extendRatio);\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nnumsCapacity = nums.Length;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\npublic int[] toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] nums = new int[numsSize];\nfor (int i = 0; i < numsSize; i++) {\nnums[i] = get(i);\n}\nreturn nums;\n}\n}\n
            my_list.swift
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nprivate var nums: [Int] // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nprivate var _capacity = 10 // \u5217\u8868\u5bb9\u91cf\nprivate var _size = 0 // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nprivate let extendRatio = 2 // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\ninit() {\nnums = Array(repeating: 0, count: _capacity)\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\nfunc size() -> Int {\n_size\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nfunc capacity() -> Int {\n_capacity\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\nfunc get(index: Int) -> Int {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u9519\u8bef\uff0c\u4e0b\u540c\nif index < 0 || index >= _size {\nfatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nreturn nums[index]\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nfunc set(index: Int, num: Int) {\nif index < 0 || index >= _size {\nfatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nnums[index] = num\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nfunc add(num: Int) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif _size == _capacity {\nextendCapacity()\n}\nnums[_size] = num\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size += 1\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nfunc insert(index: Int, num: Int) {\nif index < 0 || index >= _size {\nfatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n}\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif _size == _capacity {\nextendCapacity()\n}\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor j in sequence(first: _size - 1, next: { $0 >= index + 1 ? $0 - 1 : nil }) {\nnums[j + 1] = nums[j]\n}\nnums[index] = num\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size += 1\n}\n/* \u5220\u9664\u5143\u7d20 */\n@discardableResult\nfunc remove(index: Int) -> Int {\nif index < 0 || index >= _size {\nfatalError(\"\u7d22\u5f15\u8d8a\u754c\")\n}\nlet num = nums[index]\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor j in index ..< (_size - 1) {\nnums[j] = nums[j + 1]\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size -= 1\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num\n}\n/* \u5217\u8868\u6269\u5bb9 */\nfunc extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extendRatio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nnums = nums + Array(repeating: 0, count: _capacity * (extendRatio - 1))\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n_capacity = nums.count\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\nfunc toArray() -> [Int] {\nvar nums = Array(repeating: 0, count: _size)\nfor i in 0 ..< _size {\nnums[i] = get(index: i)\n}\nreturn nums\n}\n}\n
            my_list.zig
            // \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0\nfn MyList(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nnums: []T = undefined,                        // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nnumsCapacity: usize = 10,                     // \u5217\u8868\u5bb9\u91cf\nnumSize: usize = 0,                           // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nextendRatio: usize = 2,                       // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\nmem_arena: ?std.heap.ArenaAllocator = null,\nmem_allocator: std.mem.Allocator = undefined, // \u5185\u5b58\u5206\u914d\u5668\n// \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u5217\u8868\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator) !void {\nif (self.mem_arena == null) {\nself.mem_arena = std.heap.ArenaAllocator.init(allocator);\nself.mem_allocator = self.mem_arena.?.allocator();\n}\nself.nums = try self.mem_allocator.alloc(T, self.numsCapacity);\n@memset(self.nums, @as(T, 0));\n}\n// \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.mem_arena == null) return;\nself.mem_arena.?.deinit();\n}\n// \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\npub fn size(self: *Self) usize {\nreturn self.numSize;\n}\n// \u83b7\u53d6\u5217\u8868\u5bb9\u91cf\npub fn capacity(self: *Self) usize {\nreturn self.numsCapacity;\n}\n// \u8bbf\u95ee\u5143\u7d20\npub fn get(self: *Self, index: usize) T {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\nreturn self.nums[index];\n}  // \u66f4\u65b0\u5143\u7d20\npub fn set(self: *Self, index: usize, num: T) void {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\nself.nums[index] = num;\n}  // \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\npub fn add(self: *Self, num: T) !void {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (self.size() == self.capacity()) try self.extendCapacity();\nself.nums[self.size()] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.numSize += 1;\n}  // \u4e2d\u95f4\u63d2\u5165\u5143\u7d20\npub fn insert(self: *Self, index: usize, num: T) !void {\nif (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (self.size() == self.capacity()) try self.extendCapacity();\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nvar j = self.size() - 1;\nwhile (j >= index) : (j -= 1) {\nself.nums[j + 1] = self.nums[j];\n}\nself.nums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.numSize += 1;\n}\n// \u5220\u9664\u5143\u7d20\npub fn remove(self: *Self, index: usize) T {\nif (index < 0 or index >= self.size()) @panic(\"\u7d22\u5f15\u8d8a\u754c\");\nvar num = self.nums[index];\n// \u7d22\u5f15 i \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nvar j = index;\nwhile (j < self.size() - 1) : (j += 1) {\nself.nums[j] = self.nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.numSize -= 1;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n// \u5217\u8868\u6269\u5bb9\npub fn extendCapacity(self: *Self) !void {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a size * extendRatio \u7684\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nvar newCapacity = self.capacity() * self.extendRatio;\nvar extend = try self.mem_allocator.alloc(T, newCapacity);\n@memset(extend, @as(T, 0));\n// \u5c06\u539f\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\u590d\u5236\u5230\u65b0\u6570\u7ec4\nstd.mem.copy(T, extend, self.nums);\nself.nums = extend;\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nself.numsCapacity = newCapacity;\n}\n// \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4\npub fn toArray(self: *Self) ![]T {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvar nums = try self.mem_allocator.alloc(T, self.size());\n@memset(nums, @as(T, 0));\nfor (nums, 0..) |*num, i| {\nnum.* = self.get(i);\n}\nreturn nums;\n}\n};\n}\n
            my_list.dart
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\nclass MyList {\nlate List<int> _nums; // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\nint _capacity = 10; // \u5217\u8868\u5bb9\u91cf\nint _size = 0; // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nint _extendRatio = 2; // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n/* \u6784\u9020\u65b9\u6cd5 */\nMyList() {\n_nums = List.filled(_capacity, 0);\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\nint size() => _size;\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\nint capacity() => _capacity;\n/* \u8bbf\u95ee\u5143\u7d20 */\nint get(int index) {\nif (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\nreturn _nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\nvoid set(int index, int num) {\nif (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n_nums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\nvoid add(int num) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (_size == _capacity) extendCapacity();\n_nums[_size] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size++;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\nvoid insert(int index, int num) {\nif (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif (_size == _capacity) extendCapacity();\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor (var j = _size - 1; j >= index; j--) {\n_nums[j + 1] = _nums[j];\n}\n_nums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size++;\n}\n/* \u5220\u9664\u5143\u7d20 */\nint remove(int index) {\nif (index >= _size) throw RangeError('\u7d22\u5f15\u8d8a\u754c');\nint num = _nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor (var j = index; j < _size - 1; j++) {\n_nums[j] = _nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\n_size--;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\nvoid extendCapacity() {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 _extendRatio \u500d\u7684\u65b0\u6570\u7ec4\nfinal _newNums = List.filled(_capacity * _extendRatio, 0);\n// \u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nList.copyRange(_newNums, 0, _nums);\n// \u66f4\u65b0 _nums \u7684\u5f15\u7528\n_nums = _newNums;\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\n_capacity = _nums.length;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\nList<int> toArray() {\nList<int> nums = [];\nfor (var i = 0; i < _size; i++) {\nnums.add(get(i));\n}\nreturn nums;\n}\n}\n
            my_list.rs
            /* \u5217\u8868\u7c7b\u7b80\u6613\u5b9e\u73b0 */\n#[allow(dead_code)]\nstruct MyList {\nnums: Vec<i32>,       // \u6570\u7ec4\uff08\u5b58\u50a8\u5217\u8868\u5143\u7d20\uff09\ncapacity: usize,      // \u5217\u8868\u5bb9\u91cf\nsize: usize,          // \u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09\nextend_ratio: usize,  // \u6bcf\u6b21\u5217\u8868\u6269\u5bb9\u7684\u500d\u6570\n}\n#[allow(unused,unused_comparisons)]\nimpl MyList {\n/* \u6784\u9020\u65b9\u6cd5 */\npub fn new(capacity: usize) -> Self {\nlet mut vec = Vec::new(); vec.resize(capacity, 0);\nSelf {\nnums: vec,\ncapacity,\nsize: 0,\nextend_ratio: 2,\n}\n}\n/* \u83b7\u53d6\u5217\u8868\u957f\u5ea6\uff08\u5373\u5f53\u524d\u5143\u7d20\u6570\u91cf\uff09*/\npub fn size(&self) -> usize {\nreturn self.size;\n}\n/* \u83b7\u53d6\u5217\u8868\u5bb9\u91cf */\npub fn capacity(&self) -> usize {\nreturn self.capacity;\n}\n/* \u8bbf\u95ee\u5143\u7d20 */\npub fn get(&self, index: usize) -> i32 {\n// \u7d22\u5f15\u5982\u679c\u8d8a\u754c\u5219\u629b\u51fa\u5f02\u5e38\uff0c\u4e0b\u540c\nif index < 0 || index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\nreturn self.nums[index];\n}\n/* \u66f4\u65b0\u5143\u7d20 */\npub fn set(&mut self, index: usize, num: i32) {\nif index < 0 || index >= self.size {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\nself.nums[index] = num;\n}\n/* \u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20 */\npub fn add(&mut self, num: i32) {\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif self.size == self.capacity() {\nself.extend_capacity();\n}\nself.nums[self.size] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.size += 1;\n}\n/* \u4e2d\u95f4\u63d2\u5165\u5143\u7d20 */\npub fn insert(&mut self, index: usize, num: i32) {\nif index < 0 || index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\n// \u5143\u7d20\u6570\u91cf\u8d85\u51fa\u5bb9\u91cf\u65f6\uff0c\u89e6\u53d1\u6269\u5bb9\u673a\u5236\nif self.size == self.capacity() {\nself.extend_capacity();\n}\n// \u5c06\u7d22\u5f15 index \u4ee5\u53ca\u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfor j in (index..self.size).rev() {\nself.nums[j + 1] = self.nums[j];\n}\nself.nums[index] = num;\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.size += 1;\n}\n/* \u5220\u9664\u5143\u7d20 */\npub fn remove(&mut self, index: usize) -> i32 {\nif index < 0 || index >= self.size() {panic!(\"\u7d22\u5f15\u8d8a\u754c\")};\nlet num = self.nums[index];\n// \u5c06\u7d22\u5f15 index \u4e4b\u540e\u7684\u5143\u7d20\u90fd\u5411\u524d\u79fb\u52a8\u4e00\u4f4d\nfor j in (index..self.size - 1) {\nself.nums[j] = self.nums[j + 1];\n}\n// \u66f4\u65b0\u5143\u7d20\u6570\u91cf\nself.size -= 1;\n// \u8fd4\u56de\u88ab\u5220\u9664\u5143\u7d20\nreturn num;\n}\n/* \u5217\u8868\u6269\u5bb9 */\npub fn extend_capacity(&mut self) {\n// \u65b0\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a\u539f\u6570\u7ec4 extend_ratio \u500d\u7684\u65b0\u6570\u7ec4\uff0c\u5e76\u5c06\u539f\u6570\u7ec4\u62f7\u8d1d\u5230\u65b0\u6570\u7ec4\nlet new_capacity = self.capacity * self.extend_ratio;\nself.nums.resize(new_capacity, 0);\n// \u66f4\u65b0\u5217\u8868\u5bb9\u91cf\nself.capacity = new_capacity;\n}\n/* \u5c06\u5217\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4 */\npub fn to_array(&mut self) -> Vec<i32> {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nlet mut nums = Vec::new();\nfor i in 0..self.size {\nnums.push(self.get(i));\n}\nnums\n}\n}\n
            "},{"location":"chapter_array_and_linkedlist/summary/","title":"4.4 \u00a0 \u5c0f\u7ed3","text":"
            • \u6570\u7ec4\u548c\u94fe\u8868\u662f\u4e24\u79cd\u57fa\u672c\u7684\u6570\u636e\u7ed3\u6784\uff0c\u5206\u522b\u4ee3\u8868\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u4e24\u79cd\u5b58\u50a8\u65b9\u5f0f\uff1a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u548c\u79bb\u6563\u7a7a\u95f4\u5b58\u50a8\u3002\u4e24\u8005\u7684\u7279\u70b9\u5448\u73b0\u51fa\u4e92\u8865\u7684\u7279\u6027\u3002
            • \u6570\u7ec4\u652f\u6301\u968f\u673a\u8bbf\u95ee\u3001\u5360\u7528\u5185\u5b58\u8f83\u5c11\uff1b\u4f46\u63d2\u5165\u548c\u5220\u9664\u5143\u7d20\u6548\u7387\u4f4e\uff0c\u4e14\u521d\u59cb\u5316\u540e\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002
            • \u94fe\u8868\u901a\u8fc7\u66f4\u6539\u5f15\u7528\uff08\u6307\u9488\uff09\u5b9e\u73b0\u9ad8\u6548\u7684\u8282\u70b9\u63d2\u5165\u4e0e\u5220\u9664\uff0c\u4e14\u53ef\u4ee5\u7075\u6d3b\u8c03\u6574\u957f\u5ea6\uff1b\u4f46\u8282\u70b9\u8bbf\u95ee\u6548\u7387\u4f4e\u3001\u5360\u7528\u5185\u5b58\u8f83\u591a\u3002\u5e38\u89c1\u7684\u94fe\u8868\u7c7b\u578b\u5305\u62ec\u5355\u5411\u94fe\u8868\u3001\u5faa\u73af\u94fe\u8868\u3001\u53cc\u5411\u94fe\u8868\u3002
            • \u52a8\u6001\u6570\u7ec4\uff0c\u53c8\u79f0\u5217\u8868\uff0c\u662f\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u4e00\u79cd\u6570\u636e\u7ed3\u6784\u3002\u5b83\u4fdd\u7559\u4e86\u6570\u7ec4\u7684\u4f18\u52bf\uff0c\u540c\u65f6\u53ef\u4ee5\u7075\u6d3b\u8c03\u6574\u957f\u5ea6\u3002\u5217\u8868\u7684\u51fa\u73b0\u6781\u5927\u5730\u63d0\u9ad8\u4e86\u6570\u7ec4\u7684\u6613\u7528\u6027\uff0c\u4f46\u53ef\u80fd\u5bfc\u81f4\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u3002
            "},{"location":"chapter_array_and_linkedlist/summary/#441-q-a","title":"4.4.1 \u00a0 Q & A","text":"

            \u6570\u7ec4\u5b58\u50a8\u5728\u6808\u4e0a\u548c\u5b58\u50a8\u5728\u5806\u4e0a\uff0c\u5bf9\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u662f\u5426\u6709\u5f71\u54cd\uff1f

            \u6808\u5185\u5b58\u5206\u914d\u7531\u7f16\u8bd1\u5668\u81ea\u52a8\u5b8c\u6210\uff0c\u800c\u5806\u5185\u5b58\u7531\u7a0b\u5e8f\u5458\u5728\u4ee3\u7801\u4e2d\u5206\u914d\uff08\u6ce8\u610f\uff0c\u8fd9\u91cc\u7684\u6808\u548c\u5806\u548c\u6570\u636e\u7ed3\u6784\u4e2d\u7684\u6808\u548c\u5806\u4e0d\u662f\u540c\u4e00\u6982\u5ff5\uff09\u3002

            1. \u6808\u4e0d\u7075\u6d3b\uff0c\u5206\u914d\u7684\u5185\u5b58\u5927\u5c0f\u4e0d\u53ef\u66f4\u6539\uff1b\u5806\u76f8\u5bf9\u7075\u6d3b\uff0c\u53ef\u4ee5\u52a8\u6001\u5206\u914d\u5185\u5b58\u3002
            2. \u6808\u662f\u4e00\u5757\u6bd4\u8f83\u5c0f\u7684\u5185\u5b58\uff0c\u5bb9\u6613\u51fa\u73b0\u5185\u5b58\u4e0d\u8db3\uff1b\u5806\u5185\u5b58\u5f88\u5927\uff0c\u4f46\u662f\u7531\u4e8e\u662f\u52a8\u6001\u5206\u914d\uff0c\u5bb9\u6613\u788e\u7247\u5316\uff0c\u7ba1\u7406\u5806\u5185\u5b58\u7684\u96be\u5ea6\u66f4\u5927\u3001\u6210\u672c\u66f4\u9ad8\u3002
            3. \u8bbf\u95ee\u6808\u6bd4\u8bbf\u95ee\u5806\u66f4\u5feb\uff0c\u56e0\u4e3a\u6808\u5185\u5b58\u8f83\u5c0f\u3001\u5bf9\u7f13\u5b58\u53cb\u597d\uff0c\u5806\u5e27\u5206\u6563\u5728\u5f88\u5927\u7684\u7a7a\u95f4\u5185\uff0c\u4f1a\u51fa\u73b0\u66f4\u591a\u7684\u7f13\u5b58\u672a\u547d\u4e2d\u3002

            \u4e3a\u4ec0\u4e48\u6570\u7ec4\u8981\u6c42\u76f8\u540c\u7c7b\u578b\u7684\u5143\u7d20\uff0c\u800c\u5728\u94fe\u8868\u4e2d\u5374\u6ca1\u6709\u5f3a\u8c03\u540c\u7c7b\u578b\u5462\uff1f

            \u94fe\u8868\u7531\u7ed3\u70b9\u7ec4\u6210\uff0c\u7ed3\u70b9\u4e4b\u95f4\u901a\u8fc7\u5f15\u7528\uff08\u6307\u9488\uff09\u8fde\u63a5\uff0c\u5404\u4e2a\u7ed3\u70b9\u53ef\u4ee5\u5b58\u50a8\u4e0d\u540c\u7c7b\u578b\u7684\u6570\u636e\uff0c\u4f8b\u5982 int, double, string, object \u7b49\u3002

            \u76f8\u5bf9\u5730\uff0c\u6570\u7ec4\u5143\u7d20\u5219\u5fc5\u987b\u662f\u76f8\u540c\u7c7b\u578b\u7684\uff0c\u8fd9\u6837\u624d\u80fd\u901a\u8fc7\u8ba1\u7b97\u504f\u79fb\u91cf\u6765\u83b7\u53d6\u5bf9\u5e94\u5143\u7d20\u4f4d\u7f6e\u3002\u4f8b\u5982\uff0c\u5982\u679c\u6570\u7ec4\u540c\u65f6\u5305\u542b int \u548c long \u4e24\u79cd\u7c7b\u578b\uff0c\u5355\u4e2a\u5143\u7d20\u5206\u522b\u5360\u7528 4 bytes \u548c 8 bytes \uff0c\u90a3\u4e48\u6b64\u65f6\u5c31\u4e0d\u80fd\u7528\u4ee5\u4e0b\u516c\u5f0f\u8ba1\u7b97\u504f\u79fb\u91cf\u4e86\uff0c\u56e0\u4e3a\u6570\u7ec4\u4e2d\u5305\u542b\u4e86\u4e24\u79cd elementLength \u3002

            // \u5143\u7d20\u5185\u5b58\u5730\u5740 = \u6570\u7ec4\u5185\u5b58\u5730\u5740 + \u5143\u7d20\u957f\u5ea6 * \u5143\u7d20\u7d22\u5f15\nelementAddr = firtstElementAddr + elementLength * elementIndex\n

            \u5220\u9664\u8282\u70b9\u540e\uff0c\u662f\u5426\u9700\u8981\u628a P.next \u8bbe\u4e3a \\(\\text{None}\\) \u5462\uff1f

            \u4e0d\u4fee\u6539 P.next \u4e5f\u53ef\u4ee5\u3002\u4ece\u8be5\u94fe\u8868\u7684\u89d2\u5ea6\u770b\uff0c\u4ece\u5934\u7ed3\u70b9\u904d\u5386\u5230\u5c3e\u7ed3\u70b9\u5df2\u7ecf\u9047\u4e0d\u5230 P \u4e86\u3002\u8fd9\u610f\u5473\u7740\u7ed3\u70b9 P \u5df2\u7ecf\u4ece\u94fe\u8868\u4e2d\u5220\u9664\u4e86\uff0c\u6b64\u65f6\u7ed3\u70b9 P \u6307\u5411\u54ea\u91cc\u90fd\u4e0d\u4f1a\u5bf9\u8fd9\u6761\u94fe\u8868\u4ea7\u751f\u5f71\u54cd\u4e86\u3002

            \u4ece\u5783\u573e\u56de\u6536\u7684\u89d2\u5ea6\u770b\uff0c\u5bf9\u4e8e Java, Python, Go \u7b49\u62e5\u6709\u81ea\u52a8\u5783\u573e\u56de\u6536\u7684\u8bed\u8a00\u6765\u8bf4\uff0c\u8282\u70b9 P \u662f\u5426\u88ab\u56de\u6536\u53d6\u51b3\u4e8e\u662f\u5426\u6709\u4ecd\u5b58\u5728\u6307\u5411\u5b83\u7684\u5f15\u7528\uff0c\u800c\u4e0d\u662f P.next \u7684\u503c\u3002\u5728 C, C++ \u7b49\u8bed\u8a00\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u624b\u52a8\u91ca\u653e\u8282\u70b9\u5185\u5b58\u3002

            \u5728\u94fe\u8868\u4e2d\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002\u4f46\u662f\u589e\u5220\u4e4b\u524d\u90fd\u9700\u8981 \\(O(n)\\) \u67e5\u627e\u5143\u7d20\uff0c\u90a3\u4e3a\u4ec0\u4e48\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u662f \\(O(n)\\) \u5462\uff1f

            \u5982\u679c\u662f\u5148\u67e5\u627e\u5143\u7d20\u3001\u518d\u5220\u9664\u5143\u7d20\uff0c\u786e\u5b9e\u662f \\(O(n)\\) \u3002\u7136\u800c\uff0c\u94fe\u8868\u7684 \\(O(1)\\) \u589e\u5220\u7684\u4f18\u52bf\u53ef\u4ee5\u5728\u5176\u4ed6\u5e94\u7528\u4e0a\u5f97\u5230\u4f53\u73b0\u3002\u4f8b\u5982\uff0c\u53cc\u5411\u961f\u5217\u9002\u5408\u4f7f\u7528\u94fe\u8868\u5b9e\u73b0\uff0c\u6211\u4eec\u7ef4\u62a4\u4e00\u4e2a\u6307\u9488\u53d8\u91cf\u59cb\u7ec8\u6307\u5411\u5934\u7ed3\u70b9\u3001\u5c3e\u7ed3\u70b9\uff0c\u6bcf\u6b21\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u90fd\u662f \\(O(1)\\) \u3002

            \u56fe\u7247\u201c\u94fe\u8868\u5b9a\u4e49\u4e0e\u5b58\u50a8\u65b9\u5f0f\u201d\u4e2d\uff0c\u6d45\u84dd\u8272\u7684\u5b58\u50a8\u7ed3\u70b9\u6307\u9488\u662f\u5360\u7528\u4e00\u5757\u5185\u5b58\u5730\u5740\u5417\uff1f\u8fd8\u662f\u548c\u7ed3\u70b9\u503c\u5404\u5360\u4e00\u534a\u5462\uff1f

            \u6587\u4e2d\u53ea\u662f\u4e00\u4e2a\u793a\u610f\u56fe\uff0c\u53ea\u662f\u5b9a\u6027\u8868\u793a\u3002\u5b9a\u91cf\u7684\u8bdd\u9700\u8981\u6839\u636e\u5177\u4f53\u60c5\u51b5\u5206\u6790\uff1a

            • \u4e0d\u540c\u7c7b\u578b\u7684\u7ed3\u70b9\u503c\u5360\u7528\u7684\u7a7a\u95f4\u662f\u4e0d\u540c\u7684\uff0c\u6bd4\u5982 int, long, double, \u6216\u8005\u662f\u7c7b\u7684\u5b9e\u4f8b\u7b49\u7b49\u3002
            • \u6307\u9488\u53d8\u91cf\u5360\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u5927\u5c0f\u6839\u636e\u6240\u4f7f\u7528\u7684\u64cd\u4f5c\u7cfb\u7edf\u53ca\u7f16\u8bd1\u73af\u5883\u800c\u5b9a\uff0c\u5927\u591a\u4e3a 8 \u5b57\u8282\u6216 4 \u5b57\u8282\u3002

            \u5728\u5217\u8868\u672b\u5c3e\u6dfb\u52a0\u5143\u7d20\u662f\u5426\u65f6\u65f6\u523b\u523b\u90fd\u4e3a \\(O(1)\\) \uff1f

            \u5982\u679c\u6dfb\u52a0\u5143\u7d20\u65f6\u8d85\u51fa\u5217\u8868\u957f\u5ea6\uff0c\u5219\u9700\u8981\u5148\u6269\u5bb9\u5217\u8868\u518d\u6dfb\u52a0\u3002\u7cfb\u7edf\u4f1a\u7533\u8bf7\u4e00\u5757\u65b0\u7684\u5185\u5b58\uff0c\u5e76\u5c06\u539f\u5217\u8868\u7684\u6240\u6709\u5143\u7d20\u642c\u8fd0\u8fc7\u53bb\uff0c\u8fd9\u65f6\u5019\u65f6\u95f4\u590d\u6742\u5ea6\u5c31\u4f1a\u662f \\(O(n)\\) \u3002

            \u201c\u5217\u8868\u7684\u51fa\u73b0\u5927\u5927\u63d0\u5347\u4e86\u6570\u7ec4\u7684\u5b9e\u7528\u6027\uff0c\u4f46\u526f\u4f5c\u7528\u662f\u4f1a\u9020\u6210\u90e8\u5206\u5185\u5b58\u7a7a\u95f4\u6d6a\u8d39\u201d\uff0c\u8fd9\u91cc\u7684\u7a7a\u95f4\u6d6a\u8d39\u662f\u6307\u989d\u5916\u589e\u52a0\u7684\u53d8\u91cf\u5982\u5bb9\u91cf\u3001\u957f\u5ea6\u3001\u6269\u5bb9\u500d\u6570\u6240\u5360\u7684\u5185\u5b58\u5417\uff1f

            \u8fd9\u91cc\u7684\u7a7a\u95f4\u6d6a\u8d39\u4e3b\u8981\u6709\u4e24\u65b9\u9762\u542b\u4e49\uff1a\u4e00\u65b9\u9762\uff0c\u5217\u8868\u90fd\u4f1a\u8bbe\u5b9a\u4e00\u4e2a\u521d\u59cb\u957f\u5ea6\uff0c\u6211\u4eec\u4e0d\u4e00\u5b9a\u9700\u8981\u7528\u8fd9\u4e48\u591a\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u4e3a\u4e86\u9632\u6b62\u9891\u7e41\u6269\u5bb9\uff0c\u6269\u5bb9\u4e00\u822c\u90fd\u4f1a\u4e58\u4ee5\u4e00\u4e2a\u7cfb\u6570\uff0c\u6bd4\u5982 \\(\\times 1.5\\) \u3002\u8fd9\u6837\u4e00\u6765\uff0c\u4e5f\u4f1a\u51fa\u73b0\u5f88\u591a\u7a7a\u4f4d\uff0c\u6211\u4eec\u901a\u5e38\u4e0d\u80fd\u5b8c\u5168\u586b\u6ee1\u5b83\u4eec\u3002

            \u5728 Python \u4e2d\u521d\u59cb\u5316 n = [1, 2, 3] \u540e\uff0c\u8fd9 3 \u4e2a\u5143\u7d20\u7684\u5730\u5740\u662f\u76f8\u8fde\u7684\uff0c\u4f46\u662f\u521d\u59cb\u5316 m = [2, 1, 3] \u4f1a\u53d1\u73b0\u5b83\u4eec\u6bcf\u4e2a\u5143\u7d20\u7684 id \u5e76\u4e0d\u662f\u8fde\u7eed\u7684\uff0c\u800c\u662f\u5206\u522b\u8ddf n \u4e2d\u7684\u76f8\u540c\u3002\u8fd9\u4e9b\u5143\u7d20\u5730\u5740\u4e0d\u8fde\u7eed\uff0c\u90a3\u4e48 m \u8fd8\u662f\u6570\u7ec4\u5417\uff1f

            \u5047\u5982\u628a\u5217\u8868\u5143\u7d20\u6362\u6210\u94fe\u8868\u8282\u70b9 n = [n1, n2, n3, n4, n5] \uff0c\u901a\u5e38\u60c5\u51b5\u4e0b\u8fd9\u4e94\u4e2a\u8282\u70b9\u5bf9\u8c61\u4e5f\u662f\u88ab\u5206\u6563\u5b58\u50a8\u5728\u5185\u5b58\u5404\u5904\u7684\u3002\u7136\u800c\uff0c\u7ed9\u5b9a\u4e00\u4e2a\u5217\u8868\u7d22\u5f15\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u83b7\u53d6\u5230\u8282\u70b9\u5185\u5b58\u5730\u5740\uff0c\u4ece\u800c\u8bbf\u95ee\u5230\u5bf9\u5e94\u7684\u8282\u70b9\u3002\u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u4e2d\u5b58\u50a8\u7684\u662f\u8282\u70b9\u7684\u5f15\u7528\uff0c\u800c\u975e\u8282\u70b9\u672c\u8eab\u3002

            \u4e0e\u8bb8\u591a\u8bed\u8a00\u4e0d\u540c\u7684\u662f\uff0c\u5728 Python \u4e2d\u6570\u5b57\u4e5f\u88ab\u5305\u88c5\u4e3a\u5bf9\u8c61\uff0c\u5217\u8868\u4e2d\u5b58\u50a8\u7684\u4e0d\u662f\u6570\u5b57\u672c\u8eab\uff0c\u800c\u662f\u5bf9\u6570\u5b57\u7684\u5f15\u7528\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u4f1a\u53d1\u73b0\u4e24\u4e2a\u6570\u7ec4\u4e2d\u7684\u76f8\u540c\u6570\u5b57\u62e5\u6709\u540c\u4e00\u4e2a id \uff0c\u5e76\u4e14\u8fd9\u4e9b\u6570\u5b57\u7684\u5185\u5b58\u5730\u5740\u662f\u65e0\u987b\u8fde\u7eed\u7684\u3002

            C++ STL \u91cc\u9762\u7684 std::list \u5df2\u7ecf\u5b9e\u73b0\u4e86\u53cc\u5411\u94fe\u8868\uff0c\u4f46\u597d\u50cf\u4e00\u4e9b\u7b97\u6cd5\u7684\u4e66\u4e0a\u90fd\u4e0d\u600e\u4e48\u76f4\u63a5\u7528\u8fd9\u4e2a\uff0c\u662f\u4e0d\u662f\u6709\u4ec0\u4e48\u5c40\u9650\u6027\u5462?

            \u4e00\u65b9\u9762\uff0c\u6211\u4eec\u5f80\u5f80\u66f4\u9752\u7750\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\u7b97\u6cd5\uff0c\u800c\u53ea\u6709\u5728\u5fc5\u8981\u65f6\u624d\u4f7f\u7528\u94fe\u8868\u3002\u8fd9\u662f\u56e0\u4e3a\uff1a

            1. \u7a7a\u95f4\u5f00\u9500\uff1a\u7531\u4e8e\u6bcf\u4e2a\u5143\u7d20\u9700\u8981\u4e24\u4e2a\u989d\u5916\u7684\u6307\u9488\uff08\u4e00\u4e2a\u7528\u4e8e\u524d\u4e00\u4e2a\u5143\u7d20\uff0c\u4e00\u4e2a\u7528\u4e8e\u540e\u4e00\u4e2a\u5143\u7d20\uff09\uff0c\u6240\u4ee5 std::list \u901a\u5e38\u6bd4 std::vector \u66f4\u5360\u7528\u7a7a\u95f4\u3002
            2. \u7f13\u5b58\u4e0d\u53cb\u597d\uff1a\u7531\u4e8e\u6570\u636e\u4e0d\u662f\u8fde\u7eed\u5b58\u653e\u7684\uff0cstd::list \u5bf9\u7f13\u5b58\u7684\u5229\u7528\u7387\u8f83\u4f4e\u3002\u4e00\u822c\u60c5\u51b5\u4e0b\uff0cstd::vector \u7684\u6027\u80fd\u4f1a\u66f4\u597d\u3002

            \u53e6\u4e00\u65b9\u9762\uff0c\u5fc5\u8981\u4f7f\u7528\u94fe\u8868\u7684\u60c5\u51b5\u4e3b\u8981\u662f\u4e8c\u53c9\u6811\u548c\u56fe\u3002\u6808\u548c\u961f\u5217\u5f80\u5f80\u4f1a\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684 stack \u548c queue \uff0c\u800c\u975e\u94fe\u8868\u3002

            "},{"location":"chapter_backtracking/","title":"\u7b2c 13 \u7ae0 \u00a0 \u56de\u6eaf","text":"

            Abstract

            \u6211\u4eec\u5982\u540c\u8ff7\u5bab\u4e2d\u7684\u63a2\u7d22\u8005\uff0c\u5728\u524d\u8fdb\u7684\u9053\u8def\u4e0a\u53ef\u80fd\u4f1a\u9047\u5230\u56f0\u96be\u3002

            \u56de\u6eaf\u7684\u529b\u91cf\u8ba9\u6211\u4eec\u80fd\u591f\u91cd\u65b0\u5f00\u59cb\uff0c\u4e0d\u65ad\u5c1d\u8bd5\uff0c\u6700\u7ec8\u627e\u5230\u901a\u5f80\u5149\u660e\u7684\u51fa\u53e3\u3002

            "},{"location":"chapter_backtracking/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 13.1 \u00a0 \u56de\u6eaf\u7b97\u6cd5
            • 13.2 \u00a0 \u5168\u6392\u5217\u95ee\u9898
            • 13.3 \u00a0 \u5b50\u96c6\u548c\u95ee\u9898
            • 13.4 \u00a0 N \u7687\u540e\u95ee\u9898
            • 13.5 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_backtracking/backtracking_algorithm/","title":"13.1 \u00a0 \u56de\u6eaf\u7b97\u6cd5","text":"

            \u300c\u56de\u6eaf\u7b97\u6cd5 backtracking algorithm\u300d\u662f\u4e00\u79cd\u901a\u8fc7\u7a77\u4e3e\u6765\u89e3\u51b3\u95ee\u9898\u7684\u65b9\u6cd5\uff0c\u5b83\u7684\u6838\u5fc3\u601d\u60f3\u662f\u4ece\u4e00\u4e2a\u521d\u59cb\u72b6\u6001\u51fa\u53d1\uff0c\u66b4\u529b\u641c\u7d22\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u5f53\u9047\u5230\u6b63\u786e\u7684\u89e3\u5219\u5c06\u5176\u8bb0\u5f55\uff0c\u76f4\u5230\u627e\u5230\u89e3\u6216\u8005\u5c1d\u8bd5\u4e86\u6240\u6709\u53ef\u80fd\u7684\u9009\u62e9\u90fd\u65e0\u6cd5\u627e\u5230\u89e3\u4e3a\u6b62\u3002

            \u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u91c7\u7528\u201c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u201d\u6765\u904d\u5386\u89e3\u7a7a\u95f4\u3002\u5728\u4e8c\u53c9\u6811\u7ae0\u8282\u4e2d\uff0c\u6211\u4eec\u63d0\u5230\u524d\u5e8f\u3001\u4e2d\u5e8f\u548c\u540e\u5e8f\u904d\u5386\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5229\u7528\u524d\u5e8f\u904d\u5386\u6784\u9020\u4e00\u4e2a\u56de\u6eaf\u95ee\u9898\uff0c\u9010\u6b65\u4e86\u89e3\u56de\u6eaf\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u3002

            \u4f8b\u9898\u4e00

            \u7ed9\u5b9a\u4e00\u4e2a\u4e8c\u53c9\u6811\uff0c\u641c\u7d22\u5e76\u8bb0\u5f55\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u8282\u70b9\u5217\u8868\u3002

            \u5bf9\u4e8e\u6b64\u9898\uff0c\u6211\u4eec\u524d\u5e8f\u904d\u5386\u8fd9\u9897\u6811\uff0c\u5e76\u5224\u65ad\u5f53\u524d\u8282\u70b9\u7684\u503c\u662f\u5426\u4e3a \\(7\\) \uff0c\u82e5\u662f\u5219\u5c06\u8be5\u8282\u70b9\u7684\u503c\u52a0\u5165\u5230\u7ed3\u679c\u5217\u8868 res \u4e4b\u4e2d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust preorder_traversal_i_compact.java
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode root) {\nif (root == null) {\nreturn;\n}\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(root);\n}\npreOrder(root.left);\npreOrder(root.right);\n}\n
            preorder_traversal_i_compact.cpp
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode *root) {\nif (root == nullptr) {\nreturn;\n}\nif (root->val == 7) {\n// \u8bb0\u5f55\u89e3\nres.push_back(root);\n}\npreOrder(root->left);\npreOrder(root->right);\n}\n
            preorder_traversal_i_compact.py
            def pre_order(root: TreeNode):\n\"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00\"\"\"\nif root is None:\nreturn\nif root.val == 7:\n# \u8bb0\u5f55\u89e3\nres.append(root)\npre_order(root.left)\npre_order(root.right)\n
            preorder_traversal_i_compact.go
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunc preOrderI(root *TreeNode, res *[]*TreeNode) {\nif root == nil {\nreturn\n}\nif (root.Val).(int) == 7 {\n// \u8bb0\u5f55\u89e3\n*res = append(*res, root)\n}\npreOrderI(root.Left, res)\npreOrderI(root.Right, res)\n}\n
            preorder_traversal_i_compact.js
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunction preOrder(root, res) {\nif (root === null) {\nreturn;\n}\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push(root);\n}\npreOrder(root.left, res);\npreOrder(root.right, res);\n}\n
            preorder_traversal_i_compact.ts
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunction preOrder(root: TreeNode | null, res: TreeNode[]): void {\nif (root === null) {\nreturn;\n}\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push(root);\n}\npreOrder(root.left, res);\npreOrder(root.right, res);\n}\n
            preorder_traversal_i_compact.c
            [class]{}-[func]{preOrder}\n
            preorder_traversal_i_compact.cs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode root) {\nif (root == null) {\nreturn;\n}\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.Add(root);\n}\npreOrder(root.left);\npreOrder(root.right);\n}\n
            preorder_traversal_i_compact.swift
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfunc preOrder(root: TreeNode?) {\nguard let root = root else {\nreturn\n}\nif root.val == 7 {\n// \u8bb0\u5f55\u89e3\nres.append(root)\n}\npreOrder(root: root.left)\npreOrder(root: root.right)\n}\n
            preorder_traversal_i_compact.zig
            [class]{}-[func]{preOrder}\n
            preorder_traversal_i_compact.dart
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nvoid preOrder(TreeNode? root, List<TreeNode> res) {\nif (root == null) {\nreturn;\n}\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(root);\n}\npreOrder(root.left, res);\npreOrder(root.right, res);\n}\n
            preorder_traversal_i_compact.rs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e00 */\nfn pre_order(res: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\nif root.is_none() {\nreturn;\n}\nif let Some(node) = root {\nif node.borrow().val == 7 {\n// \u8bb0\u5f55\u89e3\nres.push(node.clone());\n}\npre_order(res, node.borrow().left.clone());\npre_order(res, node.borrow().right.clone());\n}\n}\n

            \u56fe\uff1a\u5728\u524d\u5e8f\u904d\u5386\u4e2d\u641c\u7d22\u8282\u70b9

            "},{"location":"chapter_backtracking/backtracking_algorithm/#1311","title":"13.1.1 \u00a0 \u5c1d\u8bd5\u4e0e\u56de\u9000","text":"

            \u4e4b\u6240\u4ee5\u79f0\u4e4b\u4e3a\u56de\u6eaf\u7b97\u6cd5\uff0c\u662f\u56e0\u4e3a\u8be5\u7b97\u6cd5\u5728\u641c\u7d22\u89e3\u7a7a\u95f4\u65f6\u4f1a\u91c7\u7528\u201c\u5c1d\u8bd5\u201d\u4e0e\u201c\u56de\u9000\u201d\u7684\u7b56\u7565\u3002\u5f53\u7b97\u6cd5\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u9047\u5230\u67d0\u4e2a\u72b6\u6001\u65e0\u6cd5\u7ee7\u7eed\u524d\u8fdb\u6216\u65e0\u6cd5\u5f97\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u65f6\uff0c\u5b83\u4f1a\u64a4\u9500\u4e0a\u4e00\u6b65\u7684\u9009\u62e9\uff0c\u9000\u56de\u5230\u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5e76\u5c1d\u8bd5\u5176\u4ed6\u53ef\u80fd\u7684\u9009\u62e9\u3002

            \u5bf9\u4e8e\u4f8b\u9898\u4e00\uff0c\u8bbf\u95ee\u6bcf\u4e2a\u8282\u70b9\u90fd\u4ee3\u8868\u4e00\u6b21\u201c\u5c1d\u8bd5\u201d\uff0c\u800c\u8d8a\u8fc7\u53f6\u7ed3\u70b9\u6216\u8fd4\u56de\u7236\u8282\u70b9\u7684 return \u5219\u8868\u793a\u201c\u56de\u9000\u201d\u3002

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u56de\u9000\u5e76\u4e0d\u4ec5\u4ec5\u5305\u62ec\u51fd\u6570\u8fd4\u56de\u3002\u4e3a\u89e3\u91ca\u8fd9\u4e00\u70b9\uff0c\u6211\u4eec\u5bf9\u4f8b\u9898\u4e00\u7a0d\u4f5c\u62d3\u5c55\u3002

            \u4f8b\u9898\u4e8c

            \u5728\u4e8c\u53c9\u6811\u4e2d\u641c\u7d22\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u6839\u8282\u70b9\u5230\u8fd9\u4e9b\u8282\u70b9\u7684\u8def\u5f84\u3002

            \u5728\u4f8b\u9898\u4e00\u4ee3\u7801\u7684\u57fa\u7840\u4e0a\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u5217\u8868 path \u8bb0\u5f55\u8bbf\u95ee\u8fc7\u7684\u8282\u70b9\u8def\u5f84\u3002\u5f53\u8bbf\u95ee\u5230\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\u65f6\uff0c\u5219\u590d\u5236 path \u5e76\u6dfb\u52a0\u8fdb\u7ed3\u679c\u5217\u8868 res \u3002\u904d\u5386\u5b8c\u6210\u540e\uff0cres \u4e2d\u4fdd\u5b58\u7684\u5c31\u662f\u6240\u6709\u7684\u89e3\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust preorder_traversal_ii_compact.java
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode root) {\nif (root == null) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(new ArrayList<>(path));\n}\npreOrder(root.left);\npreOrder(root.right);\n// \u56de\u9000\npath.remove(path.size() - 1);\n}\n
            preorder_traversal_ii_compact.cpp
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode *root) {\nif (root == nullptr) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push_back(root);\nif (root->val == 7) {\n// \u8bb0\u5f55\u89e3\nres.push_back(path);\n}\npreOrder(root->left);\npreOrder(root->right);\n// \u56de\u9000\npath.pop_back();\n}\n
            preorder_traversal_ii_compact.py
            def pre_order(root: TreeNode):\n\"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c\"\"\"\nif root is None:\nreturn\n# \u5c1d\u8bd5\npath.append(root)\nif root.val == 7:\n# \u8bb0\u5f55\u89e3\nres.append(list(path))\npre_order(root.left)\npre_order(root.right)\n# \u56de\u9000\npath.pop()\n
            preorder_traversal_ii_compact.go
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunc preOrderII(root *TreeNode, res *[][]*TreeNode, path *[]*TreeNode) {\nif root == nil {\nreturn\n}\n// \u5c1d\u8bd5\n*path = append(*path, root)\nif root.Val.(int) == 7 {\n// \u8bb0\u5f55\u89e3\n*res = append(*res, *path)\n}\npreOrderII(root.Left, res, path)\npreOrderII(root.Right, res, path)\n// \u56de\u9000\n*path = (*path)[:len(*path)-1]\n}\n
            preorder_traversal_ii_compact.js
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunction preOrder(root, path, res) {\nif (root === null) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push(root);\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push([...path]);\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.pop();\n}\n
            preorder_traversal_ii_compact.ts
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunction preOrder(\nroot: TreeNode | null,\npath: TreeNode[],\nres: TreeNode[][]\n): void {\nif (root === null) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push(root);\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push([...path]);\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.pop();\n}\n
            preorder_traversal_ii_compact.c
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode *root, vector *path, vector *res) {\nif (root == NULL) {\nreturn;\n}\n// \u5c1d\u8bd5\nvectorPushback(path, root, sizeof(TreeNode));\nif (root->val == 7) {\n// \u8bb0\u5f55\u89e3\nvector *newPath = newVector();\nfor (int i = 0; i < path->size; i++) {\nvectorPushback(newPath, path->data[i], sizeof(int));\n}\nvectorPushback(res, newPath, sizeof(vector));\n}\npreOrder(root->left, path, res);\npreOrder(root->right, path, res);\n// \u56de\u9000\nvectorPopback(path);\n}\n
            preorder_traversal_ii_compact.cs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(TreeNode root) {\nif (root == null) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.Add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.Add(new List<TreeNode>(path));\n}\npreOrder(root.left);\npreOrder(root.right);\n// \u56de\u9000\npath.RemoveAt(path.Count - 1);\n}\n
            preorder_traversal_ii_compact.swift
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfunc preOrder(root: TreeNode?) {\nguard let root = root else {\nreturn\n}\n// \u5c1d\u8bd5\npath.append(root)\nif root.val == 7 {\n// \u8bb0\u5f55\u89e3\nres.append(path)\n}\npreOrder(root: root.left)\npreOrder(root: root.right)\n// \u56de\u9000\npath.removeLast()\n}\n
            preorder_traversal_ii_compact.zig
            [class]{}-[func]{preOrder}\n
            preorder_traversal_ii_compact.dart
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nvoid preOrder(\nTreeNode? root,\nList<TreeNode> path,\nList<List<TreeNode>> res,\n) {\nif (root == null) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(List.from(path));\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.removeLast();\n}\n
            preorder_traversal_ii_compact.rs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e8c */\nfn pre_order(res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>, path: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\nif root.is_none() {\nreturn;\n}\nif let Some(node) = root {\n// \u5c1d\u8bd5\npath.push(node.clone());\nif node.borrow().val == 7 {\n// \u8bb0\u5f55\u89e3\nres.push(path.clone());\n}\npre_order(res, path, node.borrow().left.clone());\npre_order(res, path, node.borrow().right.clone());\n// \u56de\u9000\npath.remove(path.len() -  1);\n}\n}\n

            \u5728\u6bcf\u6b21\u201c\u5c1d\u8bd5\u201d\u4e2d\uff0c\u6211\u4eec\u901a\u8fc7\u5c06\u5f53\u524d\u8282\u70b9\u6dfb\u52a0\u8fdb path \u6765\u8bb0\u5f55\u8def\u5f84\uff1b\u800c\u5728\u201c\u56de\u9000\u201d\u524d\uff0c\u6211\u4eec\u9700\u8981\u5c06\u8be5\u8282\u70b9\u4ece path \u4e2d\u5f39\u51fa\uff0c\u4ee5\u6062\u590d\u672c\u6b21\u5c1d\u8bd5\u4e4b\u524d\u7684\u72b6\u6001\u3002

            \u89c2\u5bdf\u8be5\u8fc7\u7a0b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5c1d\u8bd5\u548c\u56de\u9000\u7406\u89e3\u4e3a\u201c\u524d\u8fdb\u201d\u4e0e\u201c\u64a4\u9500\u201d\uff0c\u4e24\u4e2a\u64cd\u4f5c\u662f\u4e92\u4e3a\u9006\u5411\u7684\u3002

            <1><2><3><4><5><6><7><8><9><10><11>

            \u56fe\uff1a\u5c1d\u8bd5\u4e0e\u56de\u9000

            "},{"location":"chapter_backtracking/backtracking_algorithm/#1312","title":"13.1.2 \u00a0 \u526a\u679d","text":"

            \u590d\u6742\u7684\u56de\u6eaf\u95ee\u9898\u901a\u5e38\u5305\u542b\u4e00\u4e2a\u6216\u591a\u4e2a\u7ea6\u675f\u6761\u4ef6\uff0c\u7ea6\u675f\u6761\u4ef6\u901a\u5e38\u53ef\u7528\u4e8e\u201c\u526a\u679d\u201d\u3002

            \u4f8b\u9898\u4e09

            \u5728\u4e8c\u53c9\u6811\u4e2d\u641c\u7d22\u6240\u6709\u503c\u4e3a \\(7\\) \u7684\u8282\u70b9\uff0c\u8bf7\u8fd4\u56de\u6839\u8282\u70b9\u5230\u8fd9\u4e9b\u8282\u70b9\u7684\u8def\u5f84\uff0c\u5e76\u8981\u6c42\u8def\u5f84\u4e2d\u4e0d\u5305\u542b\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u3002

            \u4e3a\u4e86\u6ee1\u8db3\u4ee5\u4e0a\u7ea6\u675f\u6761\u4ef6\uff0c\u6211\u4eec\u9700\u8981\u6dfb\u52a0\u526a\u679d\u64cd\u4f5c\uff1a\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u82e5\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\uff0c\u5219\u63d0\u524d\u8fd4\u56de\uff0c\u505c\u6b62\u7ee7\u7eed\u641c\u7d22\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust preorder_traversal_iii_compact.java
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode root) {\n// \u526a\u679d\nif (root == null || root.val == 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(new ArrayList<>(path));\npath.remove(path.size() - 1);\nreturn;\n}\npreOrder(root.left);\npreOrder(root.right);\n// \u56de\u9000\npath.remove(path.size() - 1);\n}\n
            preorder_traversal_iii_compact.cpp
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode *root) {\n// \u526a\u679d\nif (root == nullptr || root->val == 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push_back(root);\nif (root->val == 7) {\n// \u8bb0\u5f55\u89e3\nres.push_back(path);\npath.pop_back();\nreturn;\n}\npreOrder(root->left);\npreOrder(root->right);\n// \u56de\u9000\npath.pop_back();\n}\n
            preorder_traversal_iii_compact.py
            def pre_order(root: TreeNode):\n\"\"\"\u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09\"\"\"\n# \u526a\u679d\nif root is None or root.val == 3:\nreturn\n# \u5c1d\u8bd5\npath.append(root)\nif root.val == 7:\n# \u8bb0\u5f55\u89e3\nres.append(list(path))\npath.pop()\nreturn\npre_order(root.left)\npre_order(root.right)\n# \u56de\u9000\npath.pop()\n
            preorder_traversal_iii_compact.go
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunc preOrderIII(root *TreeNode, res *[][]*TreeNode, path *[]*TreeNode) {\n// \u526a\u679d\nif root == nil || root.Val == 3 {\nreturn\n}\n// \u5c1d\u8bd5\n*path = append(*path, root)\nif root.Val.(int) == 7 {\n// \u8bb0\u5f55\u89e3\n*res = append(*res, *path)\n*path = (*path)[:len(*path)-1]\nreturn\n}\npreOrderIII(root.Left, res, path)\npreOrderIII(root.Right, res, path)\n// \u56de\u9000\n*path = (*path)[:len(*path)-1]\n}\n
            preorder_traversal_iii_compact.js
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunction preOrder(root, path, res) {\n// \u526a\u679d\nif (root === null || root.val === 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push(root);\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push([...path]);\npath.pop();\nreturn;\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.pop();\n}\n
            preorder_traversal_iii_compact.ts
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunction preOrder(\nroot: TreeNode | null,\npath: TreeNode[],\nres: TreeNode[][]\n): void {\n// \u526a\u679d\nif (root === null || root.val === 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.push(root);\nif (root.val === 7) {\n// \u8bb0\u5f55\u89e3\nres.push([...path]);\npath.pop();\nreturn;\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.pop();\n}\n
            preorder_traversal_iii_compact.c
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode *root, vector *path, vector *res) {\n// \u526a\u679d\nif (root == NULL || root->val == 3) {\nreturn;\n}\n// \u5c1d\u8bd5\nvectorPushback(path, root, sizeof(TreeNode));\nif (root->val == 7) {\n// \u8bb0\u5f55\u89e3\nvector *newPath = newVector();\nfor (int i = 0; i < path->size; i++) {\nvectorPushback(newPath, path->data[i], sizeof(int));\n}\nvectorPushback(res, newPath, sizeof(vector));\nres->depth++;\n}\npreOrder(root->left, path, res);\npreOrder(root->right, path, res);\n// \u56de\u9000\nvectorPopback(path);\n}\n
            preorder_traversal_iii_compact.cs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(TreeNode root) {\n// \u526a\u679d\nif (root == null || root.val == 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.Add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.Add(new List<TreeNode>(path));\npath.RemoveAt(path.Count - 1);\nreturn;\n}\npreOrder(root.left);\npreOrder(root.right);\n// \u56de\u9000\npath.RemoveAt(path.Count - 1);\n}\n
            preorder_traversal_iii_compact.swift
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfunc preOrder(root: TreeNode?) {\n// \u526a\u679d\nguard let root = root, root.val != 3 else {\nreturn\n}\n// \u5c1d\u8bd5\npath.append(root)\nif root.val == 7 {\n// \u8bb0\u5f55\u89e3\nres.append(path)\npath.removeLast()\nreturn\n}\npreOrder(root: root.left)\npreOrder(root: root.right)\n// \u56de\u9000\npath.removeLast()\n}\n
            preorder_traversal_iii_compact.zig
            [class]{}-[func]{preOrder}\n
            preorder_traversal_iii_compact.dart
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid preOrder(\nTreeNode? root,\nList<TreeNode> path,\nList<List<TreeNode>> res,\n) {\nif (root == null || root.val == 3) {\nreturn;\n}\n// \u5c1d\u8bd5\npath.add(root);\nif (root.val == 7) {\n// \u8bb0\u5f55\u89e3\nres.add(List.from(path));\npath.removeLast();\nreturn;\n}\npreOrder(root.left, path, res);\npreOrder(root.right, path, res);\n// \u56de\u9000\npath.removeLast();\n}\n
            preorder_traversal_iii_compact.rs
            /* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nfn pre_order(res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>, path: &mut Vec<Rc<RefCell<TreeNode>>>, root: Option<Rc<RefCell<TreeNode>>>) {\n// \u526a\u679d\nif root.is_none() || root.as_ref().unwrap().borrow().val == 3 {\nreturn;\n}\nif let Some(node) = root {\n// \u5c1d\u8bd5\npath.push(node.clone());\nif node.borrow().val == 7 {\n// \u8bb0\u5f55\u89e3\nres.push(path.clone());\npath.remove(path.len() -  1);\nreturn;\n}\npre_order(res, path, node.borrow().left.clone());\npre_order(res, path, node.borrow().right.clone());\n// \u56de\u9000\npath.remove(path.len() -  1);\n}\n}\n

            \u526a\u679d\u662f\u4e00\u4e2a\u975e\u5e38\u5f62\u8c61\u7684\u540d\u8bcd\u3002\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u6211\u4eec\u201c\u526a\u6389\u201d\u4e86\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u641c\u7d22\u5206\u652f\uff0c\u907f\u514d\u8bb8\u591a\u65e0\u610f\u4e49\u7684\u5c1d\u8bd5\uff0c\u4ece\u800c\u5b9e\u73b0\u641c\u7d22\u6548\u7387\u7684\u63d0\u9ad8\u3002

            \u56fe\uff1a\u6839\u636e\u7ea6\u675f\u6761\u4ef6\u526a\u679d

            "},{"location":"chapter_backtracking/backtracking_algorithm/#1313","title":"13.1.3 \u00a0 \u6846\u67b6\u4ee3\u7801","text":"

            \u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c1d\u8bd5\u5c06\u56de\u6eaf\u7684\u201c\u5c1d\u8bd5\u3001\u56de\u9000\u3001\u526a\u679d\u201d\u7684\u4e3b\u4f53\u6846\u67b6\u63d0\u70bc\u51fa\u6765\uff0c\u63d0\u5347\u4ee3\u7801\u7684\u901a\u7528\u6027\u3002

            \u5728\u4ee5\u4e0b\u6846\u67b6\u4ee3\u7801\u4e2d\uff0cstate \u8868\u793a\u95ee\u9898\u7684\u5f53\u524d\u72b6\u6001\uff0cchoices \u8868\u793a\u5f53\u524d\u72b6\u6001\u4e0b\u53ef\u4ee5\u505a\u51fa\u7684\u9009\u62e9\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State state, List<Choice> choices, List<State> res) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (Choice choice : choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State *state, vector<Choice *> &choices, vector<State *> &res) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (Choice choice : choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            def backtrack(state: State, choices: list[choice], res: list[state]):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\u6846\u67b6\"\"\"\n# \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif is_solution(state):\n# \u8bb0\u5f55\u89e3\nrecord_solution(state, res)\n# \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices:\n# \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif is_valid(state, choice):\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmake_choice(state, choice)\nbacktrack(state, choices, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundo_choice(state, choice)\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunc backtrack(state *State, choices []Choice, res *[]State) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif isSolution(state) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res)\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor _, choice := range choices {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif isValid(state, choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice)\nbacktrack(state, choices, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice)\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunction backtrack(state, choices, res) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (let choice of choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunction backtrack(state: State, choices: Choice[], res: State[]): void {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (let choice of choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State *state, Choice *choices, int numChoices, State *res, int numRes) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res, numRes);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < numChoices; i++) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, &choices[i])) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, &choices[i]);\nbacktrack(state, choices, numChoices, res, numRes);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, &choices[i]);\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State state, List<Choice> choices, List<State> res) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nforeach (Choice choice in choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nfunc backtrack(state: inout State, choices: [Choice], res: inout [State]) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif isSolution(state: state) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state: state, res: &res)\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif isValid(state: state, choice: choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state: &state, choice: choice)\nbacktrack(state: &state, choices: choices, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state: &state, choice: choice)\n}\n}\n}\n
            \n
            /* \u56de\u6eaf\u7b97\u6cd5\u6846\u67b6 */\nvoid backtrack(State state, List<Choice>, List<State> res) {\n// \u5224\u65ad\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n// \u505c\u6b62\u7ee7\u7eed\u641c\u7d22\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (Choice choice in choices) {\n// \u526a\u679d\uff1a\u5224\u65ad\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\nbacktrack(state, choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            \n

            \u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u57fa\u4e8e\u6846\u67b6\u4ee3\u7801\u6765\u89e3\u51b3\u4f8b\u9898\u4e09\u3002\u72b6\u6001 state \u4e3a\u8282\u70b9\u904d\u5386\u8def\u5f84\uff0c\u9009\u62e9 choices \u4e3a\u5f53\u524d\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\uff0c\u7ed3\u679c res \u662f\u8def\u5f84\u5217\u8868\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust preorder_traversal_iii_template.java
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nboolean isSolution(List<TreeNode> state) {\nreturn !state.isEmpty() && state.get(state.size() - 1).val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\nres.add(new ArrayList<>(state));\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nboolean isValid(List<TreeNode> state, TreeNode choice) {\nreturn choice != null && choice.val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(List<TreeNode> state, TreeNode choice) {\nstate.add(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(List<TreeNode> state, TreeNode choice) {\nstate.remove(state.size() - 1);\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(List<TreeNode> state, List<TreeNode> choices, List<List<TreeNode>> res) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (TreeNode choice : choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, Arrays.asList(choice.left, choice.right), res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            preorder_traversal_iii_template.cpp
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(vector<TreeNode *> &state) {\nreturn !state.empty() && state.back()->val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(vector<TreeNode *> &state, vector<vector<TreeNode *>> &res) {\nres.push_back(state);\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(vector<TreeNode *> &state, TreeNode *choice) {\nreturn choice != nullptr && choice->val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(vector<TreeNode *> &state, TreeNode *choice) {\nstate.push_back(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(vector<TreeNode *> &state, TreeNode *choice) {\nstate.pop_back();\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(vector<TreeNode *> &state, vector<TreeNode *> &choices, vector<vector<TreeNode *>> &res) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (TreeNode *choice : choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nvector<TreeNode *> nextChoices{choice->left, choice->right};\nbacktrack(state, nextChoices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            preorder_traversal_iii_template.py
            def is_solution(state: list[TreeNode]) -> bool:\n\"\"\"\u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3\"\"\"\nreturn state and state[-1].val == 7\ndef record_solution(state: list[TreeNode], res: list[list[TreeNode]]):\n\"\"\"\u8bb0\u5f55\u89e3\"\"\"\nres.append(list(state))\ndef is_valid(state: list[TreeNode], choice: TreeNode) -> bool:\n\"\"\"\u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5\"\"\"\nreturn choice is not None and choice.val != 3\ndef make_choice(state: list[TreeNode], choice: TreeNode):\n\"\"\"\u66f4\u65b0\u72b6\u6001\"\"\"\nstate.append(choice)\ndef undo_choice(state: list[TreeNode], choice: TreeNode):\n\"\"\"\u6062\u590d\u72b6\u6001\"\"\"\nstate.pop()\ndef backtrack(\nstate: list[TreeNode], choices: list[TreeNode], res: list[list[TreeNode]]\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09\"\"\"\n# \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif is_solution(state):\n# \u8bb0\u5f55\u89e3\nrecord_solution(state, res)\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices:\n# \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif is_valid(state, choice):\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmake_choice(state, choice)\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, [choice.left, choice.right], res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundo_choice(state, choice)\n
            preorder_traversal_iii_template.go
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunc isSolution(state *[]*TreeNode) bool {\nreturn len(*state) != 0 && (*state)[len(*state)-1].Val == 7\n}\n/* \u8bb0\u5f55\u89e3 */\nfunc recordSolution(state *[]*TreeNode, res *[][]*TreeNode) {\n*res = append(*res, *state)\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunc isValid(state *[]*TreeNode, choice *TreeNode) bool {\nreturn choice != nil && choice.Val != 3\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nfunc makeChoice(state *[]*TreeNode, choice *TreeNode) {\n*state = append(*state, choice)\n}\n/* \u6062\u590d\u72b6\u6001 */\nfunc undoChoice(state *[]*TreeNode, choice *TreeNode) {\n*state = (*state)[:len(*state)-1]\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunc backtrackIII(state *[]*TreeNode, choices *[]*TreeNode, res *[][]*TreeNode) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif isSolution(state) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res)\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor _, choice := range *choices {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif isValid(state, choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\ntemp := make([]*TreeNode, 0)\ntemp = append(temp, choice.Left, choice.Right)\nbacktrackIII(state, &temp, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice)\n}\n}\n}\n
            preorder_traversal_iii_template.js
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunction isSolution(state) {\nreturn state && state[state.length - 1]?.val === 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nfunction recordSolution(state, res) {\nres.push([...state]);\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunction isValid(state, choice) {\nreturn choice !== null && choice.val !== 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nfunction makeChoice(state, choice) {\nstate.push(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nfunction undoChoice(state) {\nstate.pop();\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunction backtrack(state, choices, res) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (const choice of choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, [choice.left, choice.right], res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state);\n}\n}\n}\n
            preorder_traversal_iii_template.ts
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunction isSolution(state: TreeNode[]): boolean {\nreturn state && state[state.length - 1]?.val === 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nfunction recordSolution(state: TreeNode[], res: TreeNode[][]): void {\nres.push([...state]);\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunction isValid(state: TreeNode[], choice: TreeNode): boolean {\nreturn choice !== null && choice.val !== 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nfunction makeChoice(state: TreeNode[], choice: TreeNode): void {\nstate.push(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nfunction undoChoice(state: TreeNode[]): void {\nstate.pop();\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunction backtrack(\nstate: TreeNode[],\nchoices: TreeNode[],\nres: TreeNode[][]\n): void {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (const choice of choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, [choice.left, choice.right], res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state);\n}\n}\n}\n
            preorder_traversal_iii_template.c
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(vector *state) {\nreturn state->size != 0 && ((TreeNode *)(state->data[state->size - 1]))->val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(vector *state, vector *res) {\nvector *newPath = newVector();\nfor (int i = 0; i < state->size; i++) {\nvectorPushback(newPath, state->data[i], sizeof(int));\n}\nvectorPushback(res, newPath, sizeof(vector));\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(vector *state, TreeNode *choice) {\nreturn choice != NULL && choice->val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(vector *state, TreeNode *choice) {\nvectorPushback(state, choice, sizeof(TreeNode));\n}\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(vector *state, TreeNode *choice) {\nvectorPopback(state);\n}\n/* \u524d\u5e8f\u904d\u5386\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(vector *state, vector *choices, vector *res) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices->size; i++) {\nTreeNode *choice = choices->data[i];\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nvector *nextChoices = newVector();\nvectorPushback(nextChoices, choice->left, sizeof(TreeNode));\nvectorPushback(nextChoices, choice->right, sizeof(TreeNode));\nbacktrack(state, nextChoices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            preorder_traversal_iii_template.cs
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(List<TreeNode> state) {\nreturn state.Count != 0 && state[^1].val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\nres.Add(new List<TreeNode>(state));\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(List<TreeNode> state, TreeNode choice) {\nreturn choice != null && choice.val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(List<TreeNode> state, TreeNode choice) {\nstate.Add(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(List<TreeNode> state, TreeNode choice) {\nstate.RemoveAt(state.Count - 1);\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(List<TreeNode> state, List<TreeNode> choices, List<List<TreeNode>> res) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nforeach (TreeNode choice in choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, new List<TreeNode> { choice.left, choice.right }, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            preorder_traversal_iii_template.swift
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfunc isSolution(state: [TreeNode]) -> Bool {\n!state.isEmpty && state.last!.val == 7\n}\n/* \u8bb0\u5f55\u89e3 */\nfunc recordSolution(state: [TreeNode], res: inout [[TreeNode]]) {\nres.append(state)\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfunc isValid(state: [TreeNode], choice: TreeNode?) -> Bool {\nchoice != nil && choice!.val != 3\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nfunc makeChoice(state: inout [TreeNode], choice: TreeNode) {\nstate.append(choice)\n}\n/* \u6062\u590d\u72b6\u6001 */\nfunc undoChoice(state: inout [TreeNode], choice: TreeNode) {\nstate.removeLast()\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfunc backtrack(state: inout [TreeNode], choices: [TreeNode], res: inout [[TreeNode]]) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif isSolution(state: state) {\nrecordSolution(state: state, res: &res)\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif isValid(state: state, choice: choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state: &state, choice: choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, choices: [choice.left, choice.right].compactMap { $0 }, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state: &state, choice: choice)\n}\n}\n}\n
            preorder_traversal_iii_template.zig
            [class]{}-[func]{isSolution}\n[class]{}-[func]{recordSolution}\n[class]{}-[func]{isValid}\n[class]{}-[func]{makeChoice}\n[class]{}-[func]{undoChoice}\n[class]{}-[func]{backtrack}\n
            preorder_traversal_iii_template.dart
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nbool isSolution(List<TreeNode> state) {\nreturn state.isNotEmpty && state.last.val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nvoid recordSolution(List<TreeNode> state, List<List<TreeNode>> res) {\nres.add(List.from(state));\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nbool isValid(List<TreeNode> state, TreeNode? choice) {\nreturn choice != null && choice.val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nvoid makeChoice(List<TreeNode> state, TreeNode? choice) {\nstate.add(choice!);\n}\n/* \u6062\u590d\u72b6\u6001 */\nvoid undoChoice(List<TreeNode> state, TreeNode? choice) {\nstate.removeLast();\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nvoid backtrack(\nList<TreeNode> state,\nList<TreeNode?> choices,\nList<List<TreeNode>> res,\n) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif (isSolution(state)) {\n// \u8bb0\u5f55\u89e3\nrecordSolution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (TreeNode? choice in choices) {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif (isValid(state, choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmakeChoice(state, choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, [choice!.left, choice.right], res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundoChoice(state, choice);\n}\n}\n}\n
            preorder_traversal_iii_template.rs
            /* \u5224\u65ad\u5f53\u524d\u72b6\u6001\u662f\u5426\u4e3a\u89e3 */\nfn is_solution(state: &mut Vec<Rc<RefCell<TreeNode>>>) -> bool {\nreturn !state.is_empty() && state.get(state.len() - 1).unwrap().borrow().val == 7;\n}\n/* \u8bb0\u5f55\u89e3 */\nfn record_solution(state: &mut Vec<Rc<RefCell<TreeNode>>>, res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>) {\nres.push(state.clone());\n}\n/* \u5224\u65ad\u5728\u5f53\u524d\u72b6\u6001\u4e0b\uff0c\u8be5\u9009\u62e9\u662f\u5426\u5408\u6cd5 */\nfn is_valid(_: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Rc<RefCell<TreeNode>>) -> bool {\nreturn choice.borrow().val != 3;\n}\n/* \u66f4\u65b0\u72b6\u6001 */\nfn make_choice(state: &mut Vec<Rc<RefCell<TreeNode>>>, choice: Rc<RefCell<TreeNode>>) {\nstate.push(choice);\n}\n/* \u6062\u590d\u72b6\u6001 */\nfn undo_choice(state: &mut Vec<Rc<RefCell<TreeNode>>>, _: Rc<RefCell<TreeNode>>) {\nstate.remove(state.len() - 1);\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1a\u4f8b\u9898\u4e09 */\nfn backtrack(state: &mut Vec<Rc<RefCell<TreeNode>>>, choices: &mut Vec<Rc<RefCell<TreeNode>>>, res: &mut Vec<Vec<Rc<RefCell<TreeNode>>>>) {\n// \u68c0\u67e5\u662f\u5426\u4e3a\u89e3\nif is_solution(state) {\n// \u8bb0\u5f55\u89e3\nrecord_solution(state, res);\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices {\n// \u526a\u679d\uff1a\u68c0\u67e5\u9009\u62e9\u662f\u5426\u5408\u6cd5\nif is_valid(state, choice.clone()) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nmake_choice(state, choice.clone());\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, &mut vec![choice.borrow().left.clone().unwrap(), choice.borrow().right.clone().unwrap()], res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nundo_choice(state, choice.clone());\n}\n}\n}\n

            \u6839\u636e\u9898\u610f\uff0c\u5f53\u627e\u5230\u503c\u4e3a 7 \u7684\u8282\u70b9\u540e\u5e94\u8be5\u7ee7\u7eed\u641c\u7d22\uff0c\u56e0\u6b64\u6211\u4eec\u9700\u8981\u5c06\u8bb0\u5f55\u89e3\u4e4b\u540e\u7684 return \u8bed\u53e5\u5220\u9664\u3002\u4e0b\u56fe\u5bf9\u6bd4\u4e86\u4fdd\u7559\u6216\u5220\u9664 return \u8bed\u53e5\u7684\u641c\u7d22\u8fc7\u7a0b\u3002

            \u56fe\uff1a\u4fdd\u7559\u4e0e\u5220\u9664 return \u7684\u641c\u7d22\u8fc7\u7a0b\u5bf9\u6bd4

            \u76f8\u6bd4\u57fa\u4e8e\u524d\u5e8f\u904d\u5386\u7684\u4ee3\u7801\u5b9e\u73b0\uff0c\u57fa\u4e8e\u56de\u6eaf\u7b97\u6cd5\u6846\u67b6\u7684\u4ee3\u7801\u5b9e\u73b0\u867d\u7136\u663e\u5f97\u5570\u55e6\uff0c\u4f46\u901a\u7528\u6027\u66f4\u597d\u3002\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u56de\u6eaf\u95ee\u9898\u90fd\u53ef\u4ee5\u5728\u8be5\u6846\u67b6\u4e0b\u89e3\u51b3\u3002\u6211\u4eec\u53ea\u9700\u6839\u636e\u5177\u4f53\u95ee\u9898\u6765\u5b9a\u4e49 state \u548c choices \uff0c\u5e76\u5b9e\u73b0\u6846\u67b6\u4e2d\u7684\u5404\u4e2a\u65b9\u6cd5\u5373\u53ef\u3002

            "},{"location":"chapter_backtracking/backtracking_algorithm/#1314","title":"13.1.4 \u00a0 \u5e38\u7528\u672f\u8bed","text":"

            \u4e3a\u4e86\u66f4\u6e05\u6670\u5730\u5206\u6790\u7b97\u6cd5\u95ee\u9898\uff0c\u6211\u4eec\u603b\u7ed3\u4e00\u4e0b\u56de\u6eaf\u7b97\u6cd5\u4e2d\u5e38\u7528\u672f\u8bed\u7684\u542b\u4e49\uff0c\u5e76\u5bf9\u7167\u4f8b\u9898\u4e09\u7ed9\u51fa\u5bf9\u5e94\u793a\u4f8b\u3002

            \u540d\u8bcd \u5b9a\u4e49 \u4f8b\u9898\u4e09 \u89e3 Solution \u89e3\u662f\u6ee1\u8db3\u95ee\u9898\u7279\u5b9a\u6761\u4ef6\u7684\u7b54\u6848\uff0c\u53ef\u80fd\u6709\u4e00\u4e2a\u6216\u591a\u4e2a \u6839\u8282\u70b9\u5230\u8282\u70b9 \\(7\\) \u7684\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u6240\u6709\u8def\u5f84 \u7ea6\u675f\u6761\u4ef6 Constraint \u7ea6\u675f\u6761\u4ef6\u662f\u95ee\u9898\u4e2d\u9650\u5236\u89e3\u7684\u53ef\u884c\u6027\u7684\u6761\u4ef6\uff0c\u901a\u5e38\u7528\u4e8e\u526a\u679d \u8def\u5f84\u4e2d\u4e0d\u5305\u542b\u8282\u70b9 \\(3\\) \uff0c\u53ea\u5305\u542b\u4e00\u4e2a\u8282\u70b9 \\(7\\) \u72b6\u6001 State \u72b6\u6001\u8868\u793a\u95ee\u9898\u5728\u67d0\u4e00\u65f6\u523b\u7684\u60c5\u51b5\uff0c\u5305\u62ec\u5df2\u7ecf\u505a\u51fa\u7684\u9009\u62e9 \u5f53\u524d\u5df2\u8bbf\u95ee\u7684\u8282\u70b9\u8def\u5f84\uff0c\u5373 path \u8282\u70b9\u5217\u8868 \u5c1d\u8bd5 Attempt \u5c1d\u8bd5\u662f\u6839\u636e\u53ef\u7528\u9009\u62e9\u6765\u63a2\u7d22\u89e3\u7a7a\u95f4\u7684\u8fc7\u7a0b\uff0c\u5305\u62ec\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\uff0c\u68c0\u67e5\u662f\u5426\u4e3a\u89e3 \u9012\u5f52\u8bbf\u95ee\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\uff0c\u5c06\u8282\u70b9\u6dfb\u52a0\u8fdb path \uff0c\u5224\u65ad\u8282\u70b9\u7684\u503c\u662f\u5426\u4e3a \\(7\\) \u56de\u9000 Backtracking \u56de\u9000\u6307\u9047\u5230\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u72b6\u6001\u65f6\uff0c\u64a4\u9500\u524d\u9762\u505a\u51fa\u7684\u9009\u62e9\uff0c\u56de\u5230\u4e0a\u4e00\u4e2a\u72b6\u6001 \u5f53\u8d8a\u8fc7\u53f6\u7ed3\u70b9\u3001\u7ed3\u675f\u7ed3\u70b9\u8bbf\u95ee\u3001\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u65f6\u7ec8\u6b62\u641c\u7d22\uff0c\u51fd\u6570\u8fd4\u56de \u526a\u679d Pruning \u526a\u679d\u662f\u6839\u636e\u95ee\u9898\u7279\u6027\u548c\u7ea6\u675f\u6761\u4ef6\u907f\u514d\u65e0\u610f\u4e49\u7684\u641c\u7d22\u8def\u5f84\u7684\u65b9\u6cd5\uff0c\u53ef\u63d0\u9ad8\u641c\u7d22\u6548\u7387 \u5f53\u9047\u5230\u503c\u4e3a \\(3\\) \u7684\u8282\u70b9\u65f6\uff0c\u5219\u7ec8\u6b62\u7ee7\u7eed\u641c\u7d22

            Tip

            \u95ee\u9898\u3001\u89e3\u3001\u72b6\u6001\u7b49\u6982\u5ff5\u662f\u901a\u7528\u7684\uff0c\u5728\u5206\u6cbb\u3001\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u3001\u8d2a\u5fc3\u7b49\u7b97\u6cd5\u4e2d\u90fd\u6709\u6d89\u53ca\u3002

            "},{"location":"chapter_backtracking/backtracking_algorithm/#1315","title":"13.1.5 \u00a0 \u4f18\u52bf\u4e0e\u5c40\u9650\u6027","text":"

            \u56de\u6eaf\u7b97\u6cd5\u672c\u8d28\u4e0a\u662f\u4e00\u79cd\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u7b97\u6cd5\uff0c\u5b83\u5c1d\u8bd5\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\u76f4\u5230\u627e\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u3002\u8fd9\u79cd\u65b9\u6cd5\u7684\u4f18\u52bf\u5728\u4e8e\u5b83\u80fd\u591f\u627e\u5230\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u800c\u4e14\u5728\u5408\u7406\u7684\u526a\u679d\u64cd\u4f5c\u4e0b\uff0c\u5177\u6709\u5f88\u9ad8\u7684\u6548\u7387\u3002

            \u7136\u800c\uff0c\u5728\u5904\u7406\u5927\u89c4\u6a21\u6216\u8005\u590d\u6742\u95ee\u9898\u65f6\uff0c\u56de\u6eaf\u7b97\u6cd5\u7684\u8fd0\u884c\u6548\u7387\u53ef\u80fd\u96be\u4ee5\u63a5\u53d7\u3002

            • \u65f6\u95f4\uff1a\u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u9700\u8981\u904d\u5386\u72b6\u6001\u7a7a\u95f4\u7684\u6240\u6709\u53ef\u80fd\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230\u6307\u6570\u9636\u6216\u9636\u4e58\u9636\u3002
            • \u7a7a\u95f4\uff1a\u5728\u9012\u5f52\u8c03\u7528\u4e2d\u9700\u8981\u4fdd\u5b58\u5f53\u524d\u7684\u72b6\u6001\uff08\u4f8b\u5982\u8def\u5f84\u3001\u7528\u4e8e\u526a\u679d\u7684\u8f85\u52a9\u53d8\u91cf\u7b49\uff09\uff0c\u5f53\u6df1\u5ea6\u5f88\u5927\u65f6\uff0c\u7a7a\u95f4\u9700\u6c42\u53ef\u80fd\u4f1a\u53d8\u5f97\u5f88\u5927\u3002

            \u5373\u4fbf\u5982\u6b64\uff0c\u56de\u6eaf\u7b97\u6cd5\u4ecd\u7136\u662f\u67d0\u4e9b\u641c\u7d22\u95ee\u9898\u548c\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u7684\u6700\u4f73\u89e3\u51b3\u65b9\u6848\u3002\u5bf9\u4e8e\u8fd9\u4e9b\u95ee\u9898\uff0c\u7531\u4e8e\u65e0\u6cd5\u9884\u6d4b\u54ea\u4e9b\u9009\u62e9\u53ef\u751f\u6210\u6709\u6548\u7684\u89e3\uff0c\u56e0\u6b64\u6211\u4eec\u5fc5\u987b\u5bf9\u6240\u6709\u53ef\u80fd\u7684\u9009\u62e9\u8fdb\u884c\u904d\u5386\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u5173\u952e\u662f\u5982\u4f55\u8fdb\u884c\u6548\u7387\u4f18\u5316\uff0c\u5e38\u89c1\u65b9\u6cd5\u6709\uff1a

            • \u526a\u679d\uff1a\u907f\u514d\u641c\u7d22\u90a3\u4e9b\u80af\u5b9a\u4e0d\u4f1a\u4ea7\u751f\u89e3\u7684\u8def\u5f84\uff0c\u4ece\u800c\u8282\u7701\u65f6\u95f4\u548c\u7a7a\u95f4\u3002
            • \u542f\u53d1\u5f0f\u641c\u7d22\uff1a\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u5f15\u5165\u4e00\u4e9b\u7b56\u7565\u6216\u8005\u4f30\u8ba1\u503c\uff0c\u4ece\u800c\u4f18\u5148\u641c\u7d22\u6700\u6709\u53ef\u80fd\u4ea7\u751f\u6709\u6548\u89e3\u7684\u8def\u5f84\u3002
            "},{"location":"chapter_backtracking/backtracking_algorithm/#1316","title":"13.1.6 \u00a0 \u56de\u6eaf\u5178\u578b\u4f8b\u9898","text":"

            \u56de\u6eaf\u7b97\u6cd5\u53ef\u7528\u4e8e\u89e3\u51b3\u8bb8\u591a\u641c\u7d22\u95ee\u9898\u3001\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u548c\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u3002

            \u641c\u7d22\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u5230\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u89e3\u51b3\u65b9\u6848\u3002

            • \u5168\u6392\u5217\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\uff0c\u6c42\u51fa\u5176\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u7ec4\u5408\u3002
            • \u5b50\u96c6\u548c\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\u548c\u4e00\u4e2a\u76ee\u6807\u548c\uff0c\u627e\u5230\u96c6\u5408\u4e2d\u6240\u6709\u548c\u4e3a\u76ee\u6807\u548c\u7684\u5b50\u96c6\u3002
            • \u6c49\u8bfa\u5854\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e09\u4e2a\u67f1\u5b50\u548c\u4e00\u7cfb\u5217\u5927\u5c0f\u4e0d\u540c\u7684\u5706\u76d8\uff0c\u8981\u6c42\u5c06\u6240\u6709\u5706\u76d8\u4ece\u4e00\u4e2a\u67f1\u5b50\u79fb\u52a8\u5230\u53e6\u4e00\u4e2a\u67f1\u5b50\uff0c\u6bcf\u6b21\u53ea\u80fd\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\uff0c\u4e14\u4e0d\u80fd\u5c06\u5927\u5706\u76d8\u653e\u5728\u5c0f\u5706\u76d8\u4e0a\u3002

            \u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u5230\u6ee1\u8db3\u6240\u6709\u7ea6\u675f\u6761\u4ef6\u7684\u89e3\u3002

            • \\(n\\) \u7687\u540e\uff1a\u5728 \\(n \\times n\\) \u7684\u68cb\u76d8\u4e0a\u653e\u7f6e \\(n\\) \u4e2a\u7687\u540e\uff0c\u4f7f\u5f97\u5b83\u4eec\u4e92\u4e0d\u653b\u51fb\u3002
            • \u6570\u72ec\uff1a\u5728 \\(9 \\times 9\\) \u7684\u7f51\u683c\u4e2d\u586b\u5165\u6570\u5b57 \\(1\\) ~ \\(9\\) \uff0c\u4f7f\u5f97\u6bcf\u884c\u3001\u6bcf\u5217\u548c\u6bcf\u4e2a \\(3 \\times 3\\) \u5b50\u7f51\u683c\u4e2d\u7684\u6570\u5b57\u4e0d\u91cd\u590d\u3002
            • \u56fe\u7740\u8272\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u65e0\u5411\u56fe\uff0c\u7528\u6700\u5c11\u7684\u989c\u8272\u7ed9\u56fe\u7684\u6bcf\u4e2a\u9876\u70b9\u7740\u8272\uff0c\u4f7f\u5f97\u76f8\u90bb\u9876\u70b9\u989c\u8272\u4e0d\u540c\u3002

            \u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff1a\u8fd9\u7c7b\u95ee\u9898\u7684\u76ee\u6807\u662f\u5728\u4e00\u4e2a\u7ec4\u5408\u7a7a\u95f4\u4e2d\u627e\u5230\u6ee1\u8db3\u67d0\u4e9b\u6761\u4ef6\u7684\u6700\u4f18\u89e3\u3002

            • 0-1 \u80cc\u5305\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u7269\u54c1\u548c\u4e00\u4e2a\u80cc\u5305\uff0c\u6bcf\u4e2a\u7269\u54c1\u6709\u4e00\u5b9a\u7684\u4ef7\u503c\u548c\u91cd\u91cf\uff0c\u8981\u6c42\u5728\u80cc\u5305\u5bb9\u91cf\u9650\u5236\u5185\uff0c\u9009\u62e9\u7269\u54c1\u4f7f\u5f97\u603b\u4ef7\u503c\u6700\u5927\u3002
            • \u65c5\u884c\u5546\u95ee\u9898\uff1a\u5728\u4e00\u4e2a\u56fe\u4e2d\uff0c\u4ece\u4e00\u4e2a\u70b9\u51fa\u53d1\uff0c\u8bbf\u95ee\u6240\u6709\u5176\u4ed6\u70b9\u6070\u597d\u4e00\u6b21\u540e\u8fd4\u56de\u8d77\u70b9\uff0c\u6c42\u6700\u77ed\u8def\u5f84\u3002
            • \u6700\u5927\u56e2\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u65e0\u5411\u56fe\uff0c\u627e\u5230\u6700\u5927\u7684\u5b8c\u5168\u5b50\u56fe\uff0c\u5373\u5b50\u56fe\u4e2d\u7684\u4efb\u610f\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u90fd\u6709\u8fb9\u76f8\u8fde\u3002

            \u8bf7\u6ce8\u610f\uff0c\u5bf9\u4e8e\u8bb8\u591a\u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff0c\u56de\u6eaf\u90fd\u4e0d\u662f\u6700\u4f18\u89e3\u51b3\u65b9\u6848\uff0c\u4f8b\u5982\uff1a

            • 0-1 \u80cc\u5305\u95ee\u9898\u901a\u5e38\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u89e3\u51b3\uff0c\u4ee5\u8fbe\u5230\u66f4\u9ad8\u7684\u65f6\u95f4\u6548\u7387\u3002
            • \u65c5\u884c\u5546\u662f\u4e00\u4e2a\u8457\u540d\u7684 NP-Hard \u95ee\u9898\uff0c\u5e38\u7528\u89e3\u6cd5\u6709\u9057\u4f20\u7b97\u6cd5\u548c\u8681\u7fa4\u7b97\u6cd5\u7b49\u3002
            • \u6700\u5927\u56e2\u95ee\u9898\u662f\u56fe\u8bba\u4e2d\u7684\u4e00\u4e2a\u7ecf\u5178\u95ee\u9898\uff0c\u53ef\u7528\u8d2a\u5fc3\u7b49\u542f\u53d1\u5f0f\u7b97\u6cd5\u6765\u89e3\u51b3\u3002
            "},{"location":"chapter_backtracking/n_queens_problem/","title":"13.4 \u00a0 N \u7687\u540e\u95ee\u9898","text":"

            Question

            \u6839\u636e\u56fd\u9645\u8c61\u68cb\u7684\u89c4\u5219\uff0c\u7687\u540e\u53ef\u4ee5\u653b\u51fb\u4e0e\u4e4b\u5904\u5728\u540c\u4e00\u884c\u6216\u540c\u4e00\u5217\u6216\u540c\u4e00\u659c\u7ebf\u4e0a\u7684\u68cb\u5b50\u3002\u7ed9\u5b9a \\(n\\) \u4e2a\u7687\u540e\u548c\u4e00\u4e2a \\(n \\times n\\) \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5bfb\u627e\u4f7f\u5f97\u6240\u6709\u7687\u540e\u4e4b\u95f4\u65e0\u6cd5\u76f8\u4e92\u653b\u51fb\u7684\u6446\u653e\u65b9\u6848\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5f53 \\(n = 4\\) \u65f6\uff0c\u5171\u53ef\u4ee5\u627e\u5230\u4e24\u4e2a\u89e3\u3002\u4ece\u56de\u6eaf\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\\(n \\times n\\) \u5927\u5c0f\u7684\u68cb\u76d8\u5171\u6709 \\(n^2\\) \u4e2a\u683c\u5b50\uff0c\u7ed9\u51fa\u4e86\u6240\u6709\u7684\u9009\u62e9 choices \u3002\u5728\u9010\u4e2a\u653e\u7f6e\u7687\u540e\u7684\u8fc7\u7a0b\u4e2d\uff0c\u68cb\u76d8\u72b6\u6001\u5728\u4e0d\u65ad\u5730\u53d8\u5316\uff0c\u6bcf\u4e2a\u65f6\u523b\u7684\u68cb\u76d8\u5c31\u662f\u72b6\u6001 state \u3002

            \u56fe\uff1a4 \u7687\u540e\u95ee\u9898\u7684\u89e3

            \u672c\u9898\u5171\u5305\u542b\u4e09\u4e2a\u7ea6\u675f\u6761\u4ef6\uff1a\u591a\u4e2a\u7687\u540e\u4e0d\u80fd\u5728\u540c\u4e00\u884c\u3001\u540c\u4e00\u5217\u3001\u540c\u4e00\u5bf9\u89d2\u7ebf\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u5bf9\u89d2\u7ebf\u5206\u4e3a\u4e3b\u5bf9\u89d2\u7ebf \\ \u548c\u6b21\u5bf9\u89d2\u7ebf / \u4e24\u79cd\u3002

            \u56fe\uff1an \u7687\u540e\u95ee\u9898\u7684\u7ea6\u675f\u6761\u4ef6

            "},{"location":"chapter_backtracking/n_queens_problem/#1","title":"1. \u00a0 \u9010\u884c\u653e\u7f6e\u7b56\u7565","text":"

            \u7687\u540e\u7684\u6570\u91cf\u548c\u68cb\u76d8\u7684\u884c\u6570\u90fd\u4e3a \\(n\\) \uff0c\u56e0\u6b64\u6211\u4eec\u5bb9\u6613\u5f97\u5230\u4e00\u4e2a\u63a8\u8bba\uff1a\u68cb\u76d8\u6bcf\u884c\u90fd\u5141\u8bb8\u4e14\u53ea\u5141\u8bb8\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\u3002

            \u4e5f\u5c31\u662f\u8bf4\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u53d6\u9010\u884c\u653e\u7f6e\u7b56\u7565\uff1a\u4ece\u7b2c\u4e00\u884c\u5f00\u59cb\uff0c\u5728\u6bcf\u884c\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\uff0c\u76f4\u81f3\u6700\u540e\u4e00\u884c\u7ed3\u675f\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u4e3a \\(4\\) \u7687\u540e\u95ee\u9898\u7684\u9010\u884c\u653e\u7f6e\u8fc7\u7a0b\u3002\u53d7\u753b\u5e45\u9650\u5236\uff0c\u4e0b\u56fe\u4ec5\u5c55\u5f00\u4e86\u7b2c\u4e00\u884c\u7684\u5176\u4e2d\u4e00\u4e2a\u641c\u7d22\u5206\u652f\uff0c\u5e76\u4e14\u5c06\u4e0d\u6ee1\u8db3\u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u65b9\u6848\u90fd\u8fdb\u884c\u4e86\u526a\u679d\u3002

            \u56fe\uff1a\u9010\u884c\u653e\u7f6e\u7b56\u7565

            \u672c\u8d28\u4e0a\u770b\uff0c\u9010\u884c\u653e\u7f6e\u7b56\u7565\u8d77\u5230\u4e86\u526a\u679d\u7684\u4f5c\u7528\uff0c\u5b83\u907f\u514d\u4e86\u540c\u4e00\u884c\u51fa\u73b0\u591a\u4e2a\u7687\u540e\u7684\u6240\u6709\u641c\u7d22\u5206\u652f\u3002

            "},{"location":"chapter_backtracking/n_queens_problem/#2","title":"2. \u00a0 \u5217\u4e0e\u5bf9\u89d2\u7ebf\u526a\u679d","text":"

            \u4e3a\u4e86\u6ee1\u8db3\u5217\u7ea6\u675f\uff0c\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u5e03\u5c14\u578b\u6570\u7ec4 cols \u8bb0\u5f55\u6bcf\u4e00\u5217\u662f\u5426\u6709\u7687\u540e\u3002\u5728\u6bcf\u6b21\u51b3\u5b9a\u653e\u7f6e\u524d\uff0c\u6211\u4eec\u901a\u8fc7 cols \u5c06\u5df2\u6709\u7687\u540e\u7684\u5217\u8fdb\u884c\u526a\u679d\uff0c\u5e76\u5728\u56de\u6eaf\u4e2d\u52a8\u6001\u66f4\u65b0 cols \u7684\u72b6\u6001\u3002

            \u90a3\u4e48\uff0c\u5982\u4f55\u5904\u7406\u5bf9\u89d2\u7ebf\u7ea6\u675f\u5462\uff1f\u8bbe\u68cb\u76d8\u4e2d\u67d0\u4e2a\u683c\u5b50\u7684\u884c\u5217\u7d22\u5f15\u4e3a \\((row, col)\\) \uff0c\u9009\u5b9a\u77e9\u9635\u4e2d\u7684\u67d0\u6761\u4e3b\u5bf9\u89d2\u7ebf\uff0c\u6211\u4eec\u53d1\u73b0\u8be5\u5bf9\u89d2\u7ebf\u4e0a\u6240\u6709\u683c\u5b50\u7684\u884c\u7d22\u5f15\u51cf\u5217\u7d22\u5f15\u90fd\u76f8\u7b49\uff0c\u5373\u5bf9\u89d2\u7ebf\u4e0a\u6240\u6709\u683c\u5b50\u7684 \\(row - col\\) \u4e3a\u6052\u5b9a\u503c\u3002

            \u4e5f\u5c31\u662f\u8bf4\uff0c\u5982\u679c\u4e24\u4e2a\u683c\u5b50\u6ee1\u8db3 \\(row_1 - col_1 = row_2 - col_2\\) \uff0c\u5219\u5b83\u4eec\u4e00\u5b9a\u5904\u5728\u540c\u4e00\u6761\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u3002\u5229\u7528\u8be5\u89c4\u5f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u501f\u52a9\u4e00\u4e2a\u6570\u7ec4 diag1 \u6765\u8bb0\u5f55\u6bcf\u6761\u4e3b\u5bf9\u89d2\u7ebf\u4e0a\u662f\u5426\u6709\u7687\u540e\u3002

            \u540c\u7406\uff0c\u6b21\u5bf9\u89d2\u7ebf\u4e0a\u7684\u6240\u6709\u683c\u5b50\u7684 \\(row + col\\) \u662f\u6052\u5b9a\u503c\u3002\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u76f8\u540c\u65b9\u6cd5\uff0c\u501f\u52a9\u6570\u7ec4 diag2 \u6765\u5904\u7406\u6b21\u5bf9\u89d2\u7ebf\u7ea6\u675f\u3002

            \u56fe\uff1a\u5904\u7406\u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f

            "},{"location":"chapter_backtracking/n_queens_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u8bf7\u6ce8\u610f\uff0c\\(n\\) \u7ef4\u65b9\u9635\u4e2d \\(row - col\\) \u7684\u8303\u56f4\u662f \\([-n + 1, n - 1]\\) \uff0c\\(row + col\\) \u7684\u8303\u56f4\u662f \\([0, 2n - 2]\\) \uff0c\u6240\u4ee5\u4e3b\u5bf9\u89d2\u7ebf\u548c\u6b21\u5bf9\u89d2\u7ebf\u7684\u6570\u91cf\u90fd\u4e3a \\(2n - 1\\) \uff0c\u5373\u6570\u7ec4 diag1 \u548c diag2 \u7684\u957f\u5ea6\u90fd\u4e3a \\(2n - 1\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust n_queens.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, List<List<String>> state, List<List<List<String>>> res,\nboolean[] cols, boolean[] diags1, boolean[] diags2) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row == n) {\nList<List<String>> copyState = new ArrayList<>();\nfor (List<String> sRow : state) {\ncopyState.add(new ArrayList<>(sRow));\n}\nres.add(copyState);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (int col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nint diag1 = row - col + n - 1;\nint diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate.get(row).set(col, \"Q\");\ncols[col] = diags1[diag1] = diags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate.get(row).set(col, \"#\");\ncols[col] = diags1[diag1] = diags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<String>>> nQueens(int n) {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nList<List<String>> state = new ArrayList<>();\nfor (int i = 0; i < n; i++) {\nList<String> row = new ArrayList<>();\nfor (int j = 0; j < n; j++) {\nrow.add(\"#\");\n}\nstate.add(row);\n}\nboolean[] cols = new boolean[n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nboolean[] diags1 = new boolean[2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nboolean[] diags2 = new boolean[2 * n - 1]; // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nList<List<List<String>>> res = new ArrayList<>();\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, vector<vector<string>> &state, vector<vector<vector<string>>> &res, vector<bool> &cols,\nvector<bool> &diags1, vector<bool> &diags2) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row == n) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (int col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nint diag1 = row - col + n - 1;\nint diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = \"Q\";\ncols[col] = diags1[diag1] = diags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = \"#\";\ncols[col] = diags1[diag1] = diags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nvector<vector<vector<string>>> nQueens(int n) {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nvector<vector<string>> state(n, vector<string>(n, \"#\"));\nvector<bool> cols(n, false);           // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nvector<bool> diags1(2 * n - 1, false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nvector<bool> diags2(2 * n - 1, false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nvector<vector<vector<string>>> res;\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.py
            def backtrack(\nrow: int,\nn: int,\nstate: list[list[str]],\nres: list[list[list[str]]],\ncols: list[bool],\ndiags1: list[bool],\ndiags2: list[bool],\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e\"\"\"\n# \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif row == n:\nres.append([list(row) for row in state])\nreturn\n# \u904d\u5386\u6240\u6709\u5217\nfor col in range(n):\n# \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\ndiag1 = row - col + n - 1\ndiag2 = row + col\n# \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif not cols[col] and not diags1[diag1] and not diags2[diag2]:\n# \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = \"Q\"\ncols[col] = diags1[diag1] = diags2[diag2] = True\n# \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2)\n# \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = \"#\"\ncols[col] = diags1[diag1] = diags2[diag2] = False\ndef n_queens(n: int) -> list[list[list[str]]]:\n\"\"\"\u6c42\u89e3 N \u7687\u540e\"\"\"\n# \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nstate = [[\"#\" for _ in range(n)] for _ in range(n)]\ncols = [False] * n  # \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\ndiags1 = [False] * (2 * n - 1)  # \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\ndiags2 = [False] * (2 * n - 1)  # \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nres = []\nbacktrack(0, n, state, res, cols, diags1, diags2)\nreturn res\n
            n_queens.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif row == n {\nnewState := make([][]string, len(*state))\nfor i, _ := range newState {\nnewState[i] = make([]string, len((*state)[0]))\ncopy(newState[i], (*state)[i])\n}\n*res = append(*res, newState)\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor col := 0; col < n; col++ {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\ndiag1 := row - col + n - 1\ndiag2 := row + col\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n(*state)[row][col] = \"Q\"\n(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row+1, n, state, res, cols, diags1, diags2)\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n(*state)[row][col] = \"#\"\n(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false\n}\n}\n}\n/* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row, n int, state *[][]string, res *[][][]string, cols, diags1, diags2 *[]bool) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif row == n {\nnewState := make([][]string, len(*state))\nfor i, _ := range newState {\nnewState[i] = make([]string, len((*state)[0]))\ncopy(newState[i], (*state)[i])\n}\n*res = append(*res, newState)\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor col := 0; col < n; col++ {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\ndiag1 := row - col + n - 1\ndiag2 := row + col\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif !(*cols)[col] && !(*diags1)[diag1] && !(*diags2)[diag2] {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\n(*state)[row][col] = \"Q\"\n(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = true, true, true\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row+1, n, state, res, cols, diags1, diags2)\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\n(*state)[row][col] = \"#\"\n(*cols)[col], (*diags1)[diag1], (*diags2)[diag2] = false, false, false\n}\n}\n}\nfunc nQueens(n int) [][][]string {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nstate := make([][]string, n)\nfor i := 0; i < n; i++ {\nrow := make([]string, n)\nfor i := 0; i < n; i++ {\nrow[i] = \"#\"\n}\nstate[i] = row\n}\n// \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\ncols := make([]bool, n)\ndiags1 := make([]bool, 2*n-1)\ndiags2 := make([]bool, 2*n-1)\nres := make([][][]string, 0)\nbacktrack(0, n, &state, &res, &cols, &diags1, &diags2)\nreturn res\n}\n
            n_queens.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunction backtrack(row, n, state, res, cols, diags1, diags2) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row === n) {\nres.push(state.map((row) => row.slice()));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (let col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nconst diag1 = row - col + n - 1;\nconst diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = 'Q';\ncols[col] = diags1[diag1] = diags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = '#';\ncols[col] = diags1[diag1] = diags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nfunction nQueens(n) {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nconst state = Array.from({ length: n }, () => Array(n).fill('#'));\nconst cols = Array(n).fill(false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nconst diags1 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nconst diags2 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nconst res = [];\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunction backtrack(\nrow: number,\nn: number,\nstate: string[][],\nres: string[][][],\ncols: boolean[],\ndiags1: boolean[],\ndiags2: boolean[]\n): void {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row === n) {\nres.push(state.map((row) => row.slice()));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (let col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nconst diag1 = row - col + n - 1;\nconst diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = 'Q';\ncols[col] = diags1[diag1] = diags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = '#';\ncols[col] = diags1[diag1] = diags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nfunction nQueens(n: number): string[][][] {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nconst state = Array.from({ length: n }, () => Array(n).fill('#'));\nconst cols = Array(n).fill(false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nconst diags1 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nconst diags2 = Array(2 * n - 1).fill(false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nconst res: string[][][] = [];\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.c
            [class]{}-[func]{backtrack}\n[class]{}-[func]{nQueens}\n
            n_queens.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(int row, int n, List<List<string>> state, List<List<List<string>>> res,\nbool[] cols, bool[] diags1, bool[] diags2) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row == n) {\nList<List<string>> copyState = new List<List<string>>();\nforeach (List<string> sRow in state) {\ncopyState.Add(new List<string>(sRow));\n}\nres.Add(copyState);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (int col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nint diag1 = row - col + n - 1;\nint diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = \"Q\";\ncols[col] = diags1[diag1] = diags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = \"#\";\ncols[col] = diags1[diag1] = diags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<string>>> nQueens(int n) {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nList<List<string>> state = new List<List<string>>();\nfor (int i = 0; i < n; i++) {\nList<string> row = new List<string>();\nfor (int j = 0; j < n; j++) {\nrow.Add(\"#\");\n}\nstate.Add(row);\n}\nbool[] cols = new bool[n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nbool[] diags1 = new bool[2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nbool[] diags2 = new bool[2 * n - 1]; // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nList<List<List<string>>> res = new List<List<List<string>>>();\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfunc backtrack(row: Int, n: Int, state: inout [[String]], res: inout [[[String]]], cols: inout [Bool], diags1: inout [Bool], diags2: inout [Bool]) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif row == n {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor col in 0 ..< n {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nlet diag1 = row - col + n - 1\nlet diag2 = row + col\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif !cols[col] && !diags1[diag1] && !diags2[diag2] {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = \"Q\"\ncols[col] = true\ndiags1[diag1] = true\ndiags2[diag2] = true\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row: row + 1, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = \"#\"\ncols[col] = false\ndiags1[diag1] = false\ndiags2[diag2] = false\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nfunc nQueens(n: Int) -> [[[String]]] {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nvar state = Array(repeating: Array(repeating: \"#\", count: n), count: n)\nvar cols = Array(repeating: false, count: n) // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nvar diags1 = Array(repeating: false, count: 2 * n - 1) // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nvar diags2 = Array(repeating: false, count: 2 * n - 1) // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nvar res: [[[String]]] = []\nbacktrack(row: 0, n: n, state: &state, res: &res, cols: &cols, diags1: &diags1, diags2: &diags2)\nreturn res\n}\n
            n_queens.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{nQueens}\n
            n_queens.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nvoid backtrack(\nint row,\nint n,\nList<List<String>> state,\nList<List<List<String>>> res,\nList<bool> cols,\nList<bool> diags1,\nList<bool> diags2,\n) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (row == n) {\nList<List<String>> copyState = [];\nfor (List<String> sRow in state) {\ncopyState.add(List.from(sRow));\n}\nres.add(copyState);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor (int col = 0; col < n; col++) {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nint diag1 = row - col + n - 1;\nint diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif (!cols[col] && !diags1[diag1] && !diags2[diag2]) {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate[row][col] = \"Q\";\ncols[col] = true;\ndiags1[diag1] = true;\ndiags2[diag2] = true;\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate[row][col] = \"#\";\ncols[col] = false;\ndiags1[diag1] = false;\ndiags2[diag2] = false;\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nList<List<List<String>>> nQueens(int n) {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nList<List<String>> state = List.generate(n, (index) => List.filled(n, \"#\"));\nList<bool> cols = List.filled(n, false); // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nList<bool> diags1 = List.filled(2 * n - 1, false); // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nList<bool> diags2 = List.filled(2 * n - 1, false); // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nList<List<List<String>>> res = [];\nbacktrack(0, n, state, res, cols, diags1, diags2);\nreturn res;\n}\n
            n_queens.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1aN \u7687\u540e */\nfn backtrack(row: usize, n: usize, state: &mut Vec<Vec<String>>, res: &mut Vec<Vec<Vec<String>>>,\ncols: &mut [bool], diags1: &mut [bool], diags2: &mut [bool]) {\n// \u5f53\u653e\u7f6e\u5b8c\u6240\u6709\u884c\u65f6\uff0c\u8bb0\u5f55\u89e3\nif row == n {\nlet mut copy_state: Vec<Vec<String>> = Vec::new();\nfor s_row in state.clone() {\ncopy_state.push(s_row);\n}\nres.push(copy_state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u5217\nfor col in 0..n {\n// \u8ba1\u7b97\u8be5\u683c\u5b50\u5bf9\u5e94\u7684\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\nlet diag1 = row + n - 1 - col;\nlet diag2 = row + col;\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8be5\u683c\u5b50\u6240\u5728\u5217\u3001\u4e3b\u5bf9\u89d2\u7ebf\u3001\u526f\u5bf9\u89d2\u7ebf\u5b58\u5728\u7687\u540e\nif !cols[col] && !diags1[diag1] && !diags2[diag2] {\n// \u5c1d\u8bd5\uff1a\u5c06\u7687\u540e\u653e\u7f6e\u5728\u8be5\u683c\u5b50\nstate.get_mut(row).unwrap()[col] = \"Q\".into();\n(cols[col], diags1[diag1], diags2[diag2]) = (true, true, true);\n// \u653e\u7f6e\u4e0b\u4e00\u884c\nbacktrack(row + 1, n, state, res, cols, diags1, diags2);\n// \u56de\u9000\uff1a\u5c06\u8be5\u683c\u5b50\u6062\u590d\u4e3a\u7a7a\u4f4d\nstate.get_mut(row).unwrap()[col] = \"#\".into();\n(cols[col], diags1[diag1], diags2[diag2]) = (false, false, false);\n}\n}\n}\n/* \u6c42\u89e3 N \u7687\u540e */\nfn n_queens(n: usize) -> Vec<Vec<Vec<String>>> {\n// \u521d\u59cb\u5316 n*n \u5927\u5c0f\u7684\u68cb\u76d8\uff0c\u5176\u4e2d 'Q' \u4ee3\u8868\u7687\u540e\uff0c'#' \u4ee3\u8868\u7a7a\u4f4d\nlet mut state: Vec<Vec<String>> = Vec::new();\nfor _ in 0..n {\nlet mut row: Vec<String> = Vec::new();\nfor _ in 0..n {\nrow.push(\"#\".into());\n}\nstate.push(row);\n}\nlet mut cols = vec![false; n]; // \u8bb0\u5f55\u5217\u662f\u5426\u6709\u7687\u540e\nlet mut diags1 = vec![false; 2 * n - 1]; // \u8bb0\u5f55\u4e3b\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nlet mut diags2 = vec![false; 2 * n - 1]; // \u8bb0\u5f55\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u6709\u7687\u540e\nlet mut res: Vec<Vec<Vec<String>>> = Vec::new();\nbacktrack(0, n, &mut state, &mut res, &mut cols, &mut diags1, &mut diags2);\nres\n}\n

            \u9010\u884c\u653e\u7f6e \\(n\\) \u6b21\uff0c\u8003\u8651\u5217\u7ea6\u675f\uff0c\u5219\u4ece\u7b2c\u4e00\u884c\u5230\u6700\u540e\u4e00\u884c\u5206\u522b\u6709 \\(n, n-1, \\cdots, 2, 1\\) \u4e2a\u9009\u62e9\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n!)\\) \u3002\u5b9e\u9645\u4e0a\uff0c\u6839\u636e\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u526a\u679d\u4e5f\u80fd\u591f\u5927\u5e45\u5730\u7f29\u5c0f\u641c\u7d22\u7a7a\u95f4\uff0c\u56e0\u800c\u641c\u7d22\u6548\u7387\u5f80\u5f80\u4f18\u4e8e\u4ee5\u4e0a\u65f6\u95f4\u590d\u6742\u5ea6\u3002

            \u6570\u7ec4 state \u4f7f\u7528 \\(O(n^2)\\) \u7a7a\u95f4\uff0c\u6570\u7ec4 cols , diags1 , diags2 \u7686\u4f7f\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002\u6700\u5927\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002

            "},{"location":"chapter_backtracking/permutations_problem/","title":"13.2 \u00a0 \u5168\u6392\u5217\u95ee\u9898","text":"

            \u5168\u6392\u5217\u95ee\u9898\u662f\u56de\u6eaf\u7b97\u6cd5\u7684\u4e00\u4e2a\u5178\u578b\u5e94\u7528\u3002\u5b83\u7684\u5b9a\u4e49\u662f\u5728\u7ed9\u5b9a\u4e00\u4e2a\u96c6\u5408\uff08\u5982\u4e00\u4e2a\u6570\u7ec4\u6216\u5b57\u7b26\u4e32\uff09\u7684\u60c5\u51b5\u4e0b\uff0c\u627e\u51fa\u8fd9\u4e2a\u96c6\u5408\u4e2d\u5143\u7d20\u7684\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002

            \u4e0b\u8868\u5217\u4e3e\u4e86\u51e0\u4e2a\u793a\u4f8b\u6570\u636e\uff0c\u5305\u62ec\u8f93\u5165\u6570\u7ec4\u548c\u5bf9\u5e94\u7684\u6240\u6709\u6392\u5217\u3002

            \u8868\uff1a\u6570\u7ec4\u4e0e\u94fe\u8868\u7684\u6548\u7387\u5bf9\u6bd4

            \u8f93\u5165\u6570\u7ec4 \u6240\u6709\u6392\u5217 \\([1]\\) \\([1]\\) \\([1, 2]\\) \\([1, 2], [2, 1]\\) \\([1, 2, 3]\\) \\([1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]\\)"},{"location":"chapter_backtracking/permutations_problem/#1321","title":"13.2.1 \u00a0 \u65e0\u76f8\u7b49\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u8f93\u5165\u4e00\u4e2a\u6574\u6570\u6570\u7ec4\uff0c\u6570\u7ec4\u4e2d\u4e0d\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd4\u56de\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002

            \u4ece\u56de\u6eaf\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u751f\u6210\u6392\u5217\u7684\u8fc7\u7a0b\u60f3\u8c61\u6210\u4e00\u7cfb\u5217\u9009\u62e9\u7684\u7ed3\u679c\u3002\u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u4e3a \\([1, 2, 3]\\) \uff0c\u5982\u679c\u6211\u4eec\u5148\u9009\u62e9 \\(1\\) \u3001\u518d\u9009\u62e9 \\(3\\) \u3001\u6700\u540e\u9009\u62e9 \\(2\\) \uff0c\u5219\u83b7\u5f97\u6392\u5217 \\([1, 3, 2]\\) \u3002\u56de\u9000\u8868\u793a\u64a4\u9500\u4e00\u4e2a\u9009\u62e9\uff0c\u4e4b\u540e\u7ee7\u7eed\u5c1d\u8bd5\u5176\u4ed6\u9009\u62e9\u3002

            \u4ece\u56de\u6eaf\u4ee3\u7801\u7684\u89d2\u5ea6\u770b\uff0c\u5019\u9009\u96c6\u5408 choices \u662f\u8f93\u5165\u6570\u7ec4\u4e2d\u7684\u6240\u6709\u5143\u7d20\uff0c\u72b6\u6001 state \u662f\u76f4\u81f3\u76ee\u524d\u5df2\u88ab\u9009\u62e9\u7684\u5143\u7d20\u3002\u8bf7\u6ce8\u610f\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ea\u5141\u8bb8\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u56e0\u6b64 state \u4e2d\u7684\u6240\u6709\u5143\u7d20\u90fd\u5e94\u8be5\u662f\u552f\u4e00\u7684\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u641c\u7d22\u8fc7\u7a0b\u5c55\u5f00\u6210\u4e00\u4e2a\u9012\u5f52\u6811\uff0c\u6811\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u5f53\u524d\u72b6\u6001 state \u3002\u4ece\u6839\u8282\u70b9\u5f00\u59cb\uff0c\u7ecf\u8fc7\u4e09\u8f6e\u9009\u62e9\u540e\u5230\u8fbe\u53f6\u8282\u70b9\uff0c\u6bcf\u4e2a\u53f6\u8282\u70b9\u90fd\u5bf9\u5e94\u4e00\u4e2a\u6392\u5217\u3002

            \u56fe\uff1a\u5168\u6392\u5217\u7684\u9012\u5f52\u6811

            "},{"location":"chapter_backtracking/permutations_problem/#1","title":"1. \u00a0 \u91cd\u590d\u9009\u62e9\u526a\u679d","text":"

            \u4e3a\u4e86\u5b9e\u73b0\u6bcf\u4e2a\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u6211\u4eec\u8003\u8651\u5f15\u5165\u4e00\u4e2a\u5e03\u5c14\u578b\u6570\u7ec4 selected \uff0c\u5176\u4e2d selected[i] \u8868\u793a choices[i] \u662f\u5426\u5df2\u88ab\u9009\u62e9\u3002\u526a\u679d\u7684\u5b9e\u73b0\u539f\u7406\u4e3a\uff1a

            • \u5728\u505a\u51fa\u9009\u62e9 choice[i] \u540e\uff0c\u6211\u4eec\u5c31\u5c06 selected[i] \u8d4b\u503c\u4e3a \\(\\text{True}\\) \uff0c\u4ee3\u8868\u5b83\u5df2\u88ab\u9009\u62e9\u3002
            • \u904d\u5386\u9009\u62e9\u5217\u8868 choices \u65f6\uff0c\u8df3\u8fc7\u6240\u6709\u5df2\u88ab\u9009\u62e9\u8fc7\u7684\u8282\u70b9\uff0c\u5373\u526a\u679d\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5047\u8bbe\u6211\u4eec\u7b2c\u4e00\u8f6e\u9009\u62e9 1 \uff0c\u7b2c\u4e8c\u8f6e\u9009\u62e9 3 \uff0c\u7b2c\u4e09\u8f6e\u9009\u62e9 2 \uff0c\u5219\u9700\u8981\u5728\u7b2c\u4e8c\u8f6e\u526a\u6389\u5143\u7d20 1 \u7684\u5206\u652f\uff0c\u5728\u7b2c\u4e09\u8f6e\u526a\u6389\u5143\u7d20 1, 3 \u7684\u5206\u652f\u3002

            \u56fe\uff1a\u5168\u6392\u5217\u526a\u679d\u793a\u4f8b

            \u89c2\u5bdf\u4e0a\u56fe\u53d1\u73b0\uff0c\u8be5\u526a\u679d\u64cd\u4f5c\u5c06\u641c\u7d22\u7a7a\u95f4\u5927\u5c0f\u4ece \\(O(n^n)\\) \u964d\u4f4e\u81f3 \\(O(n!)\\) \u3002

            "},{"location":"chapter_backtracking/permutations_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u60f3\u6e05\u695a\u4ee5\u4e0a\u4fe1\u606f\u4e4b\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5728\u6846\u67b6\u4ee3\u7801\u4e2d\u505a\u201c\u5b8c\u5f62\u586b\u7a7a\u201d\u4e86\u3002\u4e3a\u4e86\u7f29\u77ed\u4ee3\u7801\u884c\u6570\uff0c\u6211\u4eec\u4e0d\u5355\u72ec\u5b9e\u73b0\u6846\u67b6\u4ee3\u7801\u4e2d\u7684\u5404\u4e2a\u51fd\u6570\uff0c\u800c\u662f\u5c06\u4ed6\u4eec\u5c55\u5f00\u5728 backtrack() \u51fd\u6570\u4e2d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust permutations_i.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.size() == choices.length) {\nres.add(new ArrayList<Integer>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.remove(state.size() - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nList<List<Integer>> permutationsI(int[] nums) {\nList<List<Integer>> res = new ArrayList<List<Integer>>();\nbacktrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);\nreturn res;\n}\n
            permutations_i.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.size() == choices.size()) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.size(); i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.push_back(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop_back();\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nvector<vector<int>> permutationsI(vector<int> nums) {\nvector<int> state;\nvector<bool> selected(nums.size(), false);\nvector<vector<int>> res;\nbacktrack(state, nums, selected, res);\nreturn res;\n}\n
            permutations_i.py
            def backtrack(\nstate: list[int], choices: list[int], selected: list[bool], res: list[list[int]]\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I\"\"\"\n# \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif len(state) == len(choices):\nres.append(list(state))\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i, choice in enumerate(choices):\n# \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20\nif not selected[i]:\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = True\nstate.append(choice)\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = False\nstate.pop()\ndef permutations_i(nums: list[int]) -> list[list[int]]:\n\"\"\"\u5168\u6392\u5217 I\"\"\"\nres = []\nbacktrack(state=[], choices=nums, selected=[False] * len(nums), res=res)\nreturn res\n
            permutations_i.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunc backtrackI(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif len(*state) == len(*choices) {\nnewState := append([]int{}, *state...)\n*res = append(*res, newState)\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i := 0; i < len(*choices); i++ {\nchoice := (*choices)[i]\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif !(*selected)[i] {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n(*selected)[i] = true\n*state = append(*state, choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrackI(state, choices, selected, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n(*selected)[i] = false\n*state = (*state)[:len(*state)-1]\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nfunc permutationsI(nums []int) [][]int {\nres := make([][]int, 0)\nstate := make([]int, 0)\nselected := make([]bool, len(nums))\nbacktrackI(&state, &nums, &selected, &res)\nreturn res\n}\n
            permutations_i.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunction backtrack(state, choices, selected, res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length === choices.length) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nchoices.forEach((choice, i) => {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop();\n}\n});\n}\n/* \u5168\u6392\u5217 I */\nfunction permutationsI(nums) {\nconst res = [];\nbacktrack([], nums, Array(nums.length).fill(false), res);\nreturn res;\n}\n
            permutations_i.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunction backtrack(\nstate: number[],\nchoices: number[],\nselected: boolean[],\nres: number[][]\n): void {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length === choices.length) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nchoices.forEach((choice, i) => {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop();\n}\n});\n}\n/* \u5168\u6392\u5217 I */\nfunction permutationsI(nums: number[]): number[][] {\nconst res: number[][] = [];\nbacktrack([], nums, Array(nums.length).fill(false), res);\nreturn res;\n}\n
            permutations_i.c
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(vector *state, vector *choices, vector *selected, vector *res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state->size == choices->size) {\nvector *newState = newVector();\nfor (int i = 0; i < state->size; i++) {\nvectorPushback(newState, state->data[i], sizeof(int));\n}\nvectorPushback(res, newState, sizeof(vector));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices->size; i++) {\nint *choice = malloc(sizeof(int));\n*choice = *((int *)(choices->data[i]));\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nbool select = *((bool *)(selected->data[i]));\nif (!select) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n*((bool *)selected->data[i]) = true;\nvectorPushback(state, choice, sizeof(int));\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n*((bool *)selected->data[i]) = false;\nvectorPopback(state);\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nvector *permutationsI(vector *nums) {\nvector *iState = newVector();\nint select[3] = {false, false, false};\nvector *bSelected = newVector();\nfor (int i = 0; i < nums->size; i++) {\nvectorPushback(bSelected, &select[i], sizeof(int));\n}\nvector *res = newVector();\n// \u524d\u5e8f\u904d\u5386\nbacktrack(iState, nums, bSelected, res);\nreturn res;\n}\n
            permutations_i.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.Count == choices.Length) {\nres.Add(new List<int>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.Length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.Add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.RemoveAt(state.Count - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nList<List<int>> permutationsI(int[] nums) {\nList<List<int>> res = new List<List<int>>();\nbacktrack(new List<int>(), nums, new bool[nums.Length], res);\nreturn res;\n}\n
            permutations_i.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfunc backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif state.count == choices.count {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (i, choice) in choices.enumerated() {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif !selected[i] {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true\nstate.append(choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, choices: choices, selected: &selected, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false\nstate.removeLast()\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nfunc permutationsI(nums: [Int]) -> [[Int]] {\nvar state: [Int] = []\nvar selected = Array(repeating: false, count: nums.count)\nvar res: [[Int]] = []\nbacktrack(state: &state, choices: nums, selected: &selected, res: &res)\nreturn res\n}\n
            permutations_i.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{permutationsI}\n
            permutations_i.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nvoid backtrack(\nList<int> state,\nList<int> choices,\nList<bool> selected,\nList<List<int>> res,\n) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length == choices.length) {\nres.add(List.from(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i]) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.removeLast();\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nList<List<int>> permutationsI(List<int> nums) {\nList<List<int>> res = [];\nbacktrack([], nums, List.filled(nums.length, false), res);\nreturn res;\n}\n
            permutations_i.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 I */\nfn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif state.len() == choices.len() {\nres.push(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i in 0..choices.len() {\nlet choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif !selected[i] {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state.clone(), choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.remove(state.len() - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 I */\nfn permutations_i(nums: &mut [i32]) -> Vec<Vec<i32>> {\nlet mut res = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nbacktrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);\nres\n}\n
            "},{"location":"chapter_backtracking/permutations_problem/#1322","title":"13.2.2 \u00a0 \u8003\u8651\u76f8\u7b49\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u8f93\u5165\u4e00\u4e2a\u6574\u6570\u6570\u7ec4\uff0c\u6570\u7ec4\u4e2d\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd4\u56de\u6240\u6709\u4e0d\u91cd\u590d\u7684\u6392\u5217\u3002

            \u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u4e3a \\([1, 1, 2]\\) \u3002\u4e3a\u4e86\u65b9\u4fbf\u533a\u5206\u4e24\u4e2a\u91cd\u590d\u5143\u7d20 \\(1\\) \uff0c\u6211\u4eec\u5c06\u7b2c\u4e8c\u4e2a \\(1\\) \u8bb0\u4e3a \\(\\hat{1}\\) \u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u4e0a\u8ff0\u65b9\u6cd5\u751f\u6210\u7684\u6392\u5217\u6709\u4e00\u534a\u90fd\u662f\u91cd\u590d\u7684\u3002

            \u56fe\uff1a\u91cd\u590d\u6392\u5217

            \u90a3\u4e48\u5982\u4f55\u53bb\u9664\u91cd\u590d\u7684\u6392\u5217\u5462\uff1f\u6700\u76f4\u63a5\u5730\uff0c\u8003\u8651\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\uff0c\u76f4\u63a5\u5bf9\u6392\u5217\u7ed3\u679c\u8fdb\u884c\u53bb\u91cd\u3002\u7136\u800c\u8fd9\u6837\u505a\u4e0d\u591f\u4f18\u96c5\uff0c\u56e0\u4e3a\u751f\u6210\u91cd\u590d\u6392\u5217\u7684\u641c\u7d22\u5206\u652f\u662f\u6ca1\u6709\u5fc5\u8981\u7684\uff0c\u5e94\u5f53\u88ab\u63d0\u524d\u8bc6\u522b\u5e76\u526a\u679d\uff0c\u8fd9\u6837\u53ef\u4ee5\u8fdb\u4e00\u6b65\u63d0\u5347\u7b97\u6cd5\u6548\u7387\u3002

            "},{"location":"chapter_backtracking/permutations_problem/#1_1","title":"1. \u00a0 \u76f8\u7b49\u5143\u7d20\u526a\u679d","text":"

            \u89c2\u5bdf\u53d1\u73b0\uff0c\u5728\u7b2c\u4e00\u8f6e\u4e2d\uff0c\u9009\u62e9 \\(1\\) \u6216\u9009\u62e9 \\(\\hat{1}\\) \u662f\u7b49\u4ef7\u7684\uff0c\u5728\u8fd9\u4e24\u4e2a\u9009\u62e9\u4e4b\u4e0b\u751f\u6210\u7684\u6240\u6709\u6392\u5217\u90fd\u662f\u91cd\u590d\u7684\u3002\u56e0\u6b64\u5e94\u8be5\u628a \\(\\hat{1}\\) \u526a\u679d\u6389\u3002

            \u540c\u7406\uff0c\u5728\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(2\\) \u540e\uff0c\u7b2c\u4e8c\u8f6e\u9009\u62e9\u4e2d\u7684 \\(1\\) \u548c \\(\\hat{1}\\) \u4e5f\u4f1a\u4ea7\u751f\u91cd\u590d\u5206\u652f\uff0c\u56e0\u6b64\u4e5f\u5e94\u5c06\u7b2c\u4e8c\u8f6e\u7684 \\(\\hat{1}\\) \u526a\u679d\u3002

            \u672c\u8d28\u4e0a\u770b\uff0c\u6211\u4eec\u7684\u76ee\u6807\u662f\u5728\u67d0\u4e00\u8f6e\u9009\u62e9\u4e2d\uff0c\u4fdd\u8bc1\u591a\u4e2a\u76f8\u7b49\u7684\u5143\u7d20\u4ec5\u88ab\u9009\u62e9\u4e00\u6b21\u3002

            \u56fe\uff1a\u91cd\u590d\u6392\u5217\u526a\u679d

            "},{"location":"chapter_backtracking/permutations_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u5728\u4e0a\u4e00\u9898\u7684\u4ee3\u7801\u7684\u57fa\u7840\u4e0a\uff0c\u6211\u4eec\u8003\u8651\u5728\u6bcf\u4e00\u8f6e\u9009\u62e9\u4e2d\u5f00\u542f\u4e00\u4e2a\u54c8\u5e0c\u8868 duplicated \uff0c\u7528\u4e8e\u8bb0\u5f55\u8be5\u8f6e\u4e2d\u5df2\u7ecf\u5c1d\u8bd5\u8fc7\u7684\u5143\u7d20\uff0c\u5e76\u5c06\u91cd\u590d\u5143\u7d20\u526a\u679d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust permutations_ii.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(List<Integer> state, int[] choices, boolean[] selected, List<List<Integer>> res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.size() == choices.length) {\nres.add(new ArrayList<Integer>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nSet<Integer> duplicated = new HashSet<Integer>();\nfor (int i = 0; i < choices.length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && !duplicated.contains(choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.remove(state.size() - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nList<List<Integer>> permutationsII(int[] nums) {\nList<List<Integer>> res = new ArrayList<List<Integer>>();\nbacktrack(new ArrayList<Integer>(), nums, new boolean[nums.length], res);\nreturn res;\n}\n
            permutations_ii.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(vector<int> &state, const vector<int> &choices, vector<bool> &selected, vector<vector<int>> &res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.size() == choices.size()) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nunordered_set<int> duplicated;\nfor (int i = 0; i < choices.size(); i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && duplicated.find(choice) == duplicated.end()) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.emplace(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.push_back(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop_back();\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nvector<vector<int>> permutationsII(vector<int> nums) {\nvector<int> state;\nvector<bool> selected(nums.size(), false);\nvector<vector<int>> res;\nbacktrack(state, nums, selected, res);\nreturn res;\n}\n
            permutations_ii.py
            def backtrack(\nstate: list[int], choices: list[int], selected: list[bool], res: list[list[int]]\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II\"\"\"\n# \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif len(state) == len(choices):\nres.append(list(state))\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nduplicated = set[int]()\nfor i, choice in enumerate(choices):\n# \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif not selected[i] and choice not in duplicated:\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.add(choice)  # \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = True\nstate.append(choice)\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = False\nstate.pop()\ndef permutations_ii(nums: list[int]) -> list[list[int]]:\n\"\"\"\u5168\u6392\u5217 II\"\"\"\nres = []\nbacktrack(state=[], choices=nums, selected=[False] * len(nums), res=res)\nreturn res\n
            permutations_ii.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunc backtrackII(state *[]int, choices *[]int, selected *[]bool, res *[][]int) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif len(*state) == len(*choices) {\nnewState := append([]int{}, *state...)\n*res = append(*res, newState)\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nduplicated := make(map[int]struct{}, 0)\nfor i := 0; i < len(*choices); i++ {\nchoice := (*choices)[i]\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif _, ok := duplicated[choice]; !ok && !(*selected)[i] {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\n// \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nduplicated[choice] = struct{}{}\n(*selected)[i] = true\n*state = append(*state, choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrackI(state, choices, selected, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n(*selected)[i] = false\n*state = (*state)[:len(*state)-1]\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nfunc permutationsII(nums []int) [][]int {\nres := make([][]int, 0)\nstate := make([]int, 0)\nselected := make([]bool, len(nums))\nbacktrackII(&state, &nums, &selected, &res)\nreturn res\n}\n
            permutations_ii.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunction backtrack(state, choices, selected, res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length === choices.length) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nconst duplicated = new Set();\nchoices.forEach((choice, i) => {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && !duplicated.has(choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop();\n}\n});\n}\n/* \u5168\u6392\u5217 II */\nfunction permutationsII(nums) {\nconst res = [];\nbacktrack([], nums, Array(nums.length).fill(false), res);\nreturn res;\n}\n
            permutations_ii.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunction backtrack(\nstate: number[],\nchoices: number[],\nselected: boolean[],\nres: number[][]\n): void {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length === choices.length) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nconst duplicated = new Set();\nchoices.forEach((choice, i) => {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && !duplicated.has(choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.pop();\n}\n});\n}\n/* \u5168\u6392\u5217 II */\nfunction permutationsII(nums: number[]): number[][] {\nconst res: number[][] = [];\nbacktrack([], nums, Array(nums.length).fill(false), res);\nreturn res;\n}\n
            permutations_ii.c
            [class]{}-[func]{backtrack}\n[class]{}-[func]{permutationsII}\n
            permutations_ii.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(List<int> state, int[] choices, bool[] selected, List<List<int>> res) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.Count == choices.Length) {\nres.Add(new List<int>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nISet<int> duplicated = new HashSet<int>();\nfor (int i = 0; i < choices.Length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && !duplicated.Contains(choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.Add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.Add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.RemoveAt(state.Count - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nList<List<int>> permutationsII(int[] nums) {\nList<List<int>> res = new List<List<int>>();\nbacktrack(new List<int>(), nums, new bool[nums.Length], res);\nreturn res;\n}\n
            permutations_ii.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfunc backtrack(state: inout [Int], choices: [Int], selected: inout [Bool], res: inout [[Int]]) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif state.count == choices.count {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nvar duplicated: Set<Int> = []\nfor (i, choice) in choices.enumerated() {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif !selected[i], !duplicated.contains(choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.insert(choice) // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true\nstate.append(choice)\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, choices: choices, selected: &selected, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false\nstate.removeLast()\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nfunc permutationsII(nums: [Int]) -> [[Int]] {\nvar state: [Int] = []\nvar selected = Array(repeating: false, count: nums.count)\nvar res: [[Int]] = []\nbacktrack(state: &state, choices: nums, selected: &selected, res: &res)\nreturn res\n}\n
            permutations_ii.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{permutationsII}\n
            permutations_ii.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nvoid backtrack(\nList<int> state,\nList<int> choices,\nList<bool> selected,\nList<List<int>> res,\n) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif (state.length == choices.length) {\nres.add(List.from(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nSet<int> duplicated = {};\nfor (int i = 0; i < choices.length; i++) {\nint choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif (!selected[i] && !duplicated.contains(choice)) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.add(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.add(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.removeLast();\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nList<List<int>> permutationsII(List<int> nums) {\nList<List<int>> res = [];\nbacktrack([], nums, List.filled(nums.length, false), res);\nreturn res;\n}\n
            permutations_ii.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5168\u6392\u5217 II */\nfn backtrack(mut state: Vec<i32>, choices: &[i32], selected: &mut [bool], res: &mut Vec<Vec<i32>>) {\n// \u5f53\u72b6\u6001\u957f\u5ea6\u7b49\u4e8e\u5143\u7d20\u6570\u91cf\u65f6\uff0c\u8bb0\u5f55\u89e3\nif state.len() == choices.len() {\nres.push(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nlet mut duplicated = HashSet::<i32>::new();\nfor i in 0..choices.len() {\nlet choice = choices[i];\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u5143\u7d20 \u4e14 \u4e0d\u5141\u8bb8\u91cd\u590d\u9009\u62e9\u76f8\u7b49\u5143\u7d20\nif !selected[i] && !duplicated.contains(&choice) {\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nduplicated.insert(choice); // \u8bb0\u5f55\u9009\u62e9\u8fc7\u7684\u5143\u7d20\u503c\nselected[i] = true;\nstate.push(choice);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state.clone(), choices, selected, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nselected[i] = false;\nstate.remove(state.len() - 1);\n}\n}\n}\n/* \u5168\u6392\u5217 II */\nfn permutations_ii(nums: &mut [i32]) -> Vec<Vec<i32>> {\nlet mut res = Vec::new();\nbacktrack(Vec::new(), nums, &mut vec![false; nums.len()], &mut res);\nres\n}\n

            \u5047\u8bbe\u5143\u7d20\u4e24\u4e24\u4e4b\u95f4\u4e92\u4e0d\u76f8\u540c\uff0c\u5219 \\(n\\) \u4e2a\u5143\u7d20\u5171\u6709 \\(n!\\) \u79cd\u6392\u5217\uff08\u9636\u4e58\uff09\uff1b\u5728\u8bb0\u5f55\u7ed3\u679c\u65f6\uff0c\u9700\u8981\u590d\u5236\u957f\u5ea6\u4e3a \\(n\\) \u7684\u5217\u8868\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002\u56e0\u6b64\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n!n)\\) \u3002

            \u6700\u5927\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002selected \u4f7f\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002\u540c\u4e00\u65f6\u523b\u6700\u591a\u5171\u6709 \\(n\\) \u4e2a duplicated \uff0c\u4f7f\u7528 \\(O(n^2)\\) \u7a7a\u95f4\u3002\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002

            "},{"location":"chapter_backtracking/permutations_problem/#3","title":"3. \u00a0 \u4e24\u79cd\u526a\u679d\u5bf9\u6bd4","text":"

            \u8bf7\u6ce8\u610f\uff0c\u867d\u7136 selected \u548c duplicated \u90fd\u7528\u4f5c\u526a\u679d\uff0c\u4f46\u4e24\u8005\u7684\u76ee\u6807\u4e0d\u540c\uff1a

            • \u91cd\u590d\u9009\u62e9\u526a\u679d\uff1a\u6574\u4e2a\u641c\u7d22\u8fc7\u7a0b\u4e2d\u53ea\u6709\u4e00\u4e2a selected \u3002\u5b83\u8bb0\u5f55\u7684\u662f\u5f53\u524d\u72b6\u6001\u4e2d\u5305\u542b\u54ea\u4e9b\u5143\u7d20\uff0c\u4f5c\u7528\u662f\u907f\u514d\u67d0\u4e2a\u5143\u7d20\u5728 state \u4e2d\u91cd\u590d\u51fa\u73b0\u3002
            • \u76f8\u7b49\u5143\u7d20\u526a\u679d\uff1a\u6bcf\u8f6e\u9009\u62e9\uff08\u5373\u6bcf\u4e2a\u5f00\u542f\u7684 backtrack \u51fd\u6570\uff09\u90fd\u5305\u542b\u4e00\u4e2a duplicated \u3002\u5b83\u8bb0\u5f55\u7684\u662f\u5728\u904d\u5386\u4e2d\u54ea\u4e9b\u5143\u7d20\u5df2\u88ab\u9009\u62e9\u8fc7\uff0c\u4f5c\u7528\u662f\u4fdd\u8bc1\u76f8\u7b49\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\u3002

            \u4e0b\u56fe\u5c55\u793a\u4e86\u4e24\u4e2a\u526a\u679d\u6761\u4ef6\u7684\u751f\u6548\u8303\u56f4\u3002\u6ce8\u610f\uff0c\u6811\u4e2d\u7684\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u9009\u62e9\uff0c\u4ece\u6839\u8282\u70b9\u5230\u53f6\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u7684\u5404\u4e2a\u8282\u70b9\u6784\u6210\u4e00\u4e2a\u6392\u5217\u3002

            \u56fe\uff1a\u4e24\u79cd\u526a\u679d\u6761\u4ef6\u7684\u4f5c\u7528\u8303\u56f4

            "},{"location":"chapter_backtracking/subset_sum_problem/","title":"13.3 \u00a0 \u5b50\u96c6\u548c\u95ee\u9898","text":""},{"location":"chapter_backtracking/subset_sum_problem/#1331","title":"13.3.1 \u00a0 \u65e0\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u6b63\u6574\u6570 target \uff0c\u8bf7\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\uff0c\u4f7f\u5f97\u7ec4\u5408\u4e2d\u7684\u5143\u7d20\u548c\u7b49\u4e8e target \u3002\u7ed9\u5b9a\u6570\u7ec4\u65e0\u91cd\u590d\u5143\u7d20\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ef\u4ee5\u88ab\u9009\u53d6\u591a\u6b21\u3002\u8bf7\u4ee5\u5217\u8868\u5f62\u5f0f\u8fd4\u56de\u8fd9\u4e9b\u7ec4\u5408\uff0c\u5217\u8868\u4e2d\u4e0d\u5e94\u5305\u542b\u91cd\u590d\u7ec4\u5408\u3002

            \u4f8b\u5982\uff0c\u8f93\u5165\u96c6\u5408 \\(\\{3, 4, 5\\}\\) \u548c\u76ee\u6807\u6574\u6570 \\(9\\) \uff0c\u89e3\u4e3a \\(\\{3, 3, 3\\}, \\{4, 5\\}\\) \u3002\u9700\u8981\u6ce8\u610f\u4e24\u70b9\uff1a

            • \u8f93\u5165\u96c6\u5408\u4e2d\u7684\u5143\u7d20\u53ef\u4ee5\u88ab\u65e0\u9650\u6b21\u91cd\u590d\u9009\u53d6\u3002
            • \u5b50\u96c6\u662f\u4e0d\u533a\u5206\u5143\u7d20\u987a\u5e8f\u7684\uff0c\u6bd4\u5982 \\(\\{4, 5\\}\\) \u548c \\(\\{5, 4\\}\\) \u662f\u540c\u4e00\u4e2a\u5b50\u96c6\u3002
            "},{"location":"chapter_backtracking/subset_sum_problem/#1","title":"1. \u00a0 \u53c2\u8003\u5168\u6392\u5217\u89e3\u6cd5","text":"

            \u7c7b\u4f3c\u4e8e\u5168\u6392\u5217\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u5b50\u96c6\u7684\u751f\u6210\u8fc7\u7a0b\u60f3\u8c61\u6210\u4e00\u7cfb\u5217\u9009\u62e9\u7684\u7ed3\u679c\uff0c\u5e76\u5728\u9009\u62e9\u8fc7\u7a0b\u4e2d\u5b9e\u65f6\u66f4\u65b0\u201c\u5143\u7d20\u548c\u201d\uff0c\u5f53\u5143\u7d20\u548c\u7b49\u4e8e target \u65f6\uff0c\u5c31\u5c06\u5b50\u96c6\u8bb0\u5f55\u81f3\u7ed3\u679c\u5217\u8868\u3002

            \u800c\u4e0e\u5168\u6392\u5217\u95ee\u9898\u4e0d\u540c\u7684\u662f\uff0c\u672c\u9898\u96c6\u5408\u4e2d\u7684\u5143\u7d20\u53ef\u4ee5\u88ab\u65e0\u9650\u6b21\u9009\u53d6\uff0c\u56e0\u6b64\u65e0\u987b\u501f\u52a9 selected \u5e03\u5c14\u5217\u8868\u6765\u8bb0\u5f55\u5143\u7d20\u662f\u5426\u5df2\u88ab\u9009\u62e9\u3002\u6211\u4eec\u53ef\u4ee5\u5bf9\u5168\u6392\u5217\u4ee3\u7801\u8fdb\u884c\u5c0f\u5e45\u4fee\u6539\uff0c\u521d\u6b65\u5f97\u5230\u89e3\u9898\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust subset_sum_i_naive.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<Integer> state, int target, int total, int[] choices, List<List<Integer>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total == target) {\nres.add(new ArrayList<>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.length; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.remove(state.size() - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<Integer>> subsetSumINaive(int[] nums, int target) {\nList<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nint total = 0; // \u5b50\u96c6\u548c\nList<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector<int> &state, int target, int total, vector<int> &choices, vector<vector<int>> &res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total == target) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (size_t i = 0; i < choices.size(); i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.push_back(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop_back();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nvector<vector<int>> subsetSumINaive(vector<int> &nums, int target) {\nvector<int> state;       // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nint total = 0;           // \u5b50\u96c6\u548c\nvector<vector<int>> res; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.py
            def backtrack(\nstate: list[int],\ntarget: int,\ntotal: int,\nchoices: list[int],\nres: list[list[int]],\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I\"\"\"\n# \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif total == target:\nres.append(list(state))\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i in range(len(choices)):\n# \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif total + choices[i] > target:\ncontinue\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.append(choices[i])\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop()\ndef subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]:\n\"\"\"\u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09\"\"\"\nstate = []  # \u72b6\u6001\uff08\u5b50\u96c6\uff09\ntotal = 0  # \u5b50\u96c6\u548c\nres = []  # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res)\nreturn res\n
            subset_sum_i_naive.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrackSubsetSumINaive(total, target int, state, choices *[]int, res *[][]int) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == total {\nnewState := append([]int{}, *state...)\n*res = append(*res, newState)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i := 0; i < len(*choices); i++ {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif total+(*choices)[i] > target {\ncontinue\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\n*state = append(*state, (*choices)[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrackSubsetSumINaive(total+(*choices)[i], target, state, choices, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n*state = (*state)[:len(*state)-1]\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunc subsetSumINaive(nums []int, target int) [][]int {\nstate := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\ntotal := 0              // \u5b50\u96c6\u548c\nres := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrackSubsetSumINaive(total, target, &state, &nums, &res)\nreturn res\n}\n
            subset_sum_i_naive.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(state, target, total, choices, res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total === target) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (let i = 0; i < choices.length; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunction subsetSumINaive(nums, target) {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nconst total = 0; // \u5b50\u96c6\u548c\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(\nstate: number[],\ntarget: number,\ntotal: number,\nchoices: number[],\nres: number[][]\n): void {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total === target) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (let i = 0; i < choices.length; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunction subsetSumINaive(nums: number[], target: number): number[][] {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nconst total = 0; // \u5b50\u96c6\u548c\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.c
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector *state, int target, int total, vector *choices, vector *res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total == target) {\nvector *tmpVector = newVector();\nfor (int i = 0; i < state->size; i++) {\nvectorPushback(tmpVector, state->data[i], sizeof(int));\n}\nvectorPushback(res, tmpVector, sizeof(vector));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (size_t i = 0; i < choices->size; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + *(int *)(choices->data[i]) > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nvectorPushback(state, choices->data[i], sizeof(int));\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + *(int *)(choices->data[i]), choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nvectorPopback(state);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nvector *subsetSumINaive(vector *nums, int target) {\nvector *state = newVector(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nint total = 0;               // \u5b50\u96c6\u548c\nvector *res = newVector();   // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<int> state, int target, int total, int[] choices, List<List<int>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total == target) {\nres.Add(new List<int>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.Length; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.Add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.RemoveAt(state.Count - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<int>> subsetSumINaive(int[] nums, int target) {\nList<int> state = new List<int>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nint total = 0; // \u5b50\u96c6\u548c\nList<List<int>> res = new List<List<int>>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrack(state: inout [Int], target: Int, total: Int, choices: [Int], res: inout [[Int]]) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif total == target {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i in stride(from: 0, to: choices.count, by: 1) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif total + choices[i] > target {\ncontinue\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.append(choices[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, target: target, total: total + choices[i], choices: choices, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast()\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfunc subsetSumINaive(nums: [Int], target: Int) -> [[Int]] {\nvar state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nlet total = 0 // \u5b50\u96c6\u548c\nvar res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state: &state, target: target, total: total, choices: nums, res: &res)\nreturn res\n}\n
            subset_sum_i_naive.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{subsetSumINaive}\n
            subset_sum_i_naive.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(\nList<int> state,\nint target,\nint total,\nList<int> choices,\nList<List<int>> res,\n) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (total == target) {\nres.add(List.from(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int i = 0; i < choices.length; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (total + choices[i] > target) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nList<List<int>> subsetSumINaive(List<int> nums, int target) {\nList<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nint total = 0; // \u5143\u7d20\u548c\nList<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, res);\nreturn res;\n}\n
            subset_sum_i_naive.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfn backtrack(mut state: Vec<i32>, target: i32, total: i32, choices: &[i32], res: &mut Vec<Vec<i32>>) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif total == target {\nres.push(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor i in 0..choices.len() {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif total + choices[i] > target {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u5143\u7d20\u548c total\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state.clone(), target, total + choices[i], choices, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I\uff08\u5305\u542b\u91cd\u590d\u5b50\u96c6\uff09 */\nfn subset_sum_i_naive(nums: &[i32], target: i32) -> Vec<Vec<i32>> {\nlet state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nlet total = 0; // \u5b50\u96c6\u548c\nlet mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, total, nums, &mut res);\nres\n}\n

            \u5411\u4ee5\u4e0a\u4ee3\u7801\u8f93\u5165\u6570\u7ec4 \\([3, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \uff0c\u8f93\u51fa\u7ed3\u679c\u4e3a \\([3, 3, 3], [4, 5], [5, 4]\\) \u3002\u867d\u7136\u6210\u529f\u627e\u51fa\u4e86\u6240\u6709\u548c\u4e3a \\(9\\) \u7684\u5b50\u96c6\uff0c\u4f46\u5176\u4e2d\u5b58\u5728\u91cd\u590d\u7684\u5b50\u96c6 \\([4, 5]\\) \u548c \\([5, 4]\\) \u3002

            \u8fd9\u662f\u56e0\u4e3a\u641c\u7d22\u8fc7\u7a0b\u662f\u533a\u5206\u9009\u62e9\u987a\u5e8f\u7684\uff0c\u7136\u800c\u5b50\u96c6\u4e0d\u533a\u5206\u9009\u62e9\u987a\u5e8f\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5148\u9009 \\(4\\) \u540e\u9009 \\(5\\) \u4e0e\u5148\u9009 \\(5\\) \u540e\u9009 \\(4\\) \u662f\u4e24\u4e2a\u4e0d\u540c\u7684\u5206\u652f\uff0c\u4f46\u4e24\u8005\u5bf9\u5e94\u540c\u4e00\u4e2a\u5b50\u96c6\u3002

            \u56fe\uff1a\u5b50\u96c6\u641c\u7d22\u4e0e\u8d8a\u754c\u526a\u679d

            \u4e3a\u4e86\u53bb\u9664\u91cd\u590d\u5b50\u96c6\uff0c\u4e00\u79cd\u76f4\u63a5\u7684\u601d\u8def\u662f\u5bf9\u7ed3\u679c\u5217\u8868\u8fdb\u884c\u53bb\u91cd\u3002\u4f46\u8fd9\u4e2a\u65b9\u6cd5\u6548\u7387\u5f88\u4f4e\uff0c\u56e0\u4e3a\uff1a

            • \u5f53\u6570\u7ec4\u5143\u7d20\u8f83\u591a\uff0c\u5c24\u5176\u662f\u5f53 target \u8f83\u5927\u65f6\uff0c\u641c\u7d22\u8fc7\u7a0b\u4f1a\u4ea7\u751f\u5927\u91cf\u7684\u91cd\u590d\u5b50\u96c6\u3002
            • \u6bd4\u8f83\u5b50\u96c6\uff08\u6570\u7ec4\uff09\u7684\u5f02\u540c\u975e\u5e38\u8017\u65f6\uff0c\u9700\u8981\u5148\u6392\u5e8f\u6570\u7ec4\uff0c\u518d\u6bd4\u8f83\u6570\u7ec4\u4e2d\u6bcf\u4e2a\u5143\u7d20\u7684\u5f02\u540c\u3002
            "},{"location":"chapter_backtracking/subset_sum_problem/#2","title":"2. \u00a0 \u91cd\u590d\u5b50\u96c6\u526a\u679d","text":"

            \u6211\u4eec\u8003\u8651\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u901a\u8fc7\u526a\u679d\u8fdb\u884c\u53bb\u91cd\u3002\u89c2\u5bdf\u4e0b\u56fe\uff0c\u91cd\u590d\u5b50\u96c6\u662f\u5728\u4ee5\u4e0d\u540c\u987a\u5e8f\u9009\u62e9\u6570\u7ec4\u5143\u7d20\u65f6\u4ea7\u751f\u7684\uff0c\u5177\u4f53\u6765\u770b\uff1a

            1. \u7b2c\u4e00\u8f6e\u548c\u7b2c\u4e8c\u8f6e\u5206\u522b\u9009\u62e9 \\(3\\) , \\(4\\) \uff0c\u4f1a\u751f\u6210\u5305\u542b\u8fd9\u4e24\u4e2a\u5143\u7d20\u7684\u6240\u6709\u5b50\u96c6\uff0c\u8bb0\u4e3a \\([3, 4, \\cdots]\\) \u3002
            2. \u82e5\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(4\\) \uff0c\u5219\u7b2c\u4e8c\u8f6e\u5e94\u8be5\u8df3\u8fc7 \\(3\\) \uff0c\u56e0\u4e3a\u8be5\u9009\u62e9\u4ea7\u751f\u7684\u5b50\u96c6 \\([4, 3, \\cdots]\\) \u548c 1. \u4e2d\u751f\u6210\u7684\u5b50\u96c6\u5b8c\u5168\u91cd\u590d\u3002

            \u5206\u652f\u8d8a\u9760\u53f3\uff0c\u9700\u8981\u6392\u9664\u7684\u5206\u652f\u4e5f\u8d8a\u591a\uff0c\u4f8b\u5982\uff1a

            1. \u524d\u4e24\u8f6e\u9009\u62e9 \\(3\\) , \\(5\\) \uff0c\u751f\u6210\u5b50\u96c6 \\([3, 5, \\cdots]\\) \u3002
            2. \u524d\u4e24\u8f6e\u9009\u62e9 \\(4\\) , \\(5\\) \uff0c\u751f\u6210\u5b50\u96c6 \\([4, 5, \\cdots]\\) \u3002
            3. \u82e5\u7b2c\u4e00\u8f6e\u9009\u62e9 \\(5\\) \uff0c\u5219\u7b2c\u4e8c\u8f6e\u5e94\u8be5\u8df3\u8fc7 \\(3\\) \u548c \\(4\\) \uff0c\u56e0\u4e3a\u5b50\u96c6 \\([5, 3, \\cdots]\\) \u548c\u5b50\u96c6 \\([5, 4, \\cdots]\\) \u548c 1. , 2. \u4e2d\u751f\u6210\u7684\u5b50\u96c6\u5b8c\u5168\u91cd\u590d\u3002

            \u56fe\uff1a\u4e0d\u540c\u9009\u62e9\u987a\u5e8f\u5bfc\u81f4\u7684\u91cd\u590d\u5b50\u96c6

            \u603b\u7ed3\u6765\u770b\uff0c\u7ed9\u5b9a\u8f93\u5165\u6570\u7ec4 \\([x_1, x_2, \\cdots, x_n]\\) \uff0c\u8bbe\u641c\u7d22\u8fc7\u7a0b\u4e2d\u7684\u9009\u62e9\u5e8f\u5217\u4e3a \\([x_{i_1}, x_{i_2}, \\cdots , x_{i_m}]\\) \uff0c\u5219\u8be5\u9009\u62e9\u5e8f\u5217\u9700\u8981\u6ee1\u8db3 \\(i_1 \\leq i_2 \\leq \\cdots \\leq i_m\\) \uff0c\u4e0d\u6ee1\u8db3\u8be5\u6761\u4ef6\u7684\u9009\u62e9\u5e8f\u5217\u90fd\u4f1a\u9020\u6210\u91cd\u590d\uff0c\u5e94\u5f53\u526a\u679d\u3002

            "},{"location":"chapter_backtracking/subset_sum_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u4e3a\u5b9e\u73b0\u8be5\u526a\u679d\uff0c\u6211\u4eec\u521d\u59cb\u5316\u53d8\u91cf start \uff0c\u7528\u4e8e\u6307\u793a\u904d\u5386\u8d77\u70b9\u3002\u5f53\u505a\u51fa\u9009\u62e9 \\(x_{i}\\) \u540e\uff0c\u8bbe\u5b9a\u4e0b\u4e00\u8f6e\u4ece\u7d22\u5f15 \\(i\\) \u5f00\u59cb\u904d\u5386\u3002\u8fd9\u6837\u505a\u5c31\u53ef\u4ee5\u8ba9\u9009\u62e9\u5e8f\u5217\u6ee1\u8db3 \\(i_1 \\leq i_2 \\leq \\cdots \\leq i_m\\) \uff0c\u4ece\u800c\u4fdd\u8bc1\u5b50\u96c6\u552f\u4e00\u3002

            \u9664\u6b64\u4e4b\u5916\uff0c\u6211\u4eec\u8fd8\u5bf9\u4ee3\u7801\u8fdb\u884c\u4e86\u4e24\u9879\u4f18\u5316\uff1a

            • \u5728\u5f00\u542f\u641c\u7d22\u524d\uff0c\u5148\u5c06\u6570\u7ec4 nums \u6392\u5e8f\u3002\u5728\u904d\u5386\u6240\u6709\u9009\u62e9\u65f6\uff0c\u5f53\u5b50\u96c6\u548c\u8d85\u8fc7 target \u65f6\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\uff0c\u56e0\u4e3a\u540e\u8fb9\u7684\u5143\u7d20\u66f4\u5927\uff0c\u5176\u5b50\u96c6\u548c\u90fd\u4e00\u5b9a\u4f1a\u8d85\u8fc7 target \u3002
            • \u7701\u53bb\u5143\u7d20\u548c\u53d8\u91cf total\uff0c\u901a\u8fc7\u5728 target \u4e0a\u6267\u884c\u51cf\u6cd5\u6765\u7edf\u8ba1\u5143\u7d20\u548c\uff0c\u5f53 target \u7b49\u4e8e \\(0\\) \u65f6\u8bb0\u5f55\u89e3\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust subset_sum_i.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.add(new ArrayList<>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (int i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.remove(state.size() - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<Integer>> subsetSumI(int[] nums, int target) {\nList<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nArrays.sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (int i = start; i < choices.size(); i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push_back(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop_back();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nvector<vector<int>> subsetSumI(vector<int> &nums, int target) {\nvector<int> state;              // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nsort(nums.begin(), nums.end()); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0;                  // \u904d\u5386\u8d77\u59cb\u70b9\nvector<vector<int>> res;        // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.py
            def backtrack(\nstate: list[int], target: int, choices: list[int], start: int, res: list[list[int]]\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I\"\"\"\n# \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0:\nres.append(list(state))\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\n# \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor i in range(start, len(choices)):\n# \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n# \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0:\nbreak\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.append(choices[i])\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop()\ndef subset_sum_i(nums: list[int], target: int) -> list[list[int]]:\n\"\"\"\u6c42\u89e3\u5b50\u96c6\u548c I\"\"\"\nstate = []  # \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort()  # \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nstart = 0  # \u904d\u5386\u8d77\u59cb\u70b9\nres = []  # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res)\nreturn res\n
            subset_sum_i.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrackSubsetSumI(start, target int, state, choices *[]int, res *[][]int) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nnewState := append([]int{}, *state...)\n*res = append(*res, newState)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor i := start; i < len(*choices); i++ {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target-(*choices)[i] < 0 {\nbreak\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n*state = append(*state, (*choices)[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrackSubsetSumI(i, target-(*choices)[i], state, choices, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n*state = (*state)[:len(*state)-1]\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunc subsetSumI(nums []int, target int) [][]int {\nstate := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nsort.Ints(nums)         // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nstart := 0              // \u904d\u5386\u8d77\u59cb\u70b9\nres := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrackSubsetSumI(start, target, &state, &nums, &res)\nreturn res\n}\n
            subset_sum_i.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(state, target, choices, start, res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target === 0) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (let i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunction subsetSumI(nums, target) {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nconst start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunction backtrack(\nstate: number[],\ntarget: number,\nchoices: number[],\nstart: number,\nres: number[][]\n): void {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target === 0) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (let i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunction subsetSumI(nums: number[], target: number): number[][] {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nconst start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.c
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(vector *state, int target, vector *choices, int start, vector *res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nvector *tmpVector = newVector();\nfor (int i = 0; i < state->size; i++) {\nvectorPushback(tmpVector, state->data[i], sizeof(int));\n}\nvectorPushback(res, tmpVector, sizeof(vector));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (int i = start; i < choices->size; i++) {\n// \u526a\u679d\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u8df3\u8fc7\u8be5\u9009\u62e9\nif (target - *(int *)(choices->data[i]) < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nvectorPushback(state, choices->data[i], sizeof(int));\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - *(int *)(choices->data[i]), choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nvectorPopback(state);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nvector *subsetSumI(vector *nums, int target) {\nvector *state = newVector();                        // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nqsort(nums->data, nums->size, sizeof(int *), comp); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0;                                      // \u5b50\u96c6\u548c\nvector *res = newVector();                          // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.Add(new List<int>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (int i = start; i < choices.Length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.Add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.RemoveAt(state.Count - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<int>> subsetSumI(int[] nums, int target) {\nList<int> state = new List<int>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nArray.Sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<int>> res = new List<List<int>>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfunc backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor i in stride(from: start, to: choices.count, by: 1) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0 {\nbreak\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.append(choices[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, target: target - choices[i], choices: choices, start: i, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast()\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfunc subsetSumI(nums: [Int], target: Int) -> [[Int]] {\nvar state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nlet nums = nums.sorted() // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nlet start = 0 // \u904d\u5386\u8d77\u59cb\u70b9\nvar res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state: &state, target: target, choices: nums, start: start, res: &res)\nreturn res\n}\n
            subset_sum_i.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{subsetSumI}\n
            subset_sum_i.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nvoid backtrack(\nList<int> state,\nint target,\nList<int> choices,\nint start,\nList<List<int>> res,\n) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.add(List.from(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor (int i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nList<List<int>> subsetSumI(List<int> nums, int target) {\nList<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_i.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c I */\nfn backtrack(mut state: Vec<i32>, target: i32, choices: &[i32], start: usize, res: &mut Vec<Vec<i32>>) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nres.push(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\nfor i in start..choices.len() {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0 {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state.clone(), target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c I */\nfn subset_sum_i(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {\nlet state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nlet start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nlet mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, &mut res);\nres\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u4e3a\u5c06\u6570\u7ec4 \\([3, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \u8f93\u5165\u5230\u4ee5\u4e0a\u4ee3\u7801\u540e\u7684\u6574\u4f53\u56de\u6eaf\u8fc7\u7a0b\u3002

            \u56fe\uff1a\u5b50\u96c6\u548c I \u56de\u6eaf\u8fc7\u7a0b

            "},{"location":"chapter_backtracking/subset_sum_problem/#1332","title":"13.3.2 \u00a0 \u8003\u8651\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u6b63\u6574\u6570 target \uff0c\u8bf7\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\uff0c\u4f7f\u5f97\u7ec4\u5408\u4e2d\u7684\u5143\u7d20\u548c\u7b49\u4e8e target \u3002\u7ed9\u5b9a\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u6bcf\u4e2a\u5143\u7d20\u53ea\u53ef\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u8bf7\u4ee5\u5217\u8868\u5f62\u5f0f\u8fd4\u56de\u8fd9\u4e9b\u7ec4\u5408\uff0c\u5217\u8868\u4e2d\u4e0d\u5e94\u5305\u542b\u91cd\u590d\u7ec4\u5408\u3002

            \u76f8\u6bd4\u4e8e\u4e0a\u9898\uff0c\u672c\u9898\u7684\u8f93\u5165\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u8fd9\u5f15\u5165\u4e86\u65b0\u7684\u95ee\u9898\u3002\u4f8b\u5982\uff0c\u7ed9\u5b9a\u6570\u7ec4 \\([4, \\hat{4}, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \uff0c\u5219\u73b0\u6709\u4ee3\u7801\u7684\u8f93\u51fa\u7ed3\u679c\u4e3a \\([4, 5], [\\hat{4}, 5]\\) \uff0c\u51fa\u73b0\u4e86\u91cd\u590d\u5b50\u96c6\u3002

            \u9020\u6210\u8fd9\u79cd\u91cd\u590d\u7684\u539f\u56e0\u662f\u76f8\u7b49\u5143\u7d20\u5728\u67d0\u8f6e\u4e2d\u88ab\u591a\u6b21\u9009\u62e9\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u7b2c\u4e00\u8f6e\u5171\u6709\u4e09\u4e2a\u9009\u62e9\uff0c\u5176\u4e2d\u4e24\u4e2a\u90fd\u4e3a \\(4\\) \uff0c\u4f1a\u4ea7\u751f\u4e24\u4e2a\u91cd\u590d\u7684\u641c\u7d22\u5206\u652f\uff0c\u4ece\u800c\u8f93\u51fa\u91cd\u590d\u5b50\u96c6\uff1b\u540c\u7406\uff0c\u7b2c\u4e8c\u8f6e\u7684\u4e24\u4e2a \\(4\\) \u4e5f\u4f1a\u4ea7\u751f\u91cd\u590d\u5b50\u96c6\u3002

            \u56fe\uff1a\u76f8\u7b49\u5143\u7d20\u5bfc\u81f4\u7684\u91cd\u590d\u5b50\u96c6

            "},{"location":"chapter_backtracking/subset_sum_problem/#1_1","title":"1. \u00a0 \u76f8\u7b49\u5143\u7d20\u526a\u679d","text":"

            \u4e3a\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u9700\u8981\u9650\u5236\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u4e00\u8f6e\u4e2d\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u5b9e\u73b0\u65b9\u5f0f\u6bd4\u8f83\u5de7\u5999\uff1a\u7531\u4e8e\u6570\u7ec4\u662f\u5df2\u6392\u5e8f\u7684\uff0c\u56e0\u6b64\u76f8\u7b49\u5143\u7d20\u90fd\u662f\u76f8\u90bb\u7684\u3002\u8fd9\u610f\u5473\u7740\u5728\u67d0\u8f6e\u9009\u62e9\u4e2d\uff0c\u82e5\u5f53\u524d\u5143\u7d20\u4e0e\u5176\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u5219\u8bf4\u660e\u5b83\u5df2\u7ecf\u88ab\u9009\u62e9\u8fc7\uff0c\u56e0\u6b64\u76f4\u63a5\u8df3\u8fc7\u5f53\u524d\u5143\u7d20\u3002

            \u4e0e\u6b64\u540c\u65f6\uff0c\u672c\u9898\u89c4\u5b9a\u4e2d\u7684\u6bcf\u4e2a\u6570\u7ec4\u5143\u7d20\u53ea\u80fd\u88ab\u9009\u62e9\u4e00\u6b21\u3002\u5e78\u8fd0\u7684\u662f\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u5229\u7528\u53d8\u91cf start \u6765\u6ee1\u8db3\u8be5\u7ea6\u675f\uff1a\u5f53\u505a\u51fa\u9009\u62e9 \\(x_{i}\\) \u540e\uff0c\u8bbe\u5b9a\u4e0b\u4e00\u8f6e\u4ece\u7d22\u5f15 \\(i + 1\\) \u5f00\u59cb\u5411\u540e\u904d\u5386\u3002\u8fd9\u6837\u5373\u80fd\u53bb\u9664\u91cd\u590d\u5b50\u96c6\uff0c\u4e5f\u80fd\u907f\u514d\u91cd\u590d\u9009\u62e9\u5143\u7d20\u3002

            "},{"location":"chapter_backtracking/subset_sum_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"JavaC++PythonGoJSTSCC#SwiftZigDartRust subset_sum_ii.java
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(List<Integer> state, int target, int[] choices, int start, List<List<Integer>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.add(new ArrayList<>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (int i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] == choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.remove(state.size() - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<Integer>> subsetSumII(int[] nums, int target) {\nList<Integer> state = new ArrayList<>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nArrays.sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<Integer>> res = new ArrayList<>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.cpp
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(vector<int> &state, int target, vector<int> &choices, int start, vector<vector<int>> &res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.push_back(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (int i = start; i < choices.size(); i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] == choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push_back(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop_back();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nvector<vector<int>> subsetSumII(vector<int> &nums, int target) {\nvector<int> state;              // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nsort(nums.begin(), nums.end()); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0;                  // \u904d\u5386\u8d77\u59cb\u70b9\nvector<vector<int>> res;        // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.py
            def backtrack(\nstate: list[int], target: int, choices: list[int], start: int, res: list[list[int]]\n):\n\"\"\"\u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II\"\"\"\n# \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0:\nres.append(list(state))\nreturn\n# \u904d\u5386\u6240\u6709\u9009\u62e9\n# \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n# \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor i in range(start, len(choices)):\n# \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n# \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0:\nbreak\n# \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif i > start and choices[i] == choices[i - 1]:\ncontinue\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.append(choices[i])\n# \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res)\n# \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop()\ndef subset_sum_ii(nums: list[int], target: int) -> list[list[int]]:\n\"\"\"\u6c42\u89e3\u5b50\u96c6\u548c II\"\"\"\nstate = []  # \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort()  # \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nstart = 0  # \u904d\u5386\u8d77\u59cb\u70b9\nres = []  # \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res)\nreturn res\n
            subset_sum_ii.go
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunc backtrackSubsetSumII(start, target int, state, choices *[]int, res *[][]int) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nnewState := append([]int{}, *state...)\n*res = append(*res, newState)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor i := start; i < len(*choices); i++ {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target-(*choices)[i] < 0 {\nbreak\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif i > start && (*choices)[i] == (*choices)[i-1] {\ncontinue\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\n*state = append(*state, (*choices)[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrackSubsetSumII(i+1, target-(*choices)[i], state, choices, res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\n*state = (*state)[:len(*state)-1]\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunc subsetSumII(nums []int, target int) [][]int {\nstate := make([]int, 0) // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nsort.Ints(nums)         // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nstart := 0              // \u904d\u5386\u8d77\u59cb\u70b9\nres := make([][]int, 0) // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrackSubsetSumII(start, target, &state, &nums, &res)\nreturn res\n}\n
            subset_sum_ii.js
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunction backtrack(state, target, choices, start, res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target === 0) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (let i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] === choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunction subsetSumII(nums, target) {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nconst start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.ts
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunction backtrack(\nstate: number[],\ntarget: number,\nchoices: number[],\nstart: number,\nres: number[][]\n): void {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target === 0) {\nres.push([...state]);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (let i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] === choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunction subsetSumII(nums: number[], target: number): number[][] {\nconst state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nconst start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nconst res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.c
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(vector *state, int target, vector *choices, int start, vector *res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nvector *tmpVector = newVector();\nfor (int i = 0; i < state->size; i++) {\nvectorPushback(tmpVector, state->data[i], sizeof(int));\n}\nvectorPushback(res, tmpVector, sizeof(vector));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (int i = start; i < choices->size; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - *(int *)(choices->data[i]) < 0) {\ncontinue;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && *(int *)(choices->data[i]) == *(int *)(choices->data[i - 1])) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nvectorPushback(state, choices->data[i], sizeof(int));\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - *(int *)(choices->data[i]), choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nvectorPopback(state);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nvector *subsetSumII(vector *nums, int target) {\nvector *state = newVector();                         // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nqsort(nums->data, nums->size, sizeof(int *), comp); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0;                                       // \u5b50\u96c6\u548c\nvector *res = newVector();                           // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.cs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(List<int> state, int target, int[] choices, int start, List<List<int>> res) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.Add(new List<int>(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (int i = start; i < choices.Length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] == choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.Add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.RemoveAt(state.Count - 1);\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<int>> subsetSumII(int[] nums, int target) {\nList<int> state = new List<int>(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nArray.Sort(nums); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<int>> res = new List<List<int>>(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.swift
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfunc backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nres.append(state)\nreturn\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor i in stride(from: start, to: choices.count, by: 1) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0 {\nbreak\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif i > start, choices[i] == choices[i - 1] {\ncontinue\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.append(choices[i])\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state: &state, target: target - choices[i], choices: choices, start: i + 1, res: &res)\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast()\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfunc subsetSumII(nums: [Int], target: Int) -> [[Int]] {\nvar state: [Int] = [] // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nlet nums = nums.sorted() // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nlet start = 0 // \u904d\u5386\u8d77\u59cb\u70b9\nvar res: [[Int]] = [] // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state: &state, target: target, choices: nums, start: start, res: &res)\nreturn res\n}\n
            subset_sum_ii.zig
            [class]{}-[func]{backtrack}\n[class]{}-[func]{subsetSumII}\n
            subset_sum_ii.dart
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nvoid backtrack(\nList<int> state,\nint target,\nList<int> choices,\nint start,\nList<List<int>> res,\n) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif (target == 0) {\nres.add(List.from(state));\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor (int i = start; i < choices.length; i++) {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif (target - choices[i] < 0) {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif (i > start && choices[i] == choices[i - 1]) {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.add(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state, target - choices[i], choices, i + 1, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.removeLast();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nList<List<int>> subsetSumII(List<int> nums, int target) {\nList<int> state = []; // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nint start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nList<List<int>> res = []; // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, res);\nreturn res;\n}\n
            subset_sum_ii.rs
            /* \u56de\u6eaf\u7b97\u6cd5\uff1a\u5b50\u96c6\u548c II */\nfn backtrack(mut state: Vec<i32>, target: i32, choices: &[i32], start: usize, res: &mut Vec<Vec<i32>>) {\n// \u5b50\u96c6\u548c\u7b49\u4e8e target \u65f6\uff0c\u8bb0\u5f55\u89e3\nif target == 0 {\nres.push(state);\nreturn;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\n// \u526a\u679d\u4e8c\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u751f\u6210\u91cd\u590d\u5b50\u96c6\n// \u526a\u679d\u4e09\uff1a\u4ece start \u5f00\u59cb\u904d\u5386\uff0c\u907f\u514d\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\nfor i in start..choices.len() {\n// \u526a\u679d\u4e00\uff1a\u82e5\u5b50\u96c6\u548c\u8d85\u8fc7 target \uff0c\u5219\u76f4\u63a5\u7ed3\u675f\u5faa\u73af\n// \u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u5df2\u6392\u5e8f\uff0c\u540e\u8fb9\u5143\u7d20\u66f4\u5927\uff0c\u5b50\u96c6\u548c\u4e00\u5b9a\u8d85\u8fc7 target\nif target - choices[i] < 0 {\nbreak;\n}\n// \u526a\u679d\u56db\uff1a\u5982\u679c\u8be5\u5143\u7d20\u4e0e\u5de6\u8fb9\u5143\u7d20\u76f8\u7b49\uff0c\u8bf4\u660e\u8be5\u641c\u7d22\u5206\u652f\u91cd\u590d\uff0c\u76f4\u63a5\u8df3\u8fc7\nif i > start && choices[i] == choices[i - 1] {\ncontinue;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0 target, start\nstate.push(choices[i]);\n// \u8fdb\u884c\u4e0b\u4e00\u8f6e\u9009\u62e9\nbacktrack(state.clone(), target - choices[i], choices, i, res);\n// \u56de\u9000\uff1a\u64a4\u9500\u9009\u62e9\uff0c\u6062\u590d\u5230\u4e4b\u524d\u7684\u72b6\u6001\nstate.pop();\n}\n}\n/* \u6c42\u89e3\u5b50\u96c6\u548c II */\nfn subset_sum_ii(nums: &mut [i32], target: i32) -> Vec<Vec<i32>> {\nlet state = Vec::new(); // \u72b6\u6001\uff08\u5b50\u96c6\uff09\nnums.sort(); // \u5bf9 nums \u8fdb\u884c\u6392\u5e8f\nlet start = 0; // \u904d\u5386\u8d77\u59cb\u70b9\nlet mut res = Vec::new(); // \u7ed3\u679c\u5217\u8868\uff08\u5b50\u96c6\u5217\u8868\uff09\nbacktrack(state, target, nums, start, &mut res);\nres\n}\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u6570\u7ec4 \\([4, 4, 5]\\) \u548c\u76ee\u6807\u5143\u7d20 \\(9\\) \u7684\u56de\u6eaf\u8fc7\u7a0b\uff0c\u5171\u5305\u542b\u56db\u79cd\u526a\u679d\u64cd\u4f5c\u3002\u8bf7\u4f60\u5c06\u56fe\u793a\u4e0e\u4ee3\u7801\u6ce8\u91ca\u76f8\u7ed3\u5408\uff0c\u7406\u89e3\u6574\u4e2a\u641c\u7d22\u8fc7\u7a0b\uff0c\u4ee5\u53ca\u6bcf\u79cd\u526a\u679d\u64cd\u4f5c\u662f\u5982\u4f55\u5de5\u4f5c\u7684\u3002

            \u56fe\uff1a\u5b50\u96c6\u548c II \u56de\u6eaf\u8fc7\u7a0b

            "},{"location":"chapter_backtracking/summary/","title":"13.5 \u00a0 \u5c0f\u7ed3","text":"
            • \u56de\u6eaf\u7b97\u6cd5\u672c\u8d28\u662f\u7a77\u4e3e\u6cd5\uff0c\u901a\u8fc7\u5bf9\u89e3\u7a7a\u95f4\u8fdb\u884c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u6765\u5bfb\u627e\u7b26\u5408\u6761\u4ef6\u7684\u89e3\u3002\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\uff0c\u9047\u5230\u6ee1\u8db3\u6761\u4ef6\u7684\u89e3\u5219\u8bb0\u5f55\uff0c\u76f4\u81f3\u627e\u5230\u6240\u6709\u89e3\u6216\u904d\u5386\u5b8c\u6210\u540e\u7ed3\u675f\u3002
            • \u56de\u6eaf\u7b97\u6cd5\u7684\u641c\u7d22\u8fc7\u7a0b\u5305\u62ec\u5c1d\u8bd5\u4e0e\u56de\u9000\u4e24\u4e2a\u90e8\u5206\u3002\u5b83\u901a\u8fc7\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u6765\u5c1d\u8bd5\u5404\u79cd\u9009\u62e9\uff0c\u5f53\u9047\u5230\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\u7684\u60c5\u51b5\u65f6\uff0c\u5219\u64a4\u9500\u4e0a\u4e00\u6b65\u7684\u9009\u62e9\uff0c\u9000\u56de\u5230\u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5e76\u7ee7\u7eed\u5c1d\u8bd5\u5176\u4ed6\u9009\u62e9\u3002\u5c1d\u8bd5\u4e0e\u56de\u9000\u662f\u4e24\u4e2a\u65b9\u5411\u76f8\u53cd\u7684\u64cd\u4f5c\u3002
            • \u56de\u6eaf\u95ee\u9898\u901a\u5e38\u5305\u542b\u591a\u4e2a\u7ea6\u675f\u6761\u4ef6\uff0c\u5b83\u4eec\u53ef\u7528\u4e8e\u5b9e\u73b0\u526a\u679d\u64cd\u4f5c\u3002\u526a\u679d\u53ef\u4ee5\u63d0\u524d\u7ed3\u675f\u4e0d\u5fc5\u8981\u7684\u641c\u7d22\u5206\u652f\uff0c\u5927\u5e45\u63d0\u5347\u641c\u7d22\u6548\u7387\u3002
            • \u56de\u6eaf\u7b97\u6cd5\u4e3b\u8981\u53ef\u7528\u4e8e\u89e3\u51b3\u641c\u7d22\u95ee\u9898\u548c\u7ea6\u675f\u6ee1\u8db3\u95ee\u9898\u3002\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u867d\u7136\u53ef\u4ee5\u7528\u56de\u6eaf\u7b97\u6cd5\u89e3\u51b3\uff0c\u4f46\u5f80\u5f80\u5b58\u5728\u66f4\u9ad8\u6548\u7387\u6216\u66f4\u597d\u6548\u679c\u7684\u89e3\u6cd5\u3002
            • \u5168\u6392\u5217\u95ee\u9898\u65e8\u5728\u641c\u7d22\u7ed9\u5b9a\u96c6\u5408\u7684\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u3002\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u6570\u7ec4\u6765\u8bb0\u5f55\u6bcf\u4e2a\u5143\u7d20\u662f\u5426\u88ab\u9009\u62e9\uff0c\u526a\u679d\u6389\u91cd\u590d\u9009\u62e9\u540c\u4e00\u5143\u7d20\u7684\u641c\u7d22\u5206\u652f\uff0c\u786e\u4fdd\u6bcf\u4e2a\u5143\u7d20\u53ea\u88ab\u9009\u62e9\u4e00\u6b21\u3002
            • \u5728\u5168\u6392\u5217\u95ee\u9898\u4e2d\uff0c\u5982\u679c\u96c6\u5408\u4e2d\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff0c\u5219\u6700\u7ec8\u7ed3\u679c\u4f1a\u51fa\u73b0\u91cd\u590d\u6392\u5217\u3002\u6211\u4eec\u9700\u8981\u7ea6\u675f\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u8f6e\u4e2d\u53ea\u80fd\u88ab\u9009\u62e9\u4e00\u6b21\uff0c\u8fd9\u901a\u5e38\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\u6765\u5b9e\u73b0\u3002
            • \u5b50\u96c6\u548c\u95ee\u9898\u7684\u76ee\u6807\u662f\u5728\u7ed9\u5b9a\u96c6\u5408\u4e2d\u627e\u5230\u548c\u4e3a\u76ee\u6807\u503c\u7684\u6240\u6709\u5b50\u96c6\u3002\u96c6\u5408\u4e0d\u533a\u5206\u5143\u7d20\u987a\u5e8f\uff0c\u800c\u641c\u7d22\u8fc7\u7a0b\u4f1a\u8f93\u51fa\u6240\u6709\u987a\u5e8f\u7684\u7ed3\u679c\uff0c\u4ea7\u751f\u91cd\u590d\u5b50\u96c6\u3002\u6211\u4eec\u5728\u56de\u6eaf\u524d\u5c06\u6570\u636e\u8fdb\u884c\u6392\u5e8f\uff0c\u5e76\u8bbe\u7f6e\u4e00\u4e2a\u53d8\u91cf\u6765\u6307\u793a\u6bcf\u4e00\u8f6e\u7684\u904d\u5386\u8d77\u70b9\uff0c\u4ece\u800c\u5c06\u751f\u6210\u91cd\u590d\u5b50\u96c6\u7684\u641c\u7d22\u5206\u652f\u8fdb\u884c\u526a\u679d\u3002
            • \u5bf9\u4e8e\u5b50\u96c6\u548c\u95ee\u9898\uff0c\u6570\u7ec4\u4e2d\u7684\u76f8\u7b49\u5143\u7d20\u4f1a\u4ea7\u751f\u91cd\u590d\u96c6\u5408\u3002\u6211\u4eec\u5229\u7528\u6570\u7ec4\u5df2\u6392\u5e8f\u7684\u524d\u7f6e\u6761\u4ef6\uff0c\u901a\u8fc7\u5224\u65ad\u76f8\u90bb\u5143\u7d20\u662f\u5426\u76f8\u7b49\u5b9e\u73b0\u526a\u679d\uff0c\u4ece\u800c\u786e\u4fdd\u76f8\u7b49\u5143\u7d20\u5728\u6bcf\u8f6e\u4e2d\u53ea\u80fd\u88ab\u9009\u4e2d\u4e00\u6b21\u3002
            • \\(n\\) \u7687\u540e\u65e8\u5728\u5bfb\u627e\u5c06 \\(n\\) \u4e2a\u7687\u540e\u653e\u7f6e\u5230 \\(n \\times n\\) \u5c3a\u5bf8\u68cb\u76d8\u4e0a\u7684\u65b9\u6848\uff0c\u8981\u6c42\u6240\u6709\u7687\u540e\u4e24\u4e24\u4e4b\u95f4\u65e0\u6cd5\u653b\u51fb\u5bf9\u65b9\u3002\u8be5\u95ee\u9898\u7684\u7ea6\u675f\u6761\u4ef6\u6709\u884c\u7ea6\u675f\u3001\u5217\u7ea6\u675f\u3001\u4e3b\u5bf9\u89d2\u7ebf\u548c\u526f\u5bf9\u89d2\u7ebf\u7ea6\u675f\u3002\u4e3a\u6ee1\u8db3\u884c\u7ea6\u675f\uff0c\u6211\u4eec\u91c7\u7528\u6309\u884c\u653e\u7f6e\u7684\u7b56\u7565\uff0c\u4fdd\u8bc1\u6bcf\u4e00\u884c\u653e\u7f6e\u4e00\u4e2a\u7687\u540e\u3002
            • \u5217\u7ea6\u675f\u548c\u5bf9\u89d2\u7ebf\u7ea6\u675f\u7684\u5904\u7406\u65b9\u5f0f\u7c7b\u4f3c\u3002\u5bf9\u4e8e\u5217\u7ea6\u675f\uff0c\u6211\u4eec\u5229\u7528\u4e00\u4e2a\u6570\u7ec4\u6765\u8bb0\u5f55\u6bcf\u4e00\u5217\u662f\u5426\u6709\u7687\u540e\uff0c\u4ece\u800c\u6307\u793a\u9009\u4e2d\u7684\u683c\u5b50\u662f\u5426\u5408\u6cd5\u3002\u5bf9\u4e8e\u5bf9\u89d2\u7ebf\u7ea6\u675f\uff0c\u6211\u4eec\u501f\u52a9\u4e24\u4e2a\u6570\u7ec4\u6765\u5206\u522b\u8bb0\u5f55\u8be5\u4e3b\u3001\u526f\u5bf9\u89d2\u7ebf\u662f\u5426\u5b58\u5728\u7687\u540e\uff1b\u96be\u70b9\u5728\u4e8e\u627e\u5904\u5728\u5230\u540c\u4e00\u4e3b\uff08\u526f\uff09\u5bf9\u89d2\u7ebf\u4e0a\u683c\u5b50\u6ee1\u8db3\u7684\u884c\u5217\u7d22\u5f15\u89c4\u5f8b\u3002
            "},{"location":"chapter_computational_complexity/","title":"\u7b2c 2 \u7ae0 \u00a0 \u590d\u6742\u5ea6","text":"

            Abstract

            \u590d\u6742\u5ea6\u72b9\u5982\u6d69\u701a\u7684\u7b97\u6cd5\u5b87\u5b99\u4e2d\u7684\u65f6\u7a7a\u5411\u5bfc\u3002

            \u5b83\u5e26\u9886\u6211\u4eec\u5728\u65f6\u95f4\u4e0e\u7a7a\u95f4\u8fd9\u4e24\u4e2a\u7ef4\u5ea6\u4e0a\u6df1\u5165\u63a2\u7d22\uff0c\u5bfb\u627e\u66f4\u4f18\u96c5\u7684\u89e3\u51b3\u65b9\u6848\u3002

            "},{"location":"chapter_computational_complexity/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 2.1 \u00a0 \u7b97\u6cd5\u6548\u7387\u8bc4\u4f30
            • 2.2 \u00a0 \u65f6\u95f4\u590d\u6742\u5ea6
            • 2.3 \u00a0 \u7a7a\u95f4\u590d\u6742\u5ea6
            • 2.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_computational_complexity/performance_evaluation/","title":"2.1 \u00a0 \u7b97\u6cd5\u6548\u7387\u8bc4\u4f30","text":"

            \u5728\u7b97\u6cd5\u8bbe\u8ba1\u4e2d\uff0c\u6211\u4eec\u5148\u540e\u8ffd\u6c42\u4ee5\u4e0b\u4e24\u4e2a\u5c42\u9762\u7684\u76ee\u6807\u3002

            1. \u627e\u5230\u95ee\u9898\u89e3\u6cd5\uff1a\u7b97\u6cd5\u9700\u8981\u5728\u89c4\u5b9a\u7684\u8f93\u5165\u8303\u56f4\u5185\uff0c\u53ef\u9760\u5730\u6c42\u5f97\u95ee\u9898\u7684\u6b63\u786e\u89e3\u3002
            2. \u5bfb\u6c42\u6700\u4f18\u89e3\u6cd5\uff1a\u540c\u4e00\u4e2a\u95ee\u9898\u53ef\u80fd\u5b58\u5728\u591a\u79cd\u89e3\u6cd5\uff0c\u6211\u4eec\u5e0c\u671b\u627e\u5230\u5c3d\u53ef\u80fd\u9ad8\u6548\u7684\u7b97\u6cd5\u3002

            \u56e0\u6b64\uff0c\u5728\u80fd\u591f\u89e3\u51b3\u95ee\u9898\u7684\u524d\u63d0\u4e0b\uff0c\u7b97\u6cd5\u6548\u7387\u5df2\u6210\u4e3a\u8861\u91cf\u7b97\u6cd5\u4f18\u52a3\u7684\u4e3b\u8981\u8bc4\u4ef7\u6307\u6807\uff0c\u5b83\u5305\u62ec\u4ee5\u4e0b\u4e24\u4e2a\u7ef4\u5ea6\u3002

            • \u65f6\u95f4\u6548\u7387\uff1a\u7b97\u6cd5\u8fd0\u884c\u901f\u5ea6\u7684\u5feb\u6162\u3002
            • \u7a7a\u95f4\u6548\u7387\uff1a\u7b97\u6cd5\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u7684\u5927\u5c0f\u3002

            \u7b80\u800c\u8a00\u4e4b\uff0c\u6211\u4eec\u7684\u76ee\u6807\u662f\u8bbe\u8ba1\u201c\u65e2\u5feb\u53c8\u7701\u201d\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u3002\u800c\u6709\u6548\u5730\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u81f3\u5173\u91cd\u8981\uff0c\u56e0\u4e3a\u53ea\u6709\u8fd9\u6837\u6211\u4eec\u624d\u80fd\u5c06\u5404\u79cd\u7b97\u6cd5\u8fdb\u884c\u5bf9\u6bd4\uff0c\u4ece\u800c\u6307\u5bfc\u7b97\u6cd5\u8bbe\u8ba1\u4e0e\u4f18\u5316\u8fc7\u7a0b\u3002

            \u6548\u7387\u8bc4\u4f30\u65b9\u6cd5\u4e3b\u8981\u5206\u4e3a\u4e24\u79cd\uff1a\u5b9e\u9645\u6d4b\u8bd5\u548c\u7406\u8bba\u4f30\u7b97\u3002

            "},{"location":"chapter_computational_complexity/performance_evaluation/#211","title":"2.1.1 \u00a0 \u5b9e\u9645\u6d4b\u8bd5","text":"

            \u5047\u8bbe\u6211\u4eec\u73b0\u5728\u6709\u7b97\u6cd5 A \u548c\u7b97\u6cd5 B \uff0c\u5b83\u4eec\u90fd\u80fd\u89e3\u51b3\u540c\u4e00\u95ee\u9898\uff0c\u73b0\u5728\u9700\u8981\u5bf9\u6bd4\u8fd9\u4e24\u4e2a\u7b97\u6cd5\u7684\u6548\u7387\u3002\u6700\u76f4\u63a5\u7684\u65b9\u6cd5\u662f\u627e\u4e00\u53f0\u8ba1\u7b97\u673a\uff0c\u8fd0\u884c\u8fd9\u4e24\u4e2a\u7b97\u6cd5\uff0c\u5e76\u76d1\u63a7\u8bb0\u5f55\u5b83\u4eec\u7684\u8fd0\u884c\u65f6\u95f4\u548c\u5185\u5b58\u5360\u7528\u60c5\u51b5\u3002\u8fd9\u79cd\u8bc4\u4f30\u65b9\u5f0f\u80fd\u591f\u53cd\u6620\u771f\u5b9e\u60c5\u51b5\uff0c\u4f46\u4e5f\u5b58\u5728\u8f83\u5927\u5c40\u9650\u6027\u3002

            \u4e00\u65b9\u9762\uff0c\u96be\u4ee5\u6392\u9664\u6d4b\u8bd5\u73af\u5883\u7684\u5e72\u6270\u56e0\u7d20\u3002\u786c\u4ef6\u914d\u7f6e\u4f1a\u5f71\u54cd\u7b97\u6cd5\u7684\u6027\u80fd\u8868\u73b0\u3002\u6bd4\u5982\u5728\u67d0\u53f0\u8ba1\u7b97\u673a\u4e2d\uff0c\u7b97\u6cd5 A \u7684\u8fd0\u884c\u65f6\u95f4\u6bd4\u7b97\u6cd5 B \u77ed\uff1b\u4f46\u5728\u53e6\u4e00\u53f0\u914d\u7f6e\u4e0d\u540c\u7684\u8ba1\u7b97\u673a\u4e2d\uff0c\u6211\u4eec\u53ef\u80fd\u5f97\u5230\u76f8\u53cd\u7684\u6d4b\u8bd5\u7ed3\u679c\u3002\u8fd9\u610f\u5473\u7740\u6211\u4eec\u9700\u8981\u5728\u5404\u79cd\u673a\u5668\u4e0a\u8fdb\u884c\u6d4b\u8bd5\uff0c\u7edf\u8ba1\u5e73\u5747\u6548\u7387\uff0c\u800c\u8fd9\u662f\u4e0d\u73b0\u5b9e\u7684\u3002

            \u53e6\u4e00\u65b9\u9762\uff0c\u5c55\u5f00\u5b8c\u6574\u6d4b\u8bd5\u975e\u5e38\u8017\u8d39\u8d44\u6e90\u3002\u968f\u7740\u8f93\u5165\u6570\u636e\u91cf\u7684\u53d8\u5316\uff0c\u7b97\u6cd5\u4f1a\u8868\u73b0\u51fa\u4e0d\u540c\u7684\u6548\u7387\u3002\u4f8b\u5982\uff0c\u5728\u8f93\u5165\u6570\u636e\u91cf\u8f83\u5c0f\u65f6\uff0c\u7b97\u6cd5 A \u7684\u8fd0\u884c\u65f6\u95f4\u6bd4\u7b97\u6cd5 B \u66f4\u5c11\uff1b\u800c\u8f93\u5165\u6570\u636e\u91cf\u8f83\u5927\u65f6\uff0c\u6d4b\u8bd5\u7ed3\u679c\u53ef\u80fd\u6070\u6070\u76f8\u53cd\u3002\u56e0\u6b64\uff0c\u4e3a\u4e86\u5f97\u5230\u6709\u8bf4\u670d\u529b\u7684\u7ed3\u8bba\uff0c\u6211\u4eec\u9700\u8981\u6d4b\u8bd5\u5404\u79cd\u89c4\u6a21\u7684\u8f93\u5165\u6570\u636e\uff0c\u800c\u8fd9\u6837\u9700\u8981\u8017\u8d39\u5927\u91cf\u7684\u8ba1\u7b97\u8d44\u6e90\u3002

            "},{"location":"chapter_computational_complexity/performance_evaluation/#212","title":"2.1.2 \u00a0 \u7406\u8bba\u4f30\u7b97","text":"

            \u7531\u4e8e\u5b9e\u9645\u6d4b\u8bd5\u5177\u6709\u8f83\u5927\u7684\u5c40\u9650\u6027\uff0c\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u4ec5\u901a\u8fc7\u4e00\u4e9b\u8ba1\u7b97\u6765\u8bc4\u4f30\u7b97\u6cd5\u7684\u6548\u7387\u3002\u8fd9\u79cd\u4f30\u7b97\u65b9\u6cd5\u88ab\u79f0\u4e3a\u300c\u6e10\u8fd1\u590d\u6742\u5ea6\u5206\u6790 asymptotic complexity analysis\u300d\uff0c\u7b80\u79f0\u300c\u590d\u6742\u5ea6\u5206\u6790\u300d\u3002

            \u590d\u6742\u5ea6\u5206\u6790\u8bc4\u4f30\u7684\u662f\u7b97\u6cd5\u8fd0\u884c\u6240\u9700\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\uff0c\u5b83\u63cf\u8ff0\u4e86\u968f\u7740\u8f93\u5165\u6570\u636e\u5927\u5c0f\u7684\u589e\u52a0\uff0c\u7b97\u6cd5\u6240\u9700\u65f6\u95f4\uff08\u7a7a\u95f4\uff09\u7684\u589e\u957f\u8d8b\u52bf\u3002\u8fd9\u4e2a\u5b9a\u4e49\u6709\u4e9b\u62d7\u53e3\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5176\u5206\u4e3a\u4e09\u4e2a\u91cd\u70b9\u6765\u7406\u89e3\u3002

            1. \u201c\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\u201d\u5206\u522b\u5bf9\u5e94\u300c\u65f6\u95f4\u590d\u6742\u5ea6 time complexity\u300d\u548c\u300c\u7a7a\u95f4\u590d\u6742\u5ea6 space complexity\u300d\u3002
            2. \u201c\u968f\u7740\u8f93\u5165\u6570\u636e\u5927\u5c0f\u7684\u589e\u52a0\u201d\u610f\u5473\u7740\u590d\u6742\u5ea6\u53cd\u6620\u4e86\u7b97\u6cd5\u8fd0\u884c\u6548\u7387\u4e0e\u8f93\u5165\u6570\u636e\u4f53\u91cf\u4e4b\u95f4\u7684\u5173\u7cfb\u3002
            3. \u201c\u589e\u957f\u8d8b\u52bf\u201d\u8868\u793a\u590d\u6742\u5ea6\u5206\u6790\u5173\u6ce8\u7684\u662f\u7b97\u6cd5\u65f6\u95f4\u4e0e\u7a7a\u95f4\u7684\u589e\u957f\u8d8b\u52bf\uff0c\u800c\u975e\u5177\u4f53\u7684\u8fd0\u884c\u65f6\u95f4\u6216\u5360\u7528\u7a7a\u95f4\u3002

            \u590d\u6742\u5ea6\u5206\u6790\u514b\u670d\u4e86\u5b9e\u9645\u6d4b\u8bd5\u65b9\u6cd5\u7684\u5f0a\u7aef\u3002\u9996\u5148\uff0c\u5b83\u72ec\u7acb\u4e8e\u6d4b\u8bd5\u73af\u5883\uff0c\u5206\u6790\u7ed3\u679c\u9002\u7528\u4e8e\u6240\u6709\u8fd0\u884c\u5e73\u53f0\u3002\u5176\u6b21\uff0c\u5b83\u53ef\u4ee5\u4f53\u73b0\u4e0d\u540c\u6570\u636e\u91cf\u4e0b\u7684\u7b97\u6cd5\u6548\u7387\uff0c\u5c24\u5176\u662f\u5728\u5927\u6570\u636e\u91cf\u4e0b\u7684\u7b97\u6cd5\u6027\u80fd\u3002

            \u5982\u679c\u4f60\u5bf9\u590d\u6742\u5ea6\u5206\u6790\u7684\u6982\u5ff5\u4ecd\u611f\u5230\u56f0\u60d1\uff0c\u65e0\u987b\u62c5\u5fc3\uff0c\u6211\u4eec\u4f1a\u5728\u540e\u7eed\u7ae0\u8282\u4e2d\u8be6\u7ec6\u4ecb\u7ecd\u3002

            "},{"location":"chapter_computational_complexity/performance_evaluation/#213","title":"2.1.3 \u00a0 \u590d\u6742\u5ea6\u7684\u91cd\u8981\u6027","text":"

            \u590d\u6742\u5ea6\u5206\u6790\u4e3a\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u628a\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u7684\u201c\u6807\u5c3a\u201d\uff0c\u5e2e\u52a9\u6211\u4eec\u8861\u91cf\u4e86\u6267\u884c\u67d0\u4e2a\u7b97\u6cd5\u6240\u9700\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u8d44\u6e90\uff0c\u5e76\u4f7f\u6211\u4eec\u80fd\u591f\u5bf9\u6bd4\u4e0d\u540c\u7b97\u6cd5\u4e4b\u95f4\u7684\u6548\u7387\u3002

            \u590d\u6742\u5ea6\u662f\u4e2a\u6570\u5b66\u6982\u5ff5\uff0c\u5bf9\u4e8e\u521d\u5b66\u8005\u53ef\u80fd\u6bd4\u8f83\u62bd\u8c61\uff0c\u5b66\u4e60\u96be\u5ea6\u76f8\u5bf9\u8f83\u9ad8\u3002\u4ece\u8fd9\u4e2a\u89d2\u5ea6\u770b\uff0c\u590d\u6742\u5ea6\u5206\u6790\u53ef\u80fd\u4e0d\u592a\u9002\u5408\u4f5c\u4e3a\u7b2c 1 \u7ae0\u7684\u5185\u5bb9\u3002

            \u7136\u800c\uff0c\u5f53\u6211\u4eec\u8ba8\u8bba\u67d0\u4e2a\u6570\u636e\u7ed3\u6784\u6216\u7b97\u6cd5\u7684\u7279\u70b9\u65f6\uff0c\u96be\u4ee5\u907f\u514d\u8981\u5206\u6790\u5176\u8fd0\u884c\u901f\u5ea6\u548c\u7a7a\u95f4\u4f7f\u7528\u60c5\u51b5\u3002\u56e0\u6b64\uff0c\u5728\u6df1\u5165\u5b66\u4e60\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u4e4b\u524d\uff0c\u5efa\u8bae\u4f60\u5148\u5bf9\u590d\u6742\u5ea6\u5efa\u7acb\u521d\u6b65\u7684\u4e86\u89e3\uff0c\u4ee5\u4fbf\u80fd\u591f\u5b8c\u6210\u7b80\u5355\u7b97\u6cd5\u7684\u590d\u6742\u5ea6\u5206\u6790\u3002

            "},{"location":"chapter_computational_complexity/space_complexity/","title":"2.3 \u00a0 \u7a7a\u95f4\u590d\u6742\u5ea6","text":"

            \u300c\u7a7a\u95f4\u590d\u6742\u5ea6 space complexity\u300d\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u968f\u7740\u6570\u636e\u91cf\u53d8\u5927\u65f6\u7684\u589e\u957f\u8d8b\u52bf\u3002\u8fd9\u4e2a\u6982\u5ff5\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u975e\u5e38\u7c7b\u4f3c\uff0c\u53ea\u9700\u5c06\u201c\u8fd0\u884c\u65f6\u95f4\u201d\u66ff\u6362\u4e3a\u201c\u5360\u7528\u5185\u5b58\u7a7a\u95f4\u201d\u3002

            "},{"location":"chapter_computational_complexity/space_complexity/#231","title":"2.3.1 \u00a0 \u7b97\u6cd5\u76f8\u5173\u7a7a\u95f4","text":"

            \u7b97\u6cd5\u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u4f7f\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u4e3b\u8981\u5305\u62ec\u4ee5\u4e0b\u51e0\u79cd\u3002

            • \u8f93\u5165\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u7684\u8f93\u5165\u6570\u636e\u3002
            • \u6682\u5b58\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u53d8\u91cf\u3001\u5bf9\u8c61\u3001\u51fd\u6570\u4e0a\u4e0b\u6587\u7b49\u6570\u636e\u3002
            • \u8f93\u51fa\u7a7a\u95f4\uff1a\u7528\u4e8e\u5b58\u50a8\u7b97\u6cd5\u7684\u8f93\u51fa\u6570\u636e\u3002

            \u4e00\u822c\u60c5\u51b5\u4e0b\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u7edf\u8ba1\u8303\u56f4\u662f\u201c\u6682\u5b58\u7a7a\u95f4\u201d\u52a0\u4e0a\u201c\u8f93\u51fa\u7a7a\u95f4\u201d\u3002

            \u6682\u5b58\u7a7a\u95f4\u53ef\u4ee5\u8fdb\u4e00\u6b65\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\u3002

            • \u6682\u5b58\u6570\u636e\uff1a\u7528\u4e8e\u4fdd\u5b58\u7b97\u6cd5\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u5404\u79cd\u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u7b49\u3002
            • \u6808\u5e27\u7a7a\u95f4\uff1a\u7528\u4e8e\u4fdd\u5b58\u8c03\u7528\u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u6570\u636e\u3002\u7cfb\u7edf\u5728\u6bcf\u6b21\u8c03\u7528\u51fd\u6570\u65f6\u90fd\u4f1a\u5728\u6808\u9876\u90e8\u521b\u5efa\u4e00\u4e2a\u6808\u5e27\uff0c\u51fd\u6570\u8fd4\u56de\u540e\uff0c\u6808\u5e27\u7a7a\u95f4\u4f1a\u88ab\u91ca\u653e\u3002
            • \u6307\u4ee4\u7a7a\u95f4\uff1a\u7528\u4e8e\u4fdd\u5b58\u7f16\u8bd1\u540e\u7684\u7a0b\u5e8f\u6307\u4ee4\uff0c\u5728\u5b9e\u9645\u7edf\u8ba1\u4e2d\u901a\u5e38\u5ffd\u7565\u4e0d\u8ba1\u3002

            \u5728\u5206\u6790\u4e00\u6bb5\u7a0b\u5e8f\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u65f6\uff0c\u6211\u4eec\u901a\u5e38\u7edf\u8ba1\u6682\u5b58\u6570\u636e\u3001\u6808\u5e27\u7a7a\u95f4\u548c\u8f93\u51fa\u6570\u636e\u4e09\u90e8\u5206\u3002

            \u56fe\uff1a\u7b97\u6cd5\u4f7f\u7528\u7684\u76f8\u5173\u7a7a\u95f4

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u7c7b */\nclass Node {\nint val;\nNode next;\nNode(int x) { val = x; }\n}\n/* \u51fd\u6570 */\nint function() {\n// do something...\nreturn 0;\n}\nint algorithm(int n) {        // \u8f93\u5165\u6570\u636e\nfinal int a = 0;          // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nint b = 0;                // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nNode node = new Node(0);  // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nint c = function();       // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;         // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u7ed3\u6784\u4f53 */\nstruct Node {\nint val;\nNode *next;\nNode(int x) : val(x), next(nullptr) {}\n};\n/* \u51fd\u6570 */\nint func() {\n// do something...\nreturn 0;\n}\nint algorithm(int n) {        // \u8f93\u5165\u6570\u636e\nconst int a = 0;          // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nint b = 0;                // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nNode* node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nint c = func();           // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;         // \u8f93\u51fa\u6570\u636e\n}\n
            class Node:\n\"\"\"\u7c7b\"\"\"\ndef __init__(self, x: int):\nself.val: int = x                 # \u8282\u70b9\u503c\nself.next: Optional[Node] = None  # \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\ndef function() -> int:\n\"\"\"\u51fd\u6570\"\"\"\n# do something...\nreturn 0\ndef algorithm(n) -> int:  # \u8f93\u5165\u6570\u636e\nA = 0                 # \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff0c\u4e00\u822c\u7528\u5927\u5199\u5b57\u6bcd\u8868\u793a\uff09\nb = 0                 # \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nnode = Node(0)        # \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nc = function()        # \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn A + b + c      # \u8f93\u51fa\u6570\u636e\n
            /* \u7ed3\u6784\u4f53 */\ntype node struct {\nval  int\nnext *node\n}\n/* \u521b\u5efa node \u7ed3\u6784\u4f53  */\nfunc newNode(val int) *node {\nreturn &node{val: val}\n}\n/* \u51fd\u6570 */\nfunc function() int {\n// do something...\nreturn 0\n}\nfunc algorithm(n int) int { // \u8f93\u5165\u6570\u636e\nconst a = 0             // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nb := 0                  // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nnewNode(0)              // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nc := function()         // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c        // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u7c7b */\nclass Node {\nval;\nnext;\nconstructor(val) {\nthis.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\nthis.next = null;                       // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n/* \u51fd\u6570 */\nfunction constFunc() {\n// do something\nreturn 0;\n}\nfunction algorithm(n) {       // \u8f93\u5165\u6570\u636e\nconst a = 0;              // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nlet b = 0;                // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nconst node = new Node(0); // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nconst c = constFunc();    // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;         // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u7c7b */\nclass Node {\nval: number;\nnext: Node | null;\nconstructor(val?: number) {\nthis.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\nthis.next = null;                       // \u6307\u5411\u4e0b\u4e00\u8282\u70b9\u7684\u5f15\u7528\n}\n}\n/* \u51fd\u6570 */\nfunction constFunc(): number {\n// do something\nreturn 0;\n}\nfunction algorithm(n: number): number { // \u8f93\u5165\u6570\u636e\nconst a = 0;                        // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nlet b = 0;                          // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nconst node = new Node(0);           // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nconst c = constFunc();              // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;                   // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u51fd\u6570 */\nint func() {\n// do something...\nreturn 0;\n}\nint algorithm(int n) { // \u8f93\u5165\u6570\u636e\nconst int a = 0;   // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nint b = 0;         // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nint c = func();    // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;  // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u7c7b */\nclass Node {\nint val;\nNode next;\nNode(int x) { val = x; }\n}\n/* \u51fd\u6570 */\nint function() {\n// do something...\nreturn 0;\n}\nint algorithm(int n) {        // \u8f93\u5165\u6570\u636e\nconst int a = 0;          // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nint b = 0;                // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nNode node = new Node(0);  // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nint c = function();       // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;         // \u8f93\u51fa\u6570\u636e\n}\n
            /* \u7c7b */\nclass Node {\nvar val: Int\nvar next: Node?\ninit(x: Int) {\nval = x\n}\n}\n/* \u51fd\u6570 */\nfunc function() -> Int {\n// do something...\nreturn 0\n}\nfunc algorithm(n: Int) -> Int { // \u8f93\u5165\u6570\u636e\nlet a = 0             // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nvar b = 0             // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nlet node = Node(x: 0) // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nlet c = function()    // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c      // \u8f93\u51fa\u6570\u636e\n}\n
            \n
            /* \u7c7b */\nclass Node {\nint val;\nNode next;\nNode(this.val, [this.next]);\n}\n/* \u51fd\u6570 */\nint function() {\n// do something...\nreturn 0;\n}\nint algorithm(int n) {  // \u8f93\u5165\u6570\u636e\nconst int a = 0;      // \u6682\u5b58\u6570\u636e\uff08\u5e38\u91cf\uff09\nint b = 0;            // \u6682\u5b58\u6570\u636e\uff08\u53d8\u91cf\uff09\nNode node = Node(0);  // \u6682\u5b58\u6570\u636e\uff08\u5bf9\u8c61\uff09\nint c = function();   // \u6808\u5e27\u7a7a\u95f4\uff08\u8c03\u7528\u51fd\u6570\uff09\nreturn a + b + c;     // \u8f93\u51fa\u6570\u636e\n}\n
            \n
            "},{"location":"chapter_computational_complexity/space_complexity/#232","title":"2.3.2 \u00a0 \u63a8\u7b97\u65b9\u6cd5","text":"

            \u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u5927\u81f4\u76f8\u540c\uff0c\u53ea\u9700\u5c06\u7edf\u8ba1\u5bf9\u8c61\u4ece\u201c\u64cd\u4f5c\u6570\u91cf\u201d\u8f6c\u4e3a\u201c\u4f7f\u7528\u7a7a\u95f4\u5927\u5c0f\u201d\u3002

            \u800c\u4e0e\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u540c\u7684\u662f\uff0c\u6211\u4eec\u901a\u5e38\u53ea\u5173\u6ce8\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u3002\u8fd9\u662f\u56e0\u4e3a\u5185\u5b58\u7a7a\u95f4\u662f\u4e00\u9879\u786c\u6027\u8981\u6c42\uff0c\u6211\u4eec\u5fc5\u987b\u786e\u4fdd\u5728\u6240\u6709\u8f93\u5165\u6570\u636e\u4e0b\u90fd\u6709\u8db3\u591f\u7684\u5185\u5b58\u7a7a\u95f4\u9884\u7559\u3002

            \u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e2d\u7684\u201c\u6700\u5dee\u201d\u6709\u4e24\u5c42\u542b\u4e49\u3002

            1. \u4ee5\u6700\u5dee\u8f93\u5165\u6570\u636e\u4e3a\u51c6\uff1a\u5f53 \\(n < 10\\) \u65f6\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff1b\u4f46\u5f53 \\(n > 10\\) \u65f6\uff0c\u521d\u59cb\u5316\u7684\u6570\u7ec4 nums \u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\uff1b\u56e0\u6b64\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
            2. \u4ee5\u7b97\u6cd5\u8fd0\u884c\u4e2d\u7684\u5cf0\u503c\u5185\u5b58\u4e3a\u51c6\uff1a\u4f8b\u5982\uff0c\u7a0b\u5e8f\u5728\u6267\u884c\u6700\u540e\u4e00\u884c\u4e4b\u524d\uff0c\u5360\u7528 \\(O(1)\\) \u7a7a\u95f4\uff1b\u5f53\u521d\u59cb\u5316\u6570\u7ec4 nums \u65f6\uff0c\u7a0b\u5e8f\u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\uff1b\u56e0\u6b64\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            void algorithm(int n) {\nint a = 0;                   // O(1)\nint[] b = new int[10000];    // O(1)\nif (n > 10)\nint[] nums = new int[n]; // O(n)\n}\n
            void algorithm(int n) {\nint a = 0;               // O(1)\nvector<int> b(10000);    // O(1)\nif (n > 10)\nvector<int> nums(n); // O(n)\n}\n
            def algorithm(n: int):\na = 0               # O(1)\nb = [0] * 10000     # O(1)\nif n > 10:\nnums = [0] * n  # O(n)\n
            func algorithm(n int) {\na := 0                      // O(1)\nb := make([]int, 10000)     // O(1)\nvar nums []int\nif n > 10 {\nnums := make([]int, n)  // O(n)\n}\nfmt.Println(a, b, nums)\n}\n
            function algorithm(n) {\nconst a = 0;                   // O(1)\nconst b = new Array(10000);    // O(1)\nif (n > 10) {\nconst nums = new Array(n); // O(n)\n}\n}\n
            function algorithm(n: number): void {\nconst a = 0;                   // O(1)\nconst b = new Array(10000);    // O(1)\nif (n > 10) {\nconst nums = new Array(n); // O(n)\n}\n}\n
            void algorithm(int n) {\nint a = 0;               // O(1)\nint b[10000];            // O(1)\nif (n > 10)\nint nums[n] = {0};   // O(n)\n}\n
            void algorithm(int n) {\nint a = 0;                   // O(1)\nint[] b = new int[10000];    // O(1)\nif (n > 10) {\nint[] nums = new int[n]; // O(n)\n}\n}\n
            func algorithm(n: Int) {\nlet a = 0 // O(1)\nlet b = Array(repeating: 0, count: 10000) // O(1)\nif n > 10 {\nlet nums = Array(repeating: 0, count: n) // O(n)\n}\n}\n
            \n
            void algorithm(int n) {\nint a = 0;                            // O(1)\nList<int> b = List.filled(10000, 0);  // O(1)\nif (n > 10) {\nList<int> nums = List.filled(n, 0); // O(n)\n}\n}\n
            \n

            \u5728\u9012\u5f52\u51fd\u6570\u4e2d\uff0c\u9700\u8981\u6ce8\u610f\u7edf\u8ba1\u6808\u5e27\u7a7a\u95f4\u3002\u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff1a

            • \u51fd\u6570 loop() \u5728\u5faa\u73af\u4e2d\u8c03\u7528\u4e86 \\(n\\) \u6b21 function() \uff0c\u6bcf\u8f6e\u4e2d\u7684 function() \u90fd\u8fd4\u56de\u5e76\u91ca\u653e\u4e86\u6808\u5e27\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \u3002
            • \u9012\u5f52\u51fd\u6570 recur() \u5728\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u4f1a\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684 recur() \uff0c\u4ece\u800c\u5360\u7528 \\(O(n)\\) \u7684\u6808\u5e27\u7a7a\u95f4\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            int function() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\nfor (int i = 0; i < n; i++) {\nfunction();\n}\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\nif (n == 1) return;\nreturn recur(n - 1);\n}\n
            int func() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\nfor (int i = 0; i < n; i++) {\nfunc();\n}\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\nif (n == 1) return;\nreturn recur(n - 1);\n}\n
            def function() -> int:\n# do something\nreturn 0\ndef loop(n: int):\n\"\"\"\u5faa\u73af O(1)\"\"\"\nfor _ in range(n):\nfunction()\ndef recur(n: int) -> int:\n\"\"\"\u9012\u5f52 O(n)\"\"\"\nif n == 1: return\nreturn recur(n - 1)\n
            func function() int {\n// do something\nreturn 0\n}\n/* \u5faa\u73af O(1) */\nfunc loop(n int) {\nfor i := 0; i < n; i++ {\nfunction()\n}\n}\n/* \u9012\u5f52 O(n) */\nfunc recur(n int) {\nif n == 1 {\nreturn\n}\nrecur(n - 1)\n}\n
            function constFunc() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nfunction loop(n) {\nfor (let i = 0; i < n; i++) {\nconstFunc();\n}\n}\n/* \u9012\u5f52 O(n) */\nfunction recur(n) {\nif (n === 1) return;\nreturn recur(n - 1);\n}\n
            function constFunc(): number {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nfunction loop(n: number): void {\nfor (let i = 0; i < n; i++) {\nconstFunc();\n}\n}\n/* \u9012\u5f52 O(n) */\nfunction recur(n: number): void {\nif (n === 1) return;\nreturn recur(n - 1);\n}\n
            int func() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\nfor (int i = 0; i < n; i++) {\nfunc();\n}\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\nif (n == 1) return;\nreturn recur(n - 1);\n}\n
            int function() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\nfor (int i = 0; i < n; i++) {\nfunction();\n}\n}\n/* \u9012\u5f52 O(n) */\nint recur(int n) {\nif (n == 1) return 1;\nreturn recur(n - 1);\n}\n
            @discardableResult\nfunc function() -> Int {\n// do something\nreturn 0\n}\n/* \u5faa\u73af O(1) */\nfunc loop(n: Int) {\nfor _ in 0 ..< n {\nfunction()\n}\n}\n/* \u9012\u5f52 O(n) */\nfunc recur(n: Int) {\nif n == 1 {\nreturn\n}\nrecur(n: n - 1)\n}\n
            \n
            int function() {\n// do something\nreturn 0;\n}\n/* \u5faa\u73af O(1) */\nvoid loop(int n) {\nfor (int i = 0; i < n; i++) {\nfunction();\n}\n}\n/* \u9012\u5f52 O(n) */\nvoid recur(int n) {\nif (n == 1) return;\nreturn recur(n - 1);\n}\n
            \n
            "},{"location":"chapter_computational_complexity/space_complexity/#233","title":"2.3.3 \u00a0 \u5e38\u89c1\u7c7b\u578b","text":"

            \u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u4e0b\u56fe\u5c55\u793a\u4e86\u5e38\u89c1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u7c7b\u578b\uff08\u4ece\u4f4e\u5230\u9ad8\u6392\u5217\uff09\u3002

            \\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n^2) < O(2^n) \\newline \\text{\u5e38\u6570\u9636} < \\text{\u5bf9\u6570\u9636} < \\text{\u7ebf\u6027\u9636} < \\text{\u5e73\u65b9\u9636} < \\text{\u6307\u6570\u9636} \\end{aligned} \\]

            \u56fe\uff1a\u5e38\u89c1\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u7c7b\u578b

            Tip

            \u90e8\u5206\u793a\u4f8b\u4ee3\u7801\u9700\u8981\u4e00\u4e9b\u524d\u7f6e\u77e5\u8bc6\uff0c\u5305\u62ec\u6570\u7ec4\u3001\u94fe\u8868\u3001\u4e8c\u53c9\u6811\u3001\u9012\u5f52\u7b97\u6cd5\u7b49\u3002\u5982\u679c\u4f60\u9047\u5230\u770b\u4e0d\u61c2\u7684\u5730\u65b9\uff0c\u53ef\u4ee5\u5728\u5b66\u5b8c\u540e\u9762\u7ae0\u8282\u540e\u518d\u6765\u590d\u4e60\u3002

            "},{"location":"chapter_computational_complexity/space_complexity/#1-o1","title":"1. \u00a0 \u5e38\u6570\u9636 \\(O(1)\\)","text":"

            \u5e38\u6570\u9636\u5e38\u89c1\u4e8e\u6570\u91cf\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\u7684\u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u3002

            \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u5728\u5faa\u73af\u4e2d\u521d\u59cb\u5316\u53d8\u91cf\u6216\u8c03\u7528\u51fd\u6570\u800c\u5360\u7528\u7684\u5185\u5b58\uff0c\u5728\u8fdb\u5165\u4e0b\u4e00\u5faa\u73af\u540e\u5c31\u4f1a\u88ab\u91ca\u653e\uff0c\u5373\u4e0d\u4f1a\u7d2f\u79ef\u5360\u7528\u7a7a\u95f4\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u51fd\u6570 */\nint function() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nfinal int a = 0;\nint b = 0;\nint[] nums = new int[10000];\nListNode node = new ListNode(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nint c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nfunction();\n}\n}\n
            space_complexity.cpp
            /* \u51fd\u6570 */\nint func() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst int a = 0;\nint b = 0;\nvector<int> nums(10000);\nListNode node(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nint c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nfunc();\n}\n}\n
            space_complexity.py
            def function() -> int:\n\"\"\"\u51fd\u6570\"\"\"\n# do something\nreturn 0\ndef constant(n: int):\n\"\"\"\u5e38\u6570\u9636\"\"\"\n# \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\na = 0\nnums = [0] * 10000\nnode = ListNode(0)\n# \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor _ in range(n):\nc = 0\n# \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor _ in range(n):\nfunction()\n
            space_complexity.go
            /* \u51fd\u6570 */\nfunc function() int {\n// do something...\nreturn 0\n}\n/* \u5e38\u6570\u9636 */\nfunc spaceConstant(n int) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst a = 0\nb := 0\nnums := make([]int, 10000)\nListNode := newNode(0)\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nvar c int\nfor i := 0; i < n; i++ {\nc = 0\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor i := 0; i < n; i++ {\nfunction()\n}\nfmt.Println(a, b, nums, c, ListNode)\n}\n
            space_complexity.js
            /* \u51fd\u6570 */\nfunction constFunc() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nfunction constant(n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst a = 0;\nconst b = 0;\nconst nums = new Array(10000);\nconst node = new ListNode(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (let i = 0; i < n; i++) {\nconst c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (let i = 0; i < n; i++) {\nconstFunc();\n}\n}\n
            space_complexity.ts
            /* \u51fd\u6570 */\nfunction constFunc(): number {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nfunction constant(n: number): void {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst a = 0;\nconst b = 0;\nconst nums = new Array(10000);\nconst node = new ListNode(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (let i = 0; i < n; i++) {\nconst c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (let i = 0; i < n; i++) {\nconstFunc();\n}\n}\n
            space_complexity.c
            /* \u51fd\u6570 */\nint func() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst int a = 0;\nint b = 0;\nint nums[1000];\nListNode *node = newListNode(0);\nfree(node);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nint c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nfunc();\n}\n}\n
            space_complexity.cs
            /* \u51fd\u6570 */\nint function() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nint a = 0;\nint b = 0;\nint[] nums = new int[10000];\nListNode node = new ListNode(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nint c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (int i = 0; i < n; i++) {\nfunction();\n}\n}\n
            space_complexity.swift
            /* \u51fd\u6570 */\n@discardableResult\nfunc function() -> Int {\n// do something\nreturn 0\n}\n/* \u5e38\u6570\u9636 */\nfunc constant(n: Int) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nlet a = 0\nvar b = 0\nlet nums = Array(repeating: 0, count: 10000)\nlet node = ListNode(x: 0)\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor _ in 0 ..< n {\nlet c = 0\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor _ in 0 ..< n {\nfunction()\n}\n}\n
            space_complexity.zig
            [class]{}-[func]{function}\n// \u5e38\u6570\u9636\nfn constant(n: i32) void {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst a: i32 = 0;\nvar b: i32 = 0;\nvar nums = [_]i32{0}**10000;\nvar node = inc.ListNode(i32){.val = 0};\nvar i: i32 = 0;\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nwhile (i < n) : (i += 1) {\nvar c: i32 = 0;\n_ = c;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\ni = 0;\nwhile (i < n) : (i += 1) {\n_ = function();\n}\n_ = a;\n_ = b;\n_ = nums;\n_ = node;\n}\n
            space_complexity.dart
            /* \u51fd\u6570 */\nint function() {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\nvoid constant(int n) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nfinal int a = 0;\nint b = 0;\nList<int> nums = List.filled(10000, 0);\nListNode node = ListNode(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor (var i = 0; i < n; i++) {\nint c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor (var i = 0; i < n; i++) {\nfunction();\n}\n}\n
            space_complexity.rs
            /* \u51fd\u6570 */\nfn function() ->i32 {\n// do something\nreturn 0;\n}\n/* \u5e38\u6570\u9636 */\n#[allow(unused)]\nfn constant(n: i32) {\n// \u5e38\u91cf\u3001\u53d8\u91cf\u3001\u5bf9\u8c61\u5360\u7528 O(1) \u7a7a\u95f4\nconst A: i32 = 0;\nlet b = 0;\nlet nums = vec![0; 10000];\nlet node = ListNode::new(0);\n// \u5faa\u73af\u4e2d\u7684\u53d8\u91cf\u5360\u7528 O(1) \u7a7a\u95f4\nfor i in 0..n {\nlet c = 0;\n}\n// \u5faa\u73af\u4e2d\u7684\u51fd\u6570\u5360\u7528 O(1) \u7a7a\u95f4\nfor i in 0..n {\nfunction();\n}\n}\n
            "},{"location":"chapter_computational_complexity/space_complexity/#2-on","title":"2. \u00a0 \u7ebf\u6027\u9636 \\(O(n)\\)","text":"

            \u7ebf\u6027\u9636\u5e38\u89c1\u4e8e\u5143\u7d20\u6570\u91cf\u4e0e \\(n\\) \u6210\u6b63\u6bd4\u7684\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u7b49\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nint[] nums = new int[n];\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nList<ListNode> nodes = new ArrayList<>();\nfor (int i = 0; i < n; i++) {\nnodes.add(new ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nMap<Integer, String> map = new HashMap<>();\nfor (int i = 0; i < n; i++) {\nmap.put(i, String.valueOf(i));\n}\n}\n
            space_complexity.cpp
            /* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nvector<int> nums(n);\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nvector<ListNode> nodes;\nfor (int i = 0; i < n; i++) {\nnodes.push_back(ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nunordered_map<int, string> map;\nfor (int i = 0; i < n; i++) {\nmap[i] = to_string(i);\n}\n}\n
            space_complexity.py
            def linear(n: int):\n\"\"\"\u7ebf\u6027\u9636\"\"\"\n# \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nnums = [0] * n\n# \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nhmap = dict[int, str]()\nfor i in range(n):\nhmap[i] = str(i)\n
            space_complexity.go
            /* \u7ebf\u6027\u9636 */\nfunc spaceLinear(n int) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\n_ = make([]int, n)\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nvar nodes []*node\nfor i := 0; i < n; i++ {\nnodes = append(nodes, newNode(i))\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nm := make(map[int]string, n)\nfor i := 0; i < n; i++ {\nm[i] = strconv.Itoa(i)\n}\n}\n
            space_complexity.js
            /* \u7ebf\u6027\u9636 */\nfunction linear(n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nconst nums = new Array(n);\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nconst nodes = [];\nfor (let i = 0; i < n; i++) {\nnodes.push(new ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nconst map = new Map();\nfor (let i = 0; i < n; i++) {\nmap.set(i, i.toString());\n}\n}\n
            space_complexity.ts
            /* \u7ebf\u6027\u9636 */\nfunction linear(n: number): void {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nconst nums = new Array(n);\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nconst nodes: ListNode[] = [];\nfor (let i = 0; i < n; i++) {\nnodes.push(new ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nconst map = new Map();\nfor (let i = 0; i < n; i++) {\nmap.set(i, i.toString());\n}\n}\n
            space_complexity.c
            /* \u54c8\u5e0c\u8868 */\nstruct hashTable {\nint key;\nint val;\nUT_hash_handle hh; // \u57fa\u4e8e uthash.h \u5b9e\u73b0\n};\ntypedef struct hashTable hashTable;\n/* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nint *nums = malloc(sizeof(int) * n);\nfree(nums);\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nListNode **nodes = malloc(sizeof(ListNode *) * n);\nfor (int i = 0; i < n; i++) {\nnodes[i] = newListNode(i);\n}\n// \u5185\u5b58\u91ca\u653e\nfor (int i = 0; i < n; i++) {\nfree(nodes[i]);\n}\nfree(nodes);\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nhashTable *h = NULL;\nfor (int i = 0; i < n; i++) {\nhashTable *tmp = malloc(sizeof(hashTable));\ntmp->key = i;\ntmp->val = i;\nHASH_ADD_INT(h, key, tmp);\n}\n// \u5185\u5b58\u91ca\u653e\nhashTable *curr, *tmp;\nHASH_ITER(hh, h, curr, tmp) {\nHASH_DEL(h, curr);\nfree(curr);\n}\n}\n
            space_complexity.cs
            /* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nint[] nums = new int[n];\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nList<ListNode> nodes = new();\nfor (int i = 0; i < n; i++) {\nnodes.Add(new ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nDictionary<int, string> map = new();\nfor (int i = 0; i < n; i++) {\nmap.Add(i, i.ToString());\n}\n}\n
            space_complexity.swift
            /* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nlet nums = Array(repeating: 0, count: n)\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nlet nodes = (0 ..< n).map { ListNode(x: $0) }\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nlet map = Dictionary(uniqueKeysWithValues: (0 ..< n).map { ($0, \"\\($0)\") })\n}\n
            space_complexity.zig
            // \u7ebf\u6027\u9636\nfn linear(comptime n: i32) !void {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nvar nums = [_]i32{0}**n;\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nvar nodes = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer nodes.deinit();\nvar i: i32 = 0;\nwhile (i < n) : (i += 1) {\ntry nodes.append(i);\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nvar map = std.AutoArrayHashMap(i32, []const u8).init(std.heap.page_allocator);\ndefer map.deinit();\nvar j: i32 = 0;\nwhile (j < n) : (j += 1) {\nconst string = try std.fmt.allocPrint(std.heap.page_allocator, \"{d}\", .{j});\ndefer std.heap.page_allocator.free(string);\ntry map.put(i, string);\n}\n_ = nums;\n}\n
            space_complexity.dart
            /* \u7ebf\u6027\u9636 */\nvoid linear(int n) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nList<int> nums = List.filled(n, 0);\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nList<ListNode> nodes = [];\nfor (var i = 0; i < n; i++) {\nnodes.add(ListNode(i));\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nMap<int, String> map = HashMap();\nfor (var i = 0; i < n; i++) {\nmap.putIfAbsent(i, () => i.toString());\n}\n}\n
            space_complexity.rs
            /* \u7ebf\u6027\u9636 */\n#[allow(unused)]\nfn linear(n: i32) {\n// \u957f\u5ea6\u4e3a n \u7684\u6570\u7ec4\u5360\u7528 O(n) \u7a7a\u95f4\nlet mut nums = vec![0; n as usize];\n// \u957f\u5ea6\u4e3a n \u7684\u5217\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nlet mut nodes = Vec::new();\nfor i in 0..n {\nnodes.push(ListNode::new(i))\n}\n// \u957f\u5ea6\u4e3a n \u7684\u54c8\u5e0c\u8868\u5360\u7528 O(n) \u7a7a\u95f4\nlet mut map = HashMap::new();\nfor i in 0..n {\nmap.insert(i, i.to_string());\n}\n}\n

            \u4ee5\u4e0b\u9012\u5f52\u51fd\u6570\u4f1a\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684 algorithm() \u51fd\u6570\uff0c\u4f7f\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\nSystem.out.println(\"\u9012\u5f52 n = \" + n);\nif (n == 1)\nreturn;\nlinearRecur(n - 1);\n}\n
            space_complexity.cpp
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\ncout << \"\u9012\u5f52 n = \" << n << endl;\nif (n == 1)\nreturn;\nlinearRecur(n - 1);\n}\n
            space_complexity.py
            def linear_recur(n: int):\n\"\"\"\u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\nprint(\"\u9012\u5f52 n =\", n)\nif n == 1:\nreturn\nlinear_recur(n - 1)\n
            space_complexity.go
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceLinearRecur(n int) {\nfmt.Println(\"\u9012\u5f52 n =\", n)\nif n == 1 {\nreturn\n}\nspaceLinearRecur(n - 1)\n}\n
            space_complexity.js
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n) {\nconsole.log(`\u9012\u5f52 n = ${n}`);\nif (n === 1) return;\nlinearRecur(n - 1);\n}\n
            space_complexity.ts
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction linearRecur(n: number): void {\nconsole.log(`\u9012\u5f52 n = ${n}`);\nif (n === 1) return;\nlinearRecur(n - 1);\n}\n
            space_complexity.c
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\nprintf(\"\u9012\u5f52 n = %d\\r\\n\", n);\nif (n == 1)\nreturn;\nlinearRecur(n - 1);\n}\n
            space_complexity.cs
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\nConsole.WriteLine(\"\u9012\u5f52 n = \" + n);\nif (n == 1) return;\nlinearRecur(n - 1);\n}\n
            space_complexity.swift
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc linearRecur(n: Int) {\nprint(\"\u9012\u5f52 n = \\(n)\")\nif n == 1 {\nreturn\n}\nlinearRecur(n: n - 1)\n}\n
            space_complexity.zig
            // \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn linearRecur(comptime n: i32) void {\nstd.debug.print(\"\u9012\u5f52 n = {}\\n\", .{n});\nif (n == 1) return;\nlinearRecur(n - 1);\n}\n
            space_complexity.dart
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nvoid linearRecur(int n) {\nprint('\u9012\u5f52 n = $n');\nif (n == 1) return;\nlinearRecur(n - 1);\n}\n
            space_complexity.rs
            /* \u7ebf\u6027\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn linear_recur(n: i32) {\nprintln!(\"\u9012\u5f52 n = {}\", n);\nif n == 1 {return};\nlinear_recur(n - 1);\n}\n

            \u56fe\uff1a\u9012\u5f52\u51fd\u6570\u4ea7\u751f\u7684\u7ebf\u6027\u9636\u7a7a\u95f4\u590d\u6742\u5ea6

            "},{"location":"chapter_computational_complexity/space_complexity/#3-on2","title":"3. \u00a0 \u5e73\u65b9\u9636 \\(O(n^2)\\)","text":"

            \u5e73\u65b9\u9636\u5e38\u89c1\u4e8e\u77e9\u9635\u548c\u56fe\uff0c\u5143\u7d20\u6570\u91cf\u4e0e \\(n\\) \u6210\u5e73\u65b9\u5173\u7cfb\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nint[][] numMatrix = new int[n][n];\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nList<List<Integer>> numList = new ArrayList<>();\nfor (int i = 0; i < n; i++) {\nList<Integer> tmp = new ArrayList<>();\nfor (int j = 0; j < n; j++) {\ntmp.add(0);\n}\nnumList.add(tmp);\n}\n}\n
            space_complexity.cpp
            /* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nvector<vector<int>> numMatrix;\nfor (int i = 0; i < n; i++) {\nvector<int> tmp;\nfor (int j = 0; j < n; j++) {\ntmp.push_back(0);\n}\nnumMatrix.push_back(tmp);\n}\n}\n
            space_complexity.py
            def quadratic(n: int):\n\"\"\"\u5e73\u65b9\u9636\"\"\"\n# \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nnum_matrix = [[0] * n for _ in range(n)]\n
            space_complexity.go
            /* \u5e73\u65b9\u9636 */\nfunc spaceQuadratic(n int) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nnumMatrix := make([][]int, n)\nfor i := 0; i < n; i++ {\nnumMatrix[i] = make([]int, n)\n}\n}\n
            space_complexity.js
            /* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nconst numMatrix = Array(n)\n.fill(null)\n.map(() => Array(n).fill(null));\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nconst numList = [];\nfor (let i = 0; i < n; i++) {\nconst tmp = [];\nfor (let j = 0; j < n; j++) {\ntmp.push(0);\n}\nnumList.push(tmp);\n}\n}\n
            space_complexity.ts
            /* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): void {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nconst numMatrix = Array(n)\n.fill(null)\n.map(() => Array(n).fill(null));\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nconst numList = [];\nfor (let i = 0; i < n; i++) {\nconst tmp = [];\nfor (let j = 0; j < n; j++) {\ntmp.push(0);\n}\nnumList.push(tmp);\n}\n}\n
            space_complexity.c
            /* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nint **numMatrix = malloc(sizeof(int *) * n);\nfor (int i = 0; i < n; i++) {\nint *tmp = malloc(sizeof(int) * n);\nfor (int j = 0; j < n; j++) {\ntmp[j] = 0;\n}\nnumMatrix[i] = tmp;\n}\n// \u5185\u5b58\u91ca\u653e\nfor (int i = 0; i < n; i++) {\nfree(numMatrix[i]);\n}\nfree(numMatrix);\n}\n
            space_complexity.cs
            /* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nint[,] numMatrix = new int[n, n];\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nList<List<int>> numList = new();\nfor (int i = 0; i < n; i++) {\nList<int> tmp = new();\nfor (int j = 0; j < n; j++) {\ntmp.Add(0);\n}\nnumList.Add(tmp);\n}\n}\n
            space_complexity.swift
            /* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) {\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nlet numList = Array(repeating: Array(repeating: 0, count: n), count: n)\n}\n
            space_complexity.zig
            // \u5e73\u65b9\u9636\nfn quadratic(n: i32) !void {\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nvar nodes = std.ArrayList(std.ArrayList(i32)).init(std.heap.page_allocator);\ndefer nodes.deinit();\nvar i: i32 = 0;\nwhile (i < n) : (i += 1) {\nvar tmp = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer tmp.deinit();\nvar j: i32 = 0;\nwhile (j < n) : (j += 1) {\ntry tmp.append(0);\n}\ntry nodes.append(tmp);\n}\n}\n
            space_complexity.dart
            /* \u5e73\u65b9\u9636 */\nvoid quadratic(int n) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nList<List<int>> numMatrix = List.generate(n, (_) => List.filled(n, 0));\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nList<List<int>> numList = [];\nfor (var i = 0; i < n; i++) {\nList<int> tmp = [];\nfor (int j = 0; j < n; j++) {\ntmp.add(0);\n}\nnumList.add(tmp);\n}\n}\n
            space_complexity.rs
            /* \u5e73\u65b9\u9636 */\n#[allow(unused)]\nfn quadratic(n: i32) {\n// \u77e9\u9635\u5360\u7528 O(n^2) \u7a7a\u95f4\nlet num_matrix = vec![vec![0; n as usize]; n as usize];\n// \u4e8c\u7ef4\u5217\u8868\u5360\u7528 O(n^2) \u7a7a\u95f4\nlet mut num_list = Vec::new();\nfor i in 0..n {\nlet mut tmp = Vec::new();\nfor j in 0..n {\ntmp.push(0);\n}\nnum_list.push(tmp);\n}\n}\n

            \u5728\u4ee5\u4e0b\u9012\u5f52\u51fd\u6570\u4e2d\uff0c\u540c\u65f6\u5b58\u5728 \\(n\\) \u4e2a\u672a\u8fd4\u56de\u7684 algorithm() \uff0c\u5e76\u4e14\u6bcf\u4e2a\u51fd\u6570\u4e2d\u90fd\u521d\u59cb\u5316\u4e86\u4e00\u4e2a\u6570\u7ec4\uff0c\u957f\u5ea6\u5206\u522b\u4e3a \\(n, n-1, n-2, ..., 2, 1\\) \uff0c\u5e73\u5747\u957f\u5ea6\u4e3a \\(\\frac{n}{2}\\) \uff0c\u56e0\u6b64\u603b\u4f53\u5360\u7528 \\(O(n^2)\\) \u7a7a\u95f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\nif (n <= 0)\nreturn 0;\n// \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\nint[] nums = new int[n];\nSystem.out.println(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.length);\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.cpp
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\nif (n <= 0)\nreturn 0;\nvector<int> nums(n);\ncout << \"\u9012\u5f52 n = \" << n << \" \u4e2d\u7684 nums \u957f\u5ea6 = \" << nums.size() << endl;\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.py
            def quadratic_recur(n: int) -> int:\n\"\"\"\u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\nif n <= 0:\nreturn 0\n# \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\nnums = [0] * n\nreturn quadratic_recur(n - 1)\n
            space_complexity.go
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc spaceQuadraticRecur(n int) int {\nif n <= 0 {\nreturn 0\n}\nnums := make([]int, n)\nfmt.Printf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d \\n\", n, len(nums))\nreturn spaceQuadraticRecur(n - 1)\n}\n
            space_complexity.js
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n) {\nif (n <= 0) return 0;\nconst nums = new Array(n);\nconsole.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.ts
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction quadraticRecur(n: number): number {\nif (n <= 0) return 0;\nconst nums = new Array(n);\nconsole.log(`\u9012\u5f52 n = ${n} \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}`);\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.c
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\nif (n <= 0)\nreturn 0;\nint *nums = malloc(sizeof(int) * n);\nprintf(\"\u9012\u5f52 n = %d \u4e2d\u7684 nums \u957f\u5ea6 = %d\\r\\n\", n, n);\nint res = quadraticRecur(n - 1);\nfree(nums);\nreturn res;\n}\n
            space_complexity.cs
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\nif (n <= 0) return 0;\nint[] nums = new int[n];\nConsole.WriteLine(\"\u9012\u5f52 n = \" + n + \" \u4e2d\u7684 nums \u957f\u5ea6 = \" + nums.Length);\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.swift
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\n@discardableResult\nfunc quadraticRecur(n: Int) -> Int {\nif n <= 0 {\nreturn 0\n}\n// \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\nlet nums = Array(repeating: 0, count: n)\nprint(\"\u9012\u5f52 n = \\(n) \u4e2d\u7684 nums \u957f\u5ea6 = \\(nums.count)\")\nreturn quadraticRecur(n: n - 1)\n}\n
            space_complexity.zig
            // \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn quadraticRecur(comptime n: i32) i32 {\nif (n <= 0) return 0;\nvar nums = [_]i32{0}**n;\nstd.debug.print(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\\n\", .{n, nums.len});\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.dart
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint quadraticRecur(int n) {\nif (n <= 0) return 0;\nList<int> nums = List.filled(n, 0);\nprint('\u9012\u5f52 n = $n \u4e2d\u7684 nums \u957f\u5ea6 = ${nums.length}');\nreturn quadraticRecur(n - 1);\n}\n
            space_complexity.rs
            /* \u5e73\u65b9\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn quadratic_recur(n: i32) -> i32 {\nif n <= 0 {return 0};\n// \u6570\u7ec4 nums \u957f\u5ea6\u4e3a n, n-1, ..., 2, 1\nlet nums = vec![0; n as usize];\nprintln!(\"\u9012\u5f52 n = {} \u4e2d\u7684 nums \u957f\u5ea6 = {}\", n, nums.len());\nreturn quadratic_recur(n - 1);\n}\n

            \u56fe\uff1a\u9012\u5f52\u51fd\u6570\u4ea7\u751f\u7684\u5e73\u65b9\u9636\u7a7a\u95f4\u590d\u6742\u5ea6

            "},{"location":"chapter_computational_complexity/space_complexity/#4-o2n","title":"4. \u00a0 \u6307\u6570\u9636 \\(O(2^n)\\)","text":"

            \u6307\u6570\u9636\u5e38\u89c1\u4e8e\u4e8c\u53c9\u6811\u3002\u9ad8\u5ea6\u4e3a \\(n\\) \u7684\u201c\u6ee1\u4e8c\u53c9\u6811\u201d\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(2^n - 1\\) \uff0c\u5360\u7528 \\(O(2^n)\\) \u7a7a\u95f4\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust space_complexity.java
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode buildTree(int n) {\nif (n == 0)\nreturn null;\nTreeNode root = new TreeNode(0);\nroot.left = buildTree(n - 1);\nroot.right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.cpp
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\nif (n == 0)\nreturn nullptr;\nTreeNode *root = new TreeNode(0);\nroot->left = buildTree(n - 1);\nroot->right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.py
            def build_tree(n: int) -> TreeNode | None:\n\"\"\"\u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\"\"\"\nif n == 0:\nreturn None\nroot = TreeNode(0)\nroot.left = build_tree(n - 1)\nroot.right = build_tree(n - 1)\nreturn root\n
            space_complexity.go
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n int) *treeNode {\nif n == 0 {\nreturn nil\n}\nroot := newTreeNode(0)\nroot.left = buildTree(n - 1)\nroot.right = buildTree(n - 1)\nreturn root\n}\n
            space_complexity.js
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n) {\nif (n === 0) return null;\nconst root = new TreeNode(0);\nroot.left = buildTree(n - 1);\nroot.right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.ts
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunction buildTree(n: number): TreeNode | null {\nif (n === 0) return null;\nconst root = new TreeNode(0);\nroot.left = buildTree(n - 1);\nroot.right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.c
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode *buildTree(int n) {\nif (n == 0)\nreturn NULL;\nTreeNode *root = newTreeNode(0);\nroot->left = buildTree(n - 1);\nroot->right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.cs
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? buildTree(int n) {\nif (n == 0) return null;\nTreeNode root = new TreeNode(0);\nroot.left = buildTree(n - 1);\nroot.right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.swift
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfunc buildTree(n: Int) -> TreeNode? {\nif n == 0 {\nreturn nil\n}\nlet root = TreeNode(x: 0)\nroot.left = buildTree(n: n - 1)\nroot.right = buildTree(n: n - 1)\nreturn root\n}\n
            space_complexity.zig
            // \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09\nfn buildTree(mem_allocator: std.mem.Allocator, n: i32) !?*inc.TreeNode(i32) {\nif (n == 0) return null;\nconst root = try mem_allocator.create(inc.TreeNode(i32));\nroot.init(0);\nroot.left = try buildTree(mem_allocator, n - 1);\nroot.right = try buildTree(mem_allocator, n - 1);\nreturn root;\n}\n
            space_complexity.dart
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nTreeNode? buildTree(int n) {\nif (n == 0) return null;\nTreeNode root = TreeNode(0);\nroot.left = buildTree(n - 1);\nroot.right = buildTree(n - 1);\nreturn root;\n}\n
            space_complexity.rs
            /* \u6307\u6570\u9636\uff08\u5efa\u7acb\u6ee1\u4e8c\u53c9\u6811\uff09 */\nfn build_tree(n: i32) -> Option<Rc<RefCell<TreeNode>>> {\nif n == 0 {return None};\nlet root = TreeNode::new(0);\nroot.borrow_mut().left = build_tree(n - 1);\nroot.borrow_mut().right = build_tree(n - 1);\nreturn Some(root);\n}\n

            \u56fe\uff1a\u6ee1\u4e8c\u53c9\u6811\u4ea7\u751f\u7684\u6307\u6570\u9636\u7a7a\u95f4\u590d\u6742\u5ea6

            "},{"location":"chapter_computational_complexity/space_complexity/#5-olog-n","title":"5. \u00a0 \u5bf9\u6570\u9636 \\(O(\\log n)\\)","text":"

            \u5bf9\u6570\u9636\u5e38\u89c1\u4e8e\u5206\u6cbb\u7b97\u6cd5\u548c\u6570\u636e\u7c7b\u578b\u8f6c\u6362\u7b49\u3002

            \u4f8b\u5982\u5f52\u5e76\u6392\u5e8f\u7b97\u6cd5\uff0c\u8f93\u5165\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\uff0c\u6bcf\u8f6e\u9012\u5f52\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5212\u5206\u4e3a\u4e24\u534a\uff0c\u5f62\u6210\u9ad8\u5ea6\u4e3a \\(\\log n\\) \u7684\u9012\u5f52\u6811\uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u6808\u5e27\u7a7a\u95f4\u3002

            \u518d\u4f8b\u5982\u5c06\u6570\u5b57\u8f6c\u5316\u4e3a\u5b57\u7b26\u4e32\uff0c\u8f93\u5165\u4efb\u610f\u6b63\u6574\u6570 \\(n\\) \uff0c\u5b83\u7684\u4f4d\u6570\u4e3a \\(\\log_{10} n + 1\\) \uff0c\u5373\u5bf9\u5e94\u5b57\u7b26\u4e32\u957f\u5ea6\u4e3a \\(\\log_{10} n + 1\\) \uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log_{10} n + 1) = O(\\log n)\\) \u3002

            "},{"location":"chapter_computational_complexity/space_complexity/#234","title":"2.3.4 \u00a0 \u6743\u8861\u65f6\u95f4\u4e0e\u7a7a\u95f4","text":"

            \u7406\u60f3\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5e0c\u671b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u90fd\u80fd\u8fbe\u5230\u6700\u4f18\u3002\u7136\u800c\u5728\u5b9e\u9645\u60c5\u51b5\u4e2d\uff0c\u540c\u65f6\u4f18\u5316\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u662f\u975e\u5e38\u56f0\u96be\u7684\u3002

            \u964d\u4f4e\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u9700\u8981\u4ee5\u63d0\u5347\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a\u4ee3\u4ef7\uff0c\u53cd\u4e4b\u4ea6\u7136\u3002\u6211\u4eec\u5c06\u727a\u7272\u5185\u5b58\u7a7a\u95f4\u6765\u63d0\u5347\u7b97\u6cd5\u8fd0\u884c\u901f\u5ea6\u7684\u601d\u8def\u79f0\u4e3a\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\uff1b\u53cd\u4e4b\uff0c\u5219\u79f0\u4e3a\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u3002

            \u9009\u62e9\u54ea\u79cd\u601d\u8def\u53d6\u51b3\u4e8e\u6211\u4eec\u66f4\u770b\u91cd\u54ea\u4e2a\u65b9\u9762\u3002\u5728\u5927\u591a\u6570\u60c5\u51b5\u4e0b\uff0c\u65f6\u95f4\u6bd4\u7a7a\u95f4\u66f4\u5b9d\u8d35\uff0c\u56e0\u6b64\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\u901a\u5e38\u662f\u66f4\u5e38\u7528\u7684\u7b56\u7565\u3002\u5f53\u7136\uff0c\u5728\u6570\u636e\u91cf\u5f88\u5927\u7684\u60c5\u51b5\u4e0b\uff0c\u63a7\u5236\u7a7a\u95f4\u590d\u6742\u5ea6\u4e5f\u662f\u975e\u5e38\u91cd\u8981\u7684\u3002

            "},{"location":"chapter_computational_complexity/summary/","title":"2.4 \u00a0 \u5c0f\u7ed3","text":"

            \u7b97\u6cd5\u6548\u7387\u8bc4\u4f30

            • \u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u662f\u8861\u91cf\u7b97\u6cd5\u4f18\u52a3\u7684\u4e24\u4e2a\u4e3b\u8981\u8bc4\u4ef7\u6307\u6807\u3002
            • \u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5b9e\u9645\u6d4b\u8bd5\u6765\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\uff0c\u4f46\u96be\u4ee5\u6d88\u9664\u6d4b\u8bd5\u73af\u5883\u7684\u5f71\u54cd\uff0c\u4e14\u4f1a\u8017\u8d39\u5927\u91cf\u8ba1\u7b97\u8d44\u6e90\u3002
            • \u590d\u6742\u5ea6\u5206\u6790\u53ef\u4ee5\u514b\u670d\u5b9e\u9645\u6d4b\u8bd5\u7684\u5f0a\u7aef\uff0c\u5206\u6790\u7ed3\u679c\u9002\u7528\u4e8e\u6240\u6709\u8fd0\u884c\u5e73\u53f0\uff0c\u5e76\u4e14\u80fd\u591f\u63ed\u793a\u7b97\u6cd5\u5728\u4e0d\u540c\u6570\u636e\u89c4\u6a21\u4e0b\u7684\u6548\u7387\u3002

            \u65f6\u95f4\u590d\u6742\u5ea6

            • \u65f6\u95f4\u590d\u6742\u5ea6\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u6570\u636e\u91cf\u589e\u957f\u7684\u8d8b\u52bf\uff0c\u53ef\u4ee5\u6709\u6548\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\uff0c\u4f46\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\u53ef\u80fd\u5931\u6548\uff0c\u5982\u5728\u8f93\u5165\u7684\u6570\u636e\u91cf\u8f83\u5c0f\u6216\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u540c\u65f6\uff0c\u65e0\u6cd5\u7cbe\u786e\u5bf9\u6bd4\u7b97\u6cd5\u6548\u7387\u7684\u4f18\u52a3\u3002
            • \u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4f7f\u7528\u5927 \\(O\\) \u7b26\u53f7\u8868\u793a\uff0c\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c\uff0c\u53cd\u6620\u5f53 \\(n\\) \u8d8b\u5411\u6b63\u65e0\u7a77\u65f6\uff0c\u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u7684\u589e\u957f\u7ea7\u522b\u3002
            • \u63a8\u7b97\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u4e3a\u4e24\u6b65\uff0c\u9996\u5148\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf\uff0c\u7136\u540e\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c\u3002
            • \u5e38\u89c1\u65f6\u95f4\u590d\u6742\u5ea6\u4ece\u5c0f\u5230\u5927\u6392\u5217\u6709 \\(O(1)\\) \u3001\\(O(\\log n)\\) \u3001\\(O(n)\\) \u3001\\(O(n \\log n)\\) \u3001\\(O(n^2)\\) \u3001\\(O(2^n)\\) \u3001\\(O(n!)\\) \u7b49\u3002
            • \u67d0\u4e9b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u975e\u56fa\u5b9a\uff0c\u800c\u662f\u4e0e\u8f93\u5165\u6570\u636e\u7684\u5206\u5e03\u6709\u5173\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u4e3a\u6700\u5dee\u3001\u6700\u4f73\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u51e0\u4e4e\u4e0d\u7528\uff0c\u56e0\u4e3a\u8f93\u5165\u6570\u636e\u4e00\u822c\u9700\u8981\u6ee1\u8db3\u4e25\u683c\u6761\u4ef6\u624d\u80fd\u8fbe\u5230\u6700\u4f73\u60c5\u51b5\u3002
            • \u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u53cd\u6620\u7b97\u6cd5\u5728\u968f\u673a\u6570\u636e\u8f93\u5165\u4e0b\u7684\u8fd0\u884c\u6548\u7387\uff0c\u6700\u63a5\u8fd1\u5b9e\u9645\u5e94\u7528\u4e2d\u7684\u7b97\u6cd5\u6027\u80fd\u3002\u8ba1\u7b97\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u9700\u8981\u7edf\u8ba1\u8f93\u5165\u6570\u636e\u5206\u5e03\u4ee5\u53ca\u7efc\u5408\u540e\u7684\u6570\u5b66\u671f\u671b\u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6

            • \u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u4f5c\u7528\u7c7b\u4f3c\u4e8e\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u7528\u4e8e\u8861\u91cf\u7b97\u6cd5\u5360\u7528\u7a7a\u95f4\u968f\u6570\u636e\u91cf\u589e\u957f\u7684\u8d8b\u52bf\u3002
            • \u7b97\u6cd5\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u7684\u76f8\u5173\u5185\u5b58\u7a7a\u95f4\u53ef\u5206\u4e3a\u8f93\u5165\u7a7a\u95f4\u3001\u6682\u5b58\u7a7a\u95f4\u3001\u8f93\u51fa\u7a7a\u95f4\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u8f93\u5165\u7a7a\u95f4\u4e0d\u8ba1\u5165\u7a7a\u95f4\u590d\u6742\u5ea6\u8ba1\u7b97\u3002\u6682\u5b58\u7a7a\u95f4\u53ef\u5206\u4e3a\u6307\u4ee4\u7a7a\u95f4\u3001\u6570\u636e\u7a7a\u95f4\u3001\u6808\u5e27\u7a7a\u95f4\uff0c\u5176\u4e2d\u6808\u5e27\u7a7a\u95f4\u901a\u5e38\u4ec5\u5728\u9012\u5f52\u51fd\u6570\u4e2d\u5f71\u54cd\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
            • \u6211\u4eec\u901a\u5e38\u53ea\u5173\u6ce8\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\uff0c\u5373\u7edf\u8ba1\u7b97\u6cd5\u5728\u6700\u5dee\u8f93\u5165\u6570\u636e\u548c\u6700\u5dee\u8fd0\u884c\u65f6\u95f4\u70b9\u4e0b\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
            • \u5e38\u89c1\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece\u5c0f\u5230\u5927\u6392\u5217\u6709 \\(O(1)\\) \u3001\\(O(\\log n)\\) \u3001\\(O(n)\\) \u3001\\(O(n^2)\\) \u3001\\(O(2^n)\\) \u7b49\u3002
            "},{"location":"chapter_computational_complexity/summary/#241-q-a","title":"2.4.1 \u00a0 Q & A","text":"

            \u5c3e\u9012\u5f52\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u5417\uff1f

            \u7406\u8bba\u4e0a\uff0c\u5c3e\u9012\u5f52\u51fd\u6570\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u88ab\u4f18\u5316\u81f3 \\(O(1)\\) \u3002\u4e0d\u8fc7\u7edd\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\uff08\u4f8b\u5982 Java \u3001Python \u3001C++ \u3001Go \u3001C# \u7b49\uff09\u90fd\u4e0d\u652f\u6301\u81ea\u52a8\u4f18\u5316\u5c3e\u9012\u5f52\uff0c\u56e0\u6b64\u901a\u5e38\u8ba4\u4e3a\u7a7a\u95f4\u590d\u6742\u5ea6\u662f \\(O(n)\\) \u3002

            \u51fd\u6570\u548c\u65b9\u6cd5\u8fd9\u4e24\u4e2a\u672f\u8bed\u7684\u533a\u522b\u662f\u4ec0\u4e48\uff1f

            \u51fd\u6570\uff08function\uff09\u53ef\u4ee5\u88ab\u72ec\u7acb\u6267\u884c\uff0c\u6240\u6709\u53c2\u6570\u90fd\u4ee5\u663e\u5f0f\u4f20\u9012\u3002\u65b9\u6cd5\uff08method\uff09\u4e0e\u4e00\u4e2a\u5bf9\u8c61\u5173\u8054\uff0c\u88ab\u9690\u5f0f\u4f20\u9012\u7ed9\u8c03\u7528\u5b83\u7684\u5bf9\u8c61\uff0c\u80fd\u591f\u5bf9\u7c7b\u7684\u5b9e\u4f8b\u4e2d\u5305\u542b\u7684\u6570\u636e\u8fdb\u884c\u64cd\u4f5c\u3002

            \u4e0b\u9762\u4ee5\u51e0\u4e2a\u5e38\u89c1\u7684\u7f16\u7a0b\u8bed\u8a00\u6765\u8bf4\u660e\u3002

            • C \u8bed\u8a00\u662f\u8fc7\u7a0b\u5f0f\u7f16\u7a0b\u8bed\u8a00\uff0c\u6ca1\u6709\u9762\u5411\u5bf9\u8c61\u7684\u6982\u5ff5\uff0c\u6240\u4ee5\u53ea\u6709\u51fd\u6570\u3002\u4f46\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u521b\u5efa\u7ed3\u6784\u4f53\uff08struct\uff09\u6765\u6a21\u62df\u9762\u5411\u5bf9\u8c61\u7f16\u7a0b\uff0c\u4e0e\u7ed3\u6784\u4f53\u76f8\u5173\u8054\u7684\u51fd\u6570\u5c31\u76f8\u5f53\u4e8e\u5176\u4ed6\u8bed\u8a00\u4e2d\u7684\u65b9\u6cd5\u3002
            • Java \u548c C# \u662f\u9762\u5411\u5bf9\u8c61\u7684\u7f16\u7a0b\u8bed\u8a00\uff0c\u4ee3\u7801\u5757\uff08\u65b9\u6cd5\uff09\u901a\u5e38\u90fd\u662f\u4f5c\u4e3a\u67d0\u4e2a\u7c7b\u7684\u4e00\u90e8\u5206\u3002\u9759\u6001\u65b9\u6cd5\u7684\u884c\u4e3a\u7c7b\u4f3c\u4e8e\u51fd\u6570\uff0c\u56e0\u4e3a\u5b83\u88ab\u7ed1\u5b9a\u5728\u7c7b\u4e0a\uff0c\u4e0d\u80fd\u8bbf\u95ee\u7279\u5b9a\u7684\u5b9e\u4f8b\u53d8\u91cf\u3002
            • C++ \u548c Python \u65e2\u652f\u6301\u8fc7\u7a0b\u5f0f\u7f16\u7a0b\uff08\u51fd\u6570\uff09\uff0c\u4e5f\u652f\u6301\u9762\u5411\u5bf9\u8c61\u7f16\u7a0b\uff08\u65b9\u6cd5\uff09\u3002

            \u56fe\u201c\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u5e38\u89c1\u7c7b\u578b\u201d\u53cd\u6620\u7684\u662f\u5426\u662f\u5360\u7528\u7a7a\u95f4\u7684\u7edd\u5bf9\u5927\u5c0f\uff1f

            \u4e0d\u662f\uff0c\u8be5\u56fe\u7247\u5c55\u793a\u7684\u662f\u7a7a\u95f4\u590d\u6742\u5ea6\uff0c\u5176\u53cd\u6620\u7684\u662f\u589e\u957f\u8d8b\u52bf\uff0c\u800c\u4e0d\u662f\u5360\u7528\u7a7a\u95f4\u7684\u7edd\u5bf9\u5927\u5c0f\u3002

            \u5047\u8bbe\u53d6 \\(n = 8\\) \uff0c\u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\u6bcf\u6761\u66f2\u7ebf\u7684\u503c\u4e0e\u51fd\u6570\u5bf9\u5e94\u4e0d\u4e0a\u3002\u8fd9\u662f\u56e0\u4e3a\u6bcf\u6761\u66f2\u7ebf\u90fd\u5305\u542b\u4e00\u4e2a\u5e38\u6570\u9879\uff0c\u7528\u4e8e\u5c06\u53d6\u503c\u8303\u56f4\u538b\u7f29\u5230\u4e00\u4e2a\u89c6\u89c9\u8212\u9002\u7684\u8303\u56f4\u5185\u3002

            \u5728\u5b9e\u9645\u4e2d\uff0c\u56e0\u4e3a\u6211\u4eec\u901a\u5e38\u4e0d\u77e5\u9053\u6bcf\u4e2a\u65b9\u6cd5\u7684\u201c\u5e38\u6570\u9879\u201d\u590d\u6742\u5ea6\u662f\u591a\u5c11\uff0c\u6240\u4ee5\u4e00\u822c\u65e0\u6cd5\u4ec5\u51ed\u590d\u6742\u5ea6\u6765\u9009\u62e9 \\(n = 8\\) \u4e4b\u4e0b\u7684\u6700\u4f18\u89e3\u6cd5\u3002\u4f46\u5bf9\u4e8e \\(n = 8^5\\) \u5c31\u5f88\u597d\u9009\u4e86\uff0c\u8fd9\u65f6\u589e\u957f\u8d8b\u52bf\u5df2\u7ecf\u5360\u4e3b\u5bfc\u4e86\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/","title":"2.2 \u00a0 \u65f6\u95f4\u590d\u6742\u5ea6","text":"

            \u8fd0\u884c\u65f6\u95f4\u53ef\u4ee5\u76f4\u89c2\u4e14\u51c6\u786e\u5730\u53cd\u6620\u7b97\u6cd5\u7684\u6548\u7387\u3002\u5982\u679c\u6211\u4eec\u60f3\u8981\u51c6\u786e\u9884\u4f30\u4e00\u6bb5\u4ee3\u7801\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u5e94\u8be5\u5982\u4f55\u64cd\u4f5c\u5462\uff1f

            1. \u786e\u5b9a\u8fd0\u884c\u5e73\u53f0\uff0c\u5305\u62ec\u786c\u4ef6\u914d\u7f6e\u3001\u7f16\u7a0b\u8bed\u8a00\u3001\u7cfb\u7edf\u73af\u5883\u7b49\uff0c\u8fd9\u4e9b\u56e0\u7d20\u90fd\u4f1a\u5f71\u54cd\u4ee3\u7801\u7684\u8fd0\u884c\u6548\u7387\u3002
            2. \u8bc4\u4f30\u5404\u79cd\u8ba1\u7b97\u64cd\u4f5c\u6240\u9700\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u4f8b\u5982\u52a0\u6cd5\u64cd\u4f5c + \u9700\u8981 1 ns\uff0c\u4e58\u6cd5\u64cd\u4f5c * \u9700\u8981 10 ns\uff0c\u6253\u5370\u64cd\u4f5c print() \u9700\u8981 5 ns \u7b49\u3002
            3. \u7edf\u8ba1\u4ee3\u7801\u4e2d\u6240\u6709\u7684\u8ba1\u7b97\u64cd\u4f5c\uff0c\u5e76\u5c06\u6240\u6709\u64cd\u4f5c\u7684\u6267\u884c\u65f6\u95f4\u6c42\u548c\uff0c\u4ece\u800c\u5f97\u5230\u8fd0\u884c\u65f6\u95f4\u3002

            \u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\nint a = 2;  // 1 ns\na = a + 1;  // 1 ns\na = a * 2;  // 10 ns\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {  // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nSystem.out.println(0);     // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\nint a = 2;  // 1 ns\na = a + 1;  // 1 ns\na = a * 2;  // 10 ns\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {  // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\ncout << 0 << endl;         // 5 ns\n}\n}\n
            # \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\ndef algorithm(n: int):\na = 2      # 1 ns\na = a + 1  # 1 ns\na = a * 2  # 10 ns\n# \u5faa\u73af n \u6b21\nfor _ in range(n):  # 1 ns\nprint(0)        # 5 ns\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunc algorithm(n int) {\na := 2     // 1 ns\na = a + 1  // 1 ns\na = a * 2  // 10 ns\n// \u5faa\u73af n \u6b21\nfor i := 0; i < n; i++ {  // 1 ns\nfmt.Println(a)        // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunction algorithm(n) {\nvar a = 2; // 1 ns\na = a + 1; // 1 ns\na = a * 2; // 10 ns\n// \u5faa\u73af n \u6b21\nfor(let i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nconsole.log(0); // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunction algorithm(n: number): void {\nvar a: number = 2; // 1 ns\na = a + 1; // 1 ns\na = a * 2; // 10 ns\n// \u5faa\u73af n \u6b21\nfor(let i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nconsole.log(0); // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\nint a = 2;  // 1 ns\na = a + 1;  // 1 ns\na = a * 2;  // 10 ns\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {   // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nprintf(\"%d\", 0);            // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\nint a = 2;  // 1 ns\na = a + 1;  // 1 ns\na = a * 2;  // 10 ns\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {  // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nConsole.WriteLine(0);      // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfunc algorithm(n: Int) {\nvar a = 2 // 1 ns\na = a + 1 // 1 ns\na = a * 2 // 10 ns\n// \u5faa\u73af n \u6b21\nfor _ in 0 ..< n { // 1 ns\nprint(0) // 5 ns\n}\n}\n
            \n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nvoid algorithm(int n) {\nint a = 2; // 1 ns\na = a + 1; // 1 ns\na = a * 2; // 10 ns\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) { // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nprint(0); // 5 ns\n}\n}\n
            // \u5728\u67d0\u8fd0\u884c\u5e73\u53f0\u4e0b\nfn algorithm(n: i32) {\nlet mut a = 2;      // 1 ns\na = a + 1;          // 1 ns\na = a * 2;          // 10 ns\n// \u5faa\u73af n \u6b21\nfor _ in 0..n {     // 1 ns \uff0c\u6bcf\u8f6e\u90fd\u8981\u6267\u884c i++\nprintln!(\"{}\", 0);  // 5 ns\n}\n}\n

            \u6839\u636e\u4ee5\u4e0a\u65b9\u6cd5\uff0c\u53ef\u4ee5\u5f97\u5230\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u4e3a \\(6n + 12\\) ns \uff1a

            \\[ 1 + 1 + 10 + (1 + 5) \\times n = 6n + 12 \\]

            \u4f46\u5b9e\u9645\u4e0a\uff0c\u7edf\u8ba1\u7b97\u6cd5\u7684\u8fd0\u884c\u65f6\u95f4\u65e2\u4e0d\u5408\u7406\u4e5f\u4e0d\u73b0\u5b9e\u3002\u9996\u5148\uff0c\u6211\u4eec\u4e0d\u5e0c\u671b\u5c06\u9884\u4f30\u65f6\u95f4\u548c\u8fd0\u884c\u5e73\u53f0\u7ed1\u5b9a\uff0c\u56e0\u4e3a\u7b97\u6cd5\u9700\u8981\u5728\u5404\u79cd\u4e0d\u540c\u7684\u5e73\u53f0\u4e0a\u8fd0\u884c\u3002\u5176\u6b21\uff0c\u6211\u4eec\u5f88\u96be\u83b7\u77e5\u6bcf\u79cd\u64cd\u4f5c\u7684\u8fd0\u884c\u65f6\u95f4\uff0c\u8fd9\u7ed9\u9884\u4f30\u8fc7\u7a0b\u5e26\u6765\u4e86\u6781\u5927\u7684\u96be\u5ea6\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#221","title":"2.2.1 \u00a0 \u7edf\u8ba1\u65f6\u95f4\u589e\u957f\u8d8b\u52bf","text":"

            \u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u7edf\u8ba1\u7684\u4e0d\u662f\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\uff0c\u800c\u662f\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u7740\u6570\u636e\u91cf\u53d8\u5927\u65f6\u7684\u589e\u957f\u8d8b\u52bf\u3002

            \u201c\u65f6\u95f4\u589e\u957f\u8d8b\u52bf\u201d\u8fd9\u4e2a\u6982\u5ff5\u6bd4\u8f83\u62bd\u8c61\uff0c\u6211\u4eec\u901a\u8fc7\u4e00\u4e2a\u4f8b\u5b50\u6765\u52a0\u4ee5\u7406\u89e3\u3002\u5047\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u7ed9\u5b9a\u4e09\u4e2a\u7b97\u6cd5\u51fd\u6570 A \u3001 B \u548c C \uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\nSystem.out.println(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\nfor (int i = 0; i < n; i++) {\nSystem.out.println(0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\nfor (int i = 0; i < 1000000; i++) {\nSystem.out.println(0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\ncout << 0 << endl;\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\nfor (int i = 0; i < n; i++) {\ncout << 0 << endl;\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\nfor (int i = 0; i < 1000000; i++) {\ncout << 0 << endl;\n}\n}\n
            # \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\ndef algorithm_A(n: int):\nprint(0)\n# \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\ndef algorithm_B(n: int):\nfor _ in range(n):\nprint(0)\n# \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\ndef algorithm_C(n: int):\nfor _ in range(1000000):\nprint(0)\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithm_A(n int) {\nfmt.Println(0)\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunc algorithm_B(n int) {\nfor i := 0; i < n; i++ {\nfmt.Println(0)\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithm_C(n int) {\nfor i := 0; i < 1000000; i++ {\nfmt.Println(0)\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_A(n) {\nconsole.log(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunction algorithm_B(n) {\nfor (let i = 0; i < n; i++) {\nconsole.log(0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_C(n) {\nfor (let i = 0; i < 1000000; i++) {\nconsole.log(0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_A(n: number): void {\nconsole.log(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunction algorithm_B(n: number): void {\nfor (let i = 0; i < n; i++) {\nconsole.log(0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunction algorithm_C(n: number): void {\nfor (let i = 0; i < 1000000; i++) {\nconsole.log(0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\nprintf(\"%d\", 0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\nfor (int i = 0; i < n; i++) {\nprintf(\"%d\", 0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\nfor (int i = 0; i < 1000000; i++) {\nprintf(\"%d\", 0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_A(int n) {\nConsole.WriteLine(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithm_B(int n) {\nfor (int i = 0; i < n; i++) {\nConsole.WriteLine(0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithm_C(int n) {\nfor (int i = 0; i < 1000000; i++) {\nConsole.WriteLine(0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithmA(n: Int) {\nprint(0)\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfunc algorithmB(n: Int) {\nfor _ in 0 ..< n {\nprint(0)\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfunc algorithmC(n: Int) {\nfor _ in 0 ..< 1000000 {\nprint(0)\n}\n}\n
            \n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithmA(int n) {\nprint(0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nvoid algorithmB(int n) {\nfor (int i = 0; i < n; i++) {\nprint(0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nvoid algorithmC(int n) {\nfor (int i = 0; i < 1000000; i++) {\nprint(0);\n}\n}\n
            // \u7b97\u6cd5 A \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_A(n: i32) {\nprintln!(\"{}\", 0);\n}\n// \u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u7ebf\u6027\u9636\nfn algorithm_B(n: i32) {\nfor _ in 0..n {\nprintln!(\"{}\", 0);\n}\n}\n// \u7b97\u6cd5 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u5e38\u6570\u9636\nfn algorithm_C(n: i32) {\nfor _ in 0..1000000 {\nprintln!(\"{}\", 0);\n}\n}\n

            \u7b97\u6cd5 A \u53ea\u6709 \\(1\\) \u4e2a\u6253\u5370\u64cd\u4f5c\uff0c\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u4e0d\u968f\u7740 \\(n\\) \u589e\u5927\u800c\u589e\u957f\u3002\u6211\u4eec\u79f0\u6b64\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\u201c\u5e38\u6570\u9636\u201d\u3002

            \u7b97\u6cd5 B \u4e2d\u7684\u6253\u5370\u64cd\u4f5c\u9700\u8981\u5faa\u73af \\(n\\) \u6b21\uff0c\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u968f\u7740 \\(n\\) \u589e\u5927\u5448\u7ebf\u6027\u589e\u957f\u3002\u6b64\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u88ab\u79f0\u4e3a\u201c\u7ebf\u6027\u9636\u201d\u3002

            \u7b97\u6cd5 C \u4e2d\u7684\u6253\u5370\u64cd\u4f5c\u9700\u8981\u5faa\u73af \\(1000000\\) \u6b21\uff0c\u867d\u7136\u8fd0\u884c\u65f6\u95f4\u5f88\u957f\uff0c\u4f46\u5b83\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\u3002\u56e0\u6b64 C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u548c A \u76f8\u540c\uff0c\u4ecd\u4e3a\u201c\u5e38\u6570\u9636\u201d\u3002

            \u56fe\uff1a\u7b97\u6cd5 A \u3001B \u548c C \u7684\u65f6\u95f4\u589e\u957f\u8d8b\u52bf

            \u76f8\u8f83\u4e8e\u76f4\u63a5\u7edf\u8ba1\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u6709\u54ea\u4e9b\u7279\u70b9\u5462\uff1f

            • \u65f6\u95f4\u590d\u6742\u5ea6\u80fd\u591f\u6709\u6548\u8bc4\u4f30\u7b97\u6cd5\u6548\u7387\u3002\u4f8b\u5982\uff0c\u7b97\u6cd5 B \u7684\u8fd0\u884c\u65f6\u95f4\u5448\u7ebf\u6027\u589e\u957f\uff0c\u5728 \\(n > 1\\) \u65f6\u6bd4\u7b97\u6cd5 A \u66f4\u6162\uff0c\u5728 \\(n > 1000000\\) \u65f6\u6bd4\u7b97\u6cd5 C \u66f4\u6162\u3002\u4e8b\u5b9e\u4e0a\uff0c\u53ea\u8981\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u8db3\u591f\u5927\uff0c\u590d\u6742\u5ea6\u4e3a\u201c\u5e38\u6570\u9636\u201d\u7684\u7b97\u6cd5\u4e00\u5b9a\u4f18\u4e8e\u201c\u7ebf\u6027\u9636\u201d\u7684\u7b97\u6cd5\uff0c\u8fd9\u6b63\u662f\u65f6\u95f4\u589e\u957f\u8d8b\u52bf\u6240\u8868\u8fbe\u7684\u542b\u4e49\u3002
            • \u65f6\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u66f4\u7b80\u4fbf\u3002\u663e\u7136\uff0c\u8fd0\u884c\u5e73\u53f0\u548c\u8ba1\u7b97\u64cd\u4f5c\u7c7b\u578b\u90fd\u4e0e\u7b97\u6cd5\u8fd0\u884c\u65f6\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u65e0\u5173\u3002\u56e0\u6b64\u5728\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u7b80\u5355\u5730\u5c06\u6240\u6709\u8ba1\u7b97\u64cd\u4f5c\u7684\u6267\u884c\u65f6\u95f4\u89c6\u4e3a\u76f8\u540c\u7684\u201c\u5355\u4f4d\u65f6\u95f4\u201d\uff0c\u4ece\u800c\u5c06\u201c\u8ba1\u7b97\u64cd\u4f5c\u7684\u8fd0\u884c\u65f6\u95f4\u7684\u7edf\u8ba1\u201d\u7b80\u5316\u4e3a\u201c\u8ba1\u7b97\u64cd\u4f5c\u7684\u6570\u91cf\u7684\u7edf\u8ba1\u201d\uff0c\u8fd9\u6837\u4ee5\u6765\u4f30\u7b97\u96be\u5ea6\u5c31\u5927\u5927\u964d\u4f4e\u4e86\u3002
            • \u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u5b58\u5728\u4e00\u5b9a\u7684\u5c40\u9650\u6027\u3002\u4f8b\u5982\uff0c\u5c3d\u7ba1\u7b97\u6cd5 A \u548c C \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u540c\uff0c\u4f46\u5b9e\u9645\u8fd0\u884c\u65f6\u95f4\u5dee\u522b\u5f88\u5927\u3002\u540c\u6837\uff0c\u5c3d\u7ba1\u7b97\u6cd5 B \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u6bd4 C \u9ad8\uff0c\u4f46\u5728\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u8f83\u5c0f\u65f6\uff0c\u7b97\u6cd5 B \u660e\u663e\u4f18\u4e8e\u7b97\u6cd5 C \u3002\u5728\u8fd9\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5f88\u96be\u4ec5\u51ed\u65f6\u95f4\u590d\u6742\u5ea6\u5224\u65ad\u7b97\u6cd5\u6548\u7387\u7684\u9ad8\u4f4e\u3002\u5f53\u7136\uff0c\u5c3d\u7ba1\u5b58\u5728\u4e0a\u8ff0\u95ee\u9898\uff0c\u590d\u6742\u5ea6\u5206\u6790\u4ecd\u7136\u662f\u8bc4\u5224\u7b97\u6cd5\u6548\u7387\u6700\u6709\u6548\u4e14\u5e38\u7528\u7684\u65b9\u6cd5\u3002
            "},{"location":"chapter_computational_complexity/time_complexity/#222","title":"2.2.2 \u00a0 \u51fd\u6570\u6e10\u8fd1\u4e0a\u754c","text":"

            \u7ed9\u5b9a\u4e00\u4e2a\u8f93\u5165\u5927\u5c0f\u4e3a \\(n\\) \u7684\u51fd\u6570\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            void algorithm(int n) {\nint a = 1;  // +1\na = a + 1;  // +1\na = a * 2;  // +1\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nSystem.out.println(0);    // +1\n}\n}\n
            void algorithm(int n) {\nint a = 1;  // +1\na = a + 1;  // +1\na = a * 2;  // +1\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\ncout << 0 << endl;    // +1\n}\n}\n
            def algorithm(n: int):\na = 1      # +1\na = a + 1  # +1\na = a * 2  # +1\n# \u5faa\u73af n \u6b21\nfor i in range(n):  # +1\nprint(0)        # +1\n
            func algorithm(n int) {\na := 1      // +1\na = a + 1   // +1\na = a * 2   // +1\n// \u5faa\u73af n \u6b21\nfor i := 0; i < n; i++ {   // +1\nfmt.Println(a)         // +1\n}\n}\n
            function algorithm(n) {\nvar a = 1; // +1\na += 1; // +1\na *= 2; // +1\n// \u5faa\u73af n \u6b21\nfor(let i = 0; i < n; i++){ // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nconsole.log(0); // +1\n}\n}\n
            function algorithm(n: number): void{\nvar a: number = 1; // +1\na += 1; // +1\na *= 2; // +1\n// \u5faa\u73af n \u6b21\nfor(let i = 0; i < n; i++){ // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nconsole.log(0); // +1\n}\n}\n
            void algorithm(int n) {\nint a = 1;  // +1\na = a + 1;  // +1\na = a * 2;  // +1\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {   // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nprintf(\"%d\", 0);            // +1\n}\n}  
            void algorithm(int n) {\nint a = 1;  // +1\na = a + 1;  // +1\na = a * 2;  // +1\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) {   // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nConsole.WriteLine(0);   // +1\n}\n}\n
            func algorithm(n: Int) {\nvar a = 1 // +1\na = a + 1 // +1\na = a * 2 // +1\n// \u5faa\u73af n \u6b21\nfor _ in 0 ..< n { // +1\nprint(0) // +1\n}\n}\n
            \n
            void algorithm(int n) {\nint a = 1; // +1\na = a + 1; // +1\na = a * 2; // +1\n// \u5faa\u73af n \u6b21\nfor (int i = 0; i < n; i++) { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nprint(0); // +1\n}\n}\n
            fn algorithm(n: i32) {\nlet mut a = 1;   // +1\na = a + 1;      // +1\na = a * 2;      // +1\n// \u5faa\u73af n \u6b21\nfor _ in 0..n { // +1\uff08\u6bcf\u8f6e\u90fd\u6267\u884c i ++\uff09\nprintln!(\"{}\", 0); // +1\n}\n}\n

            \u8bbe\u7b97\u6cd5\u7684\u64cd\u4f5c\u6570\u91cf\u662f\u4e00\u4e2a\u5173\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u7684\u51fd\u6570\uff0c\u8bb0\u4e3a \\(T(n)\\) \uff0c\u5219\u4ee5\u4e0a\u51fd\u6570\u7684\u7684\u64cd\u4f5c\u6570\u91cf\u4e3a\uff1a

            \\[ T(n) = 3 + 2n \\]

            \\(T(n)\\) \u662f\u4e00\u6b21\u51fd\u6570\uff0c\u8bf4\u660e\u5176\u8fd0\u884c\u65f6\u95f4\u7684\u589e\u957f\u8d8b\u52bf\u662f\u7ebf\u6027\u7684\uff0c\u56e0\u6b64\u5b83\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f\u7ebf\u6027\u9636\u3002

            \u6211\u4eec\u5c06\u7ebf\u6027\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u8bb0\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4e2a\u6570\u5b66\u7b26\u53f7\u79f0\u4e3a\u300c\u5927 \\(O\\) \u8bb0\u53f7 big-\\(O\\) notation\u300d\uff0c\u8868\u793a\u51fd\u6570 \\(T(n)\\) \u7684\u300c\u6e10\u8fd1\u4e0a\u754c asymptotic upper bound\u300d\u3002

            \u65f6\u95f4\u590d\u6742\u5ea6\u5206\u6790\u672c\u8d28\u4e0a\u662f\u8ba1\u7b97\u201c\u64cd\u4f5c\u6570\u91cf\u51fd\u6570 \\(T(n)\\)\u201d\u7684\u6e10\u8fd1\u4e0a\u754c\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u6765\u770b\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c\u7684\u6570\u5b66\u5b9a\u4e49\u3002

            \u51fd\u6570\u6e10\u8fd1\u4e0a\u754c

            \u82e5\u5b58\u5728\u6b63\u5b9e\u6570 \\(c\\) \u548c\u5b9e\u6570 \\(n_0\\) \uff0c\u4f7f\u5f97\u5bf9\u4e8e\u6240\u6709\u7684 \\(n > n_0\\) \uff0c\u5747\u6709 $$ T(n) \\leq c \\cdot f(n) $$ \u5219\u53ef\u8ba4\u4e3a \\(f(n)\\) \u7ed9\u51fa\u4e86 \\(T(n)\\) \u7684\u4e00\u4e2a\u6e10\u8fd1\u4e0a\u754c\uff0c\u8bb0\u4e3a $$ T(n) = O(f(n)) $$

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u8ba1\u7b97\u6e10\u8fd1\u4e0a\u754c\u5c31\u662f\u5bfb\u627e\u4e00\u4e2a\u51fd\u6570 \\(f(n)\\) \uff0c\u4f7f\u5f97\u5f53 \\(n\\) \u8d8b\u5411\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\\(T(n)\\) \u548c \\(f(n)\\) \u5904\u4e8e\u76f8\u540c\u7684\u589e\u957f\u7ea7\u522b\uff0c\u4ec5\u76f8\u5dee\u4e00\u4e2a\u5e38\u6570\u9879 \\(c\\) \u7684\u500d\u6570\u3002

            \u56fe\uff1a\u51fd\u6570\u7684\u6e10\u8fd1\u4e0a\u754c

            "},{"location":"chapter_computational_complexity/time_complexity/#223","title":"2.2.3 \u00a0 \u63a8\u7b97\u65b9\u6cd5","text":"

            \u6e10\u8fd1\u4e0a\u754c\u7684\u6570\u5b66\u5473\u513f\u6709\u70b9\u91cd\uff0c\u5982\u679c\u4f60\u611f\u89c9\u6ca1\u6709\u5b8c\u5168\u7406\u89e3\uff0c\u4e5f\u65e0\u987b\u62c5\u5fc3\u3002\u56e0\u4e3a\u5728\u5b9e\u9645\u4f7f\u7528\u4e2d\uff0c\u6211\u4eec\u53ea\u9700\u8981\u638c\u63e1\u63a8\u7b97\u65b9\u6cd5\uff0c\u6570\u5b66\u610f\u4e49\u5c31\u53ef\u4ee5\u9010\u6e10\u9886\u609f\u3002

            \u6839\u636e\u5b9a\u4e49\uff0c\u786e\u5b9a \\(f(n)\\) \u4e4b\u540e\uff0c\u6211\u4eec\u4fbf\u53ef\u5f97\u5230\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(f(n))\\) \u3002\u90a3\u4e48\u5982\u4f55\u786e\u5b9a\u6e10\u8fd1\u4e0a\u754c \\(f(n)\\) \u5462\uff1f\u603b\u4f53\u5206\u4e3a\u4e24\u6b65\uff1a\u9996\u5148\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf\uff0c\u7136\u540e\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#1","title":"1. \u00a0 \u7b2c\u4e00\u6b65\uff1a\u7edf\u8ba1\u64cd\u4f5c\u6570\u91cf","text":"

            \u9488\u5bf9\u4ee3\u7801\uff0c\u9010\u884c\u4ece\u4e0a\u5230\u4e0b\u8ba1\u7b97\u5373\u53ef\u3002\u7136\u800c\uff0c\u7531\u4e8e\u4e0a\u8ff0 \\(c \\cdot f(n)\\) \u4e2d\u7684\u5e38\u6570\u9879 \\(c\\) \u53ef\u4ee5\u53d6\u4efb\u610f\u5927\u5c0f\uff0c\u56e0\u6b64\u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u4e2d\u7684\u5404\u79cd\u7cfb\u6570\u3001\u5e38\u6570\u9879\u90fd\u53ef\u4ee5\u88ab\u5ffd\u7565\u3002\u6839\u636e\u6b64\u539f\u5219\uff0c\u53ef\u4ee5\u603b\u7ed3\u51fa\u4ee5\u4e0b\u8ba1\u6570\u7b80\u5316\u6280\u5de7\u3002

            1. \u5ffd\u7565 \\(T(n)\\) \u4e2d\u7684\u5e38\u6570\u9879\u3002\u56e0\u4e3a\u5b83\u4eec\u90fd\u4e0e \\(n\\) \u65e0\u5173\uff0c\u6240\u4ee5\u5bf9\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u4ea7\u751f\u5f71\u54cd\u3002
            2. \u7701\u7565\u6240\u6709\u7cfb\u6570\u3002\u4f8b\u5982\uff0c\u5faa\u73af \\(2n\\) \u6b21\u3001\\(5n + 1\\) \u6b21\u7b49\uff0c\u90fd\u53ef\u4ee5\u7b80\u5316\u8bb0\u4e3a \\(n\\) \u6b21\uff0c\u56e0\u4e3a \\(n\\) \u524d\u9762\u7684\u7cfb\u6570\u5bf9\u65f6\u95f4\u590d\u6742\u5ea6\u6ca1\u6709\u5f71\u54cd\u3002
            3. \u5faa\u73af\u5d4c\u5957\u65f6\u4f7f\u7528\u4e58\u6cd5\u3002\u603b\u64cd\u4f5c\u6570\u91cf\u7b49\u4e8e\u5916\u5c42\u5faa\u73af\u548c\u5185\u5c42\u5faa\u73af\u64cd\u4f5c\u6570\u91cf\u4e4b\u79ef\uff0c\u6bcf\u4e00\u5c42\u5faa\u73af\u4f9d\u7136\u53ef\u4ee5\u5206\u522b\u5957\u7528\u4e0a\u8ff0 1. \u548c 2. \u6280\u5de7\u3002

            \u4ee5\u4e0b\u4ee3\u7801\u4e0e\u516c\u5f0f\u5206\u522b\u5c55\u793a\u4e86\u4f7f\u7528\u4e0a\u8ff0\u6280\u5de7\u524d\u540e\u7684\u7edf\u8ba1\u7ed3\u679c\u3002\u4e24\u8005\u63a8\u51fa\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u540c\uff0c\u90fd\u4e3a \\(O(n^2)\\) \u3002

            \\[ \\begin{aligned} T(n) & = 2n(n + 1) + (5n + 1) + 2 & \\text{\u5b8c\u6574\u7edf\u8ba1 (-.-|||)} \\newline & = 2n^2 + 7n + 3 \\newline T(n) & = n^2 + n & \\text{\u5077\u61d2\u7edf\u8ba1 (o.O)} \\end{aligned} \\] JavaC++PythonGoJSTSCC#SwiftZigDartRust
            void algorithm(int n) {\nint a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (int i = 0; i < 5 * n + 1; i++) {\nSystem.out.println(0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (int i = 0; i < 2 * n; i++) {\nfor (int j = 0; j < n + 1; j++) {\nSystem.out.println(0);\n}\n}\n}\n
            void algorithm(int n) {\nint a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (int i = 0; i < 5 * n + 1; i++) {\ncout << 0 << endl;\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (int i = 0; i < 2 * n; i++) {\nfor (int j = 0; j < n + 1; j++) {\ncout << 0 << endl;\n}\n}\n}\n
            def algorithm(n: int):\na = 1      # +0\uff08\u6280\u5de7 1\uff09\na = a + n  # +0\uff08\u6280\u5de7 1\uff09\n# +n\uff08\u6280\u5de7 2\uff09\nfor i in range(5 * n + 1):\nprint(0)\n# +n*n\uff08\u6280\u5de7 3\uff09\nfor i in range(2 * n):\nfor j in range(n + 1):\nprint(0)\n
            func algorithm(n int) {\na := 1     // +0\uff08\u6280\u5de7 1\uff09\na = a + n  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor i := 0; i < 5 * n + 1; i++ {\nfmt.Println(0)\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor i := 0; i < 2 * n; i++ {\nfor j := 0; j < n + 1; j++ {\nfmt.Println(0)\n}\n}\n}\n
            function algorithm(n) {\nlet a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (let i = 0; i < 5 * n + 1; i++) {\nconsole.log(0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (let i = 0; i < 2 * n; i++) {\nfor (let j = 0; j < n + 1; j++) {\nconsole.log(0);\n}\n}\n}\n
            function algorithm(n: number): void {\nlet a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (let i = 0; i < 5 * n + 1; i++) {\nconsole.log(0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (let i = 0; i < 2 * n; i++) {\nfor (let j = 0; j < n + 1; j++) {\nconsole.log(0);\n}\n}\n}\n
            void algorithm(int n) {\nint a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (int i = 0; i < 5 * n + 1; i++) {\nprintf(\"%d\", 0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (int i = 0; i < 2 * n; i++) {\nfor (int j = 0; j < n + 1; j++) {\nprintf(\"%d\", 0);\n}\n}\n}\n
            void algorithm(int n) {\nint a = 1;  // +0\uff08\u6280\u5de7 1\uff09\na = a + n;  // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (int i = 0; i < 5 * n + 1; i++) {\nConsole.WriteLine(0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (int i = 0; i < 2 * n; i++) {\nfor (int j = 0; j < n + 1; j++) {\nConsole.WriteLine(0);\n}\n}\n}\n
            func algorithm(n: Int) {\nvar a = 1 // +0\uff08\u6280\u5de7 1\uff09\na = a + n // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor _ in 0 ..< (5 * n + 1) {\nprint(0)\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor _ in 0 ..< (2 * n) {\nfor _ in 0 ..< (n + 1) {\nprint(0)\n}\n}\n}\n
            \n
            void algorithm(int n) {\nint a = 1; // +0\uff08\u6280\u5de7 1\uff09\na = a + n; // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor (int i = 0; i < 5 * n + 1; i++) {\nprint(0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor (int i = 0; i < 2 * n; i++) {\nfor (int j = 0; j < n + 1; j++) {\nprint(0);\n}\n}\n}\n
            fn algorithm(n: i32) {\nlet mut a = 1;     // +0\uff08\u6280\u5de7 1\uff09\na = a + n;        // +0\uff08\u6280\u5de7 1\uff09\n// +n\uff08\u6280\u5de7 2\uff09\nfor i in 0..(5 * n + 1) {\nprintln!(\"{}\", 0);\n}\n// +n*n\uff08\u6280\u5de7 3\uff09\nfor i in 0..(2 * n) {\nfor j in 0..(n + 1) {\nprintln!(\"{}\", 0);\n}\n}\n}\n
            "},{"location":"chapter_computational_complexity/time_complexity/#2","title":"2. \u00a0 \u7b2c\u4e8c\u6b65\uff1a\u5224\u65ad\u6e10\u8fd1\u4e0a\u754c","text":"

            \u65f6\u95f4\u590d\u6742\u5ea6\u7531\u591a\u9879\u5f0f \\(T(n)\\) \u4e2d\u6700\u9ad8\u9636\u7684\u9879\u6765\u51b3\u5b9a\u3002\u8fd9\u662f\u56e0\u4e3a\u5728 \\(n\\) \u8d8b\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\u6700\u9ad8\u9636\u7684\u9879\u5c06\u53d1\u6325\u4e3b\u5bfc\u4f5c\u7528\uff0c\u5176\u4ed6\u9879\u7684\u5f71\u54cd\u90fd\u53ef\u4ee5\u88ab\u5ffd\u7565\u3002

            \u4ee5\u4e0b\u8868\u683c\u5c55\u793a\u4e86\u4e00\u4e9b\u4f8b\u5b50\uff0c\u5176\u4e2d\u4e00\u4e9b\u5938\u5f20\u7684\u503c\u662f\u4e3a\u4e86\u5f3a\u8c03\u201c\u7cfb\u6570\u65e0\u6cd5\u64bc\u52a8\u9636\u6570\u201d\u8fd9\u4e00\u7ed3\u8bba\u3002\u5f53 \\(n\\) \u8d8b\u4e8e\u65e0\u7a77\u5927\u65f6\uff0c\u8fd9\u4e9b\u5e38\u6570\u53d8\u5f97\u65e0\u8db3\u8f7b\u91cd\u3002

            \u8868\uff1a\u4e0d\u540c\u64cd\u4f5c\u6570\u91cf\u5bf9\u5e94\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u64cd\u4f5c\u6570\u91cf \\(T(n)\\) \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(f(n))\\) \\(100000\\) \\(O(1)\\) \\(3n + 2\\) \\(O(n)\\) \\(2n^2 + 3n + 2\\) \\(O(n^2)\\) \\(n^3 + 10000n^2\\) \\(O(n^3)\\) \\(2^n + 10000n^{10000}\\) \\(O(2^n)\\)"},{"location":"chapter_computational_complexity/time_complexity/#224","title":"2.2.4 \u00a0 \u5e38\u89c1\u7c7b\u578b","text":"

            \u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u5e38\u89c1\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7c7b\u578b\u5305\u62ec\uff08\u6309\u7167\u4ece\u4f4e\u5230\u9ad8\u7684\u987a\u5e8f\u6392\u5217\uff09\uff1a

            \\[ \\begin{aligned} O(1) < O(\\log n) < O(n) < O(n \\log n) < O(n^2) < O(2^n) < O(n!) \\newline \\text{\u5e38\u6570\u9636} < \\text{\u5bf9\u6570\u9636} < \\text{\u7ebf\u6027\u9636} < \\text{\u7ebf\u6027\u5bf9\u6570\u9636} < \\text{\u5e73\u65b9\u9636} < \\text{\u6307\u6570\u9636} < \\text{\u9636\u4e58\u9636} \\end{aligned} \\]

            \u56fe\uff1a\u5e38\u89c1\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7c7b\u578b

            Tip

            \u90e8\u5206\u793a\u4f8b\u4ee3\u7801\u9700\u8981\u4e00\u4e9b\u9884\u5907\u77e5\u8bc6\uff0c\u5305\u62ec\u6570\u7ec4\u3001\u9012\u5f52\u7b49\u3002\u5982\u679c\u4f60\u9047\u5230\u4e0d\u7406\u89e3\u7684\u90e8\u5206\uff0c\u53ef\u4ee5\u5728\u5b66\u5b8c\u540e\u9762\u7ae0\u8282\u540e\u518d\u56de\u987e\u3002\u73b0\u9636\u6bb5\uff0c\u8bf7\u5148\u4e13\u6ce8\u4e8e\u7406\u89e3\u65f6\u95f4\u590d\u6742\u5ea6\u7684\u542b\u4e49\u548c\u63a8\u7b97\u65b9\u6cd5\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#1-o1","title":"1. \u00a0 \u5e38\u6570\u9636 \\(O(1)\\)","text":"

            \u5e38\u6570\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\uff0c\u5373\u4e0d\u968f\u7740 \\(n\\) \u7684\u53d8\u5316\u800c\u53d8\u5316\u3002

            \u5bf9\u4e8e\u4ee5\u4e0b\u7b97\u6cd5\uff0c\u5c3d\u7ba1\u64cd\u4f5c\u6570\u91cf size \u53ef\u80fd\u5f88\u5927\uff0c\u4f46\u7531\u4e8e\u5176\u4e0e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u65e0\u5173\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(1)\\) \uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u5e38\u6570\u9636 */\nint constant(int n) {\nint count = 0;\nint size = 100000;\nfor (int i = 0; i < size; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.cpp
            /* \u5e38\u6570\u9636 */\nint constant(int n) {\nint count = 0;\nint size = 100000;\nfor (int i = 0; i < size; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.py
            def constant(n: int) -> int:\n\"\"\"\u5e38\u6570\u9636\"\"\"\ncount = 0\nsize = 100000\nfor _ in range(size):\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u5e38\u6570\u9636 */\nfunc constant(n int) int {\ncount := 0\nsize := 100000\nfor i := 0; i < size; i++ {\ncount++\n}\nreturn count\n}\n
            time_complexity.js
            /* \u5e38\u6570\u9636 */\nfunction constant(n) {\nlet count = 0;\nconst size = 100000;\nfor (let i = 0; i < size; i++) count++;\nreturn count;\n}\n
            time_complexity.ts
            /* \u5e38\u6570\u9636 */\nfunction constant(n: number): number {\nlet count = 0;\nconst size = 100000;\nfor (let i = 0; i < size; i++) count++;\nreturn count;\n}\n
            time_complexity.c
            /* \u5e38\u6570\u9636 */\nint constant(int n) {\nint count = 0;\nint size = 100000;\nint i = 0;\nfor (int i = 0; i < size; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u5e38\u6570\u9636 */\nint constant(int n) {\nint count = 0;\nint size = 100000;\nfor (int i = 0; i < size; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.swift
            /* \u5e38\u6570\u9636 */\nfunc constant(n: Int) -> Int {\nvar count = 0\nlet size = 100_000\nfor _ in 0 ..< size {\ncount += 1\n}\nreturn count\n}\n
            time_complexity.zig
            // \u5e38\u6570\u9636\nfn constant(n: i32) i32 {\n_ = n;\nvar count: i32 = 0;\nconst size: i32 = 100_000;\nvar i: i32 = 0;\nwhile(i<size) : (i += 1) {\ncount += 1;\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u5e38\u6570\u9636 */\nint constant(int n) {\nint count = 0;\nint size = 100000;\nfor (var i = 0; i < size; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u5e38\u6570\u9636 */\nfn constant(n: i32) -> i32 {\n_ = n;\nlet mut count = 0;\nlet size = 100_000;\nfor _ in 0..size {\ncount += 1;\n}\ncount\n}\n
            "},{"location":"chapter_computational_complexity/time_complexity/#2-on","title":"2. \u00a0 \u7ebf\u6027\u9636 \\(O(n)\\)","text":"

            \u7ebf\u6027\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u76f8\u5bf9\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u4ee5\u7ebf\u6027\u7ea7\u522b\u589e\u957f\u3002\u7ebf\u6027\u9636\u901a\u5e38\u51fa\u73b0\u5728\u5355\u5c42\u5faa\u73af\u4e2d\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u7ebf\u6027\u9636 */\nint linear(int n) {\nint count = 0;\nfor (int i = 0; i < n; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.cpp
            /* \u7ebf\u6027\u9636 */\nint linear(int n) {\nint count = 0;\nfor (int i = 0; i < n; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.py
            def linear(n: int) -> int:\n\"\"\"\u7ebf\u6027\u9636\"\"\"\ncount = 0\nfor _ in range(n):\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u7ebf\u6027\u9636 */\nfunc linear(n int) int {\ncount := 0\nfor i := 0; i < n; i++ {\ncount++\n}\nreturn count\n}\n
            time_complexity.js
            /* \u7ebf\u6027\u9636 */\nfunction linear(n) {\nlet count = 0;\nfor (let i = 0; i < n; i++) count++;\nreturn count;\n}\n
            time_complexity.ts
            /* \u7ebf\u6027\u9636 */\nfunction linear(n: number): number {\nlet count = 0;\nfor (let i = 0; i < n; i++) count++;\nreturn count;\n}\n
            time_complexity.c
            /* \u7ebf\u6027\u9636 */\nint linear(int n) {\nint count = 0;\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u7ebf\u6027\u9636 */\nint linear(int n) {\nint count = 0;\nfor (int i = 0; i < n; i++)\ncount++;\nreturn count;\n}\n
            time_complexity.swift
            /* \u7ebf\u6027\u9636 */\nfunc linear(n: Int) -> Int {\nvar count = 0\nfor _ in 0 ..< n {\ncount += 1\n}\nreturn count\n}\n
            time_complexity.zig
            // \u7ebf\u6027\u9636\nfn linear(n: i32) i32 {\nvar count: i32 = 0;\nvar i: i32 = 0;\nwhile (i < n) : (i += 1) {\ncount += 1;\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u7ebf\u6027\u9636 */\nint linear(int n) {\nint count = 0;\nfor (var i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u7ebf\u6027\u9636 */\nfn linear(n: i32) -> i32 {\nlet mut count = 0;\nfor _ in 0..n {\ncount += 1;\n}\ncount\n}\n

            \u904d\u5386\u6570\u7ec4\u548c\u904d\u5386\u94fe\u8868\u7b49\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u6570\u7ec4\u6216\u94fe\u8868\u7684\u957f\u5ea6\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int[] nums) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (int num : nums) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(vector<int> &nums) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (int num : nums) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.py
            def array_traversal(nums: list[int]) -> int:\n\"\"\"\u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\"\"\"\ncount = 0\n# \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor num in nums:\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums []int) int {\ncount := 0\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor range nums {\ncount++\n}\nreturn count\n}\n
            time_complexity.js
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums) {\nlet count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (let i = 0; i < nums.length; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunction arrayTraversal(nums: number[]): number {\nlet count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (let i = 0; i < nums.length; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int *nums, int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(int[] nums) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nforeach (int num in nums) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfunc arrayTraversal(nums: [Int]) -> Int {\nvar count = 0\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor _ in nums {\ncount += 1\n}\nreturn count\n}\n
            time_complexity.zig
            // \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09\nfn arrayTraversal(nums: []i32) i32 {\nvar count: i32 = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (nums) |_| {\ncount += 1;\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nint arrayTraversal(List<int> nums) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor (var num in nums) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u7ebf\u6027\u9636\uff08\u904d\u5386\u6570\u7ec4\uff09 */\nfn array_traversal(nums: &[i32]) -> i32 {\nlet mut count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u6b63\u6bd4\nfor _ in nums {\ncount += 1;\n}\ncount\n}\n

            \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u8f93\u5165\u6570\u636e\u5927\u5c0f \\(n\\) \u9700\u6839\u636e\u8f93\u5165\u6570\u636e\u7684\u7c7b\u578b\u6765\u5177\u4f53\u786e\u5b9a\u3002\u6bd4\u5982\u5728\u7b2c\u4e00\u4e2a\u793a\u4f8b\u4e2d\uff0c\u53d8\u91cf \\(n\\) \u4e3a\u8f93\u5165\u6570\u636e\u5927\u5c0f\uff1b\u5728\u7b2c\u4e8c\u4e2a\u793a\u4f8b\u4e2d\uff0c\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u4e3a\u6570\u636e\u5927\u5c0f\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#3-on2","title":"3. \u00a0 \u5e73\u65b9\u9636 \\(O(n^2)\\)","text":"

            \u5e73\u65b9\u9636\u7684\u64cd\u4f5c\u6570\u91cf\u76f8\u5bf9\u4e8e\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4ee5\u5e73\u65b9\u7ea7\u522b\u589e\u957f\u3002\u5e73\u65b9\u9636\u901a\u5e38\u51fa\u73b0\u5728\u5d4c\u5957\u5faa\u73af\u4e2d\uff0c\u5916\u5c42\u5faa\u73af\u548c\u5185\u5c42\u5faa\u73af\u90fd\u4e3a \\(O(n)\\) \uff0c\u56e0\u6b64\u603b\u4f53\u4e3a \\(O(n^2)\\) \uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.py
            def quadratic(n: int) -> int:\n\"\"\"\u5e73\u65b9\u9636\"\"\"\ncount = 0\n# \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor i in range(n):\nfor j in range(n):\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u5e73\u65b9\u9636 */\nfunc quadratic(n int) int {\ncount := 0\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor i := 0; i < n; i++ {\nfor j := 0; j < n; j++ {\ncount++\n}\n}\nreturn count\n}\n
            time_complexity.js
            /* \u5e73\u65b9\u9636 */\nfunction quadratic(n) {\nlet count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (let i = 0; i < n; i++) {\nfor (let j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u5e73\u65b9\u9636 */\nfunction quadratic(n: number): number {\nlet count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (let i = 0; i < n; i++) {\nfor (let j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u5e73\u65b9\u9636 */\nfunc quadratic(n: Int) -> Int {\nvar count = 0\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor _ in 0 ..< n {\nfor _ in 0 ..< n {\ncount += 1\n}\n}\nreturn count\n}\n
            time_complexity.zig
            // \u5e73\u65b9\u9636\nfn quadratic(n: i32) i32 {\nvar count: i32 = 0;\nvar i: i32 = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nwhile (i < n) : (i += 1) {\nvar j: i32 = 0;\nwhile (j < n) : (j += 1) {\ncount += 1;\n}\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u5e73\u65b9\u9636 */\nint quadratic(int n) {\nint count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < n; j++) {\ncount++;\n}\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u5e73\u65b9\u9636 */\nfn quadratic(n: i32) -> i32 {\nlet mut count = 0;\n// \u5faa\u73af\u6b21\u6570\u4e0e\u6570\u7ec4\u957f\u5ea6\u6210\u5e73\u65b9\u5173\u7cfb\nfor _ in 0..n {\nfor _ in 0..n {\ncount += 1;\n}\n}\ncount\n}\n

            \u4e0b\u56fe\u5bf9\u6bd4\u4e86\u5e38\u6570\u9636\u3001\u7ebf\u6027\u9636\u548c\u5e73\u65b9\u9636\u4e09\u79cd\u65f6\u95f4\u590d\u6742\u5ea6\u3002

            \u56fe\uff1a\u5e38\u6570\u9636\u3001\u7ebf\u6027\u9636\u548c\u5e73\u65b9\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u4ee5\u5192\u6ce1\u6392\u5e8f\u4e3a\u4f8b\uff0c\u5916\u5c42\u5faa\u73af\u6267\u884c \\(n - 1\\) \u6b21\uff0c\u5185\u5c42\u5faa\u73af\u6267\u884c \\(n-1, n-2, \\cdots, 2, 1\\) \u6b21\uff0c\u5e73\u5747\u4e3a \\(\\frac{n}{2}\\) \u6b21\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff1a

            \\[ O((n - 1) \\frac{n}{2}) = O(n^2) \\] JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int[] nums) {\nint count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(vector<int> &nums) {\nint count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.size() - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.py
            def bubble_sort(nums: list[int]) -> int:\n\"\"\"\u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\"\"\"\ncount = 0  # \u8ba1\u6570\u5668\n# \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in range(len(nums) - 1, 0, -1):\n# \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in range(i):\nif nums[j] > nums[j + 1]:\n# \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\ntmp: int = nums[j]\nnums[j] = nums[j + 1]\nnums[j + 1] = tmp\ncount += 3  # \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\nreturn count\n
            time_complexity.go
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums []int) int {\ncount := 0 // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i := len(nums) - 1; i > 0; i-- {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor j := 0; j < i; j++ {\nif nums[j] > nums[j+1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\ntmp := nums[j]\nnums[j] = nums[j+1]\nnums[j+1] = tmp\ncount += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count\n}\n
            time_complexity.js
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums) {\nlet count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunction bubbleSort(nums: number[]): number {\nlet count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int *nums, int n) {\nint count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = n - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(int[] nums) {\nint count = 0;  // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.Length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);\ncount += 3;  // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfunc bubbleSort(nums: inout [Int]) -> Int {\nvar count = 0 // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in stride(from: nums.count - 1, to: 0, by: -1) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in 0 ..< i {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j]\nnums[j] = nums[j + 1]\nnums[j + 1] = tmp\ncount += 3 // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count\n}\n
            time_complexity.zig
            // \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09\nfn bubbleSort(nums: []i32) i32 {\nvar count: i32 = 0;  // \u8ba1\u6570\u5668 \n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nvar i: i32 = @as(i32, @intCast(nums.len)) - 1;\nwhile (i > 0) : (i -= 1) {\nvar j: usize = 0;\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nwhile (j < i) : (j += 1) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nvar tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3;  // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nint bubbleSort(List<int> nums) {\nint count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (var i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor (var j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u5e73\u65b9\u9636\uff08\u5192\u6ce1\u6392\u5e8f\uff09 */\nfn bubble_sort(nums: &mut [i32]) -> i32 {\nlet mut count = 0; // \u8ba1\u6570\u5668\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in (1..nums.len()).rev() {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in 0..i {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\ncount += 3; // \u5143\u7d20\u4ea4\u6362\u5305\u542b 3 \u4e2a\u5355\u5143\u64cd\u4f5c\n}\n}\n}\ncount\n}\n
            "},{"location":"chapter_computational_complexity/time_complexity/#4-o2n","title":"4. \u00a0 \u6307\u6570\u9636 \\(O(2^n)\\)","text":"

            \u751f\u7269\u5b66\u7684\u201c\u7ec6\u80de\u5206\u88c2\u201d\u662f\u6307\u6570\u9636\u589e\u957f\u7684\u5178\u578b\u4f8b\u5b50\uff1a\u521d\u59cb\u72b6\u6001\u4e3a \\(1\\) \u4e2a\u7ec6\u80de\uff0c\u5206\u88c2\u4e00\u8f6e\u540e\u53d8\u4e3a \\(2\\) \u4e2a\uff0c\u5206\u88c2\u4e24\u8f6e\u540e\u53d8\u4e3a \\(4\\) \u4e2a\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u5206\u88c2 \\(n\\) \u8f6e\u540e\u6709 \\(2^n\\) \u4e2a\u7ec6\u80de\u3002\u76f8\u5173\u4ee3\u7801\u5982\u4e0b\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\nint count = 0, base = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < base; j++) {\ncount++;\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.cpp
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\nint count = 0, base = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < base; j++) {\ncount++;\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.py
            def exponential(n: int) -> int:\n\"\"\"\u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\ncount = 0\nbase = 1\n# \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor _ in range(n):\nfor _ in range(base):\ncount += 1\nbase *= 2\n# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count\n
            time_complexity.go
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc exponential(n int) int {\ncount, base := 0, 1\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor i := 0; i < n; i++ {\nfor j := 0; j < base; j++ {\ncount++\n}\nbase *= 2\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count\n}\n
            time_complexity.js
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n) {\nlet count = 0,\nbase = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (let i = 0; i < n; i++) {\nfor (let j = 0; j < base; j++) {\ncount++;\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.ts
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction exponential(n: number): number {\nlet count = 0,\nbase = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (let i = 0; i < n; i++) {\nfor (let j = 0; j < base; j++) {\ncount++;\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.c
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\nint count = 0;\nint bas = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < bas; j++) {\ncount++;\n}\nbas *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.cs
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\nint count = 0, bas = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (int i = 0; i < n; i++) {\nfor (int j = 0; j < bas; j++) {\ncount++;\n}\nbas *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.swift
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc exponential(n: Int) -> Int {\nvar count = 0\nvar base = 1\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor _ in 0 ..< n {\nfor _ in 0 ..< base {\ncount += 1\n}\nbase *= 2\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count\n}\n
            time_complexity.zig
            // \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn exponential(n: i32) i32 {\nvar count: i32 = 0;\nvar bas: i32 = 1;\nvar i: i32 = 0;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nwhile (i < n) : (i += 1) {\nvar j: i32 = 0;\nwhile (j < bas) : (j += 1) {\ncount += 1;\n}\nbas *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.dart
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint exponential(int n) {\nint count = 0, base = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor (var i = 0; i < n; i++) {\nfor (var j = 0; j < base; j++) {\ncount++;\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\nreturn count;\n}\n
            time_complexity.rs
            /* \u6307\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn exponential(n: i32) -> i32 {\nlet mut count = 0;\nlet mut base = 1;\n// \u7ec6\u80de\u6bcf\u8f6e\u4e00\u5206\u4e3a\u4e8c\uff0c\u5f62\u6210\u6570\u5217 1, 2, 4, 8, ..., 2^(n-1)\nfor _ in 0..n {\nfor _ in 0..base {\ncount += 1\n}\nbase *= 2;\n}\n// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1\ncount\n}\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u7ec6\u80de\u5206\u88c2\u7684\u8fc7\u7a0b\u3002

            \u56fe\uff1a\u6307\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u5728\u5b9e\u9645\u7b97\u6cd5\u4e2d\uff0c\u6307\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u9012\u5f52\u51fd\u6570\u4e2d\u3002\u4f8b\u5982\u4ee5\u4e0b\u4ee3\u7801\uff0c\u5176\u9012\u5f52\u5730\u4e00\u5206\u4e3a\u4e8c\uff0c\u7ecf\u8fc7 \\(n\\) \u6b21\u5206\u88c2\u540e\u505c\u6b62\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\nif (n == 1)\nreturn 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.cpp
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\nif (n == 1)\nreturn 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.py
            def exp_recur(n: int) -> int:\n\"\"\"\u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\nif n == 1:\nreturn 1\nreturn exp_recur(n - 1) + exp_recur(n - 1) + 1\n
            time_complexity.go
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc expRecur(n int) int {\nif n == 1 {\nreturn 1\n}\nreturn expRecur(n-1) + expRecur(n-1) + 1\n}\n
            time_complexity.js
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n) {\nif (n === 1) return 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.ts
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction expRecur(n: number): number {\nif (n === 1) return 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.c
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\nif (n == 1)\nreturn 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.cs
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\nif (n == 1) return 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.swift
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc expRecur(n: Int) -> Int {\nif n == 1 {\nreturn 1\n}\nreturn expRecur(n: n - 1) + expRecur(n: n - 1) + 1\n}\n
            time_complexity.zig
            // \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn expRecur(n: i32) i32 {\nif (n == 1) return 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.dart
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint expRecur(int n) {\nif (n == 1) return 1;\nreturn expRecur(n - 1) + expRecur(n - 1) + 1;\n}\n
            time_complexity.rs
            /* \u6307\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn exp_recur(n: i32) -> i32 {\nif n == 1 {\nreturn 1;\n}\nexp_recur(n - 1) + exp_recur(n - 1) + 1\n}\n

            \u6307\u6570\u9636\u589e\u957f\u975e\u5e38\u8fc5\u901f\uff0c\u5728\u7a77\u4e3e\u6cd5\uff08\u66b4\u529b\u641c\u7d22\u3001\u56de\u6eaf\u7b49\uff09\u4e2d\u6bd4\u8f83\u5e38\u89c1\u3002\u5bf9\u4e8e\u6570\u636e\u89c4\u6a21\u8f83\u5927\u7684\u95ee\u9898\uff0c\u6307\u6570\u9636\u662f\u4e0d\u53ef\u63a5\u53d7\u7684\uff0c\u901a\u5e38\u9700\u8981\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u6216\u8d2a\u5fc3\u7b49\u7b97\u6cd5\u6765\u89e3\u51b3\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#5-olog-n","title":"5. \u00a0 \u5bf9\u6570\u9636 \\(O(\\log n)\\)","text":"

            \u4e0e\u6307\u6570\u9636\u76f8\u53cd\uff0c\u5bf9\u6570\u9636\u53cd\u6620\u4e86\u201c\u6bcf\u8f6e\u7f29\u51cf\u5230\u4e00\u534a\u201d\u7684\u60c5\u51b5\u3002\u8bbe\u8f93\u5165\u6570\u636e\u5927\u5c0f\u4e3a \\(n\\) \uff0c\u7531\u4e8e\u6bcf\u8f6e\u7f29\u51cf\u5230\u4e00\u534a\uff0c\u56e0\u6b64\u5faa\u73af\u6b21\u6570\u662f \\(\\log_2 n\\) \uff0c\u5373 \\(2^n\\) \u7684\u53cd\u51fd\u6570\u3002\u76f8\u5173\u4ee3\u7801\u5982\u4e0b\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\nint count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\nint count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.py
            def logarithmic(n: float) -> int:\n\"\"\"\u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\"\"\"\ncount = 0\nwhile n > 1:\nn = n / 2\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09*/\nfunc logarithmic(n float64) int {\ncount := 0\nfor n > 1 {\nn = n / 2\ncount++\n}\nreturn count\n}\n
            time_complexity.js
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n) {\nlet count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunction logarithmic(n: number): number {\nlet count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\nint count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(float n) {\nint count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfunc logarithmic(n: Double) -> Int {\nvar count = 0\nvar n = n\nwhile n > 1 {\nn = n / 2\ncount += 1\n}\nreturn count\n}\n
            time_complexity.zig
            // \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09\nfn logarithmic(n: f32) i32 {\nvar count: i32 = 0;\nvar n_var = n;\nwhile (n_var > 1)\n{\nn_var = n_var / 2;\ncount +=1;\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nint logarithmic(num n) {\nint count = 0;\nwhile (n > 1) {\nn = n / 2;\ncount++;\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u5bf9\u6570\u9636\uff08\u5faa\u73af\u5b9e\u73b0\uff09 */\nfn logarithmic(mut n: f32) -> i32 {\nlet mut count = 0;\nwhile n > 1.0 {\nn = n / 2.0;\ncount += 1;\n}\ncount\n}\n

            \u56fe\uff1a\u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u4e0e\u6307\u6570\u9636\u7c7b\u4f3c\uff0c\u5bf9\u6570\u9636\u4e5f\u5e38\u51fa\u73b0\u4e8e\u9012\u5f52\u51fd\u6570\u4e2d\u3002\u4ee5\u4e0b\u4ee3\u7801\u5f62\u6210\u4e86\u4e00\u4e2a\u9ad8\u5ea6\u4e3a \\(\\log_2 n\\) \u7684\u9012\u5f52\u6811\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\nif (n <= 1)\nreturn 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.cpp
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\nif (n <= 1)\nreturn 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.py
            def log_recur(n: float) -> int:\n\"\"\"\u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\nif n <= 1:\nreturn 0\nreturn log_recur(n / 2) + 1\n
            time_complexity.go
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09*/\nfunc logRecur(n float64) int {\nif n <= 1 {\nreturn 0\n}\nreturn logRecur(n/2) + 1\n}\n
            time_complexity.js
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n) {\nif (n <= 1) return 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.ts
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction logRecur(n: number): number {\nif (n <= 1) return 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.c
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\nif (n <= 1)\nreturn 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.cs
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(float n) {\nif (n <= 1) return 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.swift
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc logRecur(n: Double) -> Int {\nif n <= 1 {\nreturn 0\n}\nreturn logRecur(n: n / 2) + 1\n}\n
            time_complexity.zig
            // \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn logRecur(n: f32) i32 {\nif (n <= 1) return 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.dart
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint logRecur(num n) {\nif (n <= 1) return 0;\nreturn logRecur(n / 2) + 1;\n}\n
            time_complexity.rs
            /* \u5bf9\u6570\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn log_recur(n: f32) -> i32 {\nif n <= 1.0 {\nreturn 0;\n}\nlog_recur(n / 2.0) + 1\n}\n

            \u5bf9\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u7684\u7b97\u6cd5\u4e2d\uff0c\u4f53\u73b0\u4e86\u201c\u4e00\u5206\u4e3a\u591a\u201d\u548c\u201c\u5316\u7e41\u4e3a\u7b80\u201d\u7684\u7b97\u6cd5\u601d\u60f3\u3002\u5b83\u589e\u957f\u7f13\u6162\uff0c\u662f\u7406\u60f3\u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u4ec5\u6b21\u4e8e\u5e38\u6570\u9636\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#6-on-log-n","title":"6. \u00a0 \u7ebf\u6027\u5bf9\u6570\u9636 \\(O(n \\log n)\\)","text":"

            \u7ebf\u6027\u5bf9\u6570\u9636\u5e38\u51fa\u73b0\u4e8e\u5d4c\u5957\u5faa\u73af\u4e2d\uff0c\u4e24\u5c42\u5faa\u73af\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5206\u522b\u4e3a \\(O(\\log n)\\) \u548c \\(O(n)\\) \u3002\u76f8\u5173\u4ee3\u7801\u5982\u4e0b\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\nif (n <= 1)\nreturn 1;\nint count = linearLogRecur(n / 2) +\nlinearLogRecur(n / 2);\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\nif (n <= 1)\nreturn 1;\nint count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.py
            def linear_log_recur(n: float) -> int:\n\"\"\"\u7ebf\u6027\u5bf9\u6570\u9636\"\"\"\nif n <= 1:\nreturn 1\ncount: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)\nfor _ in range(n):\ncount += 1\nreturn count\n
            time_complexity.go
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n float64) int {\nif n <= 1 {\nreturn 1\n}\ncount := linearLogRecur(n/2) +\nlinearLogRecur(n/2)\nfor i := 0.0; i < n; i++ {\ncount++\n}\nreturn count\n}\n
            time_complexity.js
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n) {\nif (n <= 1) return 1;\nlet count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\nfor (let i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunction linearLogRecur(n: number): number {\nif (n <= 1) return 1;\nlet count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\nfor (let i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\nif (n <= 1)\nreturn 1;\nint count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(float n) {\nif (n <= 1) return 1;\nint count = linearLogRecur(n / 2) +\nlinearLogRecur(n / 2);\nfor (int i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfunc linearLogRecur(n: Double) -> Int {\nif n <= 1 {\nreturn 1\n}\nvar count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)\nfor _ in stride(from: 0, to: n, by: 1) {\ncount += 1\n}\nreturn count\n}\n
            time_complexity.zig
            // \u7ebf\u6027\u5bf9\u6570\u9636\nfn linearLogRecur(n: f32) i32 {\nif (n <= 1) return 1;\nvar count: i32 = linearLogRecur(n / 2) +\nlinearLogRecur(n / 2);\nvar i: f32 = 0;\nwhile (i < n) : (i += 1) {\ncount += 1;\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nint linearLogRecur(num n) {\nif (n <= 1) return 1;\nint count = linearLogRecur(n / 2) + linearLogRecur(n / 2);\nfor (var i = 0; i < n; i++) {\ncount++;\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u7ebf\u6027\u5bf9\u6570\u9636 */\nfn linear_log_recur(n: f32) -> i32 {\nif n <= 1.0 {\nreturn 1;\n}\nlet mut count = linear_log_recur(n / 2.0) + linear_log_recur(n / 2.0);\nfor _ in 0 ..n as i32 {\ncount += 1;\n}\nreturn count\n}\n

            \u56fe\uff1a\u7ebf\u6027\u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u4e3b\u6d41\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u4e3a \\(O(n \\log n)\\) \uff0c\u4f8b\u5982\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u5806\u6392\u5e8f\u7b49\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#7-on","title":"7. \u00a0 \u9636\u4e58\u9636 \\(O(n!)\\)","text":"

            \u9636\u4e58\u9636\u5bf9\u5e94\u6570\u5b66\u4e0a\u7684\u201c\u5168\u6392\u5217\u201d\u95ee\u9898\u3002\u7ed9\u5b9a \\(n\\) \u4e2a\u4e92\u4e0d\u91cd\u590d\u7684\u5143\u7d20\uff0c\u6c42\u5176\u6240\u6709\u53ef\u80fd\u7684\u6392\u5217\u65b9\u6848\uff0c\u65b9\u6848\u6570\u91cf\u4e3a\uff1a

            \\[ n! = n \\times (n - 1) \\times (n - 2) \\times \\cdots \\times 2 \\times 1 \\]

            \u9636\u4e58\u901a\u5e38\u4f7f\u7528\u9012\u5f52\u5b9e\u73b0\u3002\u4f8b\u5982\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u7b2c\u4e00\u5c42\u5206\u88c2\u51fa \\(n\\) \u4e2a\uff0c\u7b2c\u4e8c\u5c42\u5206\u88c2\u51fa \\(n - 1\\) \u4e2a\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u7b2c \\(n\\) \u5c42\u65f6\u505c\u6b62\u5206\u88c2\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust time_complexity.java
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\nif (n == 0)\nreturn 1;\nint count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (int i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.cpp
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\nif (n == 0)\nreturn 1;\nint count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (int i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.py
            def factorial_recur(n: int) -> int:\n\"\"\"\u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\"\"\"\nif n == 0:\nreturn 1\ncount = 0\n# \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor _ in range(n):\ncount += factorial_recur(n - 1)\nreturn count\n
            time_complexity.go
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n int) int {\nif n == 0 {\nreturn 1\n}\ncount := 0\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor i := 0; i < n; i++ {\ncount += factorialRecur(n - 1)\n}\nreturn count\n}\n
            time_complexity.js
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n) {\nif (n === 0) return 1;\nlet count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (let i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.ts
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunction factorialRecur(n: number): number {\nif (n === 0) return 1;\nlet count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (let i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.c
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\nif (n == 0)\nreturn 1;\nint count = 0;\nfor (int i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.cs
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\nif (n == 0) return 1;\nint count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (int i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.swift
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfunc factorialRecur(n: Int) -> Int {\nif n == 0 {\nreturn 1\n}\nvar count = 0\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor _ in 0 ..< n {\ncount += factorialRecur(n: n - 1)\n}\nreturn count\n}\n
            time_complexity.zig
            // \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09\nfn factorialRecur(n: i32) i32 {\nif (n == 0) return 1;\nvar count: i32 = 0;\nvar i: i32 = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nwhile (i < n) : (i += 1) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.dart
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nint factorialRecur(int n) {\nif (n == 0) return 1;\nint count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor (var i = 0; i < n; i++) {\ncount += factorialRecur(n - 1);\n}\nreturn count;\n}\n
            time_complexity.rs
            /* \u9636\u4e58\u9636\uff08\u9012\u5f52\u5b9e\u73b0\uff09 */\nfn factorial_recur(n: i32) -> i32 {\nif n == 0 {\nreturn 1;\n}\nlet mut count = 0;\n// \u4ece 1 \u4e2a\u5206\u88c2\u51fa n \u4e2a\nfor _ in 0..n {\ncount += factorial_recur(n - 1);\n}\ncount\n}\n

            \u56fe\uff1a\u9636\u4e58\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6

            \u8bf7\u6ce8\u610f\uff0c\u56e0\u4e3a \\(n! > 2^n\\) \uff0c\u6240\u4ee5\u9636\u4e58\u9636\u6bd4\u6307\u6570\u9636\u589e\u957f\u5f97\u66f4\u5feb\uff0c\u5728 \\(n\\) \u8f83\u5927\u65f6\u4e5f\u662f\u4e0d\u53ef\u63a5\u53d7\u7684\u3002

            "},{"location":"chapter_computational_complexity/time_complexity/#225","title":"2.2.5 \u00a0 \u6700\u5dee\u3001\u6700\u4f73\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6","text":"

            \u7b97\u6cd5\u7684\u65f6\u95f4\u6548\u7387\u5f80\u5f80\u4e0d\u662f\u56fa\u5b9a\u7684\uff0c\u800c\u662f\u4e0e\u8f93\u5165\u6570\u636e\u7684\u5206\u5e03\u6709\u5173\u3002\u5047\u8bbe\u8f93\u5165\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5176\u4e2d nums \u7531\u4ece \\(1\\) \u81f3 \\(n\\) \u7684\u6570\u5b57\u7ec4\u6210\uff0c\u6bcf\u4e2a\u6570\u5b57\u53ea\u51fa\u73b0\u4e00\u6b21\uff0c\u4f46\u5143\u7d20\u987a\u5e8f\u662f\u968f\u673a\u6253\u4e71\u7684\uff0c\u4efb\u52a1\u76ee\u6807\u662f\u8fd4\u56de\u5143\u7d20 \\(1\\) \u7684\u7d22\u5f15\u3002\u6211\u4eec\u53ef\u4ee5\u5f97\u51fa\u4ee5\u4e0b\u7ed3\u8bba\u3002

            • \u5f53 nums = [?, ?, ..., 1] \uff0c\u5373\u5f53\u672b\u5c3e\u5143\u7d20\u662f \\(1\\) \u65f6\uff0c\u9700\u8981\u5b8c\u6574\u904d\u5386\u6570\u7ec4\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002
            • \u5f53 nums = [1, ?, ?, ...] \uff0c\u5373\u5f53\u9996\u4e2a\u5143\u7d20\u4e3a \\(1\\) \u65f6\uff0c\u65e0\u8bba\u6570\u7ec4\u591a\u957f\u90fd\u4e0d\u9700\u8981\u7ee7\u7eed\u904d\u5386\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(\\Omega(1)\\) \u3002

            \u201c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u201d\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0a\u754c\uff0c\u4f7f\u7528\u5927 \\(O\\) \u8bb0\u53f7\u8868\u793a\u3002\u76f8\u5e94\u5730\uff0c\u201c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u201d\u5bf9\u5e94\u51fd\u6570\u6e10\u8fd1\u4e0b\u754c\uff0c\u7528 \\(\\Omega\\) \u8bb0\u53f7\u8868\u793a\uff1a

            JavaC++PythonGoJSTSCC#SwiftZigDartRust worst_best_time_complexity.java
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] randomNumbers(int n) {\nInteger[] nums = new Integer[n];\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (int i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nCollections.shuffle(Arrays.asList(nums));\n// Integer[] -> int[]\nint[] res = new int[n];\nfor (int i = 0; i < n; i++) {\nres[i] = nums[i];\n}\nreturn res;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int[] nums) {\nfor (int i = 0; i < nums.length; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] == 1)\nreturn i;\n}\nreturn -1;\n}\n
            worst_best_time_complexity.cpp
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nvector<int> randomNumbers(int n) {\nvector<int> nums(n);\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (int i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u4f7f\u7528\u7cfb\u7edf\u65f6\u95f4\u751f\u6210\u968f\u673a\u79cd\u5b50\nunsigned seed = chrono::system_clock::now().time_since_epoch().count();\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nshuffle(nums.begin(), nums.end(), default_random_engine(seed));\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(vector<int> &nums) {\nfor (int i = 0; i < nums.size(); i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] == 1)\nreturn i;\n}\nreturn -1;\n}\n
            worst_best_time_complexity.py
            def random_numbers(n: int) -> list[int]:\n\"\"\"\u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a: 1, 2, ..., n \uff0c\u987a\u5e8f\u88ab\u6253\u4e71\"\"\"\n# \u751f\u6210\u6570\u7ec4 nums =: 1, 2, 3, ..., n\nnums = [i for i in range(1, n + 1)]\n# \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nrandom.shuffle(nums)\nreturn nums\ndef find_one(nums: list[int]) -> int:\n\"\"\"\u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\"\"\"\nfor i in range(len(nums)):\n# \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n# \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif nums[i] == 1:\nreturn i\nreturn -1\n
            worst_best_time_complexity.go
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n int) []int {\nnums := make([]int, n)\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor i := 0; i < n; i++ {\nnums[i] = i + 1\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nrand.Shuffle(len(nums), func(i, j int) {\nnums[i], nums[j] = nums[j], nums[i]\n})\nreturn nums\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums []int) int {\nfor i := 0; i < len(nums); i++ {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif nums[i] == 1 {\nreturn i\n}\n}\nreturn -1\n}\n
            worst_best_time_complexity.js
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n) {\nconst nums = Array(n);\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (let i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nfor (let i = 0; i < n; i++) {\nconst r = Math.floor(Math.random() * (i + 1));\nconst temp = nums[i];\nnums[i] = nums[r];\nnums[r] = temp;\n}\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums) {\nfor (let i = 0; i < nums.length; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] === 1) {\nreturn i;\n}\n}\nreturn -1;\n}\n
            worst_best_time_complexity.ts
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunction randomNumbers(n: number): number[] {\nconst nums = Array(n);\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (let i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nfor (let i = 0; i < n; i++) {\nconst r = Math.floor(Math.random() * (i + 1));\nconst temp = nums[i];\nnums[i] = nums[r];\nnums[r] = temp;\n}\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunction findOne(nums: number[]): number {\nfor (let i = 0; i < nums.length; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] === 1) {\nreturn i;\n}\n}\nreturn -1;\n}\n
            worst_best_time_complexity.c
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint *randomNumbers(int n) {\n// \u5206\u914d\u5806\u533a\u5185\u5b58\uff08\u521b\u5efa\u4e00\u7ef4\u53ef\u53d8\u957f\u6570\u7ec4\uff1a\u6570\u7ec4\u4e2d\u5143\u7d20\u6570\u91cf\u4e3an\uff0c\u5143\u7d20\u7c7b\u578b\u4e3aint\uff09\nint *nums = (int *)malloc(n * sizeof(int));\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (int i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nfor (int i = n - 1; i > 0; i--) {\nint j = rand() % (i + 1);\nint temp = nums[i];\nnums[i] = nums[j];\nnums[j] = temp;\n}\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int *nums, int n) {\nfor (int i = 0; i < n; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] == 1)\nreturn i;\n}\nreturn -1;\n}\n
            worst_best_time_complexity.cs
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nint[] randomNumbers(int n) {\nint[] nums = new int[n];\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (int i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nfor (int i = 0; i < nums.Length; i++) {\nvar index = new Random().Next(i, nums.Length);\nvar tmp = nums[i];\nvar ran = nums[index];\nnums[i] = ran;\nnums[index] = tmp;\n}\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(int[] nums) {\nfor (int i = 0; i < nums.Length; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] == 1)\nreturn i;\n}\nreturn -1;\n}\n
            worst_best_time_complexity.swift
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfunc randomNumbers(n: Int) -> [Int] {\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nvar nums = Array(1 ... n)\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nnums.shuffle()\nreturn nums\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfunc findOne(nums: [Int]) -> Int {\nfor i in nums.indices {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif nums[i] == 1 {\nreturn i\n}\n}\nreturn -1\n}\n
            worst_best_time_complexity.zig
            // \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71\npub fn randomNumbers(comptime n: usize) [n]i32 {\nvar nums: [n]i32 = undefined;\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (nums) |*num, i| {\nnum.* = @intCast(i32, i) + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nconst rand = std.crypto.random;\nrand.shuffle(i32, &nums);\nreturn nums;\n}\n// \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15\npub fn findOne(nums: []i32) i32 {\nfor (nums) |num, i| {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (num == 1) return @intCast(i32, i);\n}\nreturn -1;\n}\n
            worst_best_time_complexity.dart
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nList<int> randomNumbers(int n) {\nfinal nums = List.filled(n, 0);\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nfor (var i = 0; i < n; i++) {\nnums[i] = i + 1;\n}\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nnums.shuffle();\nreturn nums;\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nint findOne(List<int> nums) {\nfor (var i = 0; i < nums.length; i++) {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif (nums[i] == 1) return i;\n}\nreturn -1;\n}\n
            worst_best_time_complexity.rs
            /* \u751f\u6210\u4e00\u4e2a\u6570\u7ec4\uff0c\u5143\u7d20\u4e3a { 1, 2, ..., n }\uff0c\u987a\u5e8f\u88ab\u6253\u4e71 */\nfn random_numbers(n: i32) -> Vec<i32> {\n// \u751f\u6210\u6570\u7ec4 nums = { 1, 2, 3, ..., n }\nlet mut nums = (1..=n).collect::<Vec<i32>>();\n// \u968f\u673a\u6253\u4e71\u6570\u7ec4\u5143\u7d20\nnums.shuffle(&mut thread_rng());\nnums\n}\n/* \u67e5\u627e\u6570\u7ec4 nums \u4e2d\u6570\u5b57 1 \u6240\u5728\u7d22\u5f15 */\nfn find_one(nums: &[i32]) -> Option<usize> {\nfor i in 0..nums.len() {\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5934\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 O(1)\n// \u5f53\u5143\u7d20 1 \u5728\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u8fbe\u5230\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nif nums[i] == 1 {\nreturn Some(i);\n}\n}\nNone\n}\n

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6211\u4eec\u5728\u5b9e\u9645\u4e2d\u5f88\u5c11\u4f7f\u7528\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u56e0\u4e3a\u901a\u5e38\u53ea\u6709\u5728\u5f88\u5c0f\u6982\u7387\u4e0b\u624d\u80fd\u8fbe\u5230\uff0c\u53ef\u80fd\u4f1a\u5e26\u6765\u4e00\u5b9a\u7684\u8bef\u5bfc\u6027\u3002\u800c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u66f4\u4e3a\u5b9e\u7528\uff0c\u56e0\u4e3a\u5b83\u7ed9\u51fa\u4e86\u4e00\u4e2a\u6548\u7387\u5b89\u5168\u503c\uff0c\u8ba9\u6211\u4eec\u53ef\u4ee5\u653e\u5fc3\u5730\u4f7f\u7528\u7b97\u6cd5\u3002

            \u4ece\u4e0a\u8ff0\u793a\u4f8b\u53ef\u4ee5\u770b\u51fa\uff0c\u6700\u5dee\u6216\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u53ea\u51fa\u73b0\u4e8e\u201c\u7279\u6b8a\u7684\u6570\u636e\u5206\u5e03\u201d\uff0c\u8fd9\u4e9b\u60c5\u51b5\u7684\u51fa\u73b0\u6982\u7387\u53ef\u80fd\u5f88\u5c0f\uff0c\u5e76\u4e0d\u80fd\u771f\u5b9e\u5730\u53cd\u6620\u7b97\u6cd5\u8fd0\u884c\u6548\u7387\u3002\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f53\u73b0\u7b97\u6cd5\u5728\u968f\u673a\u8f93\u5165\u6570\u636e\u4e0b\u7684\u8fd0\u884c\u6548\u7387\uff0c\u7528 \\(\\Theta\\) \u8bb0\u53f7\u6765\u8868\u793a\u3002

            \u5bf9\u4e8e\u90e8\u5206\u7b97\u6cd5\uff0c\u6211\u4eec\u53ef\u4ee5\u7b80\u5355\u5730\u63a8\u7b97\u51fa\u968f\u673a\u6570\u636e\u5206\u5e03\u4e0b\u7684\u5e73\u5747\u60c5\u51b5\u3002\u6bd4\u5982\u4e0a\u8ff0\u793a\u4f8b\uff0c\u7531\u4e8e\u8f93\u5165\u6570\u7ec4\u662f\u88ab\u6253\u4e71\u7684\uff0c\u56e0\u6b64\u5143\u7d20 \\(1\\) \u51fa\u73b0\u5728\u4efb\u610f\u7d22\u5f15\u7684\u6982\u7387\u90fd\u662f\u76f8\u7b49\u7684\uff0c\u90a3\u4e48\u7b97\u6cd5\u7684\u5e73\u5747\u5faa\u73af\u6b21\u6570\u5c31\u662f\u6570\u7ec4\u957f\u5ea6\u7684\u4e00\u534a \\(\\frac{n}{2}\\) \uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(\\Theta(\\frac{n}{2}) = \\Theta(n)\\) \u3002

            \u4f46\u5bf9\u4e8e\u8f83\u4e3a\u590d\u6742\u7684\u7b97\u6cd5\uff0c\u8ba1\u7b97\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5f80\u5f80\u662f\u6bd4\u8f83\u56f0\u96be\u7684\uff0c\u56e0\u4e3a\u5f88\u96be\u5206\u6790\u51fa\u5728\u6570\u636e\u5206\u5e03\u4e0b\u7684\u6574\u4f53\u6570\u5b66\u671f\u671b\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4f5c\u4e3a\u7b97\u6cd5\u6548\u7387\u7684\u8bc4\u5224\u6807\u51c6\u3002

            \u4e3a\u4ec0\u4e48\u5f88\u5c11\u770b\u5230 \\(\\Theta\\) \u7b26\u53f7\uff1f

            \u53ef\u80fd\u7531\u4e8e \\(O\\) \u7b26\u53f7\u8fc7\u4e8e\u6717\u6717\u4e0a\u53e3\uff0c\u6211\u4eec\u5e38\u5e38\u4f7f\u7528\u5b83\u6765\u8868\u793a\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u3002\u4f46\u4ece\u4e25\u683c\u610f\u4e49\u4e0a\u770b\uff0c\u8fd9\u79cd\u505a\u6cd5\u5e76\u4e0d\u89c4\u8303\u3002\u5728\u672c\u4e66\u548c\u5176\u4ed6\u8d44\u6599\u4e2d\uff0c\u82e5\u9047\u5230\u7c7b\u4f3c\u201c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\)\u201d\u7684\u8868\u8ff0\uff0c\u8bf7\u5c06\u5176\u76f4\u63a5\u7406\u89e3\u4e3a \\(\\Theta(n)\\) \u3002

            "},{"location":"chapter_data_structure/","title":"\u7b2c 3 \u7ae0 \u00a0 \u6570\u636e\u7ed3\u6784","text":"

            Abstract

            \u6570\u636e\u7ed3\u6784\u5982\u540c\u4e00\u526f\u7a33\u56fa\u800c\u591a\u6837\u7684\u6846\u67b6\u3002

            \u5b83\u4e3a\u6570\u636e\u7684\u6709\u5e8f\u7ec4\u7ec7\u63d0\u4f9b\u4e86\u84dd\u56fe\uff0c\u4f7f\u7b97\u6cd5\u5f97\u4ee5\u5728\u6b64\u57fa\u7840\u4e0a\u751f\u52a8\u8d77\u6765\u3002

            "},{"location":"chapter_data_structure/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 3.1 \u00a0 \u6570\u636e\u7ed3\u6784\u5206\u7c7b
            • 3.2 \u00a0 \u57fa\u672c\u6570\u636e\u7c7b\u578b
            • 3.3 \u00a0 \u6570\u5b57\u7f16\u7801 *
            • 3.4 \u00a0 \u5b57\u7b26\u7f16\u7801 *
            • 3.5 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_data_structure/basic_data_types/","title":"3.2 \u00a0 \u57fa\u672c\u6570\u636e\u7c7b\u578b","text":"

            \u8c08\u53ca\u8ba1\u7b97\u673a\u4e2d\u7684\u6570\u636e\uff0c\u6211\u4eec\u4f1a\u60f3\u5230\u6587\u672c\u3001\u56fe\u7247\u3001\u89c6\u9891\u3001\u8bed\u97f3\u30013D \u6a21\u578b\u7b49\u5404\u79cd\u5f62\u5f0f\u3002\u5c3d\u7ba1\u8fd9\u4e9b\u6570\u636e\u7684\u7ec4\u7ec7\u5f62\u5f0f\u5404\u5f02\uff0c\u4f46\u5b83\u4eec\u90fd\u7531\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6784\u6210\u3002

            \u57fa\u672c\u6570\u636e\u7c7b\u578b\u662f CPU \u53ef\u4ee5\u76f4\u63a5\u8fdb\u884c\u8fd0\u7b97\u7684\u7c7b\u578b\uff0c\u5728\u7b97\u6cd5\u4e2d\u76f4\u63a5\u88ab\u4f7f\u7528\u3002\u5b83\u5305\u62ec\uff1a

            • \u6574\u6570\u7c7b\u578b byte , short , int , long \u3002
            • \u6d6e\u70b9\u6570\u7c7b\u578b float , double \uff0c\u7528\u4e8e\u8868\u793a\u5c0f\u6570\u3002
            • \u5b57\u7b26\u7c7b\u578b char \uff0c\u7528\u4e8e\u8868\u793a\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u6bcd\u3001\u6807\u70b9\u7b26\u53f7\u3001\u751a\u81f3\u8868\u60c5\u7b26\u53f7\u7b49\u3002
            • \u5e03\u5c14\u7c7b\u578b bool \uff0c\u7528\u4e8e\u8868\u793a\u201c\u662f\u201d\u4e0e\u201c\u5426\u201d\u5224\u65ad\u3002

            \u57fa\u672c\u6570\u636e\u7c7b\u578b\u4ee5\u4e8c\u8fdb\u5236\u7684\u5f62\u5f0f\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u4e2d\u3002\u4e00\u4e2a\u4e8c\u8fdb\u5236\u4f4d\u5373\u4e3a \\(1\\) \u6bd4\u7279\u3002\u5728\u7edd\u5927\u591a\u6570\u73b0\u4ee3\u7cfb\u7edf\u4e2d\uff0c\\(1\\) \u5b57\u8282\uff08byte\uff09\u7531 \\(8\\) \u6bd4\u7279\uff08bits\uff09\u7ec4\u6210\u3002

            \u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u53d6\u51b3\u4e8e\u5176\u5360\u7528\u7684\u7a7a\u95f4\u5927\u5c0f\uff0c\u4f8b\u5982 Java \u89c4\u5b9a\uff1a

            • \u6574\u6570\u7c7b\u578b byte \u5360\u7528 \\(1\\) byte = \\(8\\) bits \uff0c\u53ef\u4ee5\u8868\u793a \\(2^{8}\\) \u4e2a\u6570\u5b57\u3002
            • \u6574\u6570\u7c7b\u578b int \u5360\u7528 \\(4\\) bytes = \\(32\\) bits \uff0c\u53ef\u4ee5\u8868\u793a \\(2^{32}\\) \u4e2a\u6570\u5b57\u3002

            \u4e0b\u8868\u5217\u4e3e\u4e86\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u5360\u7528\u7a7a\u95f4\u3001\u53d6\u503c\u8303\u56f4\u548c\u9ed8\u8ba4\u503c\u3002\u6b64\u8868\u683c\u65e0\u987b\u786c\u80cc\uff0c\u5927\u81f4\u7406\u89e3\u5373\u53ef\uff0c\u9700\u8981\u65f6\u53ef\u4ee5\u901a\u8fc7\u67e5\u8868\u6765\u56de\u5fc6\u3002

            \u8868\uff1a\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u5360\u7528\u7a7a\u95f4\u548c\u53d6\u503c\u8303\u56f4

            \u7c7b\u578b \u7b26\u53f7 \u5360\u7528\u7a7a\u95f4 \u6700\u5c0f\u503c \u6700\u5927\u503c \u9ed8\u8ba4\u503c \u6574\u6570 byte 1 byte \\(-2^7\\) (\\(-128\\)) \\(2^7 - 1\\) (\\(127\\)) \\(0\\) short 2 bytes \\(-2^{15}\\) \\(2^{15} - 1\\) \\(0\\) int 4 bytes \\(-2^{31}\\) \\(2^{31} - 1\\) \\(0\\) long 8 bytes \\(-2^{63}\\) \\(2^{63} - 1\\) \\(0\\) \u6d6e\u70b9\u6570 float 4 bytes \\(1.175 \\times 10^{-38}\\) \\(3.403 \\times 10^{38}\\) \\(0.0 f\\) double 8 bytes \\(2.225 \\times 10^{-308}\\) \\(1.798 \\times 10^{308}\\) \\(0.0\\) \u5b57\u7b26 char 2 bytes / 1 byte \\(0\\) \\(2^{16} - 1\\) \\(0\\) \u5e03\u5c14 bool 1 byte \\(\\text{false}\\) \\(\\text{true}\\) \\(\\text{false}\\)

            \u5bf9\u4e8e\u4e0a\u8868\uff0c\u9700\u8981\u6ce8\u610f\u4ee5\u4e0b\u51e0\u70b9\uff1a

            • C, C++ \u672a\u660e\u786e\u89c4\u5b9a\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5927\u5c0f\uff0c\u800c\u56e0\u5b9e\u73b0\u548c\u5e73\u53f0\u5404\u5f02\u3002\u4e0a\u8868\u9075\u5faa LP64 \u6570\u636e\u6a21\u578b\uff0c\u5176\u7528\u4e8e Unix 64 \u4f4d\u64cd\u4f5c\u7cfb\u7edf\uff08\u4f8b\u5982 Linux , macOS\uff09\u3002
            • \u5b57\u7b26 char \u7684\u5927\u5c0f\u5728 C, C++ \u4e2d\u4e3a 1 \u5b57\u8282\uff0c\u5728\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u4e2d\u53d6\u51b3\u4e8e\u7279\u5b9a\u7684\u5b57\u7b26\u7f16\u7801\u65b9\u6cd5\uff0c\u8be6\u89c1\u201c\u5b57\u7b26\u7f16\u7801\u201d\u7ae0\u8282\u3002
            • \u5373\u4f7f\u8868\u793a\u5e03\u5c14\u91cf\u4ec5\u9700 1 \u4f4d\uff08\\(0\\) \u6216 \\(1\\)\uff09\uff0c\u5b83\u5728\u5185\u5b58\u4e2d\u901a\u5e38\u88ab\u5b58\u50a8\u4e3a 1 \u5b57\u8282\u3002\u8fd9\u662f\u56e0\u4e3a\u73b0\u4ee3\u8ba1\u7b97\u673a CPU \u901a\u5e38\u5c06 1 \u5b57\u8282\u4f5c\u4e3a\u6700\u5c0f\u5bfb\u5740\u5185\u5b58\u5355\u5143\u3002

            \u90a3\u4e48\uff0c\u57fa\u672c\u6570\u636e\u7c7b\u578b\u4e0e\u6570\u636e\u7ed3\u6784\u4e4b\u95f4\u6709\u4ec0\u4e48\u8054\u7cfb\u5462\uff1f\u6211\u4eec\u77e5\u9053\uff0c\u6570\u636e\u7ed3\u6784\u662f\u5728\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u4e0e\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\u3002\u5b83\u7684\u4e3b\u8bed\u662f\u201c\u7ed3\u6784\u201d\u800c\u975e\u201c\u6570\u636e\u201d\u3002

            \u5982\u679c\u60f3\u8981\u8868\u793a\u201c\u4e00\u6392\u6570\u5b57\u201d\uff0c\u6211\u4eec\u81ea\u7136\u4f1a\u60f3\u5230\u4f7f\u7528\u6570\u7ec4\u3002\u8fd9\u662f\u56e0\u4e3a\u6570\u7ec4\u7684\u7ebf\u6027\u7ed3\u6784\u53ef\u4ee5\u8868\u793a\u6570\u5b57\u7684\u76f8\u90bb\u5173\u7cfb\u548c\u987a\u5e8f\u5173\u7cfb\uff0c\u4f46\u81f3\u4e8e\u5b58\u50a8\u7684\u5185\u5bb9\u662f\u6574\u6570 int \u3001\u5c0f\u6570 float \u3001\u8fd8\u662f\u5b57\u7b26 char \uff0c\u5219\u4e0e\u201c\u6570\u636e\u7ed3\u6784\u201d\u65e0\u5173\u3002

            \u6362\u53e5\u8bdd\u8bf4\uff0c\u57fa\u672c\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u4e86\u6570\u636e\u7684\u201c\u5185\u5bb9\u7c7b\u578b\u201d\uff0c\u800c\u6570\u636e\u7ed3\u6784\u63d0\u4f9b\u4e86\u6570\u636e\u7684\u201c\u7ec4\u7ec7\u65b9\u5f0f\u201d\u3002\u4f8b\u5982\u4ee5\u4e0b\u4ee3\u7801\uff0c\u6211\u4eec\u7528\u76f8\u540c\u7684\u6570\u636e\u7ed3\u6784\uff08\u6570\u7ec4\uff09\u6765\u5b58\u50a8\u4e0e\u8868\u793a\u4e0d\u540c\u7684\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff08int , float , chat, bool\uff09\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nboolean[] bools = new boolean[5];\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint numbers[5];\nfloat decimals[5];\nchar characters[5];\nbool bools[5];\n
            # \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nnumbers: list[int] = [0] * 5\ndecimals: list[float] = [0.0] * 5\n# Python \u7684\u5b57\u7b26\u5e94\u88ab\u770b\u4f5c\u957f\u5ea6\u4e3a\u4e00\u7684\u5b57\u7b26\u4e32\ncharacters: list[str] = ['0'] * 5\nbools: list[bool] = [False] * 5\n# Python \u7684\u5217\u8868\u53ef\u4ee5\u81ea\u7531\u5b58\u50a8\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u548c\u5bf9\u8c61\u5f15\u7528\ndata = [0, 0.0, 'a', False, ListNode(0)]\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nvar numbers = [5]int{}\nvar decimals = [5]float64{}\nvar characters = [5]byte{}\nvar bools = [5]bool{}\n
            // JavaScript \u7684\u6570\u7ec4\u53ef\u4ee5\u81ea\u7531\u5b58\u50a8\u5404\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u548c\u5bf9\u8c61\nconst array = [0, 0.0, 'a', false];\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nconst numbers: number[] = [];\nconst characters: string[] = [];\nconst bools: boolean[] = [];\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint numbers[10];\nfloat decimals[10];\nchar characters[10];\nbool bools[10];\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nint[] numbers = new int[5];\nfloat[] decimals = new float[5];\nchar[] characters = new char[5];\nbool[] bools = new bool[5];\n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nlet numbers = Array(repeating: Int(), count: 5)\nlet decimals = Array(repeating: Double(), count: 5)\nlet characters = Array(repeating: Character(\"a\"), count: 5)\nlet bools = Array(repeating: Bool(), count: 5)\n
            \n
            // \u4f7f\u7528\u591a\u79cd\u57fa\u672c\u6570\u636e\u7c7b\u578b\u6765\u521d\u59cb\u5316\u6570\u7ec4\nList<int> numbers = List.filled(5, 0);\nList<double> decimals = List.filled(5, 0.0);\nList<String> characters = List.filled(5, 'a');\nList<bool> bools = List.filled(5, false);\n
            \n
            "},{"location":"chapter_data_structure/character_encoding/","title":"3.4 \u00a0 \u5b57\u7b26\u7f16\u7801 *","text":"

            \u5728\u8ba1\u7b97\u673a\u4e2d\uff0c\u6240\u6709\u6570\u636e\u90fd\u662f\u4ee5\u4e8c\u8fdb\u5236\u6570\u7684\u5f62\u5f0f\u5b58\u50a8\u7684\uff0c\u5b57\u7b26 char \u4e5f\u4e0d\u4f8b\u5916\u3002\u4e3a\u4e86\u8868\u793a\u5b57\u7b26\uff0c\u6211\u4eec\u9700\u8981\u5efa\u7acb\u4e00\u5957\u201c\u5b57\u7b26\u96c6\u201d\uff0c\u89c4\u5b9a\u6bcf\u4e2a\u5b57\u7b26\u548c\u4e8c\u8fdb\u5236\u6570\u4e4b\u95f4\u7684\u4e00\u4e00\u5bf9\u5e94\u5173\u7cfb\u3002\u6709\u4e86\u5b57\u7b26\u96c6\u4e4b\u540e\uff0c\u8ba1\u7b97\u673a\u5c31\u53ef\u4ee5\u901a\u8fc7\u67e5\u8868\u5b8c\u6210\u4e8c\u8fdb\u5236\u6570\u5230\u5b57\u7b26\u7684\u8f6c\u6362\u3002

            "},{"location":"chapter_data_structure/character_encoding/#341-ascii","title":"3.4.1 \u00a0 ASCII \u5b57\u7b26\u96c6","text":"

            \u300cASCII \u7801\u300d\u662f\u6700\u65e9\u51fa\u73b0\u7684\u5b57\u7b26\u96c6\uff0c\u5168\u79f0\u4e3a\u201c\u7f8e\u56fd\u6807\u51c6\u4fe1\u606f\u4ea4\u6362\u4ee3\u7801\u201d\u3002\u5b83\u4f7f\u7528 7 \u4f4d\u4e8c\u8fdb\u5236\u6570\uff08\u5373\u4e00\u4e2a\u5b57\u8282\u7684\u4f4e 7 \u4f4d\uff09\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\uff0c\u6700\u591a\u80fd\u591f\u8868\u793a 128 \u4e2a\u4e0d\u540c\u7684\u5b57\u7b26\u3002\u8fd9\u5305\u62ec\u82f1\u6587\u5b57\u6bcd\u7684\u5927\u5c0f\u5199\u3001\u6570\u5b57 0-9 \u3001\u4e00\u4e9b\u6807\u70b9\u7b26\u53f7\uff0c\u4ee5\u53ca\u4e00\u4e9b\u63a7\u5236\u5b57\u7b26\uff08\u5982\u6362\u884c\u7b26\u548c\u5236\u8868\u7b26\uff09\u3002

            \u56fe\uff1aASCII \u7801

            \u7136\u800c\uff0cASCII \u7801\u4ec5\u80fd\u591f\u8868\u793a\u82f1\u6587\u3002\u968f\u7740\u8ba1\u7b97\u673a\u7684\u5168\u7403\u5316\uff0c\u8bde\u751f\u4e86\u4e00\u79cd\u80fd\u591f\u8868\u793a\u66f4\u591a\u8bed\u8a00\u7684\u5b57\u7b26\u96c6\u300cEASCII\u300d\u3002\u5b83\u5728 ASCII \u7684 7 \u4f4d\u57fa\u7840\u4e0a\u6269\u5c55\u5230 8 \u4f4d\uff0c\u80fd\u591f\u8868\u793a 256 \u4e2a\u4e0d\u540c\u7684\u5b57\u7b26\u3002

            \u5728\u4e16\u754c\u8303\u56f4\u5185\uff0c\u9646\u7eed\u51fa\u73b0\u4e86\u4e00\u6279\u9002\u7528\u4e8e\u4e0d\u540c\u5730\u533a\u7684 EASCII \u5b57\u7b26\u96c6\u3002\u8fd9\u4e9b\u5b57\u7b26\u96c6\u7684\u524d 128 \u4e2a\u5b57\u7b26\u7edf\u4e00\u4e3a ASCII \u7801\uff0c\u540e 128 \u4e2a\u5b57\u7b26\u5b9a\u4e49\u4e0d\u540c\uff0c\u4ee5\u9002\u5e94\u4e0d\u540c\u8bed\u8a00\u7684\u9700\u6c42\u3002

            "},{"location":"chapter_data_structure/character_encoding/#342-gbk","title":"3.4.2 \u00a0 GBK \u5b57\u7b26\u96c6","text":"

            \u540e\u6765\u4eba\u4eec\u53d1\u73b0\uff0cEASCII \u7801\u4ecd\u7136\u65e0\u6cd5\u6ee1\u8db3\u8bb8\u591a\u8bed\u8a00\u7684\u5b57\u7b26\u6570\u91cf\u8981\u6c42\u3002\u6bd4\u5982\u6c49\u5b57\u5927\u7ea6\u6709\u8fd1\u5341\u4e07\u4e2a\uff0c\u5149\u65e5\u5e38\u4f7f\u7528\u7684\u5c31\u6709\u51e0\u5343\u4e2a\u3002\u4e2d\u56fd\u56fd\u5bb6\u6807\u51c6\u603b\u5c40\u4e8e 1980 \u5e74\u53d1\u5e03\u4e86\u300cGB2312\u300d\u5b57\u7b26\u96c6\uff0c\u5176\u6536\u5f55\u4e86 6763 \u4e2a\u6c49\u5b57\uff0c\u57fa\u672c\u6ee1\u8db3\u4e86\u6c49\u5b57\u7684\u8ba1\u7b97\u673a\u5904\u7406\u9700\u8981\u3002

            \u7136\u800c\uff0cGB2312 \u65e0\u6cd5\u5904\u7406\u90e8\u5206\u7684\u7f55\u89c1\u5b57\u548c\u7e41\u4f53\u5b57\u3002\u300cGBK\u300d\u5b57\u7b26\u96c6\u662f\u5728 GB2312 \u7684\u57fa\u7840\u4e0a\u6269\u5c55\u5f97\u5230\u7684\uff0c\u5b83\u5171\u6536\u5f55\u4e86 21886 \u4e2a\u6c49\u5b57\u3002\u5728 GBK \u7684\u7f16\u7801\u65b9\u6848\u4e2d\uff0cASCII \u5b57\u7b26\u4f7f\u7528\u4e00\u4e2a\u5b57\u8282\u8868\u793a\uff0c\u6c49\u5b57\u4f7f\u7528\u4e24\u4e2a\u5b57\u8282\u8868\u793a\u3002

            "},{"location":"chapter_data_structure/character_encoding/#343-unicode","title":"3.4.3 \u00a0 Unicode \u5b57\u7b26\u96c6","text":"

            \u968f\u7740\u8ba1\u7b97\u673a\u7684\u84ec\u52c3\u53d1\u5c55\uff0c\u5b57\u7b26\u96c6\u4e0e\u7f16\u7801\u6807\u51c6\u767e\u82b1\u9f50\u653e\uff0c\u800c\u8fd9\u5e26\u6765\u4e86\u8bb8\u591a\u95ee\u9898\u3002\u4e00\u65b9\u9762\uff0c\u8fd9\u4e9b\u5b57\u7b26\u96c6\u4e00\u822c\u53ea\u5b9a\u4e49\u4e86\u7279\u5b9a\u8bed\u8a00\u7684\u5b57\u7b26\uff0c\u65e0\u6cd5\u5728\u591a\u8bed\u8a00\u73af\u5883\u4e0b\u6b63\u5e38\u5de5\u4f5c\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u540c\u4e00\u79cd\u8bed\u8a00\u4e5f\u5b58\u5728\u591a\u79cd\u5b57\u7b26\u96c6\u6807\u51c6\uff0c\u5982\u679c\u4e24\u53f0\u7535\u8111\u5b89\u88c5\u7684\u662f\u4e0d\u540c\u7684\u7f16\u7801\u6807\u51c6\uff0c\u5219\u5728\u4fe1\u606f\u4f20\u9012\u65f6\u5c31\u4f1a\u51fa\u73b0\u4e71\u7801\u3002

            \u90a3\u4e2a\u65f6\u4ee3\u7684\u7814\u7a76\u4eba\u5458\u5c31\u5728\u60f3\uff1a\u5982\u679c\u63a8\u51fa\u4e00\u4e2a\u8db3\u591f\u5b8c\u6574\u7684\u5b57\u7b26\u96c6\uff0c\u5c06\u4e16\u754c\u8303\u56f4\u5185\u7684\u6240\u6709\u8bed\u8a00\u548c\u7b26\u53f7\u90fd\u6536\u5f55\u5176\u4e2d\uff0c\u4e0d\u5c31\u53ef\u4ee5\u89e3\u51b3\u8de8\u8bed\u8a00\u73af\u5883\u548c\u4e71\u7801\u95ee\u9898\u4e86\u5417\uff1f\u5728\u8fd9\u79cd\u60f3\u6cd5\u7684\u9a71\u52a8\u4e0b\uff0c\u4e00\u4e2a\u5927\u800c\u5168\u7684\u5b57\u7b26\u96c6 Unicode \u5e94\u8fd0\u800c\u751f\u3002

            \u300cUnicode\u300d\u7684\u5168\u79f0\u4e3a\u201c\u7edf\u4e00\u5b57\u7b26\u7f16\u7801\u201d\uff0c\u7406\u8bba\u4e0a\u80fd\u5bb9\u7eb3\u4e00\u767e\u591a\u4e07\u4e2a\u5b57\u7b26\u3002\u5b83\u81f4\u529b\u4e8e\u5c06\u5168\u7403\u8303\u56f4\u5185\u7684\u5b57\u7b26\u7eb3\u5165\u5230\u7edf\u4e00\u7684\u5b57\u7b26\u96c6\u4e4b\u4e2d\uff0c\u63d0\u4f9b\u4e00\u79cd\u901a\u7528\u7684\u5b57\u7b26\u96c6\u6765\u5904\u7406\u548c\u663e\u793a\u5404\u79cd\u8bed\u8a00\u6587\u5b57\uff0c\u51cf\u5c11\u56e0\u4e3a\u7f16\u7801\u6807\u51c6\u4e0d\u540c\u800c\u4ea7\u751f\u7684\u4e71\u7801\u95ee\u9898\u3002

            \u81ea 1991 \u5e74\u53d1\u5e03\u4ee5\u6765\uff0cUnicode \u4e0d\u65ad\u6269\u5145\u65b0\u7684\u8bed\u8a00\u4e0e\u5b57\u7b26\u3002\u622a\u6b62 2022 \u5e74 9 \u6708\uff0cUnicode \u5df2\u7ecf\u5305\u542b 149186 \u4e2a\u5b57\u7b26\uff0c\u5305\u62ec\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u7b26\u3001\u7b26\u53f7\u3001\u751a\u81f3\u662f\u8868\u60c5\u7b26\u53f7\u7b49\u3002\u5728\u5e9e\u5927\u7684 Unicode \u5b57\u7b26\u96c6\u4e2d\uff0c\u5e38\u7528\u7684\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\uff0c\u6709\u4e9b\u751f\u50fb\u7684\u5b57\u7b26\u5360 3 \u5b57\u8282\u751a\u81f3 4 \u5b57\u8282\u3002

            Unicode \u662f\u4e00\u79cd\u5b57\u7b26\u96c6\u6807\u51c6\uff0c\u672c\u8d28\u4e0a\u662f\u7ed9\u6bcf\u4e2a\u5b57\u7b26\u5206\u914d\u4e00\u4e2a\u7f16\u53f7\uff08\u79f0\u4e3a\u201c\u7801\u70b9\u201d\uff09\uff0c\u4f46\u5b83\u5e76\u6ca1\u6709\u89c4\u5b9a\u5728\u8ba1\u7b97\u673a\u4e2d\u5982\u4f55\u5b58\u50a8\u8fd9\u4e9b\u5b57\u7b26\u7801\u70b9\u3002\u6211\u4eec\u4e0d\u7981\u4f1a\u95ee\uff1a\u5f53\u591a\u79cd\u957f\u5ea6\u7684 Unicode \u7801\u70b9\u540c\u65f6\u51fa\u73b0\u5728\u540c\u4e00\u4e2a\u6587\u672c\u4e2d\u65f6\uff0c\u7cfb\u7edf\u5982\u4f55\u89e3\u6790\u5b57\u7b26\uff1f\u4f8b\u5982\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a 2 \u5b57\u8282\u7684\u7f16\u7801\uff0c\u7cfb\u7edf\u5982\u4f55\u786e\u8ba4\u5b83\u662f\u4e00\u4e2a 2 \u5b57\u8282\u7684\u5b57\u7b26\u8fd8\u662f\u4e24\u4e2a 1 \u5b57\u8282\u7684\u5b57\u7b26\uff1f

            \u5bf9\u4e8e\u4ee5\u4e0a\u95ee\u9898\uff0c\u4e00\u79cd\u76f4\u63a5\u7684\u89e3\u51b3\u65b9\u6848\u662f\u5c06\u6240\u6709\u5b57\u7b26\u5b58\u50a8\u4e3a\u7b49\u957f\u7684\u7f16\u7801\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u201cHello\u201d\u4e2d\u7684\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 1 \u5b57\u8282\uff0c\u201c\u7b97\u6cd5\u201d\u4e2d\u7684\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\u3002\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u9ad8\u4f4d\u586b 0 \uff0c\u5c06\u201cHello \u7b97\u6cd5\u201d\u4e2d\u7684\u6240\u6709\u5b57\u7b26\u90fd\u7f16\u7801\u4e3a 2 \u5b57\u8282\u957f\u5ea6\u3002\u8fd9\u6837\u7cfb\u7edf\u5c31\u53ef\u4ee5\u6bcf\u9694 2 \u5b57\u8282\u89e3\u6790\u4e00\u4e2a\u5b57\u7b26\uff0c\u6062\u590d\u51fa\u8fd9\u4e2a\u77ed\u8bed\u7684\u5185\u5bb9\u4e86\u3002

            \u56fe\uff1aUnicode \u7f16\u7801\u793a\u4f8b

            \u7136\u800c ASCII \u7801\u5df2\u7ecf\u5411\u6211\u4eec\u8bc1\u660e\uff0c\u7f16\u7801\u82f1\u6587\u53ea\u9700\u8981 1 \u5b57\u8282\u3002\u82e5\u91c7\u7528\u4e0a\u8ff0\u65b9\u6848\uff0c\u82f1\u6587\u6587\u672c\u5360\u7528\u7a7a\u95f4\u7684\u5927\u5c0f\u5c06\u4f1a\u662f ASCII \u7f16\u7801\u4e0b\u5927\u5c0f\u7684\u4e24\u500d\uff0c\u975e\u5e38\u6d6a\u8d39\u5185\u5b58\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u9700\u8981\u4e00\u79cd\u66f4\u52a0\u9ad8\u6548\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\u3002

            "},{"location":"chapter_data_structure/character_encoding/#344-utf-8","title":"3.4.4 \u00a0 UTF-8 \u7f16\u7801","text":"

            \u76ee\u524d\uff0cUTF-8 \u5df2\u6210\u4e3a\u56fd\u9645\u4e0a\u4f7f\u7528\u6700\u5e7f\u6cdb\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\u3002\u5b83\u662f\u4e00\u79cd\u53ef\u53d8\u957f\u7684\u7f16\u7801\uff0c\u4f7f\u7528 1 \u5230 4 \u4e2a\u5b57\u8282\u6765\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\uff0c\u6839\u636e\u5b57\u7b26\u7684\u590d\u6742\u6027\u800c\u53d8\u3002ASCII \u5b57\u7b26\u53ea\u9700\u8981 1 \u4e2a\u5b57\u8282\uff0c\u62c9\u4e01\u5b57\u6bcd\u548c\u5e0c\u814a\u5b57\u6bcd\u9700\u8981 2 \u4e2a\u5b57\u8282\uff0c\u5e38\u7528\u7684\u4e2d\u6587\u5b57\u7b26\u9700\u8981 3 \u4e2a\u5b57\u8282\uff0c\u5176\u4ed6\u7684\u4e00\u4e9b\u751f\u50fb\u5b57\u7b26\u9700\u8981 4 \u4e2a\u5b57\u8282\u3002

            UTF-8 \u7684\u7f16\u7801\u89c4\u5219\u5e76\u4e0d\u590d\u6742\uff0c\u5206\u4e3a\u4e24\u79cd\u60c5\u51b5\uff1a

            1. \u5bf9\u4e8e\u957f\u5ea6\u4e3a 1 \u5b57\u8282\u7684\u5b57\u7b26\uff0c\u5c06\u6700\u9ad8\u4f4d\u8bbe\u7f6e\u4e3a \\(0\\) \u3001\u5176\u4f59 7 \u4f4d\u8bbe\u7f6e\u4e3a Unicode \u7801\u70b9\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0cASCII \u5b57\u7b26\u5728 Unicode \u5b57\u7b26\u96c6\u4e2d\u5360\u636e\u4e86\u524d 128 \u4e2a\u7801\u70b9\u3002\u4e5f\u5c31\u662f\u8bf4\uff0cUTF-8 \u7f16\u7801\u53ef\u4ee5\u5411\u4e0b\u517c\u5bb9 ASCII \u7801\u3002\u8fd9\u610f\u5473\u7740\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528 UTF-8 \u6765\u89e3\u6790\u5e74\u4ee3\u4e45\u8fdc\u7684 ASCII \u7801\u6587\u672c\u3002
            2. \u5bf9\u4e8e\u957f\u5ea6\u4e3a \\(n\\) \u5b57\u8282\u7684\u5b57\u7b26\uff08\u5176\u4e2d \\(n > 1\\)\uff09\uff0c\u5c06\u9996\u4e2a\u5b57\u8282\u7684\u9ad8 \\(n\\) \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(1\\) \u3001\u7b2c \\(n + 1\\) \u4f4d\u8bbe\u7f6e\u4e3a \\(0\\) \uff1b\u4ece\u7b2c\u4e8c\u4e2a\u5b57\u8282\u5f00\u59cb\uff0c\u5c06\u6bcf\u4e2a\u5b57\u8282\u7684\u9ad8 2 \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(10\\) \uff1b\u5176\u4f59\u6240\u6709\u4f4d\u7528\u4e8e\u586b\u5145\u5b57\u7b26\u7684 Unicode \u7801\u70b9\u3002

            \u4e0b\u56fe\u5c55\u793a\u4e86\u201cHello\u7b97\u6cd5\u201d\u5bf9\u5e94\u7684 UTF-8 \u7f16\u7801\u3002\u89c2\u5bdf\u53d1\u73b0\uff0c\u7531\u4e8e\u6700\u9ad8 \\(n\\) \u4f4d\u90fd\u88ab\u8bbe\u7f6e\u4e3a \\(1\\) \uff0c\u56e0\u6b64\u7cfb\u7edf\u53ef\u4ee5\u901a\u8fc7\u8bfb\u53d6\u6700\u9ad8\u4f4d \\(1\\) \u7684\u4e2a\u6570\u6765\u89e3\u6790\u51fa\u5b57\u7b26\u7684\u957f\u5ea6\u4e3a \\(n\\) \u3002

            \u4f46\u4e3a\u4ec0\u4e48\u8981\u5c06\u5176\u4f59\u6240\u6709\u5b57\u8282\u7684\u9ad8 2 \u4f4d\u90fd\u8bbe\u7f6e\u4e3a \\(10\\) \u5462\uff1f\u5b9e\u9645\u4e0a\uff0c\u8fd9\u4e2a \\(10\\) \u80fd\u591f\u8d77\u5230\u6821\u9a8c\u7b26\u7684\u4f5c\u7528\u3002\u5047\u8bbe\u7cfb\u7edf\u4ece\u4e00\u4e2a\u9519\u8bef\u7684\u5b57\u8282\u5f00\u59cb\u89e3\u6790\u6587\u672c\uff0c\u5b57\u8282\u5934\u90e8\u7684 \\(10\\) \u80fd\u591f\u5e2e\u52a9\u7cfb\u7edf\u5feb\u901f\u7684\u5224\u65ad\u51fa\u5f02\u5e38\u3002

            \u4e4b\u6240\u4ee5\u5c06 \\(10\\) \u5f53\u4f5c\u6821\u9a8c\u7b26\uff0c\u662f\u56e0\u4e3a\u5728 UTF-8 \u7f16\u7801\u89c4\u5219\u4e0b\uff0c\u4e0d\u53ef\u80fd\u6709\u5b57\u7b26\u7684\u6700\u9ad8\u4e24\u4f4d\u662f \\(10\\) \u3002\u8fd9\u4e2a\u7ed3\u8bba\u53ef\u4ee5\u7528\u53cd\u8bc1\u6cd5\u6765\u8bc1\u660e\uff1a\u5047\u8bbe\u4e00\u4e2a\u5b57\u7b26\u7684\u6700\u9ad8\u4e24\u4f4d\u662f \\(10\\) \uff0c\u8bf4\u660e\u8be5\u5b57\u7b26\u7684\u957f\u5ea6\u4e3a \\(1\\) \uff0c\u5bf9\u5e94 ASCII \u7801\u3002\u800c ASCII \u7801\u7684\u6700\u9ad8\u4f4d\u5e94\u8be5\u662f \\(0\\) \uff0c\u4e0e\u5047\u8bbe\u77db\u76fe\u3002

            \u56fe\uff1aUTF-8 \u7f16\u7801\u793a\u4f8b

            \u9664\u4e86 UTF-8 \u4e4b\u5916\uff0c\u5e38\u89c1\u7684\u7f16\u7801\u65b9\u5f0f\u8fd8\u5305\u62ec\uff1a

            • UTF-16 \u7f16\u7801\uff1a\u4f7f\u7528 2 \u6216 4 \u4e2a\u5b57\u8282\u6765\u8868\u793a\u4e00\u4e2a\u5b57\u7b26\u3002\u6240\u6709\u7684 ASCII \u5b57\u7b26\u548c\u5e38\u7528\u7684\u975e\u82f1\u6587\u5b57\u7b26\uff0c\u90fd\u7528 2 \u4e2a\u5b57\u8282\u8868\u793a\uff1b\u5c11\u6570\u5b57\u7b26\u9700\u8981\u7528\u5230 4 \u4e2a\u5b57\u8282\u8868\u793a\u3002\u5bf9\u4e8e 2 \u5b57\u8282\u7684\u5b57\u7b26\uff0cUTF-16 \u7f16\u7801\u4e0e Unicode \u7801\u70b9\u76f8\u7b49\u3002
            • UTF-32 \u7f16\u7801\uff1a\u6bcf\u4e2a\u5b57\u7b26\u90fd\u4f7f\u7528 4 \u4e2a\u5b57\u8282\u3002\u8fd9\u610f\u5473\u7740 UTF-32 \u4f1a\u6bd4 UTF-8 \u548c UTF-16 \u66f4\u5360\u7528\u7a7a\u95f4\uff0c\u7279\u522b\u662f\u5bf9\u4e8e ASCII \u5b57\u7b26\u5360\u6bd4\u8f83\u9ad8\u7684\u6587\u672c\u3002

            \u4ece\u5b58\u50a8\u7a7a\u95f4\u7684\u89d2\u5ea6\u770b\uff0c\u4f7f\u7528 UTF-8 \u8868\u793a\u82f1\u6587\u5b57\u7b26\u975e\u5e38\u9ad8\u6548\uff0c\u56e0\u4e3a\u5b83\u4ec5\u9700 1 \u4e2a\u5b57\u8282\uff1b\u4f7f\u7528 UTF-16 \u7f16\u7801\u67d0\u4e9b\u975e\u82f1\u6587\u5b57\u7b26\uff08\u4f8b\u5982\u4e2d\u6587\uff09\u4f1a\u66f4\u52a0\u9ad8\u6548\uff0c\u56e0\u4e3a\u5b83\u53ea\u9700\u8981 2 \u4e2a\u5b57\u8282\uff0c\u800c UTF-8 \u53ef\u80fd\u9700\u8981 3 \u4e2a\u5b57\u8282\u3002

            \u4ece\u517c\u5bb9\u6027\u7684\u89d2\u5ea6\u770b\uff0cUTF-8 \u7684\u901a\u7528\u6027\u6700\u4f73\uff0c\u8bb8\u591a\u5de5\u5177\u548c\u5e93\u90fd\u4f18\u5148\u652f\u6301 UTF-8 \u3002

            "},{"location":"chapter_data_structure/character_encoding/#345","title":"3.4.5 \u00a0 \u7f16\u7a0b\u8bed\u8a00\u7684\u5b57\u7b26\u7f16\u7801","text":"

            \u5bf9\u4e8e\u4ee5\u5f80\u7684\u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\uff0c\u7a0b\u5e8f\u8fd0\u884c\u4e2d\u7684\u5b57\u7b26\u4e32\u90fd\u91c7\u7528 UTF-16 \u6216 UTF-32 \u8fd9\u7c7b\u7b49\u957f\u7684\u7f16\u7801\u3002\u8fd9\u662f\u56e0\u4e3a\u5728\u7b49\u957f\u7f16\u7801\u4e0b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5b57\u7b26\u4e32\u770b\u4f5c\u6570\u7ec4\u6765\u5904\u7406\uff0c\u5176\u4f18\u70b9\u5305\u62ec\uff1a

            • \u968f\u673a\u8bbf\u95ee: UTF-16 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u8fdb\u884c\u968f\u673a\u8bbf\u95ee\u3002UTF-8 \u662f\u4e00\u79cd\u53d8\u957f\u7f16\u7801\uff0c\u8981\u627e\u5230\u7b2c \\(i\\) \u4e2a\u5b57\u7b26\uff0c\u6211\u4eec\u9700\u8981\u4ece\u5b57\u7b26\u4e32\u7684\u5f00\u59cb\u5904\u904d\u5386\u5230\u7b2c \\(i\\) \u4e2a\u5b57\u7b26\uff0c\u8fd9\u9700\u8981 \\(O(n)\\) \u7684\u65f6\u95f4\u3002
            • \u5b57\u7b26\u8ba1\u6570: \u4e0e\u968f\u673a\u8bbf\u95ee\u7c7b\u4f3c\uff0c\u8ba1\u7b97 UTF-16 \u5b57\u7b26\u4e32\u7684\u957f\u5ea6\u4e5f\u662f \\(O(1)\\) \u7684\u64cd\u4f5c\u3002\u4f46\u662f\uff0c\u8ba1\u7b97 UTF-8 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u7684\u957f\u5ea6\u9700\u8981\u904d\u5386\u6574\u4e2a\u5b57\u7b26\u4e32\u3002
            • \u5b57\u7b26\u4e32\u64cd\u4f5c: \u5728 UTF-16 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u4e2d\uff0c\u5f88\u591a\u5b57\u7b26\u4e32\u64cd\u4f5c\uff08\u5982\u5206\u5272\u3001\u8fde\u63a5\u3001\u63d2\u5165\u3001\u5220\u9664\u7b49\uff09\u90fd\u66f4\u5bb9\u6613\u8fdb\u884c\u3002\u5728 UTF-8 \u7f16\u7801\u7684\u5b57\u7b26\u4e32\u4e0a\u8fdb\u884c\u8fd9\u4e9b\u64cd\u4f5c\u901a\u5e38\u9700\u8981\u989d\u5916\u7684\u8ba1\u7b97\uff0c\u4ee5\u786e\u4fdd\u4e0d\u4f1a\u4ea7\u751f\u65e0\u6548\u7684 UTF-8 \u7f16\u7801\u3002

            \u5b9e\u9645\u4e0a\uff0c\u7f16\u7a0b\u8bed\u8a00\u7684\u5b57\u7b26\u7f16\u7801\u65b9\u6848\u8bbe\u8ba1\u662f\u4e00\u4e2a\u5f88\u6709\u8da3\u7684\u8bdd\u9898\uff0c\u5176\u6d89\u53ca\u5230\u8bb8\u591a\u56e0\u7d20\uff1a

            • Java \u7684 String \u7c7b\u578b\u4f7f\u7528 UTF-16 \u7f16\u7801\uff0c\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u5b57\u8282\u3002\u8fd9\u662f\u56e0\u4e3a Java \u8bed\u8a00\u8bbe\u8ba1\u4e4b\u521d\uff0c\u4eba\u4eec\u8ba4\u4e3a 16 \u4f4d\u8db3\u4ee5\u8868\u793a\u6240\u6709\u53ef\u80fd\u7684\u5b57\u7b26\u3002\u7136\u800c\uff0c\u8fd9\u662f\u4e00\u4e2a\u4e0d\u6b63\u786e\u7684\u5224\u65ad\u3002\u540e\u6765 Unicode \u89c4\u8303\u6269\u5c55\u5230\u4e86\u8d85\u8fc7 16 \u4f4d\uff0c\u6240\u4ee5 Java \u4e2d\u7684\u5b57\u7b26\u73b0\u5728\u53ef\u80fd\u7531\u4e00\u5bf9 16 \u4f4d\u7684\u503c\uff08\u79f0\u4e3a\u201c\u4ee3\u7406\u5bf9\u201d\uff09\u8868\u793a\u3002
            • JavaScript \u548c TypeScript \u7684\u5b57\u7b26\u4e32\u4f7f\u7528 UTF-16 \u7f16\u7801\u7684\u539f\u56e0\u4e0e Java \u7c7b\u4f3c\u3002\u5f53 JavaScript \u8bed\u8a00\u5728 1995 \u5e74\u88ab Netscape \u516c\u53f8\u9996\u6b21\u5f15\u5165\u65f6\uff0cUnicode \u8fd8\u5904\u4e8e\u76f8\u5bf9\u65e9\u671f\u7684\u9636\u6bb5\uff0c\u90a3\u65f6\u5019\u4f7f\u7528 16 \u4f4d\u7684\u7f16\u7801\u5c31\u8db3\u591f\u8868\u793a\u6240\u6709\u7684 Unicode \u5b57\u7b26\u4e86\u3002
            • C# \u4f7f\u7528 UTF-16 \u7f16\u7801\uff0c\u4e3b\u8981\u56e0\u4e3a .NET \u5e73\u53f0\u662f\u7531 Microsoft \u8bbe\u8ba1\u7684\uff0c\u800c Microsoft \u7684\u5f88\u591a\u6280\u672f\uff0c\u5305\u62ec Windows \u64cd\u4f5c\u7cfb\u7edf\uff0c\u90fd\u5e7f\u6cdb\u5730\u4f7f\u7528 UTF-16 \u7f16\u7801\u3002

            \u7531\u4e8e\u4ee5\u4e0a\u7f16\u7a0b\u8bed\u8a00\u5bf9\u5b57\u7b26\u6570\u91cf\u7684\u4f4e\u4f30\uff0c\u5b83\u4eec\u4e0d\u5f97\u4e0d\u91c7\u53d6\u201c\u4ee3\u7406\u5bf9\u201d\u7684\u65b9\u5f0f\u6765\u8868\u793a\u8d85\u8fc7 16 \u4f4d\u957f\u5ea6\u7684 Unicode \u5b57\u7b26\u3002\u8fd9\u662f\u4e00\u4e2a\u4e0d\u5f97\u5df2\u4e3a\u4e4b\u7684\u65e0\u5948\u4e4b\u4e3e\u3002\u4e00\u65b9\u9762\uff0c\u5305\u542b\u4ee3\u7406\u5bf9\u7684\u5b57\u7b26\u4e32\u4e2d\uff0c\u4e00\u4e2a\u5b57\u7b26\u53ef\u80fd\u5360\u7528 2 \u5b57\u8282\u6216 4 \u5b57\u8282\uff0c\u4ece\u800c\u4e27\u5931\u4e86\u7b49\u957f\u7f16\u7801\u7684\u4f18\u52bf\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u5904\u7406\u4ee3\u7406\u5bf9\u9700\u8981\u589e\u52a0\u989d\u5916\u4ee3\u7801\uff0c\u8fd9\u589e\u52a0\u4e86\u7f16\u7a0b\u7684\u590d\u6742\u6027\u548c Debug \u96be\u5ea6\u3002

            \u51fa\u4e8e\u4ee5\u4e0a\u539f\u56e0\uff0c\u90e8\u5206\u7f16\u7a0b\u8bed\u8a00\u63d0\u51fa\u4e86\u4e0d\u540c\u7684\u7f16\u7801\u65b9\u6848\uff1a

            • Python 3 \u4f7f\u7528\u4e00\u79cd\u7075\u6d3b\u7684\u5b57\u7b26\u4e32\u8868\u793a\uff0c\u5b58\u50a8\u7684\u5b57\u7b26\u957f\u5ea6\u53d6\u51b3\u4e8e\u5b57\u7b26\u4e32\u4e2d\u6700\u5927\u7684 Unicode \u7801\u70b9\u3002\u5bf9\u4e8e\u5168\u90e8\u662f ASCII \u5b57\u7b26\u7684\u5b57\u7b26\u4e32\uff0c\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 1 \u4e2a\u5b57\u8282\uff1b\u5982\u679c\u5b57\u7b26\u4e32\u4e2d\u5305\u542b\u7684\u5b57\u7b26\u8d85\u51fa\u4e86 ASCII \u8303\u56f4\uff0c\u4f46\u5168\u90e8\u5728\u57fa\u672c\u591a\u8bed\u8a00\u5e73\u9762\uff08BMP\uff09\u5185\uff0c\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 2 \u4e2a\u5b57\u8282\uff1b\u5982\u679c\u5b57\u7b26\u4e32\u4e2d\u6709\u8d85\u51fa BMP \u7684\u5b57\u7b26\uff0c\u90a3\u4e48\u6bcf\u4e2a\u5b57\u7b26\u5360\u7528 4 \u4e2a\u5b57\u8282\u3002
            • Go \u8bed\u8a00\u7684 string \u7c7b\u578b\u5728\u5185\u90e8\u4f7f\u7528 UTF-8 \u7f16\u7801\u3002Go \u8bed\u8a00\u8fd8\u63d0\u4f9b\u4e86 rune \u7c7b\u578b\uff0c\u5b83\u7528\u4e8e\u8868\u793a\u5355\u4e2a Unicode \u7801\u70b9\u3002
            • Rust \u8bed\u8a00\u7684 str \u548c String \u7c7b\u578b\u5728\u5185\u90e8\u4f7f\u7528 UTF-8 \u7f16\u7801\u3002Rust \u4e5f\u63d0\u4f9b\u4e86 char \u7c7b\u578b\uff0c\u7528\u4e8e\u8868\u793a\u5355\u4e2a Unicode \u7801\u70b9\u3002

            \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4ee5\u4e0a\u8ba8\u8bba\u7684\u90fd\u662f\u5b57\u7b26\u4e32\u5728\u7f16\u7a0b\u8bed\u8a00\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\uff0c\u8fd9\u548c\u5b57\u7b26\u4e32\u5982\u4f55\u5728\u6587\u4ef6\u4e2d\u5b58\u50a8\u6216\u5728\u7f51\u7edc\u4e2d\u4f20\u8f93\u662f\u4e24\u4e2a\u4e0d\u540c\u7684\u95ee\u9898\u3002\u5728\u6587\u4ef6\u5b58\u50a8\u6216\u7f51\u7edc\u4f20\u8f93\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u5b57\u7b26\u4e32\u7f16\u7801\u4e3a UTF-8 \u683c\u5f0f\uff0c\u4ee5\u8fbe\u5230\u6700\u4f18\u7684\u517c\u5bb9\u6027\u548c\u7a7a\u95f4\u6548\u7387\u3002

            "},{"location":"chapter_data_structure/classification_of_data_structure/","title":"3.1 \u00a0 \u6570\u636e\u7ed3\u6784\u5206\u7c7b","text":"

            \u5e38\u89c1\u7684\u6570\u636e\u7ed3\u6784\u5305\u62ec\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\uff0c\u5b83\u4eec\u53ef\u4ee5\u4ece\u201c\u903b\u8f91\u7ed3\u6784\u201d\u548c\u201c\u7269\u7406\u7ed3\u6784\u201d\u4e24\u4e2a\u7ef4\u5ea6\u8fdb\u884c\u5206\u7c7b\u3002

            "},{"location":"chapter_data_structure/classification_of_data_structure/#311","title":"3.1.1 \u00a0 \u903b\u8f91\u7ed3\u6784\uff1a\u7ebf\u6027\u4e0e\u975e\u7ebf\u6027","text":"

            \u903b\u8f91\u7ed3\u6784\u63ed\u793a\u4e86\u6570\u636e\u5143\u7d20\u4e4b\u95f4\u7684\u903b\u8f91\u5173\u7cfb\u3002\u5728\u6570\u7ec4\u548c\u94fe\u8868\u4e2d\uff0c\u6570\u636e\u6309\u7167\u987a\u5e8f\u4f9d\u6b21\u6392\u5217\uff0c\u4f53\u73b0\u4e86\u6570\u636e\u4e4b\u95f4\u7684\u7ebf\u6027\u5173\u7cfb\uff1b\u800c\u5728\u6811\u4e2d\uff0c\u6570\u636e\u4ece\u9876\u90e8\u5411\u4e0b\u6309\u5c42\u6b21\u6392\u5217\uff0c\u8868\u73b0\u51fa\u7956\u5148\u4e0e\u540e\u4ee3\u4e4b\u95f4\u7684\u6d3e\u751f\u5173\u7cfb\uff1b\u56fe\u5219\u7531\u8282\u70b9\u548c\u8fb9\u6784\u6210\uff0c\u53cd\u6620\u4e86\u590d\u6742\u7684\u7f51\u7edc\u5173\u7cfb\u3002

            \u903b\u8f91\u7ed3\u6784\u53ef\u88ab\u5206\u4e3a\u201c\u7ebf\u6027\u201d\u548c\u201c\u975e\u7ebf\u6027\u201d\u4e24\u5927\u7c7b\u3002\u7ebf\u6027\u7ed3\u6784\u6bd4\u8f83\u76f4\u89c2\uff0c\u6307\u6570\u636e\u5728\u903b\u8f91\u5173\u7cfb\u4e0a\u5448\u7ebf\u6027\u6392\u5217\uff1b\u975e\u7ebf\u6027\u7ed3\u6784\u5219\u76f8\u53cd\uff0c\u5448\u975e\u7ebf\u6027\u6392\u5217\u3002

            • \u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1a\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3002
            • \u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1a\u6811\u3001\u5806\u3001\u56fe\u3001\u54c8\u5e0c\u8868\u3002

            \u56fe\uff1a\u7ebf\u6027\u4e0e\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784

            \u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u53ef\u4ee5\u8fdb\u4e00\u6b65\u88ab\u5212\u5206\u4e3a\u6811\u5f62\u7ed3\u6784\u548c\u7f51\u72b6\u7ed3\u6784\u3002

            • \u7ebf\u6027\u7ed3\u6784\uff1a\u6570\u7ec4\u3001\u94fe\u8868\u3001\u961f\u5217\u3001\u6808\u3001\u54c8\u5e0c\u8868\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u4e00\u5bf9\u4e00\u7684\u987a\u5e8f\u5173\u7cfb\u3002
            • \u6811\u5f62\u7ed3\u6784\uff1a\u6811\u3001\u5806\u3001\u54c8\u5e0c\u8868\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u4e00\u5bf9\u591a\u7684\u5173\u7cfb\u3002
            • \u7f51\u72b6\u7ed3\u6784\uff1a\u56fe\uff0c\u5143\u7d20\u4e4b\u95f4\u662f\u591a\u5bf9\u591a\u7684\u5173\u7cfb\u3002
            "},{"location":"chapter_data_structure/classification_of_data_structure/#312","title":"3.1.2 \u00a0 \u7269\u7406\u7ed3\u6784\uff1a\u8fde\u7eed\u4e0e\u79bb\u6563","text":"

            \u5728\u8ba1\u7b97\u673a\u4e2d\uff0c\u5185\u5b58\u548c\u786c\u76d8\u662f\u4e24\u79cd\u4e3b\u8981\u7684\u5b58\u50a8\u786c\u4ef6\u8bbe\u5907\u3002\u786c\u76d8\u4e3b\u8981\u7528\u4e8e\u957f\u671f\u5b58\u50a8\u6570\u636e\uff0c\u5bb9\u91cf\u8f83\u5927\uff08\u901a\u5e38\u53ef\u8fbe\u5230 TB \u7ea7\u522b\uff09\u3001\u901f\u5ea6\u8f83\u6162\u3002\u5185\u5b58\u7528\u4e8e\u8fd0\u884c\u7a0b\u5e8f\u65f6\u6682\u5b58\u6570\u636e\uff0c\u901f\u5ea6\u8f83\u5feb\uff0c\u4f46\u5bb9\u91cf\u8f83\u5c0f\uff08\u901a\u5e38\u4e3a GB \u7ea7\u522b\uff09\u3002

            \u5728\u7b97\u6cd5\u8fd0\u884c\u8fc7\u7a0b\u4e2d\uff0c\u76f8\u5173\u6570\u636e\u90fd\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\u3002\u4e0b\u56fe\u5c55\u793a\u4e86\u4e00\u4e2a\u8ba1\u7b97\u673a\u5185\u5b58\u6761\uff0c\u5176\u4e2d\u6bcf\u4e2a\u9ed1\u8272\u65b9\u5757\u90fd\u5305\u542b\u4e00\u5757\u5185\u5b58\u7a7a\u95f4\u3002\u6211\u4eec\u53ef\u4ee5\u5c06\u5185\u5b58\u60f3\u8c61\u6210\u4e00\u4e2a\u5de8\u5927\u7684 Excel \u8868\u683c\uff0c\u5176\u4e2d\u6bcf\u4e2a\u5355\u5143\u683c\u90fd\u53ef\u4ee5\u5b58\u50a8\u4e00\u5b9a\u5927\u5c0f\u7684\u6570\u636e\uff0c\u5728\u7b97\u6cd5\u8fd0\u884c\u65f6\uff0c\u6240\u6709\u6570\u636e\u90fd\u88ab\u5b58\u50a8\u5728\u8fd9\u4e9b\u5355\u5143\u683c\u4e2d\u3002

            \u7cfb\u7edf\u901a\u8fc7\u5185\u5b58\u5730\u5740\u6765\u8bbf\u95ee\u76ee\u6807\u4f4d\u7f6e\u7684\u6570\u636e\u3002\u8ba1\u7b97\u673a\u6839\u636e\u7279\u5b9a\u89c4\u5219\u4e3a\u8868\u683c\u4e2d\u7684\u6bcf\u4e2a\u5355\u5143\u683c\u5206\u914d\u7f16\u53f7\uff0c\u786e\u4fdd\u6bcf\u4e2a\u5185\u5b58\u7a7a\u95f4\u90fd\u6709\u552f\u4e00\u7684\u5185\u5b58\u5730\u5740\u3002\u6709\u4e86\u8fd9\u4e9b\u5730\u5740\uff0c\u7a0b\u5e8f\u4fbf\u53ef\u4ee5\u8bbf\u95ee\u5185\u5b58\u4e2d\u7684\u6570\u636e\u3002

            \u56fe\uff1a\u5185\u5b58\u6761\u3001\u5185\u5b58\u7a7a\u95f4\u3001\u5185\u5b58\u5730\u5740

            \u5185\u5b58\u662f\u6240\u6709\u7a0b\u5e8f\u7684\u5171\u4eab\u8d44\u6e90\uff0c\u5f53\u67d0\u5757\u5185\u5b58\u88ab\u67d0\u4e2a\u7a0b\u5e8f\u5360\u7528\u65f6\uff0c\u5219\u65e0\u6cd5\u88ab\u5176\u4ed6\u7a0b\u5e8f\u540c\u65f6\u4f7f\u7528\u4e86\u3002\u56e0\u6b64\u5728\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u8bbe\u8ba1\u4e2d\uff0c\u5185\u5b58\u8d44\u6e90\u662f\u4e00\u4e2a\u91cd\u8981\u7684\u8003\u8651\u56e0\u7d20\u3002\u6bd4\u5982\uff0c\u7b97\u6cd5\u6240\u5360\u7528\u7684\u5185\u5b58\u5cf0\u503c\u4e0d\u5e94\u8d85\u8fc7\u7cfb\u7edf\u5269\u4f59\u7a7a\u95f2\u5185\u5b58\uff1b\u5982\u679c\u7f3a\u5c11\u8fde\u7eed\u5927\u5757\u7684\u5185\u5b58\u7a7a\u95f4\uff0c\u90a3\u4e48\u6240\u9009\u7528\u7684\u6570\u636e\u7ed3\u6784\u5fc5\u987b\u80fd\u591f\u5b58\u50a8\u5728\u79bb\u6563\u7684\u5185\u5b58\u7a7a\u95f4\u5185\u3002

            \u7269\u7406\u7ed3\u6784\u53cd\u6620\u4e86\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\uff0c\u53ef\u5206\u4e3a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\uff08\u6570\u7ec4\uff09\u548c\u79bb\u6563\u7a7a\u95f4\u5b58\u50a8\uff08\u94fe\u8868\uff09\u3002\u7269\u7406\u7ed3\u6784\u4ece\u5e95\u5c42\u51b3\u5b9a\u4e86\u6570\u636e\u7684\u8bbf\u95ee\u3001\u66f4\u65b0\u3001\u589e\u5220\u7b49\u64cd\u4f5c\u65b9\u6cd5\uff0c\u540c\u65f6\u5728\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u65b9\u9762\u5448\u73b0\u51fa\u4e92\u8865\u7684\u7279\u70b9\u3002

            \u56fe\uff1a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\u4e0e\u79bb\u6563\u7a7a\u95f4\u5b58\u50a8

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6240\u6709\u6570\u636e\u7ed3\u6784\u90fd\u662f\u57fa\u4e8e\u6570\u7ec4\u3001\u94fe\u8868\u6216\u4e8c\u8005\u7684\u7ec4\u5408\u5b9e\u73b0\u7684\u3002\u4f8b\u5982\uff0c\u6808\u548c\u961f\u5217\u65e2\u53ef\u4ee5\u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\uff0c\u4e5f\u53ef\u4ee5\u4f7f\u7528\u94fe\u8868\u5b9e\u73b0\uff1b\u800c\u54c8\u5e0c\u8868\u7684\u5b9e\u73b0\u53ef\u80fd\u540c\u65f6\u5305\u542b\u6570\u7ec4\u548c\u94fe\u8868\u3002

            • \u57fa\u4e8e\u6570\u7ec4\u53ef\u5b9e\u73b0\uff1a\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u3001\u77e9\u9635\u3001\u5f20\u91cf\uff08\u7ef4\u5ea6 \\(\\geq 3\\) \u7684\u6570\u7ec4\uff09\u7b49\u3002
            • \u57fa\u4e8e\u94fe\u8868\u53ef\u5b9e\u73b0\uff1a\u6808\u3001\u961f\u5217\u3001\u54c8\u5e0c\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u7b49\u3002

            \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u4e5f\u88ab\u79f0\u4e3a\u201c\u9759\u6001\u6570\u636e\u7ed3\u6784\u201d\uff0c\u8fd9\u610f\u5473\u7740\u6b64\u7c7b\u6570\u636e\u7ed3\u6784\u5728\u521d\u59cb\u5316\u540e\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002\u76f8\u5bf9\u5e94\u5730\uff0c\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u88ab\u79f0\u4e3a\u201c\u52a8\u6001\u6570\u636e\u7ed3\u6784\u201d\uff0c\u8fd9\u7c7b\u6570\u636e\u7ed3\u6784\u5728\u521d\u59cb\u5316\u540e\uff0c\u4ecd\u53ef\u4ee5\u5728\u7a0b\u5e8f\u8fd0\u884c\u8fc7\u7a0b\u4e2d\u5bf9\u5176\u957f\u5ea6\u8fdb\u884c\u8c03\u6574\u3002

            Tip

            \u5982\u82e5\u611f\u89c9\u7406\u89e3\u7269\u7406\u7ed3\u6784\u6709\u56f0\u96be\uff0c\u5efa\u8bae\u5148\u9605\u8bfb\u4e0b\u4e00\u7ae0\u201c\u6570\u7ec4\u4e0e\u94fe\u8868\u201d\uff0c\u7136\u540e\u518d\u56de\u987e\u672c\u8282\u5185\u5bb9\u3002

            "},{"location":"chapter_data_structure/number_encoding/","title":"3.3 \u00a0 \u6570\u5b57\u7f16\u7801 *","text":"

            Note

            \u5728\u672c\u4e66\u4e2d\uff0c\u6807\u9898\u5e26\u6709\u7684 * \u7b26\u53f7\u7684\u662f\u9009\u8bfb\u7ae0\u8282\u3002\u5982\u679c\u4f60\u65f6\u95f4\u6709\u9650\u6216\u611f\u5230\u7406\u89e3\u56f0\u96be\uff0c\u53ef\u4ee5\u5148\u8df3\u8fc7\uff0c\u7b49\u5b66\u5b8c\u5fc5\u8bfb\u7ae0\u8282\u540e\u518d\u5355\u72ec\u653b\u514b\u3002

            "},{"location":"chapter_data_structure/number_encoding/#331","title":"3.3.1 \u00a0 \u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801","text":"

            \u5728\u4e0a\u4e00\u8282\u7684\u8868\u683c\u4e2d\u6211\u4eec\u53d1\u73b0\uff0c\u6240\u6709\u6574\u6570\u7c7b\u578b\u80fd\u591f\u8868\u793a\u7684\u8d1f\u6570\u90fd\u6bd4\u6b63\u6570\u591a\u4e00\u4e2a\uff0c\u4f8b\u5982 byte \u7684\u53d6\u503c\u8303\u56f4\u662f \\([-128, 127]\\) \u3002\u8fd9\u4e2a\u73b0\u8c61\u6bd4\u8f83\u53cd\u76f4\u89c9\uff0c\u5b83\u7684\u5185\u5728\u539f\u56e0\u6d89\u53ca\u5230\u539f\u7801\u3001\u53cd\u7801\u3001\u8865\u7801\u7684\u76f8\u5173\u77e5\u8bc6\u3002

            \u5b9e\u9645\u4e0a\uff0c\u6570\u5b57\u662f\u4ee5\u201c\u8865\u7801\u201d\u7684\u5f62\u5f0f\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u4e2d\u7684\u3002\u5728\u5206\u6790\u8fd9\u6837\u505a\u7684\u539f\u56e0\u4e4b\u524d\uff0c\u6211\u4eec\u9996\u5148\u7ed9\u51fa\u4e09\u8005\u7684\u5b9a\u4e49\uff1a

            • \u539f\u7801\uff1a\u6211\u4eec\u5c06\u6570\u5b57\u7684\u4e8c\u8fdb\u5236\u8868\u793a\u7684\u6700\u9ad8\u4f4d\u89c6\u4e3a\u7b26\u53f7\u4f4d\uff0c\u5176\u4e2d \\(0\\) \u8868\u793a\u6b63\u6570\uff0c\\(1\\) \u8868\u793a\u8d1f\u6570\uff0c\u5176\u4f59\u4f4d\u8868\u793a\u6570\u5b57\u7684\u503c\u3002
            • \u53cd\u7801\uff1a\u6b63\u6570\u7684\u53cd\u7801\u4e0e\u5176\u539f\u7801\u76f8\u540c\uff0c\u8d1f\u6570\u7684\u53cd\u7801\u662f\u5bf9\u5176\u539f\u7801\u9664\u7b26\u53f7\u4f4d\u5916\u7684\u6240\u6709\u4f4d\u53d6\u53cd\u3002
            • \u8865\u7801\uff1a\u6b63\u6570\u7684\u8865\u7801\u4e0e\u5176\u539f\u7801\u76f8\u540c\uff0c\u8d1f\u6570\u7684\u8865\u7801\u662f\u5728\u5176\u53cd\u7801\u7684\u57fa\u7840\u4e0a\u52a0 \\(1\\) \u3002

            \u56fe\uff1a\u539f\u7801\u3001\u53cd\u7801\u4e0e\u8865\u7801\u4e4b\u95f4\u7684\u76f8\u4e92\u8f6c\u6362

            \u300c\u539f\u7801 true form\u300d\u867d\u7136\u6700\u76f4\u89c2\uff0c\u4f46\u5b58\u5728\u4e00\u4e9b\u5c40\u9650\u6027\u3002\u4e00\u65b9\u9762\uff0c\u8d1f\u6570\u7684\u539f\u7801\u4e0d\u80fd\u76f4\u63a5\u7528\u4e8e\u8fd0\u7b97\u3002\u4f8b\u5982\u5728\u539f\u7801\u4e0b\u8ba1\u7b97 \\(1 + (-2)\\) \uff0c\u5f97\u5230\u7684\u7ed3\u679c\u662f \\(-3\\) \uff0c\u8fd9\u663e\u7136\u662f\u4e0d\u5bf9\u7684\u3002

            \\[ \\begin{aligned} & 1 + (-2) \\newline & = 0000 \\space 0001 + 1000 \\space 0010 \\newline & = 1000 \\space 0011 \\newline & = -3 \\end{aligned} \\]

            \u4e3a\u4e86\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u8ba1\u7b97\u673a\u5f15\u5165\u4e86\u300c\u53cd\u7801 1's complement code\u300d\u3002\u5982\u679c\u6211\u4eec\u5148\u5c06\u539f\u7801\u8f6c\u6362\u4e3a\u53cd\u7801\uff0c\u5e76\u5728\u53cd\u7801\u4e0b\u8ba1\u7b97 \\(1 + (-2)\\) \uff0c\u6700\u540e\u5c06\u7ed3\u679c\u4ece\u53cd\u7801\u8f6c\u5316\u56de\u539f\u7801\uff0c\u5219\u53ef\u5f97\u5230\u6b63\u786e\u7ed3\u679c \\(-1\\) \u3002

            \\[ \\begin{aligned} & 1 + (-2) \\newline & \\rightarrow 0000 \\space 0001 \\space \\text{(\u539f\u7801)} + 1000 \\space 0010 \\space \\text{(\u539f\u7801)} \\newline & = 0000 \\space 0001 \\space \\text{(\u53cd\u7801)} + 1111 \\space 1101 \\space \\text{(\u53cd\u7801)} \\newline & = 1111 \\space 1110 \\space \\text{(\u53cd\u7801)} \\newline & = 1000 \\space 0001 \\space \\text{(\u539f\u7801)} \\newline & \\rightarrow -1 \\end{aligned} \\]

            \u53e6\u4e00\u65b9\u9762\uff0c\u6570\u5b57\u96f6\u7684\u539f\u7801\u6709 \\(+0\\) \u548c \\(-0\\) \u4e24\u79cd\u8868\u793a\u65b9\u5f0f\u3002\u8fd9\u610f\u5473\u7740\u6570\u5b57\u96f6\u5bf9\u5e94\u7740\u4e24\u4e2a\u4e0d\u540c\u7684\u4e8c\u8fdb\u5236\u7f16\u7801\uff0c\u5176\u53ef\u80fd\u4f1a\u5e26\u6765\u6b67\u4e49\u3002\u6bd4\u5982\u5728\u6761\u4ef6\u5224\u65ad\u4e2d\uff0c\u5982\u679c\u6ca1\u6709\u533a\u5206\u6b63\u96f6\u548c\u8d1f\u96f6\uff0c\u5219\u53ef\u80fd\u4f1a\u5bfc\u81f4\u5224\u65ad\u7ed3\u679c\u51fa\u9519\u3002\u800c\u5982\u679c\u6211\u4eec\u60f3\u8981\u5904\u7406\u6b63\u96f6\u548c\u8d1f\u96f6\u6b67\u4e49\uff0c\u5219\u9700\u8981\u5f15\u5165\u989d\u5916\u7684\u5224\u65ad\u64cd\u4f5c\uff0c\u5176\u53ef\u80fd\u4f1a\u964d\u4f4e\u8ba1\u7b97\u673a\u7684\u8fd0\u7b97\u6548\u7387\u3002

            \\[ \\begin{aligned} +0 & = 0000 \\space 0000 \\newline -0 & = 1000 \\space 0000 \\end{aligned} \\]

            \u4e0e\u539f\u7801\u4e00\u6837\uff0c\u53cd\u7801\u4e5f\u5b58\u5728\u6b63\u8d1f\u96f6\u6b67\u4e49\u95ee\u9898\uff0c\u56e0\u6b64\u8ba1\u7b97\u673a\u8fdb\u4e00\u6b65\u5f15\u5165\u4e86\u300c\u8865\u7801 2's complement code\u300d\u3002\u6211\u4eec\u5148\u6765\u89c2\u5bdf\u4e00\u4e0b\u8d1f\u96f6\u7684\u539f\u7801\u3001\u53cd\u7801\u3001\u8865\u7801\u7684\u8f6c\u6362\u8fc7\u7a0b\uff1a

            \\[ \\begin{aligned} -0 = \\space & 1000 \\space 0000 \\space \\text{(\u539f\u7801)} \\newline = \\space & 1111 \\space 1111 \\space \\text{(\u53cd\u7801)} \\newline = 1 \\space & 0000 \\space 0000 \\space \\text{(\u8865\u7801)} \\newline \\end{aligned} \\]

            \u5728\u8d1f\u96f6\u7684\u53cd\u7801\u57fa\u7840\u4e0a\u52a0 \\(1\\) \u4f1a\u4ea7\u751f\u8fdb\u4f4d\uff0c\u4f46 byte \u7c7b\u578b\u7684\u957f\u5ea6\u53ea\u6709 8 \u4f4d\uff0c\u56e0\u6b64\u6ea2\u51fa\u5230\u7b2c 9 \u4f4d\u7684 \\(1\\) \u4f1a\u88ab\u820d\u5f03\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u8d1f\u96f6\u7684\u8865\u7801\u4e3a \\(0000 \\space 0000\\) \uff0c\u4e0e\u6b63\u96f6\u7684\u8865\u7801\u76f8\u540c\u3002\u8fd9\u610f\u5473\u7740\u5728\u8865\u7801\u8868\u793a\u4e2d\u53ea\u5b58\u5728\u4e00\u4e2a\u96f6\uff0c\u6b63\u8d1f\u96f6\u6b67\u4e49\u4ece\u800c\u5f97\u5230\u89e3\u51b3\u3002

            \u8fd8\u5269\u4f59\u6700\u540e\u4e00\u4e2a\u7591\u60d1\uff1abyte \u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u662f \\([-128, 127]\\) \uff0c\u591a\u51fa\u6765\u7684\u4e00\u4e2a\u8d1f\u6570 \\(-128\\) \u662f\u5982\u4f55\u5f97\u5230\u7684\u5462\uff1f\u6211\u4eec\u6ce8\u610f\u5230\uff0c\u533a\u95f4 \\([-127, +127]\\) \u5185\u7684\u6240\u6709\u6574\u6570\u90fd\u6709\u5bf9\u5e94\u7684\u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801\uff0c\u5e76\u4e14\u539f\u7801\u548c\u8865\u7801\u4e4b\u95f4\u662f\u53ef\u4ee5\u4e92\u76f8\u8f6c\u6362\u7684\u3002

            \u7136\u800c\uff0c\u8865\u7801 \\(1000 \\space 0000\\) \u662f\u4e00\u4e2a\u4f8b\u5916\uff0c\u5b83\u5e76\u6ca1\u6709\u5bf9\u5e94\u7684\u539f\u7801\u3002\u6839\u636e\u8f6c\u6362\u65b9\u6cd5\uff0c\u6211\u4eec\u5f97\u5230\u8be5\u8865\u7801\u7684\u539f\u7801\u4e3a \\(0000 \\space 0000\\) \u3002\u8fd9\u663e\u7136\u662f\u77db\u76fe\u7684\uff0c\u56e0\u4e3a\u8be5\u539f\u7801\u8868\u793a\u6570\u5b57 \\(0\\) \uff0c\u5b83\u7684\u8865\u7801\u5e94\u8be5\u662f\u81ea\u8eab\u3002\u8ba1\u7b97\u673a\u89c4\u5b9a\u8fd9\u4e2a\u7279\u6b8a\u7684\u8865\u7801 \\(1000 \\space 0000\\) \u4ee3\u8868 \\(-128\\) \u3002\u5b9e\u9645\u4e0a\uff0c\\((-1) + (-127)\\) \u5728\u8865\u7801\u4e0b\u7684\u8ba1\u7b97\u7ed3\u679c\u5c31\u662f \\(-128\\) \u3002

            \\[ \\begin{aligned} & (-127) + (-1) \\newline & \\rightarrow 1111 \\space 1111 \\space \\text{(\u539f\u7801)} + 1000 \\space 0001 \\space \\text{(\u539f\u7801)} \\newline & = 1000 \\space 0000 \\space \\text{(\u53cd\u7801)} + 1111 \\space 1110 \\space \\text{(\u53cd\u7801)} \\newline & = 1000 \\space 0001 \\space \\text{(\u8865\u7801)} + 1111 \\space 1111 \\space \\text{(\u8865\u7801)} \\newline & = 1000 \\space 0000 \\space \\text{(\u8865\u7801)} \\newline & \\rightarrow -128 \\end{aligned} \\]

            \u4f60\u53ef\u80fd\u5df2\u7ecf\u53d1\u73b0\uff0c\u4e0a\u8ff0\u7684\u6240\u6709\u8ba1\u7b97\u90fd\u662f\u52a0\u6cd5\u8fd0\u7b97\u3002\u8fd9\u6697\u793a\u7740\u4e00\u4e2a\u91cd\u8981\u4e8b\u5b9e\uff1a\u8ba1\u7b97\u673a\u5185\u90e8\u7684\u786c\u4ef6\u7535\u8def\u4e3b\u8981\u662f\u57fa\u4e8e\u52a0\u6cd5\u8fd0\u7b97\u8bbe\u8ba1\u7684\u3002\u8fd9\u662f\u56e0\u4e3a\u52a0\u6cd5\u8fd0\u7b97\u76f8\u5bf9\u4e8e\u5176\u4ed6\u8fd0\u7b97\uff08\u6bd4\u5982\u4e58\u6cd5\u3001\u9664\u6cd5\u548c\u51cf\u6cd5\uff09\u6765\u8bf4\uff0c\u786c\u4ef6\u5b9e\u73b0\u8d77\u6765\u66f4\u7b80\u5355\uff0c\u66f4\u5bb9\u6613\u8fdb\u884c\u5e76\u884c\u5316\u5904\u7406\uff0c\u8fd0\u7b97\u901f\u5ea6\u66f4\u5feb\u3002

            \u8bf7\u6ce8\u610f\uff0c\u8fd9\u5e76\u4e0d\u610f\u5473\u7740\u8ba1\u7b97\u673a\u53ea\u80fd\u505a\u52a0\u6cd5\u3002\u901a\u8fc7\u5c06\u52a0\u6cd5\u4e0e\u4e00\u4e9b\u57fa\u672c\u903b\u8f91\u8fd0\u7b97\u7ed3\u5408\uff0c\u8ba1\u7b97\u673a\u80fd\u591f\u5b9e\u73b0\u5404\u79cd\u5176\u4ed6\u7684\u6570\u5b66\u8fd0\u7b97\u3002\u4f8b\u5982\uff0c\u8ba1\u7b97\u51cf\u6cd5 \\(a - b\\) \u53ef\u4ee5\u8f6c\u6362\u4e3a\u8ba1\u7b97\u52a0\u6cd5 \\(a + (-b)\\) \uff1b\u8ba1\u7b97\u4e58\u6cd5\u548c\u9664\u6cd5\u53ef\u4ee5\u8f6c\u6362\u4e3a\u8ba1\u7b97\u591a\u6b21\u52a0\u6cd5\u6216\u51cf\u6cd5\u3002

            \u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u603b\u7ed3\u51fa\u8ba1\u7b97\u673a\u4f7f\u7528\u8865\u7801\u7684\u539f\u56e0\uff1a\u57fa\u4e8e\u8865\u7801\u8868\u793a\uff0c\u8ba1\u7b97\u673a\u53ef\u4ee5\u7528\u540c\u6837\u7684\u7535\u8def\u548c\u64cd\u4f5c\u6765\u5904\u7406\u6b63\u6570\u548c\u8d1f\u6570\u7684\u52a0\u6cd5\uff0c\u4e0d\u9700\u8981\u8bbe\u8ba1\u7279\u6b8a\u7684\u786c\u4ef6\u7535\u8def\u6765\u5904\u7406\u51cf\u6cd5\uff0c\u5e76\u4e14\u65e0\u987b\u7279\u522b\u5904\u7406\u6b63\u8d1f\u96f6\u7684\u6b67\u4e49\u95ee\u9898\u3002\u8fd9\u5927\u5927\u7b80\u5316\u4e86\u786c\u4ef6\u8bbe\u8ba1\uff0c\u63d0\u9ad8\u4e86\u8fd0\u7b97\u6548\u7387\u3002

            \u8865\u7801\u7684\u8bbe\u8ba1\u975e\u5e38\u7cbe\u5999\uff0c\u56e0\u7bc7\u5e45\u5173\u7cfb\u6211\u4eec\u5c31\u5148\u4ecb\u7ecd\u5230\u8fd9\u91cc\uff0c\u5efa\u8bae\u6709\u5174\u8da3\u7684\u8bfb\u8005\u8fdb\u4e00\u6b65\u6df1\u5ea6\u4e86\u89e3\u3002

            "},{"location":"chapter_data_structure/number_encoding/#332","title":"3.3.2 \u00a0 \u6d6e\u70b9\u6570\u7f16\u7801","text":"

            \u7ec6\u5fc3\u7684\u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\uff1aint \u548c float \u957f\u5ea6\u76f8\u540c\uff0c\u90fd\u662f 4 bytes\uff0c\u4f46\u4e3a\u4ec0\u4e48 float \u7684\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e int \uff1f\u8fd9\u975e\u5e38\u53cd\u76f4\u89c9\uff0c\u56e0\u4e3a\u6309\u7406\u8bf4 float \u9700\u8981\u8868\u793a\u5c0f\u6570\uff0c\u53d6\u503c\u8303\u56f4\u5e94\u8be5\u53d8\u5c0f\u624d\u5bf9\u3002

            \u5b9e\u9645\u4e0a\uff0c\u8fd9\u662f\u56e0\u4e3a\u6d6e\u70b9\u6570 float \u91c7\u7528\u4e86\u4e0d\u540c\u7684\u8868\u793a\u65b9\u5f0f\u3002\u8bb0\u4e00\u4e2a 32-bit \u957f\u5ea6\u7684\u4e8c\u8fdb\u5236\u6570\u4e3a\uff1a

            \\[ b_{31} b_{30} b_{29} \\ldots b_2 b_1 b_0 \\]

            \u6839\u636e IEEE 754 \u6807\u51c6\uff0c32-bit \u957f\u5ea6\u7684 float \u7531\u4ee5\u4e0b\u90e8\u5206\u6784\u6210\uff1a

            • \u7b26\u53f7\u4f4d \\(\\mathrm{S}\\) \uff1a\u5360 1 bit \uff0c\u5bf9\u5e94 \\(b_{31}\\) \u3002
            • \u6307\u6570\u4f4d \\(\\mathrm{E}\\) \uff1a\u5360 8 bits \uff0c\u5bf9\u5e94 \\(b_{30} b_{29} \\ldots b_{23}\\) \u3002
            • \u5206\u6570\u4f4d \\(\\mathrm{N}\\) \uff1a\u5360 23 bits \uff0c\u5bf9\u5e94 \\(b_{22} b_{21} \\ldots b_0\\) \u3002

            \u4e8c\u8fdb\u5236\u6570 float \u5bf9\u5e94\u7684\u503c\u7684\u8ba1\u7b97\u65b9\u6cd5\uff1a

            \\[ \\text {val} = (-1)^{b_{31}} \\times 2^{\\left(b_{30} b_{29} \\ldots b_{23}\\right)_2-127} \\times\\left(1 . b_{22} b_{21} \\ldots b_0\\right)_2 \\]

            \u8f6c\u5316\u5230\u5341\u8fdb\u5236\u4e0b\u7684\u8ba1\u7b97\u516c\u5f0f\uff1a

            \\[ \\text {val}=(-1)^{\\mathrm{S}} \\times 2^{\\mathrm{E} -127} \\times (1 + \\mathrm{N}) \\]

            \u5176\u4e2d\u5404\u9879\u7684\u53d6\u503c\u8303\u56f4\uff1a

            \\[ \\begin{aligned} \\mathrm{S} \\in & \\{ 0, 1\\} , \\quad \\mathrm{E} \\in \\{ 1, 2, \\dots, 254 \\} \\newline (1 + \\mathrm{N}) = & (1 + \\sum_{i=1}^{23} b_{23-i} 2^{-i}) \\subset [1, 2 - 2^{-23}] \\end{aligned} \\]

            \u56fe\uff1aIEEE 754 \u6807\u51c6\u4e0b\u7684 float \u8868\u793a\u65b9\u5f0f

            \u7ed9\u5b9a\u4e00\u4e2a\u793a\u4f8b\u6570\u636e \\(\\mathrm{S} = 0\\) \uff0c \\(\\mathrm{E} = 124\\) \uff0c\\(\\mathrm{N} = 2^{-2} + 2^{-3} = 0.375\\) \uff0c\u5219\u6709\uff1a

            \\[ \\text { val } = (-1)^0 \\times 2^{124 - 127} \\times (1 + 0.375) = 0.171875 \\]

            \u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u56de\u7b54\u6700\u521d\u7684\u95ee\u9898\uff1afloat \u7684\u8868\u793a\u65b9\u5f0f\u5305\u542b\u6307\u6570\u4f4d\uff0c\u5bfc\u81f4\u5176\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e int \u3002\u6839\u636e\u4ee5\u4e0a\u8ba1\u7b97\uff0cfloat \u53ef\u8868\u793a\u7684\u6700\u5927\u6b63\u6570\u4e3a \\(2^{254 - 127} \\times (2 - 2^{-23}) \\approx 3.4 \\times 10^{38}\\) \uff0c\u5207\u6362\u7b26\u53f7\u4f4d\u4fbf\u53ef\u5f97\u5230\u6700\u5c0f\u8d1f\u6570\u3002

            \u5c3d\u7ba1\u6d6e\u70b9\u6570 float \u6269\u5c55\u4e86\u53d6\u503c\u8303\u56f4\uff0c\u4f46\u5176\u526f\u4f5c\u7528\u662f\u727a\u7272\u4e86\u7cbe\u5ea6\u3002\u6574\u6570\u7c7b\u578b int \u5c06\u5168\u90e8 32 \u4f4d\u7528\u4e8e\u8868\u793a\u6570\u5b57\uff0c\u6570\u5b57\u662f\u5747\u5300\u5206\u5e03\u7684\uff1b\u800c\u7531\u4e8e\u6307\u6570\u4f4d\u7684\u5b58\u5728\uff0c\u6d6e\u70b9\u6570 float \u7684\u6570\u503c\u8d8a\u5927\uff0c\u76f8\u90bb\u4e24\u4e2a\u6570\u5b57\u4e4b\u95f4\u7684\u5dee\u503c\u5c31\u4f1a\u8d8b\u5411\u8d8a\u5927\u3002

            \u8fdb\u4e00\u6b65\u5730\uff0c\u6307\u6570\u4f4d \\(E = 0\\) \u548c \\(E = 255\\) \u5177\u6709\u7279\u6b8a\u542b\u4e49\uff0c\u7528\u4e8e\u8868\u793a\u96f6\u3001\u65e0\u7a77\u5927\u3001\\(\\mathrm{NaN}\\) \u7b49\u3002

            \u8868\uff1a\u6307\u6570\u4f4d\u542b\u4e49

            \u6307\u6570\u4f4d E \u5206\u6570\u4f4d \\(\\mathrm{N} = 0\\) \u5206\u6570\u4f4d \\(\\mathrm{N} \\ne 0\\) \u8ba1\u7b97\u516c\u5f0f \\(0\\) \\(\\pm 0\\) \u6b21\u6b63\u89c4\u6570 \\((-1)^{\\mathrm{S}} \\times 2^{-126} \\times (0.\\mathrm{N})\\) \\(1, 2, \\dots, 254\\) \u6b63\u89c4\u6570 \u6b63\u89c4\u6570 \\((-1)^{\\mathrm{S}} \\times 2^{(\\mathrm{E} -127)} \\times (1.\\mathrm{N})\\) \\(255\\) \\(\\pm \\infty\\) \\(\\mathrm{NaN}\\)

            \u7279\u522b\u5730\uff0c\u6b21\u6b63\u89c4\u6570\u663e\u8457\u63d0\u5347\u4e86\u6d6e\u70b9\u6570\u7684\u7cbe\u5ea6\uff0c\u8fd9\u662f\u56e0\u4e3a\uff1a

            • \u6700\u5c0f\u6b63\u6b63\u89c4\u6570\u4e3a \\(2^{-126} \\approx 1.18 \\times 10^{-38}\\) \u3002
            • \u6700\u5c0f\u6b63\u6b21\u6b63\u89c4\u6570\u4e3a \\(2^{-126} \\times 2^{-23} \\approx 1.4 \\times 10^{-45}\\) \u3002

            \u53cc\u7cbe\u5ea6 double \u4e5f\u91c7\u7528\u7c7b\u4f3c float \u7684\u8868\u793a\u65b9\u6cd5\uff0c\u6b64\u5904\u4e0d\u518d\u8be6\u8ff0\u3002

            "},{"location":"chapter_data_structure/summary/","title":"3.5 \u00a0 \u5c0f\u7ed3","text":"
            • \u6570\u636e\u7ed3\u6784\u53ef\u4ee5\u4ece\u903b\u8f91\u7ed3\u6784\u548c\u7269\u7406\u7ed3\u6784\u4e24\u4e2a\u89d2\u5ea6\u8fdb\u884c\u5206\u7c7b\u3002\u903b\u8f91\u7ed3\u6784\u63cf\u8ff0\u4e86\u6570\u636e\u5143\u7d20\u4e4b\u95f4\u7684\u903b\u8f91\u5173\u7cfb\uff0c\u800c\u7269\u7406\u7ed3\u6784\u63cf\u8ff0\u4e86\u6570\u636e\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u7684\u5b58\u50a8\u65b9\u5f0f\u3002
            • \u5e38\u89c1\u7684\u903b\u8f91\u7ed3\u6784\u5305\u62ec\u7ebf\u6027\u3001\u6811\u72b6\u548c\u7f51\u72b6\u7b49\u3002\u901a\u5e38\u6211\u4eec\u6839\u636e\u903b\u8f91\u7ed3\u6784\u5c06\u6570\u636e\u7ed3\u6784\u5206\u4e3a\u7ebf\u6027\uff08\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\uff09\u548c\u975e\u7ebf\u6027\uff08\u6811\u3001\u56fe\u3001\u5806\uff09\u4e24\u79cd\u3002\u54c8\u5e0c\u8868\u7684\u5b9e\u73b0\u53ef\u80fd\u540c\u65f6\u5305\u542b\u7ebf\u6027\u548c\u975e\u7ebf\u6027\u7ed3\u6784\u3002
            • \u5f53\u7a0b\u5e8f\u8fd0\u884c\u65f6\uff0c\u6570\u636e\u88ab\u5b58\u50a8\u5728\u8ba1\u7b97\u673a\u5185\u5b58\u4e2d\u3002\u6bcf\u4e2a\u5185\u5b58\u7a7a\u95f4\u90fd\u62e5\u6709\u5bf9\u5e94\u7684\u5185\u5b58\u5730\u5740\uff0c\u7a0b\u5e8f\u901a\u8fc7\u8fd9\u4e9b\u5185\u5b58\u5730\u5740\u8bbf\u95ee\u6570\u636e\u3002
            • \u7269\u7406\u7ed3\u6784\u4e3b\u8981\u5206\u4e3a\u8fde\u7eed\u7a7a\u95f4\u5b58\u50a8\uff08\u6570\u7ec4\uff09\u548c\u79bb\u6563\u7a7a\u95f4\u5b58\u50a8\uff08\u94fe\u8868\uff09\u3002\u6240\u6709\u6570\u636e\u7ed3\u6784\u90fd\u662f\u7531\u6570\u7ec4\u3001\u94fe\u8868\u6216\u4e24\u8005\u7684\u7ec4\u5408\u5b9e\u73b0\u7684\u3002
            • \u8ba1\u7b97\u673a\u4e2d\u7684\u57fa\u672c\u6570\u636e\u7c7b\u578b\u5305\u62ec\u6574\u6570 byte , short , int , long \u3001\u6d6e\u70b9\u6570 float , double \u3001\u5b57\u7b26 char \u548c\u5e03\u5c14 boolean \u3002\u5b83\u4eec\u7684\u53d6\u503c\u8303\u56f4\u53d6\u51b3\u4e8e\u5360\u7528\u7a7a\u95f4\u5927\u5c0f\u548c\u8868\u793a\u65b9\u5f0f\u3002
            • \u539f\u7801\u3001\u53cd\u7801\u548c\u8865\u7801\u662f\u5728\u8ba1\u7b97\u673a\u4e2d\u7f16\u7801\u6570\u5b57\u7684\u4e09\u79cd\u65b9\u6cd5\uff0c\u5b83\u4eec\u4e4b\u95f4\u662f\u53ef\u4ee5\u76f8\u4e92\u8f6c\u6362\u7684\u3002\u6574\u6570\u7684\u539f\u7801\u7684\u6700\u9ad8\u4f4d\u662f\u7b26\u53f7\u4f4d\uff0c\u5176\u4f59\u4f4d\u662f\u6570\u5b57\u7684\u503c\u3002
            • \u6574\u6570\u5728\u8ba1\u7b97\u673a\u4e2d\u662f\u4ee5\u8865\u7801\u7684\u5f62\u5f0f\u5b58\u50a8\u7684\u3002\u5728\u8865\u7801\u8868\u793a\u4e0b\uff0c\u8ba1\u7b97\u673a\u53ef\u4ee5\u5bf9\u6b63\u6570\u548c\u8d1f\u6570\u7684\u52a0\u6cd5\u4e00\u89c6\u540c\u4ec1\uff0c\u4e0d\u9700\u8981\u4e3a\u51cf\u6cd5\u64cd\u4f5c\u5355\u72ec\u8bbe\u8ba1\u7279\u6b8a\u7684\u786c\u4ef6\u7535\u8def\uff0c\u5e76\u4e14\u4e0d\u5b58\u5728\u6b63\u8d1f\u96f6\u6b67\u4e49\u7684\u95ee\u9898\u3002
            • \u6d6e\u70b9\u6570\u7684\u7f16\u7801\u7531 1 \u4f4d\u7b26\u53f7\u4f4d\u30018 \u4f4d\u6307\u6570\u4f4d\u548c 23 \u4f4d\u5206\u6570\u4f4d\u6784\u6210\u3002\u7531\u4e8e\u5b58\u5728\u6307\u6570\u4f4d\uff0c\u6d6e\u70b9\u6570\u7684\u53d6\u503c\u8303\u56f4\u8fdc\u5927\u4e8e\u6574\u6570\uff0c\u4ee3\u4ef7\u662f\u727a\u7272\u4e86\u7cbe\u5ea6\u3002
            • ASCII \u7801\u662f\u6700\u65e9\u51fa\u73b0\u7684\u82f1\u6587\u5b57\u7b26\u96c6\uff0c\u957f\u5ea6\u4e3a 1 \u5b57\u8282\uff0c\u5171\u6536\u5f55 127 \u4e2a\u5b57\u7b26\u3002GBK \u5b57\u7b26\u96c6\u662f\u5e38\u7528\u7684\u4e2d\u6587\u5b57\u7b26\u96c6\uff0c\u5171\u6536\u5f55\u4e24\u4e07\u591a\u4e2a\u6c49\u5b57\u3002Unicode \u81f4\u529b\u4e8e\u63d0\u4f9b\u4e00\u4e2a\u5b8c\u6574\u7684\u5b57\u7b26\u96c6\u6807\u51c6\uff0c\u6536\u5f55\u4e16\u754c\u5185\u5404\u79cd\u8bed\u8a00\u7684\u5b57\u7b26\uff0c\u4ece\u800c\u89e3\u51b3\u7531\u4e8e\u5b57\u7b26\u7f16\u7801\u65b9\u6cd5\u4e0d\u4e00\u81f4\u800c\u5bfc\u81f4\u7684\u4e71\u7801\u95ee\u9898\u3002
            • UTF-8 \u662f\u6700\u53d7\u6b22\u8fce\u7684 Unicode \u7f16\u7801\u65b9\u6cd5\uff0c\u901a\u7528\u6027\u975e\u5e38\u597d\u3002\u5b83\u662f\u4e00\u79cd\u53d8\u957f\u7684\u7f16\u7801\u65b9\u6cd5\uff0c\u5177\u6709\u5f88\u597d\u7684\u6269\u5c55\u6027\uff0c\u6709\u6548\u63d0\u5347\u4e86\u5b58\u50a8\u7a7a\u95f4\u7684\u4f7f\u7528\u6548\u7387\u3002UTF-16 \u548c UTF-32 \u662f\u7b49\u957f\u7684\u7f16\u7801\u65b9\u6cd5\u3002\u5728\u7f16\u7801\u4e2d\u6587\u65f6\uff0cUTF-16 \u6bd4 UTF-8 \u7684\u5360\u7528\u7a7a\u95f4\u66f4\u5c0f\u3002Java, C# \u7b49\u7f16\u7a0b\u8bed\u8a00\u9ed8\u8ba4\u4f7f\u7528 UTF-16 \u7f16\u7801\u3002
            "},{"location":"chapter_data_structure/summary/#351-q-a","title":"3.5.1 \u00a0 Q & A","text":"

            \u4e3a\u4ec0\u4e48\u54c8\u5e0c\u8868\u540c\u65f6\u5305\u542b\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u548c\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff1f

            \u54c8\u5e0c\u8868\u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u800c\u4e3a\u4e86\u89e3\u51b3\u54c8\u5e0c\u51b2\u7a81\uff0c\u6211\u4eec\u53ef\u80fd\u4f1a\u4f7f\u7528\u201c\u94fe\u5f0f\u5730\u5740\u201d\uff08\u540e\u7eed\u6563\u5217\u8868\u7ae0\u8282\u4f1a\u8bb2\uff09\u3002\u5728\u62c9\u94fe\u6cd5\u4e2d\uff0c\u6570\u7ec4\u4e2d\u6bcf\u4e2a\u5730\u5740\uff08\u6876\uff09\u6307\u5411\u4e00\u4e2a\u94fe\u8868\uff1b\u5f53\u8fd9\u4e2a\u94fe\u8868\u957f\u5ea6\u8d85\u8fc7\u4e00\u5b9a\u9608\u503c\u65f6\uff0c\u53c8\u53ef\u80fd\u88ab\u8f6c\u5316\u4e3a\u6811\uff08\u901a\u5e38\u4e3a\u7ea2\u9ed1\u6811\uff09\u3002\u56e0\u6b64\uff0c\u54c8\u5e0c\u8868\u53ef\u80fd\u540c\u65f6\u5305\u542b\u7ebf\u6027\uff08\u6570\u7ec4\u3001\u94fe\u8868\uff09\u548c\u975e\u7ebf\u6027\uff08\u6811\uff09\u6570\u636e\u7ed3\u6784\u3002

            char \u7c7b\u578b\u7684\u957f\u5ea6\u662f 1 byte \u5417\uff1f

            char \u7c7b\u578b\u7684\u957f\u5ea6\u7531\u7f16\u7a0b\u8bed\u8a00\u91c7\u7528\u7684\u7f16\u7801\u65b9\u6cd5\u51b3\u5b9a\u3002\u4f8b\u5982\uff0cJava, JS, TS, C# \u90fd\u91c7\u7528 UTF-16 \u7f16\u7801\uff08\u4fdd\u5b58 Unicode \u7801\u70b9\uff09\uff0c\u56e0\u6b64 char \u7c7b\u578b\u7684\u957f\u5ea6\u4e3a 2 bytes \u3002

            "},{"location":"chapter_divide_and_conquer/","title":"\u7b2c 12 \u7ae0 \u00a0 \u5206\u6cbb","text":"

            Abstract

            \u96be\u9898\u88ab\u9010\u5c42\u62c6\u89e3\uff0c\u6bcf\u4e00\u6b21\u7684\u62c6\u89e3\u90fd\u4f7f\u5b83\u53d8\u5f97\u66f4\u4e3a\u7b80\u5355\u3002

            \u5206\u800c\u6cbb\u4e4b\u63ed\u793a\u4e86\u4e00\u4e2a\u91cd\u8981\u7684\u4e8b\u5b9e\uff1a\u4ece\u7b80\u5355\u505a\u8d77\uff0c\u4e00\u5207\u90fd\u4e0d\u518d\u590d\u6742\u3002

            "},{"location":"chapter_divide_and_conquer/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 12.1 \u00a0 \u5206\u6cbb\u7b97\u6cd5
            • 12.2 \u00a0 \u5206\u6cbb\u641c\u7d22\u7b56\u7565
            • 12.3 \u00a0 \u6784\u5efa\u6811\u95ee\u9898
            • 12.4 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898
            • 12.5 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_divide_and_conquer/binary_search_recur/","title":"12.2 \u00a0 \u5206\u6cbb\u641c\u7d22\u7b56\u7565","text":"

            \u6211\u4eec\u5df2\u7ecf\u5b66\u8fc7\uff0c\u641c\u7d22\u7b97\u6cd5\u5206\u4e3a\u4e24\u5927\u7c7b\uff1a

            • \u66b4\u529b\u641c\u7d22\uff1a\u5b83\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u5b9e\u73b0\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
            • \u81ea\u9002\u5e94\u641c\u7d22\uff1a\u5b83\u5229\u7528\u7279\u6709\u7684\u6570\u636e\u7ec4\u7ec7\u5f62\u5f0f\u6216\u5148\u9a8c\u4fe1\u606f\uff0c\u53ef\u8fbe\u5230 \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002

            \u5b9e\u9645\u4e0a\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u7684\u641c\u7d22\u7b97\u6cd5\u901a\u5e38\u90fd\u662f\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u5b9e\u73b0\u7684\uff0c\u4f8b\u5982\uff1a

            • \u4e8c\u5206\u67e5\u627e\u7684\u6bcf\u4e00\u6b65\u90fd\u5c06\u95ee\u9898\uff08\u5728\u6570\u7ec4\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff09\u5206\u89e3\u4e3a\u4e00\u4e2a\u5c0f\u95ee\u9898\uff08\u5728\u6570\u7ec4\u7684\u4e00\u534a\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff09\uff0c\u8fd9\u4e2a\u8fc7\u7a0b\u4e00\u76f4\u6301\u7eed\u5230\u6570\u7ec4\u4e3a\u7a7a\u6216\u627e\u5230\u76ee\u6807\u5143\u7d20\u4e3a\u6b62\u3002
            • \u6811\u662f\u5206\u6cbb\u5173\u7cfb\u7684\u4ee3\u8868\uff0c\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u3001AVL \u6811\u3001\u5806\u7b49\u6570\u636e\u7ed3\u6784\u4e2d\uff0c\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7686\u4e3a \\(O(\\log n)\\) \u3002

            \u4ee5\u4e8c\u5206\u67e5\u627e\u4e3a\u4f8b\uff1a

            • \u95ee\u9898\u53ef\u4ee5\u88ab\u5206\u89e3\uff1a\u4e8c\u5206\u67e5\u627e\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\uff08\u5728\u6570\u7ec4\u4e2d\u8fdb\u884c\u67e5\u627e\uff09\u5206\u89e3\u4e3a\u5b50\u95ee\u9898\uff08\u5728\u6570\u7ec4\u7684\u4e00\u534a\u4e2d\u8fdb\u884c\u67e5\u627e\uff09\uff0c\u8fd9\u662f\u901a\u8fc7\u6bd4\u8f83\u4e2d\u95f4\u5143\u7d20\u548c\u76ee\u6807\u5143\u7d20\u6765\u5b9e\u73b0\u7684\u3002
            • \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5728\u4e8c\u5206\u67e5\u627e\u4e2d\uff0c\u6bcf\u8f6e\u53ea\u5904\u7406\u4e00\u4e2a\u5b50\u95ee\u9898\uff0c\u5b83\u4e0d\u53d7\u53e6\u5916\u5b50\u95ee\u9898\u7684\u5f71\u54cd\u3002
            • \u5b50\u95ee\u9898\u7684\u89e3\u65e0\u987b\u5408\u5e76\uff1a\u4e8c\u5206\u67e5\u627e\u65e8\u5728\u67e5\u627e\u4e00\u4e2a\u7279\u5b9a\u5143\u7d20\uff0c\u56e0\u6b64\u4e0d\u9700\u8981\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\u3002\u5f53\u5b50\u95ee\u9898\u5f97\u5230\u89e3\u51b3\u65f6\uff0c\u539f\u95ee\u9898\u4e5f\u4f1a\u540c\u65f6\u5f97\u5230\u89e3\u51b3\u3002

            \u5206\u6cbb\u80fd\u591f\u63d0\u5347\u641c\u7d22\u6548\u7387\uff0c\u672c\u8d28\u4e0a\u662f\u56e0\u4e3a\u66b4\u529b\u641c\u7d22\u6bcf\u8f6e\u53ea\u80fd\u6392\u9664\u4e00\u4e2a\u9009\u9879\uff0c\u800c\u5206\u6cbb\u641c\u7d22\u6bcf\u8f6e\u53ef\u4ee5\u6392\u9664\u4e00\u534a\u9009\u9879\u3002

            "},{"location":"chapter_divide_and_conquer/binary_search_recur/#1","title":"1. \u00a0 \u57fa\u4e8e\u5206\u6cbb\u5b9e\u73b0\u4e8c\u5206","text":"

            \u5728\u4e4b\u524d\u7684\u7ae0\u8282\u4e2d\uff0c\u4e8c\u5206\u67e5\u627e\u662f\u57fa\u4e8e\u9012\u63a8\uff08\u8fed\u4ee3\uff09\u5b9e\u73b0\u7684\u3002\u73b0\u5728\u6211\u4eec\u57fa\u4e8e\u5206\u6cbb\uff08\u9012\u5f52\uff09\u6765\u5b9e\u73b0\u5b83\u3002

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \uff0c\u6570\u7ec4\u4e2d\u6240\u6709\u5143\u7d20\u90fd\u662f\u552f\u4e00\u7684\uff0c\u8bf7\u67e5\u627e\u5143\u7d20 target \u3002

            \u4ece\u5206\u6cbb\u89d2\u5ea6\uff0c\u6211\u4eec\u5c06\u641c\u7d22\u533a\u95f4 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u8bb0\u4e3a \\(f(i, j)\\) \u3002

            \u4ece\u539f\u95ee\u9898 \\(f(0, n-1)\\) \u4e3a\u8d77\u59cb\u70b9\uff0c\u4e8c\u5206\u67e5\u627e\u7684\u5206\u6cbb\u6b65\u9aa4\u4e3a\uff1a

            1. \u8ba1\u7b97\u641c\u7d22\u533a\u95f4 \\([i, j]\\) \u7684\u4e2d\u70b9 \\(m\\) \uff0c\u6839\u636e\u5b83\u6392\u9664\u4e00\u534a\u641c\u7d22\u533a\u95f4\u3002
            2. \u9012\u5f52\u6c42\u89e3\u89c4\u6a21\u51cf\u5c0f\u4e00\u534a\u7684\u5b50\u95ee\u9898\uff0c\u53ef\u80fd\u4e3a \\(f(i, m-1)\\) \u6216 \\(f(m+1, j)\\) \u3002
            3. \u5faa\u73af\u7b2c 1. , 2. \u6b65\uff0c\u76f4\u81f3\u627e\u5230 target \u6216\u533a\u95f4\u4e3a\u7a7a\u65f6\u8fd4\u56de\u3002

            \u4e0b\u56fe\u5c55\u793a\u4e86\u5728\u6570\u7ec4\u4e2d\u4e8c\u5206\u67e5\u627e\u5143\u7d20 \\(6\\) \u7684\u5206\u6cbb\u8fc7\u7a0b\u3002

            \u56fe\uff1a\u4e8c\u5206\u67e5\u627e\u7684\u5206\u6cbb\u8fc7\u7a0b

            \u5728\u5b9e\u73b0\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs() \u6765\u6c42\u89e3\u95ee\u9898 \\(f(i, j)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_recur.java
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(int[] nums, int target, int i, int j) {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nint m = (i + j) / 2;\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(int[] nums, int target) {\nint n = nums.length;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.cpp
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(vector<int> &nums, int target, int i, int j) {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nint m = (i + j) / 2;\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(vector<int> &nums, int target) {\nint n = nums.size();\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.py
            def dfs(nums: list[int], target: int, i: int, j: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j)\"\"\"\n# \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif i > j:\nreturn -1\n# \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nm = (i + j) // 2\nif nums[m] < target:\n# \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j)\nelif nums[m] > target:\n# \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1)\nelse:\n# \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\ndef binary_search(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\"\"\"\nn = len(nums)\n# \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1)\n
            binary_search_recur.go
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunc dfs(nums []int, target, i, j int) int {\n// \u5982\u679c\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u6ca1\u6709\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif i > j {\nreturn -1\n}\n//    \u8ba1\u7b97\u7d22\u5f15\u4e2d\u70b9\nm := i + ((j - i) >> 1)\n//\u5224\u65ad\u4e2d\u70b9\u4e0e\u76ee\u6807\u5143\u7d20\u5927\u5c0f\nif nums[m] < target {\n// \u5c0f\u4e8e\u5219\u9012\u5f52\u53f3\u534a\u6570\u7ec4\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m+1, j)\n} else if nums[m] > target {\n// \u5c0f\u4e8e\u5219\u9012\u5f52\u5de6\u534a\u6570\u7ec4\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m-1)\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nfunc binarySearch(nums []int, target int) int {\nn := len(nums)\nreturn dfs(nums, target, 0, n-1)\n}\n
            binary_search_recur.js
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunction dfs(nums, target, i, j) {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nconst m = i + ((j - i) >> 1);\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nfunction binarySearch(nums, target) {\nconst n = nums.length;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.ts
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfunction dfs(nums: number[], target: number, i: number, j: number): number {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nconst m = i + ((j - i) >> 1);\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nfunction binarySearch(nums: number[], target: number): number {\nconst n = nums.length;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.c
            [class]{}-[func]{dfs}\n[class]{}-[func]{binarySearch}\n
            binary_search_recur.cs
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(int[] nums, int target, int i, int j) {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nint m = (i + j) / 2;\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(int[] nums, int target) {\nint n = nums.Length;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.swift
            [class]{}-[func]{dfs}\n[class]{}-[func]{binarySearch}\n
            binary_search_recur.zig
            [class]{}-[func]{dfs}\n[class]{}-[func]{binarySearch}\n
            binary_search_recur.dart
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nint dfs(List<int> nums, int target, int i, int j) {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif (i > j) {\nreturn -1;\n}\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nint m = (i + j) ~/ 2;\nif (nums[m] < target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if (nums[m] > target) {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nint binarySearch(List<int> nums, int target) {\nint n = nums.length;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\nreturn dfs(nums, target, 0, n - 1);\n}\n
            binary_search_recur.rs
            /* \u4e8c\u5206\u67e5\u627e\uff1a\u95ee\u9898 f(i, j) */\nfn dfs(nums: &[i32], target: i32, i: i32, j: i32) -> i32 {\n// \u82e5\u533a\u95f4\u4e3a\u7a7a\uff0c\u4ee3\u8868\u65e0\u76ee\u6807\u5143\u7d20\uff0c\u5219\u8fd4\u56de -1\nif i > j { return -1; }\nlet m: i32 = (i + j) / 2;\nif nums[m as usize] < target {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(m+1, j)\nreturn dfs(nums, target, m + 1, j);\n} else if nums[m as usize] > target {\n// \u9012\u5f52\u5b50\u95ee\u9898 f(i, m-1)\nreturn dfs(nums, target, i, m - 1);\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n/* \u4e8c\u5206\u67e5\u627e */\nfn binary_search(nums: &[i32], target: i32) -> i32 {\nlet n = nums.len() as i32;\n// \u6c42\u89e3\u95ee\u9898 f(0, n-1)\ndfs(nums, target, 0, n - 1)\n}\n
            "},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/","title":"12.3 \u00a0 \u6784\u5efa\u4e8c\u53c9\u6811\u95ee\u9898","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u4e8c\u53c9\u6811\u7684\u524d\u5e8f\u904d\u5386 preorder \u548c\u4e2d\u5e8f\u904d\u5386 inorder \uff0c\u8bf7\u4ece\u4e2d\u6784\u5efa\u4e8c\u53c9\u6811\uff0c\u8fd4\u56de\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\u3002

            \u56fe\uff1a\u6784\u5efa\u4e8c\u53c9\u6811\u7684\u793a\u4f8b\u6570\u636e

            "},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#1","title":"1. \u00a0 \u5224\u65ad\u662f\u5426\u4e3a\u5206\u6cbb\u95ee\u9898","text":"

            \u539f\u95ee\u9898\u5b9a\u4e49\u4e3a\u4ece preorder \u548c inorder \u6784\u5efa\u4e8c\u53c9\u6811\u3002\u6211\u4eec\u9996\u5148\u4ece\u5206\u6cbb\u7684\u89d2\u5ea6\u5206\u6790\u8fd9\u9053\u9898\uff1a

            • \u95ee\u9898\u53ef\u4ee5\u88ab\u5206\u89e3\uff1a\u4ece\u5206\u6cbb\u7684\u89d2\u5ea6\u5207\u5165\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u539f\u95ee\u9898\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\u3001\u6784\u5efa\u53f3\u5b50\u6811\uff0c\u52a0\u4e0a\u4e00\u6b65\u64cd\u4f5c\uff1a\u521d\u59cb\u5316\u6839\u8282\u70b9\u3002\u800c\u5bf9\u4e8e\u6bcf\u4e2a\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u590d\u7528\u4ee5\u4e0a\u5212\u5206\u65b9\u6cd5\uff0c\u5c06\u5176\u5212\u5206\u4e3a\u66f4\u5c0f\u7684\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u76f4\u81f3\u8fbe\u5230\u6700\u5c0f\u5b50\u95ee\u9898\uff08\u7a7a\u5b50\u6811\uff09\u65f6\u7ec8\u6b62\u3002
            • \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u5b83\u4eec\u4e4b\u95f4\u6ca1\u6709\u4ea4\u96c6\u3002\u5728\u6784\u5efa\u5de6\u5b50\u6811\u65f6\uff0c\u6211\u4eec\u53ea\u9700\u8981\u5173\u6ce8\u4e2d\u5e8f\u904d\u5386\u548c\u524d\u5e8f\u904d\u5386\u4e2d\u4e0e\u5de6\u5b50\u6811\u5bf9\u5e94\u7684\u90e8\u5206\u3002\u53f3\u5b50\u6811\u540c\u7406\u3002
            • \u5b50\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u5408\u5e76\uff1a\u4e00\u65e6\u5f97\u5230\u4e86\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5c06\u5b83\u4eec\u94fe\u63a5\u5230\u6839\u8282\u70b9\u4e0a\uff0c\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002
            "},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#2","title":"2. \u00a0 \u5982\u4f55\u5212\u5206\u5b50\u6811","text":"

            \u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u8fd9\u9053\u9898\u662f\u53ef\u4ee5\u4f7f\u7528\u5206\u6cbb\u6765\u6c42\u89e3\u7684\uff0c\u4f46\u95ee\u9898\u662f\uff1a\u5982\u4f55\u901a\u8fc7\u524d\u5e8f\u904d\u5386 preorder \u548c\u4e2d\u5e8f\u904d\u5386 inorder \u6765\u5212\u5206\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u5462\uff1f

            \u6839\u636e\u5b9a\u4e49\uff0cpreorder \u548c inorder \u90fd\u53ef\u4ee5\u88ab\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\uff1a

            • \u524d\u5e8f\u904d\u5386\uff1a[ \u6839\u8282\u70b9 | \u5de6\u5b50\u6811 | \u53f3\u5b50\u6811 ] \uff0c\u4f8b\u5982\u4e0a\u56fe [ 3 | 9 | 2 1 7 ] \u3002
            • \u4e2d\u5e8f\u904d\u5386\uff1a[ \u5de6\u5b50\u6811 | \u6839\u8282\u70b9 \uff5c \u53f3\u5b50\u6811 ] \uff0c\u4f8b\u5982\u4e0a\u56fe [ 9 | 3 | 1 2 7 ] \u3002

            \u4ee5\u4e0a\u56fe\u6570\u636e\u4e3a\u4f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u6b65\u9aa4\u5f97\u5230\u4e0a\u8ff0\u7684\u5212\u5206\u7ed3\u679c\uff1a

            1. \u524d\u5e8f\u904d\u5386\u7684\u9996\u5143\u7d20 3 \u662f\u6839\u8282\u70b9\u7684\u503c\u3002
            2. \u67e5\u627e\u6839\u8282\u70b9 3 \u5728 inorder \u4e2d\u7684\u7d22\u5f15\uff0c\u5229\u7528\u8be5\u7d22\u5f15\u53ef\u5c06 inorder \u5212\u5206\u4e3a [ 9 | 3 \uff5c 1 2 7 ] \u3002
            3. \u6839\u636e inorder \u5212\u5206\u7ed3\u679c\uff0c\u6613\u5f97\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u7684\u8282\u70b9\u6570\u91cf\u5206\u522b\u4e3a 1 \u548c 3 \uff0c\u4ece\u800c\u53ef\u5c06 preorder \u5212\u5206\u4e3a [ 3 | 9 | 2 1 7 ] \u3002

            \u56fe\uff1a\u5728\u524d\u5e8f\u548c\u4e2d\u5e8f\u904d\u5386\u4e2d\u5212\u5206\u5b50\u6811

            "},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#3","title":"3. \u00a0 \u57fa\u4e8e\u53d8\u91cf\u63cf\u8ff0\u5b50\u6811\u533a\u95f4","text":"

            \u6839\u636e\u4ee5\u4e0a\u5212\u5206\u65b9\u6cd5\uff0c\u6211\u4eec\u5df2\u7ecf\u5f97\u5230\u6839\u8282\u70b9\u3001\u5de6\u5b50\u6811\u3001\u53f3\u5b50\u6811\u5728 preorder \u548c inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u3002\u800c\u4e3a\u4e86\u63cf\u8ff0\u8fd9\u4e9b\u7d22\u5f15\u533a\u95f4\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u51e0\u4e2a\u6307\u9488\u53d8\u91cf\uff1a

            • \u5c06\u5f53\u524d\u6811\u7684\u6839\u8282\u70b9\u5728 preorder \u4e2d\u7684\u7d22\u5f15\u8bb0\u4e3a \\(i\\) \u3002
            • \u5c06\u5f53\u524d\u6811\u7684\u6839\u8282\u70b9\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u8bb0\u4e3a \\(m\\) \u3002
            • \u5c06\u5f53\u524d\u6811\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u8bb0\u4e3a \\([l, r]\\) \u3002

            \u5982\u4e0b\u8868\u6240\u793a\uff0c\u901a\u8fc7\u4ee5\u4e0a\u53d8\u91cf\u5373\u53ef\u8868\u793a\u6839\u8282\u70b9\u5728 preorder \u4e2d\u7684\u7d22\u5f15\uff0c\u4ee5\u53ca\u5b50\u6811\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4\u3002

            \u8868\uff1a\u6839\u8282\u70b9\u548c\u5b50\u6811\u5728\u524d\u5e8f\u548c\u4e2d\u5e8f\u904d\u5386\u4e2d\u7684\u7d22\u5f15

            \u6839\u8282\u70b9\u5728 preorder \u4e2d\u7684\u7d22\u5f15 \u5b50\u6811\u5728 inorder \u4e2d\u7684\u7d22\u5f15\u533a\u95f4 \u5f53\u524d\u6811 \\(i\\) \\([l, r]\\) \u5de6\u5b50\u6811 \\(i + 1\\) \\([l, m-1]\\) \u53f3\u5b50\u6811 \\(i + 1 + (m - l)\\) \\([m+1, r]\\)

            \u8bf7\u6ce8\u610f\uff0c\u53f3\u5b50\u6811\u6839\u8282\u70b9\u7d22\u5f15\u4e2d\u7684 \\((m-l)\\) \u7684\u542b\u4e49\u662f\u201c\u5de6\u5b50\u6811\u7684\u8282\u70b9\u6570\u91cf\u201d\uff0c\u5efa\u8bae\u914d\u5408\u4e0b\u56fe\u7406\u89e3\u3002

            \u56fe\uff1a\u6839\u8282\u70b9\u548c\u5de6\u53f3\u5b50\u6811\u7684\u7d22\u5f15\u533a\u95f4\u8868\u793a

            "},{"location":"chapter_divide_and_conquer/build_binary_tree_problem/#4","title":"4. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u4e3a\u4e86\u63d0\u5347\u67e5\u8be2 \\(m\\) \u7684\u6548\u7387\uff0c\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 hmap \u6765\u5b58\u50a8\u6570\u7ec4 inorder \u4e2d\u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust build_tree.java
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode dfs(int[] preorder, int[] inorder, Map<Integer, Integer> hmap, int i, int l, int r) {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0)\nreturn null;\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nTreeNode root = new TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nint m = hmap.get(preorder[i]);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode buildTree(int[] preorder, int[] inorder) {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nMap<Integer, Integer> hmap = new HashMap<>();\nfor (int i = 0; i < inorder.length; i++) {\nhmap.put(inorder[i], i);\n}\nTreeNode root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);\nreturn root;\n}\n
            build_tree.cpp
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode *dfs(vector<int> &preorder, vector<int> &inorder, unordered_map<int, int> &hmap, int i, int l, int r) {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0)\nreturn NULL;\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nTreeNode *root = new TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nint m = hmap[preorder[i]];\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot->left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot->right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nunordered_map<int, int> hmap;\nfor (int i = 0; i < inorder.size(); i++) {\nhmap[inorder[i]] = i;\n}\nTreeNode *root = dfs(preorder, inorder, hmap, 0, 0, inorder.size() - 1);\nreturn root;\n}\n
            build_tree.py
            def dfs(\npreorder: list[int],\ninorder: list[int],\nhmap: dict[int, int],\ni: int,\nl: int,\nr: int,\n) -> TreeNode | None:\n\"\"\"\u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb\"\"\"\n# \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif r - l < 0:\nreturn None\n# \u521d\u59cb\u5316\u6839\u8282\u70b9\nroot = TreeNode(preorder[i])\n# \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nm = hmap[preorder[i]]\n# \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1)\n# \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r)\n# \u8fd4\u56de\u6839\u8282\u70b9\nreturn root\ndef build_tree(preorder: list[int], inorder: list[int]) -> TreeNode | None:\n\"\"\"\u6784\u5efa\u4e8c\u53c9\u6811\"\"\"\n# \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nhmap = {val: i for i, val in enumerate(inorder)}\nroot = dfs(preorder, inorder, hmap, 0, 0, len(inorder) - 1)\nreturn root\n
            build_tree.go
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunc dfsBuildTree(preorder, inorder []int, hmap map[int]int, i, l, r int) *TreeNode {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif r-l < 0 {\nreturn nil\n}\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nroot := NewTreeNode(preorder[i])\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nm := hmap[preorder[i]]\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.Left = dfsBuildTree(preorder, inorder, hmap, i+1, l, m-1)\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.Right = dfsBuildTree(preorder, inorder, hmap, i+1+m-l, m+1, r)\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunc buildTree(preorder, inorder []int) *TreeNode {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nhmap := make(map[int]int, len(inorder))\nfor i := 0; i < len(inorder); i++ {\nhmap[inorder[i]] = i\n}\nroot := dfsBuildTree(preorder, inorder, hmap, 0, 0, len(inorder)-1)\nreturn root\n}\n
            build_tree.js
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunction dfs(preorder, inorder, hmap, i, l, r) {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0) return null;\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nconst root = new TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nconst m = hmap.get(preorder[i]);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunction buildTree(preorder, inorder) {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nlet hmap = new Map();\nfor (let i = 0; i < inorder.length; i++) {\nhmap.set(inorder[i], i);\n}\nconst root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);\nreturn root;\n}\n
            build_tree.ts
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfunction dfs(\npreorder: number[],\ninorder: number[],\nhmap: Map<number, number>,\ni: number,\nl: number,\nr: number\n): TreeNode | null {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0) return null;\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nconst root: TreeNode = new TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nconst m = hmap.get(preorder[i]);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfunction buildTree(preorder: number[], inorder: number[]): TreeNode | null {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nlet hmap = new Map<number, number>();\nfor (let i = 0; i < inorder.length; i++) {\nhmap.set(inorder[i], i);\n}\nconst root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);\nreturn root;\n}\n
            build_tree.c
            [class]{}-[func]{dfs}\n[class]{}-[func]{buildTree}\n
            build_tree.cs
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode dfs(int[] preorder, int[] inorder, Dictionary<int, int> hmap, int i, int l, int r) {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0)\nreturn null;\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nTreeNode root = new TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nint m = hmap[preorder[i]];\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode buildTree(int[] preorder, int[] inorder) {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nDictionary<int, int> hmap = new Dictionary<int, int>();\nfor (int i = 0; i < inorder.Length; i++) {\nhmap.TryAdd(inorder[i], i);\n}\nTreeNode root = dfs(preorder, inorder, hmap, 0, 0, inorder.Length - 1);\nreturn root;\n}\n
            build_tree.swift
            [class]{}-[func]{dfs}\n[class]{}-[func]{buildTree}\n
            build_tree.zig
            [class]{}-[func]{dfs}\n[class]{}-[func]{buildTree}\n
            build_tree.dart
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nTreeNode? dfs(\nList<int> preorder,\nList<int> inorder,\nMap<int, int> hmap,\nint i,\nint l,\nint r,\n) {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif (r - l < 0) {\nreturn null;\n}\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nTreeNode? root = TreeNode(preorder[i]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nint m = hmap[preorder[i]]!;\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nreturn root;\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nTreeNode? buildTree(List<int> preorder, List<int> inorder) {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nMap<int, int> hmap = {};\nfor (int i = 0; i < inorder.length; i++) {\nhmap[inorder[i]] = i;\n}\nTreeNode? root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);\nreturn root;\n}\n
            build_tree.rs
            /* \u6784\u5efa\u4e8c\u53c9\u6811\uff1a\u5206\u6cbb */\nfn dfs(preorder: &[i32], inorder: &[i32], hmap: &HashMap<i32, i32>, i: i32, l: i32, r: i32) -> Option<Rc<RefCell<TreeNode>>> {\n// \u5b50\u6811\u533a\u95f4\u4e3a\u7a7a\u65f6\u7ec8\u6b62\nif r - l < 0 { return None; }\n// \u521d\u59cb\u5316\u6839\u8282\u70b9\nlet root = TreeNode::new(preorder[i as usize]);\n// \u67e5\u8be2 m \uff0c\u4ece\u800c\u5212\u5206\u5de6\u53f3\u5b50\u6811\nlet m = hmap.get(&preorder[i as usize]).unwrap();\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u5de6\u5b50\u6811\nroot.borrow_mut().left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);\n// \u5b50\u95ee\u9898\uff1a\u6784\u5efa\u53f3\u5b50\u6811\nroot.borrow_mut().right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);\n// \u8fd4\u56de\u6839\u8282\u70b9\nSome(root)\n}\n/* \u6784\u5efa\u4e8c\u53c9\u6811 */\nfn build_tree(preorder: &[i32], inorder: &[i32]) -> Option<Rc<RefCell<TreeNode>>> {\n// \u521d\u59cb\u5316\u54c8\u5e0c\u8868\uff0c\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\nlet mut hmap: HashMap<i32, i32> = HashMap::new();\nfor i in 0..inorder.len() {\nhmap.insert(inorder[i], i as i32);\n}\nlet root = dfs(preorder, inorder, &hmap, 0, 0, inorder.len() as i32 - 1);\nroot\n}\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u6784\u5efa\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b\uff0c\u5404\u4e2a\u8282\u70b9\u662f\u5728\u5411\u4e0b\u201c\u9012\u201d\u7684\u8fc7\u7a0b\u4e2d\u5efa\u7acb\u7684\uff0c\u800c\u5404\u6761\u8fb9\uff08\u5373\u5f15\u7528\uff09\u662f\u5728\u5411\u4e0a\u201c\u5f52\u201d\u7684\u8fc7\u7a0b\u4e2d\u5efa\u7acb\u7684\u3002

            <1><2><3><4><5><6><7><8><9><10>

            \u56fe\uff1a\u6784\u5efa\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b

            \u8bbe\u6811\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u521d\u59cb\u5316\u6bcf\u4e00\u4e2a\u8282\u70b9\uff08\u6267\u884c\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs() \uff09\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u56e0\u6b64\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            \u54c8\u5e0c\u8868\u5b58\u50a8 inorder \u5143\u7d20\u5230\u7d22\u5f15\u7684\u6620\u5c04\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u9012\u5f52\u6df1\u5ea6\u8fbe\u5230 \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u7684\u6808\u5e27\u7a7a\u95f4\u3002\u56e0\u6b64\u603b\u4f53\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/","title":"12.1 \u00a0 \u5206\u6cbb\u7b97\u6cd5","text":"

            \u300c\u5206\u6cbb divide and conquer\u300d\uff0c\u5168\u79f0\u5206\u800c\u6cbb\u4e4b\uff0c\u662f\u4e00\u79cd\u975e\u5e38\u91cd\u8981\u4e14\u5e38\u89c1\u7684\u7b97\u6cd5\u7b56\u7565\u3002\u5206\u6cbb\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\uff0c\u5305\u62ec\u201c\u5206\u201d\u548c\u201c\u6cbb\u201d\u4e24\u6b65\uff1a

            1. \u5206\uff08\u5212\u5206\u9636\u6bb5\uff09\uff1a\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\u5206\u89e3\u4e3a\u4e24\u4e2a\u6216\u591a\u4e2a\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u5230\u8fbe\u6700\u5c0f\u5b50\u95ee\u9898\u65f6\u7ec8\u6b62\u3002
            2. \u6cbb\uff08\u5408\u5e76\u9636\u6bb5\uff09\uff1a\u4ece\u5df2\u77e5\u89e3\u7684\u6700\u5c0f\u5b50\u95ee\u9898\u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\uff0c\u4ece\u800c\u6784\u5efa\u51fa\u539f\u95ee\u9898\u7684\u89e3\u3002

            \u6211\u4eec\u5df2\u5b66\u8fc7\u7684\u201c\u5f52\u5e76\u6392\u5e8f\u201d\u662f\u5206\u6cbb\u7b56\u7565\u7684\u5178\u578b\u5e94\u7528\u4e4b\u4e00\uff0c\u5176\u7b97\u6cd5\u539f\u7406\u4e3a\uff1a

            1. \u5206\uff1a\u9012\u5f52\u5730\u5c06\u539f\u6570\u7ec4\uff08\u539f\u95ee\u9898\uff09\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\uff09\uff0c\u76f4\u5230\u5b50\u6570\u7ec4\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\uff08\u6700\u5c0f\u5b50\u95ee\u9898\uff09\u3002
            2. \u6cbb\uff1a\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u6709\u5e8f\u7684\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\u8fdb\u884c\u5408\u5e76\uff0c\u4ece\u800c\u5f97\u5230\u6709\u5e8f\u7684\u539f\u6570\u7ec4\uff08\u539f\u95ee\u9898\u7684\u89e3\uff09\u3002

            \u56fe\uff1a\u5f52\u5e76\u6392\u5e8f\u7684\u5206\u6cbb\u7b56\u7565

            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1211","title":"12.1.1 \u00a0 \u5982\u4f55\u5224\u65ad\u5206\u6cbb\u95ee\u9898","text":"

            \u4e00\u4e2a\u95ee\u9898\u662f\u5426\u9002\u5408\u4f7f\u7528\u5206\u6cbb\u89e3\u51b3\uff0c\u901a\u5e38\u53ef\u4ee5\u53c2\u8003\u4ee5\u4e0b\u51e0\u4e2a\u5224\u65ad\u4f9d\u636e\uff1a

            1. \u95ee\u9898\u53ef\u4ee5\u88ab\u5206\u89e3\uff1a\u539f\u95ee\u9898\u53ef\u4ee5\u88ab\u5206\u89e3\u6210\u89c4\u6a21\u66f4\u5c0f\u3001\u7c7b\u4f3c\u7684\u5b50\u95ee\u9898\uff0c\u4ee5\u53ca\u80fd\u591f\u4ee5\u76f8\u540c\u65b9\u5f0f\u9012\u5f52\u5730\u8fdb\u884c\u5212\u5206\u3002
            2. \u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff1a\u5b50\u95ee\u9898\u4e4b\u95f4\u662f\u6ca1\u6709\u91cd\u53e0\u7684\uff0c\u4e92\u76f8\u6ca1\u6709\u4f9d\u8d56\uff0c\u53ef\u4ee5\u88ab\u72ec\u7acb\u89e3\u51b3\u3002
            3. \u5b50\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u88ab\u5408\u5e76\uff1a\u539f\u95ee\u9898\u7684\u89e3\u901a\u8fc7\u5408\u5e76\u5b50\u95ee\u9898\u7684\u89e3\u5f97\u6765\u3002

            \u663e\u7136\u5f52\u5e76\u6392\u5e8f\uff0c\u6ee1\u8db3\u4ee5\u4e0a\u4e09\u6761\u5224\u65ad\u4f9d\u636e\uff1a

            1. \u9012\u5f52\u5730\u5c06\u6570\u7ec4\uff08\u539f\u95ee\u9898\uff09\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\uff09\u3002
            2. \u6bcf\u4e2a\u5b50\u6570\u7ec4\u90fd\u53ef\u4ee5\u72ec\u7acb\u5730\u8fdb\u884c\u6392\u5e8f\uff08\u5b50\u95ee\u9898\u53ef\u4ee5\u72ec\u7acb\u8fdb\u884c\u6c42\u89e3\uff09\u3002
            3. \u4e24\u4e2a\u6709\u5e8f\u5b50\u6570\u7ec4\uff08\u5b50\u95ee\u9898\u7684\u89e3\uff09\u53ef\u4ee5\u88ab\u5408\u5e76\u4e3a\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\uff08\u539f\u95ee\u9898\u7684\u89e3\uff09\u3002
            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1212","title":"12.1.2 \u00a0 \u901a\u8fc7\u5206\u6cbb\u63d0\u5347\u6548\u7387","text":"

            \u5206\u6cbb\u4e0d\u4ec5\u53ef\u4ee5\u6709\u6548\u5730\u89e3\u51b3\u7b97\u6cd5\u95ee\u9898\uff0c\u5f80\u5f80\u8fd8\u53ef\u4ee5\u5e26\u6765\u7b97\u6cd5\u6548\u7387\u7684\u63d0\u5347\u3002\u5728\u6392\u5e8f\u7b97\u6cd5\u4e2d\uff0c\u5feb\u901f\u6392\u5e8f\u3001\u5f52\u5e76\u6392\u5e8f\u3001\u5806\u6392\u5e8f\u76f8\u8f83\u4e8e\u9009\u62e9\u3001\u5192\u6ce1\u3001\u63d2\u5165\u6392\u5e8f\u66f4\u5feb\uff0c\u5c31\u662f\u56e0\u4e3a\u5b83\u4eec\u5e94\u7528\u4e86\u5206\u6cbb\u7b56\u7565\u3002

            \u90a3\u4e48\uff0c\u6211\u4eec\u4e0d\u7981\u53d1\u95ee\uff1a\u4e3a\u4ec0\u4e48\u5206\u6cbb\u53ef\u4ee5\u63d0\u5347\u7b97\u6cd5\u6548\u7387\uff0c\u5176\u5e95\u5c42\u903b\u8f91\u662f\u4ec0\u4e48\uff1f\u6362\u53e5\u8bdd\u8bf4\uff0c\u5c06\u5927\u95ee\u9898\u5206\u89e3\u4e3a\u591a\u4e2a\u5b50\u95ee\u9898\u3001\u89e3\u51b3\u5b50\u95ee\u9898\u3001\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u5408\u5e76\u4e3a\u539f\u95ee\u9898\u7684\u89e3\uff0c\u8fd9\u51e0\u6b65\u7684\u6548\u7387\u4e3a\u4ec0\u4e48\u6bd4\u76f4\u63a5\u89e3\u51b3\u539f\u95ee\u9898\u7684\u6548\u7387\u66f4\u9ad8\uff1f\u8fd9\u4e2a\u95ee\u9898\u53ef\u4ee5\u4ece\u64cd\u4f5c\u6570\u91cf\u548c\u5e76\u884c\u8ba1\u7b97\u4e24\u65b9\u9762\u6765\u8ba8\u8bba\u3002

            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1","title":"1. \u00a0 \u64cd\u4f5c\u6570\u91cf\u4f18\u5316","text":"

            \u4ee5\u201c\u5192\u6ce1\u6392\u5e8f\u201d\u4e3a\u4f8b\uff0c\u5176\u5904\u7406\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\u9700\u8981 \\(O(n^2)\\) \u65f6\u95f4\u3002\u5047\u8bbe\u6211\u4eec\u628a\u6570\u7ec4\u4ece\u4e2d\u70b9\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u5219\u5212\u5206\u9700\u8981 \\(O(n)\\) \u65f6\u95f4\uff0c\u6392\u5e8f\u6bcf\u4e2a\u5b50\u6570\u7ec4\u9700\u8981 \\(O((\\frac{n}{2})^2)\\) \u65f6\u95f4\uff0c\u5408\u5e76\u4e24\u4e2a\u5b50\u6570\u7ec4\u9700\u8981 \\(O(n)\\) \u65f6\u95f4\uff0c\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\uff1a

            \\[ O(n + (\\frac{n}{2})^2 \\times 2 + n) = O(\\frac{n^2}{2} + 2n) \\]

            \u56fe\uff1a\u5212\u5206\u6570\u7ec4\u524d\u540e\u7684\u5192\u6ce1\u6392\u5e8f

            \u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u8ba1\u7b97\u4ee5\u4e0b\u4e0d\u7b49\u5f0f\uff0c\u5176\u5de6\u8fb9\u548c\u53f3\u8fb9\u5206\u522b\u4e3a\u5212\u5206\u524d\u548c\u5212\u5206\u540e\u7684\u64cd\u4f5c\u603b\u6570\uff1a

            \\[ \\begin{aligned} n^2 & > \\frac{n^2}{2} + 2n \\newline n^2 - \\frac{n^2}{2} - 2n & > 0 \\newline n(n - 4) & > 0 \\end{aligned} \\]

            \u8fd9\u610f\u5473\u7740\u5f53 \\(n > 4\\) \u65f6\uff0c\u5212\u5206\u540e\u7684\u64cd\u4f5c\u6570\u91cf\u66f4\u5c11\uff0c\u6392\u5e8f\u6548\u7387\u5e94\u8be5\u66f4\u9ad8\u3002\u8bf7\u6ce8\u610f\uff0c\u5212\u5206\u540e\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u7136\u662f\u5e73\u65b9\u9636 \\(O(n^2)\\) \uff0c\u53ea\u662f\u590d\u6742\u5ea6\u4e2d\u7684\u5e38\u6570\u9879\u53d8\u5c0f\u4e86\u3002

            \u8fdb\u4e00\u6b65\u60f3\uff0c\u5982\u679c\u6211\u4eec\u628a\u5b50\u6570\u7ec4\u4e0d\u65ad\u5730\u518d\u4ece\u4e2d\u70b9\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\u65f6\u505c\u6b62\u5212\u5206\u5462\uff1f\u8fd9\u79cd\u601d\u8def\u5b9e\u9645\u4e0a\u5c31\u662f\u201c\u5f52\u5e76\u6392\u5e8f\u201d\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002

            \u518d\u601d\u8003\uff0c\u5982\u679c\u6211\u4eec\u591a\u8bbe\u7f6e\u51e0\u4e2a\u5212\u5206\u70b9\uff0c\u5c06\u539f\u6570\u7ec4\u5e73\u5747\u5212\u5206\u4e3a \\(k\\) \u4e2a\u5b50\u6570\u7ec4\u5462\uff1f\u8fd9\u79cd\u60c5\u51b5\u4e0e\u201c\u6876\u6392\u5e8f\u201d\u975e\u5e38\u7c7b\u4f3c\uff0c\u5b83\u975e\u5e38\u9002\u5408\u6392\u5e8f\u6d77\u91cf\u6570\u636e\uff0c\u7406\u8bba\u4e0a\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230 \\(O(n + k)\\) \u3002

            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/#2","title":"2. \u00a0 \u5e76\u884c\u8ba1\u7b97\u4f18\u5316","text":"

            \u6211\u4eec\u77e5\u9053\uff0c\u5206\u6cbb\u751f\u6210\u7684\u5b50\u95ee\u9898\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u56e0\u6b64\u901a\u5e38\u53ef\u4ee5\u5e76\u884c\u89e3\u51b3\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u5206\u6cbb\u4e0d\u4ec5\u53ef\u4ee5\u964d\u4f4e\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u8fd8\u6709\u5229\u4e8e\u64cd\u4f5c\u7cfb\u7edf\u7684\u5e76\u884c\u4f18\u5316\u3002

            \u5e76\u884c\u4f18\u5316\u5728\u591a\u6838\u6216\u591a\u5904\u7406\u5668\u7684\u73af\u5883\u4e2d\u5c24\u5176\u6709\u6548\uff0c\u56e0\u4e3a\u7cfb\u7edf\u53ef\u4ee5\u540c\u65f6\u5904\u7406\u591a\u4e2a\u5b50\u95ee\u9898\uff0c\u66f4\u52a0\u5145\u5206\u5730\u5229\u7528\u8ba1\u7b97\u8d44\u6e90\uff0c\u4ece\u800c\u663e\u8457\u51cf\u5c11\u603b\u4f53\u7684\u8fd0\u884c\u65f6\u95f4\u3002

            \u6bd4\u5982\u5728\u6876\u6392\u5e8f\u4e2d\uff0c\u6211\u4eec\u5c06\u6d77\u91cf\u7684\u6570\u636e\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff0c\u5219\u53ef\u6240\u6709\u6876\u7684\u6392\u5e8f\u4efb\u52a1\u5206\u6563\u5230\u5404\u4e2a\u8ba1\u7b97\u5355\u5143\uff0c\u5b8c\u6210\u540e\u518d\u8fdb\u884c\u7ed3\u679c\u5408\u5e76\u3002

            \u56fe\uff1a\u6876\u6392\u5e8f\u7684\u5e76\u884c\u8ba1\u7b97

            "},{"location":"chapter_divide_and_conquer/divide_and_conquer/#1213","title":"12.1.3 \u00a0 \u5206\u6cbb\u5e38\u89c1\u5e94\u7528","text":"

            \u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u53ef\u4ee5\u7528\u6765\u89e3\u51b3\u8bb8\u591a\u7ecf\u5178\u7b97\u6cd5\u95ee\u9898\uff1a

            • \u5bfb\u627e\u6700\u8fd1\u70b9\u5bf9\uff1a\u8be5\u7b97\u6cd5\u9996\u5148\u5c06\u70b9\u96c6\u5206\u6210\u4e24\u90e8\u5206\uff0c\u7136\u540e\u5206\u522b\u627e\u51fa\u4e24\u90e8\u5206\u4e2d\u7684\u6700\u8fd1\u70b9\u5bf9\uff0c\u6700\u540e\u518d\u627e\u51fa\u8de8\u8d8a\u4e24\u90e8\u5206\u7684\u6700\u8fd1\u70b9\u5bf9\u3002
            • \u5927\u6574\u6570\u4e58\u6cd5\uff1a\u4f8b\u5982 Karatsuba \u7b97\u6cd5\uff0c\u5b83\u662f\u5c06\u5927\u6574\u6570\u4e58\u6cd5\u5206\u89e3\u4e3a\u51e0\u4e2a\u8f83\u5c0f\u7684\u6574\u6570\u7684\u4e58\u6cd5\u548c\u52a0\u6cd5\u3002
            • \u77e9\u9635\u4e58\u6cd5\uff1a\u4f8b\u5982 Strassen \u7b97\u6cd5\uff0c\u5b83\u662f\u5c06\u5927\u77e9\u9635\u4e58\u6cd5\u5206\u89e3\u4e3a\u591a\u4e2a\u5c0f\u77e9\u9635\u7684\u4e58\u6cd5\u548c\u52a0\u6cd5\u3002
            • \u6c49\u8bfa\u5854\u95ee\u9898\uff1a\u6c49\u8bfa\u5854\u95ee\u9898\u53ef\u4ee5\u89c6\u4e3a\u5178\u578b\u7684\u5206\u6cbb\u7b56\u7565\uff0c\u901a\u8fc7\u9012\u5f52\u89e3\u51b3\u3002
            • \u6c42\u89e3\u9006\u5e8f\u5bf9\uff1a\u5728\u4e00\u4e2a\u5e8f\u5217\u4e2d\uff0c\u5982\u679c\u524d\u9762\u7684\u6570\u5b57\u5927\u4e8e\u540e\u9762\u7684\u6570\u5b57\uff0c\u90a3\u4e48\u8fd9\u4e24\u4e2a\u6570\u5b57\u6784\u6210\u4e00\u4e2a\u9006\u5e8f\u5bf9\u3002\u6c42\u89e3\u9006\u5e8f\u5bf9\u95ee\u9898\u53ef\u4ee5\u901a\u8fc7\u5206\u6cbb\u7684\u601d\u60f3\uff0c\u501f\u52a9\u5f52\u5e76\u6392\u5e8f\u8fdb\u884c\u6c42\u89e3\u3002

            \u53e6\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u5728\u7b97\u6cd5\u548c\u6570\u636e\u7ed3\u6784\u7684\u8bbe\u8ba1\u4e2d\u5e94\u7528\u975e\u5e38\u5e7f\u6cdb\uff0c\u4e3e\u51e0\u4e2a\u5df2\u7ecf\u5b66\u8fc7\u7684\u4f8b\u5b50\uff1a

            • \u4e8c\u5206\u67e5\u627e\uff1a\u4e8c\u5206\u67e5\u627e\u662f\u5c06\u6709\u5e8f\u6570\u7ec4\u4ece\u4e2d\u70b9\u7d22\u5f15\u5206\u4e3a\u4e24\u90e8\u5206\uff0c\u7136\u540e\u6839\u636e\u76ee\u6807\u503c\u4e0e\u4e2d\u95f4\u5143\u7d20\u503c\u6bd4\u8f83\u7ed3\u679c\uff0c\u51b3\u5b9a\u6392\u9664\u54ea\u4e00\u534a\u533a\u95f4\uff0c\u7136\u540e\u5728\u5269\u4f59\u533a\u95f4\u6267\u884c\u76f8\u540c\u7684\u4e8c\u5206\u64cd\u4f5c\u3002
            • \u5f52\u5e76\u6392\u5e8f\uff1a\u6587\u7ae0\u5f00\u5934\u5df2\u4ecb\u7ecd\uff0c\u4e0d\u518d\u8d58\u8ff0\u3002
            • \u5feb\u901f\u6392\u5e8f\uff1a\u5feb\u901f\u6392\u5e8f\u662f\u9009\u53d6\u4e00\u4e2a\u57fa\u51c6\u503c\uff0c\u7136\u540e\u628a\u6570\u7ec4\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u4e00\u4e2a\u5b50\u6570\u7ec4\u7684\u5143\u7d20\u6bd4\u57fa\u51c6\u503c\u5c0f\uff0c\u53e6\u4e00\u5b50\u6570\u7ec4\u7684\u5143\u7d20\u6bd4\u57fa\u51c6\u503c\u5927\uff0c\u7136\u540e\u518d\u5bf9\u8fd9\u4e24\u90e8\u5206\u8fdb\u884c\u76f8\u540c\u7684\u5212\u5206\u64cd\u4f5c\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u53ea\u5269\u4e0b\u4e00\u4e2a\u5143\u7d20\u3002
            • \u6876\u6392\u5e8f\uff1a\u6876\u6392\u5e8f\u7684\u57fa\u672c\u601d\u60f3\u662f\u5c06\u6570\u636e\u5206\u6563\u5230\u591a\u4e2a\u6876\uff0c\u7136\u540e\u5bf9\u6bcf\u4e2a\u6876\u5185\u7684\u5143\u7d20\u8fdb\u884c\u6392\u5e8f\uff0c\u6700\u540e\u5c06\u5404\u4e2a\u6876\u7684\u5143\u7d20\u4f9d\u6b21\u53d6\u51fa\uff0c\u4ece\u800c\u5f97\u5230\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\u3002
            • \u6811\uff1a\u4f8b\u5982\u4e8c\u53c9\u641c\u7d22\u6811\u3001AVL \u6811\u3001\u7ea2\u9ed1\u6811\u3001B \u6811\u3001B+ \u6811\u7b49\uff0c\u5b83\u4eec\u7684\u67e5\u627e\u3001\u63d2\u5165\u548c\u5220\u9664\u7b49\u64cd\u4f5c\u90fd\u53ef\u4ee5\u89c6\u4e3a\u5206\u6cbb\u7684\u5e94\u7528\u3002
            • \u5806\uff1a\u5806\u662f\u4e00\u79cd\u7279\u6b8a\u7684\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u5176\u5404\u79cd\u64cd\u4f5c\uff0c\u5982\u63d2\u5165\u3001\u5220\u9664\u548c\u5806\u5316\uff0c\u5b9e\u9645\u4e0a\u90fd\u9690\u542b\u4e86\u5206\u6cbb\u7684\u601d\u60f3\u3002
            • \u54c8\u5e0c\u8868\uff1a\u867d\u7136\u54c8\u5e0c\u8868\u6765\u5e76\u4e0d\u76f4\u63a5\u5e94\u7528\u5206\u6cbb\uff0c\u4f46\u67d0\u4e9b\u54c8\u5e0c\u51b2\u7a81\u89e3\u51b3\u7b56\u7565\u95f4\u63a5\u5e94\u7528\u4e86\u5206\u6cbb\u7b56\u7565\uff0c\u4f8b\u5982\uff0c\u94fe\u5f0f\u5730\u5740\u4e2d\u7684\u957f\u94fe\u8868\u4f1a\u88ab\u8f6c\u5316\u4e3a\u7ea2\u9ed1\u6811\uff0c\u4ee5\u63d0\u5347\u67e5\u8be2\u6548\u7387\u3002

            \u53ef\u4ee5\u770b\u51fa\uff0c\u5206\u6cbb\u662f\u4e00\u79cd\u201c\u6da6\u7269\u7ec6\u65e0\u58f0\u201d\u7684\u7b97\u6cd5\u601d\u60f3\uff0c\u9690\u542b\u5728\u5404\u79cd\u7b97\u6cd5\u4e0e\u6570\u636e\u7ed3\u6784\u4e4b\u4e2d\u3002

            "},{"location":"chapter_divide_and_conquer/hanota_problem/","title":"12.4 \u00a0 \u6c49\u8bfa\u5854\u95ee\u9898","text":"

            \u5728\u5f52\u5e76\u6392\u5e8f\u548c\u6784\u5efa\u4e8c\u53c9\u6811\u4e2d\uff0c\u6211\u4eec\u90fd\u662f\u5c06\u539f\u95ee\u9898\u5206\u89e3\u4e3a\u4e24\u4e2a\u89c4\u6a21\u4e3a\u539f\u95ee\u9898\u4e00\u534a\u7684\u5b50\u95ee\u9898\u3002\u7136\u800c\u5bf9\u4e8e\u6c49\u8bfa\u5854\u95ee\u9898\uff0c\u6211\u4eec\u91c7\u7528\u4e0d\u540c\u7684\u5206\u89e3\u7b56\u7565\u3002

            Question

            \u7ed9\u5b9a\u4e09\u6839\u67f1\u5b50\uff0c\u8bb0\u4e3a A , B , C \u3002\u8d77\u59cb\u72b6\u6001\u4e0b\uff0c\u67f1\u5b50 A \u4e0a\u5957\u7740 \\(n\\) \u4e2a\u5706\u76d8\uff0c\u5b83\u4eec\u4ece\u4e0a\u5230\u4e0b\u6309\u7167\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u6392\u5217\u3002\u6211\u4eec\u7684\u4efb\u52a1\u662f\u8981\u628a\u8fd9 \\(n\\) \u4e2a\u5706\u76d8\u79fb\u5230\u67f1\u5b50 C \u4e0a\uff0c\u5e76\u4fdd\u6301\u5b83\u4eec\u7684\u539f\u6709\u987a\u5e8f\u4e0d\u53d8\u3002\u5728\u79fb\u52a8\u5706\u76d8\u7684\u8fc7\u7a0b\u4e2d\uff0c\u9700\u8981\u9075\u5b88\u4ee5\u4e0b\u89c4\u5219\uff1a

            1. \u5706\u76d8\u53ea\u80fd\u4ece\u4e00\u4e2a\u67f1\u5b50\u9876\u90e8\u62ff\u51fa\uff0c\u4ece\u53e6\u4e00\u4e2a\u67f1\u5b50\u9876\u90e8\u653e\u5165\u3002
            2. \u6bcf\u6b21\u53ea\u80fd\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\u3002
            3. \u5c0f\u5706\u76d8\u5fc5\u987b\u65f6\u523b\u4f4d\u4e8e\u5927\u5706\u76d8\u4e4b\u4e0a\u3002

            \u56fe\uff1a\u6c49\u8bfa\u5854\u95ee\u9898\u793a\u4f8b

            \u6211\u4eec\u5c06\u89c4\u6a21\u4e3a \\(i\\) \u7684\u6c49\u8bfa\u5854\u95ee\u9898\u8bb0\u505a \\(f(i)\\) \u3002\u4f8b\u5982 \\(f(3)\\) \u4ee3\u8868\u5c06 \\(3\\) \u4e2a\u5706\u76d8\u4ece A \u79fb\u52a8\u81f3 C \u7684\u6c49\u8bfa\u5854\u95ee\u9898\u3002

            "},{"location":"chapter_divide_and_conquer/hanota_problem/#1","title":"1. \u00a0 \u8003\u8651\u57fa\u672c\u60c5\u51b5","text":"

            \u5bf9\u4e8e\u95ee\u9898 \\(f(1)\\) \uff0c\u5373\u5f53\u53ea\u6709\u4e00\u4e2a\u5706\u76d8\u65f6\uff0c\u5219\u5c06\u5b83\u76f4\u63a5\u4ece A \u79fb\u52a8\u81f3 C \u5373\u53ef\u3002

            <1><2>

            \u56fe\uff1a\u89c4\u6a21\u4e3a 1 \u95ee\u9898\u7684\u89e3

            \u5bf9\u4e8e\u95ee\u9898 \\(f(2)\\) \uff0c\u5373\u5f53\u6709\u4e24\u4e2a\u5706\u76d8\u65f6\uff0c\u7531\u4e8e\u8981\u65f6\u523b\u6ee1\u8db3\u5c0f\u5706\u76d8\u5728\u5927\u5706\u76d8\u4e4b\u4e0a\uff0c\u56e0\u6b64\u9700\u8981\u501f\u52a9 B \u6765\u5b8c\u6210\u79fb\u52a8\uff0c\u5305\u62ec\u4e09\u6b65\uff1a

            1. \u5148\u5c06\u4e0a\u9762\u7684\u5c0f\u5706\u76d8\u4ece A \u79fb\u81f3 B \u3002
            2. \u518d\u5c06\u5927\u5706\u76d8\u4ece A \u79fb\u81f3 C \u3002
            3. \u6700\u540e\u5c06\u5c0f\u5706\u76d8\u4ece B \u79fb\u81f3 C \u3002

            \u89e3\u51b3\u95ee\u9898 \\(f(2)\\) \u7684\u8fc7\u7a0b\u53ef\u603b\u7ed3\u4e3a\uff1a\u5c06\u4e24\u4e2a\u5706\u76d8\u501f\u52a9 B \u4ece A \u79fb\u81f3 C \u3002\u5176\u4e2d\uff0cC \u79f0\u4e3a\u76ee\u6807\u67f1\u3001B \u79f0\u4e3a\u7f13\u51b2\u67f1\u3002

            <1><2><3><4>

            \u56fe\uff1a\u89c4\u6a21\u4e3a 2 \u95ee\u9898\u7684\u89e3

            "},{"location":"chapter_divide_and_conquer/hanota_problem/#2","title":"2. \u00a0 \u5b50\u95ee\u9898\u5206\u89e3","text":"

            \u5bf9\u4e8e\u95ee\u9898 \\(f(3)\\) \uff0c\u5373\u5f53\u6709\u4e09\u4e2a\u5706\u76d8\u65f6\uff0c\u60c5\u51b5\u53d8\u5f97\u7a0d\u5fae\u590d\u6742\u4e86\u4e00\u4e9b\u3002\u7531\u4e8e\u5df2\u77e5 \\(f(1)\\) \u548c \\(f(2)\\) \u7684\u89e3\uff0c\u56e0\u6b64\u53ef\u4ece\u5206\u6cbb\u89d2\u5ea6\u601d\u8003\uff0c\u5c06 A \u9876\u90e8\u7684\u4e24\u4e2a\u5706\u76d8\u770b\u505a\u4e00\u4e2a\u6574\u4f53\uff0c\u6267\u884c\u4ee5\u4e0b\u6b65\u9aa4\uff1a

            1. \u4ee4 B \u4e3a\u76ee\u6807\u67f1\u3001C \u4e3a\u7f13\u51b2\u67f1\uff0c\u5c06\u4e24\u4e2a\u5706\u76d8\u4ece A \u79fb\u52a8\u81f3 B \u3002
            2. \u5c06 A \u4e2d\u5269\u4f59\u7684\u4e00\u4e2a\u5706\u76d8\u4ece A \u76f4\u63a5\u79fb\u52a8\u81f3 C \u3002
            3. \u4ee4 C \u4e3a\u76ee\u6807\u67f1\u3001A \u4e3a\u7f13\u51b2\u67f1\uff0c\u5c06\u4e24\u4e2a\u5706\u76d8\u4ece B \u79fb\u52a8\u81f3 C \u3002

            \u8fd9\u6837\u4e09\u4e2a\u5706\u76d8\u5c31\u88ab\u987a\u5229\u5730\u4ece A \u79fb\u52a8\u81f3 C \u4e86\u3002

            <1><2><3><4>

            \u56fe\uff1a\u89c4\u6a21\u4e3a 3 \u95ee\u9898\u7684\u89e3

            \u672c\u8d28\u4e0a\u770b\uff0c\u6211\u4eec\u5c06\u95ee\u9898 \\(f(3)\\) \u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(2)\\) \u548c\u5b50\u95ee\u9898 \\(f(1)\\) \u3002\u6309\u987a\u5e8f\u89e3\u51b3\u8fd9\u4e09\u4e2a\u5b50\u95ee\u9898\u4e4b\u540e\uff0c\u539f\u95ee\u9898\u968f\u4e4b\u5f97\u5230\u89e3\u51b3\u3002\u8fd9\u8bf4\u660e\u5b50\u95ee\u9898\u662f\u72ec\u7acb\u7684\uff0c\u800c\u4e14\u89e3\u662f\u53ef\u4ee5\u5408\u5e76\u7684\u3002

            \u81f3\u6b64\uff0c\u6211\u4eec\u53ef\u603b\u7ed3\u51fa\u6c49\u8bfa\u5854\u95ee\u9898\u7684\u5206\u6cbb\u7b56\u7565\uff1a\u5c06\u539f\u95ee\u9898 \\(f(n)\\) \u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(n-1)\\) \u548c\u4e00\u4e2a\u5b50\u95ee\u9898 \\(f(1)\\) \u3002\u5b50\u95ee\u9898\u7684\u89e3\u51b3\u987a\u5e8f\u4e3a\uff1a

            1. \u5c06 \\(n-1\\) \u4e2a\u5706\u76d8\u501f\u52a9 C \u4ece A \u79fb\u81f3 B \u3002
            2. \u5c06\u5269\u4f59 \\(1\\) \u4e2a\u5706\u76d8\u4ece A \u76f4\u63a5\u79fb\u81f3 C \u3002
            3. \u5c06 \\(n-1\\) \u4e2a\u5706\u76d8\u501f\u52a9 A \u4ece B \u79fb\u81f3 C \u3002

            \u5bf9\u4e8e\u8fd9\u4e24\u4e2a\u5b50\u95ee\u9898 \\(f(n-1)\\) \uff0c\u53ef\u4ee5\u901a\u8fc7\u76f8\u540c\u7684\u65b9\u5f0f\u8fdb\u884c\u9012\u5f52\u5212\u5206\uff0c\u76f4\u81f3\u8fbe\u5230\u6700\u5c0f\u5b50\u95ee\u9898 \\(f(1)\\) \u3002\u800c \\(f(1)\\) \u7684\u89e3\u662f\u5df2\u77e5\u7684\uff0c\u53ea\u9700\u4e00\u6b21\u79fb\u52a8\u64cd\u4f5c\u5373\u53ef\u3002

            \u56fe\uff1a\u6c49\u8bfa\u5854\u95ee\u9898\u7684\u5206\u6cbb\u7b56\u7565

            "},{"location":"chapter_divide_and_conquer/hanota_problem/#3","title":"3. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u9012\u5f52\u51fd\u6570 dfs(i, src, buf, tar) \uff0c\u5b83\u7684\u4f5c\u7528\u662f\u5c06\u67f1 src \u9876\u90e8\u7684 \\(i\\) \u4e2a\u5706\u76d8\u501f\u52a9\u7f13\u51b2\u67f1 buf \u79fb\u52a8\u81f3\u76ee\u6807\u67f1 tar \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust hanota.java
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(List<Integer> src, List<Integer> tar) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nInteger pan = src.remove(src.size() - 1);\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.add(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nvoid dfs(int i, List<Integer> src, List<Integer> buf, List<Integer> tar) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i == 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nvoid solveHanota(List<Integer> A, List<Integer> B, List<Integer> C) {\nint n = A.size();\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.cpp
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(vector<int> &src, vector<int> &tar) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nint pan = src.back();\nsrc.pop_back();\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.push_back(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nvoid dfs(int i, vector<int> &src, vector<int> &buf, vector<int> &tar) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i == 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nvoid hanota(vector<int> &A, vector<int> &B, vector<int> &C) {\nint n = A.size();\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.py
            def move(src: list[int], tar: list[int]):\n\"\"\"\u79fb\u52a8\u4e00\u4e2a\u5706\u76d8\"\"\"\n# \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\npan = src.pop()\n# \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.append(pan)\ndef dfs(i: int, src: list[int], buf: list[int], tar: list[int]):\n\"\"\"\u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i)\"\"\"\n# \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif i == 1:\nmove(src, tar)\nreturn\n# \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf)\n# \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar)\n# \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar)\ndef hanota(A: list[int], B: list[int], C: list[int]):\n\"\"\"\u6c42\u89e3\u6c49\u8bfa\u5854\"\"\"\nn = len(A)\n# \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C)\n
            hanota.go
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunc move(src, tar *list.List) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\npan := src.Back()\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.PushBack(pan.Value)\n// \u79fb\u9664 src \u9876\u90e8\u5706\u76d8\nsrc.Remove(pan)\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nfunc dfsHanota(i int, src, buf, tar *list.List) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif i == 1 {\nmove(src, tar)\nreturn\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfsHanota(i-1, src, tar, buf)\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar)\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfsHanota(i-1, buf, src, tar)\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nfunc hanota(A, B, C *list.List) {\nn := A.Len()\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfsHanota(n, A, B, C)\n}\n
            hanota.js
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunction move(src, tar) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nconst pan = src.pop();\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.push(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nfunction dfs(i, src, buf, tar) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i === 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nfunction hanota(A, B, C) {\nconst n = A.length;\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.ts
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfunction move(src: number[], tar: number[]): void {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nconst pan = src.pop();\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.push(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nfunction dfs(i: number, src: number[], buf: number[], tar: number[]): void {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i === 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nfunction hanota(A: number[], B: number[], C: number[]): void {\nconst n = A.length;\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.c
            [class]{}-[func]{move}\n[class]{}-[func]{dfs}\n[class]{}-[func]{hanota}\n
            hanota.cs
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(List<int> src, List<int> tar) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nint pan = src[^1];\nsrc.RemoveAt(src.Count - 1);\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.Add(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nvoid dfs(int i, List<int> src, List<int> buf, List<int> tar) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i == 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nvoid solveHanota(List<int> A, List<int> B, List<int> C) {\nint n = A.Count;\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.swift
            [class]{}-[func]{move}\n[class]{}-[func]{dfs}\n[class]{}-[func]{hanota}\n
            hanota.zig
            [class]{}-[func]{move}\n[class]{}-[func]{dfs}\n[class]{}-[func]{hanota}\n
            hanota.dart
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nvoid move(List<int> src, List<int> tar) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nint pan = src.removeLast();\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.add(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nvoid dfs(int i, List<int> src, List<int> buf, List<int> tar) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif (i == 1) {\nmove(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nvoid hanota(List<int> A, List<int> B, List<int> C) {\nint n = A.length;\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n
            hanota.rs
            /* \u79fb\u52a8\u4e00\u4e2a\u5706\u76d8 */\nfn move_pan(src: &mut Vec<i32>, tar: &mut Vec<i32>) {\n// \u4ece src \u9876\u90e8\u62ff\u51fa\u4e00\u4e2a\u5706\u76d8\nlet pan = src.remove(src.len() - 1);\n// \u5c06\u5706\u76d8\u653e\u5165 tar \u9876\u90e8\ntar.push(pan);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854\uff1a\u95ee\u9898 f(i) */\nfn dfs(i: i32, src: &mut Vec<i32>, buf: &mut Vec<i32>, tar: &mut Vec<i32>) {\n// \u82e5 src \u53ea\u5269\u4e0b\u4e00\u4e2a\u5706\u76d8\uff0c\u5219\u76f4\u63a5\u5c06\u5176\u79fb\u5230 tar\nif i == 1 {\nmove_pan(src, tar);\nreturn;\n}\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 src \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 tar \u79fb\u5230 buf\ndfs(i - 1, src, tar, buf);\n// \u5b50\u95ee\u9898 f(1) \uff1a\u5c06 src \u5269\u4f59\u4e00\u4e2a\u5706\u76d8\u79fb\u5230 tar\nmove_pan(src, tar);\n// \u5b50\u95ee\u9898 f(i-1) \uff1a\u5c06 buf \u9876\u90e8 i-1 \u4e2a\u5706\u76d8\u501f\u52a9 src \u79fb\u5230 tar\ndfs(i - 1, buf, src, tar);\n}\n/* \u6c42\u89e3\u6c49\u8bfa\u5854 */\nfn hanota(A: &mut Vec<i32>, B: &mut Vec<i32>, C: &mut Vec<i32>) {\nlet n = A.len() as i32;\n// \u5c06 A \u9876\u90e8 n \u4e2a\u5706\u76d8\u501f\u52a9 B \u79fb\u5230 C\ndfs(n, A, B, C);\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u6c49\u8bfa\u5854\u95ee\u9898\u5f62\u6210\u4e00\u4e2a\u9ad8\u5ea6\u4e3a \\(n\\) \u7684\u9012\u5f52\u6811\uff0c\u6bcf\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u5b50\u95ee\u9898\u3001\u5bf9\u5e94\u4e00\u4e2a\u5f00\u542f\u7684 dfs() \u51fd\u6570\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            \u56fe\uff1a\u6c49\u8bfa\u5854\u95ee\u9898\u7684\u9012\u5f52\u6811

            Quote

            \u6c49\u8bfa\u5854\u95ee\u9898\u6e90\u81ea\u4e00\u79cd\u53e4\u8001\u7684\u4f20\u8bf4\u6545\u4e8b\u3002\u5728\u53e4\u5370\u5ea6\u7684\u4e00\u4e2a\u5bfa\u5e99\u91cc\uff0c\u50e7\u4fa3\u4eec\u6709\u4e09\u6839\u9ad8\u5927\u7684\u94bb\u77f3\u67f1\u5b50\uff0c\u4ee5\u53ca \\(64\\) \u4e2a\u5927\u5c0f\u4e0d\u4e00\u7684\u91d1\u5706\u76d8\u3002\u50e7\u4fa3\u4eec\u4e0d\u65ad\u5730\u79fb\u52a8\u539f\u76d8\uff0c\u4ed6\u4eec\u76f8\u4fe1\u5728\u6700\u540e\u4e00\u4e2a\u5706\u76d8\u88ab\u6b63\u786e\u653e\u7f6e\u7684\u90a3\u4e00\u523b\uff0c\u8fd9\u4e2a\u4e16\u754c\u5c31\u4f1a\u7ed3\u675f\u3002

            \u7136\u800c\u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u5373\u4f7f\u50e7\u4fa3\u4eec\u6bcf\u79d2\u949f\u79fb\u52a8\u4e00\u6b21\uff0c\u603b\u5171\u9700\u8981\u5927\u7ea6 \\(2^{64} \\approx 1.84\u00d710^{19}\\) \u79d2\uff0c\u5408\u7ea6 \\(5850\\) \u4ebf\u5e74\uff0c\u8fdc\u8fdc\u8d85\u8fc7\u4e86\u73b0\u5728\u5bf9\u5b87\u5b99\u5e74\u9f84\u7684\u4f30\u8ba1\u3002\u6240\u4ee5\uff0c\u5018\u82e5\u8fd9\u4e2a\u4f20\u8bf4\u662f\u771f\u7684\uff0c\u6211\u4eec\u5e94\u8be5\u4e0d\u9700\u8981\u62c5\u5fc3\u4e16\u754c\u672b\u65e5\u7684\u5230\u6765\u3002

            "},{"location":"chapter_divide_and_conquer/summary/","title":"12.5 \u00a0 \u5c0f\u7ed3","text":"
            • \u5206\u6cbb\u7b97\u6cd5\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u7b97\u6cd5\u8bbe\u8ba1\u7b56\u7565\uff0c\u5305\u62ec\u5206\uff08\u5212\u5206\uff09\u548c\u6cbb\uff08\u5408\u5e76\uff09\u4e24\u4e2a\u9636\u6bb5\uff0c\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u5b9e\u73b0\u3002
            • \u5224\u65ad\u662f\u5426\u662f\u5206\u6cbb\u7b97\u6cd5\u95ee\u9898\u7684\u4f9d\u636e\u5305\u62ec\uff1a\u95ee\u9898\u80fd\u5426\u88ab\u5206\u89e3\u3001\u5b50\u95ee\u9898\u662f\u5426\u72ec\u7acb\u3001\u5b50\u95ee\u9898\u662f\u5426\u53ef\u4ee5\u88ab\u5408\u5e76\u3002
            • \u5f52\u5e76\u6392\u5e8f\u662f\u5206\u6cbb\u7b56\u7565\u7684\u5178\u578b\u5e94\u7528\uff0c\u5176\u9012\u5f52\u5730\u5c06\u6570\u7ec4\u5212\u5206\u4e3a\u7b49\u957f\u7684\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u76f4\u5230\u53ea\u5269\u4e00\u4e2a\u5143\u7d20\u65f6\u5f00\u59cb\u9010\u5c42\u5408\u5e76\uff0c\u4ece\u800c\u5b8c\u6210\u6392\u5e8f\u3002
            • \u5f15\u5165\u5206\u6cbb\u7b56\u7565\u5f80\u5f80\u53ef\u4ee5\u5e26\u6765\u7b97\u6cd5\u6548\u7387\u7684\u63d0\u5347\u3002\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u7b56\u7565\u51cf\u5c11\u4e86\u64cd\u4f5c\u6570\u91cf\uff1b\u53e6\u4e00\u65b9\u9762\uff0c\u5206\u6cbb\u540e\u6709\u5229\u4e8e\u7cfb\u7edf\u7684\u5e76\u884c\u4f18\u5316\u3002
            • \u5206\u6cbb\u65e2\u53ef\u4ee5\u89e3\u51b3\u8bb8\u591a\u7b97\u6cd5\u95ee\u9898\uff0c\u4e5f\u5e7f\u6cdb\u5e94\u7528\u4e8e\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u8bbe\u8ba1\u4e2d\uff0c\u5904\u5904\u53ef\u89c1\u5176\u8eab\u5f71\u3002
            • \u76f8\u8f83\u4e8e\u66b4\u529b\u641c\u7d22\uff0c\u81ea\u9002\u5e94\u641c\u7d22\u6548\u7387\u66f4\u9ad8\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u7684\u641c\u7d22\u7b97\u6cd5\u901a\u5e38\u90fd\u662f\u57fa\u4e8e\u5206\u6cbb\u7b56\u7565\u5b9e\u73b0\u7684\u3002
            • \u4e8c\u5206\u67e5\u627e\u662f\u5206\u6cbb\u601d\u60f3\u7684\u53e6\u4e00\u4e2a\u5178\u578b\u5e94\u7528\uff0c\u5b83\u4e0d\u5305\u542b\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u8fdb\u884c\u5408\u5e76\u7684\u6b65\u9aa4\u3002\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u9012\u5f52\u5206\u6cbb\u5b9e\u73b0\u4e8c\u5206\u67e5\u627e\u3002
            • \u5728\u6784\u5efa\u4e8c\u53c9\u6811\u95ee\u9898\u4e2d\uff0c\u6784\u5efa\u6811\uff08\u539f\u95ee\u9898\uff09\u53ef\u4ee5\u88ab\u5212\u5206\u4e3a\u6784\u5efa\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\uff08\u5b50\u95ee\u9898\uff09\uff0c\u5176\u53ef\u4ee5\u901a\u8fc7\u5212\u5206\u524d\u5e8f\u904d\u5386\u548c\u4e2d\u5e8f\u904d\u5386\u7684\u7d22\u5f15\u533a\u95f4\u6765\u5b9e\u73b0\u3002
            • \u5728\u6c49\u8bfa\u5854\u95ee\u9898\u4e2d\uff0c\u4e00\u4e2a\u89c4\u6a21\u4e3a \\(n\\) \u7684\u95ee\u9898\u53ef\u4ee5\u88ab\u5212\u5206\u4e3a\u4e24\u4e2a\u89c4\u6a21\u4e3a \\(n-1\\) \u7684\u5b50\u95ee\u9898\u548c\u4e00\u4e2a\u89c4\u6a21\u4e3a \\(1\\) \u7684\u5b50\u95ee\u9898\u3002\u6309\u987a\u5e8f\u89e3\u51b3\u8fd9\u4e09\u4e2a\u5b50\u95ee\u9898\u540e\uff0c\u539f\u95ee\u9898\u968f\u4e4b\u5f97\u5230\u89e3\u51b3\u3002
            "},{"location":"chapter_dynamic_programming/","title":"\u7b2c 14 \u7ae0 \u00a0 \u52a8\u6001\u89c4\u5212","text":"

            Abstract

            \u5c0f\u6eaa\u6c47\u5165\u6cb3\u6d41\uff0c\u6c5f\u6cb3\u6c47\u5165\u5927\u6d77\u3002

            \u52a8\u6001\u89c4\u5212\u5c06\u5c0f\u95ee\u9898\u7684\u89e3\u6c47\u96c6\u6210\u5927\u95ee\u9898\u7684\u7b54\u6848\uff0c\u4e00\u6b65\u6b65\u5f15\u9886\u6211\u4eec\u8d70\u5411\u89e3\u51b3\u95ee\u9898\u7684\u5f7c\u5cb8\u3002

            "},{"location":"chapter_dynamic_programming/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 14.1 \u00a0 \u521d\u63a2\u52a8\u6001\u89c4\u5212
            • 14.2 \u00a0 DP \u95ee\u9898\u7279\u6027
            • 14.3 \u00a0 DP \u89e3\u9898\u601d\u8def
            • 14.4 \u00a0 0-1 \u80cc\u5305\u95ee\u9898
            • 14.5 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898
            • 14.6 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898
            • 14.7 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_dynamic_programming/dp_problem_features/","title":"14.2 \u00a0 \u52a8\u6001\u89c4\u5212\u95ee\u9898\u7279\u6027","text":"

            \u5728\u4e0a\u8282\u4e2d\uff0c\u6211\u4eec\u5b66\u4e60\u4e86\u52a8\u6001\u89c4\u5212\u662f\u5982\u4f55\u901a\u8fc7\u5b50\u95ee\u9898\u5206\u89e3\u6765\u6c42\u89e3\u95ee\u9898\u7684\u3002\u5b9e\u9645\u4e0a\uff0c\u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u901a\u7528\u7684\u7b97\u6cd5\u601d\u8def\uff0c\u5728\u5206\u6cbb\u3001\u52a8\u6001\u89c4\u5212\u3001\u56de\u6eaf\u4e2d\u7684\u4fa7\u91cd\u70b9\u4e0d\u540c\uff1a

            • \u5206\u6cbb\u7b97\u6cd5\u9012\u5f52\u5730\u5c06\u539f\u95ee\u9898\u5212\u5206\u4e3a\u591a\u4e2a\u76f8\u4e92\u72ec\u7acb\u7684\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u6700\u5c0f\u5b50\u95ee\u9898\uff0c\u5e76\u5728\u56de\u6eaf\u4e2d\u5408\u5e76\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u6700\u7ec8\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002
            • \u52a8\u6001\u89c4\u5212\u4e5f\u5bf9\u95ee\u9898\u8fdb\u884c\u9012\u5f52\u5206\u89e3\uff0c\u4f46\u4e0e\u5206\u6cbb\u7b97\u6cd5\u7684\u4e3b\u8981\u533a\u522b\u662f\uff0c\u52a8\u6001\u89c4\u5212\u4e2d\u7684\u5b50\u95ee\u9898\u662f\u76f8\u4e92\u4f9d\u8d56\u7684\uff0c\u5728\u5206\u89e3\u8fc7\u7a0b\u4e2d\u4f1a\u51fa\u73b0\u8bb8\u591a\u91cd\u53e0\u5b50\u95ee\u9898\u3002
            • \u56de\u6eaf\u7b97\u6cd5\u5728\u5c1d\u8bd5\u548c\u56de\u9000\u4e2d\u7a77\u4e3e\u6240\u6709\u53ef\u80fd\u7684\u89e3\uff0c\u5e76\u901a\u8fc7\u526a\u679d\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u641c\u7d22\u5206\u652f\u3002\u539f\u95ee\u9898\u7684\u89e3\u7531\u4e00\u7cfb\u5217\u51b3\u7b56\u6b65\u9aa4\u6784\u6210\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6bcf\u4e2a\u51b3\u7b56\u6b65\u9aa4\u4e4b\u524d\u7684\u5b50\u5e8f\u5217\u770b\u4f5c\u4e3a\u4e00\u4e2a\u5b50\u95ee\u9898\u3002

            \u5b9e\u9645\u4e0a\uff0c\u52a8\u6001\u89c4\u5212\u5e38\u7528\u6765\u6c42\u89e3\u6700\u4f18\u5316\u95ee\u9898\uff0c\u5b83\u4eec\u4e0d\u4ec5\u5305\u542b\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u8fd8\u5177\u6709\u53e6\u5916\u4e24\u5927\u7279\u6027\uff1a\u6700\u4f18\u5b50\u7ed3\u6784\u3001\u65e0\u540e\u6548\u6027\u3002

            "},{"location":"chapter_dynamic_programming/dp_problem_features/#1421","title":"14.2.1 \u00a0 \u6700\u4f18\u5b50\u7ed3\u6784","text":"

            \u6211\u4eec\u5bf9\u722c\u697c\u68af\u95ee\u9898\u7a0d\u4f5c\u6539\u52a8\uff0c\u4f7f\u4e4b\u66f4\u52a0\u9002\u5408\u5c55\u793a\u6700\u4f18\u5b50\u7ed3\u6784\u6982\u5ff5\u3002

            \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7

            \u7ed9\u5b9a\u4e00\u4e2a\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u6bcf\u4e00\u9636\u697c\u68af\u4e0a\u90fd\u8d34\u6709\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\uff0c\u8868\u793a\u4f60\u5728\u8be5\u53f0\u9636\u6240\u9700\u8981\u4ed8\u51fa\u7684\u4ee3\u4ef7\u3002\u7ed9\u5b9a\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\u6570\u7ec4 \\(cost\\) \uff0c\u5176\u4e2d \\(cost[i]\\) \u8868\u793a\u5728\u7b2c \\(i\\) \u4e2a\u53f0\u9636\u9700\u8981\u4ed8\u51fa\u7684\u4ee3\u4ef7\uff0c\\(cost[0]\\) \u4e3a\u5730\u9762\u8d77\u59cb\u70b9\u3002\u8bf7\u8ba1\u7b97\u6700\u5c11\u9700\u8981\u4ed8\u51fa\u591a\u5c11\u4ee3\u4ef7\u624d\u80fd\u5230\u8fbe\u9876\u90e8\uff1f

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u82e5\u7b2c \\(1\\) , \\(2\\) , \\(3\\) \u9636\u7684\u4ee3\u4ef7\u5206\u522b\u4e3a \\(1\\) , \\(10\\) , \\(1\\) \uff0c\u5219\u4ece\u5730\u9762\u722c\u5230\u7b2c \\(3\\) \u9636\u7684\u6700\u5c0f\u4ee3\u4ef7\u4e3a \\(2\\) \u3002

            \u56fe\uff1a\u722c\u5230\u7b2c 3 \u9636\u7684\u6700\u5c0f\u4ee3\u4ef7

            \u8bbe \\(dp[i]\\) \u4e3a\u722c\u5230\u7b2c \\(i\\) \u9636\u7d2f\u8ba1\u4ed8\u51fa\u7684\u4ee3\u4ef7\uff0c\u7531\u4e8e\u7b2c \\(i\\) \u9636\u53ea\u53ef\u80fd\u4ece \\(i - 1\\) \u9636\u6216 \\(i - 2\\) \u9636\u8d70\u6765\uff0c\u56e0\u6b64 \\(dp[i]\\) \u53ea\u53ef\u80fd\u7b49\u4e8e \\(dp[i - 1] + cost[i]\\) \u6216 \\(dp[i - 2] + cost[i]\\) \u3002\u4e3a\u4e86\u5c3d\u53ef\u80fd\u51cf\u5c11\u4ee3\u4ef7\uff0c\u6211\u4eec\u5e94\u8be5\u9009\u62e9\u4e24\u8005\u4e2d\u8f83\u5c0f\u7684\u90a3\u4e00\u4e2a\uff0c\u5373\uff1a

            \\[ dp[i] = \\min(dp[i-1], dp[i-2]) + cost[i] \\]

            \u8fd9\u4fbf\u53ef\u4ee5\u5f15\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u542b\u4e49\uff1a\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u662f\u4ece\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6784\u5efa\u5f97\u6765\u7684\u3002

            \u672c\u9898\u663e\u7136\u5177\u6709\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u6211\u4eec\u4ece\u4e24\u4e2a\u5b50\u95ee\u9898\u6700\u4f18\u89e3 \\(dp[i-1]\\) , \\(dp[i-2]\\) \u4e2d\u6311\u9009\u51fa\u8f83\u4f18\u7684\u90a3\u4e00\u4e2a\uff0c\u5e76\u7528\u5b83\u6784\u5efa\u51fa\u539f\u95ee\u9898 \\(dp[i]\\) \u7684\u6700\u4f18\u89e3\u3002

            \u90a3\u4e48\uff0c\u4e0a\u8282\u7684\u722c\u697c\u68af\u9898\u76ee\u6709\u6ca1\u6709\u6700\u4f18\u5b50\u7ed3\u6784\u5462\uff1f\u5b83\u7684\u76ee\u6807\u662f\u6c42\u89e3\u65b9\u6848\u6570\u91cf\uff0c\u770b\u4f3c\u662f\u4e00\u4e2a\u8ba1\u6570\u95ee\u9898\uff0c\u4f46\u5982\u679c\u6362\u4e00\u79cd\u95ee\u6cd5\uff1a\u201c\u6c42\u89e3\u6700\u5927\u65b9\u6848\u6570\u91cf\u201d\u3002\u6211\u4eec\u610f\u5916\u5730\u53d1\u73b0\uff0c\u867d\u7136\u9898\u76ee\u4fee\u6539\u524d\u540e\u662f\u7b49\u4ef7\u7684\uff0c\u4f46\u6700\u4f18\u5b50\u7ed3\u6784\u6d6e\u73b0\u51fa\u6765\u4e86\uff1a\u7b2c \\(n\\) \u9636\u6700\u5927\u65b9\u6848\u6570\u91cf\u7b49\u4e8e\u7b2c \\(n-1\\) \u9636\u548c\u7b2c \\(n-2\\) \u9636\u6700\u5927\u65b9\u6848\u6570\u91cf\u4e4b\u548c\u3002\u6240\u4ee5\u8bf4\uff0c\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u89e3\u91ca\u65b9\u5f0f\u6bd4\u8f83\u7075\u6d3b\uff0c\u5728\u4e0d\u540c\u95ee\u9898\u4e2d\u4f1a\u6709\u4e0d\u540c\u7684\u542b\u4e49\u3002

            \u6839\u636e\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u4ee5\u53ca\u521d\u59cb\u72b6\u6001 \\(dp[1] = cost[1]\\) , \\(dp[2] = cost[2]\\) \uff0c\u53ef\u4ee5\u5f97\u51fa\u52a8\u6001\u89c4\u5212\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_cost_climbing_stairs_dp.java
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(int[] cost) {\nint n = cost.length - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[] dp = new int[n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];\n}\nreturn dp[n];\n}\n
            min_cost_climbing_stairs_dp.cpp
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(vector<int> &cost) {\nint n = cost.size() - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvector<int> dp(n + 1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];\n}\nreturn dp[n];\n}\n
            min_cost_climbing_stairs_dp.py
            def min_cost_climbing_stairs_dp(cost: list[int]) -> int:\n\"\"\"\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(cost) - 1\nif n == 1 or n == 2:\nreturn cost[n]\n# \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp = [0] * (n + 1)\n# \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1], dp[2] = cost[1], cost[2]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in range(3, n + 1):\ndp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]\nreturn dp[n]\n
            min_cost_climbing_stairs_dp.go
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDP(cost []int) int {\nn := len(cost) - 1\nif n == 1 || n == 2 {\nreturn cost[n]\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp := make([]int, n+1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1]\ndp[2] = cost[2]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i := 3; i <= n; i++ {\ndp[i] = int(math.Min(float64(dp[i-1]), float64(dp[i-2]+cost[i])))\n}\nreturn dp[n]\n}\n
            min_cost_climbing_stairs_dp.js
            [class]{}-[func]{minCostClimbingStairsDP}\n
            min_cost_climbing_stairs_dp.ts
            [class]{}-[func]{minCostClimbingStairsDP}\n
            min_cost_climbing_stairs_dp.c
            [class]{}-[func]{minCostClimbingStairsDP}\n
            min_cost_climbing_stairs_dp.cs
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(int[] cost) {\nint n = cost.Length - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[] dp = new int[n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = Math.Min(dp[i - 1], dp[i - 2]) + cost[i];\n}\nreturn dp[n];\n}\n
            min_cost_climbing_stairs_dp.swift
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDP(cost: [Int]) -> Int {\nlet n = cost.count - 1\nif n == 1 || n == 2 {\nreturn cost[n]\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = Array(repeating: 0, count: n + 1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1\ndp[2] = 2\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in stride(from: 3, through: n, by: 1) {\ndp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]\n}\nreturn dp[n]\n}\n
            min_cost_climbing_stairs_dp.zig
            // \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212\nfn minCostClimbingStairsDP(comptime cost: []i32) i32 {\ncomptime var n = cost.len - 1;\nif (n == 1 or n == 2) {\nreturn cost[n];\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = [_]i32{-1} ** (n + 1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (3..n + 1) |i| {\ndp[i] = @min(dp[i - 1], dp[i - 2]) + cost[i];\n}\nreturn dp[n];\n}\n
            min_cost_climbing_stairs_dp.dart
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDP(List<int> cost) {\nint n = cost.length - 1;\nif (n == 1 || n == 2) return cost[n];\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nList<int> dp = List.filled(n + 1, 0);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];\n}\nreturn dp[n];\n}\n
            min_cost_climbing_stairs_dp.rs
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u52a8\u6001\u89c4\u5212 */\nfn min_cost_climbing_stairs_dp(cost: &[i32]) -> i32 {\nlet n = cost.len() - 1;\nif n == 1 || n == 2 { return cost[n]; }\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nlet mut dp = vec![-1; n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = cost[1];\ndp[2] = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in 3..=n {\ndp[i] = cmp::min(dp[i - 1], dp[i - 2]) + cost[i];\n}\ndp[n]\n}\n

            \u56fe\uff1a\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            \u672c\u9898\u4e5f\u53ef\u4ee5\u8fdb\u884c\u72b6\u6001\u538b\u7f29\uff0c\u5c06\u4e00\u7ef4\u538b\u7f29\u81f3\u96f6\u7ef4\uff0c\u4f7f\u5f97\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u4f4e\u81f3 \\(O(1)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_cost_climbing_stairs_dp.java
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(int[] cost) {\nint n = cost.length - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\nint a = cost[1], b = cost[2];\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = Math.min(a, tmp) + cost[i];\na = tmp;\n}\nreturn b;\n}\n
            min_cost_climbing_stairs_dp.cpp
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(vector<int> &cost) {\nint n = cost.size() - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\nint a = cost[1], b = cost[2];\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = min(a, tmp) + cost[i];\na = tmp;\n}\nreturn b;\n}\n
            min_cost_climbing_stairs_dp.py
            def min_cost_climbing_stairs_dp_comp(cost: list[int]) -> int:\n\"\"\"\u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(cost) - 1\nif n == 1 or n == 2:\nreturn cost[n]\na, b = cost[1], cost[2]\nfor i in range(3, n + 1):\na, b = b, min(a, b) + cost[i]\nreturn b\n
            min_cost_climbing_stairs_dp.go
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDPComp(cost []int) int {\nn := len(cost) - 1\nif n == 1 || n == 2 {\nreturn cost[n]\n}\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\na, b := cost[1], cost[2]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i := 3; i <= n; i++ {\ntmp := b\nb = int(math.Min(float64(a), float64(tmp+cost[i])))\na = tmp\n}\nreturn b\n}\n
            min_cost_climbing_stairs_dp.js
            [class]{}-[func]{minCostClimbingStairsDPComp}\n
            min_cost_climbing_stairs_dp.ts
            [class]{}-[func]{minCostClimbingStairsDPComp}\n
            min_cost_climbing_stairs_dp.c
            [class]{}-[func]{minCostClimbingStairsDPComp}\n
            min_cost_climbing_stairs_dp.cs
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(int[] cost) {\nint n = cost.Length - 1;\nif (n == 1 || n == 2)\nreturn cost[n];\nint a = cost[1], b = cost[2];\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = Math.Min(a, tmp) + cost[i];\na = tmp;\n}\nreturn b;\n}\n
            min_cost_climbing_stairs_dp.swift
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minCostClimbingStairsDPComp(cost: [Int]) -> Int {\nlet n = cost.count - 1\nif n == 1 || n == 2 {\nreturn cost[n]\n}\nvar (a, b) = (cost[1], cost[2])\nfor i in stride(from: 3, through: n, by: 1) {\n(a, b) = (b, min(a, b) + cost[i])\n}\nreturn b\n}\n
            min_cost_climbing_stairs_dp.zig
            // \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn minCostClimbingStairsDPComp(cost: []i32) i32 {\nvar n = cost.len - 1;\nif (n == 1 or n == 2) {\nreturn cost[n];\n}\nvar a = cost[1];\nvar b = cost[2];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (3..n + 1) |i| {\nvar tmp = b;\nb = @min(a, tmp) + cost[i];\na = tmp;\n}\nreturn b;\n}\n
            min_cost_climbing_stairs_dp.dart
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minCostClimbingStairsDPComp(List<int> cost) {\nint n = cost.length - 1;\nif (n == 1 || n == 2) return cost[n];\nint a = cost[1], b = cost[2];\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = min(a, tmp) + cost[i];\na = tmp;\n}\nreturn b;\n}\n
            min_cost_climbing_stairs_dp.rs
            /* \u722c\u697c\u68af\u6700\u5c0f\u4ee3\u4ef7\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn min_cost_climbing_stairs_dp_comp(cost: &[i32]) -> i32 {\nlet n = cost.len() - 1;\nif n == 1 || n == 2 { return cost[n] };\nlet (mut a, mut b) = (cost[1], cost[2]);\nfor i in 3..=n {\nlet tmp = b;\nb = cmp::min(a, tmp) + cost[i];\na = tmp;\n}\nb\n}\n
            "},{"location":"chapter_dynamic_programming/dp_problem_features/#1422","title":"14.2.2 \u00a0 \u65e0\u540e\u6548\u6027","text":"

            \u65e0\u540e\u6548\u6027\u662f\u52a8\u6001\u89c4\u5212\u80fd\u591f\u6709\u6548\u89e3\u51b3\u95ee\u9898\u7684\u91cd\u8981\u7279\u6027\u4e4b\u4e00\uff0c\u5b9a\u4e49\u4e3a\uff1a\u7ed9\u5b9a\u4e00\u4e2a\u786e\u5b9a\u7684\u72b6\u6001\uff0c\u5b83\u7684\u672a\u6765\u53d1\u5c55\u53ea\u4e0e\u5f53\u524d\u72b6\u6001\u6709\u5173\uff0c\u800c\u4e0e\u5f53\u524d\u72b6\u6001\u8fc7\u53bb\u6240\u7ecf\u5386\u8fc7\u7684\u6240\u6709\u72b6\u6001\u65e0\u5173\u3002

            \u4ee5\u722c\u697c\u68af\u95ee\u9898\u4e3a\u4f8b\uff0c\u7ed9\u5b9a\u72b6\u6001 \\(i\\) \uff0c\u5b83\u4f1a\u53d1\u5c55\u51fa\u72b6\u6001 \\(i+1\\) \u548c\u72b6\u6001 \\(i+2\\) \uff0c\u5206\u522b\u5bf9\u5e94\u8df3 \\(1\\) \u6b65\u548c\u8df3 \\(2\\) \u6b65\u3002\u5728\u505a\u51fa\u8fd9\u4e24\u79cd\u9009\u62e9\u65f6\uff0c\u6211\u4eec\u65e0\u987b\u8003\u8651\u72b6\u6001 \\(i\\) \u4e4b\u524d\u7684\u72b6\u6001\uff0c\u5b83\u4eec\u5bf9\u72b6\u6001 \\(i\\) \u7684\u672a\u6765\u6ca1\u6709\u5f71\u54cd\u3002

            \u7136\u800c\uff0c\u5982\u679c\u6211\u4eec\u5411\u722c\u697c\u68af\u95ee\u9898\u6dfb\u52a0\u4e00\u4e2a\u7ea6\u675f\uff0c\u60c5\u51b5\u5c31\u4e0d\u4e00\u6837\u4e86\u3002

            \u5e26\u7ea6\u675f\u722c\u697c\u68af

            \u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u4f46\u4e0d\u80fd\u8fde\u7eed\u4e24\u8f6e\u8df3 \\(1\\) \u9636\uff0c\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\u3002

            \u4f8b\u5982\uff0c\u722c\u4e0a\u7b2c \\(3\\) \u9636\u4ec5\u5269 \\(2\\) \u79cd\u53ef\u884c\u65b9\u6848\uff0c\u5176\u4e2d\u8fde\u7eed\u4e09\u6b21\u8df3 \\(1\\) \u9636\u7684\u65b9\u6848\u4e0d\u6ee1\u8db3\u7ea6\u675f\u6761\u4ef6\uff0c\u56e0\u6b64\u88ab\u820d\u5f03\u3002

            \u56fe\uff1a\u5e26\u7ea6\u675f\u722c\u5230\u7b2c 3 \u9636\u7684\u65b9\u6848\u6570\u91cf

            \u5728\u8be5\u95ee\u9898\u4e2d\uff0c\u5982\u679c\u4e0a\u4e00\u8f6e\u662f\u8df3 \\(1\\) \u9636\u4e0a\u6765\u7684\uff0c\u90a3\u4e48\u4e0b\u4e00\u8f6e\u5c31\u5fc5\u987b\u8df3 \\(2\\) \u9636\u3002\u8fd9\u610f\u5473\u7740\uff0c\u4e0b\u4e00\u6b65\u9009\u62e9\u4e0d\u80fd\u7531\u5f53\u524d\u72b6\u6001\uff08\u5f53\u524d\u697c\u68af\u9636\u6570\uff09\u72ec\u7acb\u51b3\u5b9a\uff0c\u8fd8\u548c\u524d\u4e00\u4e2a\u72b6\u6001\uff08\u4e0a\u8f6e\u697c\u68af\u9636\u6570\uff09\u6709\u5173\u3002

            \u4e0d\u96be\u53d1\u73b0\uff0c\u6b64\u95ee\u9898\u5df2\u4e0d\u6ee1\u8db3\u65e0\u540e\u6548\u6027\uff0c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b \\(dp[i] = dp[i-1] + dp[i-2]\\) \u4e5f\u5931\u6548\u4e86\uff0c\u56e0\u4e3a \\(dp[i-1]\\) \u4ee3\u8868\u672c\u8f6e\u8df3 \\(1\\) \u9636\uff0c\u4f46\u5176\u4e2d\u5305\u542b\u4e86\u8bb8\u591a\u201c\u4e0a\u4e00\u8f6e\u8df3 \\(1\\) \u9636\u4e0a\u6765\u7684\u201d\u65b9\u6848\uff0c\u800c\u4e3a\u4e86\u6ee1\u8db3\u7ea6\u675f\uff0c\u6211\u4eec\u5c31\u4e0d\u80fd\u5c06 \\(dp[i-1]\\) \u76f4\u63a5\u8ba1\u5165 \\(dp[i]\\) \u4e2d\u3002

            \u4e3a\u6b64\uff0c\u6211\u4eec\u9700\u8981\u6269\u5c55\u72b6\u6001\u5b9a\u4e49\uff1a\u72b6\u6001 \\([i, j]\\) \u8868\u793a\u5904\u5728\u7b2c \\(i\\) \u9636\u3001\u5e76\u4e14\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(j\\) \u9636\uff0c\u5176\u4e2d \\(j \\in \\{1, 2\\}\\) \u3002\u6b64\u72b6\u6001\u5b9a\u4e49\u6709\u6548\u5730\u533a\u5206\u4e86\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(1\\) \u9636\u8fd8\u662f \\(2\\) \u9636\uff0c\u6211\u4eec\u53ef\u4ee5\u636e\u6b64\u6765\u51b3\u5b9a\u4e0b\u4e00\u6b65\u8be5\u600e\u4e48\u8df3\uff1a

            • \u5f53 \\(j\\) \u7b49\u4e8e \\(1\\) \uff0c\u5373\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(1\\) \u9636\u65f6\uff0c\u8fd9\u4e00\u8f6e\u53ea\u80fd\u9009\u62e9\u8df3 \\(2\\) \u9636\u3002
            • \u5f53 \\(j\\) \u7b49\u4e8e \\(2\\) \uff0c\u5373\u4e0a\u4e00\u8f6e\u8df3\u4e86 \\(2\\) \u9636\u65f6\uff0c\u8fd9\u4e00\u8f6e\u53ef\u9009\u62e9\u8df3 \\(1\\) \u9636\u6216\u8df3 \\(2\\) \u9636\u3002

            \u5728\u8be5\u5b9a\u4e49\u4e0b\uff0c\\(dp[i, j]\\) \u8868\u793a\u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u65b9\u6848\u6570\u3002\u5728\u8be5\u5b9a\u4e49\u4e0b\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a

            \\[ \\begin{cases} dp[i, 1] = dp[i-1, 2] \\\\ dp[i, 2] = dp[i-2, 1] + dp[i-2, 2] \\end{cases} \\]

            \u56fe\uff1a\u8003\u8651\u7ea6\u675f\u4e0b\u7684\u9012\u63a8\u5173\u7cfb

            \u6700\u7ec8\uff0c\u8fd4\u56de \\(dp[n, 1] + dp[n, 2]\\) \u5373\u53ef\uff0c\u4e24\u8005\u4e4b\u548c\u4ee3\u8868\u722c\u5230\u7b2c \\(n\\) \u9636\u7684\u65b9\u6848\u603b\u6570\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_constraint_dp.java
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\nif (n == 1 || n == 2) {\nreturn n;\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[][] dp = new int[n + 1][3];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1;\ndp[1][2] = 0;\ndp[2][1] = 0;\ndp[2][2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i][1] = dp[i - 1][2];\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n}\nreturn dp[n][1] + dp[n][2];\n}\n
            climbing_stairs_constraint_dp.cpp
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\nif (n == 1 || n == 2) {\nreturn n;\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvector<vector<int>> dp(n + 1, vector<int>(3, 0));\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1;\ndp[1][2] = 0;\ndp[2][1] = 0;\ndp[2][2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i][1] = dp[i - 1][2];\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n}\nreturn dp[n][1] + dp[n][2];\n}\n
            climbing_stairs_constraint_dp.py
            def climbing_stairs_constraint_dp(n: int) -> int:\n\"\"\"\u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nif n == 1 or n == 2:\nreturn n\n# \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp = [[0] * 3 for _ in range(n + 1)]\n# \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1], dp[1][2] = 1, 0\ndp[2][1], dp[2][2] = 0, 1\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in range(3, n + 1):\ndp[i][1] = dp[i - 1][2]\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2]\nreturn dp[n][1] + dp[n][2]\n
            climbing_stairs_constraint_dp.go
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsConstraintDP(n int) int {\nif n == 1 || n == 2 {\nreturn n\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp := make([][3]int, n+1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1\ndp[1][2] = 0\ndp[2][1] = 0\ndp[2][2] = 1\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i := 3; i <= n; i++ {\ndp[i][1] = dp[i-1][2]\ndp[i][2] = dp[i-2][1] + dp[i-2][2]\n}\nreturn dp[n][1] + dp[n][2]\n}\n
            climbing_stairs_constraint_dp.js
            [class]{}-[func]{climbingStairsConstraintDP}\n
            climbing_stairs_constraint_dp.ts
            [class]{}-[func]{climbingStairsConstraintDP}\n
            climbing_stairs_constraint_dp.c
            [class]{}-[func]{climbingStairsConstraintDP}\n
            climbing_stairs_constraint_dp.cs
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\nif (n == 1 || n == 2) {\nreturn n;\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[,] dp = new int[n + 1, 3];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1, 1] = 1;\ndp[1, 2] = 0;\ndp[2, 1] = 0;\ndp[2, 2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i, 1] = dp[i - 1, 2];\ndp[i, 2] = dp[i - 2, 1] + dp[i - 2, 2];\n}\nreturn dp[n, 1] + dp[n, 2];\n}\n
            climbing_stairs_constraint_dp.swift
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsConstraintDP(n: Int) -> Int {\nif n == 1 || n == 2 {\nreturn n\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = Array(repeating: Array(repeating: 0, count: 3), count: n + 1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1\ndp[1][2] = 0\ndp[2][1] = 0\ndp[2][2] = 1\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in stride(from: 3, through: n, by: 1) {\ndp[i][1] = dp[i - 1][2]\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2]\n}\nreturn dp[n][1] + dp[n][2]\n}\n
            climbing_stairs_constraint_dp.zig
            // \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\nfn climbingStairsConstraintDP(comptime n: usize) i32 {\nif (n == 1 or n == 2) {\nreturn @intCast(n);\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = [_][3]i32{ [_]i32{ -1, -1, -1 } } ** (n + 1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1;\ndp[1][2] = 0;\ndp[2][1] = 0;\ndp[2][2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (3..n + 1) |i| {\ndp[i][1] = dp[i - 1][2];\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n}\nreturn dp[n][1] + dp[n][2];\n}\n
            climbing_stairs_constraint_dp.dart
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsConstraintDP(int n) {\nif (n == 1 || n == 2) {\nreturn n;\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nList<List<int>> dp = List.generate(n + 1, (index) => List.filled(3, 0));\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1;\ndp[1][2] = 0;\ndp[2][1] = 0;\ndp[2][2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i][1] = dp[i - 1][2];\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n}\nreturn dp[n][1] + dp[n][2];\n}\n
            climbing_stairs_constraint_dp.rs
            /* \u5e26\u7ea6\u675f\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_constraint_dp(n: usize) -> i32 {\nif n == 1 || n == 2 { return n as i32 };\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nlet mut dp = vec![vec![-1; 3]; n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1][1] = 1;\ndp[1][2] = 0;\ndp[2][1] = 0;\ndp[2][2] = 1;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in 3..=n {\ndp[i][1] = dp[i - 1][2];\ndp[i][2] = dp[i - 2][1] + dp[i - 2][2];\n}\ndp[n][1] + dp[n][2]\n}\n

            \u5728\u4e0a\u9762\u7684\u6848\u4f8b\u4e2d\uff0c\u7531\u4e8e\u4ec5\u9700\u591a\u8003\u8651\u524d\u9762\u4e00\u4e2a\u72b6\u6001\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u901a\u8fc7\u6269\u5c55\u72b6\u6001\u5b9a\u4e49\uff0c\u4f7f\u5f97\u95ee\u9898\u6062\u590d\u65e0\u540e\u6548\u6027\u3002\u7136\u800c\uff0c\u8bb8\u591a\u95ee\u9898\u5177\u6709\u975e\u5e38\u4e25\u91cd\u7684\u201c\u6709\u540e\u6548\u6027\u201d\uff0c\u4f8b\u5982\uff1a

            \u722c\u697c\u68af\u4e0e\u969c\u788d\u751f\u6210

            \u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\u3002\u89c4\u5b9a\u5f53\u722c\u5230\u7b2c \\(i\\) \u9636\u65f6\uff0c\u7cfb\u7edf\u81ea\u52a8\u4f1a\u7ed9\u7b2c \\(2i\\) \u9636\u4e0a\u653e\u4e0a\u969c\u788d\u7269\uff0c\u4e4b\u540e\u6240\u6709\u8f6e\u90fd\u4e0d\u5141\u8bb8\u8df3\u5230\u7b2c \\(2i\\) \u9636\u4e0a\u3002\u4f8b\u5982\uff0c\u524d\u4e24\u8f6e\u5206\u522b\u8df3\u5230\u4e86\u7b2c \\(2, 3\\) \u9636\u4e0a\uff0c\u5219\u4e4b\u540e\u5c31\u4e0d\u80fd\u8df3\u5230\u7b2c \\(4, 6\\) \u9636\u4e0a\u3002\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\u3002

            \u5728\u8fd9\u4e2a\u95ee\u9898\u4e2d\uff0c\u4e0b\u6b21\u8df3\u8dc3\u4f9d\u8d56\u4e8e\u8fc7\u53bb\u6240\u6709\u7684\u72b6\u6001\uff0c\u56e0\u4e3a\u6bcf\u4e00\u6b21\u8df3\u8dc3\u90fd\u4f1a\u5728\u66f4\u9ad8\u7684\u9636\u68af\u4e0a\u8bbe\u7f6e\u969c\u788d\uff0c\u5e76\u5f71\u54cd\u672a\u6765\u7684\u8df3\u8dc3\u3002\u5bf9\u4e8e\u8fd9\u7c7b\u95ee\u9898\uff0c\u52a8\u6001\u89c4\u5212\u5f80\u5f80\u96be\u4ee5\u89e3\u51b3\u3002

            \u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u590d\u6742\u7684\u7ec4\u5408\u4f18\u5316\u95ee\u9898\uff08\u4f8b\u5982\u65c5\u884c\u5546\u95ee\u9898\uff09\u90fd\u4e0d\u6ee1\u8db3\u65e0\u540e\u6548\u6027\u3002\u5bf9\u4e8e\u8fd9\u7c7b\u95ee\u9898\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u9009\u62e9\u4f7f\u7528\u5176\u4ed6\u65b9\u6cd5\uff0c\u4f8b\u5982\u542f\u53d1\u5f0f\u641c\u7d22\u3001\u9057\u4f20\u7b97\u6cd5\u3001\u5f3a\u5316\u5b66\u4e60\u7b49\uff0c\u4ece\u800c\u5728\u6709\u9650\u65f6\u95f4\u5185\u5f97\u5230\u53ef\u7528\u7684\u5c40\u90e8\u6700\u4f18\u89e3\u3002

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/","title":"14.3 \u00a0 \u52a8\u6001\u89c4\u5212\u89e3\u9898\u601d\u8def","text":"

            \u4e0a\u4e24\u8282\u4ecb\u7ecd\u4e86\u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u4e3b\u8981\u7279\u5f81\uff0c\u63a5\u4e0b\u6765\u6211\u4eec\u4e00\u8d77\u63a2\u7a76\u4e24\u4e2a\u66f4\u52a0\u5b9e\u7528\u7684\u95ee\u9898\uff1a

            1. \u5982\u4f55\u5224\u65ad\u4e00\u4e2a\u95ee\u9898\u662f\u4e0d\u662f\u52a8\u6001\u89c4\u5212\u95ee\u9898\uff1f
            2. \u6c42\u89e3\u52a8\u6001\u89c4\u5212\u95ee\u9898\u8be5\u4ece\u4f55\u5904\u5165\u624b\uff0c\u5b8c\u6574\u6b65\u9aa4\u662f\u4ec0\u4e48\uff1f
            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1431","title":"14.3.1 \u00a0 \u95ee\u9898\u5224\u65ad","text":"

            \u603b\u7684\u6765\u8bf4\uff0c\u5982\u679c\u4e00\u4e2a\u95ee\u9898\u5305\u542b\u91cd\u53e0\u5b50\u95ee\u9898\u3001\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5e76\u6ee1\u8db3\u65e0\u540e\u6548\u6027\uff0c\u90a3\u4e48\u5b83\u901a\u5e38\u5c31\u9002\u5408\u7528\u52a8\u6001\u89c4\u5212\u6c42\u89e3\u3002\u7136\u800c\uff0c\u6211\u4eec\u5f88\u96be\u4ece\u95ee\u9898\u63cf\u8ff0\u4e0a\u76f4\u63a5\u63d0\u53d6\u51fa\u8fd9\u4e9b\u7279\u6027\u3002\u56e0\u6b64\u6211\u4eec\u901a\u5e38\u4f1a\u653e\u5bbd\u6761\u4ef6\uff0c\u5148\u89c2\u5bdf\u95ee\u9898\u662f\u5426\u9002\u5408\u4f7f\u7528\u56de\u6eaf\uff08\u7a77\u4e3e\uff09\u89e3\u51b3\u3002

            \u9002\u5408\u7528\u56de\u6eaf\u89e3\u51b3\u7684\u95ee\u9898\u901a\u5e38\u6ee1\u8db3\u201c\u51b3\u7b56\u6811\u6a21\u578b\u201d\uff0c\u8fd9\u79cd\u95ee\u9898\u53ef\u4ee5\u4f7f\u7528\u6811\u5f62\u7ed3\u6784\u6765\u63cf\u8ff0\uff0c\u5176\u4e2d\u6bcf\u4e00\u4e2a\u8282\u70b9\u4ee3\u8868\u4e00\u4e2a\u51b3\u7b56\uff0c\u6bcf\u4e00\u6761\u8def\u5f84\u4ee3\u8868\u4e00\u4e2a\u51b3\u7b56\u5e8f\u5217\u3002

            \u6362\u53e5\u8bdd\u8bf4\uff0c\u5982\u679c\u95ee\u9898\u5305\u542b\u660e\u786e\u7684\u51b3\u7b56\u6982\u5ff5\uff0c\u5e76\u4e14\u89e3\u662f\u901a\u8fc7\u4e00\u7cfb\u5217\u51b3\u7b56\u4ea7\u751f\u7684\uff0c\u90a3\u4e48\u5b83\u5c31\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\uff0c\u901a\u5e38\u53ef\u4ee5\u4f7f\u7528\u56de\u6eaf\u6765\u89e3\u51b3\u3002

            \u5728\u6b64\u57fa\u7840\u4e0a\uff0c\u8fd8\u6709\u4e00\u4e9b\u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u201c\u52a0\u5206\u9879\u201d\uff0c\u5305\u62ec\uff1a

            • \u95ee\u9898\u5305\u542b\u6700\u5927\uff08\u5c0f\uff09\u6216\u6700\u591a\uff08\u5c11\uff09\u7b49\u6700\u4f18\u5316\u63cf\u8ff0\u3002
            • \u95ee\u9898\u7684\u72b6\u6001\u80fd\u591f\u4f7f\u7528\u4e00\u4e2a\u5217\u8868\u3001\u591a\u7ef4\u77e9\u9635\u6216\u6811\u6765\u8868\u793a\uff0c\u5e76\u4e14\u4e00\u4e2a\u72b6\u6001\u4e0e\u5176\u5468\u56f4\u7684\u72b6\u6001\u5b58\u5728\u9012\u63a8\u5173\u7cfb\u3002

            \u800c\u76f8\u5e94\u7684\u201c\u51cf\u5206\u9879\u201d\u5305\u62ec\uff1a

            • \u95ee\u9898\u7684\u76ee\u6807\u662f\u627e\u51fa\u6240\u6709\u53ef\u80fd\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u800c\u4e0d\u662f\u627e\u51fa\u6700\u4f18\u89e3\u3002
            • \u95ee\u9898\u63cf\u8ff0\u4e2d\u6709\u660e\u663e\u7684\u6392\u5217\u7ec4\u5408\u7684\u7279\u5f81\uff0c\u9700\u8981\u8fd4\u56de\u5177\u4f53\u7684\u591a\u4e2a\u65b9\u6848\u3002

            \u5982\u679c\u4e00\u4e2a\u95ee\u9898\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\uff0c\u5e76\u5177\u6709\u8f83\u4e3a\u660e\u663e\u7684\u201c\u52a0\u5206\u9879\u201c\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5047\u8bbe\u5b83\u662f\u4e00\u4e2a\u52a8\u6001\u89c4\u5212\u95ee\u9898\uff0c\u5e76\u5728\u6c42\u89e3\u8fc7\u7a0b\u4e2d\u9a8c\u8bc1\u5b83\u3002

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1432","title":"14.3.2 \u00a0 \u95ee\u9898\u6c42\u89e3\u6b65\u9aa4","text":"

            \u52a8\u6001\u89c4\u5212\u7684\u89e3\u9898\u6d41\u7a0b\u4f1a\u56e0\u95ee\u9898\u7684\u6027\u8d28\u548c\u96be\u5ea6\u800c\u6709\u6240\u4e0d\u540c\uff0c\u4f46\u901a\u5e38\u9075\u5faa\u4ee5\u4e0b\u6b65\u9aa4\uff1a\u63cf\u8ff0\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u5efa\u7acb \\(dp\\) \u8868\uff0c\u63a8\u5bfc\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u7b49\u3002

            \u4e3a\u4e86\u66f4\u5f62\u8c61\u5730\u5c55\u793a\u89e3\u9898\u6b65\u9aa4\uff0c\u6211\u4eec\u4f7f\u7528\u4e00\u4e2a\u7ecf\u5178\u95ee\u9898\u201c\u6700\u5c0f\u8def\u5f84\u548c\u201d\u6765\u4e3e\u4f8b\u3002

            Question

            \u7ed9\u5b9a\u4e00\u4e2a \\(n \\times m\\) \u7684\u4e8c\u7ef4\u7f51\u683c grid \uff0c\u7f51\u683c\u4e2d\u7684\u6bcf\u4e2a\u5355\u5143\u683c\u5305\u542b\u4e00\u4e2a\u975e\u8d1f\u6574\u6570\uff0c\u8868\u793a\u8be5\u5355\u5143\u683c\u7684\u4ee3\u4ef7\u3002\u673a\u5668\u4eba\u4ee5\u5de6\u4e0a\u89d2\u5355\u5143\u683c\u4e3a\u8d77\u59cb\u70b9\uff0c\u6bcf\u6b21\u53ea\u80fd\u5411\u4e0b\u6216\u8005\u5411\u53f3\u79fb\u52a8\u4e00\u6b65\uff0c\u76f4\u81f3\u5230\u8fbe\u53f3\u4e0b\u89d2\u5355\u5143\u683c\u3002\u8bf7\u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230\u53f3\u4e0b\u89d2\u7684\u6700\u5c0f\u8def\u5f84\u548c\u3002

            \u4f8b\u5982\u4ee5\u4e0b\u793a\u4f8b\u6570\u636e\uff0c\u7ed9\u5b9a\u7f51\u683c\u7684\u6700\u5c0f\u8def\u5f84\u548c\u4e3a \\(13\\) \u3002

            \u56fe\uff1a\u6700\u5c0f\u8def\u5f84\u548c\u793a\u4f8b\u6570\u636e

            \u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868

            \u672c\u9898\u7684\u6bcf\u4e00\u8f6e\u7684\u51b3\u7b56\u5c31\u662f\u4ece\u5f53\u524d\u683c\u5b50\u5411\u4e0b\u6216\u5411\u53f3\u4e00\u6b65\u3002\u8bbe\u5f53\u524d\u683c\u5b50\u7684\u884c\u5217\u7d22\u5f15\u4e3a \\([i, j]\\) \uff0c\u5219\u5411\u4e0b\u6216\u5411\u53f3\u8d70\u4e00\u6b65\u540e\uff0c\u7d22\u5f15\u53d8\u4e3a \\([i+1, j]\\) \u6216 \\([i, j+1]\\) \u3002\u56e0\u6b64\uff0c\u72b6\u6001\u5e94\u5305\u542b\u884c\u7d22\u5f15\u548c\u5217\u7d22\u5f15\u4e24\u4e2a\u53d8\u91cf\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002

            \u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u4ece\u8d77\u59cb\u70b9 \\([0, 0]\\) \u8d70\u5230 \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\uff0c\u89e3\u8bb0\u4e3a \\(dp[i, j]\\) \u3002

            \u81f3\u6b64\uff0c\u6211\u4eec\u5c31\u5f97\u5230\u4e86\u4e00\u4e2a\u4e8c\u7ef4 \\(dp\\) \u77e9\u9635\uff0c\u5176\u5c3a\u5bf8\u4e0e\u8f93\u5165\u7f51\u683c \\(grid\\) \u76f8\u540c\u3002

            \u56fe\uff1a\u72b6\u6001\u5b9a\u4e49\u4e0e dp \u8868

            Note

            \u52a8\u6001\u89c4\u5212\u548c\u56de\u6eaf\u8fc7\u7a0b\u53ef\u4ee5\u88ab\u63cf\u8ff0\u4e3a\u4e00\u4e2a\u51b3\u7b56\u5e8f\u5217\uff0c\u800c\u72b6\u6001\u7531\u6240\u6709\u51b3\u7b56\u53d8\u91cf\u6784\u6210\u3002\u5b83\u5e94\u5f53\u5305\u542b\u63cf\u8ff0\u89e3\u9898\u8fdb\u5ea6\u7684\u6240\u6709\u53d8\u91cf\uff0c\u5176\u5305\u542b\u4e86\u8db3\u591f\u7684\u4fe1\u606f\uff0c\u80fd\u591f\u7528\u6765\u63a8\u5bfc\u51fa\u4e0b\u4e00\u4e2a\u72b6\u6001\u3002

            \u6bcf\u4e2a\u72b6\u6001\u90fd\u5bf9\u5e94\u4e00\u4e2a\u5b50\u95ee\u9898\uff0c\u6211\u4eec\u4f1a\u5b9a\u4e49\u4e00\u4e2a \\(dp\\) \u8868\u6765\u5b58\u50a8\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u72b6\u6001\u7684\u6bcf\u4e2a\u72ec\u7acb\u53d8\u91cf\u90fd\u662f \\(dp\\) \u8868\u7684\u4e00\u4e2a\u7ef4\u5ea6\u3002\u672c\u8d28\u4e0a\u770b\uff0c\\(dp\\) \u8868\u662f\u72b6\u6001\u548c\u5b50\u95ee\u9898\u7684\u89e3\u4e4b\u95f4\u7684\u6620\u5c04\u3002

            \u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b

            \u5bf9\u4e8e\u72b6\u6001 \\([i, j]\\) \uff0c\u5b83\u53ea\u80fd\u4ece\u4e0a\u8fb9\u683c\u5b50 \\([i-1, j]\\) \u548c\u5de6\u8fb9\u683c\u5b50 \\([i, j-1]\\) \u8f6c\u79fb\u800c\u6765\u3002\u56e0\u6b64\u6700\u4f18\u5b50\u7ed3\u6784\u4e3a\uff1a\u5230\u8fbe \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\u7531 \\([i, j-1]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\u4e0e \\([i-1, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c\uff0c\u8fd9\u4e24\u8005\u8f83\u5c0f\u7684\u90a3\u4e00\u4e2a\u51b3\u5b9a\u3002

            \u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u53ef\u63a8\u51fa\u4ee5\u4e0b\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff1a

            \\[ dp[i, j] = \\min(dp[i-1, j], dp[i, j-1]) + grid[i, j] \\]

            \u56fe\uff1a\u6700\u4f18\u5b50\u7ed3\u6784\u4e0e\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b

            Note

            \u6839\u636e\u5b9a\u4e49\u597d\u7684 \\(dp\\) \u8868\uff0c\u601d\u8003\u539f\u95ee\u9898\u548c\u5b50\u95ee\u9898\u7684\u5173\u7cfb\uff0c\u627e\u51fa\u901a\u8fc7\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6765\u6784\u9020\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u7684\u65b9\u6cd5\uff0c\u5373\u6700\u4f18\u5b50\u7ed3\u6784\u3002

            \u4e00\u65e6\u6211\u4eec\u627e\u5230\u4e86\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u6784\u5efa\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002

            \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f

            \u5728\u672c\u9898\u4e2d\uff0c\u5904\u5728\u9996\u884c\u7684\u72b6\u6001\u53ea\u80fd\u5411\u53f3\u8f6c\u79fb\uff0c\u9996\u5217\u72b6\u6001\u53ea\u80fd\u5411\u4e0b\u8f6c\u79fb\uff0c\u56e0\u6b64\u9996\u884c \\(i = 0\\) \u548c\u9996\u5217 \\(j = 0\\) \u662f\u8fb9\u754c\u6761\u4ef6\u3002

            \u6bcf\u4e2a\u683c\u5b50\u662f\u7531\u5176\u5de6\u65b9\u683c\u5b50\u548c\u4e0a\u65b9\u683c\u5b50\u8f6c\u79fb\u800c\u6765\uff0c\u56e0\u6b64\u6211\u4eec\u4f7f\u7528\u91c7\u7528\u5faa\u73af\u6765\u904d\u5386\u77e9\u9635\uff0c\u5916\u5faa\u73af\u904d\u5386\u5404\u884c\u3001\u5185\u5faa\u73af\u904d\u5386\u5404\u5217\u3002

            \u56fe\uff1a\u8fb9\u754c\u6761\u4ef6\u4e0e\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f

            Note

            \u8fb9\u754c\u6761\u4ef6\u5728\u52a8\u6001\u89c4\u5212\u4e2d\u7528\u4e8e\u521d\u59cb\u5316 \\(dp\\) \u8868\uff0c\u5728\u641c\u7d22\u4e2d\u7528\u4e8e\u526a\u679d\u3002

            \u72b6\u6001\u8f6c\u79fb\u987a\u5e8f\u7684\u6838\u5fc3\u662f\u8981\u4fdd\u8bc1\u5728\u8ba1\u7b97\u5f53\u524d\u95ee\u9898\u7684\u89e3\u65f6\uff0c\u6240\u6709\u5b83\u4f9d\u8d56\u7684\u66f4\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\u90fd\u5df2\u7ecf\u88ab\u6b63\u786e\u5730\u8ba1\u7b97\u51fa\u6765\u3002

            \u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u6211\u4eec\u5df2\u7ecf\u53ef\u4ee5\u76f4\u63a5\u5199\u51fa\u52a8\u6001\u89c4\u5212\u4ee3\u7801\u3002\u7136\u800c\u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u4ece\u9876\u81f3\u5e95\u7684\u601d\u60f3\uff0c\u56e0\u6b64\u6309\u7167\u201c\u66b4\u529b\u641c\u7d22 \\(\\rightarrow\\) \u8bb0\u5fc6\u5316\u641c\u7d22 \\(\\rightarrow\\) \u52a8\u6001\u89c4\u5212\u201d\u7684\u987a\u5e8f\u5b9e\u73b0\u66f4\u52a0\u7b26\u5408\u601d\u7ef4\u4e60\u60ef\u3002

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#1","title":"1. \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"

            \u4ece\u72b6\u6001 \\([i, j]\\) \u5f00\u59cb\u641c\u7d22\uff0c\u4e0d\u65ad\u5206\u89e3\u4e3a\u66f4\u5c0f\u7684\u72b6\u6001 \\([i-1, j]\\) \u548c \\([i, j-1]\\) \uff0c\u5305\u62ec\u4ee5\u4e0b\u9012\u5f52\u8981\u7d20\uff1a

            • \u9012\u5f52\u53c2\u6570\uff1a\u72b6\u6001 \\([i, j]\\) \u3002
            • \u8fd4\u56de\u503c\uff1a\u4ece \\([0, 0]\\) \u5230 \\([i, j]\\) \u7684\u6700\u5c0f\u8def\u5f84\u548c \\(dp[i, j]\\) \u3002
            • \u7ec8\u6b62\u6761\u4ef6\uff1a\u5f53 \\(i = 0\\) \u4e14 \\(j = 0\\) \u65f6\uff0c\u8fd4\u56de\u4ee3\u4ef7 \\(grid[0, 0]\\) \u3002
            • \u526a\u679d\uff1a\u5f53 \\(i < 0\\) \u65f6\u6216 \\(j < 0\\) \u65f6\u7d22\u5f15\u8d8a\u754c\uff0c\u6b64\u65f6\u8fd4\u56de\u4ee3\u4ef7 \\(+\\infty\\) \uff0c\u4ee3\u8868\u4e0d\u53ef\u884c\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_path_sum.java
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(int[][] grid, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn Integer.MAX_VALUE;\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFS(grid, i - 1, j);\nint up = minPathSumDFS(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn Math.min(left, up) + grid[i][j];\n}\n
            min_path_sum.cpp
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(vector<vector<int>> &grid, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn INT_MAX;\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFS(grid, i - 1, j);\nint up = minPathSumDFS(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;\n}\n
            min_path_sum.py
            def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:\n\"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22\"\"\"\n# \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 and j == 0:\nreturn grid[0][0]\n# \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 or j < 0:\nreturn inf\n# \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nleft = min_path_sum_dfs(grid, i - 1, j)\nup = min_path_sum_dfs(grid, i, j - 1)\n# \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn min(left, up) + grid[i][j]\n
            min_path_sum.go
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc minPathSumDFS(grid [][]int, i, j int) int {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 && j == 0 {\nreturn grid[0][0]\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn math.MaxInt\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nleft := minPathSumDFS(grid, i-1, j)\nup := minPathSumDFS(grid, i, j-1)\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn int(math.Min(float64(left), float64(up))) + grid[i][j]\n}\n
            min_path_sum.js
            [class]{}-[func]{minPathSumDFS}\n
            min_path_sum.ts
            [class]{}-[func]{minPathSumDFS}\n
            min_path_sum.c
            [class]{}-[func]{minPathSumDFS}\n
            min_path_sum.cs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(int[][] grid, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0){\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn int.MaxValue;\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFS(grid, i - 1, j);\nint up = minPathSumDFS(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn Math.Min(left, up) + grid[i][j];\n}\n
            min_path_sum.swift
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc minPathSumDFS(grid: [[Int]], i: Int, j: Int) -> Int {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0, j == 0 {\nreturn grid[0][0]\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn .max\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nlet left = minPathSumDFS(grid: grid, i: i - 1, j: j)\nlet up = minPathSumDFS(grid: grid, i: i, j: j - 1)\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn min(left, up) + grid[i][j]\n}\n
            min_path_sum.zig
            // \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22\nfn minPathSumDFS(grid: anytype, i: i32, j: i32) i32 {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 and j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 or j < 0) {\nreturn std.math.maxInt(i32);\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nvar left = minPathSumDFS(grid, i - 1, j);\nvar up = minPathSumDFS(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n}\n
            min_path_sum.dart
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nint minPathSumDFS(List<List<int>> grid, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\n// \u5728 Dart \u4e2d\uff0cint \u7c7b\u578b\u662f\u56fa\u5b9a\u8303\u56f4\u7684\u6574\u6570\uff0c\u4e0d\u5b58\u5728\u8868\u793a\u201c\u65e0\u7a77\u5927\u201d\u7684\u503c\nreturn BigInt.from(2).pow(31).toInt();\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFS(grid, i - 1, j);\nint up = minPathSumDFS(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nreturn min(left, up) + grid[i][j];\n}\n
            min_path_sum.rs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u66b4\u529b\u641c\u7d22 */\nfn min_path_sum_dfs(grid: &Vec<Vec<i32>>, i: i32, j: i32) -> i32 {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 && j == 0 {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn i32::MAX;\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nlet left = min_path_sum_dfs(grid, i - 1, j);\nlet up = min_path_sum_dfs(grid, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nstd::cmp::min(left, up) + grid[i as usize][j as usize]\n}\n

            \u4e0b\u56fe\u7ed9\u51fa\u4e86\u4ee5 \\(dp[2, 1]\\) \u4e3a\u6839\u8282\u70b9\u7684\u9012\u5f52\u6811\uff0c\u5176\u4e2d\u5305\u542b\u4e00\u4e9b\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u5176\u6570\u91cf\u4f1a\u968f\u7740\u7f51\u683c grid \u7684\u5c3a\u5bf8\u53d8\u5927\u800c\u6025\u5267\u589e\u591a\u3002

            \u672c\u8d28\u4e0a\u770b\uff0c\u9020\u6210\u91cd\u53e0\u5b50\u95ee\u9898\u7684\u539f\u56e0\u4e3a\uff1a\u5b58\u5728\u591a\u6761\u8def\u5f84\u53ef\u4ee5\u4ece\u5de6\u4e0a\u89d2\u5230\u8fbe\u67d0\u4e00\u5355\u5143\u683c\u3002

            \u56fe\uff1a\u66b4\u529b\u641c\u7d22\u9012\u5f52\u6811

            \u6bcf\u4e2a\u72b6\u6001\u90fd\u6709\u5411\u4e0b\u548c\u5411\u53f3\u4e24\u79cd\u9009\u62e9\uff0c\u4ece\u5de6\u4e0a\u89d2\u8d70\u5230\u53f3\u4e0b\u89d2\u603b\u5171\u9700\u8981 \\(m + n - 2\\) \u6b65\uff0c\u6240\u4ee5\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^{m + n})\\) \u3002\u8bf7\u6ce8\u610f\uff0c\u8fd9\u79cd\u8ba1\u7b97\u65b9\u5f0f\u672a\u8003\u8651\u4e34\u8fd1\u7f51\u683c\u8fb9\u754c\u7684\u60c5\u51b5\uff0c\u5f53\u5230\u8fbe\u7f51\u7edc\u8fb9\u754c\u65f6\u53ea\u5269\u4e0b\u4e00\u79cd\u9009\u62e9\u3002\u56e0\u6b64\u5b9e\u9645\u7684\u8def\u5f84\u6570\u91cf\u4f1a\u5c11\u4e00\u4e9b\u3002

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#2","title":"2. \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"

            \u6211\u4eec\u5f15\u5165\u4e00\u4e2a\u548c\u7f51\u683c grid \u76f8\u540c\u5c3a\u5bf8\u7684\u8bb0\u5fc6\u5217\u8868 mem \uff0c\u7528\u4e8e\u8bb0\u5f55\u5404\u4e2a\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5e76\u5c06\u91cd\u53e0\u5b50\u95ee\u9898\u8fdb\u884c\u526a\u679d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_path_sum.java
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn Integer.MAX_VALUE;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][j] != -1) {\nreturn mem[i][j];\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFSMem(grid, mem, i - 1, j);\nint up = minPathSumDFSMem(grid, mem, i, j - 1);\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = Math.min(left, up) + grid[i][j];\nreturn mem[i][j];\n}\n
            min_path_sum.cpp
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn INT_MAX;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][j] != -1) {\nreturn mem[i][j];\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFSMem(grid, mem, i - 1, j);\nint up = minPathSumDFSMem(grid, mem, i, j - 1);\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;\nreturn mem[i][j];\n}\n
            min_path_sum.py
            def min_path_sum_dfs_mem(\ngrid: list[list[int]], mem: list[list[int]], i: int, j: int\n) -> int:\n\"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n# \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 and j == 0:\nreturn grid[0][0]\n# \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 or j < 0:\nreturn inf\n# \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][j] != -1:\nreturn mem[i][j]\n# \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nleft = min_path_sum_dfs_mem(grid, mem, i - 1, j)\nup = min_path_sum_dfs_mem(grid, mem, i, j - 1)\n# \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = min(left, up) + grid[i][j]\nreturn mem[i][j]\n
            min_path_sum.go
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc minPathSumDFSMem(grid, mem [][]int, i, j int) int {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 && j == 0 {\nreturn grid[0][0]\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn math.MaxInt\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][j] != -1 {\nreturn mem[i][j]\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nleft := minPathSumDFSMem(grid, mem, i-1, j)\nup := minPathSumDFSMem(grid, mem, i, j-1)\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = int(math.Min(float64(left), float64(up))) + grid[i][j]\nreturn mem[i][j]\n}\n
            min_path_sum.js
            [class]{}-[func]{minPathSumDFSMem}\n
            min_path_sum.ts
            [class]{}-[func]{minPathSumDFSMem}\n
            min_path_sum.c
            [class]{}-[func]{minPathSumDFSMem}\n
            min_path_sum.cs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\nreturn int.MaxValue;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][j] != -1) {\nreturn mem[i][j];\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFSMem(grid, mem, i - 1, j);\nint up = minPathSumDFSMem(grid, mem, i, j - 1);\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = Math.Min(left, up) + grid[i][j];\nreturn mem[i][j];\n}\n
            min_path_sum.swift
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc minPathSumDFSMem(grid: [[Int]], mem: inout [[Int]], i: Int, j: Int) -> Int {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0, j == 0 {\nreturn grid[0][0]\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn .max\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][j] != -1 {\nreturn mem[i][j]\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nlet left = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)\nlet up = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = min(left, up) + grid[i][j]\nreturn mem[i][j]\n}\n
            min_path_sum.zig
            // \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn minPathSumDFSMem(grid: anytype, mem: anytype, i: i32, j: i32) i32 {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 and j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 or j < 0) {\nreturn std.math.maxInt(i32);\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] != -1) {\nreturn mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n}\n// \u8ba1\u7b97\u4ece\u5de6\u4e0a\u89d2\u5230 (i-1, j) \u548c (i, j-1) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nvar left = minPathSumDFSMem(grid, mem, i - 1, j);\nvar up = minPathSumDFSMem(grid, mem, i, j - 1);\n// \u8fd4\u56de\u4ece\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] = @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\nreturn mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];\n}\n
            min_path_sum.dart
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint minPathSumDFSMem(List<List<int>> grid, List<List<int>> mem, int i, int j) {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif (i == 0 && j == 0) {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif (i < 0 || j < 0) {\n// \u5728 Dart \u4e2d\uff0cint \u7c7b\u578b\u662f\u56fa\u5b9a\u8303\u56f4\u7684\u6574\u6570\uff0c\u4e0d\u5b58\u5728\u8868\u793a\u201c\u65e0\u7a77\u5927\u201d\u7684\u503c\nreturn BigInt.from(2).pow(31).toInt();\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][j] != -1) {\nreturn mem[i][j];\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nint left = minPathSumDFSMem(grid, mem, i - 1, j);\nint up = minPathSumDFSMem(grid, mem, i, j - 1);\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i][j] = min(left, up) + grid[i][j];\nreturn mem[i][j];\n}\n
            min_path_sum.rs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn min_path_sum_dfs_mem(grid: &Vec<Vec<i32>>, mem: &mut Vec<Vec<i32>>, i: i32, j: i32) -> i32 {\n// \u82e5\u4e3a\u5de6\u4e0a\u89d2\u5355\u5143\u683c\uff0c\u5219\u7ec8\u6b62\u641c\u7d22\nif i == 0 && j == 0 {\nreturn grid[0][0];\n}\n// \u82e5\u884c\u5217\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de +\u221e \u4ee3\u4ef7\nif i < 0 || j < 0 {\nreturn i32::MAX;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i as usize][j as usize] != -1 {\nreturn mem[i as usize][j as usize];\n}\n// \u5de6\u8fb9\u548c\u4e0a\u8fb9\u5355\u5143\u683c\u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nlet left = min_path_sum_dfs_mem(grid, mem, i - 1, j);\nlet up = min_path_sum_dfs_mem(grid, mem, i, j - 1);\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u5de6\u4e0a\u89d2\u5230 (i, j) \u7684\u6700\u5c0f\u8def\u5f84\u4ee3\u4ef7\nmem[i as usize][j as usize] = std::cmp::min(left, up) + grid[i as usize][j as usize];\nmem[i as usize][j as usize]\n}\n

            \u5f15\u5165\u8bb0\u5fc6\u5316\u540e\uff0c\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\u53ea\u9700\u8ba1\u7b97\u4e00\u6b21\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u72b6\u6001\u603b\u6570\uff0c\u5373\u7f51\u683c\u5c3a\u5bf8 \\(O(nm)\\) \u3002

            \u56fe\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\u9012\u5f52\u6811

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#3","title":"3. \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"

            \u57fa\u4e8e\u8fed\u4ee3\u5b9e\u73b0\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_path_sum.java
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(int[][] grid) {\nint n = grid.length, m = grid[0].length;\n// \u521d\u59cb\u5316 dp \u8868\nint[][] dp = new int[n][m];\ndp[0][0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j < m; j++) {\ndp[0][j] = dp[0][j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor (int i = 1; i < n; i++) {\ndp[i][0] = dp[i - 1][0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i < n; i++) {\nfor (int j = 1; j < m; j++) {\ndp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n}\n}\nreturn dp[n - 1][m - 1];\n}\n
            min_path_sum.cpp
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(vector<vector<int>> &grid) {\nint n = grid.size(), m = grid[0].size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<vector<int>> dp(n, vector<int>(m));\ndp[0][0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j < m; j++) {\ndp[0][j] = dp[0][j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor (int i = 1; i < n; i++) {\ndp[i][0] = dp[i - 1][0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i < n; i++) {\nfor (int j = 1; j < m; j++) {\ndp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n}\n}\nreturn dp[n - 1][m - 1];\n}\n
            min_path_sum.py
            def min_path_sum_dp(grid: list[list[int]]) -> int:\n\"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn, m = len(grid), len(grid[0])\n# \u521d\u59cb\u5316 dp \u8868\ndp = [[0] * m for _ in range(n)]\ndp[0][0] = grid[0][0]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in range(1, m):\ndp[0][j] = dp[0][j - 1] + grid[0][j]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor i in range(1, n):\ndp[i][0] = dp[i - 1][0] + grid[i][0]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in range(1, n):\nfor j in range(1, m):\ndp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]\nreturn dp[n - 1][m - 1]\n
            min_path_sum.go
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDP(grid [][]int) int {\nn, m := len(grid), len(grid[0])\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([][]int, n)\nfor i := 0; i < n; i++ {\ndp[i] = make([]int, m)\n}\ndp[0][0] = grid[0][0]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j := 1; j < m; j++ {\ndp[0][j] = dp[0][j-1] + grid[0][j]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor i := 1; i < n; i++ {\ndp[i][0] = dp[i-1][0] + grid[i][0]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i := 1; i < n; i++ {\nfor j := 1; j < m; j++ {\ndp[i][j] = int(math.Min(float64(dp[i][j-1]), float64(dp[i-1][j]))) + grid[i][j]\n}\n}\nreturn dp[n-1][m-1]\n}\n
            min_path_sum.js
            [class]{}-[func]{minPathSumDP}\n
            min_path_sum.ts
            [class]{}-[func]{minPathSumDP}\n
            min_path_sum.c
            [class]{}-[func]{minPathSumDP}\n
            min_path_sum.cs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(int[][] grid) {\nint n = grid.Length, m = grid[0].Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[,] dp = new int[n, m];\ndp[0, 0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j < m; j++) {\ndp[0, j] = dp[0, j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor (int i = 1; i < n; i++) {\ndp[i, 0] = dp[i - 1, 0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i < n; i++) {\nfor (int j = 1; j < m; j++) {\ndp[i, j] = Math.Min(dp[i, j - 1], dp[i - 1, j]) + grid[i][j];\n}\n}\nreturn dp[n - 1, m - 1];\n}\n
            min_path_sum.swift
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDP(grid: [[Int]]) -> Int {\nlet n = grid.count\nlet m = grid[0].count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: Array(repeating: 0, count: m), count: n)\ndp[0][0] = grid[0][0]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in stride(from: 1, to: m, by: 1) {\ndp[0][j] = dp[0][j - 1] + grid[0][j]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor i in stride(from: 1, to: n, by: 1) {\ndp[i][0] = dp[i - 1][0] + grid[i][0]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in stride(from: 1, to: n, by: 1) {\nfor j in stride(from: 1, to: m, by: 1) {\ndp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]\n}\n}\nreturn dp[n - 1][m - 1]\n}\n
            min_path_sum.zig
            // \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212\nfn minPathSumDP(comptime grid: anytype) i32 {\ncomptime var n = grid.len;\ncomptime var m = grid[0].len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_][m]i32{[_]i32{0} ** m} ** n;\ndp[0][0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (1..m) |j| {\ndp[0][j] = dp[0][j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor (1..n) |i| {\ndp[i][0] = dp[i - 1][0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (1..n) |i| {\nfor (1..m) |j| {\ndp[i][j] = @min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n}\n}\nreturn dp[n - 1][m - 1];\n}\n
            min_path_sum.dart
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nint minPathSumDP(List<List<int>> grid) {\nint n = grid.length, m = grid[0].length;\n// \u521d\u59cb\u5316 dp \u8868\nList<List<int>> dp = List.generate(n, (i) => List.filled(m, 0));\ndp[0][0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j < m; j++) {\ndp[0][j] = dp[0][j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor (int i = 1; i < n; i++) {\ndp[i][0] = dp[i - 1][0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i < n; i++) {\nfor (int j = 1; j < m; j++) {\ndp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n}\n}\nreturn dp[n - 1][m - 1];\n}\n
            min_path_sum.rs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u52a8\u6001\u89c4\u5212 */\nfn min_path_sum_dp(grid: &Vec<Vec<i32>>) -> i32 {\nlet (n, m) = (grid.len(), grid[0].len());\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![vec![0; m]; n];\ndp[0][0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in 1..m {\ndp[0][j] = dp[0][j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nfor i in 1..n {\ndp[i][0] = dp[i - 1][0] + grid[i][0];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in 1..n {\nfor j in 1..m {\ndp[i][j] = std::cmp::min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];\n}\n}\ndp[n - 1][m - 1]\n}\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u6700\u5c0f\u8def\u5f84\u548c\u7684\u72b6\u6001\u8f6c\u79fb\u8fc7\u7a0b\uff0c\u5176\u904d\u5386\u4e86\u6574\u4e2a\u7f51\u683c\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nm)\\) \u3002

            \u6570\u7ec4 dp \u5927\u5c0f\u4e3a \\(n \\times m\\) \uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nm)\\) \u3002

            <1><2><3><4><5><6><7><8><9><10><11><12>

            \u56fe\uff1a\u6700\u5c0f\u8def\u5f84\u548c\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            "},{"location":"chapter_dynamic_programming/dp_solution_pipeline/#4","title":"4. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u7531\u4e8e\u6bcf\u4e2a\u683c\u5b50\u53ea\u4e0e\u5176\u5de6\u8fb9\u548c\u4e0a\u8fb9\u7684\u683c\u5b50\u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u53ea\u7528\u4e00\u4e2a\u5355\u884c\u6570\u7ec4\u6765\u5b9e\u73b0 \\(dp\\) \u8868\u3002

            \u8bf7\u6ce8\u610f\uff0c\u56e0\u4e3a\u6570\u7ec4 dp \u53ea\u80fd\u8868\u793a\u4e00\u884c\u7684\u72b6\u6001\uff0c\u6240\u4ee5\u6211\u4eec\u65e0\u6cd5\u63d0\u524d\u521d\u59cb\u5316\u9996\u5217\u72b6\u6001\uff0c\u800c\u662f\u5728\u904d\u5386\u6bcf\u884c\u4e2d\u66f4\u65b0\u5b83\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust min_path_sum.java
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(int[][] grid) {\nint n = grid.length, m = grid[0].length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[m];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0];\nfor (int j = 1; j < m; j++) {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i < n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j < m; j++) {\ndp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\nreturn dp[m - 1];\n}\n
            min_path_sum.cpp
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(vector<vector<int>> &grid) {\nint n = grid.size(), m = grid[0].size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<int> dp(m);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0];\nfor (int j = 1; j < m; j++) {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i < n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j < m; j++) {\ndp[j] = min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\nreturn dp[m - 1];\n}\n
            min_path_sum.py
            def min_path_sum_dp_comp(grid: list[list[int]]) -> int:\n\"\"\"\u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn, m = len(grid), len(grid[0])\n# \u521d\u59cb\u5316 dp \u8868\ndp = [0] * m\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0]\nfor j in range(1, m):\ndp[j] = dp[j - 1] + grid[0][j]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in range(1, n):\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in range(1, m):\ndp[j] = min(dp[j - 1], dp[j]) + grid[i][j]\nreturn dp[m - 1]\n
            min_path_sum.go
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDPComp(grid [][]int) int {\nn, m := len(grid), len(grid[0])\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([]int, m)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0]\nfor j := 1; j < m; j++ {\ndp[j] = dp[j-1] + grid[0][j]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i := 1; i < n; i++ {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j := 1; j < m; j++ {\ndp[j] = int(math.Min(float64(dp[j-1]), float64(dp[j]))) + grid[i][j]\n}\n}\nreturn dp[m-1]\n}\n
            min_path_sum.js
            [class]{}-[func]{minPathSumDPComp}\n
            min_path_sum.ts
            [class]{}-[func]{minPathSumDPComp}\n
            min_path_sum.c
            [class]{}-[func]{minPathSumDPComp}\n
            min_path_sum.cs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(int[][] grid) {\nint n = grid.Length, m = grid[0].Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[m];\ndp[0] = grid[0][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j < m; j++) {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i < n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j < m; j++) {\ndp[j] = Math.Min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\nreturn dp[m - 1];\n}\n
            min_path_sum.swift
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc minPathSumDPComp(grid: [[Int]]) -> Int {\nlet n = grid.count\nlet m = grid[0].count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: 0, count: m)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0]\nfor j in stride(from: 1, to: m, by: 1) {\ndp[j] = dp[j - 1] + grid[0][j]\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in stride(from: 1, to: n, by: 1) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0]\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in stride(from: 1, to: m, by: 1) {\ndp[j] = min(dp[j - 1], dp[j]) + grid[i][j]\n}\n}\nreturn dp[m - 1]\n}\n
            min_path_sum.zig
            // \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn minPathSumDPComp(comptime grid: anytype) i32 {\ncomptime var n = grid.len;\ncomptime var m = grid[0].len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_]i32{0} ** m;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0];\nfor (1..m) |j| {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (1..n) |i| {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\nfor (1..m) |j| {\ndp[j] = @min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\nreturn dp[m - 1];\n}\n
            min_path_sum.dart
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint minPathSumDPComp(List<List<int>> grid) {\nint n = grid.length, m = grid[0].length;\n// \u521d\u59cb\u5316 dp \u8868\nList<int> dp = List.filled(m, 0);\ndp[0] = grid[0][0];\nfor (int j = 1; j < m; j++) {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i < n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j < m; j++) {\ndp[j] = min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\nreturn dp[m - 1];\n}\n
            min_path_sum.rs
            /* \u6700\u5c0f\u8def\u5f84\u548c\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn min_path_sum_dp_comp(grid: &Vec<Vec<i32>>) -> i32 {\nlet (n, m) = (grid.len(), grid[0].len());\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![0; m];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\ndp[0] = grid[0][0];\nfor j in 1..m {\ndp[j] = dp[j - 1] + grid[0][j];\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in 1..n {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\ndp[0] = dp[0] + grid[i][0];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in 1..m {\ndp[j] = std::cmp::min(dp[j - 1], dp[j]) + grid[i][j];\n}\n}\ndp[m - 1]\n}\n
            "},{"location":"chapter_dynamic_programming/edit_distance_problem/","title":"14.6 \u00a0 \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898","text":"

            \u7f16\u8f91\u8ddd\u79bb\uff0c\u4e5f\u88ab\u79f0\u4e3a Levenshtein \u8ddd\u79bb\uff0c\u6307\u4e24\u4e2a\u5b57\u7b26\u4e32\u4e4b\u95f4\u4e92\u76f8\u8f6c\u6362\u7684\u6700\u5c0f\u4fee\u6539\u6b21\u6570\uff0c\u901a\u5e38\u7528\u4e8e\u5728\u4fe1\u606f\u68c0\u7d22\u548c\u81ea\u7136\u8bed\u8a00\u5904\u7406\u4e2d\u5ea6\u91cf\u4e24\u4e2a\u5e8f\u5217\u7684\u76f8\u4f3c\u5ea6\u3002

            Question

            \u8f93\u5165\u4e24\u4e2a\u5b57\u7b26\u4e32 \\(s\\) \u548c \\(t\\) \uff0c\u8fd4\u56de\u5c06 \\(s\\) \u8f6c\u6362\u4e3a \\(t\\) \u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002

            \u4f60\u53ef\u4ee5\u5728\u4e00\u4e2a\u5b57\u7b26\u4e32\u4e2d\u8fdb\u884c\u4e09\u79cd\u7f16\u8f91\u64cd\u4f5c\uff1a\u63d2\u5165\u4e00\u4e2a\u5b57\u7b26\u3001\u5220\u9664\u4e00\u4e2a\u5b57\u7b26\u3001\u66ff\u6362\u5b57\u7b26\u4e3a\u4efb\u610f\u4e00\u4e2a\u5b57\u7b26\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5c06 kitten \u8f6c\u6362\u4e3a sitting \u9700\u8981\u7f16\u8f91 3 \u6b65\uff0c\u5305\u62ec 2 \u6b21\u66ff\u6362\u64cd\u4f5c\u4e0e 1 \u6b21\u6dfb\u52a0\u64cd\u4f5c\uff1b\u5c06 hello \u8f6c\u6362\u4e3a algo \u9700\u8981 3 \u6b65\uff0c\u5305\u62ec 2 \u6b21\u66ff\u6362\u64cd\u4f5c\u548c 1 \u6b21\u5220\u9664\u64cd\u4f5c\u3002

            \u56fe\uff1a\u7f16\u8f91\u8ddd\u79bb\u7684\u793a\u4f8b\u6570\u636e

            \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u53ef\u4ee5\u5f88\u81ea\u7136\u5730\u7528\u51b3\u7b56\u6811\u6a21\u578b\u6765\u89e3\u91ca\u3002\u5b57\u7b26\u4e32\u5bf9\u5e94\u6811\u8282\u70b9\uff0c\u4e00\u8f6e\u51b3\u7b56\uff08\u4e00\u6b21\u7f16\u8f91\u64cd\u4f5c\uff09\u5bf9\u5e94\u6811\u7684\u4e00\u6761\u8fb9\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5728\u4e0d\u9650\u5236\u64cd\u4f5c\u7684\u60c5\u51b5\u4e0b\uff0c\u6bcf\u4e2a\u8282\u70b9\u90fd\u53ef\u4ee5\u6d3e\u751f\u51fa\u8bb8\u591a\u6761\u8fb9\uff0c\u6bcf\u6761\u8fb9\u5bf9\u5e94\u4e00\u79cd\u64cd\u4f5c\uff0c\u8fd9\u610f\u5473\u7740\u4ece hello \u8f6c\u6362\u5230 algo \u6709\u8bb8\u591a\u79cd\u53ef\u80fd\u7684\u8def\u5f84\u3002

            \u4ece\u51b3\u7b56\u6811\u7684\u89d2\u5ea6\u770b\uff0c\u672c\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u8282\u70b9 hello \u548c\u8282\u70b9 algo \u4e4b\u95f4\u7684\u6700\u77ed\u8def\u5f84\u3002

            \u56fe\uff1a\u57fa\u4e8e\u51b3\u7b56\u6811\u6a21\u578b\u8868\u793a\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898

            "},{"location":"chapter_dynamic_programming/edit_distance_problem/#1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"

            \u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868

            \u6bcf\u4e00\u8f6e\u7684\u51b3\u7b56\u662f\u5bf9\u5b57\u7b26\u4e32 \\(s\\) \u8fdb\u884c\u4e00\u6b21\u7f16\u8f91\u64cd\u4f5c\u3002

            \u6211\u4eec\u5e0c\u671b\u5728\u7f16\u8f91\u64cd\u4f5c\u7684\u8fc7\u7a0b\u4e2d\uff0c\u95ee\u9898\u7684\u89c4\u6a21\u9010\u6e10\u7f29\u5c0f\uff0c\u8fd9\u6837\u624d\u80fd\u6784\u5efa\u5b50\u95ee\u9898\u3002\u8bbe\u5b57\u7b26\u4e32 \\(s\\) \u548c \\(t\\) \u7684\u957f\u5ea6\u5206\u522b\u4e3a \\(n\\) \u548c \\(m\\) \uff0c\u6211\u4eec\u5148\u8003\u8651\u4e24\u5b57\u7b26\u4e32\u5c3e\u90e8\u7684\u5b57\u7b26 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \uff1a

            • \u82e5 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \u76f8\u540c\uff0c\u6211\u4eec\u53ef\u4ee5\u8df3\u8fc7\u5b83\u4eec\uff0c\u76f4\u63a5\u8003\u8651 \\(s[n-2]\\) \u548c \\(t[m-2]\\) \u3002
            • \u82e5 \\(s[n-1]\\) \u548c \\(t[m-1]\\) \u4e0d\u540c\uff0c\u6211\u4eec\u9700\u8981\u5bf9 \\(s\\) \u8fdb\u884c\u4e00\u6b21\u7f16\u8f91\uff08\u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\uff09\uff0c\u4f7f\u5f97\u4e24\u5b57\u7b26\u4e32\u5c3e\u90e8\u7684\u5b57\u7b26\u76f8\u540c\uff0c\u4ece\u800c\u53ef\u4ee5\u8df3\u8fc7\u5b83\u4eec\uff0c\u8003\u8651\u89c4\u6a21\u66f4\u5c0f\u7684\u95ee\u9898\u3002

            \u4e5f\u5c31\u662f\u8bf4\uff0c\u6211\u4eec\u5728\u5b57\u7b26\u4e32 \\(s\\) \u4e2d\u8fdb\u884c\u7684\u6bcf\u4e00\u8f6e\u51b3\u7b56\uff08\u7f16\u8f91\u64cd\u4f5c\uff09\uff0c\u90fd\u4f1a\u4f7f\u5f97 \\(s\\) \u548c \\(t\\) \u4e2d\u5269\u4f59\u7684\u5f85\u5339\u914d\u5b57\u7b26\u53d1\u751f\u53d8\u5316\u3002\u56e0\u6b64\uff0c\u72b6\u6001\u4e3a\u5f53\u524d\u5728 \\(s\\) , \\(t\\) \u4e2d\u8003\u8651\u7684\u7b2c \\(i\\) , \\(j\\) \u4e2a\u5b57\u7b26\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002

            \u72b6\u6001 \\([i, j]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\uff1a\u5c06 \\(s\\) \u7684\u524d \\(i\\) \u4e2a\u5b57\u7b26\u66f4\u6539\u4e3a \\(t\\) \u7684\u524d \\(j\\) \u4e2a\u5b57\u7b26\u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002

            \u81f3\u6b64\uff0c\u5f97\u5230\u4e00\u4e2a\u5c3a\u5bf8\u4e3a \\((i+1) \\times (j+1)\\) \u7684\u4e8c\u7ef4 \\(dp\\) \u8868\u3002

            \u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b

            \u8003\u8651\u5b50\u95ee\u9898 \\(dp[i, j]\\) \uff0c\u5176\u5bf9\u5e94\u7684\u4e24\u4e2a\u5b57\u7b26\u4e32\u7684\u5c3e\u90e8\u5b57\u7b26\u4e3a \\(s[i-1]\\) \u548c \\(t[j-1]\\) \uff0c\u53ef\u6839\u636e\u4e0d\u540c\u7f16\u8f91\u64cd\u4f5c\u5206\u4e3a\u4e09\u79cd\u60c5\u51b5\uff1a

            1. \u5728 \\(s[i-1]\\) \u4e4b\u540e\u6dfb\u52a0 \\(t[j-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i, j-1]\\) \u3002
            2. \u5220\u9664 \\(s[i-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i-1, j]\\) \u3002
            3. \u5c06 \\(s[i-1]\\) \u66ff\u6362\u4e3a \\(t[j-1]\\) \uff0c\u5219\u5269\u4f59\u5b50\u95ee\u9898 \\(dp[i-1, j-1]\\) \u3002

            \u56fe\uff1a\u7f16\u8f91\u8ddd\u79bb\u7684\u72b6\u6001\u8f6c\u79fb

            \u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u53ef\u5f97\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\\(dp[i, j]\\) \u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u7b49\u4e8e \\(dp[i, j-1]\\) , \\(dp[i-1, j]\\) , \\(dp[i-1, j-1]\\) \u4e09\u8005\u4e2d\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\uff0c\u518d\u52a0\u4e0a\u672c\u6b21\u7684\u7f16\u8f91\u6b65\u6570 \\(1\\) \u3002\u5bf9\u5e94\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a

            \\[ dp[i, j] = \\min(dp[i, j-1], dp[i-1, j], dp[i-1, j-1]) + 1 \\]

            \u8bf7\u6ce8\u610f\uff0c\u5f53 \\(s[i-1]\\) \u548c \\(t[j-1]\\) \u76f8\u540c\u65f6\uff0c\u65e0\u987b\u7f16\u8f91\u5f53\u524d\u5b57\u7b26\uff0c\u8fd9\u79cd\u60c5\u51b5\u4e0b\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a

            \\[ dp[i, j] = dp[i-1, j-1] \\]

            \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f

            \u5f53\u4e24\u5b57\u7b26\u4e32\u90fd\u4e3a\u7a7a\u65f6\uff0c\u7f16\u8f91\u6b65\u6570\u4e3a \\(0\\) \uff0c\u5373 \\(dp[0, 0] = 0\\) \u3002\u5f53 \\(s\\) \u4e3a\u7a7a\u4f46 \\(t\\) \u4e0d\u4e3a\u7a7a\u65f6\uff0c\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u7b49\u4e8e \\(t\\) \u7684\u957f\u5ea6\uff0c\u5373\u9996\u884c \\(dp[0, j] = j\\) \u3002\u5f53 \\(s\\) \u4e0d\u4e3a\u7a7a\u4f46 \\(t\\) \u4e3a\u7a7a\u65f6\uff0c\u7b49\u4e8e \\(s\\) \u7684\u957f\u5ea6\uff0c\u5373\u9996\u5217 \\(dp[i, 0] = i\\) \u3002

            \u89c2\u5bdf\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff0c\u89e3 \\(dp[i, j]\\) \u4f9d\u8d56\u5de6\u65b9\u3001\u4e0a\u65b9\u3001\u5de6\u4e0a\u65b9\u7684\u89e3\uff0c\u56e0\u6b64\u901a\u8fc7\u4e24\u5c42\u5faa\u73af\u6b63\u5e8f\u904d\u5386\u6574\u4e2a \\(dp\\) \u8868\u5373\u53ef\u3002

            "},{"location":"chapter_dynamic_programming/edit_distance_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"JavaC++PythonGoJSTSCC#SwiftZigDartRust edit_distance.java
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(String s, String t) {\nint n = s.length(), m = t.length();\nint[][] dp = new int[n + 1][m + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int i = 1; i <= n; i++) {\ndp[i][0] = i;\n}\nfor (int j = 1; j <= m; j++) {\ndp[0][j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int j = 1; j <= m; j++) {\nif (s.charAt(i - 1) == t.charAt(j - 1)) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n}\n}\n}\nreturn dp[n][m];\n}\n
            edit_distance.cpp
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(string s, string t) {\nint n = s.length(), m = t.length();\nvector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int i = 1; i <= n; i++) {\ndp[i][0] = i;\n}\nfor (int j = 1; j <= m; j++) {\ndp[0][j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int j = 1; j <= m; j++) {\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n}\n}\n}\nreturn dp[n][m];\n}\n
            edit_distance.py
            def edit_distance_dp(s: str, t: str) -> int:\n\"\"\"\u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn, m = len(s), len(t)\ndp = [[0] * (m + 1) for _ in range(n + 1)]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor i in range(1, n + 1):\ndp[i][0] = i\nfor j in range(1, m + 1):\ndp[0][j] = j\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in range(1, n + 1):\nfor j in range(1, m + 1):\nif s[i - 1] == t[j - 1]:\n# \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1]\nelse:\n# \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1\nreturn dp[n][m]\n
            edit_distance.go
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDP(s string, t string) int {\nn := len(s)\nm := len(t)\ndp := make([][]int, n+1)\nfor i := 0; i <= n; i++ {\ndp[i] = make([]int, m+1)\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor i := 1; i <= n; i++ {\ndp[i][0] = i\n}\nfor j := 1; j <= m; j++ {\ndp[0][j] = j\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i := 1; i <= n; i++ {\nfor j := 1; j <= m; j++ {\nif s[i-1] == t[j-1] {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i-1][j-1]\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = MinInt(MinInt(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]) + 1\n}\n}\n}\nreturn dp[n][m]\n}\n
            edit_distance.js
            [class]{}-[func]{editDistanceDP}\n
            edit_distance.ts
            [class]{}-[func]{editDistanceDP}\n
            edit_distance.c
            [class]{}-[func]{editDistanceDP}\n
            edit_distance.cs
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(string s, string t) {\nint n = s.Length, m = t.Length;\nint[,] dp = new int[n + 1, m + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int i = 1; i <= n; i++) {\ndp[i, 0] = i;\n}\nfor (int j = 1; j <= m; j++) {\ndp[0, j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int j = 1; j <= m; j++) {\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i, j] = dp[i - 1, j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i, j] = Math.Min(Math.Min(dp[i, j - 1], dp[i - 1, j]), dp[i - 1, j - 1]) + 1;\n}\n}\n}\nreturn dp[n, m];\n}\n
            edit_distance.swift
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDP(s: String, t: String) -> Int {\nlet n = s.utf8CString.count\nlet m = t.utf8CString.count\nvar dp = Array(repeating: Array(repeating: 0, count: m + 1), count: n + 1)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor i in stride(from: 1, through: n, by: 1) {\ndp[i][0] = i\n}\nfor j in stride(from: 1, through: m, by: 1) {\ndp[0][j] = j\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in stride(from: 1, through: n, by: 1) {\nfor j in stride(from: 1, through: m, by: 1) {\nif s.utf8CString[i - 1] == t.utf8CString[j - 1] {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1]\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1\n}\n}\n}\nreturn dp[n][m]\n}\n
            edit_distance.zig
            // \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212\nfn editDistanceDP(comptime s: []const u8, comptime t: []const u8) i32 {\ncomptime var n = s.len;\ncomptime var m = t.len;\nvar dp = [_][m + 1]i32{[_]i32{0} ** (m + 1)} ** (n + 1);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (1..n + 1) |i| {\ndp[i][0] = @intCast(i);\n}\nfor (1..m + 1) |j| {\ndp[0][j] = @intCast(j);\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (1..n + 1) |i| {\nfor (1..m + 1) |j| {\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = @min(@min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n}\n}\n}\nreturn dp[n][m];\n}\n
            edit_distance.dart
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nint editDistanceDP(String s, String t) {\nint n = s.length, m = t.length;\nList<List<int>> dp = List.generate(n + 1, (_) => List.filled(m + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int i = 1; i <= n; i++) {\ndp[i][0] = i;\n}\nfor (int j = 1; j <= m; j++) {\ndp[0][j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int j = 1; j <= m; j++) {\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n}\n}\n}\nreturn dp[n][m];\n}\n
            edit_distance.rs
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u52a8\u6001\u89c4\u5212 */\nfn edit_distance_dp(s: &str, t: &str) -> i32 {\nlet (n, m) = (s.len(), t.len());\nlet mut dp = vec![vec![0; m + 1]; n + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor i in 1..= n {\ndp[i][0] = i as i32;\n}\nfor j in 1..m {\ndp[0][j] = j as i32;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in 1..=n {\nfor j in 1..=m {\nif s.chars().nth(i - 1) == t.chars().nth(j - 1) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[i][j] = dp[i - 1][j - 1];\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[i][j] = std::cmp::min(std::cmp::min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;\n}\n}\n}\ndp[n][m]\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u7684\u72b6\u6001\u8f6c\u79fb\u8fc7\u7a0b\u4e0e\u80cc\u5305\u95ee\u9898\u975e\u5e38\u7c7b\u4f3c\uff0c\u90fd\u53ef\u4ee5\u770b\u4f5c\u662f\u586b\u5199\u4e00\u4e2a\u4e8c\u7ef4\u7f51\u683c\u7684\u8fc7\u7a0b\u3002

            <1><2><3><4><5><6><7><8><9><10><11><12><13><14><15>

            \u56fe\uff1a\u7f16\u8f91\u8ddd\u79bb\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            "},{"location":"chapter_dynamic_programming/edit_distance_problem/#3","title":"3. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u7531\u4e8e \\(dp[i,j]\\) \u662f\u7531\u4e0a\u65b9 \\(dp[i-1, j]\\) \u3001\u5de6\u65b9 \\(dp[i, j-1]\\) \u3001\u5de6\u4e0a\u65b9\u72b6\u6001 \\(dp[i-1, j-1]\\) \u8f6c\u79fb\u800c\u6765\uff0c\u800c\u6b63\u5e8f\u904d\u5386\u4f1a\u4e22\u5931\u5de6\u4e0a\u65b9 \\(dp[i-1, j-1]\\) \uff0c\u5012\u5e8f\u904d\u5386\u65e0\u6cd5\u63d0\u524d\u6784\u5efa \\(dp[i, j-1]\\) \uff0c\u56e0\u6b64\u4e24\u79cd\u904d\u5386\u987a\u5e8f\u90fd\u4e0d\u53ef\u53d6\u3002

            \u4e3a\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e00\u4e2a\u53d8\u91cf leftup \u6765\u6682\u5b58\u5de6\u4e0a\u65b9\u7684\u89e3 \\(dp[i-1, j-1]\\) \uff0c\u4ece\u800c\u53ea\u9700\u8003\u8651\u5de6\u65b9\u548c\u4e0a\u65b9\u7684\u89e3\u3002\u6b64\u65f6\u7684\u60c5\u51b5\u4e0e\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u76f8\u540c\uff0c\u53ef\u4f7f\u7528\u6b63\u5e8f\u904d\u5386\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust edit_distance.java
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(String s, String t) {\nint n = s.length(), m = t.length();\nint[] dp = new int[m + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j <= m; j++) {\ndp[j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i <= n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nint leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j <= m; j++) {\nint temp = dp[j];\nif (s.charAt(i - 1) == t.charAt(j - 1)) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = Math.min(Math.min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m];\n}\n
            edit_distance.cpp
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(string s, string t) {\nint n = s.length(), m = t.length();\nvector<int> dp(m + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j <= m; j++) {\ndp[j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i <= n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nint leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j <= m; j++) {\nint temp = dp[j];\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m];\n}\n
            edit_distance.py
            def edit_distance_dp_comp(s: str, t: str) -> int:\n\"\"\"\u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn, m = len(s), len(t)\ndp = [0] * (m + 1)\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in range(1, m + 1):\ndp[j] = j\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in range(1, n + 1):\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nleftup = dp[0]  # \u6682\u5b58 dp[i-1, j-1]\ndp[0] += 1\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in range(1, m + 1):\ntemp = dp[j]\nif s[i - 1] == t[j - 1]:\n# \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup\nelse:\n# \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = min(dp[j - 1], dp[j], leftup) + 1\nleftup = temp  # \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\nreturn dp[m]\n
            edit_distance.go
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDPComp(s string, t string) int {\nn := len(s)\nm := len(t)\ndp := make([]int, m+1)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j := 1; j <= m; j++ {\ndp[j] = j\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i := 1; i <= n; i++ {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nleftUp := dp[0] // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j := 1; j <= m; j++ {\ntemp := dp[j]\nif s[i-1] == t[j-1] {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftUp\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = MinInt(MinInt(dp[j-1], dp[j]), leftUp) + 1\n}\nleftUp = temp // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m]\n}\n
            edit_distance.js
            [class]{}-[func]{editDistanceDPComp}\n
            edit_distance.ts
            [class]{}-[func]{editDistanceDPComp}\n
            edit_distance.c
            [class]{}-[func]{editDistanceDPComp}\n
            edit_distance.cs
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(string s, string t) {\nint n = s.Length, m = t.Length;\nint[] dp = new int[m + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j <= m; j++) {\ndp[j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i <= n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nint leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j <= m; j++) {\nint temp = dp[j];\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = Math.Min(Math.Min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m];\n}\n
            edit_distance.swift
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc editDistanceDPComp(s: String, t: String) -> Int {\nlet n = s.utf8CString.count\nlet m = t.utf8CString.count\nvar dp = Array(repeating: 0, count: m + 1)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in stride(from: 1, through: m, by: 1) {\ndp[j] = j\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in stride(from: 1, through: n, by: 1) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nvar leftup = dp[0] // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in stride(from: 1, through: m, by: 1) {\nlet temp = dp[j]\nif s.utf8CString[i - 1] == t.utf8CString[j - 1] {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1\n}\nleftup = temp // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m]\n}\n
            edit_distance.zig
            // \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn editDistanceDPComp(comptime s: []const u8, comptime t: []const u8) i32 {\ncomptime var n = s.len;\ncomptime var m = t.len;\nvar dp = [_]i32{0} ** (m + 1);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (1..m + 1) |j| {\ndp[j] = @intCast(j);\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (1..n + 1) |i| {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nvar leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = @intCast(i);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (1..m + 1) |j| {\nvar temp = dp[j];\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = @min(@min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m];\n}\n
            edit_distance.dart
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint editDistanceDPComp(String s, String t) {\nint n = s.length, m = t.length;\nList<int> dp = List.filled(m + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor (int j = 1; j <= m; j++) {\ndp[j] = j;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor (int i = 1; i <= n; i++) {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nint leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor (int j = 1; j <= m; j++) {\nint temp = dp[j];\nif (s[i - 1] == t[j - 1]) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\nreturn dp[m];\n}\n
            edit_distance.rs
            /* \u7f16\u8f91\u8ddd\u79bb\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn edit_distance_dp_comp(s: &str, t: &str) -> i32 {\nlet (n, m) = (s.len(), t.len());\nlet mut dp = vec![0; m + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\nfor j in 1..m {\ndp[j] = j as i32;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\nfor i in 1..=n {\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u5217\nlet mut leftup = dp[0]; // \u6682\u5b58 dp[i-1, j-1]\ndp[0] = i as i32;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u5217\nfor j in 1..=m {\nlet temp = dp[j];\nif s.chars().nth(i - 1) == t.chars().nth(j - 1) {\n// \u82e5\u4e24\u5b57\u7b26\u76f8\u7b49\uff0c\u5219\u76f4\u63a5\u8df3\u8fc7\u6b64\u4e24\u5b57\u7b26\ndp[j] = leftup;\n} else {\n// \u6700\u5c11\u7f16\u8f91\u6b65\u6570 = \u63d2\u5165\u3001\u5220\u9664\u3001\u66ff\u6362\u8fd9\u4e09\u79cd\u64cd\u4f5c\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570 + 1\ndp[j] = std::cmp::min(std::cmp::min(dp[j - 1], dp[j]), leftup) + 1;\n}\nleftup = temp; // \u66f4\u65b0\u4e3a\u4e0b\u4e00\u8f6e\u7684 dp[i-1, j-1]\n}\n}\ndp[m]\n}\n
            "},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/","title":"14.1 \u00a0 \u521d\u63a2\u52a8\u6001\u89c4\u5212","text":"

            \u300c\u52a8\u6001\u89c4\u5212 dynamic programming\u300d\u662f\u4e00\u4e2a\u91cd\u8981\u7684\u7b97\u6cd5\u8303\u5f0f\uff0c\u5b83\u5c06\u4e00\u4e2a\u95ee\u9898\u5206\u89e3\u4e3a\u4e00\u7cfb\u5217\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u5e76\u901a\u8fc7\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\u6765\u907f\u514d\u91cd\u590d\u8ba1\u7b97\uff0c\u4ece\u800c\u5927\u5e45\u63d0\u5347\u65f6\u95f4\u6548\u7387\u3002

            \u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u4ece\u4e00\u4e2a\u7ecf\u5178\u4f8b\u9898\u5165\u624b\uff0c\u5148\u7ed9\u51fa\u5b83\u7684\u66b4\u529b\u56de\u6eaf\u89e3\u6cd5\uff0c\u89c2\u5bdf\u5176\u4e2d\u5305\u542b\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u518d\u9010\u6b65\u5bfc\u51fa\u66f4\u9ad8\u6548\u7684\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u3002

            \u722c\u697c\u68af

            \u7ed9\u5b9a\u4e00\u4e2a\u5171\u6709 \\(n\\) \u9636\u7684\u697c\u68af\uff0c\u4f60\u6bcf\u6b65\u53ef\u4ee5\u4e0a \\(1\\) \u9636\u6216\u8005 \\(2\\) \u9636\uff0c\u8bf7\u95ee\u6709\u591a\u5c11\u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5bf9\u4e8e\u4e00\u4e2a \\(3\\) \u9636\u697c\u68af\uff0c\u5171\u6709 \\(3\\) \u79cd\u65b9\u6848\u53ef\u4ee5\u722c\u5230\u697c\u9876\u3002

            \u56fe\uff1a\u722c\u5230\u7b2c 3 \u9636\u7684\u65b9\u6848\u6570\u91cf

            \u672c\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u65b9\u6848\u6570\u91cf\uff0c\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u901a\u8fc7\u56de\u6eaf\u6765\u7a77\u4e3e\u6240\u6709\u53ef\u80fd\u6027\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u5c06\u722c\u697c\u68af\u60f3\u8c61\u4e3a\u4e00\u4e2a\u591a\u8f6e\u9009\u62e9\u7684\u8fc7\u7a0b\uff1a\u4ece\u5730\u9762\u51fa\u53d1\uff0c\u6bcf\u8f6e\u9009\u62e9\u4e0a \\(1\\) \u9636\u6216 \\(2\\) \u9636\uff0c\u6bcf\u5f53\u5230\u8fbe\u697c\u68af\u9876\u90e8\u65f6\u5c31\u5c06\u65b9\u6848\u6570\u91cf\u52a0 \\(1\\) \uff0c\u5f53\u8d8a\u8fc7\u697c\u68af\u9876\u90e8\u65f6\u5c31\u5c06\u5176\u526a\u679d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_backtrack.java
            /* \u56de\u6eaf */\nvoid backtrack(List<Integer> choices, int state, int n, List<Integer> res) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state == n)\nres.set(0, res.get(0) + 1);\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (Integer choice : choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n)\nbreak;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\nList<Integer> choices = Arrays.asList(1, 2); // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nint state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nList<Integer> res = new ArrayList<>();\nres.add(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res.get(0);\n}\n
            climbing_stairs_backtrack.cpp
            /* \u56de\u6eaf */\nvoid backtrack(vector<int> &choices, int state, int n, vector<int> &res) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state == n)\nres[0]++;\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (auto &choice : choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n)\nbreak;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\nvector<int> choices = {1, 2}; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nint state = 0;                // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nvector<int> res = {0};        // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res[0];\n}\n
            climbing_stairs_backtrack.py
            def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:\n\"\"\"\u56de\u6eaf\"\"\"\n# \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif state == n:\nres[0] += 1\n# \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices:\n# \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif state + choice > n:\nbreak\n# \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res)\n# \u56de\u9000\ndef climbing_stairs_backtrack(n: int) -> int:\n\"\"\"\u722c\u697c\u68af\uff1a\u56de\u6eaf\"\"\"\nchoices = [1, 2]  # \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nstate = 0  # \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nres = [0]  # \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res)\nreturn res[0]\n
            climbing_stairs_backtrack.go
            /* \u56de\u6eaf */\nfunc backtrack(choices []int, state, n int, res []int) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif state == n {\nres[0] = res[0] + 1\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor _, choice := range choices {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif state+choice > n {\nbreak\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state+choice, n, res)\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunc climbingStairsBacktrack(n int) int {\n// \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nchoices := []int{1, 2}\n// \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nstate := 0\nres := make([]int, 1)\n// \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nres[0] = 0\nbacktrack(choices, state, n, res)\nreturn res[0]\n}\n
            climbing_stairs_backtrack.js
            /* \u56de\u6eaf */\nfunction backtrack(choices, state, n, res) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state === n) res.set(0, res.get(0) + 1);\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (const choice of choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n) break;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunction climbingStairsBacktrack(n) {\nconst choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nconst state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nconst res = new Map();\nres.set(0, 0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res.get(0);\n}\n
            climbing_stairs_backtrack.ts
            /* \u56de\u6eaf */\nfunction backtrack(\nchoices: number[],\nstate: number,\nn: number,\nres: Map<0, any>\n): void {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state === n) res.set(0, res.get(0) + 1);\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (const choice of choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n) break;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunction climbingStairsBacktrack(n: number): number {\nconst choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nconst state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nconst res = new Map();\nres.set(0, 0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res.get(0);\n}\n
            climbing_stairs_backtrack.c
            [class]{}-[func]{backtrack}\n[class]{}-[func]{climbingStairsBacktrack}\n
            climbing_stairs_backtrack.cs
            /* \u56de\u6eaf */\nvoid backtrack(List<int> choices, int state, int n, List<int> res) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state == n)\nres[0]++;\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nforeach (int choice in choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n)\nbreak;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\nList<int> choices = new List<int> { 1, 2 }; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nint state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nList<int> res = new List<int> { 0 }; // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res[0];\n}\n
            climbing_stairs_backtrack.swift
            /* \u56de\u6eaf */\nfunc backtrack(choices: [Int], state: Int, n: Int, res: inout [Int]) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif state == n {\nres[0] += 1\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor choice in choices {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif state + choice > n {\nbreak\n}\nbacktrack(choices: choices, state: state + choice, n: n, res: &res)\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfunc climbingStairsBacktrack(n: Int) -> Int {\nlet choices = [1, 2] // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nlet state = 0 // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nvar res: [Int] = []\nres.append(0) // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices: choices, state: state, n: n, res: &res)\nreturn res[0]\n}\n
            climbing_stairs_backtrack.zig
            // \u56de\u6eaf\nfn backtrack(choices: []i32, state: i32, n: i32, res: std.ArrayList(i32)) void {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state == n) {\nres.items[0] = res.items[0] + 1;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (choices) |choice| {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n) {\nbreak;\n}\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n// \u722c\u697c\u68af\uff1a\u56de\u6eaf\nfn climbingStairsBacktrack(n: usize) !i32 {\nvar choices = [_]i32{ 1, 2 }; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nvar state: i32 = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nvar res = std.ArrayList(i32).init(std.heap.page_allocator);\ndefer res.deinit();\ntry res.append(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(&choices, state, @intCast(n), res);\nreturn res.items[0];\n}\n
            climbing_stairs_backtrack.dart
            /* \u56de\u6eaf */\nvoid backtrack(List<int> choices, int state, int n, List<int> res) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif (state == n) {\nres[0]++;\n}\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor (int choice in choices) {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif (state + choice > n) break;\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nint climbingStairsBacktrack(int n) {\nList<int> choices = [1, 2]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nint state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nList<int> res = [];\nres.add(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(choices, state, n, res);\nreturn res[0];\n}\n
            climbing_stairs_backtrack.rs
            /* \u56de\u6eaf */\nfn backtrack(choices: &[i32], state: i32, n: i32, res: &mut [i32]) {\n// \u5f53\u722c\u5230\u7b2c n \u9636\u65f6\uff0c\u65b9\u6848\u6570\u91cf\u52a0 1\nif state == n { res[0] = res[0] + 1; }\n// \u904d\u5386\u6240\u6709\u9009\u62e9\nfor &choice in choices {\n// \u526a\u679d\uff1a\u4e0d\u5141\u8bb8\u8d8a\u8fc7\u7b2c n \u9636\nif state + choice > n { break; }\n// \u5c1d\u8bd5\uff1a\u505a\u51fa\u9009\u62e9\uff0c\u66f4\u65b0\u72b6\u6001\nbacktrack(choices, state + choice, n, res);\n// \u56de\u9000\n}\n}\n/* \u722c\u697c\u68af\uff1a\u56de\u6eaf */\nfn climbing_stairs_backtrack(n: usize) -> i32 {\nlet choices = vec![ 1, 2 ]; // \u53ef\u9009\u62e9\u5411\u4e0a\u722c 1 \u6216 2 \u9636\nlet state = 0; // \u4ece\u7b2c 0 \u9636\u5f00\u59cb\u722c\nlet mut res = Vec::new();\nres.push(0); // \u4f7f\u7528 res[0] \u8bb0\u5f55\u65b9\u6848\u6570\u91cf\nbacktrack(&choices, state, n as i32, &mut res);\nres[0]\n}\n
            "},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1411","title":"14.1.1 \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"

            \u56de\u6eaf\u7b97\u6cd5\u901a\u5e38\u5e76\u4e0d\u663e\u5f0f\u5730\u5bf9\u95ee\u9898\u8fdb\u884c\u62c6\u89e3\uff0c\u800c\u662f\u5c06\u95ee\u9898\u770b\u4f5c\u4e00\u7cfb\u5217\u51b3\u7b56\u6b65\u9aa4\uff0c\u901a\u8fc7\u8bd5\u63a2\u548c\u526a\u679d\uff0c\u641c\u7d22\u6240\u6709\u53ef\u80fd\u7684\u89e3\u3002

            \u6211\u4eec\u53ef\u4ee5\u5c1d\u8bd5\u4ece\u95ee\u9898\u5206\u89e3\u7684\u89d2\u5ea6\u5206\u6790\u8fd9\u9053\u9898\u3002\u8bbe\u722c\u5230\u7b2c \\(i\\) \u9636\u5171\u6709 \\(dp[i]\\) \u79cd\u65b9\u6848\uff0c\u90a3\u4e48 \\(dp[i]\\) \u5c31\u662f\u539f\u95ee\u9898\uff0c\u5176\u5b50\u95ee\u9898\u5305\u62ec:

            \\[ dp[i-1] , dp[i-2] , \\cdots , dp[2] , dp[1] \\]

            \u7531\u4e8e\u6bcf\u8f6e\u53ea\u80fd\u4e0a \\(1\\) \u9636\u6216 \\(2\\) \u9636\uff0c\u56e0\u6b64\u5f53\u6211\u4eec\u7ad9\u5728\u7b2c \\(i\\) \u9636\u697c\u68af\u4e0a\u65f6\uff0c\u4e0a\u4e00\u8f6e\u53ea\u53ef\u80fd\u7ad9\u5728\u7b2c \\(i - 1\\) \u9636\u6216\u7b2c \\(i - 2\\) \u9636\u4e0a\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u6211\u4eec\u53ea\u80fd\u4ece\u7b2c \\(i -1\\) \u9636\u6216\u7b2c \\(i - 2\\) \u9636\u524d\u5f80\u7b2c \\(i\\) \u9636\u3002

            \u7531\u6b64\u4fbf\u53ef\u5f97\u51fa\u4e00\u4e2a\u91cd\u8981\u63a8\u8bba\uff1a\u722c\u5230\u7b2c \\(i - 1\\) \u9636\u7684\u65b9\u6848\u6570\u52a0\u4e0a\u722c\u5230\u7b2c \\(i - 2\\) \u9636\u7684\u65b9\u6848\u6570\u5c31\u7b49\u4e8e\u722c\u5230\u7b2c \\(i\\) \u9636\u7684\u65b9\u6848\u6570\u3002\u516c\u5f0f\u5982\u4e0b\uff1a

            \\[ dp[i] = dp[i-1] + dp[i-2] \\]

            \u8fd9\u610f\u5473\u7740\u5728\u722c\u697c\u68af\u95ee\u9898\u4e2d\uff0c\u5404\u4e2a\u5b50\u95ee\u9898\u4e4b\u95f4\u5b58\u5728\u9012\u63a8\u5173\u7cfb\uff0c\u539f\u95ee\u9898\u7684\u89e3\u53ef\u4ee5\u7531\u5b50\u95ee\u9898\u7684\u89e3\u6784\u5efa\u5f97\u6765\u3002

            \u56fe\uff1a\u65b9\u6848\u6570\u91cf\u9012\u63a8\u5173\u7cfb

            \u6211\u4eec\u53ef\u4ee5\u6839\u636e\u9012\u63a8\u516c\u5f0f\u5f97\u5230\u66b4\u529b\u641c\u7d22\u89e3\u6cd5\uff1a

            • \u4ee5 \\(dp[n]\\) \u4e3a\u8d77\u59cb\u70b9\uff0c\u9012\u5f52\u5730\u5c06\u4e00\u4e2a\u8f83\u5927\u95ee\u9898\u62c6\u89e3\u4e3a\u4e24\u4e2a\u8f83\u5c0f\u95ee\u9898\u7684\u548c\uff0c\u76f4\u81f3\u5230\u8fbe\u6700\u5c0f\u5b50\u95ee\u9898 \\(dp[1]\\) \u548c \\(dp[2]\\) \u65f6\u8fd4\u56de\u3002
            • \u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3 \\(dp[1] = 1\\) , \\(dp[2] = 2\\) \u662f\u5df2\u77e5\u7684\uff0c\u4ee3\u8868\u722c\u5230\u7b2c \\(1\\) , \\(2\\) \u9636\u5206\u522b\u6709 \\(1\\) , \\(2\\) \u79cd\u65b9\u6848\u3002

            \u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u5b83\u548c\u6807\u51c6\u56de\u6eaf\u4ee3\u7801\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\uff0c\u4f46\u66f4\u52a0\u7b80\u6d01\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_dfs.java
            /* \u641c\u7d22 */\nint dfs(int i) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.cpp
            /* \u641c\u7d22 */\nint dfs(int i) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.py
            def dfs(i: int) -> int:\n\"\"\"\u641c\u7d22\"\"\"\n# \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 or i == 2:\nreturn i\n# dp[i] = dp[i-1] + dp[i-2]\ncount = dfs(i - 1) + dfs(i - 2)\nreturn count\ndef climbing_stairs_dfs(n: int) -> int:\n\"\"\"\u722c\u697c\u68af\uff1a\u641c\u7d22\"\"\"\nreturn dfs(n)\n
            climbing_stairs_dfs.go
            /* \u641c\u7d22 */\nfunc dfs(i int) int {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 {\nreturn i\n}\n// dp[i] = dp[i-1] + dp[i-2]\ncount := dfs(i-1) + dfs(i-2)\nreturn count\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunc climbingStairsDFS(n int) int {\nreturn dfs(n)\n}\n
            climbing_stairs_dfs.js
            /* \u641c\u7d22 */\nfunction dfs(i) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i === 1 || i === 2) return i;\n// dp[i] = dp[i-1] + dp[i-2]\nconst count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunction climbingStairsDFS(n) {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.ts
            /* \u641c\u7d22 */\nfunction dfs(i: number): number {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i === 1 || i === 2) return i;\n// dp[i] = dp[i-1] + dp[i-2]\nconst count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunction climbingStairsDFS(n: number): number {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.c
            [class]{}-[func]{dfs}\n[class]{}-[func]{climbingStairsDFS}\n
            climbing_stairs_dfs.cs
            /* \u641c\u7d22 */\nint dfs(int i) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.swift
            /* \u641c\u7d22 */\nfunc dfs(i: Int) -> Int {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 {\nreturn i\n}\n// dp[i] = dp[i-1] + dp[i-2]\nlet count = dfs(i: i - 1) + dfs(i: i - 2)\nreturn count\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfunc climbingStairsDFS(n: Int) -> Int {\ndfs(i: n)\n}\n
            climbing_stairs_dfs.zig
            // \u641c\u7d22\nfn dfs(i: usize) i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 or i == 2) {\nreturn @intCast(i);\n}\n// dp[i] = dp[i-1] + dp[i-2]\nvar count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n// \u722c\u697c\u68af\uff1a\u641c\u7d22\nfn climbingStairsDFS(comptime n: usize) i32 {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.dart
            /* \u641c\u7d22 */\nint dfs(int i) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2) return i;\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1) + dfs(i - 2);\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nint climbingStairsDFS(int n) {\nreturn dfs(n);\n}\n
            climbing_stairs_dfs.rs
            /* \u641c\u7d22 */\nfn dfs(i: usize) -> i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 { return i as i32; }\n// dp[i] = dp[i-1] + dp[i-2]\nlet count = dfs(i - 1) + dfs(i - 2);\ncount\n}\n/* \u722c\u697c\u68af\uff1a\u641c\u7d22 */\nfn climbing_stairs_dfs(n: usize) -> i32 {\ndfs(n) }\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u66b4\u529b\u641c\u7d22\u5f62\u6210\u7684\u9012\u5f52\u6811\u3002\u5bf9\u4e8e\u95ee\u9898 \\(dp[n]\\) \uff0c\u5176\u9012\u5f52\u6811\u7684\u6df1\u5ea6\u4e3a \\(n\\) \uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \u3002\u6307\u6570\u9636\u5c5e\u4e8e\u7206\u70b8\u5f0f\u589e\u957f\uff0c\u5982\u679c\u6211\u4eec\u8f93\u5165\u4e00\u4e2a\u6bd4\u8f83\u5927\u7684 \\(n\\) \uff0c\u5219\u4f1a\u9677\u5165\u6f2b\u957f\u7684\u7b49\u5f85\u4e4b\u4e2d\u3002

            \u56fe\uff1a\u722c\u697c\u68af\u5bf9\u5e94\u9012\u5f52\u6811

            \u89c2\u5bdf\u4e0a\u56fe\u53d1\u73b0\uff0c\u6307\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f\u7531\u4e8e\u201c\u91cd\u53e0\u5b50\u95ee\u9898\u201d\u5bfc\u81f4\u7684\u3002\u4f8b\u5982\uff1a\\(dp[9]\\) \u88ab\u5206\u89e3\u4e3a \\(dp[8]\\) \u548c \\(dp[7]\\) \uff0c\\(dp[8]\\) \u88ab\u5206\u89e3\u4e3a \\(dp[7]\\) \u548c \\(dp[6]\\) \uff0c\u4e24\u8005\u90fd\u5305\u542b\u5b50\u95ee\u9898 \\(dp[7]\\) \u3002

            \u4ee5\u6b64\u7c7b\u63a8\uff0c\u5b50\u95ee\u9898\u4e2d\u5305\u542b\u66f4\u5c0f\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u5b50\u5b50\u5b59\u5b59\u65e0\u7a77\u5c3d\u4e5f\u3002\u7edd\u5927\u90e8\u5206\u8ba1\u7b97\u8d44\u6e90\u90fd\u6d6a\u8d39\u5728\u8fd9\u4e9b\u91cd\u53e0\u7684\u95ee\u9898\u4e0a\u3002

            "},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1412","title":"14.1.2 \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"

            \u4e3a\u4e86\u63d0\u5347\u7b97\u6cd5\u6548\u7387\uff0c\u6211\u4eec\u5e0c\u671b\u6240\u6709\u7684\u91cd\u53e0\u5b50\u95ee\u9898\u90fd\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u6570\u7ec4 mem \u6765\u8bb0\u5f55\u6bcf\u4e2a\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5e76\u5728\u641c\u7d22\u8fc7\u7a0b\u4e2d\u8fd9\u6837\u505a\uff1a

            1. \u5f53\u9996\u6b21\u8ba1\u7b97 \\(dp[i]\\) \u65f6\uff0c\u6211\u4eec\u5c06\u5176\u8bb0\u5f55\u81f3 mem[i] \uff0c\u4ee5\u4fbf\u4e4b\u540e\u4f7f\u7528\u3002
            2. \u5f53\u518d\u6b21\u9700\u8981\u8ba1\u7b97 \\(dp[i]\\) \u65f6\uff0c\u6211\u4eec\u4fbf\u53ef\u76f4\u63a5\u4ece mem[i] \u4e2d\u83b7\u53d6\u7ed3\u679c\uff0c\u4ece\u800c\u5c06\u91cd\u53e0\u5b50\u95ee\u9898\u526a\u679d\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_dfs_mem.java
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, int[] mem) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1)\nreturn mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nint[] mem = new int[n + 1];\nArrays.fill(mem, -1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.cpp
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, vector<int> &mem) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1)\nreturn mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nvector<int> mem(n + 1, -1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.py
            def dfs(i: int, mem: list[int]) -> int:\n\"\"\"\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n# \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 or i == 2:\nreturn i\n# \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif mem[i] != -1:\nreturn mem[i]\n# dp[i] = dp[i-1] + dp[i-2]\ncount = dfs(i - 1, mem) + dfs(i - 2, mem)\n# \u8bb0\u5f55 dp[i]\nmem[i] = count\nreturn count\ndef climbing_stairs_dfs_mem(n: int) -> int:\n\"\"\"\u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n# mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nmem = [-1] * (n + 1)\nreturn dfs(n, mem)\n
            climbing_stairs_dfs_mem.go
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc dfsMem(i int, mem []int) int {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 {\nreturn i\n}\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif mem[i] != -1 {\nreturn mem[i]\n}\n// dp[i] = dp[i-1] + dp[i-2]\ncount := dfsMem(i-1, mem) + dfsMem(i-2, mem)\n// \u8bb0\u5f55 dp[i]\nmem[i] = count\nreturn count\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc climbingStairsDFSMem(n int) int {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nmem := make([]int, n+1)\nfor i := range mem {\nmem[i] = -1\n}\nreturn dfsMem(n, mem)\n}\n
            climbing_stairs_dfs_mem.js
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction dfs(i, mem) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i === 1 || i === 2) return i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1) return mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nconst count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction climbingStairsDFSMem(n) {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nconst mem = new Array(n + 1).fill(-1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.ts
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction dfs(i: number, mem: number[]): number {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i === 1 || i === 2) return i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1) return mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nconst count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunction climbingStairsDFSMem(n: number): number {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nconst mem = new Array(n + 1).fill(-1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.c
            [class]{}-[func]{dfs}\n[class]{}-[func]{climbingStairsDFSMem}\n
            climbing_stairs_dfs_mem.cs
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, int[] mem) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2)\nreturn i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1)\nreturn mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nint[] mem = new int[n + 1];\nArray.Fill(mem, -1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.swift
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc dfs(i: Int, mem: inout [Int]) -> Int {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 {\nreturn i\n}\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif mem[i] != -1 {\nreturn mem[i]\n}\n// dp[i] = dp[i-1] + dp[i-2]\nlet count = dfs(i: i - 1, mem: &mem) + dfs(i: i - 2, mem: &mem)\n// \u8bb0\u5f55 dp[i]\nmem[i] = count\nreturn count\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc climbingStairsDFSMem(n: Int) -> Int {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nvar mem = Array(repeating: -1, count: n + 1)\nreturn dfs(i: n, mem: &mem)\n}\n
            climbing_stairs_dfs_mem.zig
            // \u8bb0\u5fc6\u5316\u641c\u7d22\nfn dfs(i: usize, mem: []i32) i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 or i == 2) {\nreturn @intCast(i);\n}\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1) {\nreturn mem[i];\n}\n// dp[i] = dp[i-1] + dp[i-2]\nvar count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n// \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn climbingStairsDFSMem(comptime n: usize) i32 {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nvar mem = [_]i32{ -1 } ** (n + 1);\nreturn dfs(n, &mem);\n}\n
            climbing_stairs_dfs_mem.dart
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nint dfs(int i, List<int> mem) {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (i == 1 || i == 2) return i;\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif (mem[i] != -1) return mem[i];\n// dp[i] = dp[i-1] + dp[i-2]\nint count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\nreturn count;\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint climbingStairsDFSMem(int n) {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nList<int> mem = List.filled(n + 1, -1);\nreturn dfs(n, mem);\n}\n
            climbing_stairs_dfs_mem.rs
            /* \u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn dfs(i: usize, mem: &mut [i32]) -> i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif i == 1 || i == 2 { return i as i32; }\n// \u82e5\u5b58\u5728\u8bb0\u5f55 dp[i] \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\u4e4b\nif mem[i] != -1 { return mem[i]; }\n// dp[i] = dp[i-1] + dp[i-2]\nlet count = dfs(i - 1, mem) + dfs(i - 2, mem);\n// \u8bb0\u5f55 dp[i]\nmem[i] = count;\ncount\n}\n/* \u722c\u697c\u68af\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn climbing_stairs_dfs_mem(n: usize) -> i32 {\n// mem[i] \u8bb0\u5f55\u722c\u5230\u7b2c i \u9636\u7684\u65b9\u6848\u603b\u6570\uff0c-1 \u4ee3\u8868\u65e0\u8bb0\u5f55\nlet mut mem = vec![-1; n + 1];\ndfs(n, &mut mem)\n}\n

            \u89c2\u5bdf\u4e0b\u56fe\uff0c\u7ecf\u8fc7\u8bb0\u5fc6\u5316\u5904\u7406\u540e\uff0c\u6240\u6709\u91cd\u53e0\u5b50\u95ee\u9898\u90fd\u53ea\u9700\u88ab\u8ba1\u7b97\u4e00\u6b21\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u88ab\u4f18\u5316\u81f3 \\(O(n)\\) \uff0c\u8fd9\u662f\u4e00\u4e2a\u5de8\u5927\u7684\u98de\u8dc3\u3002

            \u56fe\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\u5bf9\u5e94\u9012\u5f52\u6811

            "},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1413","title":"14.1.3 \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"

            \u8bb0\u5fc6\u5316\u641c\u7d22\u662f\u4e00\u79cd\u201c\u4ece\u9876\u81f3\u5e95\u201d\u7684\u65b9\u6cd5\uff1a\u6211\u4eec\u4ece\u539f\u95ee\u9898\uff08\u6839\u8282\u70b9\uff09\u5f00\u59cb\uff0c\u9012\u5f52\u5730\u5c06\u8f83\u5927\u5b50\u95ee\u9898\u5206\u89e3\u4e3a\u8f83\u5c0f\u5b50\u95ee\u9898\uff0c\u76f4\u81f3\u89e3\u5df2\u77e5\u7684\u6700\u5c0f\u5b50\u95ee\u9898\uff08\u53f6\u8282\u70b9\uff09\u3002\u4e4b\u540e\uff0c\u901a\u8fc7\u56de\u6eaf\u5c06\u5b50\u95ee\u9898\u7684\u89e3\u9010\u5c42\u6536\u96c6\uff0c\u6784\u5efa\u51fa\u539f\u95ee\u9898\u7684\u89e3\u3002

            \u4e0e\u4e4b\u76f8\u53cd\uff0c\u52a8\u6001\u89c4\u5212\u662f\u4e00\u79cd\u201c\u4ece\u5e95\u81f3\u9876\u201d\u7684\u65b9\u6cd5\uff1a\u4ece\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\u5f00\u59cb\uff0c\u8fed\u4ee3\u5730\u6784\u5efa\u66f4\u5927\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u76f4\u81f3\u5f97\u5230\u539f\u95ee\u9898\u7684\u89e3\u3002

            \u7531\u4e8e\u52a8\u6001\u89c4\u5212\u4e0d\u5305\u542b\u56de\u6eaf\u8fc7\u7a0b\uff0c\u56e0\u6b64\u53ea\u9700\u4f7f\u7528\u5faa\u73af\u8fed\u4ee3\u5b9e\u73b0\uff0c\u65e0\u987b\u4f7f\u7528\u9012\u5f52\u3002\u5728\u4ee5\u4e0b\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u521d\u59cb\u5316\u4e00\u4e2a\u6570\u7ec4 dp \u6765\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5b83\u8d77\u5230\u4e86\u8bb0\u5fc6\u5316\u641c\u7d22\u4e2d\u6570\u7ec4 mem \u76f8\u540c\u7684\u8bb0\u5f55\u4f5c\u7528\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_dp.java
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\nif (n == 1 || n == 2)\nreturn n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[] dp = new int[n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.cpp
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\nif (n == 1 || n == 2)\nreturn n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvector<int> dp(n + 1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.py
            def climbing_stairs_dp(n: int) -> int:\n\"\"\"\u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nif n == 1 or n == 2:\nreturn n\n# \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp = [0] * (n + 1)\n# \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1], dp[2] = 1, 2\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in range(3, n + 1):\ndp[i] = dp[i - 1] + dp[i - 2]\nreturn dp[n]\n
            climbing_stairs_dp.go
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDP(n int) int {\nif n == 1 || n == 2 {\nreturn n\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\ndp := make([]int, n+1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1\ndp[2] = 2\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i := 3; i <= n; i++ {\ndp[i] = dp[i-1] + dp[i-2]\n}\nreturn dp[n]\n}\n
            climbing_stairs_dp.js
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDP(n) {\nif (n === 1 || n === 2) return n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nconst dp = new Array(n + 1).fill(-1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (let i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.ts
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDP(n: number): number {\nif (n === 1 || n === 2) return n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nconst dp = new Array(n + 1).fill(-1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (let i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.c
            [class]{}-[func]{climbingStairsDP}\n
            climbing_stairs_dp.cs
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\nif (n == 1 || n == 2)\nreturn n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nint[] dp = new int[n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.swift
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDP(n: Int) -> Int {\nif n == 1 || n == 2 {\nreturn n\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = Array(repeating: 0, count: n + 1)\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1\ndp[2] = 2\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in stride(from: 3, through: n, by: 1) {\ndp[i] = dp[i - 1] + dp[i - 2]\n}\nreturn dp[n]\n}\n
            climbing_stairs_dp.zig
            // \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212\nfn climbingStairsDP(comptime n: usize) i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif (n == 1 or n == 2) {\nreturn @intCast(n);\n}\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nvar dp = [_]i32{-1} ** (n + 1);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (3..n + 1) |i| {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.dart
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDP(int n) {\nif (n == 1 || n == 2) return n;\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nList<int> dp = List.filled(n + 1, 0);\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor (int i = 3; i <= n; i++) {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\nreturn dp[n];\n}\n
            climbing_stairs_dp.rs
            /* \u722c\u697c\u68af\uff1a\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_dp(n: usize) -> i32 {\n// \u5df2\u77e5 dp[1] \u548c dp[2] \uff0c\u8fd4\u56de\u4e4b\nif n == 1 || n == 2 { return n as i32; }\n// \u521d\u59cb\u5316 dp \u8868\uff0c\u7528\u4e8e\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\nlet mut dp = vec![-1; n + 1];\n// \u521d\u59cb\u72b6\u6001\uff1a\u9884\u8bbe\u6700\u5c0f\u5b50\u95ee\u9898\u7684\u89e3\ndp[1] = 1;\ndp[2] = 2;\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i in 3..=n {\ndp[i] = dp[i - 1] + dp[i - 2];\n}\ndp[n]\n}\n

            \u4e0e\u56de\u6eaf\u7b97\u6cd5\u4e00\u6837\uff0c\u52a8\u6001\u89c4\u5212\u4e5f\u4f7f\u7528\u201c\u72b6\u6001\u201d\u6982\u5ff5\u6765\u8868\u793a\u95ee\u9898\u6c42\u89e3\u7684\u67d0\u4e2a\u7279\u5b9a\u9636\u6bb5\uff0c\u6bcf\u4e2a\u72b6\u6001\u90fd\u5bf9\u5e94\u4e00\u4e2a\u5b50\u95ee\u9898\u4ee5\u53ca\u76f8\u5e94\u7684\u5c40\u90e8\u6700\u4f18\u89e3\u3002\u4f8b\u5982\uff0c\u722c\u697c\u68af\u95ee\u9898\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u5f53\u524d\u6240\u5728\u697c\u68af\u9636\u6570 \\(i\\) \u3002

            \u603b\u7ed3\u4ee5\u4e0a\uff0c\u52a8\u6001\u89c4\u5212\u7684\u5e38\u7528\u672f\u8bed\u5305\u62ec\uff1a

            • \u5c06\u6570\u7ec4 dp \u79f0\u4e3a\u300c\\(dp\\) \u8868\u300d\uff0c\\(dp[i]\\) \u8868\u793a\u72b6\u6001 \\(i\\) \u5bf9\u5e94\u5b50\u95ee\u9898\u7684\u89e3\u3002
            • \u5c06\u6700\u5c0f\u5b50\u95ee\u9898\u5bf9\u5e94\u7684\u72b6\u6001\uff08\u5373\u7b2c \\(1\\) , \\(2\\) \u9636\u697c\u68af\uff09\u79f0\u4e3a\u300c\u521d\u59cb\u72b6\u6001\u300d\u3002
            • \u5c06\u9012\u63a8\u516c\u5f0f \\(dp[i] = dp[i-1] + dp[i-2]\\) \u79f0\u4e3a\u300c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u300d\u3002

            \u56fe\uff1a\u722c\u697c\u68af\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            "},{"location":"chapter_dynamic_programming/intro_to_dynamic_programming/#1414","title":"14.1.4 \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u7ec6\u5fc3\u7684\u4f60\u53ef\u80fd\u53d1\u73b0\uff0c\u7531\u4e8e \\(dp[i]\\) \u53ea\u4e0e \\(dp[i-1]\\) \u548c \\(dp[i-2]\\) \u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u65e0\u987b\u4f7f\u7528\u4e00\u4e2a\u6570\u7ec4 dp \u6765\u5b58\u50a8\u6240\u6709\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u800c\u53ea\u9700\u4e24\u4e2a\u53d8\u91cf\u6eda\u52a8\u524d\u8fdb\u5373\u53ef\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust climbing_stairs_dp.java
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\nif (n == 1 || n == 2)\nreturn n;\nint a = 1, b = 2;\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.cpp
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\nif (n == 1 || n == 2)\nreturn n;\nint a = 1, b = 2;\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.py
            def climbing_stairs_dp_comp(n: int) -> int:\n\"\"\"\u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nif n == 1 or n == 2:\nreturn n\na, b = 1, 2\nfor _ in range(3, n + 1):\na, b = b, a + b\nreturn b\n
            climbing_stairs_dp.go
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDPComp(n int) int {\nif n == 1 || n == 2 {\nreturn n\n}\na, b := 1, 2\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u4ece\u8f83\u5c0f\u5b50\u95ee\u9898\u9010\u6b65\u6c42\u89e3\u8f83\u5927\u5b50\u95ee\u9898\nfor i := 3; i <= n; i++ {\na, b = b, a+b\n}\nreturn b\n}\n
            climbing_stairs_dp.js
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDPComp(n) {\nif (n === 1 || n === 2) return n;\nlet a = 1,\nb = 2;\nfor (let i = 3; i <= n; i++) {\nconst tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.ts
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunction climbingStairsDPComp(n: number): number {\nif (n === 1 || n === 2) return n;\nlet a = 1,\nb = 2;\nfor (let i = 3; i <= n; i++) {\nconst tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.c
            [class]{}-[func]{climbingStairsDPComp}\n
            climbing_stairs_dp.cs
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\nif (n == 1 || n == 2)\nreturn n;\nint a = 1, b = 2;\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.swift
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc climbingStairsDPComp(n: Int) -> Int {\nif n == 1 || n == 2 {\nreturn n\n}\nvar a = 1\nvar b = 2\nfor _ in stride(from: 3, through: n, by: 1) {\n(a, b) = (b, a + b)\n}\nreturn b\n}\n
            climbing_stairs_dp.zig
            // \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn climbingStairsDPComp(comptime n: usize) i32 {\nif (n == 1 or n == 2) {\nreturn @intCast(n);\n}\nvar a: i32 = 1;\nvar b: i32 = 2;\nfor (3..n + 1) |_| {\nvar tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.dart
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint climbingStairsDPComp(int n) {\nif (n == 1 || n == 2) return n;\nint a = 1, b = 2;\nfor (int i = 3; i <= n; i++) {\nint tmp = b;\nb = a + b;\na = tmp;\n}\nreturn b;\n}\n
            climbing_stairs_dp.rs
            /* \u722c\u697c\u68af\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn climbing_stairs_dp_comp(n: usize) -> i32 {\nif n == 1 || n == 2 { return n as i32; }\nlet (mut a, mut b) = (1, 2);\nfor _ in 3..=n {\nlet tmp = b;\nb = a + b;\na = tmp;\n}\nb\n}\n

            \u89c2\u5bdf\u4ee5\u4e0a\u4ee3\u7801\uff0c\u7531\u4e8e\u7701\u53bb\u4e86\u6570\u7ec4 dp \u5360\u7528\u7684\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u4f4e\u81f3 \\(O(1)\\) \u3002

            \u8fd9\u79cd\u7a7a\u95f4\u4f18\u5316\u6280\u5de7\u88ab\u79f0\u4e3a\u300c\u72b6\u6001\u538b\u7f29\u300d\u3002\u5728\u5e38\u89c1\u7684\u52a8\u6001\u89c4\u5212\u95ee\u9898\u4e2d\uff0c\u5f53\u524d\u72b6\u6001\u4ec5\u4e0e\u524d\u9762\u6709\u9650\u4e2a\u72b6\u6001\u6709\u5173\uff0c\u8fd9\u65f6\u6211\u4eec\u53ef\u4ee5\u5e94\u7528\u72b6\u6001\u538b\u7f29\uff0c\u53ea\u4fdd\u7559\u5fc5\u8981\u7684\u72b6\u6001\uff0c\u901a\u8fc7\u201c\u964d\u7ef4\u201d\u6765\u8282\u7701\u5185\u5b58\u7a7a\u95f4\u3002

            "},{"location":"chapter_dynamic_programming/knapsack_problem/","title":"14.4 \u00a0 0-1 \u80cc\u5305\u95ee\u9898","text":"

            \u80cc\u5305\u95ee\u9898\u662f\u4e00\u4e2a\u975e\u5e38\u597d\u7684\u52a8\u6001\u89c4\u5212\u5165\u95e8\u9898\u76ee\uff0c\u662f\u52a8\u6001\u89c4\u5212\u4e2d\u6700\u5e38\u89c1\u7684\u95ee\u9898\u5f62\u5f0f\u3002\u5176\u5177\u6709\u5f88\u591a\u53d8\u79cd\uff0c\u4f8b\u5982 0-1 \u80cc\u5305\u95ee\u9898\u3001\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u3001\u591a\u91cd\u80cc\u5305\u95ee\u9898\u7b49\u3002

            \u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5148\u6765\u6c42\u89e3\u6700\u5e38\u89c1\u7684 0-1 \u80cc\u5305\u95ee\u9898\u3002

            Question

            \u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\) \u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ea\u80fd\u9009\u62e9\u4e00\u6b21\uff0c\u95ee\u5728\u4e0d\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\u4e0b\u80fd\u653e\u5165\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002

            \u8bf7\u6ce8\u610f\uff0c\u7269\u54c1\u7f16\u53f7 \\(i\\) \u4ece \\(1\\) \u5f00\u59cb\u8ba1\u6570\uff0c\u6570\u7ec4\u7d22\u5f15\u4ece \\(0\\) \u5f00\u59cb\u8ba1\u6570\uff0c\u56e0\u6b64\u7269\u54c1 \\(i\\) \u5bf9\u5e94\u91cd\u91cf \\(wgt[i-1]\\) \u548c\u4ef7\u503c \\(val[i-1]\\) \u3002

            \u56fe\uff1a0-1 \u80cc\u5305\u7684\u793a\u4f8b\u6570\u636e

            \u6211\u4eec\u53ef\u4ee5\u5c06 0-1 \u80cc\u5305\u95ee\u9898\u770b\u4f5c\u662f\u4e00\u4e2a\u7531 \\(n\\) \u8f6e\u51b3\u7b56\u7ec4\u6210\u7684\u8fc7\u7a0b\uff0c\u6bcf\u4e2a\u7269\u4f53\u90fd\u6709\u4e0d\u653e\u5165\u548c\u653e\u5165\u4e24\u79cd\u51b3\u7b56\uff0c\u56e0\u6b64\u8be5\u95ee\u9898\u662f\u6ee1\u8db3\u51b3\u7b56\u6811\u6a21\u578b\u7684\u3002

            \u8be5\u95ee\u9898\u7684\u76ee\u6807\u662f\u6c42\u89e3\u201c\u5728\u9650\u5b9a\u80cc\u5305\u5bb9\u91cf\u4e0b\u7684\u6700\u5927\u4ef7\u503c\u201d\uff0c\u56e0\u6b64\u8f83\u5927\u6982\u7387\u662f\u4e2a\u52a8\u6001\u89c4\u5212\u95ee\u9898\u3002

            \u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868

            \u5bf9\u4e8e\u6bcf\u4e2a\u7269\u54c1\u6765\u8bf4\uff0c\u4e0d\u653e\u5165\u80cc\u5305\uff0c\u80cc\u5305\u5bb9\u91cf\u4e0d\u53d8\uff1b\u653e\u5165\u80cc\u5305\uff0c\u80cc\u5305\u5bb9\u91cf\u51cf\u5c0f\u3002\u7531\u6b64\u53ef\u5f97\u72b6\u6001\u5b9a\u4e49\uff1a\u5f53\u524d\u7269\u54c1\u7f16\u53f7 \\(i\\) \u548c\u5269\u4f59\u80cc\u5305\u5bb9\u91cf \\(c\\) \uff0c\u8bb0\u4e3a \\([i, c]\\) \u3002

            \u72b6\u6001 \\([i, c]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u524d \\(i\\) \u4e2a\u7269\u54c1\u5728\u5269\u4f59\u5bb9\u91cf\u4e3a \\(c\\) \u7684\u80cc\u5305\u4e2d\u7684\u6700\u5927\u4ef7\u503c\uff0c\u8bb0\u4e3a \\(dp[i, c]\\) \u3002

            \u5f85\u6c42\u89e3\u7684\u662f \\(dp[n, cap]\\) \uff0c\u56e0\u6b64\u9700\u8981\u4e00\u4e2a\u5c3a\u5bf8\u4e3a \\((n+1) \\times (cap+1)\\) \u7684\u4e8c\u7ef4 \\(dp\\) \u8868\u3002

            \u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b

            \u5f53\u6211\u4eec\u505a\u51fa\u7269\u54c1 \\(i\\) \u7684\u51b3\u7b56\u540e\uff0c\u5269\u4f59\u7684\u662f\u524d \\(i-1\\) \u4e2a\u7269\u54c1\u7684\u51b3\u7b56\u3002\u56e0\u6b64\uff0c\u72b6\u6001\u8f6c\u79fb\u5206\u4e3a\u4e24\u79cd\u60c5\u51b5\uff1a

            • \u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u80cc\u5305\u5bb9\u91cf\u4e0d\u53d8\uff0c\u72b6\u6001\u8f6c\u79fb\u81f3 \\([i-1, c]\\) \u3002
            • \u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u80cc\u5305\u5bb9\u91cf\u51cf\u5c0f \\(wgt[i-1]\\) \uff0c\u4ef7\u503c\u589e\u52a0 \\(val[i-1]\\) \uff0c\u72b6\u6001\u8f6c\u79fb\u81f3 \\([i-1, c-wgt[i-1]]\\) \u3002

            \u4e0a\u8ff0\u7684\u72b6\u6001\u8f6c\u79fb\u5411\u6211\u4eec\u63ed\u793a\u4e86\u672c\u9898\u7684\u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u6700\u5927\u4ef7\u503c \\(dp[i, c]\\) \u7b49\u4e8e\u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \u548c\u653e\u5165\u7269\u54c1 \\(i\\) \u4e24\u79cd\u65b9\u6848\u4e2d\u7684\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\u3002\u7531\u6b64\u53ef\u63a8\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\uff1a

            \\[ dp[i, c] = \\max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1]) \\]

            \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u82e5\u5f53\u524d\u7269\u54c1\u91cd\u91cf \\(wgt[i - 1]\\) \u8d85\u51fa\u5269\u4f59\u80cc\u5305\u5bb9\u91cf \\(c\\) \uff0c\u5219\u53ea\u80fd\u9009\u62e9\u4e0d\u653e\u5165\u80cc\u5305\u3002

            \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f

            \u5f53\u65e0\u7269\u54c1\u6216\u65e0\u5269\u4f59\u80cc\u5305\u5bb9\u91cf\u65f6\u6700\u5927\u4ef7\u503c\u4e3a \\(0\\) \uff0c\u5373\u9996\u5217 \\(dp[i, 0]\\) \u548c\u9996\u884c \\(dp[0, c]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002

            \u5f53\u524d\u72b6\u6001 \\([i, c]\\) \u4ece\u4e0a\u65b9\u7684\u72b6\u6001 \\([i-1, c]\\) \u548c\u5de6\u4e0a\u65b9\u7684\u72b6\u6001 \\([i-1, c-wgt[i-1]]\\) \u8f6c\u79fb\u800c\u6765\uff0c\u56e0\u6b64\u901a\u8fc7\u4e24\u5c42\u5faa\u73af\u6b63\u5e8f\u904d\u5386\u6574\u4e2a \\(dp\\) \u8868\u5373\u53ef\u3002

            \u6839\u636e\u4ee5\u4e0a\u5206\u6790\uff0c\u6211\u4eec\u63a5\u4e0b\u6765\u6309\u987a\u5e8f\u5b9e\u73b0\u66b4\u529b\u641c\u7d22\u3001\u8bb0\u5fc6\u5316\u641c\u7d22\u3001\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u3002

            "},{"location":"chapter_dynamic_programming/knapsack_problem/#1","title":"1. \u00a0 \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u641c\u7d22","text":"

            \u641c\u7d22\u4ee3\u7801\u5305\u542b\u4ee5\u4e0b\u8981\u7d20\uff1a

            • \u9012\u5f52\u53c2\u6570\uff1a\u72b6\u6001 \\([i, c]\\) \u3002
            • \u8fd4\u56de\u503c\uff1a\u5b50\u95ee\u9898\u7684\u89e3 \\(dp[i, c]\\) \u3002
            • \u7ec8\u6b62\u6761\u4ef6\uff1a\u5f53\u7269\u54c1\u7f16\u53f7\u8d8a\u754c \\(i = 0\\) \u6216\u80cc\u5305\u5269\u4f59\u5bb9\u91cf\u4e3a \\(0\\) \u65f6\uff0c\u7ec8\u6b62\u9012\u5f52\u5e76\u8fd4\u56de\u4ef7\u503c \\(0\\) \u3002
            • \u526a\u679d\uff1a\u82e5\u5f53\u524d\u7269\u54c1\u91cd\u91cf\u8d85\u51fa\u80cc\u5305\u5269\u4f59\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust knapsack.java
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(int[] wgt, int[] val, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFS(wgt, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFS(wgt, val, i - 1, c);\nint yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn Math.max(no, yes);\n}\n
            knapsack.cpp
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(vector<int> &wgt, vector<int> &val, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFS(wgt, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFS(wgt, val, i - 1, c);\nint yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn max(no, yes);\n}\n
            knapsack.py
            def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:\n\"\"\"0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22\"\"\"\n# \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 or c == 0:\nreturn 0\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c:\nreturn knapsack_dfs(wgt, val, i - 1, c)\n# \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nno = knapsack_dfs(wgt, val, i - 1, c)\nyes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]\n# \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn max(no, yes)\n
            knapsack.go
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc knapsackDFS(wgt, val []int, i, c int) int {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i-1] > c {\nreturn knapsackDFS(wgt, val, i-1, c)\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nno := knapsackDFS(wgt, val, i-1, c)\nyes := knapsackDFS(wgt, val, i-1, c-wgt[i-1]) + val[i-1]\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn int(math.Max(float64(no), float64(yes)))\n}\n
            knapsack.js
            [class]{}-[func]{knapsackDFS}\n
            knapsack.ts
            [class]{}-[func]{knapsackDFS}\n
            knapsack.c
            [class]{}-[func]{knapsackDFS}\n
            knapsack.cs
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(int[] weight, int[] val, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (weight[i - 1] > c) {\nreturn knapsackDFS(weight, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFS(weight, val, i - 1, c);\nint yes = knapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn Math.Max(no, yes);\n}\n
            knapsack.swift
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfunc knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c {\nreturn knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nlet no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)\nlet yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn max(no, yes)\n}\n
            knapsack.zig
            // 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22\nfn knapsackDFS(wgt: []i32, val: []i32, i: usize, c: usize) i32 {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 or c == 0) {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFS(wgt, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nvar no = knapsackDFS(wgt, val, i - 1, c);\nvar yes = knapsackDFS(wgt, val, i - 1, c - @as(usize, @intCast(wgt[i - 1]))) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn @max(no, yes);\n}\n
            knapsack.dart
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nint knapsackDFS(List<int> wgt, List<int> val, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFS(wgt, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFS(wgt, val, i - 1, c);\nint yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nreturn max(no, yes);\n}\n
            knapsack.rs
            /* 0-1 \u80cc\u5305\uff1a\u66b4\u529b\u641c\u7d22 */\nfn knapsack_dfs(wgt: &[i32], val: &[i32], i: usize, c: usize) -> i32 {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0;\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c as i32 {\nreturn knapsack_dfs(wgt, val, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nlet no = knapsack_dfs(wgt, val, i - 1, c);\nlet yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1] as usize) + val[i - 1];\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nstd::cmp::max(no, yes)\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u7531\u4e8e\u6bcf\u4e2a\u7269\u54c1\u90fd\u4f1a\u4ea7\u751f\u4e0d\u9009\u548c\u9009\u4e24\u6761\u641c\u7d22\u5206\u652f\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(2^n)\\) \u3002

            \u89c2\u5bdf\u9012\u5f52\u6811\uff0c\u5bb9\u6613\u53d1\u73b0\u5176\u4e2d\u5b58\u5728\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u4f8b\u5982 \\(dp[1, 10]\\) \u7b49\u3002\u800c\u5f53\u7269\u54c1\u8f83\u591a\u3001\u80cc\u5305\u5bb9\u91cf\u8f83\u5927\uff0c\u5c24\u5176\u662f\u76f8\u540c\u91cd\u91cf\u7684\u7269\u54c1\u8f83\u591a\u65f6\uff0c\u91cd\u53e0\u5b50\u95ee\u9898\u7684\u6570\u91cf\u5c06\u4f1a\u5927\u5e45\u589e\u591a\u3002

            \u56fe\uff1a0-1 \u80cc\u5305\u7684\u66b4\u529b\u641c\u7d22\u9012\u5f52\u6811

            "},{"location":"chapter_dynamic_programming/knapsack_problem/#2","title":"2. \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22","text":"

            \u4e3a\u4e86\u4fdd\u8bc1\u91cd\u53e0\u5b50\u95ee\u9898\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\uff0c\u6211\u4eec\u501f\u52a9\u8bb0\u5fc6\u5217\u8868 mem \u6765\u8bb0\u5f55\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u5176\u4e2d mem[i][c] \u5bf9\u5e94 \\(dp[i, c]\\) \u3002

            \u5f15\u5165\u8bb0\u5fc6\u5316\u4e4b\u540e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u5b50\u95ee\u9898\u6570\u91cf\uff0c\u4e5f\u5c31\u662f \\(O(n \\times cap)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust knapsack.java
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(int[] wgt, int[] val, int[][] mem, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][c] != -1) {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFSMem(wgt, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFSMem(wgt, val, mem, i - 1, c);\nint yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = Math.max(no, yes);\nreturn mem[i][c];\n}\n
            knapsack.cpp
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(vector<int> &wgt, vector<int> &val, vector<vector<int>> &mem, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][c] != -1) {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFSMem(wgt, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFSMem(wgt, val, mem, i - 1, c);\nint yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = max(no, yes);\nreturn mem[i][c];\n}\n
            knapsack.py
            def knapsack_dfs_mem(\nwgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int\n) -> int:\n\"\"\"0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\"\"\"\n# \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 or c == 0:\nreturn 0\n# \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][c] != -1:\nreturn mem[i][c]\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c:\nreturn knapsack_dfs_mem(wgt, val, mem, i - 1, c)\n# \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nno = knapsack_dfs_mem(wgt, val, mem, i - 1, c)\nyes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]\n# \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = max(no, yes)\nreturn mem[i][c]\n
            knapsack.go
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc knapsackDFSMem(wgt, val []int, mem [][]int, i, c int) int {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][c] != -1 {\nreturn mem[i][c]\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i-1] > c {\nreturn knapsackDFSMem(wgt, val, mem, i-1, c)\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nno := knapsackDFSMem(wgt, val, mem, i-1, c)\nyes := knapsackDFSMem(wgt, val, mem, i-1, c-wgt[i-1]) + val[i-1]\n// \u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = int(math.Max(float64(no), float64(yes)))\nreturn mem[i][c]\n}\n
            knapsack.js
            [class]{}-[func]{knapsackDFSMem}\n
            knapsack.ts
            [class]{}-[func]{knapsackDFSMem}\n
            knapsack.c
            [class]{}-[func]{knapsackDFSMem}\n
            knapsack.cs
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][c] != -1) {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (weight[i - 1] > c) {\nreturn knapsackDFSMem(weight, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFSMem(weight, val, mem, i - 1, c);\nint yes = knapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = Math.Max(no, yes);\nreturn mem[i][c];\n}\n
            knapsack.swift
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfunc knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][c] != -1 {\nreturn mem[i][c]\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c {\nreturn knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nlet no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)\nlet yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = max(no, yes)\nreturn mem[i][c]\n}\n
            knapsack.zig
            // 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22\nfn knapsackDFSMem(wgt: []i32, val: []i32, mem: anytype, i: usize, c: usize) i32 {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 or c == 0) {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][c] != -1) {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFSMem(wgt, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nvar no = knapsackDFSMem(wgt, val, mem, i - 1, c);\nvar yes = knapsackDFSMem(wgt, val, mem, i - 1, c - @as(usize, @intCast(wgt[i - 1]))) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = @max(no, yes);\nreturn mem[i][c];\n}\n
            knapsack.dart
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nint knapsackDFSMem(\nList<int> wgt,\nList<int> val,\nList<List<int>> mem,\nint i,\nint c,\n) {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif (i == 0 || c == 0) {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (mem[i][c] != -1) {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif (wgt[i - 1] > c) {\nreturn knapsackDFSMem(wgt, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nint no = knapsackDFSMem(wgt, val, mem, i - 1, c);\nint yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = max(no, yes);\nreturn mem[i][c];\n}\n
            knapsack.rs
            /* 0-1 \u80cc\u5305\uff1a\u8bb0\u5fc6\u5316\u641c\u7d22 */\nfn knapsack_dfs_mem(wgt: &[i32], val: &[i32], mem: &mut Vec<Vec<i32>>, i: usize, c: usize) -> i32 {\n// \u82e5\u5df2\u9009\u5b8c\u6240\u6709\u7269\u54c1\u6216\u80cc\u5305\u65e0\u5bb9\u91cf\uff0c\u5219\u8fd4\u56de\u4ef7\u503c 0\nif i == 0 || c == 0 {\nreturn 0;\n}\n// \u82e5\u5df2\u6709\u8bb0\u5f55\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif mem[i][c] != -1 {\nreturn mem[i][c];\n}\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u53ea\u80fd\u4e0d\u653e\u5165\u80cc\u5305\nif wgt[i - 1] > c as i32 {\nreturn knapsack_dfs_mem(wgt, val, mem, i - 1, c);\n}\n// \u8ba1\u7b97\u4e0d\u653e\u5165\u548c\u653e\u5165\u7269\u54c1 i \u7684\u6700\u5927\u4ef7\u503c\nlet no = knapsack_dfs_mem(wgt, val, mem, i - 1, c);\nlet yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1] as usize) + val[i - 1];\n// \u8bb0\u5f55\u5e76\u8fd4\u56de\u4e24\u79cd\u65b9\u6848\u4e2d\u4ef7\u503c\u66f4\u5927\u7684\u90a3\u4e00\u4e2a\nmem[i][c] = std::cmp::max(no, yes);\nmem[i][c]\n}\n

            \u56fe\uff1a0-1 \u80cc\u5305\u7684\u8bb0\u5fc6\u5316\u641c\u7d22\u9012\u5f52\u6811

            "},{"location":"chapter_dynamic_programming/knapsack_problem/#3","title":"3. \u00a0 \u65b9\u6cd5\u4e09\uff1a\u52a8\u6001\u89c4\u5212","text":"

            \u52a8\u6001\u89c4\u5212\u5b9e\u8d28\u4e0a\u5c31\u662f\u5728\u72b6\u6001\u8f6c\u79fb\u4e2d\u586b\u5145 \\(dp\\) \u8868\u7684\u8fc7\u7a0b\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust knapsack.java
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(int[] wgt, int[] val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[][] dp = new int[n + 1][cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = Math.max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            knapsack.cpp
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(vector<int> &wgt, vector<int> &val, int cap) {\nint n = wgt.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            knapsack.py
            def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:\n\"\"\"0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(wgt)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [[0] * (cap + 1) for _ in range(n + 1)]\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\nfor c in range(1, cap + 1):\nif wgt[i - 1] > c:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c]\nelse:\n# \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])\nreturn dp[n][cap]\n
            knapsack.go
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDP(wgt, val []int, cap int) int {\nn := len(wgt)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([][]int, n+1)\nfor i := 0; i <= n; i++ {\ndp[i] = make([]int, cap+1)\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\nfor c := 1; c <= cap; c++ {\nif wgt[i-1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i-1][c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i-1][c-wgt[i-1]]+val[i-1])))\n}\n}\n}\nreturn dp[n][cap]\n}\n
            knapsack.js
            [class]{}-[func]{knapsackDP}\n
            knapsack.ts
            [class]{}-[func]{knapsackDP}\n
            knapsack.c
            [class]{}-[func]{knapsackDP}\n
            knapsack.cs
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(int[] weight, int[] val, int cap) {\nint n = weight.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[,] dp = new int[n + 1, cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (weight[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i, c] = dp[i - 1, c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i, c] = Math.Max(dp[i - 1, c - weight[i - 1]] + val[i - 1], dp[i - 1, c]);\n}\n}\n}\nreturn dp[n, cap];\n}\n
            knapsack.swift
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {\nlet n = wgt.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor c in stride(from: 1, through: cap, by: 1) {\nif wgt[i - 1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])\n}\n}\n}\nreturn dp[n][cap]\n}\n
            knapsack.zig
            // 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\nfn knapsackDP(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\ncomptime var n = wgt.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_][cap + 1]i32{[_]i32{0} ** (cap + 1)} ** (n + 1);\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..cap + 1) |c| {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = @max(dp[i - 1][c], dp[i - 1][c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            knapsack.dart
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint knapsackDP(List<int> wgt, List<int> val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            knapsack.rs
            /* 0-1 \u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfn knapsack_dp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\nlet n = wgt.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![vec![0; cap + 1]; n + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor c in 1..=cap {\nif wgt[i - 1] > c as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = std::cmp::max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1] as usize] + val[i - 1]);\n}\n}\n}\ndp[n][cap]\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u548c\u7a7a\u95f4\u590d\u6742\u5ea6\u90fd\u7531\u6570\u7ec4 dp \u5927\u5c0f\u51b3\u5b9a\uff0c\u5373 \\(O(n \\times cap)\\) \u3002

            <1><2><3><4><5><6><7><8><9><10><11><12><13><14>

            \u56fe\uff1a0-1 \u80cc\u5305\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            "},{"location":"chapter_dynamic_programming/knapsack_problem/#4","title":"4. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u7531\u4e8e\u6bcf\u4e2a\u72b6\u6001\u90fd\u53ea\u4e0e\u5176\u4e0a\u4e00\u884c\u7684\u72b6\u6001\u6709\u5173\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e24\u4e2a\u6570\u7ec4\u6eda\u52a8\u524d\u8fdb\uff0c\u5c06\u7a7a\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n^2)\\) \u5c06\u4f4e\u81f3 \\(O(n)\\) \u3002

            \u8fdb\u4e00\u6b65\u601d\u8003\uff0c\u6211\u4eec\u662f\u5426\u53ef\u4ee5\u4ec5\u7528\u4e00\u4e2a\u6570\u7ec4\u5b9e\u73b0\u72b6\u6001\u538b\u7f29\u5462\uff1f\u89c2\u5bdf\u53ef\u77e5\uff0c\u6bcf\u4e2a\u72b6\u6001\u90fd\u662f\u7531\u6b63\u4e0a\u65b9\u6216\u5de6\u4e0a\u65b9\u7684\u683c\u5b50\u8f6c\u79fb\u8fc7\u6765\u7684\u3002\u5047\u8bbe\u53ea\u6709\u4e00\u4e2a\u6570\u7ec4\uff0c\u5f53\u5f00\u59cb\u904d\u5386\u7b2c \\(i\\) \u884c\u65f6\uff0c\u8be5\u6570\u7ec4\u5b58\u50a8\u7684\u4ecd\u7136\u662f\u7b2c \\(i-1\\) \u884c\u7684\u72b6\u6001\u3002

            • \u5982\u679c\u91c7\u53d6\u6b63\u5e8f\u904d\u5386\uff0c\u90a3\u4e48\u904d\u5386\u5230 \\(dp[i, j]\\) \u65f6\uff0c\u5de6\u4e0a\u65b9 \\(dp[i-1, 1]\\) ~ \\(dp[i-1, j-1]\\) \u503c\u53ef\u80fd\u5df2\u7ecf\u88ab\u8986\u76d6\uff0c\u6b64\u65f6\u5c31\u65e0\u6cd5\u5f97\u5230\u6b63\u786e\u7684\u72b6\u6001\u8f6c\u79fb\u7ed3\u679c\u3002
            • \u5982\u679c\u91c7\u53d6\u5012\u5e8f\u904d\u5386\uff0c\u5219\u4e0d\u4f1a\u53d1\u751f\u8986\u76d6\u95ee\u9898\uff0c\u72b6\u6001\u8f6c\u79fb\u53ef\u4ee5\u6b63\u786e\u8fdb\u884c\u3002

            \u4ee5\u4e0b\u52a8\u753b\u5c55\u793a\u4e86\u5728\u5355\u4e2a\u6570\u7ec4\u4e0b\u4ece\u7b2c \\(i = 1\\) \u884c\u8f6c\u6362\u81f3\u7b2c \\(i = 2\\) \u884c\u7684\u8fc7\u7a0b\u3002\u8bf7\u601d\u8003\u6b63\u5e8f\u904d\u5386\u548c\u5012\u5e8f\u904d\u5386\u7684\u533a\u522b\u3002

            <1><2><3><4><5><6>

            \u56fe\uff1a0-1 \u80cc\u5305\u7684\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            \u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u6211\u4eec\u4ec5\u9700\u5c06\u6570\u7ec4 dp \u7684\u7b2c\u4e00\u7ef4 \\(i\\) \u76f4\u63a5\u5220\u9664\uff0c\u5e76\u4e14\u628a\u5185\u5faa\u73af\u66f4\u6539\u4e3a\u5012\u5e8f\u904d\u5386\u5373\u53ef\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust knapsack.java
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(int[] wgt, int[] val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\n// \u5012\u5e8f\u904d\u5386\nfor (int c = cap; c >= 1; c--) {\nif (wgt[i - 1] <= c) {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            knapsack.cpp
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {\nint n = wgt.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<int> dp(cap + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\n// \u5012\u5e8f\u904d\u5386\nfor (int c = cap; c >= 1; c--) {\nif (wgt[i - 1] <= c) {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            knapsack.py
            def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:\n\"\"\"0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(wgt)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [0] * (cap + 1)\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\n# \u5012\u5e8f\u904d\u5386\nfor c in range(cap, 0, -1):\nif wgt[i - 1] > c:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c]\nelse:\n# \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\nreturn dp[cap]\n
            knapsack.go
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDPComp(wgt, val []int, cap int) int {\nn := len(wgt)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([]int, cap+1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\n// \u5012\u5e8f\u904d\u5386\nfor c := cap; c >= 1; c-- {\nif wgt[i-1] <= c {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))\n}\n}\n}\nreturn dp[cap]\n}\n
            knapsack.js
            [class]{}-[func]{knapsackDPComp}\n
            knapsack.ts
            [class]{}-[func]{knapsackDPComp}\n
            knapsack.c
            [class]{}-[func]{knapsackDPComp}\n
            knapsack.cs
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(int[] weight, int[] val, int cap) {\nint n = weight.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\n// \u5012\u5e8f\u904d\u5386\nfor (int c = cap; c > 0; c--) {\nif (weight[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = Math.Max(dp[c], dp[c - weight[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            knapsack.swift
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {\nlet n = wgt.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: 0, count: cap + 1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\n// \u5012\u5e8f\u904d\u5386\nfor c in stride(from: cap, through: 1, by: -1) {\nif wgt[i - 1] <= c {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n}\n}\n}\nreturn dp[cap]\n}\n
            knapsack.zig
            // 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn knapsackDPComp(wgt: []i32, val: []i32, comptime cap: usize) i32 {\nvar n = wgt.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_]i32{0} ** (cap + 1);\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\n// \u5012\u5e8f\u904d\u5386\nvar c = cap;\nwhile (c > 0) : (c -= 1) {\nif (wgt[i - 1] < c) {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = @max(dp[c], dp[c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            knapsack.dart
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint knapsackDPComp(List<int> wgt, List<int> val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<int> dp = List.filled(cap + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\n// \u5012\u5e8f\u904d\u5386\nfor (int c = cap; c >= 1; c--) {\nif (wgt[i - 1] <= c) {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            knapsack.rs
            /* 0-1 \u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn knapsack_dp_comp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\nlet n = wgt.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![0; cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\n// \u5012\u5e8f\u904d\u5386\nfor c in (1..=cap).rev() {\nif wgt[i - 1] <= c as i32 {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = std::cmp::max(dp[c], dp[c - wgt[i - 1] as usize] + val[i - 1]);\n}\n}\n}\ndp[cap]\n}\n
            "},{"location":"chapter_dynamic_programming/summary/","title":"14.7 \u00a0 \u5c0f\u7ed3","text":"
            • \u52a8\u6001\u89c4\u5212\u5bf9\u95ee\u9898\u8fdb\u884c\u5206\u89e3\uff0c\u5e76\u901a\u8fc7\u5b58\u50a8\u5b50\u95ee\u9898\u7684\u89e3\u6765\u89c4\u907f\u91cd\u590d\u8ba1\u7b97\uff0c\u5b9e\u73b0\u9ad8\u6548\u7684\u8ba1\u7b97\u6548\u7387\u3002
            • \u4e0d\u8003\u8651\u65f6\u95f4\u7684\u524d\u63d0\u4e0b\uff0c\u6240\u6709\u52a8\u6001\u89c4\u5212\u95ee\u9898\u90fd\u53ef\u4ee5\u7528\u56de\u6eaf\uff08\u66b4\u529b\u641c\u7d22\uff09\u8fdb\u884c\u6c42\u89e3\uff0c\u4f46\u9012\u5f52\u6811\u4e2d\u5b58\u5728\u5927\u91cf\u7684\u91cd\u53e0\u5b50\u95ee\u9898\uff0c\u6548\u7387\u6781\u4f4e\u3002\u901a\u8fc7\u5f15\u5165\u8bb0\u5fc6\u5316\u5217\u8868\uff0c\u53ef\u4ee5\u5b58\u50a8\u6240\u6709\u8ba1\u7b97\u8fc7\u7684\u5b50\u95ee\u9898\u7684\u89e3\uff0c\u4ece\u800c\u4fdd\u8bc1\u91cd\u53e0\u5b50\u95ee\u9898\u53ea\u88ab\u8ba1\u7b97\u4e00\u6b21\u3002
            • \u8bb0\u5fc6\u5316\u9012\u5f52\u662f\u4e00\u79cd\u4ece\u9876\u81f3\u5e95\u7684\u9012\u5f52\u5f0f\u89e3\u6cd5\uff0c\u800c\u4e0e\u4e4b\u5bf9\u5e94\u7684\u52a8\u6001\u89c4\u5212\u662f\u4e00\u79cd\u4ece\u5e95\u81f3\u9876\u7684\u9012\u63a8\u5f0f\u89e3\u6cd5\uff0c\u5176\u5982\u540c\u201c\u586b\u5199\u8868\u683c\u201d\u4e00\u6837\u3002\u7531\u4e8e\u5f53\u524d\u72b6\u6001\u4ec5\u4f9d\u8d56\u4e8e\u67d0\u4e9b\u5c40\u90e8\u72b6\u6001\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u6d88\u9664 \\(dp\\) \u8868\u7684\u4e00\u4e2a\u7ef4\u5ea6\uff0c\u4ece\u800c\u964d\u4f4e\u7a7a\u95f4\u590d\u6742\u5ea6\u3002
            • \u5b50\u95ee\u9898\u5206\u89e3\u662f\u4e00\u79cd\u901a\u7528\u7684\u7b97\u6cd5\u601d\u8def\uff0c\u5728\u5206\u6cbb\u3001\u52a8\u6001\u89c4\u5212\u3001\u56de\u6eaf\u4e2d\u5177\u6709\u4e0d\u540c\u7684\u6027\u8d28\u3002
            • \u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u4e09\u5927\u7279\u6027\uff1a\u91cd\u53e0\u5b50\u95ee\u9898\u3001\u6700\u4f18\u5b50\u7ed3\u6784\u3001\u65e0\u540e\u6548\u6027\u3002
            • \u5982\u679c\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u53ef\u4ee5\u4ece\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u6784\u5efa\u5f97\u6765\uff0c\u5219\u5b83\u5c31\u5177\u6709\u6700\u4f18\u5b50\u7ed3\u6784\u3002
            • \u65e0\u540e\u6548\u6027\u6307\u5bf9\u4e8e\u4e00\u4e2a\u72b6\u6001\uff0c\u5176\u672a\u6765\u53d1\u5c55\u53ea\u4e0e\u8be5\u72b6\u6001\u6709\u5173\uff0c\u4e0e\u5176\u6240\u7ecf\u5386\u7684\u8fc7\u53bb\u7684\u6240\u6709\u72b6\u6001\u65e0\u5173\u3002\u8bb8\u591a\u7ec4\u5408\u4f18\u5316\u95ee\u9898\u90fd\u4e0d\u5177\u6709\u65e0\u540e\u6548\u6027\uff0c\u65e0\u6cd5\u4f7f\u7528\u52a8\u6001\u89c4\u5212\u5feb\u901f\u6c42\u89e3\u3002

            \u80cc\u5305\u95ee\u9898

            • \u80cc\u5305\u95ee\u9898\u662f\u6700\u5178\u578b\u7684\u52a8\u6001\u89c4\u5212\u9898\u76ee\uff0c\u5177\u6709 0-1 \u80cc\u5305\u3001\u5b8c\u5168\u80cc\u5305\u3001\u591a\u91cd\u80cc\u5305\u7b49\u53d8\u79cd\u95ee\u9898\u3002
            • 0-1 \u80cc\u5305\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u524d \\(i\\) \u4e2a\u7269\u54c1\u5728\u5269\u4f59\u5bb9\u91cf\u4e3a \\(c\\) \u7684\u80cc\u5305\u4e2d\u7684\u6700\u5927\u4ef7\u503c\u3002\u6839\u636e\u4e0d\u653e\u5165\u80cc\u5305\u548c\u653e\u5165\u80cc\u5305\u4e24\u79cd\u51b3\u7b56\uff0c\u53ef\u5f97\u5230\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u5e76\u6784\u5efa\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002\u5728\u72b6\u6001\u538b\u7f29\u4e2d\uff0c\u7531\u4e8e\u6bcf\u4e2a\u72b6\u6001\u4f9d\u8d56\u6b63\u4e0a\u65b9\u548c\u5de6\u4e0a\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u9700\u8981\u5012\u5e8f\u904d\u5386\u5217\u8868\uff0c\u907f\u514d\u5de6\u4e0a\u65b9\u72b6\u6001\u88ab\u8986\u76d6\u3002
            • \u5b8c\u5168\u80cc\u5305\u7684\u6bcf\u79cd\u7269\u54c1\u7684\u9009\u53d6\u6570\u91cf\u65e0\u9650\u5236\uff0c\u56e0\u6b64\u9009\u62e9\u653e\u5165\u7269\u54c1\u7684\u72b6\u6001\u8f6c\u79fb\u4e0e 0-1 \u80cc\u5305\u4e0d\u540c\u3002\u7531\u4e8e\u72b6\u6001\u4f9d\u8d56\u4e8e\u6b63\u4e0a\u65b9\u548c\u6b63\u5de6\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u5728\u72b6\u6001\u538b\u7f29\u4e2d\u5e94\u5f53\u6b63\u5e8f\u904d\u5386\u3002
            • \u96f6\u94b1\u5151\u6362\u95ee\u9898\u662f\u5b8c\u5168\u80cc\u5305\u7684\u4e00\u4e2a\u53d8\u79cd\u3002\u5b83\u4ece\u6c42\u201c\u6700\u5927\u201d\u4ef7\u503c\u53d8\u4e3a\u6c42\u201c\u6700\u5c0f\u201d\u786c\u5e01\u6570\u91cf\uff0c\u56e0\u6b64\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(\\max()\\) \u5e94\u6539\u4e3a \\(\\min()\\) \u3002\u4ece\u6c42\u201c\u4e0d\u8d85\u8fc7\u201d\u80cc\u5305\u5bb9\u91cf\u5230\u6c42\u201c\u6070\u597d\u201d\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u4f7f\u7528 \\(amt + 1\\) \u6765\u8868\u793a\u201c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u201d\u7684\u65e0\u6548\u89e3\u3002
            • \u96f6\u94b1\u5151\u6362 II \u95ee\u9898\u4ece\u6c42\u201c\u6700\u5c11\u786c\u5e01\u6570\u91cf\u201d\u6539\u4e3a\u6c42\u201c\u786c\u5e01\u7ec4\u5408\u6570\u91cf\u201d\uff0c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u76f8\u5e94\u5730\u4ece \\(\\min()\\) \u6539\u4e3a\u6c42\u548c\u8fd0\u7b97\u7b26\u3002

            \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898

            • \u7f16\u8f91\u8ddd\u79bb\uff08Levenshtein \u8ddd\u79bb\uff09\u7528\u4e8e\u8861\u91cf\u4e24\u4e2a\u5b57\u7b26\u4e32\u4e4b\u95f4\u7684\u76f8\u4f3c\u5ea6\uff0c\u5176\u5b9a\u4e49\u4e3a\u4ece\u4e00\u4e2a\u5b57\u7b26\u4e32\u5230\u53e6\u4e00\u4e2a\u5b57\u7b26\u4e32\u7684\u6700\u5c0f\u7f16\u8f91\u6b65\u6570\uff0c\u7f16\u8f91\u64cd\u4f5c\u5305\u62ec\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66ff\u6362\u3002
            • \u7f16\u8f91\u8ddd\u79bb\u95ee\u9898\u7684\u72b6\u6001\u5b9a\u4e49\u4e3a\u5c06 \\(s\\) \u7684\u524d \\(i\\) \u4e2a\u5b57\u7b26\u66f4\u6539\u4e3a \\(t\\) \u7684\u524d \\(j\\) \u4e2a\u5b57\u7b26\u6240\u9700\u7684\u6700\u5c11\u7f16\u8f91\u6b65\u6570\u3002\u5f53 \\(s[i] \\ne t[j]\\) \u65f6\uff0c\u5177\u6709\u4e09\u79cd\u51b3\u7b56\uff1a\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66ff\u6362\uff0c\u5b83\u4eec\u90fd\u6709\u76f8\u5e94\u7684\u5269\u4f59\u5b50\u95ee\u9898\u3002\u636e\u6b64\u4fbf\u53ef\u4ee5\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\u4e0e\u6784\u5efa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u3002\u800c\u5f53 \\(s[i] = t[j]\\) \u65f6\uff0c\u65e0\u987b\u7f16\u8f91\u5f53\u524d\u5b57\u7b26\u3002
            • \u5728\u7f16\u8f91\u8ddd\u79bb\u4e2d\uff0c\u72b6\u6001\u4f9d\u8d56\u4e8e\u5176\u6b63\u4e0a\u65b9\u3001\u6b63\u5de6\u65b9\u3001\u5de6\u4e0a\u65b9\u7684\u72b6\u6001\uff0c\u56e0\u6b64\u72b6\u6001\u538b\u7f29\u540e\u6b63\u5e8f\u6216\u5012\u5e8f\u904d\u5386\u90fd\u65e0\u6cd5\u6b63\u786e\u5730\u8fdb\u884c\u72b6\u6001\u8f6c\u79fb\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u5229\u7528\u4e00\u4e2a\u53d8\u91cf\u6682\u5b58\u5de6\u4e0a\u65b9\u72b6\u6001\uff0c\u4ece\u800c\u8f6c\u5316\u5230\u4e0e\u5b8c\u5168\u80cc\u5305\u7b49\u4ef7\u7684\u60c5\u51b5\uff0c\u53ef\u4ee5\u5728\u72b6\u6001\u538b\u7f29\u540e\u8fdb\u884c\u6b63\u5e8f\u904d\u5386\u3002
            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/","title":"14.5 \u00a0 \u5b8c\u5168\u80cc\u5305\u95ee\u9898","text":"

            \u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5148\u6c42\u89e3\u53e6\u4e00\u4e2a\u5e38\u89c1\u7684\u80cc\u5305\u95ee\u9898\uff1a\u5b8c\u5168\u80cc\u5305\uff0c\u518d\u4e86\u89e3\u5b83\u7684\u4e00\u79cd\u7279\u4f8b\uff1a\u96f6\u94b1\u5151\u6362\u3002

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1451","title":"14.5.1 \u00a0 \u5b8c\u5168\u80cc\u5305","text":"

            Question

            \u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\) \u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u5728\u4e0d\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\u4e0b\u80fd\u653e\u5165\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002

            \u56fe\uff1a\u5b8c\u5168\u80cc\u5305\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"

            \u5b8c\u5168\u80cc\u5305\u548c 0-1 \u80cc\u5305\u95ee\u9898\u975e\u5e38\u76f8\u4f3c\uff0c\u533a\u522b\u4ec5\u5728\u4e8e\u4e0d\u9650\u5236\u7269\u54c1\u7684\u9009\u62e9\u6b21\u6570\u3002

            • \u5728 0-1 \u80cc\u5305\u4e2d\uff0c\u6bcf\u4e2a\u7269\u54c1\u53ea\u6709\u4e00\u4e2a\uff0c\u56e0\u6b64\u5c06\u7269\u54c1 \\(i\\) \u653e\u5165\u80cc\u5305\u540e\uff0c\u53ea\u80fd\u4ece\u524d \\(i-1\\) \u4e2a\u7269\u54c1\u4e2d\u9009\u62e9\u3002
            • \u5728\u5b8c\u5168\u80cc\u5305\u4e2d\uff0c\u6bcf\u4e2a\u7269\u54c1\u6709\u65e0\u6570\u4e2a\uff0c\u56e0\u6b64\u5c06\u7269\u54c1 \\(i\\) \u653e\u5165\u80cc\u5305\u540e\uff0c\u4ecd\u53ef\u4ee5\u4ece\u524d \\(i\\) \u4e2a\u7269\u54c1\u4e2d\u9009\u62e9\u3002

            \u8fd9\u5c31\u5bfc\u81f4\u4e86\u72b6\u6001\u8f6c\u79fb\u7684\u53d8\u5316\uff0c\u5bf9\u4e8e\u72b6\u6001 \\([i, c]\\) \u6709\uff1a

            • \u4e0d\u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u4e0e 0-1 \u80cc\u5305\u76f8\u540c\uff0c\u8f6c\u79fb\u81f3 \\([i-1, c]\\) \u3002
            • \u653e\u5165\u7269\u54c1 \\(i\\) \uff1a\u4e0e 0-1 \u80cc\u5305\u4e0d\u540c\uff0c\u8f6c\u79fb\u81f3 \\([i, c-wgt[i-1]]\\) \u3002

            \u4ece\u800c\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u53d8\u4e3a\uff1a

            \\[ dp[i, c] = \\max(dp[i-1, c], dp[i, c - wgt[i-1]] + val[i-1]) \\]"},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u5bf9\u6bd4\u4e24\u9053\u9898\u76ee\u7684\u4ee3\u7801\uff0c\u72b6\u6001\u8f6c\u79fb\u4e2d\u6709\u4e00\u5904\u4ece \\(i-1\\) \u53d8\u4e3a \\(i\\) \uff0c\u5176\u4f59\u5b8c\u5168\u4e00\u81f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust unbounded_knapsack.java
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(int[] wgt, int[] val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[][] dp = new int[n + 1][cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            unbounded_knapsack.cpp
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(vector<int> &wgt, vector<int> &val, int cap) {\nint n = wgt.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            unbounded_knapsack.py
            def unbounded_knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:\n\"\"\"\u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(wgt)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [[0] * (cap + 1) for _ in range(n + 1)]\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\nfor c in range(1, cap + 1):\nif wgt[i - 1] > c:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c]\nelse:\n# \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])\nreturn dp[n][cap]\n
            unbounded_knapsack.go
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDP(wgt, val []int, cap int) int {\nn := len(wgt)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([][]int, n+1)\nfor i := 0; i <= n; i++ {\ndp[i] = make([]int, cap+1)\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\nfor c := 1; c <= cap; c++ {\nif wgt[i-1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i-1][c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i][c-wgt[i-1]]+val[i-1])))\n}\n}\n}\nreturn dp[n][cap]\n}\n
            unbounded_knapsack.js
            [class]{}-[func]{unboundedKnapsackDP}\n
            unbounded_knapsack.ts
            [class]{}-[func]{unboundedKnapsackDP}\n
            unbounded_knapsack.c
            [class]{}-[func]{unboundedKnapsackDP}\n
            unbounded_knapsack.cs
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(int[] wgt, int[] val, int cap) {\nint n = wgt.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[,] dp = new int[n + 1, cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i, c] = dp[i - 1, c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i, c] = Math.Max(dp[i - 1, c], dp[i, c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n, cap];\n}\n
            unbounded_knapsack.swift
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {\nlet n = wgt.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor c in stride(from: 1, through: cap, by: 1) {\nif wgt[i - 1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])\n}\n}\n}\nreturn dp[n][cap]\n}\n
            unbounded_knapsack.zig
            // \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212\nfn unboundedKnapsackDP(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\ncomptime var n = wgt.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_][cap + 1]i32{[_]i32{0} ** (cap + 1)} ** (n + 1);\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..cap + 1) |c| {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = @max(dp[i - 1][c], dp[i][c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            unbounded_knapsack.dart
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDP(List<int> wgt, List<int> val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            unbounded_knapsack.rs
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u52a8\u6001\u89c4\u5212 */\nfn unbounded_knapsack_dp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\nlet n = wgt.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![vec![0; cap + 1]; n + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor c in 1..=cap {\nif wgt[i - 1] > c as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[i][c] = dp[i - 1][c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[i][c] = std::cmp::max(dp[i - 1][c], dp[i][c - wgt[i - 1] as usize] + val[i - 1]);\n}\n}\n}\nreturn dp[n][cap];\n}\n
            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3","title":"3. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u7531\u4e8e\u5f53\u524d\u72b6\u6001\u662f\u4ece\u5de6\u8fb9\u548c\u4e0a\u8fb9\u7684\u72b6\u6001\u8f6c\u79fb\u800c\u6765\uff0c\u56e0\u6b64\u72b6\u6001\u538b\u7f29\u540e\u5e94\u8be5\u5bf9 \\(dp\\) \u8868\u4e2d\u7684\u6bcf\u4e00\u884c\u91c7\u53d6\u6b63\u5e8f\u904d\u5386\u3002

            \u8fd9\u4e2a\u904d\u5386\u987a\u5e8f\u4e0e 0-1 \u80cc\u5305\u6b63\u597d\u76f8\u53cd\u3002\u8bf7\u901a\u8fc7\u4ee5\u4e0b\u52a8\u753b\u6765\u7406\u89e3\u4e24\u8005\u7684\u533a\u522b\u3002

            <1><2><3><4><5><6>

            \u56fe\uff1a\u5b8c\u5168\u80cc\u5305\u7684\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            \u4ee3\u7801\u5b9e\u73b0\u6bd4\u8f83\u7b80\u5355\uff0c\u4ec5\u9700\u5c06\u6570\u7ec4 dp \u7684\u7b2c\u4e00\u7ef4\u5220\u9664\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust unbounded_knapsack.java
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            unbounded_knapsack.cpp
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {\nint n = wgt.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<int> dp(cap + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            unbounded_knapsack.py
            def unbounded_knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:\n\"\"\"\u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(wgt)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [0] * (cap + 1)\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\n# \u6b63\u5e8f\u904d\u5386\nfor c in range(1, cap + 1):\nif wgt[i - 1] > c:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c]\nelse:\n# \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\nreturn dp[cap]\n
            unbounded_knapsack.go
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDPComp(wgt, val []int, cap int) int {\nn := len(wgt)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([]int, cap+1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\nfor c := 1; c <= cap; c++ {\nif wgt[i-1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))\n}\n}\n}\nreturn dp[cap]\n}\n
            unbounded_knapsack.js
            [class]{}-[func]{unboundedKnapsackDPComp}\n
            unbounded_knapsack.ts
            [class]{}-[func]{unboundedKnapsackDPComp}\n
            unbounded_knapsack.c
            [class]{}-[func]{unboundedKnapsackDPComp}\n
            unbounded_knapsack.cs
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {\nint n = wgt.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = Math.Max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            unbounded_knapsack.swift
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc unboundedKnapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {\nlet n = wgt.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: 0, count: cap + 1)\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor c in stride(from: 1, through: cap, by: 1) {\nif wgt[i - 1] > c {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c]\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])\n}\n}\n}\nreturn dp[cap]\n}\n
            unbounded_knapsack.zig
            // \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn unboundedKnapsackDPComp(comptime wgt: []i32, val: []i32, comptime cap: usize) i32 {\ncomptime var n = wgt.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_]i32{0} ** (cap + 1);\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..cap + 1) |c| {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = @max(dp[c], dp[c - @as(usize, @intCast(wgt[i - 1]))] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            unbounded_knapsack.dart
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint unboundedKnapsackDPComp(List<int> wgt, List<int> val, int cap) {\nint n = wgt.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<int> dp = List.filled(cap + 1, 0);\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int c = 1; c <= cap; c++) {\nif (wgt[i - 1] > c) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);\n}\n}\n}\nreturn dp[cap];\n}\n
            unbounded_knapsack.rs
            /* \u5b8c\u5168\u80cc\u5305\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn unbounded_knapsack_dp_comp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {\nlet n = wgt.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![0; cap + 1];\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor c in 1..=cap {\nif wgt[i - 1] > c as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u7269\u54c1 i\ndp[c] = dp[c];\n} else {\n// \u4e0d\u9009\u548c\u9009\u7269\u54c1 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5927\u503c\ndp[c] = std::cmp::max(dp[c], dp[c - wgt[i - 1] as usize] + val[i - 1]);\n}\n}\n}\ndp[cap]\n}\n
            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1452","title":"14.5.2 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898","text":"

            \u80cc\u5305\u95ee\u9898\u662f\u4e00\u5927\u7c7b\u52a8\u6001\u89c4\u5212\u95ee\u9898\u7684\u4ee3\u8868\uff0c\u5176\u62e5\u6709\u5f88\u591a\u7684\u53d8\u79cd\uff0c\u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002

            Question

            \u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u80fd\u591f\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u6700\u5c11\u786c\u5e01\u4e2a\u6570\u3002\u5982\u679c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u5219\u8fd4\u56de \\(-1\\) \u3002

            \u56fe\uff1a\u96f6\u94b1\u5151\u6362\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1_1","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"

            \u96f6\u94b1\u5151\u6362\u53ef\u4ee5\u770b\u4f5c\u662f\u5b8c\u5168\u80cc\u5305\u7684\u4e00\u79cd\u7279\u6b8a\u60c5\u51b5\uff0c\u4e24\u8005\u5177\u6709\u4ee5\u4e0b\u8054\u7cfb\u4e0e\u4e0d\u540c\u70b9\uff1a

            • \u4e24\u9053\u9898\u53ef\u4ee5\u76f8\u4e92\u8f6c\u6362\uff0c\u201c\u7269\u54c1\u201d\u5bf9\u5e94\u4e8e\u201c\u786c\u5e01\u201d\u3001\u201c\u7269\u54c1\u91cd\u91cf\u201d\u5bf9\u5e94\u4e8e\u201c\u786c\u5e01\u9762\u503c\u201d\u3001\u201c\u80cc\u5305\u5bb9\u91cf\u201d\u5bf9\u5e94\u4e8e\u201c\u76ee\u6807\u91d1\u989d\u201d\u3002
            • \u4f18\u5316\u76ee\u6807\u76f8\u53cd\uff0c\u80cc\u5305\u95ee\u9898\u662f\u8981\u6700\u5927\u5316\u7269\u54c1\u4ef7\u503c\uff0c\u96f6\u94b1\u5151\u6362\u95ee\u9898\u662f\u8981\u6700\u5c0f\u5316\u786c\u5e01\u6570\u91cf\u3002
            • \u80cc\u5305\u95ee\u9898\u662f\u6c42\u201c\u4e0d\u8d85\u8fc7\u201d\u80cc\u5305\u5bb9\u91cf\u4e0b\u7684\u89e3\uff0c\u96f6\u94b1\u5151\u6362\u662f\u6c42\u201c\u6070\u597d\u201d\u51d1\u5230\u76ee\u6807\u91d1\u989d\u7684\u89e3\u3002

            \u7b2c\u4e00\u6b65\uff1a\u601d\u8003\u6bcf\u8f6e\u7684\u51b3\u7b56\uff0c\u5b9a\u4e49\u72b6\u6001\uff0c\u4ece\u800c\u5f97\u5230 \\(dp\\) \u8868

            \u72b6\u6001 \\([i, a]\\) \u5bf9\u5e94\u7684\u5b50\u95ee\u9898\u4e3a\uff1a\u524d \\(i\\) \u79cd\u786c\u5e01\u80fd\u591f\u51d1\u51fa\u91d1\u989d \\(a\\) \u7684\u6700\u5c11\u786c\u5e01\u4e2a\u6570\uff0c\u8bb0\u4e3a \\(dp[i, a]\\) \u3002

            \u4e8c\u7ef4 \\(dp\\) \u8868\u7684\u5c3a\u5bf8\u4e3a \\((n+1) \\times (amt+1)\\) \u3002

            \u7b2c\u4e8c\u6b65\uff1a\u627e\u51fa\u6700\u4f18\u5b50\u7ed3\u6784\uff0c\u8fdb\u800c\u63a8\u5bfc\u51fa\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b

            \u4e0e\u5b8c\u5168\u80cc\u5305\u7684\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u57fa\u672c\u76f8\u540c\uff0c\u4e0d\u540c\u70b9\u5728\u4e8e\uff1a

            • \u672c\u9898\u8981\u6c42\u6700\u5c0f\u503c\uff0c\u56e0\u6b64\u9700\u5c06\u8fd0\u7b97\u7b26 \\(\\max()\\) \u66f4\u6539\u4e3a \\(\\min()\\) \u3002
            • \u4f18\u5316\u4e3b\u4f53\u662f\u786c\u5e01\u6570\u91cf\u800c\u975e\u5546\u54c1\u4ef7\u503c\uff0c\u56e0\u6b64\u5728\u9009\u4e2d\u786c\u5e01\u65f6\u6267\u884c \\(+1\\) \u5373\u53ef\u3002
            \\[ dp[i, a] = \\min(dp[i-1, a], dp[i, a - coins[i-1]] + 1) \\]

            \u7b2c\u4e09\u6b65\uff1a\u786e\u5b9a\u8fb9\u754c\u6761\u4ef6\u548c\u72b6\u6001\u8f6c\u79fb\u987a\u5e8f

            \u5f53\u76ee\u6807\u91d1\u989d\u4e3a \\(0\\) \u65f6\uff0c\u51d1\u51fa\u5b83\u7684\u6700\u5c11\u786c\u5e01\u4e2a\u6570\u4e3a \\(0\\) \uff0c\u5373\u9996\u5217\u6240\u6709 \\(dp[i, 0]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002

            \u5f53\u65e0\u786c\u5e01\u65f6\uff0c\u65e0\u6cd5\u51d1\u51fa\u4efb\u610f \\(> 0\\) \u7684\u76ee\u6807\u91d1\u989d\uff0c\u5373\u662f\u65e0\u6548\u89e3\u3002\u4e3a\u4f7f\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(\\min()\\) \u51fd\u6570\u80fd\u591f\u8bc6\u522b\u5e76\u8fc7\u6ee4\u65e0\u6548\u89e3\uff0c\u6211\u4eec\u8003\u8651\u4f7f\u7528 \\(+ \\infty\\) \u6765\u8868\u793a\u5b83\u4eec\uff0c\u5373\u4ee4\u9996\u884c\u6240\u6709 \\(dp[0, a]\\) \u90fd\u7b49\u4e8e \\(+ \\infty\\) \u3002

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2_1","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u5927\u591a\u6570\u7f16\u7a0b\u8bed\u8a00\u5e76\u672a\u63d0\u4f9b \\(+ \\infty\\) \u53d8\u91cf\uff0c\u53ea\u80fd\u4f7f\u7528\u6574\u578b int \u7684\u6700\u5927\u503c\u6765\u4ee3\u66ff\u3002\u800c\u8fd9\u53c8\u4f1a\u5bfc\u81f4\u5927\u6570\u8d8a\u754c\uff1a\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e2d\u7684 \\(+ 1\\) \u64cd\u4f5c\u53ef\u80fd\u53d1\u751f\u6ea2\u51fa\u3002

            \u4e3a\u6b64\uff0c\u6211\u4eec\u91c7\u7528\u6570\u5b57 \\(amt + 1\\) \u6765\u8868\u793a\u65e0\u6548\u89e3\uff0c\u56e0\u4e3a\u51d1\u51fa \\(amt\\) \u7684\u786c\u5e01\u4e2a\u6570\u6700\u591a\u4e3a \\(amt\\) \u4e2a\u3002

            \u6700\u540e\u8fd4\u56de\u524d\uff0c\u5224\u65ad \\(dp[n, amt]\\) \u662f\u5426\u7b49\u4e8e \\(amt + 1\\) \uff0c\u82e5\u662f\u5219\u8fd4\u56de \\(-1\\) \uff0c\u4ee3\u8868\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust coin_change.java
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(int[] coins, int amt) {\nint n = coins.length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nint[][] dp = new int[n + 1][amt + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int a = 1; a <= amt; a++) {\ndp[0][a] = MAX;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
            coin_change.cpp
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(vector<int> &coins, int amt) {\nint n = coins.size();\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nvector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int a = 1; a <= amt; a++) {\ndp[0][a] = MAX;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
            coin_change.py
            def coin_change_dp(coins: list[int], amt: int) -> int:\n\"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(coins)\nMAX = amt + 1\n# \u521d\u59cb\u5316 dp \u8868\ndp = [[0] * (amt + 1) for _ in range(n + 1)]\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor a in range(1, amt + 1):\ndp[0][a] = MAX\n# \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in range(1, n + 1):\nfor a in range(1, amt + 1):\nif coins[i - 1] > a:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a]\nelse:\n# \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)\nreturn dp[n][amt] if dp[n][amt] != MAX else -1\n
            coin_change.go
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDP(coins []int, amt int) int {\nn := len(coins)\nmax := amt + 1\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([][]int, n+1)\nfor i := 0; i <= n; i++ {\ndp[i] = make([]int, amt+1)\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor a := 1; a <= amt; a++ {\ndp[0][a] = max\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i := 1; i <= n; i++ {\nfor a := 1; a <= amt; a++ {\nif coins[i-1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i-1][a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = int(math.Min(float64(dp[i-1][a]), float64(dp[i][a-coins[i-1]]+1)))\n}\n}\n}\nif dp[n][amt] != max {\nreturn dp[n][amt]\n}\nreturn -1\n}\n
            coin_change.js
            [class]{}-[func]{coinChangeDP}\n
            coin_change.ts
            [class]{}-[func]{coinChangeDP}\n
            coin_change.c
            [class]{}-[func]{coinChangeDP}\n
            coin_change.cs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(int[] coins, int amt) {\nint n = coins.Length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nint[,] dp = new int[n + 1, amt + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int a = 1; a <= amt; a++) {\ndp[0, a] = MAX;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i, a] = dp[i - 1, a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i, a] = Math.Min(dp[i - 1, a], dp[i, a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[n, amt] != MAX ? dp[n, amt] : -1;\n}\n
            coin_change.swift
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDP(coins: [Int], amt: Int) -> Int {\nlet n = coins.count\nlet MAX = amt + 1\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor a in stride(from: 1, through: amt, by: 1) {\ndp[0][a] = MAX\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in stride(from: 1, through: n, by: 1) {\nfor a in stride(from: 1, through: amt, by: 1) {\nif coins[i - 1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)\n}\n}\n}\nreturn dp[n][amt] != MAX ? dp[n][amt] : -1\n}\n
            coin_change.zig
            // \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212\nfn coinChangeDP(comptime coins: []i32, comptime amt: usize) i32 {\ncomptime var n = coins.len;\ncomptime var max = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_][amt + 1]i32{[_]i32{0} ** (amt + 1)} ** (n + 1);\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (1..amt + 1) |a| {\ndp[0][a] = max;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (1..n + 1) |i| {\nfor (1..amt + 1) |a| {\nif (coins[i - 1] > @as(i32, @intCast(a))) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = @min(dp[i - 1][a], dp[i][a - @as(usize, @intCast(coins[i - 1]))] + 1);\n}\n}\n}\nif (dp[n][amt] != max) {\nreturn @intCast(dp[n][amt]);\n} else {\nreturn -1;\n}\n}\n
            coin_change.dart
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeDP(List<int> coins, int amt) {\nint n = coins.length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nList<List<int>> dp = List.generate(n + 1, (index) => List.filled(amt + 1, 0));\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor (int a = 1; a <= amt; a++) {\ndp[0][a] = MAX;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[n][amt] != MAX ? dp[n][amt] : -1;\n}\n
            coin_change.rs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfn coin_change_dp(coins: &[i32], amt: usize) -> i32 {\nlet n = coins.len();\nlet max = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![vec![0; amt + 1]; n + 1];\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u9996\u884c\u9996\u5217\nfor a in 1..= amt {\ndp[0][a] = max;\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i in 1..=n {\nfor a in 1..=amt {\nif coins[i - 1] > a as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = std::cmp::min(dp[i - 1][a], dp[i][a - coins[i - 1] as usize] + 1);\n}\n}\n}\nif dp[n][amt] != max { return dp[n][amt] as i32; } else { -1 }\n}\n

            \u4e0b\u56fe\u5c55\u793a\u4e86\u96f6\u94b1\u5151\u6362\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b\uff0c\u548c\u5b8c\u5168\u80cc\u5305\u975e\u5e38\u76f8\u4f3c\u3002

            <1><2><3><4><5><6><7><8><9><10><11><12><13><14><15>

            \u56fe\uff1a\u96f6\u94b1\u5151\u6362\u95ee\u9898\u7684\u52a8\u6001\u89c4\u5212\u8fc7\u7a0b

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3_1","title":"3. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u96f6\u94b1\u5151\u6362\u7684\u72b6\u6001\u538b\u7f29\u7684\u5904\u7406\u65b9\u5f0f\u548c\u5b8c\u5168\u80cc\u5305\u4e00\u81f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust coin_change.java
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(int[] coins, int amt) {\nint n = coins.length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[amt + 1];\nArrays.fill(dp, MAX);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[amt] != MAX ? dp[amt] : -1;\n}\n
            coin_change.cpp
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(vector<int> &coins, int amt) {\nint n = coins.size();\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nvector<int> dp(amt + 1, MAX);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[amt] != MAX ? dp[amt] : -1;\n}\n
            coin_change.py
            def coin_change_dp_comp(coins: list[int], amt: int) -> int:\n\"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(coins)\nMAX = amt + 1\n# \u521d\u59cb\u5316 dp \u8868\ndp = [MAX] * (amt + 1)\ndp[0] = 0\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\n# \u6b63\u5e8f\u904d\u5386\nfor a in range(1, amt + 1):\nif coins[i - 1] > a:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\nelse:\n# \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)\nreturn dp[amt] if dp[amt] != MAX else -1\n
            coin_change.go
            /* \u96f6\u94b1\u5151\u6362\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDPComp(coins []int, amt int) int {\nn := len(coins)\nmax := amt + 1\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([]int, amt+1)\nfor i := 1; i <= amt; i++ {\ndp[i] = max\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\n// \u5012\u5e8f\u904d\u5386\nfor a := 1; a <= amt; a++ {\nif coins[i-1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = int(math.Min(float64(dp[a]), float64(dp[a-coins[i-1]]+1)))\n}\n}\n}\nif dp[amt] != max {\nreturn dp[amt]\n}\nreturn -1\n}\n
            coin_change.js
            [class]{}-[func]{coinChangeDPComp}\n
            coin_change.ts
            [class]{}-[func]{coinChangeDPComp}\n
            coin_change.c
            [class]{}-[func]{coinChangeDPComp}\n
            coin_change.cs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(int[] coins, int amt) {\nint n = coins.Length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[amt + 1];\nArray.Fill(dp, MAX);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = Math.Min(dp[a], dp[a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[amt] != MAX ? dp[amt] : -1;\n}\n
            coin_change.swift
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeDPComp(coins: [Int], amt: Int) -> Int {\nlet n = coins.count\nlet MAX = amt + 1\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: MAX, count: amt + 1)\ndp[0] = 0\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor a in stride(from: 1, through: amt, by: 1) {\nif coins[i - 1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)\n}\n}\n}\nreturn dp[amt] != MAX ? dp[amt] : -1\n}\n
            coin_change.zig
            // \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn coinChangeDPComp(comptime coins: []i32, comptime amt: usize) i32 {\ncomptime var n = coins.len;\ncomptime var max = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_]i32{0} ** (amt + 1);\n@memset(&dp, max);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..amt + 1) |a| {\nif (coins[i - 1] > @as(i32, @intCast(a))) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = @min(dp[a], dp[a - @as(usize, @intCast(coins[i - 1]))] + 1);\n}\n}\n}\nif (dp[amt] != max) {\nreturn @intCast(dp[amt]);\n} else {\nreturn -1;\n}\n}\n
            coin_change.dart
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeDPComp(List<int> coins, int amt) {\nint n = coins.length;\nint MAX = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nList<int> dp = List.filled(amt + 1, MAX);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = min(dp[a], dp[a - coins[i - 1]] + 1);\n}\n}\n}\nreturn dp[amt] != MAX ? dp[amt] : -1;\n}\n
            coin_change.rs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn coin_change_dp_comp(coins: &[i32], amt: usize) -> i32 {\nlet n = coins.len();\nlet max = amt + 1;\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![0; amt + 1];\ndp.fill(max);\ndp[0] = 0;\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor a in 1..=amt {\nif coins[i - 1] > a as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = std::cmp::min(dp[a], dp[a - coins[i - 1] as usize] + 1);\n}\n}\n}\nif dp[amt] != max { return dp[amt] as i32; } else { -1 }\n}\n
            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1453-ii","title":"14.5.3 \u00a0 \u96f6\u94b1\u5151\u6362\u95ee\u9898 II","text":"

            Question

            \u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u5728\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u786c\u5e01\u7ec4\u5408\u6570\u91cf\u3002

            \u56fe\uff1a\u96f6\u94b1\u5151\u6362\u95ee\u9898 II \u7684\u793a\u4f8b\u6570\u636e

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#1_2","title":"1. \u00a0 \u52a8\u6001\u89c4\u5212\u601d\u8def","text":"

            \u76f8\u6bd4\u4e8e\u4e0a\u4e00\u9898\uff0c\u672c\u9898\u76ee\u6807\u662f\u7ec4\u5408\u6570\u91cf\uff0c\u56e0\u6b64\u5b50\u95ee\u9898\u53d8\u4e3a\uff1a\u524d \\(i\\) \u79cd\u786c\u5e01\u80fd\u591f\u51d1\u51fa\u91d1\u989d \\(a\\) \u7684\u7ec4\u5408\u6570\u91cf\u3002\u800c \\(dp\\) \u8868\u4ecd\u7136\u662f\u5c3a\u5bf8\u4e3a \\((n+1) \\times (amt + 1)\\) \u7684\u4e8c\u7ef4\u77e9\u9635\u3002

            \u5f53\u524d\u72b6\u6001\u7684\u7ec4\u5408\u6570\u91cf\u7b49\u4e8e\u4e0d\u9009\u5f53\u524d\u786c\u5e01\u4e0e\u9009\u5f53\u524d\u786c\u5e01\u8fd9\u4e24\u79cd\u51b3\u7b56\u7684\u7ec4\u5408\u6570\u91cf\u4e4b\u548c\u3002\u72b6\u6001\u8f6c\u79fb\u65b9\u7a0b\u4e3a\uff1a

            \\[ dp[i, a] = dp[i-1, a] + dp[i, a - coins[i-1]] \\]

            \u5f53\u76ee\u6807\u91d1\u989d\u4e3a \\(0\\) \u65f6\uff0c\u65e0\u987b\u9009\u62e9\u4efb\u4f55\u786c\u5e01\u5373\u53ef\u51d1\u51fa\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u5e94\u5c06\u9996\u5217\u6240\u6709 \\(dp[i, 0]\\) \u90fd\u521d\u59cb\u5316\u4e3a \\(1\\) \u3002\u5f53\u65e0\u786c\u5e01\u65f6\uff0c\u65e0\u6cd5\u51d1\u51fa\u4efb\u4f55 \\(>0\\) \u7684\u76ee\u6807\u91d1\u989d\uff0c\u56e0\u6b64\u9996\u884c\u6240\u6709 \\(dp[0, a]\\) \u90fd\u7b49\u4e8e \\(0\\) \u3002

            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#2_2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"JavaC++PythonGoJSTSCC#SwiftZigDartRust coin_change_ii.java
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(int[] coins, int amt) {\nint n = coins.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[][] dp = new int[n + 1][amt + 1];\n// \u521d\u59cb\u5316\u9996\u5217\nfor (int i = 0; i <= n; i++) {\ndp[i][0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n}\n}\n}\nreturn dp[n][amt];\n}\n
            coin_change_ii.cpp
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(vector<int> &coins, int amt) {\nint n = coins.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<vector<int>> dp(n + 1, vector<int>(amt + 1, 0));\n// \u521d\u59cb\u5316\u9996\u5217\nfor (int i = 0; i <= n; i++) {\ndp[i][0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n}\n}\n}\nreturn dp[n][amt];\n}\n
            coin_change_ii.py
            def coin_change_ii_dp(coins: list[int], amt: int) -> int:\n\"\"\"\u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(coins)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [[0] * (amt + 1) for _ in range(n + 1)]\n# \u521d\u59cb\u5316\u9996\u5217\nfor i in range(n + 1):\ndp[i][0] = 1\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\nfor a in range(1, amt + 1):\nif coins[i - 1] > a:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a]\nelse:\n# \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]\nreturn dp[n][amt]\n
            coin_change_ii.go
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDP(coins []int, amt int) int {\nn := len(coins)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([][]int, n+1)\nfor i := 0; i <= n; i++ {\ndp[i] = make([]int, amt+1)\n}\n// \u521d\u59cb\u5316\u9996\u5217\nfor i := 0; i <= n; i++ {\ndp[i][0] = 1\n}\n// \u72b6\u6001\u8f6c\u79fb\uff1a\u5176\u4f59\u884c\u5217\nfor i := 1; i <= n; i++ {\nfor a := 1; a <= amt; a++ {\nif coins[i-1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i-1][a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = dp[i-1][a] + dp[i][a-coins[i-1]]\n}\n}\n}\nreturn dp[n][amt]\n}\n
            coin_change_ii.js
            [class]{}-[func]{coinChangeIIDP}\n
            coin_change_ii.ts
            [class]{}-[func]{coinChangeIIDP}\n
            coin_change_ii.c
            [class]{}-[func]{coinChangeIIDP}\n
            coin_change_ii.cs
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(int[] coins, int amt) {\nint n = coins.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[,] dp = new int[n + 1, amt + 1];\n// \u521d\u59cb\u5316\u9996\u5217\nfor (int i = 0; i <= n; i++) {\ndp[i, 0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i, a] = dp[i - 1, a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i, a] = dp[i - 1, a] + dp[i, a - coins[i - 1]];\n}\n}\n}\nreturn dp[n, amt];\n}\n
            coin_change_ii.swift
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDP(coins: [Int], amt: Int) -> Int {\nlet n = coins.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)\n// \u521d\u59cb\u5316\u9996\u5217\nfor i in stride(from: 0, through: n, by: 1) {\ndp[i][0] = 1\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor a in stride(from: 1, through: amt, by: 1) {\nif coins[i - 1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]\n}\n}\n}\nreturn dp[n][amt]\n}\n
            coin_change_ii.zig
            // \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212\nfn coinChangeIIDP(comptime coins: []i32, comptime amt: usize) i32 {\ncomptime var n = coins.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_][amt + 1]i32{[_]i32{0} ** (amt + 1)} ** (n + 1);\n// \u521d\u59cb\u5316\u9996\u5217\nfor (0..n + 1) |i| {\ndp[i][0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..amt + 1) |a| {\nif (coins[i - 1] > @as(i32, @intCast(a))) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = dp[i - 1][a] + dp[i][a - @as(usize, @intCast(coins[i - 1]))];\n}\n}\n}\nreturn dp[n][amt];\n}\n
            coin_change_ii.dart
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDP(List<int> coins, int amt) {\nint n = coins.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<List<int>> dp = List.generate(n + 1, (index) => List.filled(amt + 1, 0));\n// \u521d\u59cb\u5316\u9996\u5217\nfor (int i = 0; i <= n; i++) {\ndp[i][0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];\n}\n}\n}\nreturn dp[n][amt];\n}\n
            coin_change_ii.rs
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u52a8\u6001\u89c4\u5212 */\nfn coin_change_ii_dp(coins: &[i32], amt: usize) -> i32 {\nlet n = coins.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![vec![0; amt + 1]; n + 1];\n// \u521d\u59cb\u5316\u9996\u5217\nfor i in 0..= n {\ndp[i][0] = 1;\n}\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor a in 1..=amt {\nif coins[i - 1] > a as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[i][a] = dp[i - 1][a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1] as usize];\n}\n}\n}\ndp[n][amt]\n}\n
            "},{"location":"chapter_dynamic_programming/unbounded_knapsack_problem/#3_2","title":"3. \u00a0 \u72b6\u6001\u538b\u7f29","text":"

            \u72b6\u6001\u538b\u7f29\u5904\u7406\u65b9\u5f0f\u76f8\u540c\uff0c\u5220\u9664\u786c\u5e01\u7ef4\u5ea6\u5373\u53ef\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust coin_change_ii.java
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(int[] coins, int amt) {\nint n = coins.length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[amt + 1];\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]];\n}\n}\n}\nreturn dp[amt];\n}\n
            coin_change_ii.cpp
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(vector<int> &coins, int amt) {\nint n = coins.size();\n// \u521d\u59cb\u5316 dp \u8868\nvector<int> dp(amt + 1, 0);\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]];\n}\n}\n}\nreturn dp[amt];\n}\n
            coin_change_ii.py
            def coin_change_ii_dp_comp(coins: list[int], amt: int) -> int:\n\"\"\"\u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\"\"\"\nn = len(coins)\n# \u521d\u59cb\u5316 dp \u8868\ndp = [0] * (amt + 1)\ndp[0] = 1\n# \u72b6\u6001\u8f6c\u79fb\nfor i in range(1, n + 1):\n# \u6b63\u5e8f\u904d\u5386\nfor a in range(1, amt + 1):\nif coins[i - 1] > a:\n# \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\nelse:\n# \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]]\nreturn dp[amt]\n
            coin_change_ii.go
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDPComp(coins []int, amt int) int {\nn := len(coins)\n// \u521d\u59cb\u5316 dp \u8868\ndp := make([]int, amt+1)\ndp[0] = 1\n// \u72b6\u6001\u8f6c\u79fb\nfor i := 1; i <= n; i++ {\n// \u5012\u5e8f\u904d\u5386\nfor a := 1; a <= amt; a++ {\nif coins[i-1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a-coins[i-1]]\n}\n}\n}\nreturn dp[amt]\n}\n
            coin_change_ii.js
            [class]{}-[func]{coinChangeIIDPComp}\n
            coin_change_ii.ts
            [class]{}-[func]{coinChangeIIDPComp}\n
            coin_change_ii.c
            [class]{}-[func]{coinChangeIIDPComp}\n
            coin_change_ii.cs
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(int[] coins, int amt) {\nint n = coins.Length;\n// \u521d\u59cb\u5316 dp \u8868\nint[] dp = new int[amt + 1];\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]];\n}\n}\n}\nreturn dp[amt];\n}\n
            coin_change_ii.swift
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfunc coinChangeIIDPComp(coins: [Int], amt: Int) -> Int {\nlet n = coins.count\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = Array(repeating: 0, count: amt + 1)\ndp[0] = 1\n// \u72b6\u6001\u8f6c\u79fb\nfor i in stride(from: 1, through: n, by: 1) {\nfor a in stride(from: 1, through: amt, by: 1) {\nif coins[i - 1] > a {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a]\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]]\n}\n}\n}\nreturn dp[amt]\n}\n
            coin_change_ii.zig
            // \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212\nfn coinChangeIIDPComp(comptime coins: []i32, comptime amt: usize) i32 {\ncomptime var n = coins.len;\n// \u521d\u59cb\u5316 dp \u8868\nvar dp = [_]i32{0} ** (amt + 1);\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor (1..n + 1) |i| {\nfor (1..amt + 1) |a| {\nif (coins[i - 1] > @as(i32, @intCast(a))) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = dp[a] + dp[a - @as(usize, @intCast(coins[i - 1]))];\n}\n}\n}\nreturn dp[amt];\n}\n
            coin_change_ii.dart
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nint coinChangeIIDPComp(List<int> coins, int amt) {\nint n = coins.length;\n// \u521d\u59cb\u5316 dp \u8868\nList<int> dp = List.filled(amt + 1, 0);\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor (int i = 1; i <= n; i++) {\nfor (int a = 1; a <= amt; a++) {\nif (coins[i - 1] > a) {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u4e4b\u548c\ndp[a] = dp[a] + dp[a - coins[i - 1]];\n}\n}\n}\nreturn dp[amt];\n}\n
            coin_change_ii.rs
            /* \u96f6\u94b1\u5151\u6362 II\uff1a\u72b6\u6001\u538b\u7f29\u540e\u7684\u52a8\u6001\u89c4\u5212 */\nfn coin_change_ii_dp_comp(coins: &[i32], amt: usize) -> i32 {\nlet n = coins.len();\n// \u521d\u59cb\u5316 dp \u8868\nlet mut dp = vec![0; amt + 1];\ndp[0] = 1;\n// \u72b6\u6001\u8f6c\u79fb\nfor i in 1..=n {\nfor a in 1..=amt {\nif coins[i - 1] > a as i32 {\n// \u82e5\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\uff0c\u5219\u4e0d\u9009\u786c\u5e01 i\ndp[a] = dp[a];\n} else {\n// \u4e0d\u9009\u548c\u9009\u786c\u5e01 i \u8fd9\u4e24\u79cd\u65b9\u6848\u7684\u8f83\u5c0f\u503c\ndp[a] = dp[a] + dp[a - coins[i - 1] as usize];\n}\n}\n}\ndp[amt]\n}\n
            "},{"location":"chapter_graph/","title":"\u7b2c 9 \u7ae0 \u00a0 \u56fe","text":"

            Abstract

            \u5728\u751f\u547d\u65c5\u9014\u4e2d\uff0c\u6211\u4eec\u5c31\u50cf\u662f\u6bcf\u4e2a\u8282\u70b9\uff0c\u88ab\u65e0\u6570\u770b\u4e0d\u89c1\u7684\u8fb9\u76f8\u8fde\u3002

            \u6bcf\u4e00\u6b21\u7684\u76f8\u8bc6\u4e0e\u76f8\u79bb\uff0c\u90fd\u5728\u8fd9\u5f20\u5de8\u5927\u7684\u7f51\u7edc\u56fe\u4e2d\u7559\u4e0b\u72ec\u7279\u7684\u5370\u8bb0\u3002

            "},{"location":"chapter_graph/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 9.1 \u00a0 \u56fe
            • 9.2 \u00a0 \u56fe\u57fa\u7840\u64cd\u4f5c
            • 9.3 \u00a0 \u56fe\u7684\u904d\u5386
            • 9.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_graph/graph/","title":"9.1 \u00a0 \u56fe","text":"

            \u300c\u56fe graph\u300d\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u7531\u300c\u9876\u70b9 vertex\u300d\u548c\u300c\u8fb9 edge\u300d\u7ec4\u6210\u3002\u6211\u4eec\u53ef\u4ee5\u5c06\u56fe \\(G\\) \u62bd\u8c61\u5730\u8868\u793a\u4e3a\u4e00\u7ec4\u9876\u70b9 \\(V\\) \u548c\u4e00\u7ec4\u8fb9 \\(E\\) \u7684\u96c6\u5408\u3002\u4ee5\u4e0b\u793a\u4f8b\u5c55\u793a\u4e86\u4e00\u4e2a\u5305\u542b 5 \u4e2a\u9876\u70b9\u548c 7 \u6761\u8fb9\u7684\u56fe\u3002

            \\[ \\begin{aligned} V & = \\{ 1, 2, 3, 4, 5 \\} \\newline E & = \\{ (1,2), (1,3), (1,5), (2,3), (2,4), (2,5), (4,5) \\} \\newline G & = \\{ V, E \\} \\newline \\end{aligned} \\]

            \u56fe\uff1a\u94fe\u8868\u3001\u6811\u3001\u56fe\u4e4b\u95f4\u7684\u5173\u7cfb

            \u90a3\u4e48\uff0c\u56fe\u4e0e\u5176\u4ed6\u6570\u636e\u7ed3\u6784\u7684\u5173\u7cfb\u662f\u4ec0\u4e48\uff1f\u5982\u679c\u6211\u4eec\u628a\u9876\u70b9\u770b\u4f5c\u8282\u70b9\uff0c\u628a\u8fb9\u770b\u4f5c\u8fde\u63a5\u5404\u4e2a\u8282\u70b9\u7684\u6307\u9488\uff0c\u5219\u53ef\u5c06\u56fe\u770b\u4f5c\u662f\u4e00\u79cd\u4ece\u94fe\u8868\u62d3\u5c55\u800c\u6765\u7684\u6570\u636e\u7ed3\u6784\u3002\u76f8\u8f83\u4e8e\u7ebf\u6027\u5173\u7cfb\uff08\u94fe\u8868\uff09\u548c\u5206\u6cbb\u5173\u7cfb\uff08\u6811\uff09\uff0c\u7f51\u7edc\u5173\u7cfb\uff08\u56fe\uff09\u7684\u81ea\u7531\u5ea6\u66f4\u9ad8\uff0c\u4ece\u800c\u66f4\u4e3a\u590d\u6742\u3002

            "},{"location":"chapter_graph/graph/#911","title":"9.1.1 \u00a0 \u56fe\u5e38\u89c1\u7c7b\u578b","text":"

            \u6839\u636e\u8fb9\u662f\u5426\u5177\u6709\u65b9\u5411\uff0c\u53ef\u5206\u4e3a\u300c\u65e0\u5411\u56fe undirected graph\u300d\u548c\u300c\u6709\u5411\u56fe directed graph\u300d\u3002

            • \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u8fb9\u8868\u793a\u4e24\u9876\u70b9\u4e4b\u95f4\u7684\u201c\u53cc\u5411\u201d\u8fde\u63a5\u5173\u7cfb\uff0c\u4f8b\u5982\u5fae\u4fe1\u6216 QQ \u4e2d\u7684\u201c\u597d\u53cb\u5173\u7cfb\u201d\u3002
            • \u5728\u6709\u5411\u56fe\u4e2d\uff0c\u8fb9\u5177\u6709\u65b9\u5411\u6027\uff0c\u5373 \\(A \\rightarrow B\\) \u548c \\(A \\leftarrow B\\) \u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u662f\u76f8\u4e92\u72ec\u7acb\u7684\uff0c\u4f8b\u5982\u5fae\u535a\u6216\u6296\u97f3\u4e0a\u7684\u201c\u5173\u6ce8\u201d\u4e0e\u201c\u88ab\u5173\u6ce8\u201d\u5173\u7cfb\u3002

            \u56fe\uff1a\u6709\u5411\u56fe\u4e0e\u65e0\u5411\u56fe

            \u6839\u636e\u6240\u6709\u9876\u70b9\u662f\u5426\u8fde\u901a\uff0c\u53ef\u5206\u4e3a\u300c\u8fde\u901a\u56fe connected graph\u300d\u548c\u300c\u975e\u8fde\u901a\u56fe disconnected graph\u300d\u3002

            • \u5bf9\u4e8e\u8fde\u901a\u56fe\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u53ef\u4ee5\u5230\u8fbe\u5176\u4f59\u4efb\u610f\u9876\u70b9\u3002
            • \u5bf9\u4e8e\u975e\u8fde\u901a\u56fe\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u81f3\u5c11\u6709\u4e00\u4e2a\u9876\u70b9\u65e0\u6cd5\u5230\u8fbe\u3002

            \u56fe\uff1a\u8fde\u901a\u56fe\u4e0e\u975e\u8fde\u901a\u56fe

            \u6211\u4eec\u8fd8\u53ef\u4ee5\u4e3a\u8fb9\u6dfb\u52a0\u201c\u6743\u91cd\u201d\u53d8\u91cf\uff0c\u4ece\u800c\u5f97\u5230\u300c\u6709\u6743\u56fe weighted graph\u300d\u3002\u4f8b\u5982\uff0c\u5728\u738b\u8005\u8363\u8000\u7b49\u624b\u6e38\u4e2d\uff0c\u7cfb\u7edf\u4f1a\u6839\u636e\u5171\u540c\u6e38\u620f\u65f6\u95f4\u6765\u8ba1\u7b97\u73a9\u5bb6\u4e4b\u95f4\u7684\u201c\u4eb2\u5bc6\u5ea6\u201d\uff0c\u8fd9\u79cd\u4eb2\u5bc6\u5ea6\u7f51\u7edc\u5c31\u53ef\u4ee5\u7528\u6709\u6743\u56fe\u6765\u8868\u793a\u3002

            \u56fe\uff1a\u6709\u6743\u56fe\u4e0e\u65e0\u6743\u56fe

            "},{"location":"chapter_graph/graph/#912","title":"9.1.2 \u00a0 \u56fe\u5e38\u7528\u672f\u8bed","text":"
            • \u300c\u90bb\u63a5 adjacency\u300d\uff1a\u5f53\u4e24\u9876\u70b9\u4e4b\u95f4\u5b58\u5728\u8fb9\u76f8\u8fde\u65f6\uff0c\u79f0\u8fd9\u4e24\u9876\u70b9\u201c\u90bb\u63a5\u201d\u3002\u5728\u4e0a\u56fe\u4e2d\uff0c\u9876\u70b9 1 \u7684\u90bb\u63a5\u9876\u70b9\u4e3a\u9876\u70b9 2\u30013\u30015\u3002
            • \u300c\u8def\u5f84 path\u300d\uff1a\u4ece\u9876\u70b9 A \u5230\u9876\u70b9 B \u7ecf\u8fc7\u7684\u8fb9\u6784\u6210\u7684\u5e8f\u5217\u88ab\u79f0\u4e3a\u4ece A \u5230 B \u7684\u201c\u8def\u5f84\u201d\u3002\u5728\u4e0a\u56fe\u4e2d\uff0c\u8fb9\u5e8f\u5217 1-5-2-4 \u662f\u9876\u70b9 1 \u5230\u9876\u70b9 4 \u7684\u4e00\u6761\u8def\u5f84\u3002
            • \u300c\u5ea6 degree\u300d\uff1a\u4e00\u4e2a\u9876\u70b9\u62e5\u6709\u7684\u8fb9\u6570\u3002\u5bf9\u4e8e\u6709\u5411\u56fe\uff0c\u300c\u5165\u5ea6 In-Degree\u300d\u8868\u793a\u6709\u591a\u5c11\u6761\u8fb9\u6307\u5411\u8be5\u9876\u70b9\uff0c\u300c\u51fa\u5ea6 Out-Degree\u300d\u8868\u793a\u6709\u591a\u5c11\u6761\u8fb9\u4ece\u8be5\u9876\u70b9\u6307\u51fa\u3002
            "},{"location":"chapter_graph/graph/#913","title":"9.1.3 \u00a0 \u56fe\u7684\u8868\u793a","text":"

            \u56fe\u7684\u5e38\u7528\u8868\u793a\u65b9\u6cd5\u5305\u62ec\u201c\u90bb\u63a5\u77e9\u9635\u201d\u548c\u201c\u90bb\u63a5\u8868\u201d\u3002\u4ee5\u4e0b\u4f7f\u7528\u65e0\u5411\u56fe\u8fdb\u884c\u4e3e\u4f8b\u3002

            "},{"location":"chapter_graph/graph/#1","title":"1. \u00a0 \u90bb\u63a5\u77e9\u9635","text":"

            \u8bbe\u56fe\u7684\u9876\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u300c\u90bb\u63a5\u77e9\u9635 adjacency matrix\u300d\u4f7f\u7528\u4e00\u4e2a \\(n \\times n\\) \u5927\u5c0f\u7684\u77e9\u9635\u6765\u8868\u793a\u56fe\uff0c\u6bcf\u4e00\u884c\uff08\u5217\uff09\u4ee3\u8868\u4e00\u4e2a\u9876\u70b9\uff0c\u77e9\u9635\u5143\u7d20\u4ee3\u8868\u8fb9\uff0c\u7528 \\(1\\) \u6216 \\(0\\) \u8868\u793a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u662f\u5426\u5b58\u5728\u8fb9\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u8bbe\u90bb\u63a5\u77e9\u9635\u4e3a \\(M\\) \u3001\u9876\u70b9\u5217\u8868\u4e3a \\(V\\) \uff0c\u90a3\u4e48\u77e9\u9635\u5143\u7d20 \\(M[i, j] = 1\\) \u8868\u793a\u9876\u70b9 \\(V[i]\\) \u5230\u9876\u70b9 \\(V[j]\\) \u4e4b\u95f4\u5b58\u5728\u8fb9\uff0c\u53cd\u4e4b \\(M[i, j] = 0\\) \u8868\u793a\u4e24\u9876\u70b9\u4e4b\u95f4\u65e0\u8fb9\u3002

            \u56fe\uff1a\u56fe\u7684\u90bb\u63a5\u77e9\u9635\u8868\u793a

            \u90bb\u63a5\u77e9\u9635\u5177\u6709\u4ee5\u4e0b\u7279\u6027\uff1a

            • \u9876\u70b9\u4e0d\u80fd\u4e0e\u81ea\u8eab\u76f8\u8fde\uff0c\u56e0\u6b64\u90bb\u63a5\u77e9\u9635\u4e3b\u5bf9\u89d2\u7ebf\u5143\u7d20\u6ca1\u6709\u610f\u4e49\u3002
            • \u5bf9\u4e8e\u65e0\u5411\u56fe\uff0c\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u7b49\u4ef7\uff0c\u6b64\u65f6\u90bb\u63a5\u77e9\u9635\u5173\u4e8e\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\u3002
            • \u5c06\u90bb\u63a5\u77e9\u9635\u7684\u5143\u7d20\u4ece \\(1\\) , \\(0\\) \u66ff\u6362\u4e3a\u6743\u91cd\uff0c\u5219\u53ef\u8868\u793a\u6709\u6743\u56fe\u3002

            \u4f7f\u7528\u90bb\u63a5\u77e9\u9635\u8868\u793a\u56fe\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u8bbf\u95ee\u77e9\u9635\u5143\u7d20\u4ee5\u83b7\u53d6\u8fb9\uff0c\u56e0\u6b64\u589e\u5220\u67e5\u64cd\u4f5c\u7684\u6548\u7387\u5f88\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(1)\\) \u3002\u7136\u800c\uff0c\u77e9\u9635\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u5185\u5b58\u5360\u7528\u8f83\u591a\u3002

            "},{"location":"chapter_graph/graph/#2","title":"2. \u00a0 \u90bb\u63a5\u8868","text":"

            \u300c\u90bb\u63a5\u8868 adjacency list\u300d\u4f7f\u7528 \\(n\\) \u4e2a\u94fe\u8868\u6765\u8868\u793a\u56fe\uff0c\u94fe\u8868\u8282\u70b9\u8868\u793a\u9876\u70b9\u3002\u7b2c \\(i\\) \u6761\u94fe\u8868\u5bf9\u5e94\u9876\u70b9 \\(i\\) \uff0c\u5176\u4e2d\u5b58\u50a8\u4e86\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff08\u5373\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u9876\u70b9\uff09\u3002

            \u56fe\uff1a\u56fe\u7684\u90bb\u63a5\u8868\u8868\u793a

            \u90bb\u63a5\u8868\u4ec5\u5b58\u50a8\u5b9e\u9645\u5b58\u5728\u7684\u8fb9\uff0c\u800c\u8fb9\u7684\u603b\u6570\u901a\u5e38\u8fdc\u5c0f\u4e8e \\(n^2\\) \uff0c\u56e0\u6b64\u5b83\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\u3002\u7136\u800c\uff0c\u5728\u90bb\u63a5\u8868\u4e2d\u9700\u8981\u901a\u8fc7\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u8fb9\uff0c\u56e0\u6b64\u5176\u65f6\u95f4\u6548\u7387\u4e0d\u5982\u90bb\u63a5\u77e9\u9635\u3002

            \u89c2\u5bdf\u4e0a\u56fe\uff0c\u90bb\u63a5\u8868\u7ed3\u6784\u4e0e\u54c8\u5e0c\u8868\u4e2d\u7684\u201c\u94fe\u5f0f\u5730\u5740\u201d\u975e\u5e38\u76f8\u4f3c\uff0c\u56e0\u6b64\u6211\u4eec\u4e5f\u53ef\u4ee5\u91c7\u7528\u7c7b\u4f3c\u65b9\u6cd5\u6765\u4f18\u5316\u6548\u7387\u3002\u6bd4\u5982\u5f53\u94fe\u8868\u8f83\u957f\u65f6\uff0c\u53ef\u4ee5\u5c06\u94fe\u8868\u8f6c\u5316\u4e3a AVL \u6811\u6216\u7ea2\u9ed1\u6811\uff0c\u4ece\u800c\u5c06\u65f6\u95f4\u6548\u7387\u4ece \\(O(n)\\) \u4f18\u5316\u81f3 \\(O(\\log n)\\) \uff1b\u8fd8\u53ef\u4ee5\u628a\u94fe\u8868\u8f6c\u6362\u4e3a\u54c8\u5e0c\u8868\uff0c\u4ece\u800c\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u964d\u4f4e\u81f3 \\(O(1)\\) \u3002

            "},{"location":"chapter_graph/graph/#914","title":"9.1.4 \u00a0 \u56fe\u5e38\u89c1\u5e94\u7528","text":"

            \u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u8bb8\u591a\u7cfb\u7edf\u90fd\u53ef\u4ee5\u7528\u56fe\u6765\u5efa\u6a21\uff0c\u76f8\u5e94\u7684\u5f85\u6c42\u89e3\u95ee\u9898\u4e5f\u53ef\u4ee5\u7ea6\u5316\u4e3a\u56fe\u8ba1\u7b97\u95ee\u9898\u3002

            \u8868\uff1a\u73b0\u5b9e\u751f\u6d3b\u4e2d\u5e38\u89c1\u7684\u56fe

            \u9876\u70b9 \u8fb9 \u56fe\u8ba1\u7b97\u95ee\u9898 \u793e\u4ea4\u7f51\u7edc \u7528\u6237 \u597d\u53cb\u5173\u7cfb \u6f5c\u5728\u597d\u53cb\u63a8\u8350 \u5730\u94c1\u7ebf\u8def \u7ad9\u70b9 \u7ad9\u70b9\u95f4\u7684\u8fde\u901a\u6027 \u6700\u77ed\u8def\u7ebf\u63a8\u8350 \u592a\u9633\u7cfb \u661f\u4f53 \u661f\u4f53\u95f4\u7684\u4e07\u6709\u5f15\u529b\u4f5c\u7528 \u884c\u661f\u8f68\u9053\u8ba1\u7b97"},{"location":"chapter_graph/graph_operations/","title":"9.2 \u00a0 \u56fe\u57fa\u7840\u64cd\u4f5c","text":"

            \u56fe\u7684\u57fa\u7840\u64cd\u4f5c\u53ef\u5206\u4e3a\u5bf9\u201c\u8fb9\u201d\u7684\u64cd\u4f5c\u548c\u5bf9\u201c\u9876\u70b9\u201d\u7684\u64cd\u4f5c\u3002\u5728\u201c\u90bb\u63a5\u77e9\u9635\u201d\u548c\u201c\u90bb\u63a5\u8868\u201d\u4e24\u79cd\u8868\u793a\u65b9\u6cd5\u4e0b\uff0c\u5b9e\u73b0\u65b9\u5f0f\u6709\u6240\u4e0d\u540c\u3002

            "},{"location":"chapter_graph/graph_operations/#921","title":"9.2.1 \u00a0 \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u7684\u5b9e\u73b0","text":"

            \u7ed9\u5b9a\u4e00\u4e2a\u9876\u70b9\u6570\u91cf\u4e3a \\(n\\) \u7684\u65e0\u5411\u56fe\uff0c\u5219\u6709\uff1a

            • \u6dfb\u52a0\u6216\u5220\u9664\u8fb9\uff1a\u76f4\u63a5\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u4fee\u6539\u6307\u5b9a\u7684\u8fb9\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u800c\u7531\u4e8e\u662f\u65e0\u5411\u56fe\uff0c\u56e0\u6b64\u9700\u8981\u540c\u65f6\u66f4\u65b0\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
            • \u6dfb\u52a0\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u77e9\u9635\u7684\u5c3e\u90e8\u6dfb\u52a0\u4e00\u884c\u4e00\u5217\uff0c\u5e76\u5168\u90e8\u586b \\(0\\) \u5373\u53ef\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
            • \u5220\u9664\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u4e00\u884c\u4e00\u5217\u3002\u5f53\u5220\u9664\u9996\u884c\u9996\u5217\u65f6\u8fbe\u5230\u6700\u5dee\u60c5\u51b5\uff0c\u9700\u8981\u5c06 \\((n-1)^2\\) \u4e2a\u5143\u7d20\u201c\u5411\u5de6\u4e0a\u79fb\u52a8\u201d\uff0c\u4ece\u800c\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
            • \u521d\u59cb\u5316\uff1a\u4f20\u5165 \\(n\\) \u4e2a\u9876\u70b9\uff0c\u521d\u59cb\u5316\u957f\u5ea6\u4e3a \\(n\\) \u7684\u9876\u70b9\u5217\u8868 vertices \uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\uff1b\u521d\u59cb\u5316 \\(n \\times n\\) \u5927\u5c0f\u7684\u90bb\u63a5\u77e9\u9635 adjMat \uff0c\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
            \u521d\u59cb\u5316\u90bb\u63a5\u77e9\u9635\u6dfb\u52a0\u8fb9\u5220\u9664\u8fb9\u6dfb\u52a0\u9876\u70b9\u5220\u9664\u9876\u70b9

            \u56fe\uff1a\u90bb\u63a5\u77e9\u9635\u7684\u521d\u59cb\u5316\u3001\u589e\u5220\u8fb9\u3001\u589e\u5220\u9876\u70b9

            \u4ee5\u4e0b\u662f\u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u8868\u793a\u56fe\u7684\u5b9e\u73b0\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust graph_adjacency_matrix.java
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nList<Integer> vertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nList<List<Integer>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u65b9\u6cd5 */\npublic GraphAdjMat(int[] vertices, int[][] edges) {\nthis.vertices = new ArrayList<>();\nthis.adjMat = new ArrayList<>();\n// \u6dfb\u52a0\u9876\u70b9\nfor (int val : vertices) {\naddVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor (int[] e : edges) {\naddEdge(e[0], e[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npublic int size() {\nreturn vertices.size();\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npublic void addVertex(int val) {\nint n = size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nvertices.add(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nList<Integer> newRow = new ArrayList<>(n);\nfor (int j = 0; j < n; j++) {\nnewRow.add(0);\n}\nadjMat.add(newRow);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor (List<Integer> row : adjMat) {\nrow.add(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\npublic void removeVertex(int index) {\nif (index >= size())\nthrow new IndexOutOfBoundsException();\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nvertices.remove(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nadjMat.remove(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor (List<Integer> row : adjMat) {\nrow.remove(index);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\npublic void addEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\nthrow new IndexOutOfBoundsException();\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nadjMat.get(i).set(j, 1);\nadjMat.get(j).set(i, 1);\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\npublic void removeEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\nthrow new IndexOutOfBoundsException();\nadjMat.get(i).set(j, 0);\nadjMat.get(j).set(i, 0);\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\npublic void print() {\nSystem.out.print(\"\u9876\u70b9\u5217\u8868 = \");\nSystem.out.println(vertices);\nSystem.out.println(\"\u90bb\u63a5\u77e9\u9635 =\");\nPrintUtil.printMatrix(adjMat);\n}\n}\n
            graph_adjacency_matrix.cpp
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nvector<int> vertices;       // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nvector<vector<int>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nGraphAdjMat(const vector<int> &vertices, const vector<vector<int>> &edges) {\n// \u6dfb\u52a0\u9876\u70b9\nfor (int val : vertices) {\naddVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor (const vector<int> &edge : edges) {\naddEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nint size() const {\nreturn vertices.size();\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(int val) {\nint n = size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nvertices.push_back(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nadjMat.emplace_back(vector<int>(n, 0));\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor (vector<int> &row : adjMat) {\nrow.push_back(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(int index) {\nif (index >= size()) {\nthrow out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nvertices.erase(vertices.begin() + index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nadjMat.erase(adjMat.begin() + index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor (vector<int> &row : adjMat) {\nrow.erase(row.begin() + index);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid addEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\nthrow out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nadjMat[i][j] = 1;\nadjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid removeEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\nthrow out_of_range(\"\u9876\u70b9\u4e0d\u5b58\u5728\");\n}\nadjMat[i][j] = 0;\nadjMat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nvoid print() {\ncout << \"\u9876\u70b9\u5217\u8868 = \";\nprintVector(vertices);\ncout << \"\u90bb\u63a5\u77e9\u9635 =\" << endl;\nprintVectorMatrix(adjMat);\n}\n};\n
            graph_adjacency_matrix.py
            class GraphAdjMat:\n\"\"\"\u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\"\"\"\n# \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nvertices: list[int] = []\n# \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\nadj_mat: list[list[int]] = []\ndef __init__(self, vertices: list[int], edges: list[list[int]]):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.vertices: list[int] = []\nself.adj_mat: list[list[int]] = []\n# \u6dfb\u52a0\u9876\u70b9\nfor val in vertices:\nself.add_vertex(val)\n# \u6dfb\u52a0\u8fb9\n# \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor e in edges:\nself.add_edge(e[0], e[1])\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u9876\u70b9\u6570\u91cf\"\"\"\nreturn len(self.vertices)\ndef add_vertex(self, val: int):\n\"\"\"\u6dfb\u52a0\u9876\u70b9\"\"\"\nn = self.size()\n# \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nself.vertices.append(val)\n# \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nnew_row = [0] * n\nself.adj_mat.append(new_row)\n# \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor row in self.adj_mat:\nrow.append(0)\ndef remove_vertex(self, index: int):\n\"\"\"\u5220\u9664\u9876\u70b9\"\"\"\nif index >= self.size():\nraise IndexError()\n# \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nself.vertices.pop(index)\n# \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nself.adj_mat.pop(index)\n# \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor row in self.adj_mat:\nrow.pop(index)\ndef add_edge(self, i: int, j: int):\n\"\"\"\u6dfb\u52a0\u8fb9\"\"\"\n# \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n# \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:\nraise IndexError()\n# \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nself.adj_mat[i][j] = 1\nself.adj_mat[j][i] = 1\ndef remove_edge(self, i: int, j: int):\n\"\"\"\u5220\u9664\u8fb9\"\"\"\n# \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n# \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 or j < 0 or i >= self.size() or j >= self.size() or i == j:\nraise IndexError()\nself.adj_mat[i][j] = 0\nself.adj_mat[j][i] = 0\ndef print(self):\n\"\"\"\u6253\u5370\u90bb\u63a5\u77e9\u9635\"\"\"\nprint(\"\u9876\u70b9\u5217\u8868 =\", self.vertices)\nprint(\"\u90bb\u63a5\u77e9\u9635 =\")\nprint_matrix(self.adj_mat)\n
            graph_adjacency_matrix.go
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\ntype graphAdjMat struct {\n// \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nvertices []int\n// \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\nadjMat [][]int\n}\n/* \u6784\u9020\u51fd\u6570 */\nfunc newGraphAdjMat(vertices []int, edges [][]int) *graphAdjMat {\n// \u6dfb\u52a0\u9876\u70b9\nn := len(vertices)\nadjMat := make([][]int, n)\nfor i := range adjMat {\nadjMat[i] = make([]int, n)\n}\n// \u521d\u59cb\u5316\u56fe\ng := &graphAdjMat{\nvertices: vertices,\nadjMat:   adjMat,\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor i := range edges {\ng.addEdge(edges[i][0], edges[i][1])\n}\nreturn g\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nfunc (g *graphAdjMat) size() int {\nreturn len(g.vertices)\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nfunc (g *graphAdjMat) addVertex(val int) {\nn := g.size()\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\ng.vertices = append(g.vertices, val)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nnewRow := make([]int, n)\ng.adjMat = append(g.adjMat, newRow)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor i := range g.adjMat {\ng.adjMat[i] = append(g.adjMat[i], 0)\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nfunc (g *graphAdjMat) removeVertex(index int) {\nif index >= g.size() {\nreturn\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\ng.vertices = append(g.vertices[:index], g.vertices[index+1:]...)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\ng.adjMat = append(g.adjMat[:index], g.adjMat[index+1:]...)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor i := range g.adjMat {\ng.adjMat[i] = append(g.adjMat[i][:index], g.adjMat[i][index+1:]...)\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc (g *graphAdjMat) addEdge(i, j int) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j {\nfmt.Errorf(\"%s\", \"Index Out Of Bounds Exception\")\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\ng.adjMat[i][j] = 1\ng.adjMat[j][i] = 1\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc (g *graphAdjMat) removeEdge(i, j int) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 || j < 0 || i >= g.size() || j >= g.size() || i == j {\nfmt.Errorf(\"%s\", \"Index Out Of Bounds Exception\")\n}\ng.adjMat[i][j] = 0\ng.adjMat[j][i] = 0\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nfunc (g *graphAdjMat) print() {\nfmt.Printf(\"\\t\u9876\u70b9\u5217\u8868 = %v\\n\", g.vertices)\nfmt.Printf(\"\\t\u90bb\u63a5\u77e9\u9635 = \\n\")\nfor i := range g.adjMat {\nfmt.Printf(\"\\t\\t\\t%v\\n\", g.adjMat[i])\n}\n}\n
            graph_adjacency_matrix.js
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nvertices; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nadjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u51fd\u6570 */\nconstructor(vertices, edges) {\nthis.vertices = [];\nthis.adjMat = [];\n// \u6dfb\u52a0\u9876\u70b9\nfor (const val of vertices) {\nthis.addVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor (const e of edges) {\nthis.addEdge(e[0], e[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nsize() {\nreturn this.vertices.length;\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\naddVertex(val) {\nconst n = this.size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nthis.vertices.push(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nconst newRow = [];\nfor (let j = 0; j < n; j++) {\nnewRow.push(0);\n}\nthis.adjMat.push(newRow);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor (const row of this.adjMat) {\nrow.push(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nremoveVertex(index) {\nif (index >= this.size()) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nthis.vertices.splice(index, 1);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nthis.adjMat.splice(index, 1);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor (const row of this.adjMat) {\nrow.splice(index, 1);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\naddEdge(i, j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) === (j, i)\nthis.adjMat[i][j] = 1;\nthis.adjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nremoveEdge(i, j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\nthis.adjMat[i][j] = 0;\nthis.adjMat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nprint() {\nconsole.log('\u9876\u70b9\u5217\u8868 = ', this.vertices);\nconsole.log('\u90bb\u63a5\u77e9\u9635 =', this.adjMat);\n}\n}\n
            graph_adjacency_matrix.ts
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nvertices: number[]; // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nadjMat: number[][]; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u51fd\u6570 */\nconstructor(vertices: number[], edges: number[][]) {\nthis.vertices = [];\nthis.adjMat = [];\n// \u6dfb\u52a0\u9876\u70b9\nfor (const val of vertices) {\nthis.addVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor (const e of edges) {\nthis.addEdge(e[0], e[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nsize(): number {\nreturn this.vertices.length;\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\naddVertex(val: number): void {\nconst n: number = this.size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nthis.vertices.push(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nconst newRow: number[] = [];\nfor (let j: number = 0; j < n; j++) {\nnewRow.push(0);\n}\nthis.adjMat.push(newRow);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor (const row of this.adjMat) {\nrow.push(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nremoveVertex(index: number): void {\nif (index >= this.size()) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nthis.vertices.splice(index, 1);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nthis.adjMat.splice(index, 1);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor (const row of this.adjMat) {\nrow.splice(index, 1);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\naddEdge(i: number, j: number): void {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) === (j, i)\nthis.adjMat[i][j] = 1;\nthis.adjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nremoveEdge(i: number, j: number): void {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= this.size() || j >= this.size() || i === j) {\nthrow new RangeError('Index Out Of Bounds Exception');\n}\nthis.adjMat[i][j] = 0;\nthis.adjMat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nprint(): void {\nconsole.log('\u9876\u70b9\u5217\u8868 = ', this.vertices);\nconsole.log('\u90bb\u63a5\u77e9\u9635 =', this.adjMat);\n}\n}\n
            graph_adjacency_matrix.c
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u7ed3\u6784 */\nstruct graphAdjMat {\nint *vertices;         // \u9876\u70b9\u5217\u8868\nunsigned int **adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u8fb9\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nunsigned int size;     // \u9876\u70b9\u6570\u91cf\nunsigned int capacity; // \u56fe\u5bb9\u91cf\n};\ntypedef struct graphAdjMat graphAdjMat;\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid addEdge(graphAdjMat *t, int i, int j) {\n// \u8d8a\u754c\u68c0\u67e5\nif (i < 0 || j < 0 || i >= t->size || j >= t->size || i == j) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nexit(1);\n}\n// \u6dfb\u52a0\u8fb9\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nt->adjMat[i][j] = 1;\nt->adjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid removeEdge(graphAdjMat *t, int i, int j) {\n// \u8d8a\u754c\u68c0\u67e5\nif (i < 0 || j < 0 || i >= t->size || j >= t->size || i == j) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nexit(1);\n}\n// \u5220\u9664\u8fb9\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nt->adjMat[i][j] = 0;\nt->adjMat[j][i] = 0;\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(graphAdjMat *t, int val) {\n// \u5982\u679c\u5b9e\u9645\u4f7f\u7528\u4e0d\u5927\u4e8e\u9884\u8bbe\u7a7a\u95f4\uff0c\u5219\u76f4\u63a5\u521d\u59cb\u5316\u65b0\u7a7a\u95f4\nif (t->size < t->capacity) {\nt->vertices[t->size] = val; // \u521d\u59cb\u5316\u65b0\u9876\u70b9\u503c\nfor (int i = 0; i < t->size; i++) {\nt->adjMat[i][t->size] = 0; // \u90bb\u63a5\u77e9\u65b0\u5217\u9635\u7f6e0\n}\nmemset(t->adjMat[t->size], 0, sizeof(unsigned int) * (t->size + 1)); // \u5c06\u65b0\u589e\u884c\u7f6e 0\nt->size++;\nreturn;\n}\n// \u6269\u5bb9\uff0c\u7533\u8bf7\u65b0\u7684\u9876\u70b9\u6570\u7ec4\nint *temp = (int *)malloc(sizeof(int) * (t->size * 2));\nmemcpy(temp, t->vertices, sizeof(int) * t->size);\ntemp[t->size] = val;\n// \u91ca\u653e\u539f\u6570\u7ec4\nfree(t->vertices);\nt->vertices = temp;\n// \u6269\u5bb9\uff0c\u7533\u8bf7\u65b0\u7684\u4e8c\u7ef4\u6570\u7ec4\nunsigned int **tempMat = (unsigned int **)malloc(sizeof(unsigned int *) * t->size * 2);\nunsigned int *tempMatLine = (unsigned int *)malloc(sizeof(unsigned int) * (t->size * 2) * (t->size * 2));\nmemset(tempMatLine, 0, sizeof(unsigned int) * (t->size * 2) * (t->size * 2));\nfor (int k = 0; k < t->size * 2; k++) {\ntempMat[k] = tempMatLine + k * (t->size * 2);\n}\nfor (int i = 0; i < t->size; i++) {\nmemcpy(tempMat[i], t->adjMat[i], sizeof(unsigned int) * t->size); // \u539f\u6570\u636e\u590d\u5236\u5230\u65b0\u6570\u7ec4\n}\nfor (int i = 0; i < t->size; i++) {\ntempMat[i][t->size] = 0; // \u5c06\u65b0\u589e\u5217\u7f6e 0\n}\nmemset(tempMat[t->size], 0, sizeof(unsigned int) * (t->size + 1)); // \u5c06\u65b0\u589e\u884c\u7f6e 0\n// \u91ca\u653e\u539f\u6570\u7ec4\nfree(t->adjMat[0]);\nfree(t->adjMat);\n// \u6269\u5bb9\u540e\uff0c\u6307\u5411\u65b0\u5730\u5740\nt->adjMat = tempMat;  // \u6307\u5411\u65b0\u7684\u90bb\u63a5\u77e9\u9635\u5730\u5740\nt->capacity = t->size * 2;\nt->size++;\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(graphAdjMat *t, unsigned int index) {\n// \u8d8a\u754c\u68c0\u67e5\nif (index < 0 || index >= t->size) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nexit(1);\n}\nfor (int i = index; i < t->size - 1; i++) {\nt->vertices[i] = t->vertices[i + 1]; // \u6e05\u9664\u5220\u9664\u7684\u9876\u70b9\uff0c\u5e76\u5c06\u5176\u540e\u6240\u6709\u9876\u70b9\u524d\u79fb\n}\nt->vertices[t->size - 1] = 0; // \u5c06\u88ab\u524d\u79fb\u7684\u6700\u540e\u4e00\u4e2a\u9876\u70b9\u7f6e 0\n// \u6e05\u9664\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7684\u5217\nfor (int i = 0; i < t->size - 1; i++) {\nif (i < index) {\nfor (int j = index; j < t->size - 1; j++) {\nt->adjMat[i][j] = t->adjMat[i][j + 1]; // \u88ab\u5220\u9664\u5217\u540e\u7684\u6240\u6709\u5217\u524d\u79fb\n}\n} else { memcpy(t->adjMat[i], t->adjMat[i + 1], sizeof(unsigned int) * t->size); // \u88ab\u5220\u9664\u884c\u7684\u4e0b\u65b9\u6240\u6709\u884c\u4e0a\u79fb\nfor (int j = index; j < t->size; j++) {\nt->adjMat[i][j] = t->adjMat[i][j + 1]; // \u88ab\u5220\u9664\u5217\u540e\u7684\u6240\u6709\u5217\u524d\u79fb\n}\n}\n}\nt->size--;\n}\n/* \u6253\u5370\u9876\u70b9\u4e0e\u90bb\u63a5\u77e9\u9635 */\nvoid printGraph(graphAdjMat *t) {\nif (t->size == 0) {\nprintf(\"graph is empty\\n\");\nreturn;\n}\nprintf(\"\u9876\u70b9\u5217\u8868 = [\");\nfor (int i = 0; i < t->size; i++) {\nif (i != t->size - 1) {\nprintf(\"%d, \", t->vertices[i]);\n} else {\nprintf(\"%d\", t->vertices[i]);\n}\n}\nprintf(\"]\\n\");\nprintf(\"\u90bb\u63a5\u77e9\u9635 =\\n[\\n\");\nfor (int i = 0; i < t->size; i++) {\nprintf(\"  [\");\nfor (int j = 0; j < t->size; j++) {\nif (j != t->size - 1) {\nprintf(\"%u, \", t->adjMat[i][j]);\n} else {\nprintf(\"%u\", t->adjMat[i][j]);\n}\n}\nprintf(\"],\\n\");\n}\nprintf(\"]\\n\");\n}\n/* \u6784\u9020\u51fd\u6570 */\ngraphAdjMat *newGraphAjdMat(unsigned int numberVertices, int *vertices, unsigned int **adjMat) {\n// \u7533\u8bf7\u5185\u5b58\ngraphAdjMat *newGraph = (graphAdjMat *)malloc(sizeof(graphAdjMat));                                          // \u4e3a\u56fe\u5206\u914d\u5185\u5b58\nnewGraph->vertices = (int *)malloc(sizeof(int) * numberVertices * 2);                                        // \u4e3a\u9876\u70b9\u5217\u8868\u5206\u914d\u5185\u5b58\nnewGraph->adjMat = (unsigned int **)malloc(sizeof(unsigned int *) * numberVertices * 2);                     // \u4e3a\u90bb\u63a5\u77e9\u9635\u5206\u914d\u4e8c\u7ef4\u5185\u5b58\nunsigned int *temp = (unsigned int *)malloc(sizeof(unsigned int) * numberVertices * 2 * numberVertices * 2); // \u4e3a\u90bb\u63a5\u77e9\u9635\u5206\u914d\u4e00\u7ef4\u5185\u5b58\nnewGraph->size = numberVertices;                                                                             // \u521d\u59cb\u5316\u9876\u70b9\u6570\u91cf\nnewGraph->capacity = numberVertices * 2;                                                                     // \u521d\u59cb\u5316\u56fe\u5bb9\u91cf\n// \u914d\u7f6e\u4e8c\u7ef4\u6570\u7ec4\nfor (int i = 0; i < numberVertices * 2; i++) {\nnewGraph->adjMat[i] = temp + i * numberVertices * 2; // \u5c06\u4e8c\u7ef4\u6307\u9488\u6307\u5411\u4e00\u7ef4\u6570\u7ec4\n}\n// \u8d4b\u503c\nmemcpy(newGraph->vertices, vertices, sizeof(int) * numberVertices);\nfor (int i = 0; i < numberVertices; i++) {\nmemcpy(newGraph->adjMat[i], adjMat[i], sizeof(unsigned int) * numberVertices); // \u5c06\u4f20\u5165\u7684\u90bb\u63a5\u77e9\u9635\u8d4b\u503c\u7ed9\u7ed3\u6784\u4f53\u5185\u90bb\u63a5\u77e9\u9635\n}\n// \u8fd4\u56de\u7ed3\u6784\u4f53\u6307\u9488\nreturn newGraph;\n}\n
            graph_adjacency_matrix.cs
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nList<int> vertices;     // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nList<List<int>> adjMat; // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u51fd\u6570 */\npublic GraphAdjMat(int[] vertices, int[][] edges) {\nthis.vertices = new List<int>();\nthis.adjMat = new List<List<int>>();\n// \u6dfb\u52a0\u9876\u70b9\nforeach (int val in vertices) {\naddVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nforeach (int[] e in edges) {\naddEdge(e[0], e[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npublic int size() {\nreturn vertices.Count;\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npublic void addVertex(int val) {\nint n = size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nvertices.Add(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nList<int> newRow = new List<int>(n);\nfor (int j = 0; j < n; j++) {\nnewRow.Add(0);\n}\nadjMat.Add(newRow);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nforeach (List<int> row in adjMat) {\nrow.Add(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\npublic void removeVertex(int index) {\nif (index >= size())\nthrow new IndexOutOfRangeException();\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nvertices.RemoveAt(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nadjMat.RemoveAt(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nforeach (List<int> row in adjMat) {\nrow.RemoveAt(index);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\npublic void addEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\nthrow new IndexOutOfRangeException();\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nadjMat[i][j] = 1;\nadjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\npublic void removeEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j)\nthrow new IndexOutOfRangeException();\nadjMat[i][j] = 0;\nadjMat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\npublic void print() {\nConsole.Write(\"\u9876\u70b9\u5217\u8868 = \");\nPrintUtil.PrintList(vertices);\nConsole.WriteLine(\"\u90bb\u63a5\u77e9\u9635 =\");\nPrintUtil.PrintMatrix(adjMat);\n}\n}\n
            graph_adjacency_matrix.swift
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nprivate var vertices: [Int] // \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nprivate var adjMat: [[Int]] // \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u65b9\u6cd5 */\ninit(vertices: [Int], edges: [[Int]]) {\nself.vertices = []\nadjMat = []\n// \u6dfb\u52a0\u9876\u70b9\nfor val in vertices {\naddVertex(val: val)\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor e in edges {\naddEdge(i: e[0], j: e[1])\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nfunc size() -> Int {\nvertices.count\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nfunc addVertex(val: Int) {\nlet n = size()\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nvertices.append(val)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nlet newRow = Array(repeating: 0, count: n)\nadjMat.append(newRow)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor i in adjMat.indices {\nadjMat[i].append(0)\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nfunc removeVertex(index: Int) {\nif index >= size() {\nfatalError(\"\u8d8a\u754c\")\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nvertices.remove(at: index)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nadjMat.remove(at: index)\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor i in adjMat.indices {\nadjMat[i].remove(at: index)\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc addEdge(i: Int, j: Int) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 || j < 0 || i >= size() || j >= size() || i == j {\nfatalError(\"\u8d8a\u754c\")\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nadjMat[i][j] = 1\nadjMat[j][i] = 1\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfunc removeEdge(i: Int, j: Int) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i < 0 || j < 0 || i >= size() || j >= size() || i == j {\nfatalError(\"\u8d8a\u754c\")\n}\nadjMat[i][j] = 0\nadjMat[j][i] = 0\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nfunc print() {\nSwift.print(\"\u9876\u70b9\u5217\u8868 = \", terminator: \"\")\nSwift.print(vertices)\nSwift.print(\"\u90bb\u63a5\u77e9\u9635 =\")\nPrintUtil.printMatrix(matrix: adjMat)\n}\n}\n
            graph_adjacency_matrix.zig
            \n
            graph_adjacency_matrix.dart
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjMat {\nList<int> vertices = []; // \u9876\u70b9\u5143\u7d20\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\nList<List<int>> adjMat = []; //\u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\n/* \u6784\u9020\u65b9\u6cd5 */\nGraphAdjMat(List<int> vertices, List<List<int>> edges) {\nthis.vertices = [];\nthis.adjMat = [];\n// \u6dfb\u52a0\u9876\u70b9\nfor (int val in vertices) {\naddVertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor (List<int> e in edges) {\naddEdge(e[0], e[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nint size() {\nreturn vertices.length;\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(int val) {\nint n = size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nvertices.add(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nList<int> newRow = List.filled(n, 0, growable: true);\nadjMat.add(newRow);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor (List<int> row in adjMat) {\nrow.add(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(int index) {\nif (index >= size()) {\nthrow IndexError;\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nvertices.removeAt(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nadjMat.removeAt(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor (List<int> row in adjMat) {\nrow.removeAt(index);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid addEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\nthrow IndexError;\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nadjMat[i][j] = 1;\nadjMat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nvoid removeEdge(int i, int j) {\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif (i < 0 || j < 0 || i >= size() || j >= size() || i == j) {\nthrow IndexError;\n}\nadjMat[i][j] = 0;\nadjMat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\nvoid printAdjMat() {\nprint(\"\u9876\u70b9\u5217\u8868 = $vertices\");\nprint(\"\u90bb\u63a5\u77e9\u9635 = \");\nprintMatrix(adjMat);\n}\n}\n
            graph_adjacency_matrix.rs
            /* \u57fa\u4e8e\u90bb\u63a5\u77e9\u9635\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u578b */\npub struct GraphAdjMat {\n// \u9876\u70b9\u5217\u8868\uff0c\u5143\u7d20\u4ee3\u8868\u201c\u9876\u70b9\u503c\u201d\uff0c\u7d22\u5f15\u4ee3\u8868\u201c\u9876\u70b9\u7d22\u5f15\u201d\npub vertices: Vec<i32>,\n// \u90bb\u63a5\u77e9\u9635\uff0c\u884c\u5217\u7d22\u5f15\u5bf9\u5e94\u201c\u9876\u70b9\u7d22\u5f15\u201d\npub adj_mat: Vec<Vec<i32>>,\n}\nimpl GraphAdjMat {\n/* \u6784\u9020\u65b9\u6cd5 */\npub fn new(vertices: Vec<i32>, edges: Vec<[usize; 2]>) -> Self {\nlet mut graph = GraphAdjMat {\nvertices: vec![],\nadj_mat: vec![],\n};\n// \u6dfb\u52a0\u9876\u70b9\nfor val in vertices {\ngraph.add_vertex(val);\n}\n// \u6dfb\u52a0\u8fb9\n// \u8bf7\u6ce8\u610f\uff0cedges \u5143\u7d20\u4ee3\u8868\u9876\u70b9\u7d22\u5f15\uff0c\u5373\u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\nfor edge in edges {\ngraph.add_edge(edge[0], edge[1])\n}\ngraph\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npub fn size(&self) -> usize {\nself.vertices.len()\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npub fn add_vertex(&mut self, val: i32) {\nlet n = self.size();\n// \u5411\u9876\u70b9\u5217\u8868\u4e2d\u6dfb\u52a0\u65b0\u9876\u70b9\u7684\u503c\nself.vertices.push(val);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u884c\nself.adj_mat.push(vec![0; n]);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u6dfb\u52a0\u4e00\u5217\nfor row in &mut self.adj_mat {\nrow.push(0);\n}\n}\n/* \u5220\u9664\u9876\u70b9 */\npub fn remove_vertex(&mut self, index: usize) {\nif index >= self.size() {\npanic!(\"index error\")\n}\n// \u5728\u9876\u70b9\u5217\u8868\u4e2d\u79fb\u9664\u7d22\u5f15 index \u7684\u9876\u70b9\nself.vertices.remove(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u884c\nself.adj_mat.remove(index);\n// \u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u5220\u9664\u7d22\u5f15 index \u7684\u5217\nfor row in &mut self.adj_mat {\nrow.remove(index);\n}\n}\n/* \u6dfb\u52a0\u8fb9 */\npub fn add_edge(&mut self, i: usize, j: usize) {\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i >= self.size() || j >= self.size() || i == j {\npanic!(\"index error\")\n}\n// \u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u90bb\u63a5\u77e9\u9635\u6cbf\u4e3b\u5bf9\u89d2\u7ebf\u5bf9\u79f0\uff0c\u5373\u6ee1\u8db3 (i, j) == (j, i)\nself.adj_mat[i][j] = 1;\nself.adj_mat[j][i] = 1;\n}\n/* \u5220\u9664\u8fb9 */\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\npub fn remove_edge(&mut self, i: usize, j: usize) {\n// \u53c2\u6570 i, j \u5bf9\u5e94 vertices \u5143\u7d20\u7d22\u5f15\n// \u7d22\u5f15\u8d8a\u754c\u4e0e\u76f8\u7b49\u5904\u7406\nif i >= self.size() || j >= self.size() || i == j {\npanic!(\"index error\")\n}\nself.adj_mat[i][j] = 0;\nself.adj_mat[j][i] = 0;\n}\n/* \u6253\u5370\u90bb\u63a5\u77e9\u9635 */\npub fn print(&self) {\nprintln!(\"\u9876\u70b9\u5217\u8868 = {:?}\", self.vertices);\nprintln!(\"\u90bb\u63a5\u77e9\u9635 =\");\nprintln!(\"[\");\nfor row in &self.adj_mat {\nprintln!(\"  {:?},\", row);\n}\nprintln!(\"]\")\n}\n}\n
            "},{"location":"chapter_graph/graph_operations/#922","title":"9.2.2 \u00a0 \u57fa\u4e8e\u90bb\u63a5\u8868\u7684\u5b9e\u73b0","text":"

            \u8bbe\u65e0\u5411\u56fe\u7684\u9876\u70b9\u603b\u6570\u4e3a \\(n\\) \u3001\u8fb9\u603b\u6570\u4e3a \\(m\\) \uff0c\u5219\u6709\uff1a

            • \u6dfb\u52a0\u8fb9\uff1a\u5728\u9876\u70b9\u5bf9\u5e94\u94fe\u8868\u7684\u672b\u5c3e\u6dfb\u52a0\u8fb9\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002\u56e0\u4e3a\u662f\u65e0\u5411\u56fe\uff0c\u6240\u4ee5\u9700\u8981\u540c\u65f6\u6dfb\u52a0\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
            • \u5220\u9664\u8fb9\uff1a\u5728\u9876\u70b9\u5bf9\u5e94\u94fe\u8868\u4e2d\u67e5\u627e\u5e76\u5220\u9664\u6307\u5b9a\u8fb9\uff0c\u4f7f\u7528 \\(O(m)\\) \u65f6\u95f4\u3002\u5728\u65e0\u5411\u56fe\u4e2d\uff0c\u9700\u8981\u540c\u65f6\u5220\u9664\u4e24\u4e2a\u65b9\u5411\u7684\u8fb9\u3002
            • \u6dfb\u52a0\u9876\u70b9\uff1a\u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u94fe\u8868\uff0c\u5e76\u5c06\u65b0\u589e\u9876\u70b9\u4f5c\u4e3a\u94fe\u8868\u5934\u8282\u70b9\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002
            • \u5220\u9664\u9876\u70b9\uff1a\u9700\u904d\u5386\u6574\u4e2a\u90bb\u63a5\u8868\uff0c\u5220\u9664\u5305\u542b\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u8fb9\uff0c\u4f7f\u7528 \\(O(n + m)\\) \u65f6\u95f4\u3002
            • \u521d\u59cb\u5316\uff1a\u5728\u90bb\u63a5\u8868\u4e2d\u521b\u5efa \\(n\\) \u4e2a\u9876\u70b9\u548c \\(2m\\) \u6761\u8fb9\uff0c\u4f7f\u7528 \\(O(n + m)\\) \u65f6\u95f4\u3002
            \u521d\u59cb\u5316\u90bb\u63a5\u8868\u6dfb\u52a0\u8fb9\u5220\u9664\u8fb9\u6dfb\u52a0\u9876\u70b9\u5220\u9664\u9876\u70b9

            \u56fe\uff1a\u90bb\u63a5\u8868\u7684\u521d\u59cb\u5316\u3001\u589e\u5220\u8fb9\u3001\u589e\u5220\u9876\u70b9

            \u4ee5\u4e0b\u662f\u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u56fe\u7684\u4ee3\u7801\u793a\u4f8b\u3002\u7ec6\u5fc3\u7684\u540c\u5b66\u53ef\u80fd\u6ce8\u610f\u5230\uff0c\u6211\u4eec\u5728\u90bb\u63a5\u8868\u4e2d\u4f7f\u7528 Vertex \u8282\u70b9\u7c7b\u6765\u8868\u793a\u9876\u70b9\uff0c\u8fd9\u6837\u505a\u7684\u539f\u56e0\u6709\uff1a

            • \u5982\u679c\u6211\u4eec\u9009\u62e9\u901a\u8fc7\u9876\u70b9\u503c\u6765\u533a\u5206\u4e0d\u540c\u9876\u70b9\uff0c\u90a3\u4e48\u503c\u91cd\u590d\u7684\u9876\u70b9\u5c06\u65e0\u6cd5\u88ab\u533a\u5206\u3002
            • \u5982\u679c\u7c7b\u4f3c\u90bb\u63a5\u77e9\u9635\u90a3\u6837\uff0c\u4f7f\u7528\u9876\u70b9\u5217\u8868\u7d22\u5f15\u6765\u533a\u5206\u4e0d\u540c\u9876\u70b9\u3002\u90a3\u4e48\uff0c\u5047\u8bbe\u6211\u4eec\u60f3\u8981\u5220\u9664\u7d22\u5f15\u4e3a \\(i\\) \u7684\u9876\u70b9\uff0c\u5219\u9700\u8981\u904d\u5386\u6574\u4e2a\u90bb\u63a5\u8868\uff0c\u5c06\u5176\u4e2d \\(> i\\) \u7684\u7d22\u5f15\u5168\u90e8\u51cf \\(1\\) \uff0c\u8fd9\u6837\u64cd\u4f5c\u6548\u7387\u8f83\u4f4e\u3002
            • \u56e0\u6b64\u6211\u4eec\u8003\u8651\u5f15\u5165\u9876\u70b9\u7c7b Vertex \uff0c\u4f7f\u5f97\u6bcf\u4e2a\u9876\u70b9\u90fd\u662f\u552f\u4e00\u7684\u5bf9\u8c61\uff0c\u6b64\u65f6\u5220\u9664\u9876\u70b9\u65f6\u5c31\u65e0\u987b\u6539\u52a8\u5176\u4f59\u9876\u70b9\u4e86\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust graph_adjacency_list.java
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nMap<Vertex, List<Vertex>> adjList;\n/* \u6784\u9020\u65b9\u6cd5 */\npublic GraphAdjList(Vertex[][] edges) {\nthis.adjList = new HashMap<>();\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor (Vertex[] edge : edges) {\naddVertex(edge[0]);\naddVertex(edge[1]);\naddEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npublic int size() {\nreturn adjList.size();\n}\n/* \u6dfb\u52a0\u8fb9 */\npublic void addEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)\nthrow new IllegalArgumentException();\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nadjList.get(vet1).add(vet2);\nadjList.get(vet2).add(vet1);\n}\n/* \u5220\u9664\u8fb9 */\npublic void removeEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.containsKey(vet1) || !adjList.containsKey(vet2) || vet1 == vet2)\nthrow new IllegalArgumentException();\n// \u5220\u9664\u8fb9 vet1 - vet2\nadjList.get(vet1).remove(vet2);\nadjList.get(vet2).remove(vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npublic void addVertex(Vertex vet) {\nif (adjList.containsKey(vet))\nreturn;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nadjList.put(vet, new ArrayList<>());\n}\n/* \u5220\u9664\u9876\u70b9 */\npublic void removeVertex(Vertex vet) {\nif (!adjList.containsKey(vet))\nthrow new IllegalArgumentException();\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nadjList.remove(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor (List<Vertex> list : adjList.values()) {\nlist.remove(vet);\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\npublic void print() {\nSystem.out.println(\"\u90bb\u63a5\u8868 =\");\nfor (Map.Entry<Vertex, List<Vertex>> pair : adjList.entrySet()) {\nList<Integer> tmp = new ArrayList<>();\nfor (Vertex vertex : pair.getValue())\ntmp.add(vertex.val);\nSystem.out.println(pair.getKey().val + \": \" + tmp + \",\");\n}\n}\n}\n
            graph_adjacency_list.cpp
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\npublic:\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nunordered_map<Vertex *, vector<Vertex *>> adjList;\n/* \u5728 vector \u4e2d\u5220\u9664\u6307\u5b9a\u8282\u70b9 */\nvoid remove(vector<Vertex *> &vec, Vertex *vet) {\nfor (int i = 0; i < vec.size(); i++) {\nif (vec[i] == vet) {\nvec.erase(vec.begin() + i);\nbreak;\n}\n}\n}\n/* \u6784\u9020\u65b9\u6cd5 */\nGraphAdjList(const vector<vector<Vertex *>> &edges) {\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor (const vector<Vertex *> &edge : edges) {\naddVertex(edge[0]);\naddVertex(edge[1]);\naddEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nint size() {\nreturn adjList.size();\n}\n/* \u6dfb\u52a0\u8fb9 */\nvoid addEdge(Vertex *vet1, Vertex *vet2) {\nif (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)\nthrow invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nadjList[vet1].push_back(vet2);\nadjList[vet2].push_back(vet1);\n}\n/* \u5220\u9664\u8fb9 */\nvoid removeEdge(Vertex *vet1, Vertex *vet2) {\nif (!adjList.count(vet1) || !adjList.count(vet2) || vet1 == vet2)\nthrow invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n// \u5220\u9664\u8fb9 vet1 - vet2\nremove(adjList[vet1], vet2);\nremove(adjList[vet2], vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(Vertex *vet) {\nif (adjList.count(vet))\nreturn;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nadjList[vet] = vector<Vertex *>();\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(Vertex *vet) {\nif (!adjList.count(vet))\nthrow invalid_argument(\"\u4e0d\u5b58\u5728\u9876\u70b9\");\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nadjList.erase(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor (auto &adj : adjList) {\nremove(adj.second, vet);\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nvoid print() {\ncout << \"\u90bb\u63a5\u8868 =\" << endl;\nfor (auto &adj : adjList) {\nconst auto &key = adj.first;\nconst auto &vec = adj.second;\ncout << key->val << \": \";\nprintVector(vetsToVals(vec));\n}\n}\n};\n
            graph_adjacency_list.py
            class GraphAdjList:\n\"\"\"\u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\"\"\"\ndef __init__(self, edges: list[list[Vertex]]):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n# \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nself.adj_list = dict[Vertex, Vertex]()\n# \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor edge in edges:\nself.add_vertex(edge[0])\nself.add_vertex(edge[1])\nself.add_edge(edge[0], edge[1])\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u9876\u70b9\u6570\u91cf\"\"\"\nreturn len(self.adj_list)\ndef add_edge(self, vet1: Vertex, vet2: Vertex):\n\"\"\"\u6dfb\u52a0\u8fb9\"\"\"\nif vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:\nraise ValueError()\n# \u6dfb\u52a0\u8fb9 vet1 - vet2\nself.adj_list[vet1].append(vet2)\nself.adj_list[vet2].append(vet1)\ndef remove_edge(self, vet1: Vertex, vet2: Vertex):\n\"\"\"\u5220\u9664\u8fb9\"\"\"\nif vet1 not in self.adj_list or vet2 not in self.adj_list or vet1 == vet2:\nraise ValueError()\n# \u5220\u9664\u8fb9 vet1 - vet2\nself.adj_list[vet1].remove(vet2)\nself.adj_list[vet2].remove(vet1)\ndef add_vertex(self, vet: Vertex):\n\"\"\"\u6dfb\u52a0\u9876\u70b9\"\"\"\nif vet in self.adj_list:\nreturn\n# \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nself.adj_list[vet] = []\ndef remove_vertex(self, vet: Vertex):\n\"\"\"\u5220\u9664\u9876\u70b9\"\"\"\nif vet not in self.adj_list:\nraise ValueError()\n# \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nself.adj_list.pop(vet)\n# \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor vertex in self.adj_list:\nif vet in self.adj_list[vertex]:\nself.adj_list[vertex].remove(vet)\ndef print(self):\n\"\"\"\u6253\u5370\u90bb\u63a5\u8868\"\"\"\nprint(\"\u90bb\u63a5\u8868 =\")\nfor vertex in self.adj_list:\ntmp = [v.val for v in self.adj_list[vertex]]\nprint(f\"{vertex.val}: {tmp},\")\n
            graph_adjacency_list.go
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\ntype graphAdjList struct {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nadjList map[Vertex][]Vertex\n}\n/* \u6784\u9020\u51fd\u6570 */\nfunc newGraphAdjList(edges [][]Vertex) *graphAdjList {\ng := &graphAdjList{\nadjList: make(map[Vertex][]Vertex),\n}\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor _, edge := range edges {\ng.addVertex(edge[0])\ng.addVertex(edge[1])\ng.addEdge(edge[0], edge[1])\n}\nreturn g\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nfunc (g *graphAdjList) size() int {\nreturn len(g.adjList)\n}\n/* \u6dfb\u52a0\u8fb9 */\nfunc (g *graphAdjList) addEdge(vet1 Vertex, vet2 Vertex) {\n_, ok1 := g.adjList[vet1]\n_, ok2 := g.adjList[vet2]\nif !ok1 || !ok2 || vet1 == vet2 {\npanic(\"error\")\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2, \u6dfb\u52a0\u533f\u540d struct{},\ng.adjList[vet1] = append(g.adjList[vet1], vet2)\ng.adjList[vet2] = append(g.adjList[vet2], vet1)\n}\n/* \u5220\u9664\u8fb9 */\nfunc (g *graphAdjList) removeEdge(vet1 Vertex, vet2 Vertex) {\n_, ok1 := g.adjList[vet1]\n_, ok2 := g.adjList[vet2]\nif !ok1 || !ok2 || vet1 == vet2 {\npanic(\"error\")\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\ng.adjList[vet1] = DeleteSliceElms(g.adjList[vet1], vet2)\ng.adjList[vet2] = DeleteSliceElms(g.adjList[vet2], vet1)\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nfunc (g *graphAdjList) addVertex(vet Vertex) {\n_, ok := g.adjList[vet]\nif ok {\nreturn\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\ng.adjList[vet] = make([]Vertex, 0)\n}\n/* \u5220\u9664\u9876\u70b9 */\nfunc (g *graphAdjList) removeVertex(vet Vertex) {\n_, ok := g.adjList[vet]\nif !ok {\npanic(\"error\")\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\ndelete(g.adjList, vet)\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor v, list := range g.adjList {\ng.adjList[v] = DeleteSliceElms(list, vet)\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nfunc (g *graphAdjList) print() {\nvar builder strings.Builder\nfmt.Printf(\"\u90bb\u63a5\u8868 = \\n\")\nfor k, v := range g.adjList {\nbuilder.WriteString(\"\\t\\t\" + strconv.Itoa(k.Val) + \": \")\nfor _, vet := range v {\nbuilder.WriteString(strconv.Itoa(vet.Val) + \" \")\n}\nfmt.Println(builder.String())\nbuilder.Reset()\n}\n}\n
            graph_adjacency_list.js
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nadjList;\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(edges) {\nthis.adjList = new Map();\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor (const edge of edges) {\nthis.addVertex(edge[0]);\nthis.addVertex(edge[1]);\nthis.addEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nsize() {\nreturn this.adjList.size;\n}\n/* \u6dfb\u52a0\u8fb9 */\naddEdge(vet1, vet2) {\nif (\n!this.adjList.has(vet1) ||\n!this.adjList.has(vet2) ||\nvet1 === vet2\n) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nthis.adjList.get(vet1).push(vet2);\nthis.adjList.get(vet2).push(vet1);\n}\n/* \u5220\u9664\u8fb9 */\nremoveEdge(vet1, vet2) {\nif (\n!this.adjList.has(vet1) ||\n!this.adjList.has(vet2) ||\nvet1 === vet2\n) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\nthis.adjList.get(vet1).splice(this.adjList.get(vet1).indexOf(vet2), 1);\nthis.adjList.get(vet2).splice(this.adjList.get(vet2).indexOf(vet1), 1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\naddVertex(vet) {\nif (this.adjList.has(vet)) return;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nthis.adjList.set(vet, []);\n}\n/* \u5220\u9664\u9876\u70b9 */\nremoveVertex(vet) {\nif (!this.adjList.has(vet)) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nthis.adjList.delete(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor (const set of this.adjList.values()) {\nconst index = set.indexOf(vet);\nif (index > -1) {\nset.splice(index, 1);\n}\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nprint() {\nconsole.log('\u90bb\u63a5\u8868 =');\nfor (const [key, value] of this.adjList) {\nconst tmp = [];\nfor (const vertex of value) {\ntmp.push(vertex.val);\n}\nconsole.log(key.val + ': ' + tmp.join());\n}\n}\n}\n
            graph_adjacency_list.ts
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nadjList: Map<Vertex, Vertex[]>;\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(edges: Vertex[][]) {\nthis.adjList = new Map();\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor (const edge of edges) {\nthis.addVertex(edge[0]);\nthis.addVertex(edge[1]);\nthis.addEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nsize(): number {\nreturn this.adjList.size;\n}\n/* \u6dfb\u52a0\u8fb9 */\naddEdge(vet1: Vertex, vet2: Vertex): void {\nif (\n!this.adjList.has(vet1) ||\n!this.adjList.has(vet2) ||\nvet1 === vet2\n) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nthis.adjList.get(vet1).push(vet2);\nthis.adjList.get(vet2).push(vet1);\n}\n/* \u5220\u9664\u8fb9 */\nremoveEdge(vet1: Vertex, vet2: Vertex): void {\nif (\n!this.adjList.has(vet1) ||\n!this.adjList.has(vet2) ||\nvet1 === vet2\n) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\nthis.adjList.get(vet1).splice(this.adjList.get(vet1).indexOf(vet2), 1);\nthis.adjList.get(vet2).splice(this.adjList.get(vet2).indexOf(vet1), 1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\naddVertex(vet: Vertex): void {\nif (this.adjList.has(vet)) return;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nthis.adjList.set(vet, []);\n}\n/* \u5220\u9664\u9876\u70b9 */\nremoveVertex(vet: Vertex): void {\nif (!this.adjList.has(vet)) {\nthrow new Error('Illegal Argument Exception');\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nthis.adjList.delete(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor (const set of this.adjList.values()) {\nconst index: number = set.indexOf(vet);\nif (index > -1) {\nset.splice(index, 1);\n}\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nprint(): void {\nconsole.log('\u90bb\u63a5\u8868 =');\nfor (const [key, value] of this.adjList.entries()) {\nconst tmp = [];\nfor (const vertex of value) {\ntmp.push(vertex.val);\n}\nconsole.log(key.val + ': ' + tmp.join());\n}\n}\n}\n
            graph_adjacency_list.c
            /* \u57fa\u4e8e\u90bb\u63a5\u94fe\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u7ed3\u6784 */\nstruct graphAdjList {\nVertex **verticesList; // \u90bb\u63a5\u8868\nunsigned int size;     // \u9876\u70b9\u6570\u91cf\nunsigned int capacity; // \u9876\u70b9\u5bb9\u91cf\n};\ntypedef struct graphAdjList graphAdjList;\n/* \u6dfb\u52a0\u8fb9 */\nvoid addEdge(graphAdjList *t, int i, int j) {\n// \u8d8a\u754c\u68c0\u67e5\nif (i < 0 || j < 0 || i == j || i >= t->size || j >= t->size) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nreturn;\n}\n// \u67e5\u627e\u6b32\u6dfb\u52a0\u8fb9\u7684\u9876\u70b9 vet1 - vet2\nVertex *vet1 = t->verticesList[i];\nVertex *vet2 = t->verticesList[j];\n// \u8fde\u63a5\u9876\u70b9 vet1 - vet2\npushBack(vet1->linked, vet2);\npushBack(vet2->linked, vet1);\n}\n/* \u5220\u9664\u8fb9 */\nvoid removeEdge(graphAdjList *t, int i, int j) {\n// \u8d8a\u754c\u68c0\u67e5\nif (i < 0 || j < 0 || i == j || i >= t->size || j >= t->size) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nreturn;\n}\n// \u67e5\u627e\u6b32\u5220\u9664\u8fb9\u7684\u9876\u70b9 vet1 - vet2\nVertex *vet1 = t->verticesList[i];\nVertex *vet2 = t->verticesList[j];\n// \u79fb\u9664\u5f85\u5220\u9664\u8fb9 vet1 - vet2\nremoveLink(vet1->linked, vet2);\nremoveLink(vet2->linked, vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(graphAdjList *t, int val) {\n// \u82e5\u5927\u5c0f\u8d85\u8fc7\u5bb9\u91cf\uff0c\u5219\u6269\u5bb9\nif (t->size >= t->capacity) {\nVertex **tempList = (Vertex **)malloc(sizeof(Vertex *) * 2 * t->capacity);\nmemcpy(tempList, t->verticesList, sizeof(Vertex *) * t->size);\nfree(t->verticesList);         // \u91ca\u653e\u539f\u90bb\u63a5\u8868\u5185\u5b58\nt->verticesList = tempList;    // \u6307\u5411\u65b0\u90bb\u63a5\u8868\nt->capacity = t->capacity * 2; // \u5bb9\u91cf\u6269\u5927\u81f32\u500d\n}\n// \u7533\u8bf7\u65b0\u9876\u70b9\u5185\u5b58\u5e76\u5c06\u65b0\u9876\u70b9\u5730\u5740\u5b58\u5165\u9876\u70b9\u5217\u8868\nVertex *newV = newVertex(val);    // \u5efa\u7acb\u65b0\u9876\u70b9\nnewV->pos = t->size;              // \u4e3a\u65b0\u9876\u70b9\u6807\u8bb0\u4e0b\u6807\nnewV->linked = newLinklist(newV); // \u4e3a\u65b0\u9876\u70b9\u5efa\u7acb\u94fe\u8868\nt->verticesList[t->size] = newV;  // \u5c06\u65b0\u9876\u70b9\u52a0\u5165\u90bb\u63a5\u8868\nt->size++;\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(graphAdjList *t, unsigned int index) {\n// \u8d8a\u754c\u68c0\u67e5\nif (index < 0 || index >= t->size) {\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nexit(1);\n}\nVertex *vet = t->verticesList[index]; // \u67e5\u627e\u5f85\u5220\u8282\u70b9\nif (vet == 0) {                       // \u82e5\u4e0d\u5b58\u5728\u8be5\u8282\u70b9\uff0c\u5219\u8fd4\u56de\nprintf(\"index is:%d\\n\", index);\nprintf(\"Out of range in %s:%d\\n\", __FILE__, __LINE__);\nreturn;\n}\n// \u904d\u5386\u5f85\u5220\u9664\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5c06\u6240\u6709\u4e0e\u5f85\u5220\u9664\u7ed3\u70b9\u6709\u5173\u7684\u8fb9\u5220\u9664\nNode *temp = vet->linked->head->next;\nwhile (temp != 0) {\nremoveLink(temp->val->linked, vet); // \u5220\u9664\u4e0e\u8be5\u9876\u70b9\u6709\u5173\u7684\u8fb9\ntemp = temp->next;                }\n// \u5c06\u9876\u70b9\u524d\u79fb\nfor (int i = index; i < t->size - 1; i++) {\nt->verticesList[i] = t->verticesList[i + 1]; // \u9876\u70b9\u524d\u79fb\nt->verticesList[i]->pos--;                   // \u6240\u6709\u524d\u79fb\u7684\u9876\u70b9\u7d22\u5f15\u503c\u51cf1\n}\nt->verticesList[t->size - 1] = 0; // \u5c06\u88ab\u5220\u9664\u9876\u70b9\u7684\u4f4d\u7f6e\u7f6e 0\nt->size--;\n//\u91ca\u653e\u88ab\u5220\u9664\u9876\u70b9\u7684\u5185\u5b58\nfreeVertex(vet);\n}\n/* \u6253\u5370\u9876\u70b9\u4e0e\u90bb\u63a5\u77e9\u9635 */\nvoid printGraph(graphAdjList *t) {\nprintf(\"\u90bb\u63a5\u8868  =\\n\");\nfor (int i = 0; i < t->size; i++) {\nNode *n = t->verticesList[i]->linked->head->next;\nprintf(\"%d: [\", t->verticesList[i]->val);\nwhile (n != 0) {\nif (n->next != 0) {\nprintf(\"%d, \", n->val->val);\n} else {\nprintf(\"%d\", n->val->val);\n}\nn = n->next;\n}\nprintf(\"]\\n\");\n}\n}\n/* \u6784\u9020\u51fd\u6570 */\ngraphAdjList *newGraphAdjList(unsigned int verticesCapacity) {\n// \u7533\u8bf7\u5185\u5b58\ngraphAdjList *newGraph = (graphAdjList *)malloc(sizeof(graphAdjList));\n// \u5efa\u7acb\u9876\u70b9\u8868\u5e76\u5206\u914d\u5185\u5b58\nnewGraph->verticesList = (Vertex **)malloc(sizeof(Vertex *) * verticesCapacity); // \u4e3a\u9876\u70b9\u5217\u8868\u5206\u914d\u5185\u5b58\nmemset(newGraph->verticesList, 0, sizeof(Vertex *) * verticesCapacity);          // \u9876\u70b9\u5217\u8868\u7f6e 0\nnewGraph->size = 0;                                                              // \u521d\u59cb\u5316\u9876\u70b9\u6570\u91cf\nnewGraph->capacity = verticesCapacity;                                           // \u521d\u59cb\u5316\u9876\u70b9\u5bb9\u91cf\n// \u8fd4\u56de\u56fe\u6307\u9488\nreturn newGraph;                }\n
            graph_adjacency_list.cs
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\npublic Dictionary<Vertex, List<Vertex>> adjList;\n/* \u6784\u9020\u51fd\u6570 */\npublic GraphAdjList(Vertex[][] edges) {\nthis.adjList = new Dictionary<Vertex, List<Vertex>>();\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nforeach (Vertex[] edge in edges) {\naddVertex(edge[0]);\naddVertex(edge[1]);\naddEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npublic int size() {\nreturn adjList.Count;\n}\n/* \u6dfb\u52a0\u8fb9 */\npublic void addEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)\nthrow new InvalidOperationException();\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nadjList[vet1].Add(vet2);\nadjList[vet2].Add(vet1);\n}\n/* \u5220\u9664\u8fb9 */\npublic void removeEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.ContainsKey(vet1) || !adjList.ContainsKey(vet2) || vet1 == vet2)\nthrow new InvalidOperationException();\n// \u5220\u9664\u8fb9 vet1 - vet2\nadjList[vet1].Remove(vet2);\nadjList[vet2].Remove(vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npublic void addVertex(Vertex vet) {\nif (adjList.ContainsKey(vet))\nreturn;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nadjList.Add(vet, new List<Vertex>());\n}\n/* \u5220\u9664\u9876\u70b9 */\npublic void removeVertex(Vertex vet) {\nif (!adjList.ContainsKey(vet))\nthrow new InvalidOperationException();\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nadjList.Remove(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nforeach (List<Vertex> list in adjList.Values) {\nlist.Remove(vet);\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\npublic void print() {\nConsole.WriteLine(\"\u90bb\u63a5\u8868 =\");\nforeach (KeyValuePair<Vertex, List<Vertex>> pair in adjList) {\nList<int> tmp = new List<int>();\nforeach (Vertex vertex in pair.Value)\ntmp.Add(vertex.val);\nConsole.WriteLine(pair.Key.val + \": [\" + string.Join(\", \", tmp) + \"],\");\n}\n}\n}\n
            graph_adjacency_list.swift
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\npublic private(set) var adjList: [Vertex: [Vertex]]\n/* \u6784\u9020\u65b9\u6cd5 */\npublic init(edges: [[Vertex]]) {\nadjList = [:]\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor edge in edges {\naddVertex(vet: edge[0])\naddVertex(vet: edge[1])\naddEdge(vet1: edge[0], vet2: edge[1])\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\npublic func size() -> Int {\nadjList.count\n}\n/* \u6dfb\u52a0\u8fb9 */\npublic func addEdge(vet1: Vertex, vet2: Vertex) {\nif adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {\nfatalError(\"\u53c2\u6570\u9519\u8bef\")\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nadjList[vet1]?.append(vet2)\nadjList[vet2]?.append(vet1)\n}\n/* \u5220\u9664\u8fb9 */\npublic func removeEdge(vet1: Vertex, vet2: Vertex) {\nif adjList[vet1] == nil || adjList[vet2] == nil || vet1 == vet2 {\nfatalError(\"\u53c2\u6570\u9519\u8bef\")\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\nadjList[vet1]?.removeAll(where: { $0 == vet2 })\nadjList[vet2]?.removeAll(where: { $0 == vet1 })\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npublic func addVertex(vet: Vertex) {\nif adjList[vet] != nil {\nreturn\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nadjList[vet] = []\n}\n/* \u5220\u9664\u9876\u70b9 */\npublic func removeVertex(vet: Vertex) {\nif adjList[vet] == nil {\nfatalError(\"\u53c2\u6570\u9519\u8bef\")\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nadjList.removeValue(forKey: vet)\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor key in adjList.keys {\nadjList[key]?.removeAll(where: { $0 == vet })\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\npublic func print() {\nSwift.print(\"\u90bb\u63a5\u8868 =\")\nfor pair in adjList {\nvar tmp: [Int] = []\nfor vertex in pair.value {\ntmp.append(vertex.val)\n}\nSwift.print(\"\\(pair.key.val): \\(tmp),\")\n}\n}\n}\n
            graph_adjacency_list.zig
            [class]{GraphAdjList}-[func]{}\n
            graph_adjacency_list.dart
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b */\nclass GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nMap<Vertex, List<Vertex>> adjList = {};\n/* \u6784\u9020\u65b9\u6cd5 */\nGraphAdjList(List<List<Vertex>> edges) {\nfor (List<Vertex> edge in edges) {\naddVertex(edge[0]);\naddVertex(edge[1]);\naddEdge(edge[0], edge[1]);\n}\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\nint size() {\nreturn adjList.length;\n}\n/* \u6dfb\u52a0\u8fb9 */\nvoid addEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.containsKey(vet1) ||\n!adjList.containsKey(vet2) ||\nvet1 == vet2) {\nthrow ArgumentError;\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nadjList[vet1]!.add(vet2);\nadjList[vet2]!.add(vet1);\n}\n/* \u5220\u9664\u8fb9 */\nvoid removeEdge(Vertex vet1, Vertex vet2) {\nif (!adjList.containsKey(vet1) ||\n!adjList.containsKey(vet2) ||\nvet1 == vet2) {\nthrow ArgumentError;\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\nadjList[vet1]!.remove(vet2);\nadjList[vet2]!.remove(vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\nvoid addVertex(Vertex vet) {\nif (adjList.containsKey(vet)) return;\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nadjList[vet] = [];\n}\n/* \u5220\u9664\u9876\u70b9 */\nvoid removeVertex(Vertex vet) {\nif (!adjList.containsKey(vet)) {\nthrow ArgumentError;\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nadjList.remove(vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nadjList.forEach((key, value) {\nvalue.remove(vet);\n});\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\nvoid printAdjList() {\nprint(\"\u90bb\u63a5\u8868 =\");\nadjList.forEach((key, value) {\nList<int> tmp = [];\nfor (Vertex vertex in value) {\ntmp.add(vertex.val);\n}\nprint(\"${key.val}: $tmp,\");\n});\n}\n}\n
            graph_adjacency_list.rs
            /* \u57fa\u4e8e\u90bb\u63a5\u8868\u5b9e\u73b0\u7684\u65e0\u5411\u56fe\u7c7b\u578b */\npub struct GraphAdjList {\n// \u90bb\u63a5\u8868\uff0ckey: \u9876\u70b9\uff0cvalue\uff1a\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\npub adj_list: HashMap<Vertex, Vec<Vertex>>,\n}\nimpl GraphAdjList {\n/* \u6784\u9020\u65b9\u6cd5 */\npub fn new(edges: Vec<[Vertex; 2]>) -> Self {\nlet mut graph = GraphAdjList {\nadj_list: HashMap::new(),\n};\n// \u6dfb\u52a0\u6240\u6709\u9876\u70b9\u548c\u8fb9\nfor edge in edges {\ngraph.add_vertex(edge[0]);\ngraph.add_vertex(edge[1]);\ngraph.add_edge(edge[0], edge[1]);\n}\ngraph\n}\n/* \u83b7\u53d6\u9876\u70b9\u6570\u91cf */\n#[allow(unused)]\npub fn size(&self) -> usize {\nself.adj_list.len()\n}\n/* \u6dfb\u52a0\u8fb9 */\npub fn add_edge(&mut self, vet1: Vertex, vet2: Vertex) {\nif !self.adj_list.contains_key(&vet1) || !self.adj_list.contains_key(&vet2) || vet1 == vet2\n{\npanic!(\"value error\");\n}\n// \u6dfb\u52a0\u8fb9 vet1 - vet2\nself.adj_list.get_mut(&vet1).unwrap().push(vet2);\nself.adj_list.get_mut(&vet2).unwrap().push(vet1);\n}\n/* \u5220\u9664\u8fb9 */\n#[allow(unused)]\npub fn remove_edge(&mut self, vet1: Vertex, vet2: Vertex) {\nif !self.adj_list.contains_key(&vet1) || !self.adj_list.contains_key(&vet2) || vet1 == vet2\n{\npanic!(\"value error\");\n}\n// \u5220\u9664\u8fb9 vet1 - vet2\nself.adj_list\n.get_mut(&vet1)\n.unwrap()\n.retain(|&vet| vet != vet2);\nself.adj_list\n.get_mut(&vet2)\n.unwrap()\n.retain(|&vet| vet != vet1);\n}\n/* \u6dfb\u52a0\u9876\u70b9 */\npub fn add_vertex(&mut self, vet: Vertex) {\nif self.adj_list.contains_key(&vet) {\nreturn;\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u6dfb\u52a0\u4e00\u4e2a\u65b0\u94fe\u8868\nself.adj_list.insert(vet, vec![]);\n}\n/* \u5220\u9664\u9876\u70b9 */\n#[allow(unused)]\npub fn remove_vertex(&mut self, vet: Vertex) {\nif !self.adj_list.contains_key(&vet) {\npanic!(\"value error\");\n}\n// \u5728\u90bb\u63a5\u8868\u4e2d\u5220\u9664\u9876\u70b9 vet \u5bf9\u5e94\u7684\u94fe\u8868\nself.adj_list.remove(&vet);\n// \u904d\u5386\u5176\u4ed6\u9876\u70b9\u7684\u94fe\u8868\uff0c\u5220\u9664\u6240\u6709\u5305\u542b vet \u7684\u8fb9\nfor list in self.adj_list.values_mut() {\nlist.retain(|&v| v != vet);\n}\n}\n/* \u6253\u5370\u90bb\u63a5\u8868 */\npub fn print(&self) {\nprintln!(\"\u90bb\u63a5\u8868 =\");\nfor (vertex, list) in &self.adj_list {\nlet list = list.iter().map(|vertex| vertex.val).collect::<Vec<i32>>();\nprintln!(\"{}: {:?},\", vertex.val, list);\n}\n}\n}\n
            "},{"location":"chapter_graph/graph_operations/#923","title":"9.2.3 \u00a0 \u6548\u7387\u5bf9\u6bd4","text":"

            \u8bbe\u56fe\u4e2d\u5171\u6709 \\(n\\) \u4e2a\u9876\u70b9\u548c \\(m\\) \u6761\u8fb9\uff0c\u4e0b\u8868\u4e3a\u90bb\u63a5\u77e9\u9635\u548c\u90bb\u63a5\u8868\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u6548\u7387\u5bf9\u6bd4\u3002

            \u8868\uff1a\u90bb\u63a5\u77e9\u9635\u4e0e\u90bb\u63a5\u8868\u5bf9\u6bd4

            \u90bb\u63a5\u77e9\u9635 \u90bb\u63a5\u8868\uff08\u94fe\u8868\uff09 \u90bb\u63a5\u8868\uff08\u54c8\u5e0c\u8868\uff09 \u5224\u65ad\u662f\u5426\u90bb\u63a5 \\(O(1)\\) \\(O(m)\\) \\(O(1)\\) \u6dfb\u52a0\u8fb9 \\(O(1)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u8fb9 \\(O(1)\\) \\(O(m)\\) \\(O(1)\\) \u6dfb\u52a0\u9876\u70b9 \\(O(n)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u9876\u70b9 \\(O(n^2)\\) \\(O(n + m)\\) \\(O(n)\\) \u5185\u5b58\u7a7a\u95f4\u5360\u7528 \\(O(n^2)\\) \\(O(n + m)\\) \\(O(n + m)\\)

            \u89c2\u5bdf\u4e0a\u8868\uff0c\u4f3c\u4e4e\u90bb\u63a5\u8868\uff08\u54c8\u5e0c\u8868\uff09\u7684\u65f6\u95f4\u4e0e\u7a7a\u95f4\u6548\u7387\u6700\u4f18\u3002\u4f46\u5b9e\u9645\u4e0a\uff0c\u5728\u90bb\u63a5\u77e9\u9635\u4e2d\u64cd\u4f5c\u8fb9\u7684\u6548\u7387\u66f4\u9ad8\uff0c\u53ea\u9700\u8981\u4e00\u6b21\u6570\u7ec4\u8bbf\u95ee\u6216\u8d4b\u503c\u64cd\u4f5c\u5373\u53ef\u3002\u7efc\u5408\u6765\u770b\uff0c\u90bb\u63a5\u77e9\u9635\u4f53\u73b0\u4e86\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\u7684\u539f\u5219\uff0c\u800c\u90bb\u63a5\u8868\u4f53\u73b0\u4e86\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u7684\u539f\u5219\u3002

            "},{"location":"chapter_graph/graph_traversal/","title":"9.3 \u00a0 \u56fe\u7684\u904d\u5386","text":"

            \u56fe\u4e0e\u6811\u7684\u5173\u7cfb

            \u6811\u4ee3\u8868\u7684\u662f\u201c\u4e00\u5bf9\u591a\u201d\u7684\u5173\u7cfb\uff0c\u800c\u56fe\u5219\u5177\u6709\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\uff0c\u53ef\u4ee5\u8868\u793a\u4efb\u610f\u7684\u201c\u591a\u5bf9\u591a\u201d\u5173\u7cfb\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u6811\u770b\u4f5c\u662f\u56fe\u7684\u4e00\u79cd\u7279\u4f8b\u3002\u663e\u7136\uff0c\u6811\u7684\u904d\u5386\u64cd\u4f5c\u4e5f\u662f\u56fe\u7684\u904d\u5386\u64cd\u4f5c\u7684\u4e00\u79cd\u7279\u4f8b\uff0c\u5efa\u8bae\u4f60\u5728\u5b66\u4e60\u672c\u7ae0\u8282\u65f6\u878d\u4f1a\u8d2f\u901a\u4e24\u8005\u7684\u6982\u5ff5\u4e0e\u5b9e\u73b0\u65b9\u6cd5\u3002

            \u56fe\u548c\u6811\u90fd\u662f\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u90fd\u9700\u8981\u4f7f\u7528\u641c\u7d22\u7b97\u6cd5\u6765\u5b9e\u73b0\u904d\u5386\u64cd\u4f5c\u3002

            \u4e0e\u6811\u7c7b\u4f3c\uff0c\u56fe\u7684\u904d\u5386\u65b9\u5f0f\u4e5f\u53ef\u5206\u4e3a\u4e24\u79cd\uff0c\u5373\u300c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386 breadth-first traversal\u300d\u548c\u300c\u6df1\u5ea6\u4f18\u5148\u904d\u5386 depth-first traversal\u300d\u3002\u5b83\u4eec\u4e5f\u88ab\u79f0\u4e3a\u300c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22 breadth-first search\u300d\u548c\u300c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22 depth-first search\u300d\uff0c\u7b80\u79f0 BFS \u548c DFS \u3002

            "},{"location":"chapter_graph/graph_traversal/#931","title":"9.3.1 \u00a0 \u5e7f\u5ea6\u4f18\u5148\u904d\u5386","text":"

            \u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u7531\u8fd1\u53ca\u8fdc\u7684\u904d\u5386\u65b9\u5f0f\uff0c\u4ece\u8ddd\u79bb\u6700\u8fd1\u7684\u9876\u70b9\u5f00\u59cb\u8bbf\u95ee\uff0c\u5e76\u4e00\u5c42\u5c42\u5411\u5916\u6269\u5f20\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u5148\u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff0c\u7136\u540e\u904d\u5386\u4e0b\u4e00\u4e2a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u6240\u6709\u9876\u70b9\u8bbf\u95ee\u5b8c\u6bd5\u3002

            \u56fe\uff1a\u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386

            "},{"location":"chapter_graph/graph_traversal/#1","title":"1. \u00a0 \u7b97\u6cd5\u5b9e\u73b0","text":"

            BFS \u901a\u5e38\u501f\u52a9\u961f\u5217\u6765\u5b9e\u73b0\u3002\u961f\u5217\u5177\u6709\u201c\u5148\u5165\u5148\u51fa\u201d\u7684\u6027\u8d28\uff0c\u8fd9\u4e0e BFS \u7684\u201c\u7531\u8fd1\u53ca\u8fdc\u201d\u7684\u601d\u60f3\u5f02\u66f2\u540c\u5de5\u3002

            1. \u5c06\u904d\u5386\u8d77\u59cb\u9876\u70b9 startVet \u52a0\u5165\u961f\u5217\uff0c\u5e76\u5f00\u542f\u5faa\u73af\u3002
            2. \u5728\u5faa\u73af\u7684\u6bcf\u8f6e\u8fed\u4ee3\u4e2d\uff0c\u5f39\u51fa\u961f\u9996\u9876\u70b9\u5e76\u8bb0\u5f55\u8bbf\u95ee\uff0c\u7136\u540e\u5c06\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\u52a0\u5165\u5230\u961f\u5217\u5c3e\u90e8\u3002
            3. \u5faa\u73af\u6b65\u9aa4 2. \uff0c\u76f4\u5230\u6240\u6709\u9876\u70b9\u88ab\u8bbf\u95ee\u5b8c\u6210\u540e\u7ed3\u675f\u3002

            \u4e3a\u4e86\u9632\u6b62\u91cd\u590d\u904d\u5386\u9876\u70b9\uff0c\u6211\u4eec\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 visited \u6765\u8bb0\u5f55\u54ea\u4e9b\u8282\u70b9\u5df2\u88ab\u8bbf\u95ee\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust graph_bfs.java
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = new ArrayList<>();\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nSet<Vertex> visited = new HashSet<>();\nvisited.add(startVet);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nQueue<Vertex> que = new LinkedList<>();\nque.offer(startVet);\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (!que.isEmpty()) {\nVertex vet = que.poll(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.add(vet);            // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (Vertex adjVet : graph.adjList.get(vet)) {\nif (visited.contains(adjVet))\ncontinue;        // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nque.offer(adjVet);   // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.cpp
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvector<Vertex *> graphBFS(GraphAdjList &graph, Vertex *startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nvector<Vertex *> res;\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nunordered_set<Vertex *> visited = {startVet};\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nqueue<Vertex *> que;\nque.push(startVet);\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (!que.empty()) {\nVertex *vet = que.front();\nque.pop();          // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.push_back(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (auto adjVet : graph.adjList[vet]) {\nif (visited.count(adjVet))\ncontinue;            // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nque.push(adjVet);        // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.emplace(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.py
            def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:\n\"\"\"\u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS\"\"\"\n# \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n# \u9876\u70b9\u904d\u5386\u5e8f\u5217\nres = []\n# \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvisited = set[Vertex]([start_vet])\n# \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nque = deque[Vertex]([start_vet])\n# \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile len(que) > 0:\nvet = que.popleft()  # \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.append(vet)  # \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n# \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor adj_vet in graph.adj_list[vet]:\nif adj_vet in visited:\ncontinue  # \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nque.append(adj_vet)  # \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.add(adj_vet)  # \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n# \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res\n
            graph_bfs.go
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphBFS(g *graphAdjList, startVet Vertex) []Vertex {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nres := make([]Vertex, 0)\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvisited := make(map[Vertex]struct{})\nvisited[startVet] = struct{}{}\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS, \u4f7f\u7528\u5207\u7247\u6a21\u62df\u961f\u5217\nqueue := make([]Vertex, 0)\nqueue = append(queue, startVet)\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nfor len(queue) > 0 {\n// \u961f\u9996\u9876\u70b9\u51fa\u961f\nvet := queue[0]\nqueue = queue[1:]\n// \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nres = append(res, vet)\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor _, adjVet := range g.adjList[vet] {\n_, isExist := visited[adjVet]\n// \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nif !isExist {\nqueue = append(queue, adjVet)\nvisited[adjVet] = struct{}{}\n}\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res\n}\n
            graph_bfs.js
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphBFS(graph, startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nconst res = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nconst visited = new Set();\nvisited.add(startVet);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nconst que = [startVet];\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (que.length) {\nconst vet = que.shift(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (const adjVet of graph.adjList.get(vet) ?? []) {\nif (visited.has(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.push(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.ts
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphBFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nconst res: Vertex[] = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nconst visited: Set<Vertex> = new Set();\nvisited.add(startVet);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nconst que = [startVet];\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (que.length) {\nconst vet = que.shift(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (const adjVet of graph.adjList.get(vet) ?? []) {\nif (visited.has(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.push(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\nvisited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.c
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nVertex **graphBFS(graphAdjList *t, Vertex *startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nVertex **res = (Vertex **)malloc(sizeof(Vertex *) * t->size);\nmemset(res, 0, sizeof(Vertex *) * t->size);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nqueue *que = newQueue(t->size);\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nhashTable *visited = newHash(t->size);\nint resIndex = 0;\nqueuePush(que, startVet);         // \u5c06\u7b2c\u4e00\u4e2a\u5143\u7d20\u5165\u961f\nhashMark(visited, startVet->pos); // \u6807\u8bb0\u7b2c\u4e00\u4e2a\u5165\u961f\u7684\u9876\u70b9\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (que->head < que->tail) {\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u8fb9\u94fe\u8868\uff0c\u5c06\u6240\u6709\u4e0e\u8be5\u9876\u70b9\u6709\u8fde\u63a5\u7684\uff0c\u5e76\u4e14\u672a\u88ab\u6807\u8bb0\u7684\u9876\u70b9\u5165\u961f\nNode *n = queueTop(que)->linked->head->next;\nwhile (n != 0) {\n// \u67e5\u8be2\u54c8\u5e0c\u8868\uff0c\u82e5\u8be5\u7d22\u5f15\u7684\u9876\u70b9\u5df2\u5165\u961f\uff0c\u5219\u8df3\u8fc7\uff0c\u5426\u5219\u5165\u961f\u5e76\u6807\u8bb0\nif (hashQuery(visited, n->val->pos) == 1) {\nn = n->next;\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nqueuePush(que, n->val);         // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nhashMark(visited, n->val->pos); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n// \u961f\u9996\u5143\u7d20\u5b58\u5165\u6570\u7ec4\nres[resIndex] = queueTop(que); // \u961f\u9996\u9876\u70b9\u52a0\u5165\u9876\u70b9\u904d\u5386\u5e8f\u5217\nresIndex++;\nqueuePop(que); // \u961f\u9996\u5143\u7d20\u51fa\u961f\n}\n// \u91ca\u653e\u5185\u5b58\nfreeQueue(que);\nfreeHash(visited);\nresIndex = 0;\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.cs
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = new List<Vertex>();\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nHashSet<Vertex> visited = new HashSet<Vertex>() { startVet };\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nQueue<Vertex> que = new Queue<Vertex>();\nque.Enqueue(startVet);\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (que.Count > 0) {\nVertex vet = que.Dequeue(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.Add(vet);               // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nforeach (Vertex adjVet in graph.adjList[vet]) {\nif (visited.Contains(adjVet)) {\ncontinue;          // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.Enqueue(adjVet);   // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.Add(adjVet);   // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.swift
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphBFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nvar res: [Vertex] = []\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvar visited: Set<Vertex> = [startVet]\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nvar que: [Vertex] = [startVet]\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile !que.isEmpty {\nlet vet = que.removeFirst() // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.append(vet) // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor adjVet in graph.adjList[vet] ?? [] {\nif visited.contains(adjVet) {\ncontinue // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.append(adjVet) // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.insert(adjVet) // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res\n}\n
            graph_bfs.zig
            [class]{}-[func]{graphBFS}\n
            graph_bfs.dart
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\nList<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nSet<Vertex> visited = {};\nvisited.add(startVet);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nQueue<Vertex> que = Queue();\nque.add(startVet);\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile (que.isNotEmpty) {\nVertex vet = que.removeFirst(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (Vertex adjVet in graph.adjList[vet]!) {\nif (visited.contains(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.add(adjVet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.add(adjVet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res;\n}\n
            graph_bfs.rs
            /* \u5e7f\u5ea6\u4f18\u5148\u904d\u5386 BFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfn graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nlet mut res = vec![];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nlet mut visited = HashSet::new();\nvisited.insert(start_vet);\n// \u961f\u5217\u7528\u4e8e\u5b9e\u73b0 BFS\nlet mut que = VecDeque::new();\nque.push_back(start_vet);\n// \u4ee5\u9876\u70b9 vet \u4e3a\u8d77\u70b9\uff0c\u5faa\u73af\u76f4\u81f3\u8bbf\u95ee\u5b8c\u6240\u6709\u9876\u70b9\nwhile !que.is_empty() {\nlet vet = que.pop_front().unwrap(); // \u961f\u9996\u9876\u70b9\u51fa\u961f\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nif let Some(adj_vets) = graph.adj_list.get(&vet) {\nfor &adj_vet in adj_vets {\nif visited.contains(&adj_vet) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nque.push_back(adj_vet); // \u53ea\u5165\u961f\u672a\u8bbf\u95ee\u7684\u9876\u70b9\nvisited.insert(adj_vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n}\n}\n}\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nres\n}\n

            \u4ee3\u7801\u76f8\u5bf9\u62bd\u8c61\uff0c\u5efa\u8bae\u5bf9\u7167\u4ee5\u4e0b\u52a8\u753b\u56fe\u793a\u6765\u52a0\u6df1\u7406\u89e3\u3002

            <1><2><3><4><5><6><7><8><9><10><11>

            \u56fe\uff1a\u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u6b65\u9aa4

            \u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u7684\u5e8f\u5217\u662f\u5426\u552f\u4e00\uff1f

            \u4e0d\u552f\u4e00\u3002\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u53ea\u8981\u6c42\u6309\u201c\u7531\u8fd1\u53ca\u8fdc\u201d\u7684\u987a\u5e8f\u904d\u5386\uff0c\u800c\u591a\u4e2a\u76f8\u540c\u8ddd\u79bb\u7684\u9876\u70b9\u7684\u904d\u5386\u987a\u5e8f\u662f\u5141\u8bb8\u88ab\u4efb\u610f\u6253\u4e71\u7684\u3002\u4ee5\u4e0a\u56fe\u4e3a\u4f8b\uff0c\u9876\u70b9 \\(1\\) , \\(3\\) \u7684\u8bbf\u95ee\u987a\u5e8f\u53ef\u4ee5\u4ea4\u6362\u3001\u9876\u70b9 \\(2\\) , \\(4\\) , \\(6\\) \u7684\u8bbf\u95ee\u987a\u5e8f\u4e5f\u53ef\u4ee5\u4efb\u610f\u4ea4\u6362\u3002

            "},{"location":"chapter_graph/graph_traversal/#2","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"

            \u65f6\u95f4\u590d\u6742\u5ea6\uff1a \u6240\u6709\u9876\u70b9\u90fd\u4f1a\u5165\u961f\u5e76\u51fa\u961f\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(|V|)\\) \u65f6\u95f4\uff1b\u5728\u904d\u5386\u90bb\u63a5\u9876\u70b9\u7684\u8fc7\u7a0b\u4e2d\uff0c\u7531\u4e8e\u662f\u65e0\u5411\u56fe\uff0c\u56e0\u6b64\u6240\u6709\u8fb9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(2\\) \u6b21\uff0c\u4f7f\u7528 \\(O(2|E|)\\) \u65f6\u95f4\uff1b\u603b\u4f53\u4f7f\u7528 \\(O(|V| + |E|)\\) \u65f6\u95f4\u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6\uff1a \u5217\u8868 res \uff0c\u54c8\u5e0c\u8868 visited \uff0c\u961f\u5217 que \u4e2d\u7684\u9876\u70b9\u6570\u91cf\u6700\u591a\u4e3a \\(|V|\\) \uff0c\u4f7f\u7528 \\(O(|V|)\\) \u7a7a\u95f4\u3002

            "},{"location":"chapter_graph/graph_traversal/#932","title":"9.3.2 \u00a0 \u6df1\u5ea6\u4f18\u5148\u904d\u5386","text":"

            \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u4f18\u5148\u8d70\u5230\u5e95\u3001\u65e0\u8def\u53ef\u8d70\u518d\u56de\u5934\u7684\u904d\u5386\u65b9\u5f0f\u3002\u5177\u4f53\u5730\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u8bbf\u95ee\u5f53\u524d\u9876\u70b9\u7684\u67d0\u4e2a\u90bb\u63a5\u9876\u70b9\uff0c\u76f4\u5230\u8d70\u5230\u5c3d\u5934\u65f6\u8fd4\u56de\uff0c\u518d\u7ee7\u7eed\u8d70\u5230\u5c3d\u5934\u5e76\u8fd4\u56de\uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u81f3\u6240\u6709\u9876\u70b9\u904d\u5386\u5b8c\u6210\u3002

            \u56fe\uff1a\u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386

            "},{"location":"chapter_graph/graph_traversal/#1_1","title":"1. \u00a0 \u7b97\u6cd5\u5b9e\u73b0","text":"

            \u8fd9\u79cd\u201c\u8d70\u5230\u5c3d\u5934 + \u56de\u6eaf\u201d\u7684\u7b97\u6cd5\u5f62\u5f0f\u901a\u5e38\u57fa\u4e8e\u9012\u5f52\u6765\u5b9e\u73b0\u3002\u4e0e BFS \u7c7b\u4f3c\uff0c\u5728 DFS \u4e2d\u6211\u4eec\u4e5f\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868 visited \u6765\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u7684\u9876\u70b9\uff0c\u4ee5\u907f\u514d\u91cd\u590d\u8bbf\u95ee\u9876\u70b9\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust graph_dfs.java
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList graph, Set<Vertex> visited, List<Vertex> res, Vertex vet) {\nres.add(vet);     // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (Vertex adjVet : graph.adjList.get(vet)) {\nif (visited.contains(adjVet))\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = new ArrayList<>();\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nSet<Vertex> visited = new HashSet<>();\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.cpp
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList &graph, unordered_set<Vertex *> &visited, vector<Vertex *> &res, Vertex *vet) {\nres.push_back(vet);   // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.emplace(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (Vertex *adjVet : graph.adjList[vet]) {\nif (visited.count(adjVet))\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nvector<Vertex *> graphDFS(GraphAdjList &graph, Vertex *startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nvector<Vertex *> res;\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nunordered_set<Vertex *> visited;\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.py
            def dfs(graph: GraphAdjList, visited: set[Vertex], res: list[Vertex], vet: Vertex):\n\"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570\"\"\"\nres.append(vet)  # \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.add(vet)  # \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n# \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor adjVet in graph.adj_list[vet]:\nif adjVet in visited:\ncontinue  # \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n# \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet)\ndef graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:\n\"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS\"\"\"\n# \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\n# \u9876\u70b9\u904d\u5386\u5e8f\u5217\nres = []\n# \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvisited = set[Vertex]()\ndfs(graph, visited, res, start_vet)\nreturn res\n
            graph_dfs.go
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfunc dfs(g *graphAdjList, visited map[Vertex]struct{}, res *[]Vertex, vet Vertex) {\n// append \u64cd\u4f5c\u4f1a\u8fd4\u56de\u65b0\u7684\u7684\u5f15\u7528\uff0c\u5fc5\u987b\u8ba9\u539f\u5f15\u7528\u91cd\u65b0\u8d4b\u503c\u4e3a\u65b0slice\u7684\u5f15\u7528\n*res = append(*res, vet)\nvisited[vet] = struct{}{}\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor _, adjVet := range g.adjList[vet] {\n_, isExist := visited[adjVet]\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\nif !isExist {\ndfs(g, visited, res, adjVet)\n}\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphDFS(g *graphAdjList, startVet Vertex) []Vertex {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nres := make([]Vertex, 0)\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvisited := make(map[Vertex]struct{})\ndfs(g, visited, &res, startVet)\n// \u8fd4\u56de\u9876\u70b9\u904d\u5386\u5e8f\u5217\nreturn res\n}\n
            graph_dfs.js
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction dfs(graph, visited, res, vet) {\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (const adjVet of graph.adjList.get(vet)) {\nif (visited.has(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphDFS(graph, startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nconst res = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nconst visited = new Set();\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.ts
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfunction dfs(\ngraph: GraphAdjList,\nvisited: Set<Vertex>,\nres: Vertex[],\nvet: Vertex\n): void {\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (const adjVet of graph.adjList.get(vet)) {\nif (visited.has(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunction graphDFS(graph: GraphAdjList, startVet: Vertex): Vertex[] {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nconst res: Vertex[] = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nconst visited: Set<Vertex> = new Set();\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.c
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nint resIndex = 0;\nvoid dfs(graphAdjList *graph, hashTable *visited, Vertex *vet, Vertex **res) {\nif (hashQuery(visited, vet->pos) == 1) {\nreturn; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\nhashMark(visited, vet->pos); // \u6807\u8bb0\u9876\u70b9\u5e76\u5c06\u9876\u70b9\u5b58\u5165\u6570\u7ec4\nres[resIndex] = vet;         // \u5c06\u9876\u70b9\u5b58\u5165\u6570\u7ec4\nresIndex++;\n// \u904d\u5386\u8be5\u9876\u70b9\u94fe\u8868\nNode *n = vet->linked->head->next;\nwhile (n != 0) {\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, n->val, res);\nn = n->next;\n}\nreturn;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nVertex **graphDFS(graphAdjList *graph, Vertex *startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nVertex **res = (Vertex **)malloc(sizeof(Vertex *) * graph->size);\nmemset(res, 0, sizeof(Vertex *) * graph->size);\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nhashTable *visited = newHash(graph->size);\ndfs(graph, visited, startVet, res);\n// \u91ca\u653e\u54c8\u5e0c\u8868\u5185\u5b58\u5e76\u5c06\u6570\u7ec4\u7d22\u5f15\u5f52\u96f6\nfreeHash(visited);\nresIndex = 0;\n// \u8fd4\u56de\u904d\u5386\u6570\u7ec4\nreturn res;\n}\n
            graph_dfs.cs
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(GraphAdjList graph, HashSet<Vertex> visited, List<Vertex> res, Vertex vet) {\nres.Add(vet);     // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.Add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nforeach (Vertex adjVet in graph.adjList[vet]) {\nif (visited.Contains(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9                             \n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nList<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = new List<Vertex>();\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nHashSet<Vertex> visited = new HashSet<Vertex>();\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.swift
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfunc dfs(graph: GraphAdjList, visited: inout Set<Vertex>, res: inout [Vertex], vet: Vertex) {\nres.append(vet) // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.insert(vet) // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor adjVet in graph.adjList[vet] ?? [] {\nif visited.contains(adjVet) {\ncontinue // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph: graph, visited: &visited, res: &res, vet: adjVet)\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfunc graphDFS(graph: GraphAdjList, startVet: Vertex) -> [Vertex] {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nvar res: [Vertex] = []\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nvar visited: Set<Vertex> = []\ndfs(graph: graph, visited: &visited, res: &res, vet: startVet)\nreturn res\n}\n
            graph_dfs.zig
            [class]{}-[func]{dfs}\n[class]{}-[func]{graphDFS}\n
            graph_dfs.dart
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nvoid dfs(\nGraphAdjList graph,\nSet<Vertex> visited,\nList<Vertex> res,\nVertex vet,\n) {\nres.add(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.add(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfor (Vertex adjVet in graph.adjList[vet]!) {\nif (visited.contains(adjVet)) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adjVet);\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\nList<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nList<Vertex> res = [];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nSet<Vertex> visited = {};\ndfs(graph, visited, res, startVet);\nreturn res;\n}\n
            graph_dfs.rs
            /* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS \u8f85\u52a9\u51fd\u6570 */\nfn dfs(graph: &GraphAdjList, visited: &mut HashSet<Vertex>, res: &mut Vec<Vertex>, vet: Vertex) {\nres.push(vet); // \u8bb0\u5f55\u8bbf\u95ee\u9876\u70b9\nvisited.insert(vet); // \u6807\u8bb0\u8be5\u9876\u70b9\u5df2\u88ab\u8bbf\u95ee\n// \u904d\u5386\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nif let Some(adj_vets) = graph.adj_list.get(&vet) {\nfor &adj_vet in adj_vets {\nif visited.contains(&adj_vet) {\ncontinue; // \u8df3\u8fc7\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\n}\n// \u9012\u5f52\u8bbf\u95ee\u90bb\u63a5\u9876\u70b9\ndfs(graph, visited, res, adj_vet);\n}\n}\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 DFS */\n// \u4f7f\u7528\u90bb\u63a5\u8868\u6765\u8868\u793a\u56fe\uff0c\u4ee5\u4fbf\u83b7\u53d6\u6307\u5b9a\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\nfn graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> Vec<Vertex> {\n// \u9876\u70b9\u904d\u5386\u5e8f\u5217\nlet mut res = vec![];\n// \u54c8\u5e0c\u8868\uff0c\u7528\u4e8e\u8bb0\u5f55\u5df2\u88ab\u8bbf\u95ee\u8fc7\u7684\u9876\u70b9\nlet mut visited = HashSet::new();\ndfs(&graph, &mut visited, &mut res, start_vet);\nres\n}\n

            \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u7b97\u6cd5\u6d41\u7a0b\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5176\u4e2d\uff1a

            • \u76f4\u865a\u7ebf\u4ee3\u8868\u5411\u4e0b\u9012\u63a8\uff0c\u8868\u793a\u5f00\u542f\u4e86\u4e00\u4e2a\u65b0\u7684\u9012\u5f52\u65b9\u6cd5\u6765\u8bbf\u95ee\u65b0\u9876\u70b9\u3002
            • \u66f2\u865a\u7ebf\u4ee3\u8868\u5411\u4e0a\u56de\u6eaf\uff0c\u8868\u793a\u6b64\u9012\u5f52\u65b9\u6cd5\u5df2\u7ecf\u8fd4\u56de\uff0c\u56de\u6eaf\u5230\u4e86\u5f00\u542f\u6b64\u9012\u5f52\u65b9\u6cd5\u7684\u4f4d\u7f6e\u3002

            \u4e3a\u4e86\u52a0\u6df1\u7406\u89e3\uff0c\u5efa\u8bae\u5c06\u56fe\u793a\u4e0e\u4ee3\u7801\u7ed3\u5408\u8d77\u6765\uff0c\u5728\u8111\u4e2d\uff08\u6216\u8005\u7528\u7b14\u753b\u4e0b\u6765\uff09\u6a21\u62df\u6574\u4e2a DFS \u8fc7\u7a0b\uff0c\u5305\u62ec\u6bcf\u4e2a\u9012\u5f52\u65b9\u6cd5\u4f55\u65f6\u5f00\u542f\u3001\u4f55\u65f6\u8fd4\u56de\u3002

            <1><2><3><4><5><6><7><8><9><10><11>

            \u56fe\uff1a\u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u6b65\u9aa4

            \u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u5e8f\u5217\u662f\u5426\u552f\u4e00\uff1f

            \u4e0e\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u7c7b\u4f3c\uff0c\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u5e8f\u5217\u7684\u987a\u5e8f\u4e5f\u4e0d\u662f\u552f\u4e00\u7684\u3002\u7ed9\u5b9a\u67d0\u9876\u70b9\uff0c\u5148\u5f80\u54ea\u4e2a\u65b9\u5411\u63a2\u7d22\u90fd\u53ef\u4ee5\uff0c\u5373\u90bb\u63a5\u9876\u70b9\u7684\u987a\u5e8f\u53ef\u4ee5\u4efb\u610f\u6253\u4e71\uff0c\u90fd\u662f\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u3002

            \u4ee5\u6811\u7684\u904d\u5386\u4e3a\u4f8b\uff0c\u201c\u6839 \\(\\rightarrow\\) \u5de6 \\(\\rightarrow\\) \u53f3\u201d\u3001\u201c\u5de6 \\(\\rightarrow\\) \u6839 \\(\\rightarrow\\) \u53f3\u201d\u3001\u201c\u5de6 \\(\\rightarrow\\) \u53f3 \\(\\rightarrow\\) \u6839\u201d\u5206\u522b\u5bf9\u5e94\u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386\uff0c\u5b83\u4eec\u5c55\u793a\u4e86\u4e09\u79cd\u4e0d\u540c\u7684\u904d\u5386\u4f18\u5148\u7ea7\uff0c\u7136\u800c\u8fd9\u4e09\u8005\u90fd\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u3002

            "},{"location":"chapter_graph/graph_traversal/#2_1","title":"2. \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"

            \u65f6\u95f4\u590d\u6742\u5ea6\uff1a \u6240\u6709\u9876\u70b9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(1\\) \u6b21\uff0c\u4f7f\u7528 \\(O(|V|)\\) \u65f6\u95f4\uff1b\u6240\u6709\u8fb9\u90fd\u4f1a\u88ab\u8bbf\u95ee \\(2\\) \u6b21\uff0c\u4f7f\u7528 \\(O(2|E|)\\) \u65f6\u95f4\uff1b\u603b\u4f53\u4f7f\u7528 \\(O(|V| + |E|)\\) \u65f6\u95f4\u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6\uff1a \u5217\u8868 res \uff0c\u54c8\u5e0c\u8868 visited \u9876\u70b9\u6570\u91cf\u6700\u591a\u4e3a \\(|V|\\) \uff0c\u9012\u5f52\u6df1\u5ea6\u6700\u5927\u4e3a \\(|V|\\) \uff0c\u56e0\u6b64\u4f7f\u7528 \\(O(|V|)\\) \u7a7a\u95f4\u3002

            "},{"location":"chapter_graph/summary/","title":"9.4 \u00a0 \u5c0f\u7ed3","text":"
            • \u56fe\u7531\u9876\u70b9\u548c\u8fb9\u7ec4\u6210\uff0c\u53ef\u4ee5\u88ab\u8868\u793a\u4e3a\u4e00\u7ec4\u9876\u70b9\u548c\u4e00\u7ec4\u8fb9\u6784\u6210\u7684\u96c6\u5408\u3002
            • \u76f8\u8f83\u4e8e\u7ebf\u6027\u5173\u7cfb\uff08\u94fe\u8868\uff09\u548c\u5206\u6cbb\u5173\u7cfb\uff08\u6811\uff09\uff0c\u7f51\u7edc\u5173\u7cfb\uff08\u56fe\uff09\u5177\u6709\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\uff0c\u56e0\u800c\u66f4\u4e3a\u590d\u6742\u3002
            • \u6709\u5411\u56fe\u7684\u8fb9\u5177\u6709\u65b9\u5411\u6027\uff0c\u8fde\u901a\u56fe\u4e2d\u7684\u4efb\u610f\u9876\u70b9\u5747\u53ef\u8fbe\uff0c\u6709\u6743\u56fe\u7684\u6bcf\u6761\u8fb9\u90fd\u5305\u542b\u6743\u91cd\u53d8\u91cf\u3002
            • \u90bb\u63a5\u77e9\u9635\u5229\u7528\u77e9\u9635\u6765\u8868\u793a\u56fe\uff0c\u6bcf\u4e00\u884c\uff08\u5217\uff09\u4ee3\u8868\u4e00\u4e2a\u9876\u70b9\uff0c\u77e9\u9635\u5143\u7d20\u4ee3\u8868\u8fb9\uff0c\u7528 \\(1\\) \u6216 \\(0\\) \u8868\u793a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u6709\u8fb9\u6216\u65e0\u8fb9\u3002\u90bb\u63a5\u77e9\u9635\u5728\u589e\u5220\u67e5\u64cd\u4f5c\u4e0a\u6548\u7387\u5f88\u9ad8\uff0c\u4f46\u7a7a\u95f4\u5360\u7528\u8f83\u591a\u3002
            • \u90bb\u63a5\u8868\u4f7f\u7528\u591a\u4e2a\u94fe\u8868\u6765\u8868\u793a\u56fe\uff0c\u7b2c \\(i\\) \u6761\u94fe\u8868\u5bf9\u5e94\u9876\u70b9 \\(i\\) \uff0c\u5176\u4e2d\u5b58\u50a8\u4e86\u8be5\u9876\u70b9\u7684\u6240\u6709\u90bb\u63a5\u9876\u70b9\u3002\u90bb\u63a5\u8868\u76f8\u5bf9\u4e8e\u90bb\u63a5\u77e9\u9635\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\uff0c\u4f46\u7531\u4e8e\u9700\u8981\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u8fb9\uff0c\u65f6\u95f4\u6548\u7387\u8f83\u4f4e\u3002
            • \u5f53\u90bb\u63a5\u8868\u4e2d\u7684\u94fe\u8868\u8fc7\u957f\u65f6\uff0c\u53ef\u4ee5\u5c06\u5176\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u6216\u54c8\u5e0c\u8868\uff0c\u4ece\u800c\u63d0\u5347\u67e5\u8be2\u6548\u7387\u3002
            • \u4ece\u7b97\u6cd5\u601d\u60f3\u89d2\u5ea6\u5206\u6790\uff0c\u90bb\u63a5\u77e9\u9635\u4f53\u73b0\u201c\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4\u201d\uff0c\u90bb\u63a5\u8868\u4f53\u73b0\u201c\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4\u201d\u3002
            • \u56fe\u53ef\u7528\u4e8e\u5efa\u6a21\u5404\u7c7b\u73b0\u5b9e\u7cfb\u7edf\uff0c\u5982\u793e\u4ea4\u7f51\u7edc\u3001\u5730\u94c1\u7ebf\u8def\u7b49\u3002
            • \u6811\u662f\u56fe\u7684\u4e00\u79cd\u7279\u4f8b\uff0c\u6811\u7684\u904d\u5386\u4e5f\u662f\u56fe\u7684\u904d\u5386\u7684\u4e00\u79cd\u7279\u4f8b\u3002
            • \u56fe\u7684\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u7531\u8fd1\u53ca\u8fdc\u3001\u5c42\u5c42\u6269\u5f20\u7684\u641c\u7d22\u65b9\u5f0f\uff0c\u901a\u5e38\u501f\u52a9\u961f\u5217\u5b9e\u73b0\u3002
            • \u56fe\u7684\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u662f\u4e00\u79cd\u4f18\u5148\u8d70\u5230\u5e95\u3001\u65e0\u8def\u53ef\u8d70\u65f6\u518d\u56de\u6eaf\u7684\u641c\u7d22\u65b9\u5f0f\uff0c\u5e38\u57fa\u4e8e\u9012\u5f52\u6765\u5b9e\u73b0\u3002
            "},{"location":"chapter_graph/summary/#941-q-a","title":"9.4.1 \u00a0 Q & A","text":"

            \u8def\u5f84\u7684\u5b9a\u4e49\u662f\u9876\u70b9\u5e8f\u5217\u8fd8\u662f\u8fb9\u5e8f\u5217\uff1f

            \u7ef4\u57fa\u767e\u79d1\u4e0a\u4e0d\u540c\u8bed\u8a00\u7248\u672c\u7684\u5b9a\u4e49\u4e0d\u4e00\u81f4\uff1a\u82f1\u6587\u7248\u662f\u201c\u8def\u5f84\u662f\u4e00\u4e2a\u8fb9\u5e8f\u5217\u201d\uff0c\u800c\u4e2d\u6587\u7248\u662f\u201c\u8def\u5f84\u662f\u4e00\u4e2a\u9876\u70b9\u5e8f\u5217\u201d\u3002\u4ee5\u4e0b\u662f\u82f1\u6587\u7248\u539f\u6587\uff1aIn graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices. \u5728\u672c\u6587\u4e2d\uff0c\u8def\u5f84\u88ab\u8ba4\u4e3a\u662f\u4e00\u4e2a\u8fb9\u5e8f\u5217\uff0c\u800c\u4e0d\u662f\u4e00\u4e2a\u9876\u70b9\u5e8f\u5217\u3002\u8fd9\u662f\u56e0\u4e3a\u4e24\u4e2a\u9876\u70b9\u4e4b\u95f4\u53ef\u80fd\u5b58\u5728\u591a\u6761\u8fb9\u8fde\u63a5\uff0c\u6b64\u65f6\u6bcf\u6761\u8fb9\u90fd\u5bf9\u5e94\u4e00\u6761\u8def\u5f84\u3002

            \u975e\u8fde\u901a\u56fe\u4e2d\uff0c\u662f\u5426\u4f1a\u6709\u65e0\u6cd5\u904d\u5386\u5230\u7684\u70b9\uff1f

            \u5728\u975e\u8fde\u901a\u56fe\u4e2d\uff0c\u4ece\u67d0\u4e2a\u9876\u70b9\u51fa\u53d1\uff0c\u81f3\u5c11\u6709\u4e00\u4e2a\u9876\u70b9\u65e0\u6cd5\u5230\u8fbe\u3002\u904d\u5386\u975e\u8fde\u901a\u56fe\u9700\u8981\u8bbe\u7f6e\u591a\u4e2a\u8d77\u70b9\uff0c\u4ee5\u904d\u5386\u5230\u56fe\u7684\u6240\u6709\u8fde\u901a\u5206\u91cf\u3002

            \u5728\u90bb\u63a5\u8868\u4e2d\uff0c\u201c\u4e0e\u8be5\u9876\u70b9\u76f8\u8fde\u7684\u6240\u6709\u9876\u70b9\u201d\u7684\u9876\u70b9\u987a\u5e8f\u662f\u5426\u6709\u8981\u6c42\uff1f

            \u53ef\u4ee5\u662f\u4efb\u610f\u987a\u5e8f\u3002\u4f46\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u53ef\u80fd\u4f1a\u9700\u8981\u6309\u7167\u6307\u5b9a\u89c4\u5219\u6765\u6392\u5e8f\uff0c\u6bd4\u5982\u6309\u7167\u9876\u70b9\u6dfb\u52a0\u7684\u6b21\u5e8f\u3001\u6216\u8005\u6309\u7167\u9876\u70b9\u503c\u5927\u5c0f\u7684\u987a\u5e8f\u7b49\u7b49\uff0c\u8fd9\u6837\u53ef\u4ee5\u6709\u52a9\u4e8e\u5feb\u901f\u67e5\u627e\u201c\u5e26\u6709\u67d0\u79cd\u6781\u503c\u201d\u7684\u9876\u70b9\u3002

            "},{"location":"chapter_greedy/","title":"\u7b2c 15 \u7ae0 \u00a0 \u8d2a\u5fc3","text":"

            Abstract

            \u5411\u65e5\u8475\u671d\u7740\u592a\u9633\u8f6c\u52a8\uff0c\u65f6\u523b\u90fd\u5728\u8ffd\u6c42\u81ea\u8eab\u6210\u957f\u7684\u6700\u5927\u53ef\u80fd\u3002

            \u8d2a\u5fc3\u7b56\u7565\u5728\u4e00\u8f6e\u8f6e\u7684\u7b80\u5355\u9009\u62e9\u4e2d\uff0c\u9010\u6b65\u5bfc\u5411\u6700\u4f73\u7684\u7b54\u6848\u3002

            "},{"location":"chapter_greedy/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 15.1 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5
            • 15.2 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898
            • 15.3 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898
            • 15.4 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898
            • 15.5 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_greedy/fractional_knapsack_problem/","title":"15.2 \u00a0 \u5206\u6570\u80cc\u5305\u95ee\u9898","text":"

            \u5206\u6570\u80cc\u5305\u662f 0-1 \u80cc\u5305\u7684\u4e00\u4e2a\u53d8\u79cd\u95ee\u9898\u3002

            Question

            \u7ed9\u5b9a \\(n\\) \u4e2a\u7269\u54c1\uff0c\u7b2c \\(i\\) \u4e2a\u7269\u54c1\u7684\u91cd\u91cf\u4e3a \\(wgt[i-1]\\) \u3001\u4ef7\u503c\u4e3a \\(val[i-1]\\) \uff0c\u548c\u4e00\u4e2a\u5bb9\u91cf\u4e3a \\(cap\\) \u7684\u80cc\u5305\u3002\u6bcf\u4e2a\u7269\u54c1\u53ea\u80fd\u9009\u62e9\u4e00\u6b21\uff0c\u4f46\u53ef\u4ee5\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\uff0c\u4ef7\u503c\u6839\u636e\u9009\u62e9\u7684\u91cd\u91cf\u6bd4\u4f8b\u8ba1\u7b97\uff0c\u95ee\u5728\u4e0d\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\u4e0b\u80cc\u5305\u4e2d\u7269\u54c1\u7684\u6700\u5927\u4ef7\u503c\u3002

            \u56fe\uff1a\u5206\u6570\u80cc\u5305\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e

            \u672c\u9898\u548c 0-1 \u80cc\u5305\u6574\u4f53\u4e0a\u975e\u5e38\u76f8\u4f3c\uff0c\u72b6\u6001\u5305\u542b\u5f53\u524d\u7269\u54c1 \\(i\\) \u548c\u5bb9\u91cf \\(c\\) \uff0c\u76ee\u6807\u662f\u6c42\u4e0d\u8d85\u8fc7\u80cc\u5305\u5bb9\u91cf\u4e0b\u7684\u6700\u5927\u4ef7\u503c\u3002

            \u4e0d\u540c\u70b9\u5728\u4e8e\uff0c\u672c\u9898\u5141\u8bb8\u53ea\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\uff0c\u8fd9\u610f\u5473\u7740\u53ef\u4ee5\u5bf9\u7269\u54c1\u4efb\u610f\u5730\u8fdb\u884c\u5207\u5206\uff0c\u5e76\u6309\u7167\u91cd\u91cf\u6bd4\u4f8b\u6765\u8ba1\u7b97\u7269\u54c1\u4ef7\u503c\uff0c\u56e0\u6b64\u6709\uff1a

            1. \u5bf9\u4e8e\u7269\u54c1 \\(i\\) \uff0c\u5b83\u5728\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u4ef7\u503c\u4e3a \\(val[i-1] / wgt[i-1]\\) \uff0c\u7b80\u79f0\u4e3a\u5355\u4f4d\u4ef7\u503c\u3002
            2. \u5047\u8bbe\u653e\u5165\u4e00\u90e8\u5206\u7269\u54c1 \\(i\\) \uff0c\u91cd\u91cf\u4e3a \\(w\\) \uff0c\u5219\u80cc\u5305\u589e\u52a0\u7684\u4ef7\u503c\u4e3a \\(w \\times val[i-1] / wgt[i-1]\\) \u3002

            \u56fe\uff1a\u7269\u54c1\u5728\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u4ef7\u503c

            "},{"location":"chapter_greedy/fractional_knapsack_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"

            \u6700\u5927\u5316\u80cc\u5305\u5185\u7269\u54c1\u603b\u4ef7\u503c\uff0c\u672c\u8d28\u4e0a\u662f\u8981\u6700\u5927\u5316\u5355\u4f4d\u91cd\u91cf\u4e0b\u7684\u7269\u54c1\u4ef7\u503c\u3002\u7531\u6b64\u4fbf\u53ef\u63a8\u51fa\u672c\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\uff1a

            1. \u5c06\u7269\u54c1\u6309\u7167\u5355\u4f4d\u4ef7\u503c\u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\u3002
            2. \u904d\u5386\u6240\u6709\u7269\u54c1\uff0c\u6bcf\u8f6e\u8d2a\u5fc3\u5730\u9009\u62e9\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\u7684\u7269\u54c1\u3002
            3. \u82e5\u5269\u4f59\u80cc\u5305\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u4f7f\u7528\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u586b\u6ee1\u80cc\u5305\u5373\u53ef\u3002

            \u56fe\uff1a\u5206\u6570\u80cc\u5305\u7684\u8d2a\u5fc3\u7b56\u7565

            "},{"location":"chapter_greedy/fractional_knapsack_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u6211\u4eec\u5efa\u7acb\u4e86\u4e00\u4e2a\u7269\u54c1\u7c7b Item \uff0c\u4ee5\u4fbf\u5c06\u7269\u54c1\u6309\u7167\u5355\u4f4d\u4ef7\u503c\u8fdb\u884c\u6392\u5e8f\u3002\u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u5f53\u80cc\u5305\u5df2\u6ee1\u65f6\u8df3\u51fa\u5e76\u8fd4\u56de\u89e3\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust fractional_knapsack.java
            /* \u7269\u54c1 */\nclass Item {\nint w; // \u7269\u54c1\u91cd\u91cf\nint v; // \u7269\u54c1\u4ef7\u503c\npublic Item(int w, int v) {\nthis.w = w;\nthis.v = v;\n}\n}\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(int[] wgt, int[] val, int cap) {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nItem[] items = new Item[wgt.length];\nfor (int i = 0; i < wgt.length; i++) {\nitems[i] = new Item(wgt[i], val[i]);\n}\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nArrays.sort(items, Comparator.comparingDouble(item -> -((double) item.v / item.w)));\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\ndouble res = 0;\nfor (Item item : items) {\nif (item.w <= cap) {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v;\ncap -= item.w;\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += (double) item.v / item.w * cap;\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\nreturn res;\n}\n
            fractional_knapsack.cpp
            /* \u7269\u54c1 */\nclass Item {\npublic:\nint w; // \u7269\u54c1\u91cd\u91cf\nint v; // \u7269\u54c1\u4ef7\u503c\nItem(int w, int v) : w(w), v(v) {\n}\n};\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(vector<int> &wgt, vector<int> &val, int cap) {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nvector<Item> items;\nfor (int i = 0; i < wgt.size(); i++) {\nitems.push_back(Item(wgt[i], val[i]));\n}\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nsort(items.begin(), items.end(), [](Item &a, Item &b) { return (double)a.v / a.w > (double)b.v / b.w; });\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\ndouble res = 0;\nfor (auto &item : items) {\nif (item.w <= cap) {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v;\ncap -= item.w;\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += (double)item.v / item.w * cap;\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\nreturn res;\n}\n
            fractional_knapsack.py
            class Item:\n\"\"\"\u7269\u54c1\"\"\"\ndef __init__(self, w: int, v: int):\nself.w = w  # \u7269\u54c1\u91cd\u91cf\nself.v = v  # \u7269\u54c1\u4ef7\u503c\ndef fractional_knapsack(wgt: list[int], val: list[int], cap: int) -> int:\n\"\"\"\u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3\"\"\"\n# \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nitems = [Item(w, v) for w, v in zip(wgt, val)]\n# \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nitems.sort(key=lambda item: item.v / item.w, reverse=True)\n# \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\nres = 0\nfor item in items:\nif item.w <= cap:\n# \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v\ncap -= item.w\nelse:\n# \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += (item.v / item.w) * cap\n# \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak\nreturn res\n
            fractional_knapsack.go
            /* \u7269\u54c1 */\ntype Item struct {\nw int // \u7269\u54c1\u91cd\u91cf\nv int // \u7269\u54c1\u4ef7\u503c\n}\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfunc fractionalKnapsack(wgt []int, val []int, cap int) float64 {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nitems := make([]Item, len(wgt))\nfor i := 0; i < len(wgt); i++ {\nitems[i] = Item{wgt[i], val[i]}\n}\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nsort.Slice(items, func(i, j int) bool {\nreturn float64(items[i].v)/float64(items[i].w) > float64(items[j].v)/float64(items[j].w)\n})\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\nres := 0.0\nfor _, item := range items {\nif item.w <= cap {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += float64(item.v)\ncap -= item.w\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += float64(item.v) / float64(item.w) * float64(cap)\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak\n}\n}\nreturn res\n}\n
            fractional_knapsack.js
            [class]{Item}-[func]{}\n[class]{}-[func]{fractionalKnapsack}\n
            fractional_knapsack.ts
            [class]{Item}-[func]{}\n[class]{}-[func]{fractionalKnapsack}\n
            fractional_knapsack.c
            [class]{Item}-[func]{}\n[class]{}-[func]{fractionalKnapsack}\n
            fractional_knapsack.cs
            /* \u7269\u54c1 */\nclass Item {\npublic int w; // \u7269\u54c1\u91cd\u91cf\npublic int v; // \u7269\u54c1\u4ef7\u503c\npublic Item(int w, int v) {\nthis.w = w;\nthis.v = v;\n}\n}\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(int[] wgt, int[] val, int cap) {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nItem[] items = new Item[wgt.Length];\nfor (int i = 0; i < wgt.Length; i++) {\nitems[i] = new Item(wgt[i], val[i]);\n}\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nArray.Sort(items, (x, y) => (y.v / y.w).CompareTo(x.v / x.w));\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\ndouble res = 0;\nforeach (Item item in items) {\nif (item.w <= cap) {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v;\ncap -= item.w;\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += (double)item.v / item.w * cap;\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\nreturn res;\n}\n
            fractional_knapsack.swift
            [class]{Item}-[func]{}\n[class]{}-[func]{fractionalKnapsack}\n
            fractional_knapsack.zig
            [class]{Item}-[func]{}\n[class]{}-[func]{fractionalKnapsack}\n
            fractional_knapsack.dart
            /* \u7269\u54c1 */\nclass Item {\nint w; // \u7269\u54c1\u91cd\u91cf\nint v; // \u7269\u54c1\u4ef7\u503c\nItem(this.w, this.v);\n}\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\ndouble fractionalKnapsack(List<int> wgt, List<int> val, int cap) {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nList<Item> items = List.generate(wgt.length, (i) => Item(wgt[i], val[i]));\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nitems.sort((a, b) => (b.v / b.w).compareTo(a.v / a.w));\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\ndouble res = 0;\nfor (Item item in items) {\nif (item.w <= cap) {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v;\ncap -= item.w;\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += item.v / item.w * cap;\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\nreturn res;\n}\n
            fractional_knapsack.rs
            /* \u7269\u54c1 */\nstruct Item {\nw: i32, // \u7269\u54c1\u91cd\u91cf\nv: i32, // \u7269\u54c1\u4ef7\u503c\n}\nimpl Item {\nfn new(w: i32, v: i32) -> Self {\nSelf { w, v }\n}\n}\n/* \u5206\u6570\u80cc\u5305\uff1a\u8d2a\u5fc3 */\nfn fractional_knapsack(wgt: &[i32], val: &[i32], mut cap: i32) -> f64 {\n// \u521b\u5efa\u7269\u54c1\u5217\u8868\uff0c\u5305\u542b\u4e24\u4e2a\u5c5e\u6027\uff1a\u91cd\u91cf\u3001\u4ef7\u503c\nlet mut items = wgt\n.iter()\n.zip(val.iter())\n.map(|(&w, &v)| Item::new(w, v))\n.collect::<Vec<Item>>();\n// \u6309\u7167\u5355\u4f4d\u4ef7\u503c item.v / item.w \u4ece\u9ad8\u5230\u4f4e\u8fdb\u884c\u6392\u5e8f\nitems.sort_by(|a, b| {\n(b.v as f64 / b.w as f64)\n.partial_cmp(&(a.v as f64 / a.w as f64))\n.unwrap()\n});\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\nlet mut res = 0.0;\nfor item in &items {\nif item.w <= cap {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u5145\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u6574\u4e2a\u88c5\u8fdb\u80cc\u5305\nres += item.v as f64;\ncap -= item.w;\n} else {\n// \u82e5\u5269\u4f59\u5bb9\u91cf\u4e0d\u8db3\uff0c\u5219\u5c06\u5f53\u524d\u7269\u54c1\u7684\u4e00\u90e8\u5206\u88c5\u8fdb\u80cc\u5305\nres += item.v as f64 / item.w as f64 * cap as f64;\n// \u5df2\u65e0\u5269\u4f59\u5bb9\u91cf\uff0c\u56e0\u6b64\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\nres\n}\n

            \u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u9700\u8981\u904d\u5386\u6574\u4e2a\u7269\u54c1\u5217\u8868\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u7269\u54c1\u6570\u91cf\u3002

            \u7531\u4e8e\u521d\u59cb\u5316\u4e86\u4e00\u4e2a Item \u5bf9\u8c61\u5217\u8868\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            "},{"location":"chapter_greedy/fractional_knapsack_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"

            \u91c7\u7528\u53cd\u8bc1\u6cd5\u3002\u5047\u8bbe\u7269\u54c1 \\(x\\) \u662f\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\u7684\u7269\u54c1\uff0c\u4f7f\u7528\u67d0\u7b97\u6cd5\u6c42\u5f97\u6700\u5927\u4ef7\u503c\u4e3a res \uff0c\u4f46\u8be5\u89e3\u4e2d\u4e0d\u5305\u542b\u7269\u54c1 \\(x\\) \u3002

            \u73b0\u5728\u4ece\u80cc\u5305\u4e2d\u62ff\u51fa\u5355\u4f4d\u91cd\u91cf\u7684\u4efb\u610f\u7269\u54c1\uff0c\u5e76\u66ff\u6362\u4e3a\u5355\u4f4d\u91cd\u91cf\u7684\u7269\u54c1 \\(x\\) \u3002\u7531\u4e8e\u7269\u54c1 \\(x\\) \u7684\u5355\u4f4d\u4ef7\u503c\u6700\u9ad8\uff0c\u56e0\u6b64\u66ff\u6362\u540e\u7684\u603b\u4ef7\u503c\u4e00\u5b9a\u5927\u4e8e res \u3002\u8fd9\u4e0e res \u662f\u6700\u4f18\u89e3\u77db\u76fe\uff0c\u8bf4\u660e\u6700\u4f18\u89e3\u4e2d\u5fc5\u987b\u5305\u542b\u7269\u54c1 \\(x\\) \u3002

            \u5bf9\u4e8e\u8be5\u89e3\u4e2d\u7684\u5176\u4ed6\u7269\u54c1\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u6784\u5efa\u51fa\u4e0a\u8ff0\u77db\u76fe\u3002\u603b\u800c\u8a00\u4e4b\uff0c\u5355\u4f4d\u4ef7\u503c\u66f4\u5927\u7684\u7269\u54c1\u603b\u662f\u66f4\u4f18\u9009\u62e9\uff0c\u8fd9\u8bf4\u660e\u8d2a\u5fc3\u7b56\u7565\u662f\u6709\u6548\u7684\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5982\u679c\u5c06\u7269\u54c1\u91cd\u91cf\u548c\u7269\u54c1\u5355\u4f4d\u4ef7\u503c\u5206\u522b\u770b\u4f5c\u4e00\u4e2a 2D \u56fe\u8868\u7684\u6a2a\u8f74\u548c\u7eb5\u8f74\uff0c\u5219\u5206\u6570\u80cc\u5305\u95ee\u9898\u53ef\u88ab\u8f6c\u5316\u4e3a\u201c\u6c42\u5728\u6709\u9650\u6a2a\u8f74\u533a\u95f4\u4e0b\u7684\u6700\u5927\u56f4\u6210\u9762\u79ef\u201d\u3002

            \u901a\u8fc7\u8fd9\u4e2a\u7c7b\u6bd4\uff0c\u6211\u4eec\u53ef\u4ee5\u4ece\u51e0\u4f55\u89d2\u5ea6\u7406\u89e3\u8d2a\u5fc3\u7b56\u7565\u7684\u6709\u6548\u6027\u3002

            \u56fe\uff1a\u5206\u6570\u80cc\u5305\u95ee\u9898\u7684\u51e0\u4f55\u8868\u793a

            "},{"location":"chapter_greedy/greedy_algorithm/","title":"15.1 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5","text":"

            \u8d2a\u5fc3\u7b97\u6cd5\u662f\u4e00\u79cd\u5e38\u89c1\u7684\u89e3\u51b3\u4f18\u5316\u95ee\u9898\u7684\u7b97\u6cd5\uff0c\u5176\u57fa\u672c\u601d\u60f3\u662f\u5728\u95ee\u9898\u7684\u6bcf\u4e2a\u51b3\u7b56\u9636\u6bb5\uff0c\u90fd\u9009\u62e9\u5f53\u524d\u770b\u8d77\u6765\u6700\u4f18\u7684\u9009\u62e9\uff0c\u5373\u8d2a\u5fc3\u5730\u505a\u51fa\u5c40\u90e8\u6700\u4f18\u7684\u51b3\u7b56\uff0c\u4ee5\u671f\u671b\u83b7\u5f97\u5168\u5c40\u6700\u4f18\u89e3\u3002\u8d2a\u5fc3\u7b97\u6cd5\u7b80\u6d01\u4e14\u9ad8\u6548\uff0c\u5728\u8bb8\u591a\u5b9e\u9645\u95ee\u9898\u4e2d\u90fd\u6709\u7740\u5e7f\u6cdb\u7684\u5e94\u7528\u3002

            \u8d2a\u5fc3\u7b97\u6cd5\u548c\u52a8\u6001\u89c4\u5212\u90fd\u5e38\u7528\u4e8e\u89e3\u51b3\u4f18\u5316\u95ee\u9898\u3002\u5b83\u4eec\u6709\u4e00\u4e9b\u76f8\u4f3c\u4e4b\u5904\uff0c\u6bd4\u5982\u90fd\u4f9d\u8d56\u6700\u4f18\u5b50\u7ed3\u6784\u6027\u8d28\u3002\u4e24\u8005\u7684\u4e0d\u540c\u70b9\u5728\u4e8e\uff1a

            • \u52a8\u6001\u89c4\u5212\u4f1a\u6839\u636e\u4e4b\u524d\u9636\u6bb5\u7684\u6240\u6709\u51b3\u7b56\u6765\u8003\u8651\u5f53\u524d\u51b3\u7b56\uff0c\u5e76\u4f7f\u7528\u8fc7\u53bb\u5b50\u95ee\u9898\u7684\u89e3\u6765\u6784\u5efa\u5f53\u524d\u5b50\u95ee\u9898\u7684\u89e3\u3002
            • \u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4f1a\u91cd\u65b0\u8003\u8651\u8fc7\u53bb\u7684\u51b3\u7b56\uff0c\u800c\u662f\u4e00\u8def\u5411\u524d\u5730\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u4e0d\u65ad\u7f29\u5c0f\u95ee\u9898\u8303\u56f4\uff0c\u76f4\u81f3\u95ee\u9898\u88ab\u89e3\u51b3\u3002

            \u6211\u4eec\u5148\u901a\u8fc7\u4f8b\u9898\u201c\u96f6\u94b1\u5151\u6362\u201d\u4e86\u89e3\u8d2a\u5fc3\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u3002\u8fd9\u9053\u9898\u5df2\u7ecf\u5728\u52a8\u6001\u89c4\u5212\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u76f8\u4fe1\u4f60\u5bf9\u5b83\u5e76\u4e0d\u964c\u751f\u3002

            Question

            \u7ed9\u5b9a \\(n\\) \u79cd\u786c\u5e01\uff0c\u7b2c \\(i\\) \u79cd\u786c\u5e01\u7684\u9762\u503c\u4e3a \\(coins[i - 1]\\) \uff0c\u76ee\u6807\u91d1\u989d\u4e3a \\(amt\\) \uff0c\u6bcf\u79cd\u786c\u5e01\u53ef\u4ee5\u91cd\u590d\u9009\u53d6\uff0c\u95ee\u80fd\u591f\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u7684\u6700\u5c11\u786c\u5e01\u4e2a\u6570\u3002\u5982\u679c\u65e0\u6cd5\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u5219\u8fd4\u56de \\(-1\\) \u3002

            \u8fd9\u9053\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\u5728\u751f\u6d3b\u4e2d\u5f88\u5e38\u89c1\uff1a\u7ed9\u5b9a\u76ee\u6807\u91d1\u989d\uff0c\u6211\u4eec\u8d2a\u5fc3\u5730\u9009\u62e9\u4e0d\u5927\u4e8e\u4e14\u6700\u63a5\u8fd1\u5b83\u7684\u786c\u5e01\uff0c\u4e0d\u65ad\u5faa\u73af\u8be5\u6b65\u9aa4\uff0c\u76f4\u81f3\u51d1\u51fa\u76ee\u6807\u91d1\u989d\u4e3a\u6b62\u3002

            \u56fe\uff1a\u96f6\u94b1\u5151\u6362\u7684\u8d2a\u5fc3\u7b56\u7565

            \u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002\u4f60\u53ef\u80fd\u4f1a\u4e0d\u7531\u5730\u53d1\u51fa\u611f\u53f9\uff1aSo Clean \uff01\u8d2a\u5fc3\u7b97\u6cd5\u4ec5\u7528\u5341\u884c\u4ee3\u7801\u5c31\u89e3\u51b3\u4e86\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust coin_change_greedy.java
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(int[] coins, int amt) {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\nint i = coins.length - 1;\nint count = 0;\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile (amt > 0) {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile (i > 0 && coins[i] > amt) {\ni--;\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i];\ncount++;\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nreturn amt == 0 ? count : -1;\n}\n
            coin_change_greedy.cpp
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(vector<int> &coins, int amt) {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\nint i = coins.size() - 1;\nint count = 0;\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile (amt > 0) {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile (i > 0 && coins[i] > amt) {\ni--;\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i];\ncount++;\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nreturn amt == 0 ? count : -1;\n}\n
            coin_change_greedy.py
            def coin_change_greedy(coins: list[int], amt: int) -> int:\n\"\"\"\u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3\"\"\"\n# \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\ni = len(coins) - 1\ncount = 0\n# \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile amt > 0:\n# \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile i > 0 and coins[i] > amt:\ni -= 1\n# \u9009\u62e9 coins[i]\namt -= coins[i]\ncount += 1\n# \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nreturn count if amt == 0 else -1\n
            coin_change_greedy.go
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfunc coinChangeGreedy(coins []int, amt int) int {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\ni := len(coins) - 1\ncount := 0\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nfor amt > 0 {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nfor i > 0 && coins[i] > amt {\ni--\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i]\ncount++\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nif amt != 0 {\nreturn -1\n}\nreturn count\n}\n
            coin_change_greedy.js
            [class]{}-[func]{coinChangeGreedy}\n
            coin_change_greedy.ts
            [class]{}-[func]{coinChangeGreedy}\n
            coin_change_greedy.c
            [class]{}-[func]{coinChangeGreedy}\n
            coin_change_greedy.cs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(int[] coins, int amt) {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\nint i = coins.Length - 1;\nint count = 0;\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile (amt > 0) {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile (i > 0 && coins[i] > amt) {\ni--;\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i];\ncount++;\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nreturn amt == 0 ? count : -1;\n}\n
            coin_change_greedy.swift
            [class]{}-[func]{coinChangeGreedy}\n
            coin_change_greedy.zig
            [class]{}-[func]{coinChangeGreedy}\n
            coin_change_greedy.dart
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nint coinChangeGreedy(List<int> coins, int amt) {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\nint i = coins.length - 1;\nint count = 0;\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile (amt > 0) {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile (i > 0 && coins[i] > amt) {\ni--;\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i];\ncount++;\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nreturn amt == 0 ? count : -1;\n}\n
            coin_change_greedy.rs
            /* \u96f6\u94b1\u5151\u6362\uff1a\u8d2a\u5fc3 */\nfn coin_change_greedy(coins: &[i32], mut amt: i32) -> i32 {\n// \u5047\u8bbe coins \u5217\u8868\u6709\u5e8f\nlet mut i = coins.len() - 1;\nlet mut count = 0;\n// \u5faa\u73af\u8fdb\u884c\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u5230\u65e0\u5269\u4f59\u91d1\u989d\nwhile amt > 0 {\n// \u627e\u5230\u5c0f\u4e8e\u4e14\u6700\u63a5\u8fd1\u5269\u4f59\u91d1\u989d\u7684\u786c\u5e01\nwhile i > 0 && coins[i] > amt {\ni -= 1;\n}\n// \u9009\u62e9 coins[i]\namt -= coins[i];\ncount += 1;\n}\n// \u82e5\u672a\u627e\u5230\u53ef\u884c\u65b9\u6848\uff0c\u5219\u8fd4\u56de -1\nif amt == 0 {\ncount\n} else {\n-1\n}\n}\n
            "},{"location":"chapter_greedy/greedy_algorithm/#1511","title":"15.1.1 \u00a0 \u8d2a\u5fc3\u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"

            \u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4ec5\u64cd\u4f5c\u76f4\u63a5\u3001\u5b9e\u73b0\u7b80\u5355\uff0c\u800c\u4e14\u901a\u5e38\u6548\u7387\u4e5f\u5f88\u9ad8\u3002\u5728\u4ee5\u4e0a\u4ee3\u7801\u4e2d\uff0c\u8bb0\u786c\u5e01\u6700\u5c0f\u9762\u503c\u4e3a \\(\\min(coins)\\) \uff0c\u5219\u8d2a\u5fc3\u9009\u62e9\u6700\u591a\u5faa\u73af \\(amt / \\min(coins)\\) \u6b21\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(amt / \\min(coins))\\) \u3002\u8fd9\u6bd4\u52a8\u6001\u89c4\u5212\u89e3\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\times amt)\\) \u63d0\u5347\u4e86\u4e00\u4e2a\u6570\u91cf\u7ea7\u3002

            \u7136\u800c\uff0c\u5bf9\u4e8e\u67d0\u4e9b\u786c\u5e01\u9762\u503c\u7ec4\u5408\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u5e76\u4e0d\u80fd\u627e\u5230\u6700\u4f18\u89e3\u3002\u6211\u4eec\u6765\u770b\u51e0\u4e2a\u4f8b\u5b50\uff1a

            • \u6b63\u4f8b \\(coins = [1, 5, 10, 20, 50, 100]\\)\uff1a\u5728\u8be5\u786c\u5e01\u7ec4\u5408\u4e0b\uff0c\u7ed9\u5b9a\u4efb\u610f \\(amt\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u90fd\u53ef\u4ee5\u627e\u51fa\u6700\u4f18\u89e3\u3002
            • \u53cd\u4f8b \\(coins = [1, 20, 50]\\)\uff1a\u5047\u8bbe \\(amt = 60\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ea\u80fd\u627e\u5230 \\(50 + 1 \\times 10\\) \u7684\u5151\u6362\u7ec4\u5408\uff0c\u5171\u8ba1 \\(11\\) \u679a\u786c\u5e01\uff0c\u4f46\u52a8\u6001\u89c4\u5212\u53ef\u4ee5\u627e\u5230\u6700\u4f18\u89e3 \\(20 + 20 + 20\\) \uff0c\u4ec5\u9700 \\(3\\) \u679a\u786c\u5e01\u3002
            • \u53cd\u4f8b \\(coins = [1, 49, 50]\\)\uff1a\u5047\u8bbe \\(amt = 98\\) \uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ea\u80fd\u627e\u5230 \\(50 + 1 \\times 48\\) \u7684\u5151\u6362\u7ec4\u5408\uff0c\u5171\u8ba1 \\(49\\) \u679a\u786c\u5e01\uff0c\u4f46\u52a8\u6001\u89c4\u5212\u53ef\u4ee5\u627e\u5230\u6700\u4f18\u89e3 \\(49 + 49\\) \uff0c\u4ec5\u9700 \\(2\\) \u679a\u786c\u5e01\u3002

            \u56fe\uff1a\u8d2a\u5fc3\u65e0\u6cd5\u627e\u51fa\u6700\u4f18\u89e3\u7684\u793a\u4f8b

            \u4e5f\u5c31\u662f\u8bf4\uff0c\u5bf9\u4e8e\u96f6\u94b1\u5151\u6362\u95ee\u9898\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u65e0\u6cd5\u4fdd\u8bc1\u627e\u5230\u5168\u5c40\u6700\u4f18\u89e3\uff0c\u5e76\u4e14\u6709\u53ef\u80fd\u627e\u5230\u975e\u5e38\u5dee\u7684\u89e3\u3002\u5b83\u66f4\u9002\u5408\u7528\u52a8\u6001\u89c4\u5212\u89e3\u51b3\u3002

            \u4e00\u822c\u60c5\u51b5\u4e0b\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u9002\u7528\u4e8e\u4ee5\u4e0b\u4e24\u7c7b\u95ee\u9898\uff1a

            1. \u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1a\u8d2a\u5fc3\u7b97\u6cd5\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\u5f80\u5f80\u662f\u6700\u4f18\u9009\u62e9\uff0c\u56e0\u4e3a\u5b83\u5f80\u5f80\u6bd4\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u66f4\u9ad8\u6548\u3002
            2. \u53ef\u4ee5\u627e\u5230\u8fd1\u4f3c\u6700\u4f18\u89e3\uff1a\u8d2a\u5fc3\u7b97\u6cd5\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\u4e5f\u662f\u53ef\u7528\u7684\u3002\u5bf9\u4e8e\u5f88\u591a\u590d\u6742\u95ee\u9898\u6765\u8bf4\uff0c\u5bfb\u627e\u5168\u5c40\u6700\u4f18\u89e3\u662f\u975e\u5e38\u56f0\u96be\u7684\uff0c\u80fd\u4ee5\u8f83\u9ad8\u6548\u7387\u627e\u5230\u6b21\u4f18\u89e3\u4e5f\u662f\u975e\u5e38\u4e0d\u9519\u7684\u3002
            "},{"location":"chapter_greedy/greedy_algorithm/#1512","title":"15.1.2 \u00a0 \u8d2a\u5fc3\u7b97\u6cd5\u7279\u6027","text":"

            \u90a3\u4e48\u95ee\u9898\u6765\u4e86\uff0c\u4ec0\u4e48\u6837\u7684\u95ee\u9898\u9002\u5408\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u5462\uff1f\u6216\u8005\u8bf4\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1f

            \u76f8\u8f83\u4e8e\u52a8\u6001\u89c4\u5212\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u7684\u4f7f\u7528\u6761\u4ef6\u66f4\u52a0\u82db\u523b\uff0c\u5176\u4e3b\u8981\u5173\u6ce8\u95ee\u9898\u7684\u4e24\u4e2a\u6027\u8d28\uff1a

            • \u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\uff1a\u53ea\u6709\u5f53\u5c40\u90e8\u6700\u4f18\u9009\u62e9\u59cb\u7ec8\u53ef\u4ee5\u5bfc\u81f4\u5168\u5c40\u6700\u4f18\u89e3\u65f6\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u624d\u80fd\u4fdd\u8bc1\u5f97\u5230\u6700\u4f18\u89e3\u3002
            • \u6700\u4f18\u5b50\u7ed3\u6784\uff1a\u539f\u95ee\u9898\u7684\u6700\u4f18\u89e3\u5305\u542b\u5b50\u95ee\u9898\u7684\u6700\u4f18\u89e3\u3002

            \u6700\u4f18\u5b50\u7ed3\u6784\u5df2\u7ecf\u5728\u52a8\u6001\u89c4\u5212\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u4e0d\u518d\u8d58\u8ff0\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u4e00\u4e9b\u95ee\u9898\u7684\u6700\u4f18\u5b50\u7ed3\u6784\u5e76\u4e0d\u660e\u663e\uff0c\u4f46\u4ecd\u7136\u53ef\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u89e3\u51b3\u3002

            \u6211\u4eec\u4e3b\u8981\u63a2\u7a76\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u7684\u5224\u65ad\u65b9\u6cd5\u3002\u867d\u7136\u5b83\u7684\u63cf\u8ff0\u770b\u4e0a\u53bb\u6bd4\u8f83\u7b80\u5355\uff0c\u4f46\u5b9e\u9645\u4e0a\u5bf9\u4e8e\u8bb8\u591a\u95ee\u9898\uff0c\u8bc1\u660e\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u4e0d\u662f\u4e00\u4ef6\u6613\u4e8b\u3002

            \u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\uff0c\u6211\u4eec\u867d\u7136\u80fd\u591f\u5bb9\u6613\u5730\u4e3e\u51fa\u53cd\u4f8b\uff0c\u5bf9\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u8fdb\u884c\u8bc1\u4f2a\uff0c\u4f46\u8bc1\u5b9e\u7684\u96be\u5ea6\u8f83\u5927\u3002\u5982\u679c\u95ee\uff1a\u6ee1\u8db3\u4ec0\u4e48\u6761\u4ef6\u7684\u786c\u5e01\u7ec4\u5408\u53ef\u4ee5\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\uff1f\u6211\u4eec\u5f80\u5f80\u53ea\u80fd\u51ed\u501f\u76f4\u89c9\u6216\u4e3e\u4f8b\u5b50\u6765\u7ed9\u51fa\u4e00\u4e2a\u6a21\u68f1\u4e24\u53ef\u7684\u7b54\u6848\uff0c\u800c\u96be\u4ee5\u7ed9\u51fa\u4e25\u8c28\u7684\u6570\u5b66\u8bc1\u660e\u3002

            Quote

            \u6709\u4e00\u7bc7\u8bba\u6587\u4e13\u95e8\u8ba8\u8bba\u4e86\u8be5\u95ee\u9898\u3002\u4f5c\u8005\u7ed9\u51fa\u4e86\u4e00\u4e2a \\(O(n^3)\\) \u65f6\u95f4\u590d\u6742\u5ea6\u7684\u7b97\u6cd5\uff0c\u7528\u4e8e\u5224\u65ad\u4e00\u4e2a\u786c\u5e01\u7ec4\u5408\u662f\u5426\u53ef\u4ee5\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u627e\u51fa\u4efb\u4f55\u91d1\u989d\u7684\u6700\u4f18\u89e3\u3002

            Pearson, David. A polynomial-time algorithm for the change-making problem. Operations Research Letters 33.3 (2005): 231-234.

            "},{"location":"chapter_greedy/greedy_algorithm/#1513","title":"15.1.3 \u00a0 \u8d2a\u5fc3\u89e3\u9898\u6b65\u9aa4","text":"

            \u8d2a\u5fc3\u95ee\u9898\u7684\u89e3\u51b3\u6d41\u7a0b\u5927\u4f53\u53ef\u5206\u4e3a\u4e09\u6b65\uff1a

            1. \u95ee\u9898\u5206\u6790\uff1a\u68b3\u7406\u4e0e\u7406\u89e3\u95ee\u9898\u7279\u6027\uff0c\u5305\u62ec\u72b6\u6001\u5b9a\u4e49\u3001\u4f18\u5316\u76ee\u6807\u548c\u7ea6\u675f\u6761\u4ef6\u7b49\u3002\u8fd9\u4e00\u6b65\u5728\u56de\u6eaf\u548c\u52a8\u6001\u89c4\u5212\u4e2d\u90fd\u6709\u6d89\u53ca\u3002
            2. \u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\uff1a\u786e\u5b9a\u5982\u4f55\u5728\u6bcf\u4e00\u6b65\u4e2d\u505a\u51fa\u8d2a\u5fc3\u9009\u62e9\u3002\u8fd9\u4e2a\u7b56\u7565\u80fd\u591f\u5728\u6bcf\u4e00\u6b65\u51cf\u5c0f\u95ee\u9898\u7684\u89c4\u6a21\uff0c\u5e76\u6700\u7ec8\u80fd\u89e3\u51b3\u6574\u4e2a\u95ee\u9898\u3002
            3. \u6b63\u786e\u6027\u8bc1\u660e\uff1a\u901a\u5e38\u9700\u8981\u8bc1\u660e\u95ee\u9898\u5177\u6709\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u3002\u8fd9\u4e2a\u6b65\u9aa4\u53ef\u80fd\u9700\u8981\u4f7f\u7528\u5230\u6570\u5b66\u8bc1\u660e\uff0c\u4f8b\u5982\u5f52\u7eb3\u6cd5\u6216\u53cd\u8bc1\u6cd5\u7b49\u3002

            \u786e\u5b9a\u8d2a\u5fc3\u7b56\u7565\u662f\u6c42\u89e3\u95ee\u9898\u7684\u6838\u5fc3\u6b65\u9aa4\uff0c\u4f46\u5b9e\u65bd\u8d77\u6765\u53ef\u80fd\u5e76\u4e0d\u5bb9\u6613\uff0c\u539f\u56e0\u5305\u62ec\uff1a

            • \u4e0d\u540c\u95ee\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\u7684\u5dee\u5f02\u8f83\u5927\u3002\u5bf9\u4e8e\u8bb8\u591a\u95ee\u9898\u6765\u8bf4\uff0c\u8d2a\u5fc3\u7b56\u7565\u90fd\u6bd4\u8f83\u6d45\u663e\uff0c\u6211\u4eec\u901a\u8fc7\u4e00\u4e9b\u5927\u6982\u7684\u601d\u8003\u4e0e\u5c1d\u8bd5\u5c31\u80fd\u5f97\u51fa\u3002\u800c\u5bf9\u4e8e\u4e00\u4e9b\u590d\u6742\u95ee\u9898\uff0c\u8d2a\u5fc3\u7b56\u7565\u53ef\u80fd\u975e\u5e38\u9690\u853d\uff0c\u8fd9\u79cd\u60c5\u51b5\u5c31\u975e\u5e38\u8003\u9a8c\u4e2a\u4eba\u7684\u89e3\u9898\u7ecf\u9a8c\u4e0e\u7b97\u6cd5\u80fd\u529b\u4e86\u3002
            • \u67d0\u4e9b\u8d2a\u5fc3\u7b56\u7565\u5177\u6709\u8f83\u5f3a\u7684\u8ff7\u60d1\u6027\u3002\u5f53\u6211\u4eec\u6ee1\u6000\u4fe1\u5fc3\u8bbe\u8ba1\u597d\u8d2a\u5fc3\u7b56\u7565\uff0c\u5199\u51fa\u89e3\u9898\u4ee3\u7801\u5e76\u63d0\u4ea4\u8fd0\u884c\uff0c\u5f88\u53ef\u80fd\u53d1\u73b0\u90e8\u5206\u6d4b\u8bd5\u6837\u4f8b\u65e0\u6cd5\u901a\u8fc7\u3002\u8fd9\u662f\u56e0\u4e3a\u8bbe\u8ba1\u7684\u8d2a\u5fc3\u7b56\u7565\u53ea\u662f\u201c\u90e8\u5206\u6b63\u786e\u201d\u7684\uff0c\u4e0a\u6587\u4ecb\u7ecd\u7684\u96f6\u94b1\u5151\u6362\u5c31\u662f\u4e2a\u5178\u578b\u6848\u4f8b\u3002

            \u4e3a\u4e86\u4fdd\u8bc1\u6b63\u786e\u6027\uff0c\u6211\u4eec\u5e94\u8be5\u5bf9\u8d2a\u5fc3\u7b56\u7565\u8fdb\u884c\u4e25\u8c28\u7684\u6570\u5b66\u8bc1\u660e\uff0c\u901a\u5e38\u9700\u8981\u7528\u5230\u53cd\u8bc1\u6cd5\u6216\u6570\u5b66\u5f52\u7eb3\u6cd5\u3002

            \u7136\u800c\uff0c\u6b63\u786e\u6027\u8bc1\u660e\u4e5f\u5f88\u53ef\u80fd\u4e0d\u662f\u4e00\u4ef6\u6613\u4e8b\u3002\u5982\u82e5\u6ca1\u6709\u5934\u7eea\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u9009\u62e9\u9762\u5411\u6d4b\u8bd5\u7528\u4f8b\u8fdb\u884c Debug \uff0c\u4e00\u6b65\u6b65\u4fee\u6539\u4e0e\u9a8c\u8bc1\u8d2a\u5fc3\u7b56\u7565\u3002

            "},{"location":"chapter_greedy/greedy_algorithm/#1514","title":"15.1.4 \u00a0 \u8d2a\u5fc3\u5178\u578b\u4f8b\u9898","text":"

            \u8d2a\u5fc3\u7b97\u6cd5\u5e38\u5e38\u5e94\u7528\u5728\u6ee1\u8db3\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u7684\u4f18\u5316\u95ee\u9898\u4e2d\uff0c\u4ee5\u4e0b\u662f\u4e00\u4e9b\u5178\u578b\u7684\u8d2a\u5fc3\u7b97\u6cd5\u95ee\u9898\uff1a

            1. \u786c\u5e01\u627e\u96f6\u95ee\u9898\uff1a\u5728\u67d0\u4e9b\u786c\u5e01\u7ec4\u5408\u4e0b\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u603b\u662f\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
            2. \u533a\u95f4\u8c03\u5ea6\u95ee\u9898\uff1a\u5047\u8bbe\u4f60\u6709\u4e00\u4e9b\u4efb\u52a1\uff0c\u6bcf\u4e2a\u4efb\u52a1\u5728\u4e00\u6bb5\u65f6\u95f4\u5185\u8fdb\u884c\uff0c\u4f60\u7684\u76ee\u6807\u662f\u5b8c\u6210\u5c3d\u53ef\u80fd\u591a\u7684\u4efb\u52a1\u3002\u5982\u679c\u6bcf\u6b21\u90fd\u9009\u62e9\u7ed3\u675f\u65f6\u95f4\u6700\u65e9\u7684\u4efb\u52a1\uff0c\u90a3\u4e48\u8d2a\u5fc3\u7b97\u6cd5\u5c31\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
            3. \u5206\u6570\u80cc\u5305\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u7269\u54c1\u548c\u4e00\u4e2a\u8f7d\u91cd\u91cf\uff0c\u4f60\u7684\u76ee\u6807\u662f\u9009\u62e9\u4e00\u7ec4\u7269\u54c1\uff0c\u4f7f\u5f97\u603b\u91cd\u91cf\u4e0d\u8d85\u8fc7\u8f7d\u91cd\u91cf\uff0c\u4e14\u603b\u4ef7\u503c\u6700\u5927\u3002\u5982\u679c\u6bcf\u6b21\u90fd\u9009\u62e9\u6027\u4ef7\u6bd4\u6700\u9ad8\uff08\u4ef7\u503c / \u91cd\u91cf\uff09\u7684\u7269\u54c1\uff0c\u90a3\u4e48\u8d2a\u5fc3\u7b97\u6cd5\u5728\u4e00\u4e9b\u60c5\u51b5\u4e0b\u53ef\u4ee5\u5f97\u5230\u6700\u4f18\u89e3\u3002
            4. \u80a1\u7968\u4e70\u5356\u95ee\u9898\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u80a1\u7968\u7684\u5386\u53f2\u4ef7\u683c\uff0c\u4f60\u53ef\u4ee5\u8fdb\u884c\u591a\u6b21\u4e70\u5356\uff0c\u4f46\u5982\u679c\u4f60\u5df2\u7ecf\u6301\u6709\u80a1\u7968\uff0c\u90a3\u4e48\u5728\u5356\u51fa\u4e4b\u524d\u4e0d\u80fd\u518d\u4e70\uff0c\u76ee\u6807\u662f\u83b7\u53d6\u6700\u5927\u5229\u6da6\u3002
            5. \u970d\u592b\u66fc\u7f16\u7801\uff1a\u970d\u592b\u66fc\u7f16\u7801\u662f\u4e00\u79cd\u7528\u4e8e\u65e0\u635f\u6570\u636e\u538b\u7f29\u7684\u8d2a\u5fc3\u7b97\u6cd5\u3002\u901a\u8fc7\u6784\u5efa\u970d\u592b\u66fc\u6811\uff0c\u6bcf\u6b21\u9009\u62e9\u51fa\u73b0\u9891\u7387\u6700\u5c0f\u7684\u4e24\u4e2a\u8282\u70b9\u5408\u5e76\uff0c\u6700\u540e\u5f97\u5230\u7684\u970d\u592b\u66fc\u6811\u7684\u5e26\u6743\u8def\u5f84\u957f\u5ea6\uff08\u5373\u7f16\u7801\u957f\u5ea6\uff09\u6700\u5c0f\u3002
            6. Dijkstra \u7b97\u6cd5\uff1a\u5b83\u662f\u4e00\u79cd\u89e3\u51b3\u7ed9\u5b9a\u6e90\u9876\u70b9\u5230\u5176\u4f59\u5404\u9876\u70b9\u7684\u6700\u77ed\u8def\u5f84\u95ee\u9898\u7684\u8d2a\u5fc3\u7b97\u6cd5\u3002
            "},{"location":"chapter_greedy/max_capacity_problem/","title":"15.3 \u00a0 \u6700\u5927\u5bb9\u91cf\u95ee\u9898","text":"

            Question

            \u8f93\u5165\u4e00\u4e2a\u6570\u7ec4 \\(ht\\) \uff0c\u6570\u7ec4\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u4ee3\u8868\u4e00\u4e2a\u5782\u76f4\u9694\u677f\u7684\u9ad8\u5ea6\u3002\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e24\u4e2a\u9694\u677f\uff0c\u4ee5\u53ca\u5b83\u4eec\u4e4b\u95f4\u7684\u7a7a\u95f4\u53ef\u4ee5\u7ec4\u6210\u4e00\u4e2a\u5bb9\u5668\u3002

            \u5bb9\u5668\u7684\u5bb9\u91cf\u7b49\u4e8e\u9ad8\u5ea6\u548c\u5bbd\u5ea6\u7684\u4e58\u79ef\uff08\u5373\u9762\u79ef\uff09\uff0c\u5176\u4e2d\u9ad8\u5ea6\u7531\u8f83\u77ed\u7684\u9694\u677f\u51b3\u5b9a\uff0c\u5bbd\u5ea6\u662f\u4e24\u4e2a\u9694\u677f\u7684\u6570\u7ec4\u7d22\u5f15\u4e4b\u5dee\u3002

            \u8bf7\u5728\u6570\u7ec4\u4e2d\u9009\u62e9\u4e24\u4e2a\u9694\u677f\uff0c\u4f7f\u5f97\u7ec4\u6210\u7684\u5bb9\u5668\u7684\u5bb9\u91cf\u6700\u5927\uff0c\u8fd4\u56de\u6700\u5927\u5bb9\u91cf\u3002

            \u56fe\uff1a\u6700\u5927\u5bb9\u91cf\u95ee\u9898\u7684\u793a\u4f8b\u6570\u636e

            \u5bb9\u5668\u7531\u4efb\u610f\u4e24\u4e2a\u9694\u677f\u56f4\u6210\uff0c\u56e0\u6b64\u672c\u9898\u7684\u72b6\u6001\u4e3a\u4e24\u4e2a\u9694\u677f\u7684\u7d22\u5f15\uff0c\u8bb0\u4e3a \\([i, j]\\) \u3002

            \u6839\u636e\u9898\u610f\uff0c\u5bb9\u91cf\u7b49\u4e8e\u9ad8\u5ea6\u4e58\u4ee5\u5bbd\u5ea6\uff0c\u5176\u4e2d\u9ad8\u5ea6\u7531\u77ed\u677f\u51b3\u5b9a\uff0c\u5bbd\u5ea6\u662f\u4e24\u9694\u677f\u7684\u7d22\u5f15\u4e4b\u5dee\u3002\u8bbe\u5bb9\u91cf\u4e3a \\(cap[i, j]\\) \uff0c\u5219\u53ef\u5f97\u8ba1\u7b97\u516c\u5f0f\uff1a

            \\[ cap[i, j] = \\min(ht[i], ht[j]) \\times (j - i) \\]

            \u8bbe\u6570\u7ec4\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u4e24\u4e2a\u9694\u677f\u7684\u7ec4\u5408\u6570\u91cf\uff08\u5373\u72b6\u6001\u603b\u6570\uff09\u4e3a \\(C_n^2 = \\frac{n(n - 1)}{2}\\) \u4e2a\u3002\u6700\u76f4\u63a5\u5730\uff0c\u6211\u4eec\u53ef\u4ee5\u7a77\u4e3e\u6240\u6709\u72b6\u6001\uff0c\u4ece\u800c\u6c42\u5f97\u6700\u5927\u5bb9\u91cf\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002

            "},{"location":"chapter_greedy/max_capacity_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"

            \u8fd9\u9053\u9898\u8fd8\u6709\u66f4\u9ad8\u6548\u7387\u7684\u89e3\u6cd5\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u73b0\u9009\u53d6\u4e00\u4e2a\u72b6\u6001 \\([i, j]\\) \uff0c\u5176\u6ee1\u8db3\u7d22\u5f15 \\(i < j\\) \u4e14\u9ad8\u5ea6 \\(ht[i] < ht[j]\\) \uff0c\u5373 \\(i\\) \u4e3a\u77ed\u677f\u3001 \\(j\\) \u4e3a\u957f\u677f\u3002

            \u56fe\uff1a\u521d\u59cb\u72b6\u6001

            \u6211\u4eec\u53d1\u73b0\uff0c\u5982\u679c\u6b64\u65f6\u5c06\u957f\u677f \\(j\\) \u5411\u77ed\u677f \\(i\\) \u9760\u8fd1\uff0c\u5219\u5bb9\u91cf\u4e00\u5b9a\u53d8\u5c0f\u3002\u8fd9\u662f\u56e0\u4e3a\u5728\u79fb\u52a8\u957f\u677f \\(j\\) \u540e\uff1a

            • \u5bbd\u5ea6 \\(j-i\\) \u80af\u5b9a\u53d8\u5c0f\u3002
            • \u9ad8\u5ea6\u7531\u77ed\u677f\u51b3\u5b9a\uff0c\u56e0\u6b64\u9ad8\u5ea6\u53ea\u53ef\u80fd\u4e0d\u53d8\uff08 \\(i\\) \u4ecd\u4e3a\u77ed\u677f\uff09\u6216\u53d8\u5c0f\uff08\u79fb\u52a8\u540e\u7684 \\(j\\) \u6210\u4e3a\u77ed\u677f\uff09\u3002

            \u56fe\uff1a\u5411\u5185\u79fb\u52a8\u957f\u677f\u540e\u7684\u72b6\u6001

            \u53cd\u5411\u601d\u8003\uff0c\u6211\u4eec\u53ea\u6709\u5411\u5185\u6536\u7f29\u77ed\u677f \\(i\\) \uff0c\u624d\u6709\u53ef\u80fd\u4f7f\u5bb9\u91cf\u53d8\u5927\u3002\u56e0\u4e3a\u867d\u7136\u5bbd\u5ea6\u4e00\u5b9a\u53d8\u5c0f\uff0c\u4f46\u9ad8\u5ea6\u53ef\u80fd\u4f1a\u53d8\u5927\uff08\u79fb\u52a8\u540e\u7684\u77ed\u677f \\(i\\) \u53ef\u80fd\u4f1a\u53d8\u957f\uff09\u3002

            \u56fe\uff1a\u5411\u5185\u79fb\u52a8\u957f\u677f\u540e\u7684\u72b6\u6001

            \u7531\u6b64\u4fbf\u53ef\u63a8\u51fa\u672c\u9898\u7684\u8d2a\u5fc3\u7b56\u7565\uff1a

            1. \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6307\u9488 \\(i\\) , \\(j\\) \u5206\u5217\u4e0e\u6570\u7ec4\u4e24\u7aef\u3002
            2. \u8ba1\u7b97\u5f53\u524d\u72b6\u6001\u7684\u5bb9\u91cf \\(cap[i, j]\\) \uff0c\u5e76\u66f4\u65b0\u6700\u5927\u5bb9\u91cf\u3002
            3. \u6bd4\u8f83\u677f \\(i\\) \u548c \u677f \\(j\\) \u7684\u9ad8\u5ea6\uff0c\u5e76\u5c06\u77ed\u677f\u5411\u5185\u79fb\u52a8\u4e00\u683c\u3002
            4. \u5faa\u73af\u6267\u884c\u7b2c 2. , 3. \u6b65\uff0c\u76f4\u81f3 \\(i\\) \u548c \\(j\\) \u76f8\u9047\u65f6\u7ed3\u675f\u3002
            <1><2><3><4><5><6><7><8><9>

            \u56fe\uff1a\u6700\u5927\u5bb9\u91cf\u95ee\u9898\u7684\u8d2a\u5fc3\u8fc7\u7a0b

            "},{"location":"chapter_greedy/max_capacity_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u4ee3\u7801\u5faa\u73af\u6700\u591a \\(n\\) \u8f6e\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002

            \u53d8\u91cf \\(i\\) , \\(j\\) , \\(res\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u989d\u5916\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust max_capacity.java
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(int[] ht) {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\nint i = 0, j = ht.length - 1;\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nint res = 0;\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile (i < j) {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\nint cap = Math.min(ht[i], ht[j]) * (j - i);\nres = Math.max(res, cap);\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif (ht[i] < ht[j]) {\ni++;\n} else {\nj--;\n}\n}\nreturn res;\n}\n
            max_capacity.cpp
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(vector<int> &ht) {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\nint i = 0, j = ht.size() - 1;\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nint res = 0;\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile (i < j) {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\nint cap = min(ht[i], ht[j]) * (j - i);\nres = max(res, cap);\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif (ht[i] < ht[j]) {\ni++;\n} else {\nj--;\n}\n}\nreturn res;\n}\n
            max_capacity.py
            def max_capacity(ht: list[int]) -> int:\n\"\"\"\u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3\"\"\"\n# \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\ni, j = 0, len(ht) - 1\n# \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nres = 0\n# \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile i < j:\n# \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\ncap = min(ht[i], ht[j]) * (j - i)\nres = max(res, cap)\n# \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif ht[i] < ht[j]:\ni += 1\nelse:\nj -= 1\nreturn res\n
            max_capacity.go
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfunc maxCapacity(ht []int) int {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\ni, j := 0, len(ht)-1\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nres := 0\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nfor i < j {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\ncapacity := int(math.Min(float64(ht[i]), float64(ht[j]))) * (j - i)\nres = int(math.Max(float64(res), float64(capacity)))\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif ht[i] < ht[j] {\ni++\n} else {\nj--\n}\n}\nreturn res\n}\n
            max_capacity.js
            [class]{}-[func]{maxCapacity}\n
            max_capacity.ts
            [class]{}-[func]{maxCapacity}\n
            max_capacity.c
            [class]{}-[func]{maxCapacity}\n
            max_capacity.cs
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(int[] ht) {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\nint i = 0, j = ht.Length - 1;\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nint res = 0;\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile (i < j) {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\nint cap = Math.Min(ht[i], ht[j]) * (j - i);\nres = Math.Max(res, cap);\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif (ht[i] < ht[j]) {\ni++;\n} else {\nj--;\n}\n}\nreturn res;\n}\n
            max_capacity.swift
            [class]{}-[func]{maxCapacity}\n
            max_capacity.zig
            [class]{}-[func]{maxCapacity}\n
            max_capacity.dart
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nint maxCapacity(List<int> ht) {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\nint i = 0, j = ht.length - 1;\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nint res = 0;\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile (i < j) {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\nint cap = min(ht[i], ht[j]) * (j - i);\nres = max(res, cap);\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif (ht[i] < ht[j]) {\ni++;\n} else {\nj--;\n}\n}\nreturn res;\n}\n
            max_capacity.rs
            /* \u6700\u5927\u5bb9\u91cf\uff1a\u8d2a\u5fc3 */\nfn max_capacity(ht: &[i32]) -> i32 {\n// \u521d\u59cb\u5316 i, j \u5206\u5217\u6570\u7ec4\u4e24\u7aef\nlet mut i = 0;\nlet mut j = ht.len() - 1;\n// \u521d\u59cb\u6700\u5927\u5bb9\u91cf\u4e3a 0\nlet mut res = 0;\n// \u5faa\u73af\u8d2a\u5fc3\u9009\u62e9\uff0c\u76f4\u81f3\u4e24\u677f\u76f8\u9047\nwhile i < j {\n// \u66f4\u65b0\u6700\u5927\u5bb9\u91cf\nlet cap = std::cmp::min(ht[i], ht[j]) * (j - i) as i32;\nres = std::cmp::max(res, cap);\n// \u5411\u5185\u79fb\u52a8\u77ed\u677f\nif ht[i] < ht[j] {\ni += 1;\n} else {\nj -= 1;\n}\n}\nres\n}\n
            "},{"location":"chapter_greedy/max_capacity_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"

            \u4e4b\u6240\u4ee5\u8d2a\u5fc3\u6bd4\u7a77\u4e3e\u66f4\u5feb\uff0c\u662f\u56e0\u4e3a\u6bcf\u8f6e\u7684\u8d2a\u5fc3\u9009\u62e9\u90fd\u4f1a\u201c\u8df3\u8fc7\u201d\u4e00\u4e9b\u72b6\u6001\u3002

            \u6bd4\u5982\u5728\u72b6\u6001 \\(cap[i, j]\\) \u4e0b\uff0c\\(i\\) \u4e3a\u77ed\u677f\u3001\\(j\\) \u4e3a\u957f\u677f\u3002\u82e5\u8d2a\u5fc3\u5730\u5c06\u77ed\u677f \\(i\\) \u5411\u5185\u79fb\u52a8\u4e00\u683c\uff0c\u4f1a\u5bfc\u81f4\u4ee5\u4e0b\u72b6\u6001\u88ab\u201c\u8df3\u8fc7\u201d\u3002\u8fd9\u610f\u5473\u7740\u4e4b\u540e\u65e0\u6cd5\u9a8c\u8bc1\u8fd9\u4e9b\u72b6\u6001\u7684\u5bb9\u91cf\u5927\u5c0f\u3002

            \\[ cap[i, i+1], cap[i, i+2], \\cdots, cap[i, j-2], cap[i, j-1] \\]

            \u56fe\uff1a\u79fb\u52a8\u77ed\u677f\u5bfc\u81f4\u88ab\u8df3\u8fc7\u7684\u72b6\u6001

            \u89c2\u5bdf\u53d1\u73b0\uff0c\u8fd9\u4e9b\u88ab\u8df3\u8fc7\u7684\u72b6\u6001\u5b9e\u9645\u4e0a\u5c31\u662f\u5c06\u957f\u677f \\(j\\) \u5411\u5185\u79fb\u52a8\u7684\u6240\u6709\u72b6\u6001\u3002\u800c\u5728\u7b2c\u4e8c\u6b65\u4e2d\uff0c\u6211\u4eec\u5df2\u7ecf\u8bc1\u660e\u5185\u79fb\u957f\u677f\u4e00\u5b9a\u4f1a\u5bfc\u81f4\u5bb9\u91cf\u53d8\u5c0f\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u88ab\u8df3\u8fc7\u7684\u72b6\u6001\u90fd\u4e0d\u53ef\u80fd\u662f\u6700\u4f18\u89e3\uff0c\u8df3\u8fc7\u5b83\u4eec\u4e0d\u4f1a\u5bfc\u81f4\u9519\u8fc7\u6700\u4f18\u89e3\u3002

            \u4ee5\u4e0a\u7684\u5206\u6790\u8bf4\u660e\uff0c\u79fb\u52a8\u77ed\u677f\u7684\u64cd\u4f5c\u662f\u201c\u5b89\u5168\u201d\u7684\uff0c\u8d2a\u5fc3\u7b56\u7565\u662f\u6709\u6548\u7684\u3002

            "},{"location":"chapter_greedy/max_product_cutting_problem/","title":"15.4 \u00a0 \u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u6b63\u6574\u6570 \\(n\\) \uff0c\u5c06\u5176\u5207\u5206\u4e3a\u81f3\u5c11\u4e24\u4e2a\u6b63\u6574\u6570\u7684\u548c\uff0c\u6c42\u5207\u5206\u540e\u6240\u6709\u6574\u6570\u7684\u4e58\u79ef\u6700\u5927\u662f\u591a\u5c11\u3002

            \u56fe\uff1a\u6700\u5927\u5207\u5206\u4e58\u79ef\u7684\u95ee\u9898\u5b9a\u4e49

            \u5047\u8bbe\u6211\u4eec\u5c06 \\(n\\) \u5207\u5206\u4e3a \\(m\\) \u4e2a\u6574\u6570\u56e0\u5b50\uff0c\u5176\u4e2d\u7b2c \\(i\\) \u4e2a\u56e0\u5b50\u8bb0\u4e3a \\(n_i\\) \uff0c\u5373

            \\[ n = \\sum_{i=1}^{m}n_i \\]

            \u672c\u9898\u76ee\u6807\u662f\u6c42\u5f97\u6240\u6709\u6574\u6570\u56e0\u5b50\u7684\u6700\u5927\u4e58\u79ef\uff0c\u5373

            \\[ \\max(\\prod_{i=1}^{m}n_i) \\]

            \u6211\u4eec\u9700\u8981\u601d\u8003\u7684\u662f\uff1a\u5207\u5206\u6570\u91cf \\(m\\) \u5e94\u8be5\u591a\u5927\uff0c\u6bcf\u4e2a \\(n_i\\) \u5e94\u8be5\u662f\u591a\u5c11\uff1f

            "},{"location":"chapter_greedy/max_product_cutting_problem/#1","title":"1. \u00a0 \u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a","text":"

            \u6839\u636e\u7ecf\u9a8c\uff0c\u4e24\u4e2a\u6574\u6570\u7684\u4e58\u79ef\u5f80\u5f80\u6bd4\u5b83\u4eec\u7684\u52a0\u548c\u66f4\u5927\u3002\u5047\u8bbe\u4ece \\(n\\) \u4e2d\u5206\u51fa\u4e00\u4e2a\u56e0\u5b50 \\(2\\) \uff0c\u5219\u5b83\u4eec\u7684\u4e58\u79ef\u4e3a \\(2(n-2)\\) \u3002\u6211\u4eec\u5c06\u8be5\u4e58\u79ef\u4e0e \\(n\\) \u4f5c\u6bd4\u8f83\uff1a

            \\[ \\begin{aligned} 2(n-2) & \\geq n \\newline 2n - n - 4 & \\geq 0 \\newline n & \\geq 4 \\end{aligned} \\]

            \u6211\u4eec\u53d1\u73b0\u5f53 \\(n \\geq 4\\) \u65f6\uff0c\u5207\u5206\u51fa\u4e00\u4e2a \\(2\\) \u540e\u4e58\u79ef\u4f1a\u53d8\u5927\uff0c\u8fd9\u8bf4\u660e\u5927\u4e8e\u7b49\u4e8e \\(4\\) \u7684\u6574\u6570\u90fd\u5e94\u8be5\u88ab\u5207\u5206\u3002

            \u8d2a\u5fc3\u7b56\u7565\u4e00\uff1a\u5982\u679c\u5207\u5206\u65b9\u6848\u4e2d\u5305\u542b \\(\\geq 4\\) \u7684\u56e0\u5b50\uff0c\u90a3\u4e48\u5b83\u5c31\u5e94\u8be5\u88ab\u7ee7\u7eed\u5207\u5206\u3002\u6700\u7ec8\u7684\u5207\u5206\u65b9\u6848\u53ea\u5e94\u51fa\u73b0 \\(1\\) , \\(2\\) , \\(3\\) \u8fd9\u4e09\u79cd\u56e0\u5b50\u3002

            \u56fe\uff1a\u5207\u5206\u5bfc\u81f4\u4e58\u79ef\u53d8\u5927

            \u63a5\u4e0b\u6765\u601d\u8003\u54ea\u4e2a\u56e0\u5b50\u662f\u6700\u4f18\u7684\u3002\u5728 \\(1\\) , \\(2\\) , \\(3\\) \u8fd9\u4e09\u4e2a\u56e0\u5b50\u4e2d\uff0c\u663e\u7136 \\(1\\) \u662f\u6700\u5dee\u7684\uff0c\u56e0\u4e3a \\(1 \\times (n-1) < n\\) \u6052\u6210\u7acb\uff0c\u5373\u5207\u5206\u51fa \\(1\\) \u53cd\u800c\u4f1a\u5bfc\u81f4\u4e58\u79ef\u51cf\u5c0f\u3002

            \u6211\u4eec\u53d1\u73b0\uff0c\u5f53 \\(n = 6\\) \u65f6\uff0c\u6709 \\(3 \\times 3 > 2 \\times 2 \\times 2\\) \u3002\u8fd9\u610f\u5473\u7740\u5207\u5206\u51fa \\(3\\) \u6bd4\u5207\u5206\u51fa \\(2\\) \u66f4\u4f18\u3002

            \u8d2a\u5fc3\u7b56\u7565\u4e8c\uff1a\u5728\u5207\u5206\u65b9\u6848\u4e2d\uff0c\u6700\u591a\u53ea\u5e94\u5b58\u5728\u4e24\u4e2a \\(2\\) \u3002\u56e0\u4e3a\u4e09\u4e2a \\(2\\) \u603b\u662f\u53ef\u4ee5\u88ab\u66ff\u6362\u4e3a\u4e24\u4e2a \\(3\\) \uff0c\u4ece\u800c\u83b7\u5f97\u66f4\u5927\u4e58\u79ef\u3002

            \u56fe\uff1a\u6700\u4f18\u5207\u5206\u56e0\u5b50

            \u603b\u7ed3\u4ee5\u4e0a\uff0c\u53ef\u63a8\u51fa\u8d2a\u5fc3\u7b56\u7565\uff1a

            1. \u8f93\u5165\u6574\u6570 \\(n\\) \uff0c\u4ece\u5176\u4e0d\u65ad\u5730\u5207\u5206\u51fa\u56e0\u5b50 \\(3\\) \uff0c\u76f4\u81f3\u4f59\u6570\u4e3a \\(0\\) , \\(1\\) , \\(2\\) \u3002
            2. \u5f53\u4f59\u6570\u4e3a \\(0\\) \u65f6\uff0c\u4ee3\u8868 \\(n\\) \u662f \\(3\\) \u7684\u500d\u6570\uff0c\u56e0\u6b64\u4e0d\u505a\u4efb\u4f55\u5904\u7406\u3002
            3. \u5f53\u4f59\u6570\u4e3a \\(2\\) \u65f6\uff0c\u4e0d\u7ee7\u7eed\u5212\u5206\uff0c\u4fdd\u7559\u4e4b\u3002
            4. \u5f53\u4f59\u6570\u4e3a \\(1\\) \u65f6\uff0c\u7531\u4e8e \\(2 \\times 2 > 1 \\times 3\\) \uff0c\u56e0\u6b64\u5e94\u5c06\u6700\u540e\u4e00\u4e2a \\(3\\) \u66ff\u6362\u4e3a \\(2\\) \u3002
            "},{"location":"chapter_greedy/max_product_cutting_problem/#2","title":"2. \u00a0 \u4ee3\u7801\u5b9e\u73b0","text":"

            \u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u65e0\u987b\u901a\u8fc7\u5faa\u73af\u6765\u5207\u5206\u6574\u6570\uff0c\u800c\u53ef\u4ee5\u5229\u7528\u5411\u4e0b\u6574\u9664\u8fd0\u7b97\u5f97\u5230 \\(3\\) \u7684\u4e2a\u6570 \\(a\\) \uff0c\u7528\u53d6\u6a21\u8fd0\u7b97\u5f97\u5230\u4f59\u6570 \\(b\\) \uff0c\u6b64\u65f6\u6709\uff1a

            \\[ n = 3 a + b \\]

            \u8bf7\u6ce8\u610f\uff0c\u5bf9\u4e8e \\(n \\leq 3\\) \u7684\u8fb9\u754c\u60c5\u51b5\uff0c\u5fc5\u987b\u62c6\u5206\u51fa\u4e00\u4e2a \\(1\\) \uff0c\u4e58\u79ef\u4e3a \\(1 \\times (n - 1)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust max_product_cutting.java
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif (n <= 3) {\nreturn 1 * (n - 1);\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\nint a = n / 3;\nint b = n % 3;\nif (b == 1) {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn (int) Math.pow(3, a - 1) * 2 * 2;\n}\nif (b == 2) {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int) Math.pow(3, a) * 2;\n}\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int) Math.pow(3, a);\n}\n
            max_product_cutting.cpp
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif (n <= 3) {\nreturn 1 * (n - 1);\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\nint a = n / 3;\nint b = n % 3;\nif (b == 1) {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn (int)pow(3, a - 1) * 2 * 2;\n}\nif (b == 2) {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int)pow(3, a) * 2;\n}\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int)pow(3, a);\n}\n
            max_product_cutting.py
            def max_product_cutting(n: int) -> int:\n\"\"\"\u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3\"\"\"\n# \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif n <= 3:\nreturn 1 * (n - 1)\n# \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\na, b = n // 3, n % 3\nif b == 1:\n# \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn int(math.pow(3, a - 1)) * 2 * 2\nif b == 2:\n# \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn int(math.pow(3, a)) * 2\n# \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn int(math.pow(3, a))\n
            max_product_cutting.go
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfunc maxProductCutting(n int) int {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif n <= 3 {\nreturn 1 * (n - 1)\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\na := n / 3\nb := n % 3\nif b == 1 {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn int(math.Pow(3, float64(a-1))) * 2 * 2\n}\nif b == 2 {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn int(math.Pow(3, float64(a))) * 2\n}\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn int(math.Pow(3, float64(a)))\n}\n
            max_product_cutting.js
            [class]{}-[func]{maxProductCutting}\n
            max_product_cutting.ts
            [class]{}-[func]{maxProductCutting}\n
            max_product_cutting.c
            [class]{}-[func]{maxProductCutting}\n
            max_product_cutting.cs
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif (n <= 3) {\nreturn 1 * (n - 1);\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\nint a = n / 3;\nint b = n % 3;\nif (b == 1) {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn (int)Math.Pow(3, a - 1) * 2 * 2;\n}\nif (b == 2) {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int)Math.Pow(3, a) * 2;\n}\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (int)Math.Pow(3, a);\n}\n
            max_product_cutting.swift
            [class]{}-[func]{maxProductCutting}\n
            max_product_cutting.zig
            [class]{}-[func]{maxProductCutting}\n
            max_product_cutting.dart
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nint maxProductCutting(int n) {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif (n <= 3) {\nreturn 1 * (n - 1);\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\nint a = n ~/ 3;\nint b = n % 3;\nif (b == 1) {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\nreturn (pow(3, a - 1) * 2 * 2).toInt();\n}\nif (b == 2) {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn (pow(3, a) * 2).toInt();\n}\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\nreturn pow(3, a).toInt();\n}\n
            max_product_cutting.rs
            /* \u6700\u5927\u5207\u5206\u4e58\u79ef\uff1a\u8d2a\u5fc3 */\nfn max_product_cutting(n: i32) -> i32 {\n// \u5f53 n <= 3 \u65f6\uff0c\u5fc5\u987b\u5207\u5206\u51fa\u4e00\u4e2a 1\nif n <= 3 {\nreturn 1 * (n - 1);\n}\n// \u8d2a\u5fc3\u5730\u5207\u5206\u51fa 3 \uff0ca \u4e3a 3 \u7684\u4e2a\u6570\uff0cb \u4e3a\u4f59\u6570\nlet a = n / 3;\nlet b = n % 3;\nif b == 1 {\n// \u5f53\u4f59\u6570\u4e3a 1 \u65f6\uff0c\u5c06\u4e00\u5bf9 1 * 3 \u8f6c\u5316\u4e3a 2 * 2\n3_i32.pow(a as u32 - 1) * 2 * 2\n} else if b == 2 {\n// \u5f53\u4f59\u6570\u4e3a 2 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n3_i32.pow(a as u32) * 2\n} else {\n// \u5f53\u4f59\u6570\u4e3a 0 \u65f6\uff0c\u4e0d\u505a\u5904\u7406\n3_i32.pow(a as u32)\n}\n}\n

            \u56fe\uff1a\u6700\u5927\u5207\u5206\u4e58\u79ef\u7684\u8ba1\u7b97\u65b9\u6cd5

            \u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u7f16\u7a0b\u8bed\u8a00\u7684\u5e42\u8fd0\u7b97\u7684\u5b9e\u73b0\u65b9\u6cd5\u3002\u4ee5 Python \u4e3a\u4f8b\uff0c\u5e38\u7528\u7684\u5e42\u8ba1\u7b97\u51fd\u6570\u6709\u4e09\u79cd\uff1a

            • \u8fd0\u7b97\u7b26 ** \u548c\u51fd\u6570 pow() \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log\u2061 a)\\) \u3002
            • \u51fd\u6570 math.pow() \u5185\u90e8\u8c03\u7528 C \u8bed\u8a00\u5e93\u7684 pow() \u51fd\u6570\uff0c\u5176\u6267\u884c\u6d6e\u70b9\u53d6\u5e42\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002

            \u53d8\u91cf \\(a\\) , \\(b\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002

            "},{"location":"chapter_greedy/max_product_cutting_problem/#3","title":"3. \u00a0 \u6b63\u786e\u6027\u8bc1\u660e","text":"

            \u4f7f\u7528\u53cd\u8bc1\u6cd5\uff0c\u53ea\u5206\u6790 \\(n \\geq 3\\) \u7684\u60c5\u51b5\u3002

            1. \u6240\u6709\u56e0\u5b50 \\(\\leq 3\\) :\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5b58\u5728 \\(\\geq 4\\) \u7684\u56e0\u5b50 \\(x\\) \uff0c\u90a3\u4e48\u4e00\u5b9a\u53ef\u4ee5\u5c06\u5176\u7ee7\u7eed\u5212\u5206\u4e3a \\(2(x-2)\\) \uff0c\u4ece\u800c\u83b7\u5f97\u66f4\u5927\u7684\u4e58\u79ef\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
            2. \u5207\u5206\u65b9\u6848\u4e0d\u5305\u542b \\(1\\) :\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5b58\u5728\u4e00\u4e2a\u56e0\u5b50 \\(1\\) \uff0c\u90a3\u4e48\u5b83\u4e00\u5b9a\u53ef\u4ee5\u5408\u5e76\u5165\u53e6\u5916\u4e00\u4e2a\u56e0\u5b50\u4e2d\uff0c\u4ee5\u83b7\u53d6\u66f4\u5927\u4e58\u79ef\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
            3. \u5207\u5206\u65b9\u6848\u6700\u591a\u5305\u542b\u4e24\u4e2a \\(2\\) \uff1a\u5047\u8bbe\u6700\u4f18\u5207\u5206\u65b9\u6848\u4e2d\u5305\u542b\u4e09\u4e2a \\(2\\) \uff0c\u90a3\u4e48\u4e00\u5b9a\u53ef\u4ee5\u66ff\u6362\u4e3a\u4e24\u4e2a \\(3\\) \uff0c\u4e58\u79ef\u66f4\u5927\u3002\u8fd9\u4e0e\u5047\u8bbe\u77db\u76fe\u3002
            "},{"location":"chapter_greedy/summary/","title":"15.5 \u00a0 \u5c0f\u7ed3","text":"
            • \u8d2a\u5fc3\u7b97\u6cd5\u901a\u5e38\u7528\u4e8e\u89e3\u51b3\u6700\u4f18\u5316\u95ee\u9898\uff0c\u5176\u539f\u7406\u662f\u5728\u6bcf\u4e2a\u51b3\u7b56\u9636\u6bb5\u90fd\u505a\u51fa\u5c40\u90e8\u6700\u4f18\u7684\u51b3\u7b56\uff0c\u4ee5\u671f\u671b\u83b7\u5f97\u5168\u5c40\u6700\u4f18\u89e3\u3002
            • \u8d2a\u5fc3\u7b97\u6cd5\u4f1a\u8fed\u4ee3\u5730\u505a\u51fa\u4e00\u4e2a\u53c8\u4e00\u4e2a\u7684\u8d2a\u5fc3\u9009\u62e9\uff0c\u6bcf\u8f6e\u90fd\u5c06\u95ee\u9898\u8f6c\u5316\u6210\u4e00\u4e2a\u89c4\u6a21\u66f4\u5c0f\u7684\u5b50\u95ee\u9898\uff0c\u76f4\u5230\u95ee\u9898\u88ab\u89e3\u51b3\u3002
            • \u8d2a\u5fc3\u7b97\u6cd5\u4e0d\u4ec5\u5b9e\u73b0\u7b80\u5355\uff0c\u8fd8\u5177\u6709\u5f88\u9ad8\u7684\u89e3\u9898\u6548\u7387\u3002\u76f8\u6bd4\u4e8e\u52a8\u6001\u89c4\u5212\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u66f4\u4f4e\u3002
            • \u5728\u96f6\u94b1\u5151\u6362\u95ee\u9898\u4e2d\uff0c\u5bf9\u4e8e\u67d0\u4e9b\u786c\u5e01\u7ec4\u5408\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ef\u4ee5\u4fdd\u8bc1\u627e\u5230\u6700\u4f18\u89e3\uff1b\u5bf9\u4e8e\u53e6\u5916\u4e00\u4e9b\u786c\u5e01\u7ec4\u5408\u5219\u4e0d\u7136\uff0c\u8d2a\u5fc3\u7b97\u6cd5\u53ef\u80fd\u627e\u5230\u5f88\u5dee\u7684\u89e3\u3002
            • \u9002\u5408\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u7684\u95ee\u9898\u5177\u6709\u4e24\u5927\u6027\u8d28\uff1a\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u548c\u6700\u4f18\u5b50\u7ed3\u6784\u3002\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u4ee3\u8868\u8d2a\u5fc3\u7b56\u7565\u7684\u6709\u6548\u6027\u3002
            • \u5bf9\u4e8e\u67d0\u4e9b\u590d\u6742\u95ee\u9898\uff0c\u8d2a\u5fc3\u9009\u62e9\u6027\u8d28\u7684\u8bc1\u660e\u5e76\u4e0d\u7b80\u5355\u3002\u76f8\u5bf9\u6765\u8bf4\uff0c\u8bc1\u4f2a\u66f4\u52a0\u5bb9\u6613\uff0c\u4f8b\u5982\u96f6\u94b1\u5151\u6362\u95ee\u9898\u3002
            • \u6c42\u89e3\u8d2a\u5fc3\u95ee\u9898\u4e3b\u8981\u5206\u4e3a\u4e09\u6b65\uff1a\u95ee\u9898\u5206\u6790\u3001\u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a\u3001\u6b63\u786e\u6027\u8bc1\u660e\u3002\u5176\u4e2d\uff0c\u8d2a\u5fc3\u7b56\u7565\u786e\u5b9a\u662f\u6838\u5fc3\u6b65\u9aa4\uff0c\u6b63\u786e\u6027\u8bc1\u660e\u5f80\u5f80\u662f\u96be\u70b9\u3002
            • \u5206\u6570\u80cc\u5305\u95ee\u9898\u5728 0-1 \u80cc\u5305\u7684\u57fa\u7840\u4e0a\uff0c\u5141\u8bb8\u9009\u62e9\u7269\u54c1\u7684\u4e00\u90e8\u5206\uff0c\u56e0\u6b64\u53ef\u4f7f\u7528\u8d2a\u5fc3\u7b97\u6cd5\u6c42\u89e3\u3002\u8d2a\u5fc3\u7b56\u7565\u7684\u6b63\u786e\u6027\u53ef\u4ee5\u4f7f\u7528\u53cd\u8bc1\u6cd5\u6765\u8bc1\u660e\u3002
            • \u6700\u5927\u5bb9\u91cf\u95ee\u9898\u53ef\u4f7f\u7528\u7a77\u4e3e\u6cd5\u6c42\u89e3\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002\u901a\u8fc7\u8bbe\u8ba1\u8d2a\u5fc3\u7b56\u7565\uff0c\u6bcf\u8f6e\u5411\u5185\u79fb\u52a8\u77ed\u677f\uff0c\u53ef\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(n)\\) \u3002
            • \u5728\u6700\u5927\u5207\u5206\u4e58\u79ef\u95ee\u9898\u4e2d\uff0c\u6211\u4eec\u5148\u540e\u63a8\u7406\u51fa\u4e24\u4e2a\u8d2a\u5fc3\u7b56\u7565\uff1a\\(\\geq 4\\) \u7684\u6574\u6570\u90fd\u5e94\u8be5\u7ee7\u7eed\u5207\u5206\u3001\u6700\u4f18\u5207\u5206\u56e0\u5b50\u4e3a \\(3\\) \u3002\u4ee3\u7801\u4e2d\u5305\u542b\u5e42\u8fd0\u7b97\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53d6\u51b3\u4e8e\u5e42\u8fd0\u7b97\u5b9e\u73b0\u65b9\u6cd5\uff0c\u901a\u5e38\u4e3a \\(O(1)\\) \u6216 \\(O(\\log n)\\) \u3002
            "},{"location":"chapter_hashing/","title":"\u7b2c 6 \u7ae0 \u00a0 \u6563\u5217\u8868","text":"

            Abstract

            \u5728\u8ba1\u7b97\u673a\u4e16\u754c\u4e2d\uff0c\u6563\u5217\u8868\u5982\u540c\u4e00\u4f4d\u667a\u80fd\u7684\u56fe\u4e66\u7ba1\u7406\u5458\u3002

            \u4ed6\u77e5\u9053\u5982\u4f55\u8ba1\u7b97\u7d22\u4e66\u53f7\uff0c\u4ece\u800c\u53ef\u4ee5\u5feb\u901f\u627e\u5230\u76ee\u6807\u4e66\u7c4d\u3002

            "},{"location":"chapter_hashing/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 6.1 \u00a0 \u54c8\u5e0c\u8868
            • 6.2 \u00a0 \u54c8\u5e0c\u51b2\u7a81
            • 6.3 \u00a0 \u54c8\u5e0c\u7b97\u6cd5
            • 6.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_hashing/hash_algorithm/","title":"6.3 \u00a0 \u54c8\u5e0c\u7b97\u6cd5","text":"

            \u5728\u4e0a\u4e24\u8282\u4e2d\uff0c\u6211\u4eec\u4e86\u89e3\u4e86\u54c8\u5e0c\u8868\u7684\u5de5\u4f5c\u539f\u7406\u548c\u54c8\u5e0c\u51b2\u7a81\u7684\u5904\u7406\u65b9\u6cd5\u3002\u7136\u800c\u65e0\u8bba\u662f\u5f00\u653e\u5bfb\u5740\u8fd8\u662f\u94fe\u5730\u5740\u6cd5\uff0c\u5b83\u4eec\u53ea\u80fd\u4fdd\u8bc1\u54c8\u5e0c\u8868\u53ef\u4ee5\u5728\u53d1\u751f\u51b2\u7a81\u65f6\u6b63\u5e38\u5de5\u4f5c\uff0c\u4f46\u65e0\u6cd5\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u7684\u53d1\u751f\u3002

            \u5982\u679c\u54c8\u5e0c\u51b2\u7a81\u8fc7\u4e8e\u9891\u7e41\uff0c\u54c8\u5e0c\u8868\u7684\u6027\u80fd\u5219\u4f1a\u6025\u5267\u52a3\u5316\u3002\u5bf9\u4e8e\u94fe\u5730\u5740\u54c8\u5e0c\u8868\uff0c\u7406\u60f3\u60c5\u51b5\u4e0b\u952e\u503c\u5bf9\u5e73\u5747\u5206\u5e03\u5728\u5404\u4e2a\u6876\u4e2d\uff0c\u8fbe\u5230\u6700\u4f73\u67e5\u8be2\u6548\u7387\uff1b\u6700\u5dee\u60c5\u51b5\u4e0b\u6240\u6709\u952e\u503c\u5bf9\u90fd\u88ab\u5b58\u50a8\u5230\u540c\u4e00\u4e2a\u6876\u4e2d\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u9000\u5316\u81f3 \\(O(n)\\) \u3002

            \u56fe\uff1a\u54c8\u5e0c\u51b2\u7a81\u7684\u6700\u4f73\u4e0e\u6700\u5dee\u60c5\u51b5

            \u952e\u503c\u5bf9\u7684\u5206\u5e03\u60c5\u51b5\u7531\u54c8\u5e0c\u51fd\u6570\u51b3\u5b9a\u3002\u56de\u5fc6\u54c8\u5e0c\u51fd\u6570\u7684\u8ba1\u7b97\u6b65\u9aa4\uff0c\u5148\u8ba1\u7b97\u54c8\u5e0c\u503c\uff0c\u518d\u5bf9\u6570\u7ec4\u957f\u5ea6\u53d6\u6a21\uff1a

            index = hash(key) % capacity\n

            \u89c2\u5bdf\u4ee5\u4e0a\u516c\u5f0f\uff0c\u5f53\u54c8\u5e0c\u8868\u5bb9\u91cf capacity \u56fa\u5b9a\u65f6\uff0c\u54c8\u5e0c\u7b97\u6cd5 hash() \u51b3\u5b9a\u4e86\u8f93\u51fa\u503c\uff0c\u8fdb\u800c\u51b3\u5b9a\u4e86\u952e\u503c\u5bf9\u5728\u54c8\u5e0c\u8868\u4e2d\u7684\u5206\u5e03\u60c5\u51b5\u3002

            \u8fd9\u610f\u5473\u7740\uff0c\u4e3a\u4e86\u51cf\u5c0f\u54c8\u5e0c\u51b2\u7a81\u7684\u53d1\u751f\u6982\u7387\uff0c\u6211\u4eec\u5e94\u5f53\u5c06\u6ce8\u610f\u529b\u96c6\u4e2d\u5728\u54c8\u5e0c\u7b97\u6cd5 hash() \u7684\u8bbe\u8ba1\u4e0a\u3002

            "},{"location":"chapter_hashing/hash_algorithm/#631","title":"6.3.1 \u00a0 \u54c8\u5e0c\u7b97\u6cd5\u7684\u76ee\u6807","text":"

            \u4e3a\u4e86\u5b9e\u73b0\u201c\u65e2\u5feb\u53c8\u7a33\u201d\u7684\u54c8\u5e0c\u8868\u6570\u636e\u7ed3\u6784\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5e94\u5305\u542b\u4ee5\u4e0b\u7279\u70b9\uff1a

            • \u786e\u5b9a\u6027\uff1a\u5bf9\u4e8e\u76f8\u540c\u7684\u8f93\u5165\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5e94\u59cb\u7ec8\u4ea7\u751f\u76f8\u540c\u7684\u8f93\u51fa\u3002\u8fd9\u6837\u624d\u80fd\u786e\u4fdd\u54c8\u5e0c\u8868\u662f\u53ef\u9760\u7684\u3002
            • \u6548\u7387\u9ad8\uff1a\u8ba1\u7b97\u54c8\u5e0c\u503c\u7684\u8fc7\u7a0b\u5e94\u8be5\u8db3\u591f\u5feb\u3002\u8ba1\u7b97\u5f00\u9500\u8d8a\u5c0f\uff0c\u54c8\u5e0c\u8868\u7684\u5b9e\u7528\u6027\u8d8a\u9ad8\u3002
            • \u5747\u5300\u5206\u5e03\uff1a\u54c8\u5e0c\u7b97\u6cd5\u5e94\u4f7f\u5f97\u952e\u503c\u5bf9\u5e73\u5747\u5206\u5e03\u5728\u54c8\u5e0c\u8868\u4e2d\u3002\u5206\u5e03\u8d8a\u5e73\u5747\uff0c\u54c8\u5e0c\u51b2\u7a81\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\u3002

            \u5b9e\u9645\u4e0a\uff0c\u54c8\u5e0c\u7b97\u6cd5\u9664\u4e86\u53ef\u4ee5\u7528\u4e8e\u5b9e\u73b0\u54c8\u5e0c\u8868\uff0c\u8fd8\u5e7f\u6cdb\u5e94\u7528\u4e8e\u5176\u4ed6\u9886\u57df\u4e2d\u3002\u4e3e\u4e24\u4e2a\u4f8b\u5b50\uff1a

            • \u5bc6\u7801\u5b58\u50a8\uff1a\u4e3a\u4e86\u4fdd\u62a4\u7528\u6237\u5bc6\u7801\u7684\u5b89\u5168\uff0c\u7cfb\u7edf\u901a\u5e38\u4e0d\u4f1a\u76f4\u63a5\u5b58\u50a8\u7528\u6237\u7684\u660e\u6587\u5bc6\u7801\uff0c\u800c\u662f\u5b58\u50a8\u5bc6\u7801\u7684\u54c8\u5e0c\u503c\u3002\u5f53\u7528\u6237\u8f93\u5165\u5bc6\u7801\u65f6\uff0c\u7cfb\u7edf\u4f1a\u5bf9\u8f93\u5165\u7684\u5bc6\u7801\u8ba1\u7b97\u54c8\u5e0c\u503c\uff0c\u7136\u540e\u4e0e\u5b58\u50a8\u7684\u54c8\u5e0c\u503c\u8fdb\u884c\u6bd4\u8f83\u3002\u5982\u679c\u4e24\u8005\u5339\u914d\uff0c\u90a3\u4e48\u5bc6\u7801\u5c31\u88ab\u89c6\u4e3a\u6b63\u786e\u3002
            • \u6570\u636e\u5b8c\u6574\u6027\u68c0\u67e5\uff1a\u6570\u636e\u53d1\u9001\u65b9\u53ef\u4ee5\u8ba1\u7b97\u6570\u636e\u7684\u54c8\u5e0c\u503c\u5e76\u5c06\u5176\u4e00\u540c\u53d1\u9001\uff1b\u63a5\u6536\u65b9\u53ef\u4ee5\u91cd\u65b0\u8ba1\u7b97\u63a5\u6536\u5230\u7684\u6570\u636e\u7684\u54c8\u5e0c\u503c\uff0c\u5e76\u4e0e\u63a5\u6536\u5230\u7684\u54c8\u5e0c\u503c\u8fdb\u884c\u6bd4\u8f83\u3002\u5982\u679c\u4e24\u8005\u5339\u914d\uff0c\u90a3\u4e48\u6570\u636e\u5c31\u88ab\u89c6\u4e3a\u5b8c\u6574\u7684\u3002

            \u5bf9\u4e8e\u5bc6\u7801\u5b66\u7684\u76f8\u5173\u5e94\u7528\uff0c\u54c8\u5e0c\u7b97\u6cd5\u9700\u8981\u6ee1\u8db3\u66f4\u9ad8\u7684\u5b89\u5168\u6807\u51c6\uff0c\u4ee5\u9632\u6b62\u4ece\u54c8\u5e0c\u503c\u63a8\u5bfc\u51fa\u539f\u59cb\u5bc6\u7801\u7b49\u9006\u5411\u5de5\u7a0b\uff0c\u5305\u62ec\uff1a

            • \u6297\u78b0\u649e\u6027\uff1a\u5e94\u5f53\u6781\u5176\u56f0\u96be\u627e\u5230\u4e24\u4e2a\u4e0d\u540c\u7684\u8f93\u5165\uff0c\u4f7f\u5f97\u5b83\u4eec\u7684\u54c8\u5e0c\u503c\u76f8\u540c\u3002
            • \u96ea\u5d29\u6548\u5e94\uff1a\u8f93\u5165\u7684\u5fae\u5c0f\u53d8\u5316\u5e94\u5f53\u5bfc\u81f4\u8f93\u51fa\u7684\u663e\u8457\u4e14\u4e0d\u53ef\u9884\u6d4b\u7684\u53d8\u5316\u3002

            \u8bf7\u6ce8\u610f\uff0c\u201c\u5747\u5300\u5206\u5e03\u201d\u4e0e\u201c\u6297\u78b0\u649e\u6027\u201d\u662f\u4e24\u4e2a\u72ec\u7acb\u7684\u6982\u5ff5\uff0c\u6ee1\u8db3\u5747\u5300\u5206\u5e03\u4e0d\u4e00\u5b9a\u6ee1\u8db3\u6297\u78b0\u649e\u6027\u3002\u4f8b\u5982\uff0c\u5728\u968f\u673a\u8f93\u5165 key \u4e0b\uff0c\u54c8\u5e0c\u51fd\u6570 key % 100 \u53ef\u4ee5\u4ea7\u751f\u5747\u5300\u5206\u5e03\u7684\u8f93\u51fa\u3002\u7136\u800c\u8be5\u54c8\u5e0c\u7b97\u6cd5\u8fc7\u4e8e\u7b80\u5355\uff0c\u6240\u6709\u540e\u4e24\u4f4d\u76f8\u7b49\u7684 key \u7684\u8f93\u51fa\u90fd\u76f8\u540c\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u4ece\u54c8\u5e0c\u503c\u53cd\u63a8\u51fa\u53ef\u7528\u7684 key \uff0c\u4ece\u800c\u7834\u89e3\u5bc6\u7801\u3002

            "},{"location":"chapter_hashing/hash_algorithm/#632","title":"6.3.2 \u00a0 \u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1","text":"

            \u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1\u662f\u4e00\u4e2a\u590d\u6742\u4e14\u9700\u8981\u8003\u8651\u8bb8\u591a\u56e0\u7d20\u7684\u95ee\u9898\u3002\u7136\u800c\u5bf9\u4e8e\u7b80\u5355\u573a\u666f\uff0c\u6211\u4eec\u4e5f\u80fd\u8bbe\u8ba1\u4e00\u4e9b\u7b80\u5355\u7684\u54c8\u5e0c\u7b97\u6cd5\u3002\u4ee5\u5b57\u7b26\u4e32\u54c8\u5e0c\u4e3a\u4f8b\uff1a

            • \u52a0\u6cd5\u54c8\u5e0c\uff1a\u5bf9\u8f93\u5165\u7684\u6bcf\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u8fdb\u884c\u76f8\u52a0\uff0c\u5c06\u5f97\u5230\u7684\u603b\u548c\u4f5c\u4e3a\u54c8\u5e0c\u503c\u3002
            • \u4e58\u6cd5\u54c8\u5e0c\uff1a\u5229\u7528\u4e86\u4e58\u6cd5\u7684\u4e0d\u76f8\u5173\u6027\uff0c\u6bcf\u8f6e\u4e58\u4ee5\u4e00\u4e2a\u5e38\u6570\uff0c\u5c06\u5404\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u7d2f\u79ef\u5230\u54c8\u5e0c\u503c\u4e2d\u3002
            • \u5f02\u6216\u54c8\u5e0c\uff1a\u5c06\u8f93\u5165\u6570\u636e\u7684\u6bcf\u4e2a\u5143\u7d20\u901a\u8fc7\u5f02\u6216\u64cd\u4f5c\u7d2f\u79ef\u5230\u4e00\u4e2a\u54c8\u5e0c\u503c\u4e2d\u3002
            • \u65cb\u8f6c\u54c8\u5e0c\uff1a\u5c06\u6bcf\u4e2a\u5b57\u7b26\u7684 ASCII \u7801\u7d2f\u79ef\u5230\u4e00\u4e2a\u54c8\u5e0c\u503c\u4e2d\uff0c\u6bcf\u6b21\u7d2f\u79ef\u4e4b\u524d\u90fd\u4f1a\u5bf9\u54c8\u5e0c\u503c\u8fdb\u884c\u65cb\u8f6c\u64cd\u4f5c\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust simple_hash.java
            /* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(String key) {\nlong hash = 0;\nfinal int MODULUS = 1000000007;\nfor (char c : key.toCharArray()) {\nhash = (hash + (int) c) % MODULUS;\n}\nreturn (int) hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(String key) {\nlong hash = 0;\nfinal int MODULUS = 1000000007;\nfor (char c : key.toCharArray()) {\nhash = (31 * hash + (int) c) % MODULUS;\n}\nreturn (int) hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(String key) {\nint hash = 0;\nfinal int MODULUS = 1000000007;\nfor (char c : key.toCharArray()) {\nhash ^= (int) c;\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(String key) {\nlong hash = 0;\nfinal int MODULUS = 1000000007;\nfor (char c : key.toCharArray()) {\nhash = ((hash << 4) ^ (hash >> 28) ^ (int) c) % MODULUS;\n}\nreturn (int) hash;\n}\n
            simple_hash.cpp
            /* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(string key) {\nlong long hash = 0;\nconst int MODULUS = 1000000007;\nfor (unsigned char c : key) {\nhash = (hash + (int)c) % MODULUS;\n}\nreturn (int)hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(string key) {\nlong long hash = 0;\nconst int MODULUS = 1000000007;\nfor (unsigned char c : key) {\nhash = (31 * hash + (int)c) % MODULUS;\n}\nreturn (int)hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(string key) {\nint hash = 0;\nconst int MODULUS = 1000000007;\nfor (unsigned char c : key) {\ncout<<(int)c<<endl;\nhash ^= (int)c;\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(string key) {\nlong long hash = 0;\nconst int MODULUS = 1000000007;\nfor (unsigned char c : key) {\nhash = ((hash << 4) ^ (hash >> 28) ^ (int)c) % MODULUS;\n}\nreturn (int)hash;\n}\n
            simple_hash.py
            def add_hash(key: str) -> int:\n\"\"\"\u52a0\u6cd5\u54c8\u5e0c\"\"\"\nhash = 0\nmodulus = 1000000007\nfor c in key:\nhash += ord(c)\nreturn hash % modulus\ndef mul_hash(key: str) -> int:\n\"\"\"\u4e58\u6cd5\u54c8\u5e0c\"\"\"\nhash = 0\nmodulus = 1000000007\nfor c in key:\nhash = 31 * hash + ord(c)\nreturn hash % modulus\ndef xor_hash(key: str) -> int:\n\"\"\"\u5f02\u6216\u54c8\u5e0c\"\"\"\nhash = 0\nmodulus = 1000000007\nfor c in key:\nhash ^= ord(c)\nreturn hash % modulus\ndef rot_hash(key: str) -> int:\n\"\"\"\u65cb\u8f6c\u54c8\u5e0c\"\"\"\nhash = 0\nmodulus = 1000000007\nfor c in key:\nhash = (hash << 4) ^ (hash >> 28) ^ ord(c)\nreturn hash % modulus\n
            simple_hash.go
            /* \u52a0\u6cd5\u54c8\u5e0c */\nfunc addHash(key string) int {\nvar hash int64\nvar modulus int64\nmodulus = 1000000007\nfor _, b := range []byte(key) {\nhash = (hash + int64(b)) % modulus\n}\nreturn int(hash)\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunc mulHash(key string) int {\nvar hash int64\nvar modulus int64\nmodulus = 1000000007\nfor _, b := range []byte(key) {\nhash = (31*hash + int64(b)) % modulus\n}\nreturn int(hash)\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nfunc xorHash(key string) int {\nhash := 0\nmodulus := 1000000007\nfor _, b := range []byte(key) {\nfmt.Println(int(b))\nhash ^= int(b)\nhash = (31*hash + int(b)) % modulus\n}\nreturn hash & modulus\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunc rotHash(key string) int {\nvar hash int64\nvar modulus int64\nmodulus = 1000000007\nfor _, b := range []byte(key) {\nhash = ((hash << 4) ^ (hash >> 28) ^ int64(b)) % modulus\n}\nreturn int(hash)\n}\n
            simple_hash.js
            /* \u52a0\u6cd5\u54c8\u5e0c */\nfunction addHash(key) {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = (hash + c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunction mulHash(key) {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = (31 * hash + c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nfunction xorHash(key) {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash ^= c.charCodeAt(0);\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunction rotHash(key) {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = ((hash << 4) ^ (hash >> 28) ^ c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n
            simple_hash.ts
            /* \u52a0\u6cd5\u54c8\u5e0c */\nfunction addHash(key: string): number {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = (hash + c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunction mulHash(key: string): number {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = (31 * hash + c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nfunction xorHash(key: string): number {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash ^= c.charCodeAt(0);\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunction rotHash(key: string): number {\nlet hash = 0;\nconst MODULUS = 1000000007;\nfor (const c of key) {\nhash = ((hash << 4) ^ (hash >> 28) ^ c.charCodeAt(0)) % MODULUS;\n}\nreturn hash;\n}\n
            simple_hash.c
            [class]{}-[func]{addHash}\n[class]{}-[func]{mulHash}\n[class]{}-[func]{xorHash}\n[class]{}-[func]{rotHash}\n
            simple_hash.cs
            /* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(string key) {\nlong hash = 0;\nconst int MODULUS = 1000000007;\nforeach (char c in key) {\nhash = (hash + c) % MODULUS;\n}\nreturn (int)hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(string key) {\nlong hash = 0;\nconst int MODULUS = 1000000007;\nforeach (char c in key) {\nhash = (31 * hash + c) % MODULUS;\n}\nreturn (int)hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(string key) {\nint hash = 0;\nconst int MODULUS = 1000000007;\nforeach (char c in key) {\nhash ^= c;\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(string key) {\nlong hash = 0;\nconst int MODULUS = 1000000007;\nforeach (char c in key) {\nhash = ((hash << 4) ^ (hash >> 28) ^ c) % MODULUS;\n}\nreturn (int)hash;\n}\n
            simple_hash.swift
            /* \u52a0\u6cd5\u54c8\u5e0c */\nfunc addHash(key: String) -> Int {\nvar hash = 0\nlet MODULUS = 1_000_000_007\nfor c in key {\nfor scalar in c.unicodeScalars {\nhash = (hash + Int(scalar.value)) % MODULUS\n}\n}\nreturn hash\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nfunc mulHash(key: String) -> Int {\nvar hash = 0\nlet MODULUS = 1_000_000_007\nfor c in key {\nfor scalar in c.unicodeScalars {\nhash = (31 * hash + Int(scalar.value)) % MODULUS\n}\n}\nreturn hash\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nfunc xorHash(key: String) -> Int {\nvar hash = 0\nlet MODULUS = 1_000_000_007\nfor c in key {\nfor scalar in c.unicodeScalars {\nhash ^= Int(scalar.value)\n}\n}\nreturn hash & MODULUS\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nfunc rotHash(key: String) -> Int {\nvar hash = 0\nlet MODULUS = 1_000_000_007\nfor c in key {\nfor scalar in c.unicodeScalars {\nhash = ((hash << 4) ^ (hash >> 28) ^ Int(scalar.value)) % MODULUS\n}\n}\nreturn hash\n}\n
            simple_hash.zig
            [class]{}-[func]{addHash}\n[class]{}-[func]{mulHash}\n[class]{}-[func]{xorHash}\n[class]{}-[func]{rotHash}\n
            simple_hash.dart
            /* \u52a0\u6cd5\u54c8\u5e0c */\nint addHash(String key) {\nint hash = 0;\nfinal int MODULUS = 1000000007;\nfor (int i = 0; i < key.length; i++) {\nhash = (hash + key.codeUnitAt(i)) % MODULUS;\n}\nreturn hash;\n}\n/* \u4e58\u6cd5\u54c8\u5e0c */\nint mulHash(String key) {\nint hash = 0;\nfinal int MODULUS = 1000000007;\nfor (int i = 0; i < key.length; i++) {\nhash = (31 * hash + key.codeUnitAt(i)) % MODULUS;\n}\nreturn hash;\n}\n/* \u5f02\u6216\u54c8\u5e0c */\nint xorHash(String key) {\nint hash = 0;\nfinal int MODULUS = 1000000007;\nfor (int i = 0; i < key.length; i++) {\nhash ^= key.codeUnitAt(i);\n}\nreturn hash & MODULUS;\n}\n/* \u65cb\u8f6c\u54c8\u5e0c */\nint rotHash(String key) {\nint hash = 0;\nfinal int MODULUS = 1000000007;\nfor (int i = 0; i < key.length; i++) {\nhash = ((hash << 4) ^ (hash >> 28) ^ key.codeUnitAt(i)) % MODULUS;\n}\nreturn hash;\n}\n
            simple_hash.rs
            [class]{}-[func]{add_hash}\n[class]{}-[func]{mul_hash}\n[class]{}-[func]{xor_hash}\n[class]{}-[func]{rot_hash}\n

            \u89c2\u5bdf\u53d1\u73b0\uff0c\u6bcf\u79cd\u54c8\u5e0c\u7b97\u6cd5\u7684\u6700\u540e\u4e00\u6b65\u90fd\u662f\u5bf9\u5927\u8d28\u6570 \\(1000000007\\) \u53d6\u6a21\uff0c\u4ee5\u786e\u4fdd\u54c8\u5e0c\u503c\u5728\u5408\u9002\u7684\u8303\u56f4\u5185\u3002\u503c\u5f97\u601d\u8003\u7684\u662f\uff0c\u4e3a\u4ec0\u4e48\u8981\u5f3a\u8c03\u5bf9\u8d28\u6570\u53d6\u6a21\uff0c\u6216\u8005\u8bf4\u5bf9\u5408\u6570\u53d6\u6a21\u7684\u5f0a\u7aef\u662f\u4ec0\u4e48\uff1f\u8fd9\u662f\u4e00\u4e2a\u6709\u8da3\u7684\u95ee\u9898\u3002

            \u5148\u629b\u51fa\u7ed3\u8bba\uff1a\u5f53\u6211\u4eec\u4f7f\u7528\u5927\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\u65f6\uff0c\u53ef\u4ee5\u6700\u5927\u5316\u5730\u4fdd\u8bc1\u54c8\u5e0c\u503c\u7684\u5747\u5300\u5206\u5e03\u3002\u56e0\u4e3a\u8d28\u6570\u4e0d\u4f1a\u4e0e\u5176\u4ed6\u6570\u5b57\u5b58\u5728\u516c\u7ea6\u6570\uff0c\u53ef\u4ee5\u51cf\u5c11\u56e0\u53d6\u6a21\u64cd\u4f5c\u800c\u4ea7\u751f\u7684\u5468\u671f\u6027\u6a21\u5f0f\uff0c\u4ece\u800c\u907f\u514d\u54c8\u5e0c\u51b2\u7a81\u3002

            \u4e3e\u4e2a\u4f8b\u5b50\uff0c\u5047\u8bbe\u6211\u4eec\u9009\u62e9\u5408\u6570 \\(9\\) \u4f5c\u4e3a\u6a21\u6570\uff0c\u5b83\u53ef\u4ee5\u88ab \\(3\\) \u6574\u9664\u3002\u90a3\u4e48\u6240\u6709\u53ef\u4ee5\u88ab \\(3\\) \u6574\u9664\u7684 key \u90fd\u4f1a\u88ab\u6620\u5c04\u5230 \\(0\\) , \\(3\\) , \\(6\\) \u8fd9\u4e09\u4e2a\u54c8\u5e0c\u503c\u3002

            \\[ \\begin{aligned} \\text{modulus} & = 9 \\newline \\text{key} & = \\{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \\cdots \\} \\newline \\text{hash} & = \\{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\\cdots \\} \\end{aligned} \\]

            \u5982\u679c\u8f93\u5165 key \u6070\u597d\u6ee1\u8db3\u8fd9\u79cd\u7b49\u5dee\u6570\u5217\u7684\u6570\u636e\u5206\u5e03\uff0c\u90a3\u4e48\u54c8\u5e0c\u503c\u5c31\u4f1a\u51fa\u73b0\u805a\u5806\uff0c\u4ece\u800c\u52a0\u91cd\u54c8\u5e0c\u51b2\u7a81\u3002\u73b0\u5728\uff0c\u5047\u8bbe\u5c06 modulus \u66ff\u6362\u4e3a\u8d28\u6570 \\(13\\) \uff0c\u7531\u4e8e key \u548c modulus \u4e4b\u95f4\u4e0d\u5b58\u5728\u516c\u7ea6\u6570\uff0c\u8f93\u51fa\u7684\u54c8\u5e0c\u503c\u7684\u5747\u5300\u6027\u4f1a\u660e\u663e\u63d0\u5347\u3002

            \\[ \\begin{aligned} \\text{modulus} & = 13 \\newline \\text{key} & = \\{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \\cdots \\} \\newline \\text{hash} & = \\{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \\cdots \\} \\end{aligned} \\]

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u5982\u679c\u80fd\u591f\u4fdd\u8bc1 key \u662f\u968f\u673a\u5747\u5300\u5206\u5e03\u7684\uff0c\u90a3\u4e48\u9009\u62e9\u8d28\u6570\u6216\u8005\u5408\u6570\u4f5c\u4e3a\u6a21\u6570\u90fd\u662f\u53ef\u4ee5\u7684\uff0c\u5b83\u4eec\u90fd\u80fd\u8f93\u51fa\u5747\u5300\u5206\u5e03\u7684\u54c8\u5e0c\u503c\u3002\u800c\u5f53 key \u7684\u5206\u5e03\u5b58\u5728\u67d0\u79cd\u5468\u671f\u6027\u65f6\uff0c\u5bf9\u5408\u6570\u53d6\u6a21\u66f4\u5bb9\u6613\u51fa\u73b0\u805a\u96c6\u73b0\u8c61\u3002

            \u603b\u800c\u8a00\u4e4b\uff0c\u6211\u4eec\u901a\u5e38\u9009\u53d6\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\uff0c\u5e76\u4e14\u8fd9\u4e2a\u8d28\u6570\u6700\u597d\u8db3\u591f\u5927\uff0c\u4ee5\u5c3d\u53ef\u80fd\u6d88\u9664\u5468\u671f\u6027\u6a21\u5f0f\uff0c\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u7a33\u5065\u6027\u3002

            "},{"location":"chapter_hashing/hash_algorithm/#633","title":"6.3.3 \u00a0 \u5e38\u89c1\u54c8\u5e0c\u7b97\u6cd5","text":"

            \u4e0d\u96be\u53d1\u73b0\uff0c\u4ee5\u4e0a\u4ecb\u7ecd\u7684\u7b80\u5355\u54c8\u5e0c\u7b97\u6cd5\u90fd\u6bd4\u8f83\u201c\u8106\u5f31\u201d\uff0c\u8fdc\u8fdc\u6ca1\u6709\u8fbe\u5230\u54c8\u5e0c\u7b97\u6cd5\u7684\u8bbe\u8ba1\u76ee\u6807\u3002\u4f8b\u5982\uff0c\u7531\u4e8e\u52a0\u6cd5\u548c\u5f02\u6216\u6ee1\u8db3\u4ea4\u6362\u5f8b\uff0c\u56e0\u6b64\u52a0\u6cd5\u54c8\u5e0c\u548c\u5f02\u6216\u54c8\u5e0c\u65e0\u6cd5\u533a\u5206\u5185\u5bb9\u76f8\u540c\u4f46\u987a\u5e8f\u4e0d\u540c\u7684\u5b57\u7b26\u4e32\uff0c\u8fd9\u53ef\u80fd\u4f1a\u52a0\u5267\u54c8\u5e0c\u51b2\u7a81\uff0c\u5e76\u5f15\u8d77\u4e00\u4e9b\u5b89\u5168\u95ee\u9898\u3002

            \u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u7528\u4e00\u4e9b\u6807\u51c6\u54c8\u5e0c\u7b97\u6cd5\uff0c\u4f8b\u5982 MD5 , SHA-1 , SHA-2 , SHA3 \u7b49\u3002\u5b83\u4eec\u53ef\u4ee5\u5c06\u4efb\u610f\u957f\u5ea6\u7684\u8f93\u5165\u6570\u636e\u6620\u5c04\u5230\u6052\u5b9a\u957f\u5ea6\u7684\u54c8\u5e0c\u503c\u3002

            \u8fd1\u4e00\u4e2a\u4e16\u7eaa\u4ee5\u6765\uff0c\u54c8\u5e0c\u7b97\u6cd5\u5904\u5728\u4e0d\u65ad\u5347\u7ea7\u4e0e\u4f18\u5316\u7684\u8fc7\u7a0b\u4e2d\u3002\u4e00\u90e8\u5206\u7814\u7a76\u4eba\u5458\u52aa\u529b\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u6027\u80fd\uff0c\u53e6\u4e00\u90e8\u5206\u7814\u7a76\u4eba\u5458\u548c\u9ed1\u5ba2\u5219\u81f4\u529b\u4e8e\u5bfb\u627e\u54c8\u5e0c\u7b97\u6cd5\u7684\u5b89\u5168\u6027\u95ee\u9898\u3002\u76f4\u81f3\u76ee\u524d\uff1a

            • MD5 \u548c SHA-1 \u5df2\u591a\u6b21\u88ab\u6210\u529f\u653b\u51fb\uff0c\u56e0\u6b64\u5b83\u4eec\u88ab\u5404\u7c7b\u5b89\u5168\u5e94\u7528\u5f03\u7528\u3002
            • SHA-2 \u7cfb\u5217\u4e2d\u7684 SHA-256 \u662f\u6700\u5b89\u5168\u7684\u54c8\u5e0c\u7b97\u6cd5\u4e4b\u4e00\uff0c\u4ecd\u672a\u51fa\u73b0\u6210\u529f\u7684\u653b\u51fb\u6848\u4f8b\uff0c\u56e0\u6b64\u5e38\u88ab\u7528\u5728\u5404\u7c7b\u5b89\u5168\u5e94\u7528\u4e0e\u534f\u8bae\u4e2d\u3002
            • SHA-3 \u76f8\u8f83 SHA-2 \u7684\u5b9e\u73b0\u5f00\u9500\u66f4\u4f4e\u3001\u8ba1\u7b97\u6548\u7387\u66f4\u9ad8\uff0c\u4f46\u76ee\u524d\u4f7f\u7528\u8986\u76d6\u5ea6\u4e0d\u5982 SHA-2 \u7cfb\u5217\u3002
            MD5 SHA-1 SHA-2 SHA-3 \u63a8\u51fa\u65f6\u95f4 1992 1995 2002 2008 \u8f93\u51fa\u957f\u5ea6 128 bits 160 bits 256 / 512 bits 224/256/384/512 bits \u54c8\u5e0c\u51b2\u7a81 \u8f83\u591a \u8f83\u591a \u5f88\u5c11 \u5f88\u5c11 \u5b89\u5168\u7b49\u7ea7 \u4f4e\uff0c\u5df2\u88ab\u6210\u529f\u653b\u51fb \u4f4e\uff0c\u5df2\u88ab\u6210\u529f\u653b\u51fb \u9ad8 \u9ad8 \u5e94\u7528 \u5df2\u88ab\u5f03\u7528\uff0c\u4ecd\u7528\u4e8e\u6570\u636e\u5b8c\u6574\u6027\u68c0\u67e5 \u5df2\u88ab\u5f03\u7528 \u52a0\u5bc6\u8d27\u5e01\u4ea4\u6613\u9a8c\u8bc1\u3001\u6570\u5b57\u7b7e\u540d\u7b49 \u53ef\u7528\u4e8e\u66ff\u4ee3 SHA-2"},{"location":"chapter_hashing/hash_algorithm/#634","title":"6.3.4 \u00a0 \u6570\u636e\u7ed3\u6784\u7684\u54c8\u5e0c\u503c","text":"

            \u6211\u4eec\u77e5\u9053\uff0c\u54c8\u5e0c\u8868\u7684 key \u53ef\u4ee5\u662f\u6574\u6570\u3001\u5c0f\u6570\u6216\u5b57\u7b26\u4e32\u7b49\u6570\u636e\u7c7b\u578b\u3002\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u4e3a\u8fd9\u4e9b\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u5185\u7f6e\u7684\u54c8\u5e0c\u7b97\u6cd5\uff0c\u7528\u4e8e\u8ba1\u7b97\u54c8\u5e0c\u8868\u4e2d\u7684\u6876\u7d22\u5f15\u3002\u4ee5 Python \u4e3a\u4f8b\uff0c\u6211\u4eec\u53ef\u4ee5\u8c03\u7528 hash() \u51fd\u6570\u6765\u8ba1\u7b97\u5404\u79cd\u6570\u636e\u7c7b\u578b\u7684\u54c8\u5e0c\u503c\uff0c\u5305\u62ec\uff1a

            • \u6574\u6570\u548c\u5e03\u5c14\u91cf\u7684\u54c8\u5e0c\u503c\u5c31\u662f\u5176\u672c\u8eab\u3002
            • \u6d6e\u70b9\u6570\u548c\u5b57\u7b26\u4e32\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\u8f83\u4e3a\u590d\u6742\uff0c\u6709\u5174\u8da3\u7684\u540c\u5b66\u8bf7\u81ea\u884c\u5b66\u4e60\u3002
            • \u5143\u7ec4\u7684\u54c8\u5e0c\u503c\u662f\u5bf9\u5176\u4e2d\u6bcf\u4e00\u4e2a\u5143\u7d20\u8fdb\u884c\u54c8\u5e0c\uff0c\u7136\u540e\u5c06\u8fd9\u4e9b\u54c8\u5e0c\u503c\u7ec4\u5408\u8d77\u6765\uff0c\u5f97\u5230\u5355\u4e00\u7684\u54c8\u5e0c\u503c\u3002
            • \u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u57fa\u4e8e\u5176\u5185\u5b58\u5730\u5740\u751f\u6210\u3002\u901a\u8fc7\u91cd\u5199\u5bf9\u8c61\u7684\u54c8\u5e0c\u65b9\u6cd5\uff0c\u53ef\u5b9e\u73b0\u57fa\u4e8e\u5185\u5bb9\u751f\u6210\u54c8\u5e0c\u503c\u3002

            Tip

            \u8bf7\u6ce8\u610f\uff0c\u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u7684\u5185\u7f6e\u54c8\u5e0c\u503c\u8ba1\u7b97\u51fd\u6570\u7684\u5b9a\u4e49\u548c\u65b9\u6cd5\u4e0d\u540c\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust built_in_hash.java
            int num = 3;\nint hashNum = Integer.hashCode(num);\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\nboolean bol = true;\nint hashBol = Boolean.hashCode(bol);\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a 1231\ndouble dec = 3.14159;\nint hashDec = Double.hashCode(dec);\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -1340954729\nString str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.hashCode();\n// \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a -727081396\nObject[] arr = { 12836, \"\u5c0f\u54c8\" };\nint hashTup = Arrays.hashCode(arr);\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 1151158\nListNode obj = new ListNode(0);\nint hashObj = obj.hashCode();\n// \u8282\u70b9\u5bf9\u8c61 utils.ListNode@7dc5e7b4 \u7684\u54c8\u5e0c\u503c\u4e3a 2110121908\n
            built_in_hash.cpp
            int num = 3;\nsize_t hashNum = hash<int>()(num);\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\nbool bol = true;\nsize_t hashBol = hash<bool>()(bol);\n// \u5e03\u5c14\u91cf 1 \u7684\u54c8\u5e0c\u503c\u4e3a 1\ndouble dec = 3.14159;\nsize_t hashDec = hash<double>()(dec);\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 4614256650576692846\nstring str = \"Hello \u7b97\u6cd5\";\nsize_t hashStr = hash<string>()(str);\n// \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a 15466937326284535026\n// \u5728 C++ \u4e2d\uff0c\u5185\u7f6e std:hash() \u4ec5\u63d0\u4f9b\u57fa\u672c\u6570\u636e\u7c7b\u578b\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\n// \u6570\u7ec4\u3001\u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u8ba1\u7b97\u9700\u8981\u81ea\u884c\u5b9e\u73b0\n
            built_in_hash.py
            num = 3\nhash_num = hash(num)\n# \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3\nbol = True\nhash_bol = hash(bol)\n# \u5e03\u5c14\u91cf True \u7684\u54c8\u5e0c\u503c\u4e3a 1\ndec = 3.14159\nhash_dec = hash(dec)\n# \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 326484311674566659\nstr = \"Hello \u7b97\u6cd5\"\nhash_str = hash(str)\n# \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a 4617003410720528961\ntup = (12836, \"\u5c0f\u54c8\")\nhash_tup = hash(tup)\n# \u5143\u7ec4 (12836, '\u5c0f\u54c8') \u7684\u54c8\u5e0c\u503c\u4e3a 1029005403108185979\nobj = ListNode(0)\nhash_obj = hash(obj)\n# \u8282\u70b9\u5bf9\u8c61 <ListNode object at 0x1058fd810> \u7684\u54c8\u5e0c\u503c\u4e3a 274267521\n
            built_in_hash.go
            \n
            built_in_hash.js
            \n
            built_in_hash.ts
            \n
            built_in_hash.c
            \n
            built_in_hash.cs
            int num = 3;\nint hashNum = num.GetHashCode();\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 3;\nbool bol = true;\nint hashBol = bol.GetHashCode();\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a 1;\ndouble dec = 3.14159;\nint hashDec = dec.GetHashCode();\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -1340954729;\nstring str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.GetHashCode();\n// \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a -586107568;\nobject[] arr = { 12836, \"\u5c0f\u54c8\" };\nint hashTup = arr.GetHashCode();\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 42931033;\nListNode obj = new ListNode(0);\nint hashObj = obj.GetHashCode();\n// \u8282\u70b9\u5bf9\u8c61 0 \u7684\u54c8\u5e0c\u503c\u4e3a 39053774;\n
            built_in_hash.swift
            let num = 3\nlet hashNum = num.hashValue\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 9047044699613009734\nlet bol = true\nlet hashBol = bol.hashValue\n// \u5e03\u5c14\u91cf true \u7684\u54c8\u5e0c\u503c\u4e3a -4431640247352757451\nlet dec = 3.14159\nlet hashDec = dec.hashValue\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a -2465384235396674631\nlet str = \"Hello \u7b97\u6cd5\"\nlet hashStr = str.hashValue\n// \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a -7850626797806988787\nlet arr = [AnyHashable(12836), AnyHashable(\"\u5c0f\u54c8\")]\nlet hashTup = arr.hashValue\n// \u6570\u7ec4 [AnyHashable(12836), AnyHashable(\"\u5c0f\u54c8\")] \u7684\u54c8\u5e0c\u503c\u4e3a -2308633508154532996\nlet obj = ListNode(x: 0)\nlet hashObj = obj.hashValue\n// \u8282\u70b9\u5bf9\u8c61 utils.ListNode \u7684\u54c8\u5e0c\u503c\u4e3a -2434780518035996159\n
            built_in_hash.zig
            \n
            built_in_hash.dart
            int num = 3;\nint hashNum = num.hashCode;\n// \u6574\u6570 3 \u7684\u54c8\u5e0c\u503c\u4e3a 34803\nbool bol = true;\nint hashBol = bol.hashCode;\n// \u5e03\u5c14\u503c true \u7684\u54c8\u5e0c\u503c\u4e3a 1231\ndouble dec = 3.14159;\nint hashDec = dec.hashCode;\n// \u5c0f\u6570 3.14159 \u7684\u54c8\u5e0c\u503c\u4e3a 2570631074981783\nString str = \"Hello \u7b97\u6cd5\";\nint hashStr = str.hashCode;\n// \u5b57\u7b26\u4e32 Hello \u7b97\u6cd5 \u7684\u54c8\u5e0c\u503c\u4e3a 468167534\nList arr = [12836, \"\u5c0f\u54c8\"];\nint hashArr = arr.hashCode;\n// \u6570\u7ec4 [12836, \u5c0f\u54c8] \u7684\u54c8\u5e0c\u503c\u4e3a 976512528\nListNode obj = new ListNode(0);\nint hashObj = obj.hashCode;\n// \u8282\u70b9\u5bf9\u8c61 Instance of 'ListNode' \u7684\u54c8\u5e0c\u503c\u4e3a 1033450432\n
            built_in_hash.rs
            \n

            \u5728\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u53ea\u6709\u4e0d\u53ef\u53d8\u5bf9\u8c61\u624d\u53ef\u4f5c\u4e3a\u54c8\u5e0c\u8868\u7684 key \u3002\u5047\u5982\u6211\u4eec\u5c06\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\u4f5c\u4e3a key \uff0c\u5f53\u5217\u8868\u7684\u5185\u5bb9\u53d1\u751f\u53d8\u5316\u65f6\uff0c\u5b83\u7684\u54c8\u5e0c\u503c\u4e5f\u968f\u4e4b\u6539\u53d8\uff0c\u6211\u4eec\u5c31\u65e0\u6cd5\u5728\u54c8\u5e0c\u8868\u4e2d\u67e5\u8be2\u5230\u539f\u5148\u7684 value \u4e86\u3002

            \u867d\u7136\u81ea\u5b9a\u4e49\u5bf9\u8c61\uff08\u6bd4\u5982\u94fe\u8868\u8282\u70b9\uff09\u7684\u6210\u5458\u53d8\u91cf\u662f\u53ef\u53d8\u7684\uff0c\u4f46\u5b83\u662f\u53ef\u54c8\u5e0c\u7684\u3002\u8fd9\u662f\u56e0\u4e3a\u5bf9\u8c61\u7684\u54c8\u5e0c\u503c\u901a\u5e38\u662f\u57fa\u4e8e\u5185\u5b58\u5730\u5740\u751f\u6210\u7684\uff0c\u5373\u4f7f\u5bf9\u8c61\u7684\u5185\u5bb9\u53d1\u751f\u4e86\u53d8\u5316\uff0c\u4f46\u5b83\u7684\u5185\u5b58\u5730\u5740\u4e0d\u53d8\uff0c\u54c8\u5e0c\u503c\u4ecd\u7136\u662f\u4e0d\u53d8\u7684\u3002

            \u7ec6\u5fc3\u7684\u4f60\u53ef\u80fd\u53d1\u73b0\u5728\u4e0d\u540c\u63a7\u5236\u53f0\u4e2d\u8fd0\u884c\u7a0b\u5e8f\u65f6\uff0c\u8f93\u51fa\u7684\u54c8\u5e0c\u503c\u662f\u4e0d\u540c\u7684\u3002\u8fd9\u662f\u56e0\u4e3a Python \u89e3\u91ca\u5668\u5728\u6bcf\u6b21\u542f\u52a8\u65f6\uff0c\u90fd\u4f1a\u4e3a\u5b57\u7b26\u4e32\u54c8\u5e0c\u51fd\u6570\u52a0\u5165\u4e00\u4e2a\u968f\u673a\u7684\u76d0\uff08Salt\uff09\u503c\u3002\u8fd9\u79cd\u505a\u6cd5\u53ef\u4ee5\u6709\u6548\u9632\u6b62 HashDoS \u653b\u51fb\uff0c\u63d0\u5347\u54c8\u5e0c\u7b97\u6cd5\u7684\u5b89\u5168\u6027\u3002

            "},{"location":"chapter_hashing/hash_collision/","title":"6.2 \u00a0 \u54c8\u5e0c\u51b2\u7a81","text":"

            \u4e0a\u8282\u63d0\u5230\uff0c\u901a\u5e38\u60c5\u51b5\u4e0b\u54c8\u5e0c\u51fd\u6570\u7684\u8f93\u5165\u7a7a\u95f4\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\uff0c\u56e0\u6b64\u7406\u8bba\u4e0a\u54c8\u5e0c\u51b2\u7a81\u662f\u4e0d\u53ef\u907f\u514d\u7684\u3002\u6bd4\u5982\uff0c\u8f93\u5165\u7a7a\u95f4\u4e3a\u5168\u4f53\u6574\u6570\uff0c\u8f93\u51fa\u7a7a\u95f4\u4e3a\u6570\u7ec4\u5bb9\u91cf\u5927\u5c0f\uff0c\u5219\u5fc5\u7136\u6709\u591a\u4e2a\u6574\u6570\u6620\u5c04\u81f3\u540c\u4e00\u6570\u7ec4\u7d22\u5f15\u3002

            \u54c8\u5e0c\u51b2\u7a81\u4f1a\u5bfc\u81f4\u67e5\u8be2\u7ed3\u679c\u9519\u8bef\uff0c\u4e25\u91cd\u5f71\u54cd\u54c8\u5e0c\u8868\u7684\u53ef\u7528\u6027\u3002\u4e3a\u89e3\u51b3\u8be5\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u6bcf\u5f53\u9047\u5230\u54c8\u5e0c\u51b2\u7a81\u65f6\u5c31\u8fdb\u884c\u54c8\u5e0c\u8868\u6269\u5bb9\uff0c\u76f4\u81f3\u51b2\u7a81\u6d88\u5931\u4e3a\u6b62\u3002\u6b64\u65b9\u6cd5\u7b80\u5355\u7c97\u66b4\u4e14\u6709\u6548\uff0c\u4f46\u6548\u7387\u592a\u4f4e\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u6269\u5bb9\u9700\u8981\u8fdb\u884c\u5927\u91cf\u7684\u6570\u636e\u642c\u8fd0\u4e0e\u54c8\u5e0c\u503c\u8ba1\u7b97\u3002\u4e3a\u4e86\u63d0\u5347\u6548\u7387\uff0c\u6211\u4eec\u5207\u6362\u4e00\u4e0b\u601d\u8def\uff1a

            1. \u6539\u826f\u54c8\u5e0c\u8868\u6570\u636e\u7ed3\u6784\uff0c\u4f7f\u5f97\u54c8\u5e0c\u8868\u53ef\u4ee5\u5728\u5b58\u5728\u54c8\u5e0c\u51b2\u7a81\u65f6\u6b63\u5e38\u5de5\u4f5c\u3002
            2. \u4ec5\u5728\u5fc5\u8981\u65f6\uff0c\u5373\u5f53\u54c8\u5e0c\u51b2\u7a81\u6bd4\u8f83\u4e25\u91cd\u65f6\uff0c\u624d\u6267\u884c\u6269\u5bb9\u64cd\u4f5c\u3002

            \u54c8\u5e0c\u8868\u7684\u7ed3\u6784\u6539\u826f\u65b9\u6cd5\u4e3b\u8981\u5305\u62ec\u94fe\u5f0f\u5730\u5740\u548c\u5f00\u653e\u5bfb\u5740\u3002

            "},{"location":"chapter_hashing/hash_collision/#621","title":"6.2.1 \u00a0 \u94fe\u5f0f\u5730\u5740","text":"

            \u5728\u539f\u59cb\u54c8\u5e0c\u8868\u4e2d\uff0c\u6bcf\u4e2a\u6876\u4ec5\u80fd\u5b58\u50a8\u4e00\u4e2a\u952e\u503c\u5bf9\u3002\u300c\u94fe\u5f0f\u5730\u5740 separate chaining\u300d\u5c06\u5355\u4e2a\u5143\u7d20\u8f6c\u6362\u4e3a\u94fe\u8868\uff0c\u5c06\u952e\u503c\u5bf9\u4f5c\u4e3a\u94fe\u8868\u8282\u70b9\uff0c\u5c06\u6240\u6709\u53d1\u751f\u51b2\u7a81\u7684\u952e\u503c\u5bf9\u90fd\u5b58\u50a8\u5728\u540c\u4e00\u94fe\u8868\u4e2d\u3002

            \u56fe\uff1a\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868

            \u94fe\u5f0f\u5730\u5740\u4e0b\uff0c\u54c8\u5e0c\u8868\u7684\u64cd\u4f5c\u65b9\u6cd5\u5305\u62ec\uff1a

            • \u67e5\u8be2\u5143\u7d20\uff1a\u8f93\u5165 key \uff0c\u7ecf\u8fc7\u54c8\u5e0c\u51fd\u6570\u5f97\u5230\u6570\u7ec4\u7d22\u5f15\uff0c\u5373\u53ef\u8bbf\u95ee\u94fe\u8868\u5934\u8282\u70b9\uff0c\u7136\u540e\u904d\u5386\u94fe\u8868\u5e76\u5bf9\u6bd4 key \u4ee5\u67e5\u627e\u76ee\u6807\u952e\u503c\u5bf9\u3002
            • \u6dfb\u52a0\u5143\u7d20\uff1a\u5148\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u8bbf\u95ee\u94fe\u8868\u5934\u8282\u70b9\uff0c\u7136\u540e\u5c06\u8282\u70b9\uff08\u5373\u952e\u503c\u5bf9\uff09\u6dfb\u52a0\u5230\u94fe\u8868\u4e2d\u3002
            • \u5220\u9664\u5143\u7d20\uff1a\u6839\u636e\u54c8\u5e0c\u51fd\u6570\u7684\u7ed3\u679c\u8bbf\u95ee\u94fe\u8868\u5934\u90e8\uff0c\u63a5\u7740\u904d\u5386\u94fe\u8868\u4ee5\u67e5\u627e\u76ee\u6807\u8282\u70b9\uff0c\u5e76\u5c06\u5176\u5220\u9664\u3002

            \u8be5\u65b9\u6cd5\u5b58\u5728\u4e00\u4e9b\u5c40\u9650\u6027\uff0c\u5305\u62ec\uff1a

            • \u5360\u7528\u7a7a\u95f4\u589e\u5927\uff0c\u94fe\u8868\u5305\u542b\u8282\u70b9\u6307\u9488\uff0c\u5b83\u76f8\u6bd4\u6570\u7ec4\u66f4\u52a0\u8017\u8d39\u5185\u5b58\u7a7a\u95f4\u3002
            • \u67e5\u8be2\u6548\u7387\u964d\u4f4e\uff0c\u56e0\u4e3a\u9700\u8981\u7ebf\u6027\u904d\u5386\u94fe\u8868\u6765\u67e5\u627e\u5bf9\u5e94\u5143\u7d20\u3002

            \u4ee5\u4e0b\u7ed9\u51fa\u4e86\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\u7684\u7b80\u5355\u5b9e\u73b0\uff0c\u9700\u8981\u6ce8\u610f\uff1a

            • \u4e3a\u4e86\u4f7f\u5f97\u4ee3\u7801\u5c3d\u91cf\u7b80\u77ed\uff0c\u6211\u4eec\u4f7f\u7528\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\u4ee3\u66ff\u94fe\u8868\u3002\u5728\u8fd9\u79cd\u8bbe\u5b9a\u4e0b\uff0c\u54c8\u5e0c\u8868\uff08\u6570\u7ec4\uff09\u5305\u542b\u591a\u4e2a\u6876\uff0c\u6bcf\u4e2a\u6876\u90fd\u662f\u4e00\u4e2a\u5217\u8868\u3002
            • \u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u54c8\u5e0c\u8868\u6269\u5bb9\u65b9\u6cd5\u3002\u5177\u4f53\u6765\u770b\uff0c\u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7 \\(0.75\\) \u65f6\uff0c\u6211\u4eec\u5c06\u54c8\u5e0c\u8868\u6269\u5bb9\u81f3 \\(2\\) \u500d\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust hash_map_chaining.java
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\nint size; // \u952e\u503c\u5bf9\u6570\u91cf\nint capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\ndouble loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nint extendRatio; // \u6269\u5bb9\u500d\u6570\nList<List<Pair>> buckets; // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\npublic HashMapChaining() {\nsize = 0;\ncapacity = 4;\nloadThres = 2 / 3.0;\nextendRatio = 2;\nbuckets = new ArrayList<>(capacity);\nfor (int i = 0; i < capacity; i++) {\nbuckets.add(new ArrayList<>());\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor() {\nreturn (double) size / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nString get(int key) {\nint index = hashFunc(key);\nList<Pair> bucket = buckets.get(index);\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor (Pair pair : bucket) {\nif (pair.key == key) {\nreturn pair.val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, String val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\nList<Pair> bucket = buckets.get(index);\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor (Pair pair : bucket) {\nif (pair.key == key) {\npair.val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nPair pair = new Pair(key, val);\nbucket.add(pair);\nsize++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\nList<Pair> bucket = buckets.get(index);\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (Pair pair : bucket) {\nif (pair.key == key) {\nbucket.remove(pair);\nsize--;\nbreak;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nList<List<Pair>> bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = new ArrayList<>(capacity);\nfor (int i = 0; i < capacity; i++) {\nbuckets.add(new ArrayList<>());\n}\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (List<Pair> bucket : bucketsTmp) {\nfor (Pair pair : bucket) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print() {\nfor (List<Pair> bucket : buckets) {\nList<String> res = new ArrayList<>();\nfor (Pair pair : bucket) {\nres.add(pair.key + \" -> \" + pair.val);\n}\nSystem.out.println(res);\n}\n}\n}\n
            hash_map_chaining.cpp
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\nprivate:\nint size;                       // \u952e\u503c\u5bf9\u6570\u91cf\nint capacity;                   // \u54c8\u5e0c\u8868\u5bb9\u91cf\ndouble loadThres;               // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nint extendRatio;                // \u6269\u5bb9\u500d\u6570\nvector<vector<Pair *>> buckets; // \u6876\u6570\u7ec4\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nHashMapChaining() : size(0), capacity(4), loadThres(2.0 / 3), extendRatio(2) {\nbuckets.resize(capacity);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor() {\nreturn (double)size / (double)capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nstring get(int key) {\nint index = hashFunc(key);\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor (Pair *pair : buckets[index]) {\nif (pair->key == key) {\nreturn pair->val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de nullptr\nreturn nullptr;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, string val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor (Pair *pair : buckets[index]) {\nif (pair->key == key) {\npair->val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nbuckets[index].push_back(new Pair(key, val));\nsize++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\nauto &bucket = buckets[index];\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (int i = 0; i < bucket.size(); i++) {\nif (bucket[i]->key == key) {\nPair *tmp = bucket[i];\nbucket.erase(bucket.begin() + i); // \u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\ndelete tmp;                       // \u91ca\u653e\u5185\u5b58\nsize--;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nvector<vector<Pair *>> bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets.clear();\nbuckets.resize(capacity);\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (auto &bucket : bucketsTmp) {\nfor (Pair *pair : bucket) {\nput(pair->key, pair->val);\n// \u91ca\u653e\u5185\u5b58\ndelete pair;\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print() {\nfor (auto &bucket : buckets) {\ncout << \"[\";\nfor (Pair *pair : bucket) {\ncout << pair->key << \" -> \" << pair->val << \", \";\n}\ncout << \"]\\n\";\n}\n}\n};\n
            hash_map_chaining.py
            class HashMapChaining:\n\"\"\"\u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.size = 0  # \u952e\u503c\u5bf9\u6570\u91cf\nself.capacity = 4  # \u54c8\u5e0c\u8868\u5bb9\u91cf\nself.load_thres = 2 / 3  # \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nself.extend_ratio = 2  # \u6269\u5bb9\u500d\u6570\nself.buckets = [[] for _ in range(self.capacity)]  # \u6876\u6570\u7ec4\ndef hash_func(self, key: int) -> int:\n\"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\nreturn key % self.capacity\ndef load_factor(self) -> float:\n\"\"\"\u8d1f\u8f7d\u56e0\u5b50\"\"\"\nreturn self.size / self.capacity\ndef get(self, key: int) -> str:\n\"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\nindex = self.hash_func(key)\nbucket = self.buckets[index]\n# \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor pair in bucket:\nif pair.key == key:\nreturn pair.val\n# \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de None\nreturn None\ndef put(self, key: int, val: str):\n\"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\n# \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif self.load_factor() > self.load_thres:\nself.extend()\nindex = self.hash_func(key)\nbucket = self.buckets[index]\n# \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor pair in bucket:\nif pair.key == key:\npair.val = val\nreturn\n# \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\npair = Pair(key, val)\nbucket.append(pair)\nself.size += 1\ndef remove(self, key: int):\n\"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\nindex = self.hash_func(key)\nbucket = self.buckets[index]\n# \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor pair in bucket:\nif pair.key == key:\nbucket.remove(pair)\nself.size -= 1\nbreak\ndef extend(self):\n\"\"\"\u6269\u5bb9\u54c8\u5e0c\u8868\"\"\"\n# \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nbuckets = self.buckets\n# \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nself.capacity *= self.extend_ratio\nself.buckets = [[] for _ in range(self.capacity)]\nself.size = 0\n# \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor bucket in buckets:\nfor pair in bucket:\nself.put(pair.key, pair.val)\ndef print(self):\n\"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\nfor bucket in self.buckets:\nres = []\nfor pair in bucket:\nres.append(str(pair.key) + \" -> \" + pair.val)\nprint(res)\n
            hash_map_chaining.go
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\ntype hashMapChaining struct {\nsize        int      // \u952e\u503c\u5bf9\u6570\u91cf\ncapacity    int      // \u54c8\u5e0c\u8868\u5bb9\u91cf\nloadThres   float64  // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nextendRatio int      // \u6269\u5bb9\u500d\u6570\nbuckets     [][]pair // \u6876\u6570\u7ec4\n}\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newHashMapChaining() *hashMapChaining {\nbuckets := make([][]pair, 4)\nfor i := 0; i < 4; i++ {\nbuckets[i] = make([]pair, 0)\n}\nreturn &hashMapChaining{\nsize:        0,\ncapacity:    4,\nloadThres:   2 / 3.0,\nextendRatio: 2,\nbuckets:     buckets,\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (m *hashMapChaining) hashFunc(key int) int {\nreturn key % m.capacity\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc (m *hashMapChaining) loadFactor() float64 {\nreturn float64(m.size / m.capacity)\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (m *hashMapChaining) get(key int) string {\nidx := m.hashFunc(key)\nbucket := m.buckets[idx]\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor _, p := range bucket {\nif p.key == key {\nreturn p.val\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\nreturn \"\"\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (m *hashMapChaining) put(key int, val string) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif m.loadFactor() > m.loadThres {\nm.extend()\n}\nidx := m.hashFunc(key)\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor _, p := range m.buckets[idx] {\nif p.key == key {\np.val = val\nreturn\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\np := pair{\nkey: key,\nval: val,\n}\nm.buckets[idx] = append(m.buckets[idx], p)\nm.size += 1\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (m *hashMapChaining) remove(key int) {\nidx := m.hashFunc(key)\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor i, p := range m.buckets[idx] {\nif p.key == key {\n// \u5207\u7247\u5220\u9664\nm.buckets[idx] = append(m.buckets[idx][:i], m.buckets[idx][i+1:]...)\nm.size -= 1\nbreak\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc (m *hashMapChaining) extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\ntmpBuckets := make([][]pair, len(m.buckets))\nfor i := 0; i < len(m.buckets); i++ {\ntmpBuckets[i] = make([]pair, len(m.buckets[i]))\ncopy(tmpBuckets[i], m.buckets[i])\n}\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nm.capacity *= m.extendRatio\nm.buckets = make([][]pair, m.capacity)\nfor i := 0; i < m.capacity; i++ {\nm.buckets[i] = make([]pair, 0)\n}\nm.size = 0\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor _, bucket := range tmpBuckets {\nfor _, p := range bucket {\nm.put(p.key, p.val)\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (m *hashMapChaining) print() {\nvar builder strings.Builder\nfor _, bucket := range m.buckets {\nbuilder.WriteString(\"[\")\nfor _, p := range bucket {\nbuilder.WriteString(strconv.Itoa(p.key) + \" -> \" + p.val + \" \")\n}\nbuilder.WriteString(\"]\")\nfmt.Println(builder.String())\nbuilder.Reset()\n}\n}\n
            hash_map_chaining.js
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n#size; // \u952e\u503c\u5bf9\u6570\u91cf\n#capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n#loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n#extendRatio; // \u6269\u5bb9\u500d\u6570\n#buckets; // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.#size = 0;\nthis.#capacity = 4;\nthis.#loadThres = 2 / 3.0;\nthis.#extendRatio = 2;\nthis.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\n#hashFunc(key) {\nreturn key % this.#capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\n#loadFactor() {\nreturn this.#size / this.#capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nget(key) {\nconst index = this.#hashFunc(key);\nconst bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor (const pair of bucket) {\nif (pair.key === key) {\nreturn pair.val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nput(key, val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (this.#loadFactor() > this.#loadThres) {\nthis.#extend();\n}\nconst index = this.#hashFunc(key);\nconst bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor (const pair of bucket) {\nif (pair.key === key) {\npair.val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nconst pair = new Pair(key, val);\nbucket.push(pair);\nthis.#size++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nremove(key) {\nconst index = this.#hashFunc(key);\nlet bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (let i = 0; i < bucket.length; i++) {\nif (bucket[i].key === key) {\nbucket.splice(i, 1);\nthis.#size--;\nbreak;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n#extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nconst bucketsTmp = this.#buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nthis.#capacity *= this.#extendRatio;\nthis.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\nthis.#size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (const bucket of bucketsTmp) {\nfor (const pair of bucket) {\nthis.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nprint() {\nfor (const bucket of this.#buckets) {\nlet res = [];\nfor (const pair of bucket) {\nres.push(pair.key + ' -> ' + pair.val);\n}\nconsole.log(res);\n}\n}\n}\n
            hash_map_chaining.ts
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\n#size: number; // \u952e\u503c\u5bf9\u6570\u91cf\n#capacity: number; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n#loadThres: number; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n#extendRatio: number; // \u6269\u5bb9\u500d\u6570\n#buckets: Pair[][]; // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.#size = 0;\nthis.#capacity = 4;\nthis.#loadThres = 2 / 3.0;\nthis.#extendRatio = 2;\nthis.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\n#hashFunc(key: number): number {\nreturn key % this.#capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\n#loadFactor(): number {\nreturn this.#size / this.#capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nget(key: number): string | null {\nconst index = this.#hashFunc(key);\nconst bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor (const pair of bucket) {\nif (pair.key === key) {\nreturn pair.val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nput(key: number, val: string): void {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (this.#loadFactor() > this.#loadThres) {\nthis.#extend();\n}\nconst index = this.#hashFunc(key);\nconst bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor (const pair of bucket) {\nif (pair.key === key) {\npair.val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nconst pair = new Pair(key, val);\nbucket.push(pair);\nthis.#size++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nremove(key: number): void {\nconst index = this.#hashFunc(key);\nlet bucket = this.#buckets[index];\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (let i = 0; i < bucket.length; i++) {\nif (bucket[i].key === key) {\nbucket.splice(i, 1);\nthis.#size--;\nbreak;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n#extend(): void {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nconst bucketsTmp = this.#buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nthis.#capacity *= this.#extendRatio;\nthis.#buckets = new Array(this.#capacity).fill(null).map((x) => []);\nthis.#size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (const bucket of bucketsTmp) {\nfor (const pair of bucket) {\nthis.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nprint(): void {\nfor (const bucket of this.#buckets) {\nlet res = [];\nfor (const pair of bucket) {\nres.push(pair.key + ' -> ' + pair.val);\n}\nconsole.log(res);\n}\n}\n}\n
            hash_map_chaining.c
            [class]{hashMapChaining}-[func]{}\n
            hash_map_chaining.cs
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\nint size; // \u952e\u503c\u5bf9\u6570\u91cf\nint capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\ndouble loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nint extendRatio; // \u6269\u5bb9\u500d\u6570\nList<List<Pair>> buckets; // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\npublic HashMapChaining() {\nsize = 0;\ncapacity = 4;\nloadThres = 2 / 3.0;\nextendRatio = 2;\nbuckets = new List<List<Pair>>(capacity);\nfor (int i = 0; i < capacity; i++) {\nbuckets.Add(new List<Pair>());\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate int hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nprivate double loadFactor() {\nreturn (double)size / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic string get(int key) {\nint index = hashFunc(key);\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nforeach (Pair pair in buckets[index]) {\nif (pair.key == key) {\nreturn pair.val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic void put(int key, string val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nforeach (Pair pair in buckets[index]) {\nif (pair.key == key) {\npair.val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nbuckets[index].Add(new Pair(key, val));\nsize++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic void remove(int key) {\nint index = hashFunc(key);\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nforeach (Pair pair in buckets[index].ToList()) {\nif (pair.key == key) {\nbuckets[index].Remove(pair);\nsize--;\nbreak;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nprivate void extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nList<List<Pair>> bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = new List<List<Pair>>(capacity);\nfor (int i = 0; i < capacity; i++) {\nbuckets.Add(new List<Pair>());\n}\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nforeach (List<Pair> bucket in bucketsTmp) {\nforeach (Pair pair in bucket) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic void print() {\nforeach (List<Pair> bucket in buckets) {\nList<string> res = new List<string>();\nforeach (Pair pair in bucket) {\nres.Add(pair.key + \" -> \" + pair.val);\n}\nforeach (string kv in res) {\nConsole.WriteLine(kv);\n}\n}\n}\n}\n
            hash_map_chaining.swift
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\nvar size: Int // \u952e\u503c\u5bf9\u6570\u91cf\nvar capacity: Int // \u54c8\u5e0c\u8868\u5bb9\u91cf\nvar loadThres: Double // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nvar extendRatio: Int // \u6269\u5bb9\u500d\u6570\nvar buckets: [[Pair]] // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\ninit() {\nsize = 0\ncapacity = 4\nloadThres = 2 / 3\nextendRatio = 2\nbuckets = Array(repeating: [], count: capacity)\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc hashFunc(key: Int) -> Int {\nkey % capacity\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc loadFactor() -> Double {\nDouble(size / capacity)\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc get(key: Int) -> String? {\nlet index = hashFunc(key: key)\nlet bucket = buckets[index]\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor pair in bucket {\nif pair.key == key {\nreturn pair.val\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de nil\nreturn nil\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc put(key: Int, val: String) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif loadFactor() > loadThres {\nextend()\n}\nlet index = hashFunc(key: key)\nlet bucket = buckets[index]\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor pair in bucket {\nif pair.key == key {\npair.val = val\nreturn\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nlet pair = Pair(key: key, val: val)\nbuckets[index].append(pair)\nsize += 1\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc remove(key: Int) {\nlet index = hashFunc(key: key)\nlet bucket = buckets[index]\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (pairIndex, pair) in bucket.enumerated() {\nif pair.key == key {\nbuckets[index].remove(at: pairIndex)\n}\n}\nsize -= 1\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nlet bucketsTmp = buckets\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio\nbuckets = Array(repeating: [], count: capacity)\nsize = 0\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor bucket in bucketsTmp {\nfor pair in bucket {\nput(key: pair.key, val: pair.val)\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc print() {\nfor bucket in buckets {\nlet res = bucket.map { \"\\($0.key) -> \\($0.val)\" }\nSwift.print(res)\n}\n}\n}\n
            hash_map_chaining.zig
            [class]{HashMapChaining}-[func]{}\n
            hash_map_chaining.dart
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nclass HashMapChaining {\nlate int size; // \u952e\u503c\u5bf9\u6570\u91cf\nlate int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\nlate double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nlate int extendRatio; // \u6269\u5bb9\u500d\u6570\nlate List<List<Pair>> buckets; // \u6876\u6570\u7ec4\n/* \u6784\u9020\u65b9\u6cd5 */\nHashMapChaining() {\nsize = 0;\ncapacity = 4;\nloadThres = 2 / 3.0;\nextendRatio = 2;\nbuckets = List.generate(capacity, (_) => []);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor() {\nreturn size / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nString? get(int key) {\nint index = hashFunc(key);\nList<Pair> bucket = buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor (Pair pair in bucket) {\nif (pair.key == key) {\nreturn pair.val;\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de null\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, String val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\nList<Pair> bucket = buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor (Pair pair in bucket) {\nif (pair.key == key) {\npair.val = val;\nreturn;\n}\n}\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nPair pair = Pair(key, val);\nbucket.add(pair);\nsize++;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\nList<Pair> bucket = buckets[index];\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor (Pair pair in bucket) {\nif (pair.key == key) {\nbucket.remove(pair);\nsize--;\nbreak;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nList<List<Pair>> bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = List.generate(capacity, (_) => []);\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (List<Pair> bucket in bucketsTmp) {\nfor (Pair pair in bucket) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid printHashMap() {\nfor (List<Pair> bucket in buckets) {\nList<String> res = [];\nfor (Pair pair in bucket) {\nres.add(\"${pair.key} -> ${pair.val}\");\n}\nprint(res);\n}\n}\n}\n
            hash_map_chaining.rs
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\nstruct HashMapChaining {\nsize: i32,\ncapacity: i32,\nload_thres: f32,\nextend_ratio: i32,\nbuckets: Vec<Vec<Pair>>,\n}\nimpl HashMapChaining {\n/* \u6784\u9020\u65b9\u6cd5 */\nfn new() -> Self {\nSelf {\nsize: 0,\ncapacity: 4,\nload_thres: 2.0 / 3.0,\nextend_ratio: 2,\nbuckets: vec![vec![]; 4],\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfn hash_func(&self, key: i32) -> usize {\nkey as usize % self.capacity as usize\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfn load_factor(&self) -> f32 {\nself.size as f32 / self.capacity as f32\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfn remove(&mut self, key: i32) -> Option<String> {\nlet index = self.hash_func(key);\nlet bucket = &mut self.buckets[index];\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor i in 0..bucket.len() {\nif bucket[i].key == key {\nlet pair = bucket.remove(i);\nself.size -= 1;\nreturn Some(pair.val);\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de None\nNone\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfn extend(&mut self) {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nlet buckets_tmp = std::mem::replace(&mut self.buckets, vec![]);\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nself.capacity *= self.extend_ratio;\nself.buckets = vec![Vec::new(); self.capacity as usize];\nself.size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor bucket in buckets_tmp {\nfor pair in bucket {\nself.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfn print(&self) {\nfor bucket in &self.buckets {\nlet mut res = Vec::new();\nfor pair in bucket {\nres.push(format!(\"{} -> {}\", pair.key, pair.val));\n}\nprintln!(\"{:?}\", res);\n}\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfn put(&mut self, key: i32, val: String) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif self.load_factor() > self.load_thres {\nself.extend();\n}\nlet index = self.hash_func(key);\nlet bucket = &mut self.buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val \u5e76\u8fd4\u56de\nfor pair in bucket {\nif pair.key == key {\npair.val = val.clone();\nreturn;\n}\n}\nlet bucket = &mut self.buckets[index];\n// \u82e5\u65e0\u8be5 key \uff0c\u5219\u5c06\u952e\u503c\u5bf9\u6dfb\u52a0\u81f3\u5c3e\u90e8\nlet pair = Pair {\nkey,\nval: val.clone(),\n};\nbucket.push(pair);\nself.size += 1;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfn get(&self, key: i32) -> Option<&str> {\nlet index = self.hash_func(key);\nlet bucket = &self.buckets[index];\n// \u904d\u5386\u6876\uff0c\u82e5\u627e\u5230 key \u5219\u8fd4\u56de\u5bf9\u5e94 val\nfor pair in bucket {\nif pair.key == key {\nreturn Some(&pair.val);\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de None\nNone\n}\n}\n

            Tip

            \u5f53\u94fe\u8868\u5f88\u957f\u65f6\uff0c\u67e5\u8be2\u6548\u7387 \\(O(n)\\) \u5f88\u5dee\uff0c\u6b64\u65f6\u53ef\u4ee5\u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u201cAVL \u6811\u201d\u6216\u201c\u7ea2\u9ed1\u6811\u201d\uff0c\u4ece\u800c\u5c06\u67e5\u8be2\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(\\log n)\\) \u3002

            "},{"location":"chapter_hashing/hash_collision/#622","title":"6.2.2 \u00a0 \u5f00\u653e\u5bfb\u5740","text":"

            \u300c\u5f00\u653e\u5bfb\u5740 open addressing\u300d\u4e0d\u5f15\u5165\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\uff0c\u800c\u662f\u901a\u8fc7\u201c\u591a\u6b21\u63a2\u6d4b\u201d\u6765\u5904\u7406\u54c8\u5e0c\u51b2\u7a81\uff0c\u63a2\u6d4b\u65b9\u5f0f\u4e3b\u8981\u5305\u62ec\u7ebf\u6027\u63a2\u6d4b\u3001\u5e73\u65b9\u63a2\u6d4b\u3001\u591a\u6b21\u54c8\u5e0c\u7b49\u3002

            "},{"location":"chapter_hashing/hash_collision/#1","title":"1. \u00a0 \u7ebf\u6027\u63a2\u6d4b","text":"

            \u7ebf\u6027\u63a2\u6d4b\u91c7\u7528\u56fa\u5b9a\u6b65\u957f\u7684\u7ebf\u6027\u67e5\u627e\u6765\u8fdb\u884c\u63a2\u6d4b\uff0c\u5bf9\u5e94\u7684\u54c8\u5e0c\u8868\u64cd\u4f5c\u65b9\u6cd5\u4e3a\uff1a

            • \u63d2\u5165\u5143\u7d20\uff1a\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u8ba1\u7b97\u6570\u7ec4\u7d22\u5f15\uff0c\u82e5\u53d1\u73b0\u6876\u5185\u5df2\u6709\u5143\u7d20\uff0c\u5219\u4ece\u51b2\u7a81\u4f4d\u7f6e\u5411\u540e\u7ebf\u6027\u904d\u5386\uff08\u6b65\u957f\u901a\u5e38\u4e3a \\(1\\) \uff09\uff0c\u76f4\u81f3\u627e\u5230\u7a7a\u4f4d\uff0c\u5c06\u5143\u7d20\u63d2\u5165\u5176\u4e2d\u3002
            • \u67e5\u627e\u5143\u7d20\uff1a\u82e5\u53d1\u73b0\u54c8\u5e0c\u51b2\u7a81\uff0c\u5219\u4f7f\u7528\u76f8\u540c\u6b65\u957f\u5411\u540e\u7ebf\u6027\u904d\u5386\uff0c\u76f4\u5230\u627e\u5230\u5bf9\u5e94\u5143\u7d20\uff0c\u8fd4\u56de value \u5373\u53ef\uff1b\u5982\u679c\u9047\u5230\u7a7a\u4f4d\uff0c\u8bf4\u660e\u76ee\u6807\u952e\u503c\u5bf9\u4e0d\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u8fd4\u56de \\(\\text{None}\\) \u3002

            \u56fe\uff1a\u7ebf\u6027\u63a2\u6d4b

            \u7136\u800c\uff0c\u7ebf\u6027\u63a2\u6d4b\u5b58\u5728\u4ee5\u4e0b\u7f3a\u9677\uff1a

            • \u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u3002\u5220\u9664\u5143\u7d20\u4f1a\u5728\u6570\u7ec4\u5185\u4ea7\u751f\u4e00\u4e2a\u7a7a\u4f4d\uff0c\u5f53\u67e5\u627e\u8be5\u7a7a\u4f4d\u4e4b\u540e\u7684\u5143\u7d20\u65f6\uff0c\u8be5\u7a7a\u4f4d\u53ef\u80fd\u5bfc\u81f4\u7a0b\u5e8f\u8bef\u5224\u5143\u7d20\u4e0d\u5b58\u5728\u3002\u4e3a\u6b64\uff0c\u901a\u5e38\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u6807\u5fd7\u4f4d\u6765\u6807\u8bb0\u5df2\u5220\u9664\u5143\u7d20\u3002
            • \u5bb9\u6613\u4ea7\u751f\u805a\u96c6\u3002\u6570\u7ec4\u5185\u8fde\u7eed\u88ab\u5360\u7528\u4f4d\u7f6e\u8d8a\u957f\uff0c\u8fd9\u4e9b\u8fde\u7eed\u4f4d\u7f6e\u53d1\u751f\u54c8\u5e0c\u51b2\u7a81\u7684\u53ef\u80fd\u6027\u8d8a\u5927\uff0c\u8fdb\u4e00\u6b65\u4fc3\u4f7f\u8fd9\u4e00\u4f4d\u7f6e\u7684\u805a\u5806\u751f\u957f\uff0c\u5f62\u6210\u6076\u6027\u5faa\u73af\uff0c\u6700\u7ec8\u5bfc\u81f4\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u6548\u7387\u52a3\u5316\u3002

            \u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u4e00\u4e2a\u7b80\u5355\u7684\u5f00\u653e\u5bfb\u5740\uff08\u7ebf\u6027\u63a2\u6d4b\uff09\u54c8\u5e0c\u8868\u3002\u503c\u5f97\u6ce8\u610f\u4e24\u70b9\uff1a

            • \u6211\u4eec\u4f7f\u7528\u4e00\u4e2a\u56fa\u5b9a\u7684\u952e\u503c\u5bf9\u5b9e\u4f8b removed \u6765\u6807\u8bb0\u5df2\u5220\u9664\u5143\u7d20\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u5f53\u4e00\u4e2a\u6876\u5185\u7684\u5143\u7d20\u4e3a \\(\\text{None}\\) \u6216 removed \u65f6\uff0c\u8bf4\u660e\u8fd9\u4e2a\u6876\u662f\u7a7a\u7684\uff0c\u53ef\u7528\u4e8e\u653e\u7f6e\u952e\u503c\u5bf9\u3002
            • \u5728\u7ebf\u6027\u63a2\u6d4b\u65f6\uff0c\u6211\u4eec\u4ece\u5f53\u524d\u7d22\u5f15 index \u5411\u540e\u904d\u5386\uff1b\u800c\u5f53\u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u9700\u8981\u56de\u5230\u5934\u90e8\u7ee7\u7eed\u904d\u5386\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust hash_map_open_addressing.java
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\nprivate int size; // \u952e\u503c\u5bf9\u6570\u91cf\nprivate int capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\nprivate double loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nprivate int extendRatio; // \u6269\u5bb9\u500d\u6570\nprivate Pair[] buckets; // \u6876\u6570\u7ec4\nprivate Pair removed; // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\npublic HashMapOpenAddressing() {\nsize = 0;\ncapacity = 4;\nloadThres = 2.0 / 3.0;\nextendRatio = 2;\nbuckets = new Pair[capacity];\nremoved = new Pair(-1, \"-1\");\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\npublic int hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\npublic double loadFactor() {\nreturn (double) size / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic String get(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif (buckets[j] == null)\nreturn null;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (buckets[j].key == key && buckets[j] != removed)\nreturn buckets[j].val;\n}\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic void put(int key, String val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (buckets[j] == null || buckets[j] == removed) {\nbuckets[j] = new Pair(key, val);\nsize += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (buckets[j].key == key) {\nbuckets[j].val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic void remove(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (buckets[j] == null) {\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (buckets[j].key == key) {\nbuckets[j] = removed;\nsize -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\npublic void extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nPair[] bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = new Pair[capacity];\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (Pair pair : bucketsTmp) {\nif (pair != null && pair != removed) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic void print() {\nfor (Pair pair : buckets) {\nif (pair != null) {\nSystem.out.println(pair.key + \" -> \" + pair.val);\n} else {\nSystem.out.println(\"null\");\n}\n}\n}\n}\n
            hash_map_open_addressing.cpp
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\nprivate:\nint size;               // \u952e\u503c\u5bf9\u6570\u91cf\nint capacity;           // \u54c8\u5e0c\u8868\u5bb9\u91cf\ndouble loadThres;       // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nint extendRatio;        // \u6269\u5bb9\u500d\u6570\nvector<Pair *> buckets; // \u6876\u6570\u7ec4\nPair *removed;          // \u5220\u9664\u6807\u8bb0\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nHashMapOpenAddressing() {\n// \u6784\u9020\u65b9\u6cd5\nsize = 0;\ncapacity = 4;\nloadThres = 2.0 / 3.0;\nextendRatio = 2;\nbuckets = vector<Pair *>(capacity, nullptr);\nremoved = new Pair(-1, \"-1\");\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor() {\nreturn static_cast<double>(size) / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nstring get(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de nullptr\nif (buckets[j] == nullptr)\nreturn nullptr;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (buckets[j]->key == key && buckets[j] != removed)\nreturn buckets[j]->val;\n}\nreturn nullptr;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, string val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres)\nextend();\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (buckets[j] == nullptr || buckets[j] == removed) {\nbuckets[j] = new Pair(key, val);\nsize += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (buckets[j]->key == key) {\nbuckets[j]->val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (buckets[j] == nullptr)\nreturn;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (buckets[j]->key == key) {\ndelete buckets[j]; // \u91ca\u653e\u5185\u5b58\nbuckets[j] = removed;\nsize -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nvector<Pair *> bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = vector<Pair *>(capacity, nullptr);\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (Pair *pair : bucketsTmp) {\nif (pair != nullptr && pair != removed) {\nput(pair->key, pair->val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print() {\nfor (auto &pair : buckets) {\nif (pair != nullptr) {\ncout << pair->key << \" -> \" << pair->val << endl;\n} else {\ncout << \"nullptr\" << endl;\n}\n}\n}\n};\n
            hash_map_open_addressing.py
            class HashMapOpenAddressing:\n\"\"\"\u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.size = 0  # \u952e\u503c\u5bf9\u6570\u91cf\nself.capacity = 4  # \u54c8\u5e0c\u8868\u5bb9\u91cf\nself.load_thres = 2 / 3  # \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nself.extend_ratio = 2  # \u6269\u5bb9\u500d\u6570\nself.buckets: list[Pair | None] = [None] * self.capacity  # \u6876\u6570\u7ec4\nself.removed = Pair(-1, \"-1\")  # \u5220\u9664\u6807\u8bb0\ndef hash_func(self, key: int) -> int:\n\"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\nreturn key % self.capacity\ndef load_factor(self) -> float:\n\"\"\"\u8d1f\u8f7d\u56e0\u5b50\"\"\"\nreturn self.size / self.capacity\ndef get(self, key: int) -> str:\n\"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\nindex = self.hash_func(key)\n# \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in range(self.capacity):\n# \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj = (index + i) % self.capacity\n# \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de None\nif self.buckets[j] is None:\nreturn None\n# \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif self.buckets[j].key == key and self.buckets[j] != self.removed:\nreturn self.buckets[j].val\ndef put(self, key: int, val: str):\n\"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\n# \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif self.load_factor() > self.load_thres:\nself.extend()\nindex = self.hash_func(key)\n# \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in range(self.capacity):\n# \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj = (index + i) % self.capacity\n# \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif self.buckets[j] in [None, self.removed]:\nself.buckets[j] = Pair(key, val)\nself.size += 1\nreturn\n# \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif self.buckets[j].key == key:\nself.buckets[j].val = val\nreturn\ndef remove(self, key: int):\n\"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\nindex = self.hash_func(key)\n# \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in range(self.capacity):\n# \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj = (index + i) % self.capacity\n# \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif self.buckets[j] is None:\nreturn\n# \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif self.buckets[j].key == key:\nself.buckets[j] = self.removed\nself.size -= 1\nreturn\ndef extend(self):\n\"\"\"\u6269\u5bb9\u54c8\u5e0c\u8868\"\"\"\n# \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nbuckets_tmp = self.buckets\n# \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nself.capacity *= self.extend_ratio\nself.buckets = [None] * self.capacity\nself.size = 0\n# \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor pair in buckets_tmp:\nif pair not in [None, self.removed]:\nself.put(pair.key, pair.val)\ndef print(self):\n\"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\nfor pair in self.buckets:\nif pair is not None:\nprint(pair.key, \"->\", pair.val)\nelse:\nprint(\"None\")\n
            hash_map_open_addressing.go
            /* \u94fe\u5f0f\u5730\u5740\u54c8\u5e0c\u8868 */\ntype hashMapOpenAddressing struct {\nsize        int     // \u952e\u503c\u5bf9\u6570\u91cf\ncapacity    int     // \u54c8\u5e0c\u8868\u5bb9\u91cf\nloadThres   float64 // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nextendRatio int     // \u6269\u5bb9\u500d\u6570\nbuckets     []pair  // \u6876\u6570\u7ec4\nremoved     pair    // \u5220\u9664\u6807\u8bb0\n}\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newHashMapOpenAddressing() *hashMapOpenAddressing {\nbuckets := make([]pair, 4)\nreturn &hashMapOpenAddressing{\nsize:        0,\ncapacity:    4,\nloadThres:   2 / 3.0,\nextendRatio: 2,\nbuckets:     buckets,\nremoved: pair{\nkey: -1,\nval: \"-1\",\n},\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (m *hashMapOpenAddressing) hashFunc(key int) int {\nreturn key % m.capacity\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc (m *hashMapOpenAddressing) loadFactor() float64 {\nreturn float64(m.size) / float64(m.capacity)\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) get(key int) string {\nidx := m.hashFunc(key)\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i := 0; i < m.capacity; i++ {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj := (idx + 1) % m.capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif m.buckets[j] == (pair{}) {\nreturn \"\"\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif m.buckets[j].key == key && m.buckets[j] != m.removed {\nreturn m.buckets[j].val\n}\n}\n// \u82e5\u672a\u627e\u5230 key \u5219\u8fd4\u56de\u7a7a\u5b57\u7b26\u4e32\nreturn \"\"\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) put(key int, val string) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif m.loadFactor() > m.loadThres {\nm.extend()\n}\nidx := m.hashFunc(key)\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i := 0; i < m.capacity; i++ {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj := (idx + i) % m.capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif m.buckets[j] == (pair{}) || m.buckets[j] == m.removed {\nm.buckets[j] = pair{\nkey: key,\nval: val,\n}\nm.size += 1\nreturn\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif m.buckets[j].key == key {\nm.buckets[j].val = val\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (m *hashMapOpenAddressing) remove(key int) {\nidx := m.hashFunc(key)\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i := 0; i < m.capacity; i++ {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nj := (idx + 1) % m.capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif m.buckets[j] == (pair{}) {\nreturn\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif m.buckets[j].key == key {\nm.buckets[j] = m.removed\nm.size -= 1\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc (m *hashMapOpenAddressing) extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\ntmpBuckets := make([]pair, len(m.buckets))\ncopy(tmpBuckets, m.buckets)\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nm.capacity *= m.extendRatio\nm.buckets = make([]pair, m.capacity)\nm.size = 0\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor _, p := range tmpBuckets {\nif p != (pair{}) && p != m.removed {\nm.put(p.key, p.val)\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (m *hashMapOpenAddressing) print() {\nfor _, p := range m.buckets {\nif p != (pair{}) {\nfmt.Println(strconv.Itoa(p.key) + \" -> \" + p.val)\n} else {\nfmt.Println(\"nil\")\n}\n}\n}\n
            hash_map_open_addressing.js
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n#size; // \u952e\u503c\u5bf9\u6570\u91cf\n#capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n#loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n#extendRatio; // \u6269\u5bb9\u500d\u6570\n#buckets; // \u6876\u6570\u7ec4\n#removed; // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.#size = 0;\nthis.#capacity = 4;\nthis.#loadThres = 2.0 / 3.0;\nthis.#extendRatio = 2;\nthis.#buckets = new Array(this.#capacity).fill(null);\nthis.#removed = new Pair(-1, '-1');\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\n#hashFunc(key) {\nreturn key % this.#capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\n#loadFactor() {\nreturn this.#size / this.#capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nget(key) {\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nconst j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif (this.#buckets[j] === null) return null;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (\nthis.#buckets[j].key === key &&\nthis.#buckets[j][key] !== this.#removed.key\n)\nreturn this.#buckets[j].val;\n}\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nput(key, val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (this.#loadFactor() > this.#loadThres) {\nthis.#extend();\n}\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (\nthis.#buckets[j] === null ||\nthis.#buckets[j][key] === this.#removed.key\n) {\nthis.#buckets[j] = new Pair(key, val);\nthis.#size += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (this.#buckets[j].key === key) {\nthis.#buckets[j].val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nremove(key) {\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nconst j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (this.#buckets[j] === null) {\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (this.#buckets[j].key === key) {\nthis.#buckets[j] = this.#removed;\nthis.#size -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n#extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nconst bucketsTmp = this.#buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nthis.#capacity *= this.#extendRatio;\nthis.#buckets = new Array(this.#capacity).fill(null);\nthis.#size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (const pair of bucketsTmp) {\nif (pair !== null && pair.key !== this.#removed.key) {\nthis.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nprint() {\nfor (const pair of this.#buckets) {\nif (pair !== null) {\nconsole.log(pair.key + ' -> ' + pair.val);\n} else {\nconsole.log('null');\n}\n}\n}\n}\n
            hash_map_open_addressing.ts
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\n#size: number; // \u952e\u503c\u5bf9\u6570\u91cf\n#capacity: number; // \u54c8\u5e0c\u8868\u5bb9\u91cf\n#loadThres: number; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\n#extendRatio: number; // \u6269\u5bb9\u500d\u6570\n#buckets: Pair[]; // \u6876\u6570\u7ec4\n#removed: Pair; // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor() {\nthis.#size = 0;\nthis.#capacity = 4;\nthis.#loadThres = 2.0 / 3.0;\nthis.#extendRatio = 2;\nthis.#buckets = new Array(this.#capacity).fill(null);\nthis.#removed = new Pair(-1, '-1');\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\n#hashFunc(key: number): number {\nreturn key % this.#capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\n#loadFactor(): number {\nreturn this.#size / this.#capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nget(key: number): string | null {\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nconst j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif (this.#buckets[j] === null) return null;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (\nthis.#buckets[j].key === key &&\nthis.#buckets[j][key] !== this.#removed.key\n)\nreturn this.#buckets[j].val;\n}\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nput(key: number, val: string): void {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (this.#loadFactor() > this.#loadThres) {\nthis.#extend();\n}\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (\nthis.#buckets[j] === null ||\nthis.#buckets[j][key] === this.#removed.key\n) {\nthis.#buckets[j] = new Pair(key, val);\nthis.#size += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (this.#buckets[j].key === key) {\nthis.#buckets[j].val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nremove(key: number): void {\nconst index = this.#hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (let i = 0; i < this.#capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nconst j = (index + i) % this.#capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (this.#buckets[j] === null) {\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (this.#buckets[j].key === key) {\nthis.#buckets[j] = this.#removed;\nthis.#size -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\n#extend(): void {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nconst bucketsTmp = this.#buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nthis.#capacity *= this.#extendRatio;\nthis.#buckets = new Array(this.#capacity).fill(null);\nthis.#size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (const pair of bucketsTmp) {\nif (pair !== null && pair.key !== this.#removed.key) {\nthis.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nprint(): void {\nfor (const pair of this.#buckets) {\nif (pair !== null) {\nconsole.log(pair.key + ' -> ' + pair.val);\n} else {\nconsole.log('null');\n}\n}\n}\n}\n
            hash_map_open_addressing.c
            [class]{hashMapOpenAddressing}-[func]{}\n
            hash_map_open_addressing.cs
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\nint size; // \u952e\u503c\u5bf9\u6570\u91cf\nint capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\ndouble loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nint extendRatio; // \u6269\u5bb9\u500d\u6570\nPair[] buckets; // \u6876\u6570\u7ec4\nPair removed; // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\npublic HashMapOpenAddressing() {\nsize = 0;\ncapacity = 4;\nloadThres = 2.0 / 3.0;\nextendRatio = 2;\nbuckets = new Pair[capacity];\nremoved = new Pair(-1, \"-1\");\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate int hashFunc(int key) {\nreturn key % capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nprivate double loadFactor() {\nreturn (double)size / capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic string get(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif (buckets[j] == null)\nreturn null;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (buckets[j].key == key && buckets[j] != removed)\nreturn buckets[j].val;\n}\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic void put(int key, string val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > loadThres) {\nextend();\n}\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (buckets[j] == null || buckets[j] == removed) {\nbuckets[j] = new Pair(key, val);\nsize += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (buckets[j].key == key) {\nbuckets[j].val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic void remove(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (buckets[j] == null) {\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (buckets[j].key == key) {\nbuckets[j] = removed;\nsize -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nprivate void extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nPair[] bucketsTmp = buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio;\nbuckets = new Pair[capacity];\nsize = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nforeach (Pair pair in bucketsTmp) {\nif (pair != null && pair != removed) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic void print() {\nforeach (Pair pair in buckets) {\nif (pair != null) {\nConsole.WriteLine(pair.key + \" -> \" + pair.val);\n} else {\nConsole.WriteLine(\"null\");\n}\n}\n}\n}\n
            hash_map_open_addressing.swift
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\nvar size: Int // \u952e\u503c\u5bf9\u6570\u91cf\nvar capacity: Int // \u54c8\u5e0c\u8868\u5bb9\u91cf\nvar loadThres: Double // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nvar extendRatio: Int // \u6269\u5bb9\u500d\u6570\nvar buckets: [Pair?] // \u6876\u6570\u7ec4\nvar removed: Pair // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\ninit() {\nsize = 0\ncapacity = 4\nloadThres = 2 / 3\nextendRatio = 2\nbuckets = Array(repeating: nil, count: capacity)\nremoved = Pair(key: -1, val: \"-1\")\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc hashFunc(key: Int) -> Int {\nkey % capacity\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfunc loadFactor() -> Double {\nDouble(size / capacity)\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc get(key: Int) -> String? {\nlet index = hashFunc(key: key)\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in stride(from: 0, to: capacity, by: 1) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + i) % capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de nil\nif buckets[j] == nil {\nreturn nil\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif buckets[j]?.key == key, buckets[j] != removed {\nreturn buckets[j]?.val\n}\n}\nreturn nil\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc put(key: Int, val: String) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif loadFactor() > loadThres {\nextend()\n}\nlet index = hashFunc(key: key)\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in stride(from: 0, through: capacity, by: 1) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + i) % capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif buckets[j] == nil || buckets[j] == removed {\nbuckets[j] = Pair(key: key, val: val)\nsize += 1\nreturn\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif buckets[j]?.key == key {\nbuckets[j]?.val = val\nreturn\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc remove(key: Int) {\nlet index = hashFunc(key: key)\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor i in stride(from: 0, to: capacity, by: 1) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + i) % capacity\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif buckets[j] == nil {\nreturn\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif buckets[j]?.key == key {\nbuckets[j] = removed\nsize -= 1\nreturn\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfunc extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nlet bucketsTmp = buckets\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\ncapacity *= extendRatio\nbuckets = Array(repeating: nil, count: capacity)\nsize = 0\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor pair in bucketsTmp {\nif let pair, pair != removed {\nput(key: pair.key, val: pair.val)\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc print() {\nfor pair in buckets {\nif let pair {\nSwift.print(\"\\(pair.key) -> \\(pair.val)\")\n} else {\nSwift.print(\"null\")\n}\n}\n}\n}\n
            hash_map_open_addressing.zig
            [class]{HashMapOpenAddressing}-[func]{}\n
            hash_map_open_addressing.dart
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nclass HashMapOpenAddressing {\nlate int _size; // \u952e\u503c\u5bf9\u6570\u91cf\nlate int _capacity; // \u54c8\u5e0c\u8868\u5bb9\u91cf\nlate double _loadThres; // \u89e6\u53d1\u6269\u5bb9\u7684\u8d1f\u8f7d\u56e0\u5b50\u9608\u503c\nlate int _extendRatio; // \u6269\u5bb9\u500d\u6570\nlate List<Pair?> _buckets; // \u6876\u6570\u7ec4\nlate Pair _removed; // \u5220\u9664\u6807\u8bb0\n/* \u6784\u9020\u65b9\u6cd5 */\nHashMapOpenAddressing() {\n_size = 0;\n_capacity = 4;\n_loadThres = 2.0 / 3.0;\n_extendRatio = 2;\n_buckets = List.generate(_capacity, (index) => null);\n_removed = Pair(-1, \"-1\");\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nreturn key % _capacity;\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\ndouble loadFactor() {\nreturn _size / _capacity;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nString? get(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < _capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % _capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de null\nif (_buckets[j] == null) return null;\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nif (_buckets[j]!.key == key && _buckets[j] != _removed)\nreturn _buckets[j]!.val;\n}\nreturn null;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, String val) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif (loadFactor() > _loadThres) {\nextend();\n}\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < _capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % _capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nif (_buckets[j] == null || _buckets[j] == _removed) {\n_buckets[j] = new Pair(key, val);\n_size += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nif (_buckets[j]!.key == key) {\n_buckets[j]!.val = val;\nreturn;\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor (int i = 0; i < _capacity; i++) {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nint j = (index + i) % _capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (_buckets[j] == null) {\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nif (_buckets[j]!.key == key) {\n_buckets[j] = _removed;\n_size -= 1;\nreturn;\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nvoid extend() {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nList<Pair?> bucketsTmp = _buckets;\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\n_capacity *= _extendRatio;\n_buckets = List.generate(_capacity, (index) => null);\n_size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor (Pair? pair in bucketsTmp) {\nif (pair != null && pair != _removed) {\nput(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid printHashMap() {\nfor (Pair? pair in _buckets) {\nif (pair != null) {\nprint(\"${pair.key} -> ${pair.val}\");\n} else {\nprint(null);\n}\n}\n}\n}\n
            hash_map_open_addressing.rs
            /* \u5f00\u653e\u5bfb\u5740\u54c8\u5e0c\u8868 */\nstruct HashMapOpenAddressing {\nsize: usize,\ncapacity: usize,\nload_thres: f32,\nextend_ratio: usize,\nbuckets: Vec<Option<Pair>>,\nremoved: Pair,\n}\nimpl HashMapOpenAddressing {\n/* \u6784\u9020\u65b9\u6cd5 */\nfn new() -> Self {\nSelf {\nsize: 0,\ncapacity: 4,\nload_thres: 2.0 / 3.0,\nextend_ratio: 2,\nbuckets: vec![None; 4],\nremoved: Pair {\nkey: -1,\nval: \"-1\".to_string(),\n},\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfn hash_func(&self, key: i32) -> usize {\n(key % self.capacity as i32) as usize\n}\n/* \u8d1f\u8f7d\u56e0\u5b50 */\nfn load_factor(&self) -> f32 {\nself.size as f32 / self.capacity as f32\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfn get(&self, key: i32) -> Option<&str> {\nlet mut index = self.hash_func(key);\nlet capacity = self.capacity;\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor _ in 0..capacity {\n// \u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + 1) % capacity;\nmatch &self.buckets[j] {\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u8fd4\u56de None\nNone => return None,\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u8fd4\u56de\u5bf9\u5e94 val\nSome(pair) if pair.key == key && pair != &self.removed => return Some(&pair.val),\n_ => index = j,\n}\n}\nNone\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfn put(&mut self, key: i32, val: String) {\n// \u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7\u9608\u503c\u65f6\uff0c\u6267\u884c\u6269\u5bb9\nif self.load_factor() > self.load_thres {\nself.extend();\n}\nlet mut index = self.hash_func(key);\nlet capacity = self.capacity;\n// \u7ebf\u6027\u63a2\u6d4b\uff0c\u4ece index \u5f00\u59cb\u5411\u540e\u904d\u5386\nfor _ in 0..capacity {\n//\u8ba1\u7b97\u6876\u7d22\u5f15\uff0c\u8d8a\u8fc7\u5c3e\u90e8\u8fd4\u56de\u5934\u90e8\nlet j = (index + 1) % capacity;\n// \u82e5\u9047\u5230\u7a7a\u6876\u3001\u6216\u5e26\u6709\u5220\u9664\u6807\u8bb0\u7684\u6876\uff0c\u5219\u5c06\u952e\u503c\u5bf9\u653e\u5165\u8be5\u6876\nmatch &mut self.buckets[j] {\nbucket @ &mut None | bucket @ &mut Some(Pair { key: -1, .. }) => {\n*bucket = Some(Pair { key, val });\nself.size += 1;\nreturn;\n}\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u66f4\u65b0\u5bf9\u5e94 val\nSome(pair) if pair.key == key => {\npair.val = val;\nreturn;\n}\n_ => index = j,\n}\n}\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfn remove(&mut self, key: i32) {\nlet mut index = self.hash_func(key);\nlet capacity = self.capacity;\n// \u904d\u5386\u6876\uff0c\u4ece\u4e2d\u5220\u9664\u952e\u503c\u5bf9\nfor _ in 0..capacity {\nlet j = (index + 1) % capacity;\nmatch &mut self.buckets[j] {\n// \u82e5\u9047\u5230\u7a7a\u6876\uff0c\u8bf4\u660e\u65e0\u6b64 key \uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nNone => return,\n// \u82e5\u9047\u5230\u6307\u5b9a key \uff0c\u5219\u6807\u8bb0\u5220\u9664\u5e76\u8fd4\u56de\nSome(pair) if pair.key == key => {\n*pair = Pair {\nkey: -1,\nval: \"-1\".to_string(),\n};\nself.size -= 1;\nreturn;\n}\n_ => index = j,\n}\n}\n}\n/* \u6269\u5bb9\u54c8\u5e0c\u8868 */\nfn extend(&mut self) {\n// \u6682\u5b58\u539f\u54c8\u5e0c\u8868\nlet buckets_tmp = self.buckets.clone();\n// \u521d\u59cb\u5316\u6269\u5bb9\u540e\u7684\u65b0\u54c8\u5e0c\u8868\nself.capacity *= self.extend_ratio;\nself.buckets = vec![None; self.capacity];\nself.size = 0;\n// \u5c06\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u642c\u8fd0\u81f3\u65b0\u54c8\u5e0c\u8868\nfor pair in buckets_tmp {\nif let Some(pair) = pair {\nself.put(pair.key, pair.val);\n}\n}\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfn print(&self) {\nfor pair in &self.buckets {\nmatch pair {\nSome(pair) => println!(\"{} -> {}\", pair.key, pair.val),\nNone => println!(\"None\"),\n}\n}\n}\n}\n
            "},{"location":"chapter_hashing/hash_collision/#2","title":"2. \u00a0 \u591a\u6b21\u54c8\u5e0c","text":"

            \u987e\u540d\u601d\u4e49\uff0c\u591a\u6b21\u54c8\u5e0c\u65b9\u6cd5\u662f\u4f7f\u7528\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570 \\(f_1(x)\\) , \\(f_2(x)\\) , \\(f_3(x)\\) , \\(\\cdots\\) \u8fdb\u884c\u63a2\u6d4b\u3002

            • \u63d2\u5165\u5143\u7d20\uff1a\u82e5\u54c8\u5e0c\u51fd\u6570 \\(f_1(x)\\) \u51fa\u73b0\u51b2\u7a81\uff0c\u5219\u5c1d\u8bd5 \\(f_2(x)\\) \uff0c\u4ee5\u6b64\u7c7b\u63a8\uff0c\u76f4\u5230\u627e\u5230\u7a7a\u4f4d\u540e\u63d2\u5165\u5143\u7d20\u3002
            • \u67e5\u627e\u5143\u7d20\uff1a\u5728\u76f8\u540c\u7684\u54c8\u5e0c\u51fd\u6570\u987a\u5e8f\u4e0b\u8fdb\u884c\u67e5\u627e\uff0c\u76f4\u5230\u627e\u5230\u76ee\u6807\u5143\u7d20\u65f6\u8fd4\u56de\uff1b\u6216\u9047\u5230\u7a7a\u4f4d\u6216\u5df2\u5c1d\u8bd5\u6240\u6709\u54c8\u5e0c\u51fd\u6570\uff0c\u8bf4\u660e\u54c8\u5e0c\u8868\u4e2d\u4e0d\u5b58\u5728\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(\\text{None}\\) \u3002

            \u4e0e\u7ebf\u6027\u63a2\u6d4b\u76f8\u6bd4\uff0c\u591a\u6b21\u54c8\u5e0c\u65b9\u6cd5\u4e0d\u6613\u4ea7\u751f\u805a\u96c6\uff0c\u4f46\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u4f1a\u589e\u52a0\u989d\u5916\u7684\u8ba1\u7b97\u91cf\u3002

            "},{"location":"chapter_hashing/hash_collision/#623","title":"6.2.3 \u00a0 \u7f16\u7a0b\u8bed\u8a00\u7684\u9009\u62e9","text":"

            Java \u91c7\u7528\u94fe\u5f0f\u5730\u5740\u3002\u81ea JDK 1.8 \u4ee5\u6765\uff0c\u5f53 HashMap \u5185\u6570\u7ec4\u957f\u5ea6\u8fbe\u5230 64 \u4e14\u94fe\u8868\u957f\u5ea6\u8fbe\u5230 8 \u65f6\uff0c\u94fe\u8868\u4f1a\u88ab\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u4ee5\u63d0\u5347\u67e5\u627e\u6027\u80fd\u3002

            Python \u91c7\u7528\u5f00\u653e\u5bfb\u5740\u3002\u5b57\u5178 dict \u4f7f\u7528\u4f2a\u968f\u673a\u6570\u8fdb\u884c\u63a2\u6d4b\u3002

            Golang \u91c7\u7528\u94fe\u5f0f\u5730\u5740\u3002Go \u89c4\u5b9a\u6bcf\u4e2a\u6876\u6700\u591a\u5b58\u50a8 8 \u4e2a\u952e\u503c\u5bf9\uff0c\u8d85\u51fa\u5bb9\u91cf\u5219\u8fde\u63a5\u4e00\u4e2a\u6ea2\u51fa\u6876\uff1b\u5f53\u6ea2\u51fa\u6876\u8fc7\u591a\u65f6\uff0c\u4f1a\u6267\u884c\u4e00\u6b21\u7279\u6b8a\u7684\u7b49\u91cf\u6269\u5bb9\u64cd\u4f5c\uff0c\u4ee5\u786e\u4fdd\u6027\u80fd\u3002

            "},{"location":"chapter_hashing/hash_map/","title":"6.1 \u00a0 \u54c8\u5e0c\u8868","text":"

            \u300c\u54c8\u5e0c\u8868 hash table\u300d\uff0c\u53c8\u79f0\u300c\u6563\u5217\u8868\u300d\uff0c\u5176\u901a\u8fc7\u5efa\u7acb\u952e key \u4e0e\u503c value \u4e4b\u95f4\u7684\u6620\u5c04\uff0c\u5b9e\u73b0\u9ad8\u6548\u7684\u5143\u7d20\u67e5\u8be2\u3002\u5177\u4f53\u800c\u8a00\uff0c\u6211\u4eec\u5411\u54c8\u5e0c\u8868\u8f93\u5165\u4e00\u4e2a\u952e key \uff0c\u5219\u53ef\u4ee5\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u83b7\u53d6\u5bf9\u5e94\u7684\u503c value \u3002

            \u4ee5\u4e00\u4e2a\u5305\u542b \\(n\\) \u4e2a\u5b66\u751f\u7684\u6570\u636e\u5e93\u4e3a\u4f8b\uff0c\u6bcf\u4e2a\u5b66\u751f\u90fd\u6709\u201c\u59d3\u540d\u201d\u548c\u201c\u5b66\u53f7\u201d\u4e24\u9879\u6570\u636e\u3002\u5047\u5982\u6211\u4eec\u5e0c\u671b\u5b9e\u73b0\u201c\u8f93\u5165\u4e00\u4e2a\u5b66\u53f7\uff0c\u8fd4\u56de\u5bf9\u5e94\u7684\u59d3\u540d\u201d\u7684\u67e5\u8be2\u529f\u80fd\uff0c\u5219\u53ef\u4ee5\u91c7\u7528\u54c8\u5e0c\u8868\u6765\u5b9e\u73b0\u3002

            \u56fe\uff1a\u54c8\u5e0c\u8868\u7684\u62bd\u8c61\u8868\u793a

            \u9664\u54c8\u5e0c\u8868\u5916\uff0c\u6211\u4eec\u8fd8\u53ef\u4ee5\u4f7f\u7528\u6570\u7ec4\u6216\u94fe\u8868\u5b9e\u73b0\u67e5\u8be2\u529f\u80fd\u3002\u82e5\u5c06\u5b66\u751f\u6570\u636e\u770b\u4f5c\u6570\u7ec4\uff08\u94fe\u8868\uff09\u5143\u7d20\uff0c\u5219\u6709\uff1a

            • \u6dfb\u52a0\u5143\u7d20\uff1a\u4ec5\u9700\u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u6570\u7ec4\uff08\u94fe\u8868\uff09\u7684\u5c3e\u90e8\u5373\u53ef\uff0c\u4f7f\u7528 \\(O(1)\\) \u65f6\u95f4\u3002
            • \u67e5\u8be2\u5143\u7d20\uff1a\u7531\u4e8e\u6570\u7ec4\uff08\u94fe\u8868\uff09\u662f\u4e71\u5e8f\u7684\uff0c\u56e0\u6b64\u9700\u8981\u904d\u5386\u5176\u4e2d\u7684\u6240\u6709\u5143\u7d20\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002
            • \u5220\u9664\u5143\u7d20\uff1a\u9700\u8981\u5148\u67e5\u8be2\u5230\u5143\u7d20\uff0c\u518d\u4ece\u6570\u7ec4\u4e2d\u5220\u9664\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002

            \u8868\uff1a\u5143\u7d20\u67e5\u8be2\u6548\u7387\u5bf9\u6bd4

            \u6570\u7ec4 \u94fe\u8868 \u54c8\u5e0c\u8868 \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(1)\\) \u6dfb\u52a0\u5143\u7d20 \\(O(1)\\) \\(O(1)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(1)\\)

            \u89c2\u5bdf\u53d1\u73b0\uff0c\u5728\u54c8\u5e0c\u8868\u4e2d\u8fdb\u884c\u589e\u5220\u67e5\u6539\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u662f \\(O(1)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002

            "},{"location":"chapter_hashing/hash_map/#611","title":"6.1.1 \u00a0 \u54c8\u5e0c\u8868\u5e38\u7528\u64cd\u4f5c","text":"

            \u54c8\u5e0c\u8868\u7684\u5e38\u89c1\u64cd\u4f5c\u5305\u62ec\uff1a\u521d\u59cb\u5316\u3001\u67e5\u8be2\u64cd\u4f5c\u3001\u6dfb\u52a0\u952e\u503c\u5bf9\u548c\u5220\u9664\u952e\u503c\u5bf9\u7b49\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust hash_map.java
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nMap<Integer, String> map = new HashMap<>();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.put(12836, \"\u5c0f\u54c8\");   map.put(15937, \"\u5c0f\u5570\");   map.put(16750, \"\u5c0f\u7b97\");   map.put(13276, \"\u5c0f\u6cd5\");\nmap.put(10583, \"\u5c0f\u9e2d\");\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nString name = map.get(15937);\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.remove(10583);\n
            hash_map.cpp
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nunordered_map<int, string> map;\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\";\nmap[15937] = \"\u5c0f\u5570\";\nmap[16750] = \"\u5c0f\u7b97\";\nmap[13276] = \"\u5c0f\u6cd5\";\nmap[10583] = \"\u5c0f\u9e2d\";\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nstring name = map[15937];\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.erase(10583);\n
            hash_map.py
            # \u521d\u59cb\u5316\u54c8\u5e0c\u8868\nhmap: Dict = {}\n# \u6dfb\u52a0\u64cd\u4f5c\n# \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nhmap[12836] = \"\u5c0f\u54c8\"\nhmap[15937] = \"\u5c0f\u5570\"\nhmap[16750] = \"\u5c0f\u7b97\"\nhmap[13276] = \"\u5c0f\u6cd5\"\nhmap[10583] = \"\u5c0f\u9e2d\"\n# \u67e5\u8be2\u64cd\u4f5c\n# \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nname: str = hmap[15937]\n# \u5220\u9664\u64cd\u4f5c\n# \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nhmap.pop(10583)\n
            hash_map.go
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nhmap := make(map[int]string)\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nhmap[12836] = \"\u5c0f\u54c8\"\nhmap[15937] = \"\u5c0f\u5570\"\nhmap[16750] = \"\u5c0f\u7b97\"\nhmap[13276] = \"\u5c0f\u6cd5\"\nhmap[10583] = \"\u5c0f\u9e2d\"\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nname := hmap[15937]\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\ndelete(hmap, 10583)\n
            hash_map.js
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nconst map = new ArrayHashMap();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.set(12836, '\u5c0f\u54c8');\nmap.set(15937, '\u5c0f\u5570');\nmap.set(16750, '\u5c0f\u7b97');\nmap.set(13276, '\u5c0f\u6cd5');\nmap.set(10583, '\u5c0f\u9e2d');\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map.get(15937);\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.delete(10583);\n
            hash_map.ts
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nconst map = new Map<number, string>();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.set(12836, '\u5c0f\u54c8');\nmap.set(15937, '\u5c0f\u5570');\nmap.set(16750, '\u5c0f\u7b97');\nmap.set(13276, '\u5c0f\u6cd5');\nmap.set(10583, '\u5c0f\u9e2d');\nconsole.info('\\n\u6dfb\u52a0\u5b8c\u6210\u540e\uff0c\u54c8\u5e0c\u8868\u4e3a\\nKey -> Value');\nconsole.info(map);\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map.get(15937);\nconsole.info('\\n\u8f93\u5165\u5b66\u53f7 15937 \uff0c\u67e5\u8be2\u5230\u59d3\u540d ' + name);\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.delete(10583);\nconsole.info('\\n\u5220\u9664 10583 \u540e\uff0c\u54c8\u5e0c\u8868\u4e3a\\nKey -> Value');\nconsole.info(map);\n
            hash_map.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u8868\n
            hash_map.cs
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nDictionary<int, String> map = new ();\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap.Add(12836, \"\u5c0f\u54c8\");\nmap.Add(15937, \"\u5c0f\u5570\");\nmap.Add(16750, \"\u5c0f\u7b97\");\nmap.Add(13276, \"\u5c0f\u6cd5\");\nmap.Add(10583, \"\u5c0f\u9e2d\");\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nString name = map[15937];\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.Remove(10583);\n
            hash_map.swift
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nvar map: [Int: String] = [:]\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\"\nmap[15937] = \"\u5c0f\u5570\"\nmap[16750] = \"\u5c0f\u7b97\"\nmap[13276] = \"\u5c0f\u6cd5\"\nmap[10583] = \"\u5c0f\u9e2d\"\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nlet name = map[15937]!\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.removeValue(forKey: 10583)\n
            hash_map.zig
            \n
            hash_map.dart
            /* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nMap<int, String> map = {};\n/* \u6dfb\u52a0\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u6dfb\u52a0\u952e\u503c\u5bf9 (key, value)\nmap[12836] = \"\u5c0f\u54c8\";\nmap[15937] = \"\u5c0f\u5570\";\nmap[16750] = \"\u5c0f\u7b97\";\nmap[13276] = \"\u5c0f\u6cd5\";\nmap[10583] = \"\u5c0f\u9e2d\";\n/* \u67e5\u8be2\u64cd\u4f5c */\n// \u5411\u54c8\u5e0c\u8868\u8f93\u5165\u952e key \uff0c\u5f97\u5230\u503c value\nString name = map[15937];\n/* \u5220\u9664\u64cd\u4f5c */\n// \u5728\u54c8\u5e0c\u8868\u4e2d\u5220\u9664\u952e\u503c\u5bf9 (key, value)\nmap.remove(10583);\n
            hash_map.rs
            \n

            \u54c8\u5e0c\u8868\u6709\u4e09\u79cd\u5e38\u7528\u904d\u5386\u65b9\u5f0f\uff1a\u904d\u5386\u952e\u503c\u5bf9\u3001\u904d\u5386\u952e\u548c\u904d\u5386\u503c\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust hash_map.java
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor (Map.Entry <Integer, String> kv: map.entrySet()) {\nSystem.out.println(kv.getKey() + \" -> \" + kv.getValue());\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nfor (int key: map.keySet()) {\nSystem.out.println(key);\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nfor (String val: map.values()) {\nSystem.out.println(val);\n}\n
            hash_map.cpp
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor (auto kv: map) {\ncout << kv.first << \" -> \" << kv.second << endl;\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nfor (auto key: map) {\ncout << key.first << endl;\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nfor (auto val: map) {\ncout << val.second << endl;\n}\n
            hash_map.py
            # \u904d\u5386\u54c8\u5e0c\u8868\n# \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor key, value in hmap.items():\nprint(key, \"->\", value)\n# \u5355\u72ec\u904d\u5386\u952e key\nfor key in hmap.keys():\nprint(key)\n# \u5355\u72ec\u904d\u5386\u503c value\nfor value in hmap.values():\nprint(value)\n
            hash_map_test.go
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 key->value\nfor key, value := range hmap {\nfmt.Println(key, \"->\", value)\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nfor key := range hmap {\nfmt.Println(key)\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nfor _, value := range hmap {\nfmt.Println(value)\n}\n
            hash_map.js
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\nconsole.info('\\n\u904d\u5386\u952e\u503c\u5bf9 Key->Value');\nfor (const [k, v] of map.entries()) {\nconsole.info(k + ' -> ' + v);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u952e Key');\nfor (const k of map.keys()) {\nconsole.info(k);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u503c Value');\nfor (const v of map.values()) {\nconsole.info(v);\n}\n
            hash_map.ts
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\nconsole.info('\\n\u904d\u5386\u952e\u503c\u5bf9 Key->Value');\nfor (const [k, v] of map.entries()) {\nconsole.info(k + ' -> ' + v);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u952e Key');\nfor (const k of map.keys()) {\nconsole.info(k);\n}\nconsole.info('\\n\u5355\u72ec\u904d\u5386\u503c Value');\nfor (const v of map.values()) {\nconsole.info(v);\n}\n
            hash_map.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u8868\n
            hash_map.cs
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nforeach (var kv in map) {\nConsole.WriteLine(kv.Key + \" -> \" + kv.Value);\n}\n// \u5355\u72ec\u904d\u5386\u952e key\nforeach (int key in map.Keys) {\nConsole.WriteLine(key);\n}\n// \u5355\u72ec\u904d\u5386\u503c value\nforeach (String val in map.Values) {\nConsole.WriteLine(val);\n}\n
            hash_map.swift
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nfor (key, value) in map {\nprint(\"\\(key) -> \\(value)\")\n}\n// \u5355\u72ec\u904d\u5386\u952e Key\nfor key in map.keys {\nprint(key)\n}\n// \u5355\u72ec\u904d\u5386\u503c Value\nfor value in map.values {\nprint(value)\n}\n
            hash_map.zig
            \n
            hash_map.dart
            /* \u904d\u5386\u54c8\u5e0c\u8868 */\n// \u904d\u5386\u952e\u503c\u5bf9 Key->Value\nmap.forEach((key, value) {\nprint('$key -> $value');\n});\n// \u5355\u72ec\u904d\u5386\u952e Key\nmap.keys.forEach((key) {\nprint(key);\n});\n// \u5355\u72ec\u904d\u5386\u503c Value\nmap.values.forEach((value) {\nprint(value);\n});\n
            hash_map.rs
            \n
            "},{"location":"chapter_hashing/hash_map/#612","title":"6.1.2 \u00a0 \u54c8\u5e0c\u8868\u7b80\u5355\u5b9e\u73b0","text":"

            \u6211\u4eec\u5148\u8003\u8651\u6700\u7b80\u5355\u7684\u60c5\u51b5\uff0c\u4ec5\u7528\u4e00\u4e2a\u6570\u7ec4\u6765\u5b9e\u73b0\u54c8\u5e0c\u8868\u3002\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u6211\u4eec\u5c06\u6570\u7ec4\u4e2d\u7684\u6bcf\u4e2a\u7a7a\u4f4d\u79f0\u4e3a\u300c\u6876 bucket\u300d\uff0c\u6bcf\u4e2a\u6876\u53ef\u5b58\u50a8\u4e00\u4e2a\u952e\u503c\u5bf9\u3002\u56e0\u6b64\uff0c\u67e5\u8be2\u64cd\u4f5c\u5c31\u662f\u627e\u5230 key \u5bf9\u5e94\u7684\u6876\uff0c\u5e76\u5728\u6876\u4e2d\u83b7\u53d6 value \u3002

            \u90a3\u4e48\uff0c\u5982\u4f55\u57fa\u4e8e key \u6765\u5b9a\u4f4d\u5bf9\u5e94\u7684\u6876\u5462\uff1f\u8fd9\u662f\u901a\u8fc7\u300c\u54c8\u5e0c\u51fd\u6570 hash function\u300d\u5b9e\u73b0\u7684\u3002\u54c8\u5e0c\u51fd\u6570\u7684\u4f5c\u7528\u662f\u5c06\u4e00\u4e2a\u8f83\u5927\u7684\u8f93\u5165\u7a7a\u95f4\u6620\u5c04\u5230\u4e00\u4e2a\u8f83\u5c0f\u7684\u8f93\u51fa\u7a7a\u95f4\u3002\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u8f93\u5165\u7a7a\u95f4\u662f\u6240\u6709 key \uff0c\u8f93\u51fa\u7a7a\u95f4\u662f\u6240\u6709\u6876\uff08\u6570\u7ec4\u7d22\u5f15\uff09\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u8f93\u5165\u4e00\u4e2a key \uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u5f97\u5230\u8be5 key \u5bf9\u5e94\u7684\u952e\u503c\u5bf9\u5728\u6570\u7ec4\u4e2d\u7684\u5b58\u50a8\u4f4d\u7f6e\u3002

            \u8f93\u5165\u4e00\u4e2a key \uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u8ba1\u7b97\u8fc7\u7a0b\u5206\u4e3a\u4e24\u6b65\uff1a

            1. \u901a\u8fc7\u67d0\u79cd\u54c8\u5e0c\u7b97\u6cd5 hash() \u8ba1\u7b97\u5f97\u5230\u54c8\u5e0c\u503c\u3002
            2. \u5c06\u54c8\u5e0c\u503c\u5bf9\u6876\u6570\u91cf\uff08\u6570\u7ec4\u957f\u5ea6\uff09capacity \u53d6\u6a21\uff0c\u4ece\u800c\u83b7\u53d6\u8be5 key \u5bf9\u5e94\u7684\u6570\u7ec4\u7d22\u5f15 index \u3002
            index = hash(key) % capacity\n

            \u968f\u540e\uff0c\u6211\u4eec\u5c31\u53ef\u4ee5\u5229\u7528 index \u5728\u54c8\u5e0c\u8868\u4e2d\u8bbf\u95ee\u5bf9\u5e94\u7684\u6876\uff0c\u4ece\u800c\u83b7\u53d6 value \u3002

            \u8bbe\u6570\u7ec4\u957f\u5ea6 capacity = 100 \u3001\u54c8\u5e0c\u7b97\u6cd5 hash(key) = key \uff0c\u6613\u5f97\u54c8\u5e0c\u51fd\u6570\u4e3a key % 100 \u3002\u4e0b\u56fe\u4ee5 key \u5b66\u53f7\u548c value \u59d3\u540d\u4e3a\u4f8b\uff0c\u5c55\u793a\u4e86\u54c8\u5e0c\u51fd\u6570\u7684\u5de5\u4f5c\u539f\u7406\u3002

            \u56fe\uff1a\u54c8\u5e0c\u51fd\u6570\u5de5\u4f5c\u539f\u7406

            \u4ee5\u4e0b\u4ee3\u7801\u5b9e\u73b0\u4e86\u4e00\u4e2a\u7b80\u5355\u54c8\u5e0c\u8868\u3002\u5176\u4e2d\uff0c\u6211\u4eec\u5c06 key \u548c value \u5c01\u88c5\u6210\u4e00\u4e2a\u7c7b Pair \uff0c\u4ee5\u8868\u793a\u952e\u503c\u5bf9\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array_hash_map.java
            /* \u952e\u503c\u5bf9 */\nclass Pair {\npublic int key;\npublic String val;\npublic Pair(int key, String val) {\nthis.key = key;\nthis.val = val;\n}\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nprivate List<Pair> buckets;\npublic ArrayHashMap() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nbuckets = new ArrayList<>();\nfor (int i = 0; i < 100; i++) {\nbuckets.add(null);\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate int hashFunc(int key) {\nint index = key % 100;\nreturn index;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic String get(int key) {\nint index = hashFunc(key);\nPair pair = buckets.get(index);\nif (pair == null)\nreturn null;\nreturn pair.val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic void put(int key, String val) {\nPair pair = new Pair(key, val);\nint index = hashFunc(key);\nbuckets.set(index, pair);\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic void remove(int key) {\nint index = hashFunc(key);\n// \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\nbuckets.set(index, null);\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\npublic List<Pair> pairSet() {\nList<Pair> pairSet = new ArrayList<>();\nfor (Pair pair : buckets) {\nif (pair != null)\npairSet.add(pair);\n}\nreturn pairSet;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\npublic List<Integer> keySet() {\nList<Integer> keySet = new ArrayList<>();\nfor (Pair pair : buckets) {\nif (pair != null)\nkeySet.add(pair.key);\n}\nreturn keySet;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\npublic List<String> valueSet() {\nList<String> valueSet = new ArrayList<>();\nfor (Pair pair : buckets) {\nif (pair != null)\nvalueSet.add(pair.val);\n}\nreturn valueSet;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic void print() {\nfor (Pair kv : pairSet()) {\nSystem.out.println(kv.key + \" -> \" + kv.val);\n}\n}\n}\n
            array_hash_map.cpp
            /* \u952e\u503c\u5bf9 */\nstruct Pair {\npublic:\nint key;\nstring val;\nPair(int key, string val) {\nthis->key = key;\nthis->val = val;\n}\n};\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nprivate:\nvector<Pair *> buckets;\npublic:\nArrayHashMap() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nbuckets = vector<Pair *>(100);\n}\n~ArrayHashMap() {\n// \u91ca\u653e\u5185\u5b58\nfor (const auto &bucket : buckets) {\ndelete bucket;\n}\nbuckets.clear();\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint hashFunc(int key) {\nint index = key % 100;\nreturn index;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nstring get(int key) {\nint index = hashFunc(key);\nPair *pair = buckets[index];\nif (pair == nullptr)\nreturn nullptr;\nreturn pair->val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, string val) {\nPair *pair = new Pair(key, val);\nint index = hashFunc(key);\nbuckets[index] = pair;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nint index = hashFunc(key);\n// \u91ca\u653e\u5185\u5b58\u5e76\u7f6e\u4e3a nullptr\ndelete buckets[index];\nbuckets[index] = nullptr;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\nvector<Pair *> pairSet() {\nvector<Pair *> pairSet;\nfor (Pair *pair : buckets) {\nif (pair != nullptr) {\npairSet.push_back(pair);\n}\n}\nreturn pairSet;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\nvector<int> keySet() {\nvector<int> keySet;\nfor (Pair *pair : buckets) {\nif (pair != nullptr) {\nkeySet.push_back(pair->key);\n}\n}\nreturn keySet;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\nvector<string> valueSet() {\nvector<string> valueSet;\nfor (Pair *pair : buckets) {\nif (pair != nullptr) {\nvalueSet.push_back(pair->val);\n}\n}\nreturn valueSet;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid print() {\nfor (Pair *kv : pairSet()) {\ncout << kv->key << \" -> \" << kv->val << endl;\n}\n}\n};\n
            array_hash_map.py
            class Pair:\n\"\"\"\u952e\u503c\u5bf9\"\"\"\ndef __init__(self, key: int, val: str):\nself.key = key\nself.val = val\nclass ArrayHashMap:\n\"\"\"\u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\n# \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nself.buckets: list[Pair | None] = [None] * 100\ndef hash_func(self, key: int) -> int:\n\"\"\"\u54c8\u5e0c\u51fd\u6570\"\"\"\nindex = key % 100\nreturn index\ndef get(self, key: int) -> str:\n\"\"\"\u67e5\u8be2\u64cd\u4f5c\"\"\"\nindex: int = self.hash_func(key)\npair: Pair = self.buckets[index]\nif pair is None:\nreturn None\nreturn pair.val\ndef put(self, key: int, val: str):\n\"\"\"\u6dfb\u52a0\u64cd\u4f5c\"\"\"\npair = Pair(key, val)\nindex: int = self.hash_func(key)\nself.buckets[index] = pair\ndef remove(self, key: int):\n\"\"\"\u5220\u9664\u64cd\u4f5c\"\"\"\nindex: int = self.hash_func(key)\n# \u7f6e\u4e3a None \uff0c\u4ee3\u8868\u5220\u9664\nself.buckets[index] = None\ndef entry_set(self) -> list[Pair]:\n\"\"\"\u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9\"\"\"\nresult: list[Pair] = []\nfor pair in self.buckets:\nif pair is not None:\nresult.append(pair)\nreturn result\ndef key_set(self) -> list[int]:\n\"\"\"\u83b7\u53d6\u6240\u6709\u952e\"\"\"\nresult = []\nfor pair in self.buckets:\nif pair is not None:\nresult.append(pair.key)\nreturn result\ndef value_set(self) -> list[str]:\n\"\"\"\u83b7\u53d6\u6240\u6709\u503c\"\"\"\nresult = []\nfor pair in self.buckets:\nif pair is not None:\nresult.append(pair.val)\nreturn result\ndef print(self):\n\"\"\"\u6253\u5370\u54c8\u5e0c\u8868\"\"\"\nfor pair in self.buckets:\nif pair is not None:\nprint(pair.key, \"->\", pair.val)\n
            array_hash_map.go
            /* \u952e\u503c\u5bf9 */\ntype pair struct {\nkey int\nval string\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\ntype arrayHashMap struct {\nbuckets []*pair\n}\n/* \u521d\u59cb\u5316\u54c8\u5e0c\u8868 */\nfunc newArrayHashMap() *arrayHashMap {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nbuckets := make([]*pair, 100)\nreturn &arrayHashMap{buckets: buckets}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfunc (a *arrayHashMap) hashFunc(key int) int {\nindex := key % 100\nreturn index\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc (a *arrayHashMap) get(key int) string {\nindex := a.hashFunc(key)\npair := a.buckets[index]\nif pair == nil {\nreturn \"Not Found\"\n}\nreturn pair.val\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc (a *arrayHashMap) put(key int, val string) {\npair := &pair{key: key, val: val}\nindex := a.hashFunc(key)\na.buckets[index] = pair\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc (a *arrayHashMap) remove(key int) {\nindex := a.hashFunc(key)\n// \u7f6e\u4e3a nil \uff0c\u4ee3\u8868\u5220\u9664\na.buckets[index] = nil\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u5bf9 */\nfunc (a *arrayHashMap) pairSet() []*pair {\nvar pairs []*pair\nfor _, pair := range a.buckets {\nif pair != nil {\npairs = append(pairs, pair)\n}\n}\nreturn pairs\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\nfunc (a *arrayHashMap) keySet() []int {\nvar keys []int\nfor _, pair := range a.buckets {\nif pair != nil {\nkeys = append(keys, pair.key)\n}\n}\nreturn keys\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\nfunc (a *arrayHashMap) valueSet() []string {\nvar values []string\nfor _, pair := range a.buckets {\nif pair != nil {\nvalues = append(values, pair.val)\n}\n}\nreturn values\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc (a *arrayHashMap) print() {\nfor _, pair := range a.buckets {\nif pair != nil {\nfmt.Println(pair.key, \"->\", pair.val)\n}\n}\n}\n
            array_hash_map.js
            /* \u952e\u503c\u5bf9 Number -> String */\nclass Pair {\nconstructor(key, val) {\nthis.key = key;\nthis.val = val;\n}\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\n#buckets;\nconstructor() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nthis.#buckets = new Array(100).fill(null);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\n#hashFunc(key) {\nreturn key % 100;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nget(key) {\nlet index = this.#hashFunc(key);\nlet pair = this.#buckets[index];\nif (pair === null) return null;\nreturn pair.val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nset(key, val) {\nlet index = this.#hashFunc(key);\nthis.#buckets[index] = new Pair(key, val);\n}\n/* \u5220\u9664\u64cd\u4f5c */\ndelete(key) {\nlet index = this.#hashFunc(key);\n// \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\nthis.#buckets[index] = null;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\nentries() {\nlet arr = [];\nfor (let i = 0; i < this.#buckets.length; i++) {\nif (this.#buckets[i]) {\narr.push(this.#buckets[i]);\n}\n}\nreturn arr;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\nkeys() {\nlet arr = [];\nfor (let i = 0; i < this.#buckets.length; i++) {\nif (this.#buckets[i]) {\narr.push(this.#buckets[i].key);\n}\n}\nreturn arr;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\nvalues() {\nlet arr = [];\nfor (let i = 0; i < this.#buckets.length; i++) {\nif (this.#buckets[i]) {\narr.push(this.#buckets[i].val);\n}\n}\nreturn arr;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nprint() {\nlet pairSet = this.entries();\nfor (const pair of pairSet) {\nif (!pair) continue;\nconsole.info(`${pair.key} -> ${pair.val}`);\n}\n}\n}\n
            array_hash_map.ts
            /* \u952e\u503c\u5bf9 Number -> String */\nclass Pair {\npublic key: number;\npublic val: string;\nconstructor(key: number, val: string) {\nthis.key = key;\nthis.val = val;\n}\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nprivate readonly buckets: (Pair | null)[];\nconstructor() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nthis.buckets = new Array(100).fill(null);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate hashFunc(key: number): number {\nreturn key % 100;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic get(key: number): string | null {\nlet index = this.hashFunc(key);\nlet pair = this.buckets[index];\nif (pair === null) return null;\nreturn pair.val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic set(key: number, val: string) {\nlet index = this.hashFunc(key);\nthis.buckets[index] = new Pair(key, val);\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic delete(key: number) {\nlet index = this.hashFunc(key);\n// \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\nthis.buckets[index] = null;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\npublic entries(): (Pair | null)[] {\nlet arr: (Pair | null)[] = [];\nfor (let i = 0; i < this.buckets.length; i++) {\nif (this.buckets[i]) {\narr.push(this.buckets[i]);\n}\n}\nreturn arr;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\npublic keys(): (number | undefined)[] {\nlet arr: (number | undefined)[] = [];\nfor (let i = 0; i < this.buckets.length; i++) {\nif (this.buckets[i]) {\narr.push(this.buckets[i].key);\n}\n}\nreturn arr;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\npublic values(): (string | undefined)[] {\nlet arr: (string | undefined)[] = [];\nfor (let i = 0; i < this.buckets.length; i++) {\nif (this.buckets[i]) {\narr.push(this.buckets[i].val);\n}\n}\nreturn arr;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic print() {\nlet pairSet = this.entries();\nfor (const pair of pairSet) {\nif (!pair) continue;\nconsole.info(`${pair.key} -> ${pair.val}`);\n}\n}\n}\n
            array_hash_map.c
            /* \u952e\u503c\u5bf9 int->string */\nstruct pair {\nint key;\nchar *val;\n};\ntypedef struct pair pair;\n[class]{arrayHashMap}-[func]{}\n
            array_hash_map.cs
            /* \u952e\u503c\u5bf9 int->string */\nclass Pair {\npublic int key;\npublic string val;\npublic Pair(int key, string val) {\nthis.key = key;\nthis.val = val;\n}\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nprivate List<Pair?> buckets;\npublic ArrayHashMap() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nbuckets = new();\nfor (int i = 0; i < 100; i++) {\nbuckets.Add(null);\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate int hashFunc(int key) {\nint index = key % 100;\nreturn index;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npublic string? get(int key) {\nint index = hashFunc(key);\nPair? pair = buckets[index];\nif (pair == null) return null;\nreturn pair.val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npublic void put(int key, string val) {\nPair pair = new Pair(key, val);\nint index = hashFunc(key);\nbuckets[index] = pair;\n}\n/* \u5220\u9664\u64cd\u4f5c */\npublic void remove(int key) {\nint index = hashFunc(key);\n// \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\nbuckets[index] = null;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\npublic List<Pair> pairSet() {\nList<Pair> pairSet = new();\nforeach (Pair? pair in buckets) {\nif (pair != null)\npairSet.Add(pair);\n}\nreturn pairSet;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\npublic List<int> keySet() {\nList<int> keySet = new();\nforeach (Pair? pair in buckets) {\nif (pair != null)\nkeySet.Add(pair.key);\n}\nreturn keySet;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\npublic List<string> valueSet() {\nList<string> valueSet = new();\nforeach (Pair? pair in buckets) {\nif (pair != null)\nvalueSet.Add(pair.val);\n}\nreturn valueSet;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npublic void print() {\nforeach (Pair kv in pairSet()) {\nConsole.WriteLine(kv.key + \" -> \" + kv.val);\n}\n}\n}\n
            array_hash_map.swift
            /* \u952e\u503c\u5bf9 */\nclass Pair {\nvar key: Int\nvar val: String\ninit(key: Int, val: String) {\nself.key = key\nself.val = val\n}\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nprivate var buckets: [Pair?] = []\ninit() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nfor _ in 0 ..< 100 {\nbuckets.append(nil)\n}\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nprivate func hashFunc(key: Int) -> Int {\nlet index = key % 100\nreturn index\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nfunc get(key: Int) -> String? {\nlet index = hashFunc(key: key)\nlet pair = buckets[index]\nreturn pair?.val\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nfunc put(key: Int, val: String) {\nlet pair = Pair(key: key, val: val)\nlet index = hashFunc(key: key)\nbuckets[index] = pair\n}\n/* \u5220\u9664\u64cd\u4f5c */\nfunc remove(key: Int) {\nlet index = hashFunc(key: key)\n// \u7f6e\u4e3a nil \uff0c\u4ee3\u8868\u5220\u9664\nbuckets[index] = nil\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\nfunc pairSet() -> [Pair] {\nvar pairSet: [Pair] = []\nfor pair in buckets {\nif let pair = pair {\npairSet.append(pair)\n}\n}\nreturn pairSet\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\nfunc keySet() -> [Int] {\nvar keySet: [Int] = []\nfor pair in buckets {\nif let pair = pair {\nkeySet.append(pair.key)\n}\n}\nreturn keySet\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\nfunc valueSet() -> [String] {\nvar valueSet: [String] = []\nfor pair in buckets {\nif let pair = pair {\nvalueSet.append(pair.val)\n}\n}\nreturn valueSet\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nfunc print() {\nfor pair in pairSet() {\nSwift.print(\"\\(pair.key) -> \\(pair.val)\")\n}\n}\n}\n
            array_hash_map.zig
            // \u952e\u503c\u5bf9\nconst Pair = struct {\nkey: usize = undefined,\nval: []const u8 = undefined,\npub fn init(key: usize, val: []const u8) Pair {\nreturn Pair {\n.key = key,\n.val = val,\n};\n}\n};\n// \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868\nfn ArrayHashMap(comptime T: type) type {\nreturn struct {\nbucket: ?std.ArrayList(?T) = null,\nmem_allocator: std.mem.Allocator = undefined,\nconst Self = @This();\n// \u6784\u9020\u51fd\u6570\npub fn init(self: *Self, allocator: std.mem.Allocator) !void {\nself.mem_allocator = allocator;\n// \u521d\u59cb\u5316\u4e00\u4e2a\u957f\u5ea6\u4e3a 100 \u7684\u6876\uff08\u6570\u7ec4\uff09\nself.bucket = std.ArrayList(?T).init(self.mem_allocator);\nvar i: i32 = 0;\nwhile (i < 100) : (i += 1) {\ntry self.bucket.?.append(null);\n}\n}\n// \u6790\u6784\u51fd\u6570\npub fn deinit(self: *Self) void {\nif (self.bucket != null) self.bucket.?.deinit();\n}\n// \u54c8\u5e0c\u51fd\u6570\nfn hashFunc(key: usize) usize {\nvar index = key % 100;\nreturn index;\n}\n// \u67e5\u8be2\u64cd\u4f5c\npub fn get(self: *Self, key: usize) []const u8 {\nvar index = hashFunc(key);\nvar pair = self.bucket.?.items[index];\nreturn pair.?.val;\n}\n// \u6dfb\u52a0\u64cd\u4f5c\npub fn put(self: *Self, key: usize, val: []const u8) !void {\nvar pair = Pair.init(key, val);\nvar index = hashFunc(key);\nself.bucket.?.items[index] = pair;\n}\n// \u5220\u9664\u64cd\u4f5c\npub fn remove(self: *Self, key: usize) !void {\nvar index = hashFunc(key);\n// \u7f6e\u4e3a null \uff0c\u4ee3\u8868\u5220\u9664\nself.bucket.?.items[index] = null;\n}       // \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9\npub fn pairSet(self: *Self) !std.ArrayList(T) {\nvar entry_set = std.ArrayList(T).init(self.mem_allocator);\nfor (self.bucket.?.items) |item| {\nif (item == null) continue;\ntry entry_set.append(item.?);\n}\nreturn entry_set;\n}  // \u83b7\u53d6\u6240\u6709\u952e\npub fn keySet(self: *Self) !std.ArrayList(usize) {\nvar key_set = std.ArrayList(usize).init(self.mem_allocator);\nfor (self.bucket.?.items) |item| {\nif (item == null) continue;\ntry key_set.append(item.?.key);\n}\nreturn key_set;\n}  // \u83b7\u53d6\u6240\u6709\u503c\npub fn valueSet(self: *Self) !std.ArrayList([]const u8) {\nvar value_set = std.ArrayList([]const u8).init(self.mem_allocator);\nfor (self.bucket.?.items) |item| {\nif (item == null) continue;\ntry value_set.append(item.?.val);\n}\nreturn value_set;\n}\n// \u6253\u5370\u54c8\u5e0c\u8868\npub fn print(self: *Self) !void {\nvar entry_set = try self.pairSet();\ndefer entry_set.deinit();\nfor (entry_set.items) |item| {\nstd.debug.print(\"{} -> {s}\\n\", .{item.key, item.val});\n}\n}\n};\n}\n
            array_hash_map.dart
            /* \u952e\u503c\u5bf9 */\nclass Pair {\nint key;\nString val;\nPair(this.key, this.val);\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\nclass ArrayHashMap {\nlate List<Pair?> _buckets;\nArrayHashMap() {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\n_buckets = List.filled(100, null);\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nint _hashFunc(int key) {\nfinal int index = key % 100;\nreturn index;\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\nString? get(int key) {\nfinal int index = _hashFunc(key);\nfinal Pair? pair = _buckets[index];\nif (pair == null) {\nreturn null;\n}\nreturn pair.val;\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\nvoid put(int key, String val) {\nfinal Pair pair = Pair(key, val);\nfinal int index = _hashFunc(key);\n_buckets[index] = pair;\n}\n/* \u5220\u9664\u64cd\u4f5c */\nvoid remove(int key) {\nfinal int index = _hashFunc(key);\n_buckets[index] = null;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\nList<Pair> pairSet() {\nList<Pair> pairSet = [];\nfor (final Pair? pair in _buckets) {\nif (pair != null) {\npairSet.add(pair);\n}\n}\nreturn pairSet;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\nList<int> keySet() {\nList<int> keySet = [];\nfor (final Pair? pair in _buckets) {\nif (pair != null) {\nkeySet.add(pair.key);\n}\n}\nreturn keySet;\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\nList<String> values() {\nList<String> valueSet = [];\nfor (final Pair? pair in _buckets) {\nif (pair != null) {\nvalueSet.add(pair.val);\n}\n}\nreturn valueSet;\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\nvoid printHashMap() {\nfor (final Pair kv in pairSet()) {\nprint(\"${kv.key} -> ${kv.val}\");\n}\n}\n}\n
            array_hash_map.rs
            /* \u952e\u503c\u5bf9 */\npub struct Pair {\npub key: i32,\npub val: String,\n}\n/* \u57fa\u4e8e\u6570\u7ec4\u7b80\u6613\u5b9e\u73b0\u7684\u54c8\u5e0c\u8868 */\npub struct ArrayHashMap {\nbuckets: Vec<Option<Pair>>\n}\nimpl ArrayHashMap {\npub fn new() -> ArrayHashMap {\n// \u521d\u59cb\u5316\u6570\u7ec4\uff0c\u5305\u542b 100 \u4e2a\u6876\nSelf { buckets: vec![None; 100] }\n}\n/* \u54c8\u5e0c\u51fd\u6570 */\nfn hash_func(&self, key: i32) -> usize {\nkey as usize % 100\n}\n/* \u67e5\u8be2\u64cd\u4f5c */\npub fn get(&self, key: i32) -> Option<&String> {\nlet index = self.hash_func(key);\nself.buckets[index].as_ref().map(|pair| &pair.val)\n}\n/* \u6dfb\u52a0\u64cd\u4f5c */\npub fn put(&mut self, key: i32, val: &str) {\nlet index = self.hash_func(key);\nself.buckets[index] = Some(Pair {\nkey,\nval: val.to_string(),\n});\n}\n/* \u5220\u9664\u64cd\u4f5c */\npub fn remove(&mut self, key: i32) {\nlet index = self.hash_func(key);\n// \u7f6e\u4e3a None \uff0c\u4ee3\u8868\u5220\u9664\nself.buckets[index] = None;\n}\n/* \u83b7\u53d6\u6240\u6709\u952e\u503c\u5bf9 */\npub fn entry_set(&self) -> Vec<&Pair> {\nself.buckets.iter().filter_map(|pair| pair.as_ref()).collect()\n}\n/* \u83b7\u53d6\u6240\u6709\u952e */\npub fn key_set(&self) -> Vec<&i32> {\nself.buckets.iter().filter_map(|pair| pair.as_ref().map(|pair| &pair.key)).collect()\n}\n/* \u83b7\u53d6\u6240\u6709\u503c */\npub fn value_set(&self) -> Vec<&String> {\nself.buckets.iter().filter_map(|pair| pair.as_ref().map(|pair| &pair.val)).collect()\n}\n/* \u6253\u5370\u54c8\u5e0c\u8868 */\npub fn print(&self) {\nfor pair in self.entry_set() {\nprintln!(\"{} -> {}\", pair.key, pair.val);\n}\n}\n}\n
            "},{"location":"chapter_hashing/hash_map/#613","title":"6.1.3 \u00a0 \u54c8\u5e0c\u51b2\u7a81\u4e0e\u6269\u5bb9","text":"

            \u672c\u8d28\u4e0a\u770b\uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u4f5c\u7528\u662f\u5c06\u6240\u6709 key \u6784\u6210\u7684\u8f93\u5165\u7a7a\u95f4\u6620\u5c04\u5230\u6570\u7ec4\u6240\u6709\u7d22\u5f15\u6784\u6210\u7684\u8f93\u51fa\u7a7a\u95f4\uff0c\u800c\u8f93\u5165\u7a7a\u95f4\u5f80\u5f80\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\u3002\u56e0\u6b64\uff0c\u7406\u8bba\u4e0a\u4e00\u5b9a\u5b58\u5728\u201c\u591a\u4e2a\u8f93\u5165\u5bf9\u5e94\u76f8\u540c\u8f93\u51fa\u201d\u7684\u60c5\u51b5\u3002

            \u5bf9\u4e8e\u4e0a\u8ff0\u793a\u4f8b\u4e2d\u7684\u54c8\u5e0c\u51fd\u6570\uff0c\u5f53\u8f93\u5165\u7684 key \u540e\u4e24\u4f4d\u76f8\u540c\u65f6\uff0c\u54c8\u5e0c\u51fd\u6570\u7684\u8f93\u51fa\u7ed3\u679c\u4e5f\u76f8\u540c\u3002\u4f8b\u5982\uff0c\u67e5\u8be2\u5b66\u53f7\u4e3a 12836 \u548c 20336 \u7684\u4e24\u4e2a\u5b66\u751f\u65f6\uff0c\u6211\u4eec\u5f97\u5230\uff1a

            12836 % 100 = 36\n20336 % 100 = 36\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u4e24\u4e2a\u5b66\u53f7\u6307\u5411\u4e86\u540c\u4e00\u4e2a\u59d3\u540d\uff0c\u8fd9\u663e\u7136\u662f\u4e0d\u5bf9\u7684\u3002\u6211\u4eec\u5c06\u8fd9\u79cd\u591a\u4e2a\u8f93\u5165\u5bf9\u5e94\u540c\u4e00\u8f93\u51fa\u7684\u60c5\u51b5\u79f0\u4e3a\u300c\u54c8\u5e0c\u51b2\u7a81 hash collision\u300d\u3002

            \u56fe\uff1a\u54c8\u5e0c\u51b2\u7a81\u793a\u4f8b

            \u5bb9\u6613\u60f3\u5230\uff0c\u54c8\u5e0c\u8868\u5bb9\u91cf \\(n\\) \u8d8a\u5927\uff0c\u591a\u4e2a key \u88ab\u5206\u914d\u5230\u540c\u4e00\u4e2a\u6876\u4e2d\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\uff0c\u51b2\u7a81\u5c31\u8d8a\u5c11\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6269\u5bb9\u54c8\u5e0c\u8868\u6765\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u6269\u5bb9\u524d\u952e\u503c\u5bf9 (136, A) \u548c (236, D) \u53d1\u751f\u51b2\u7a81\uff0c\u6269\u5bb9\u540e\u51b2\u7a81\u6d88\u5931\u3002

            \u56fe\uff1a\u54c8\u5e0c\u8868\u6269\u5bb9

            \u7c7b\u4f3c\u4e8e\u6570\u7ec4\u6269\u5bb9\uff0c\u54c8\u5e0c\u8868\u6269\u5bb9\u9700\u5c06\u6240\u6709\u952e\u503c\u5bf9\u4ece\u539f\u54c8\u5e0c\u8868\u8fc1\u79fb\u81f3\u65b0\u54c8\u5e0c\u8868\uff0c\u975e\u5e38\u8017\u65f6\u3002\u5e76\u4e14\u7531\u4e8e\u54c8\u5e0c\u8868\u5bb9\u91cf capacity \u6539\u53d8\uff0c\u6211\u4eec\u9700\u8981\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u6765\u91cd\u65b0\u8ba1\u7b97\u6240\u6709\u952e\u503c\u5bf9\u7684\u5b58\u50a8\u4f4d\u7f6e\uff0c\u8fd9\u8fdb\u4e00\u6b65\u63d0\u9ad8\u4e86\u6269\u5bb9\u8fc7\u7a0b\u7684\u8ba1\u7b97\u5f00\u9500\u3002\u4e3a\u6b64\uff0c\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u9884\u7559\u8db3\u591f\u5927\u7684\u54c8\u5e0c\u8868\u5bb9\u91cf\uff0c\u9632\u6b62\u9891\u7e41\u6269\u5bb9\u3002

            \u300c\u8d1f\u8f7d\u56e0\u5b50 load factor\u300d\u662f\u54c8\u5e0c\u8868\u7684\u4e00\u4e2a\u91cd\u8981\u6982\u5ff5\uff0c\u5176\u5b9a\u4e49\u4e3a\u54c8\u5e0c\u8868\u7684\u5143\u7d20\u6570\u91cf\u9664\u4ee5\u6876\u6570\u91cf\uff0c\u7528\u4e8e\u8861\u91cf\u54c8\u5e0c\u51b2\u7a81\u7684\u4e25\u91cd\u7a0b\u5ea6\uff0c\u4e5f\u5e38\u88ab\u4f5c\u4e3a\u54c8\u5e0c\u8868\u6269\u5bb9\u7684\u89e6\u53d1\u6761\u4ef6\u3002\u4f8b\u5982\u5728 Java \u4e2d\uff0c\u5f53\u8d1f\u8f7d\u56e0\u5b50\u8d85\u8fc7 \\(0.75\\) \u65f6\uff0c\u7cfb\u7edf\u4f1a\u5c06\u54c8\u5e0c\u8868\u5bb9\u91cf\u6269\u5c55\u4e3a\u539f\u5148\u7684 \\(2\\) \u500d\u3002

            "},{"location":"chapter_hashing/summary/","title":"6.4 \u00a0 \u5c0f\u7ed3","text":"
            • \u8f93\u5165 key \uff0c\u54c8\u5e0c\u8868\u80fd\u591f\u5728 \\(O(1)\\) \u65f6\u95f4\u5185\u67e5\u8be2\u5230 value \uff0c\u6548\u7387\u975e\u5e38\u9ad8\u3002
            • \u5e38\u89c1\u7684\u54c8\u5e0c\u8868\u64cd\u4f5c\u5305\u62ec\u67e5\u8be2\u3001\u6dfb\u52a0\u952e\u503c\u5bf9\u3001\u5220\u9664\u952e\u503c\u5bf9\u548c\u904d\u5386\u54c8\u5e0c\u8868\u7b49\u3002
            • \u54c8\u5e0c\u51fd\u6570\u5c06 key \u6620\u5c04\u4e3a\u6570\u7ec4\u7d22\u5f15\uff0c\u4ece\u800c\u8bbf\u95ee\u5bf9\u5e94\u6876\u5e76\u83b7\u53d6 value \u3002
            • \u4e24\u4e2a\u4e0d\u540c\u7684 key \u53ef\u80fd\u5728\u7ecf\u8fc7\u54c8\u5e0c\u51fd\u6570\u540e\u5f97\u5230\u76f8\u540c\u7684\u6570\u7ec4\u7d22\u5f15\uff0c\u5bfc\u81f4\u67e5\u8be2\u7ed3\u679c\u51fa\u9519\uff0c\u8fd9\u79cd\u73b0\u8c61\u88ab\u79f0\u4e3a\u54c8\u5e0c\u51b2\u7a81\u3002
            • \u54c8\u5e0c\u8868\u5bb9\u91cf\u8d8a\u5927\uff0c\u54c8\u5e0c\u51b2\u7a81\u7684\u6982\u7387\u5c31\u8d8a\u4f4e\u3002\u56e0\u6b64\u53ef\u4ee5\u901a\u8fc7\u6269\u5bb9\u54c8\u5e0c\u8868\u6765\u7f13\u89e3\u54c8\u5e0c\u51b2\u7a81\u3002\u4e0e\u6570\u7ec4\u6269\u5bb9\u7c7b\u4f3c\uff0c\u54c8\u5e0c\u8868\u6269\u5bb9\u64cd\u4f5c\u7684\u5f00\u9500\u5f88\u5927\u3002
            • \u8d1f\u8f7d\u56e0\u5b50\u5b9a\u4e49\u4e3a\u54c8\u5e0c\u8868\u4e2d\u5143\u7d20\u6570\u91cf\u9664\u4ee5\u6876\u6570\u91cf\uff0c\u53cd\u6620\u4e86\u54c8\u5e0c\u51b2\u7a81\u7684\u4e25\u91cd\u7a0b\u5ea6\uff0c\u5e38\u7528\u4f5c\u89e6\u53d1\u54c8\u5e0c\u8868\u6269\u5bb9\u7684\u6761\u4ef6\u3002
            • \u94fe\u5f0f\u5730\u5740\u901a\u8fc7\u5c06\u5355\u4e2a\u5143\u7d20\u8f6c\u5316\u4e3a\u94fe\u8868\uff0c\u5c06\u6240\u6709\u51b2\u7a81\u5143\u7d20\u5b58\u50a8\u5728\u540c\u4e00\u4e2a\u94fe\u8868\u4e2d\u3002\u7136\u800c\uff0c\u94fe\u8868\u8fc7\u957f\u4f1a\u964d\u4f4e\u67e5\u8be2\u6548\u7387\uff0c\u53ef\u4ee5\u8fdb\u4e00\u6b65\u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u7ea2\u9ed1\u6811\u6765\u63d0\u9ad8\u6548\u7387\u3002
            • \u5f00\u653e\u5bfb\u5740\u901a\u8fc7\u591a\u6b21\u63a2\u6d4b\u6765\u5904\u7406\u54c8\u5e0c\u51b2\u7a81\u3002\u7ebf\u6027\u63a2\u6d4b\u4f7f\u7528\u56fa\u5b9a\u6b65\u957f\uff0c\u7f3a\u70b9\u662f\u4e0d\u80fd\u5220\u9664\u5143\u7d20\uff0c\u4e14\u5bb9\u6613\u4ea7\u751f\u805a\u96c6\u3002\u591a\u6b21\u54c8\u5e0c\u4f7f\u7528\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u8fdb\u884c\u63a2\u6d4b\uff0c\u76f8\u8f83\u7ebf\u6027\u63a2\u6d4b\u66f4\u4e0d\u6613\u4ea7\u751f\u805a\u96c6\uff0c\u4f46\u591a\u4e2a\u54c8\u5e0c\u51fd\u6570\u589e\u52a0\u4e86\u8ba1\u7b97\u91cf\u3002
            • \u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u91c7\u53d6\u4e86\u4e0d\u540c\u7684\u54c8\u5e0c\u8868\u5b9e\u73b0\u3002\u4f8b\u5982\uff0cJava \u7684 HashMap \u4f7f\u7528\u94fe\u5f0f\u5730\u5740\uff0c\u800c Python \u7684 Dict \u91c7\u7528\u5f00\u653e\u5bfb\u5740\u3002
            • \u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u6211\u4eec\u5e0c\u671b\u54c8\u5e0c\u7b97\u6cd5\u5177\u6709\u786e\u5b9a\u6027\u3001\u9ad8\u6548\u7387\u548c\u5747\u5300\u5206\u5e03\u7684\u7279\u70b9\u3002\u5728\u5bc6\u7801\u5b66\u4e2d\uff0c\u54c8\u5e0c\u7b97\u6cd5\u8fd8\u5e94\u8be5\u5177\u5907\u6297\u78b0\u649e\u6027\u548c\u96ea\u5d29\u6548\u5e94\u3002
            • \u54c8\u5e0c\u7b97\u6cd5\u901a\u5e38\u91c7\u7528\u5927\u8d28\u6570\u4f5c\u4e3a\u6a21\u6570\uff0c\u4ee5\u6700\u5927\u5316\u5730\u4fdd\u8bc1\u54c8\u5e0c\u503c\u7684\u5747\u5300\u5206\u5e03\uff0c\u51cf\u5c11\u54c8\u5e0c\u51b2\u7a81\u3002
            • \u5e38\u89c1\u7684\u54c8\u5e0c\u7b97\u6cd5\u5305\u62ec MD5, SHA-1, SHA-2, SHA3 \u7b49\u3002MD5 \u5e38\u7528\u4e8e\u6821\u9a8c\u6587\u4ef6\u5b8c\u6574\u6027\uff0cSHA-2 \u5e38\u7528\u4e8e\u5b89\u5168\u5e94\u7528\u4e0e\u534f\u8bae\u3002
            • \u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u4f1a\u4e3a\u6570\u636e\u7c7b\u578b\u63d0\u4f9b\u5185\u7f6e\u54c8\u5e0c\u7b97\u6cd5\uff0c\u7528\u4e8e\u8ba1\u7b97\u54c8\u5e0c\u8868\u4e2d\u7684\u6876\u7d22\u5f15\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u53ea\u6709\u4e0d\u53ef\u53d8\u5bf9\u8c61\u662f\u53ef\u54c8\u5e0c\u7684\u3002
            "},{"location":"chapter_hashing/summary/#641-q-a","title":"6.4.1 \u00a0 Q & A","text":"

            \u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\u4ec0\u4e48\u4e0d\u662f \\(O(n)\\) \uff1f

            \u5f53\u54c8\u5e0c\u51b2\u7a81\u6bd4\u8f83\u4e25\u91cd\u65f6\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u9000\u5316\u81f3 \\(O(n)\\) \u3002\u5f53\u54c8\u5e0c\u51fd\u6570\u8bbe\u8ba1\u7684\u6bd4\u8f83\u597d\u3001\u5bb9\u91cf\u8bbe\u7f6e\u6bd4\u8f83\u5408\u7406\u3001\u51b2\u7a81\u6bd4\u8f83\u5e73\u5747\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002\u6211\u4eec\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u5185\u7f6e\u7684\u54c8\u5e0c\u8868\u65f6\uff0c\u901a\u5e38\u8ba4\u4e3a\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(1)\\) \u3002

            \u4e3a\u4ec0\u4e48\u4e0d\u4f7f\u7528\u54c8\u5e0c\u51fd\u6570 \\(f(x) = x\\) \u5462\uff1f\u8fd9\u6837\u5c31\u4e0d\u4f1a\u6709\u51b2\u7a81\u4e86

            \u5728 \\(f(x) = x\\) \u54c8\u5e0c\u51fd\u6570\u4e0b\uff0c\u6bcf\u4e2a\u5143\u7d20\u5bf9\u5e94\u552f\u4e00\u7684\u6876\u7d22\u5f15\uff0c\u8fd9\u4e0e\u6570\u7ec4\u7b49\u4ef7\u3002\u7136\u800c\uff0c\u8f93\u5165\u7a7a\u95f4\u901a\u5e38\u8fdc\u5927\u4e8e\u8f93\u51fa\u7a7a\u95f4\uff08\u6570\u7ec4\u957f\u5ea6\uff09\uff0c\u56e0\u6b64\u54c8\u5e0c\u51fd\u6570\u7684\u6700\u540e\u4e00\u6b65\u5f80\u5f80\u662f\u5bf9\u6570\u7ec4\u957f\u5ea6\u53d6\u6a21\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u54c8\u5e0c\u8868\u7684\u76ee\u6807\u662f\u5c06\u4e00\u4e2a\u8f83\u5927\u7684\u72b6\u6001\u7a7a\u95f4\u6620\u5c04\u5230\u4e00\u4e2a\u8f83\u5c0f\u7684\u7a7a\u95f4\uff0c\u5e76\u63d0\u4f9b \\(O(1)\\) \u7684\u67e5\u8be2\u6548\u7387\u3002

            \u54c8\u5e0c\u8868\u5e95\u5c42\u5b9e\u73b0\u662f\u6570\u7ec4\u3001\u94fe\u8868\u3001\u4e8c\u53c9\u6811\uff0c\u4f46\u4e3a\u4ec0\u4e48\u6548\u7387\u53ef\u4ee5\u6bd4\u4ed6\u4eec\u66f4\u9ad8\u5462\uff1f

            \u9996\u5148\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u6548\u7387\u53d8\u9ad8\uff0c\u4f46\u7a7a\u95f4\u6548\u7387\u53d8\u4f4e\u4e86\u3002\u54c8\u5e0c\u8868\u6709\u76f8\u5f53\u4e00\u90e8\u5206\u7684\u5185\u5b58\u662f\u672a\u4f7f\u7528\u7684\uff0c

            \u5176\u6b21\uff0c\u53ea\u662f\u5728\u7279\u5b9a\u4f7f\u7528\u573a\u666f\u4e0b\u65f6\u95f4\u6548\u7387\u53d8\u9ad8\u4e86\u3002\u5982\u679c\u4e00\u4e2a\u529f\u80fd\u80fd\u591f\u5728\u76f8\u540c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e0b\u4f7f\u7528\u6570\u7ec4\u6216\u94fe\u8868\u5b9e\u73b0\uff0c\u90a3\u4e48\u901a\u5e38\u6bd4\u54c8\u5e0c\u8868\u66f4\u5feb\u3002\u8fd9\u662f\u56e0\u4e3a\u54c8\u5e0c\u51fd\u6570\u8ba1\u7b97\u9700\u8981\u5f00\u9500\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u7684\u5e38\u6570\u9879\u66f4\u5927\u3002

            \u6700\u540e\uff0c\u54c8\u5e0c\u8868\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u80fd\u53d1\u751f\u52a3\u5316\u3002\u4f8b\u5982\u5728\u94fe\u5f0f\u5730\u5740\u4e2d\uff0c\u6211\u4eec\u91c7\u53d6\u5728\u94fe\u8868\u6216\u7ea2\u9ed1\u6811\u4e2d\u6267\u884c\u67e5\u627e\u64cd\u4f5c\uff0c\u4ecd\u7136\u6709\u9000\u5316\u81f3 \\(O(n)\\) \u65f6\u95f4\u7684\u98ce\u9669\u3002

            \u591a\u6b21\u54c8\u5e0c\u6709\u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u7684\u7f3a\u9677\u5417\uff1f\u5bf9\u4e8e\u6807\u8bb0\u5df2\u5220\u9664\u7684\u7a7a\u95f4\uff0c\u8fd9\u4e2a\u7a7a\u95f4\u8fd8\u80fd\u518d\u6b21\u4f7f\u7528\u5417\uff1f

            \u591a\u6b21\u54c8\u5e0c\u662f\u5f00\u653e\u5bfb\u5740\u7684\u4e00\u79cd\uff0c\u5f00\u653e\u5bfb\u5740\u6cd5\u90fd\u6709\u4e0d\u80fd\u76f4\u63a5\u5220\u9664\u5143\u7d20\u7684\u7f3a\u9677\uff0c\u9700\u8981\u901a\u8fc7\u6807\u8bb0\u5220\u9664\u3002\u88ab\u6807\u8bb0\u4e3a\u5df2\u5220\u9664\u7684\u7a7a\u95f4\u662f\u53ef\u4ee5\u518d\u6b21\u88ab\u4f7f\u7528\u7684\u3002\u5f53\u5c06\u65b0\u5143\u7d20\u63d2\u5165\u54c8\u5e0c\u8868\uff0c\u5e76\u4e14\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u627e\u5230\u4e86\u88ab\u6807\u8bb0\u4e3a\u5df2\u5220\u9664\u7684\u4f4d\u7f6e\u65f6\uff0c\u8be5\u4f4d\u7f6e\u53ef\u4ee5\u88ab\u65b0\u7684\u5143\u7d20\u4f7f\u7528\u3002\u8fd9\u6837\u505a\u65e2\u80fd\u4fdd\u6301\u54c8\u5e0c\u8868\u7684\u63a2\u6d4b\u5e8f\u5217\u4e0d\u53d8\uff0c\u53c8\u80fd\u4fdd\u8bc1\u54c8\u5e0c\u8868\u7684\u7a7a\u95f4\u4f7f\u7528\u7387\u3002

            \u4e3a\u4ec0\u4e48\u5728\u7ebf\u6027\u63a2\u6d4b\u4e2d\uff0c\u67e5\u627e\u5143\u7d20\u7684\u65f6\u5019\u4f1a\u51fa\u73b0\u54c8\u5e0c\u51b2\u7a81\u5462\uff1f

            \u67e5\u627e\u7684\u65f6\u5019\u901a\u8fc7\u54c8\u5e0c\u51fd\u6570\u627e\u5230\u5bf9\u5e94\u7684\u6876\u548c\u952e\u503c\u5bf9\uff0c\u53d1\u73b0 key \u4e0d\u5339\u914d\uff0c\u8fd9\u5c31\u4ee3\u8868\u6709\u54c8\u5e0c\u51b2\u7a81\u3002\u56e0\u6b64\uff0c\u7ebf\u6027\u63a2\u6d4b\u6cd5\u4f1a\u6839\u636e\u9884\u5148\u8bbe\u5b9a\u7684\u6b65\u957f\u4f9d\u6b21\u5411\u4e0b\u67e5\u627e\uff0c\u76f4\u81f3\u627e\u5230\u6b63\u786e\u7684\u952e\u503c\u5bf9\u6216\u65e0\u6cd5\u627e\u5230\u8df3\u51fa\u4e3a\u6b62\u3002

            \u4e3a\u4ec0\u4e48\u54c8\u5e0c\u8868\u6269\u5bb9\u80fd\u591f\u7f13\u89e3\u54c8\u5e0c\u51b2\u7a81\uff1f

            \u54c8\u5e0c\u51fd\u6570\u7684\u6700\u540e\u4e00\u6b65\u5f80\u5f80\u662f\u5bf9\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u53d6\u4f59\uff0c\u8ba9\u8f93\u51fa\u503c\u843d\u5165\u5728\u6570\u7ec4\u7d22\u5f15\u8303\u56f4\uff1b\u5728\u6269\u5bb9\u540e\uff0c\u6570\u7ec4\u957f\u5ea6 \\(n\\) \u53d1\u751f\u53d8\u5316\uff0c\u800c key \u5bf9\u5e94\u7684\u7d22\u5f15\u4e5f\u53ef\u80fd\u53d1\u751f\u53d8\u5316\u3002\u539f\u5148\u843d\u5728\u540c\u4e00\u4e2a\u6876\u7684\u591a\u4e2a key \uff0c\u5728\u6269\u5bb9\u540e\u53ef\u80fd\u4f1a\u88ab\u5206\u914d\u5230\u591a\u4e2a\u6876\u4e2d\uff0c\u4ece\u800c\u5b9e\u73b0\u54c8\u5e0c\u51b2\u7a81\u7684\u7f13\u89e3\u3002

            "},{"location":"chapter_heap/","title":"\u7b2c 8 \u7ae0 \u00a0 \u5806","text":"

            Abstract

            \u5806\u5c31\u50cf\u662f\u5c71\u5ddd\u7684\u5cf0\u5ce6\uff0c\u5b83\u4eec\u5c42\u53e0\u8d77\u4f0f\u3001\u5f62\u6001\u5404\u5f02\u3002

            \u6bcf\u4e00\u5ea7\u5c71\u5cf0\u90fd\u6709\u5176\u9ad8\u4f4e\u4e4b\u5206\uff0c\u800c\u6700\u9ad8\u7684\u5c71\u5cf0\u603b\u662f\u6700\u5148\u6620\u5165\u773c\u5e18\u3002

            "},{"location":"chapter_heap/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 8.1 \u00a0 \u5806
            • 8.2 \u00a0 \u5efa\u5806\u64cd\u4f5c
            • 8.3 \u00a0 Top-K \u95ee\u9898
            • 8.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_heap/build_heap/","title":"8.2 \u00a0 \u5efa\u5806\u64cd\u4f5c","text":"

            \u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u5e0c\u671b\u4f7f\u7528\u4e00\u4e2a\u5217\u8868\u7684\u6240\u6709\u5143\u7d20\u6765\u6784\u5efa\u4e00\u4e2a\u5806\uff0c\u8fd9\u4e2a\u8fc7\u7a0b\u88ab\u79f0\u4e3a\u201c\u5efa\u5806\u64cd\u4f5c\u201d\u3002

            "},{"location":"chapter_heap/build_heap/#821","title":"8.2.1 \u00a0 \u501f\u52a9\u5165\u5806\u65b9\u6cd5\u5b9e\u73b0","text":"

            \u6700\u76f4\u63a5\u7684\u65b9\u6cd5\u662f\u501f\u52a9\u201c\u5143\u7d20\u5165\u5806\u64cd\u4f5c\u201d\u5b9e\u73b0\u3002\u6211\u4eec\u9996\u5148\u521b\u5efa\u4e00\u4e2a\u7a7a\u5806\uff0c\u7136\u540e\u5c06\u5217\u8868\u5143\u7d20\u4f9d\u6b21\u6267\u884c\u201c\u5165\u5806\u201d\u3002

            \u8bbe\u5143\u7d20\u6570\u91cf\u4e3a \\(n\\) \uff0c\u5165\u5806\u64cd\u4f5c\u4f7f\u7528 \\(O(\\log{n})\\) \u65f6\u95f4\uff0c\u56e0\u6b64\u5c06\u6240\u6709\u5143\u7d20\u5165\u5806\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002

            "},{"location":"chapter_heap/build_heap/#822","title":"8.2.2 \u00a0 \u57fa\u4e8e\u5806\u5316\u64cd\u4f5c\u5b9e\u73b0","text":"

            \u6709\u8da3\u7684\u662f\uff0c\u5b58\u5728\u4e00\u79cd\u66f4\u9ad8\u6548\u7684\u5efa\u5806\u65b9\u6cd5\uff0c\u5176\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230 \\(O(n)\\) \u3002\u6211\u4eec\u5148\u5c06\u5217\u8868\u6240\u6709\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u5230\u5806\u4e2d\uff0c\u7136\u540e\u5012\u5e8f\u904d\u5386\u8be5\u5806\uff0c\u4f9d\u6b21\u5bf9\u6bcf\u4e2a\u8282\u70b9\u6267\u884c\u201c\u4ece\u9876\u81f3\u5e95\u5806\u5316\u201d\u3002

            \u8bf7\u6ce8\u610f\uff0c\u56e0\u4e3a\u53f6\u8282\u70b9\u6ca1\u6709\u5b50\u8282\u70b9\uff0c\u6240\u4ee5\u65e0\u987b\u5806\u5316\u3002\u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u6211\u4eec\u4ece\u6700\u540e\u4e00\u4e2a\u8282\u70b9\u7684\u7236\u8282\u70b9\u5f00\u59cb\u8fdb\u884c\u5806\u5316\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_heap.java
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(List<Integer> nums) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nmaxHeap = new ArrayList<>(nums);\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = parent(size() - 1); i >= 0; i--) {\nsiftDown(i);\n}\n}\n
            my_heap.cpp
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(vector<int> nums) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nmaxHeap = nums;\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = parent(size() - 1); i >= 0; i--) {\nsiftDown(i);\n}\n}\n
            my_heap.py
            def __init__(self, nums: list[int]):\n\"\"\"\u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806\"\"\"\n# \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nself.max_heap = nums\n# \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in range(self.parent(self.size() - 1), -1, -1):\nself.sift_down(i)\n
            my_heap.go
            /* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u5207\u7247\u5efa\u5806 */\nfunc newMaxHeap(nums []any) *maxHeap {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nh := &maxHeap{data: nums}\nfor i := len(h.data) - 1; i >= 0; i-- {\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nh.siftDown(i)\n}\nreturn h\n}\n
            my_heap.js
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u5efa\u7acb\u7a7a\u5806\u6216\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nconstructor(nums) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nthis.#maxHeap = nums === undefined ? [] : [...nums];\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (let i = this.#parent(this.size() - 1); i >= 0; i--) {\nthis.#siftDown(i);\n}\n}\n
            my_heap.ts
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u5efa\u7acb\u7a7a\u5806\u6216\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nconstructor(nums?: number[]) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nthis.maxHeap = nums === undefined ? [] : [...nums];\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (let i = this.parent(this.size() - 1); i >= 0; i--) {\nthis.siftDown(i);\n}\n}\n
            my_heap.c
            /* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u5207\u7247\u5efa\u5806 */\nmaxHeap *newMaxHeap(int nums[], int size) {\n// \u6240\u6709\u5143\u7d20\u5165\u5806\nmaxHeap *h = (maxHeap *)malloc(sizeof(maxHeap));\nh->size = size;\nmemcpy(h->data, nums, size * sizeof(int));\nfor (int i = size - 1; i >= 0; i--) {\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nsiftDown(h, i);\n}\nreturn h;\n}\n
            my_heap.cs
            /* \u6784\u9020\u51fd\u6570\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(IEnumerable<int> nums) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nmaxHeap = new List<int>(nums);\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nvar size = parent(this.size() - 1);\nfor (int i = size; i >= 0; i--) {\nsiftDown(i);\n}\n}\n
            my_heap.swift
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\ninit(nums: [Int]) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nmaxHeap = nums\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in stride(from: parent(i: size() - 1), through: 0, by: -1) {\nsiftDown(i: i)\n}\n}\n
            my_heap.zig
            // \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806\nfn init(self: *Self, allocator: std.mem.Allocator, nums: []const T) !void {\nif (self.max_heap != null) return;\nself.max_heap = std.ArrayList(T).init(allocator);\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\ntry self.max_heap.?.appendSlice(nums);\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nvar i: usize = parent(self.size() - 1) + 1;\nwhile (i > 0) : (i -= 1) {\ntry self.siftDown(i - 1);\n}\n}\n
            my_heap.dart
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nMaxHeap(List<int> nums) {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\n_maxHeap = nums;\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = _parent(size() - 1); i >= 0; i--) {\nsiftDown(i);\n}\n}\n
            my_heap.rs
            /* \u6784\u9020\u65b9\u6cd5\uff0c\u6839\u636e\u8f93\u5165\u5217\u8868\u5efa\u5806 */\nfn new(nums: Vec<i32>) -> Self {\n// \u5c06\u5217\u8868\u5143\u7d20\u539f\u5c01\u4e0d\u52a8\u6dfb\u52a0\u8fdb\u5806\nlet mut heap = MaxHeap { max_heap: nums };\n// \u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in (0..=Self::parent(heap.size() - 1)).rev() {\nheap.sift_down(i);\n}\nheap\n}\n
            "},{"location":"chapter_heap/build_heap/#823","title":"8.2.3 \u00a0 \u590d\u6742\u5ea6\u5206\u6790","text":"

            \u4e3a\u4ec0\u4e48\u7b2c\u4e8c\u79cd\u5efa\u5806\u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(n)\\) \uff1f\u6211\u4eec\u6765\u5c55\u5f00\u63a8\u7b97\u4e00\u4e0b\u3002

            • \u5728\u5b8c\u5168\u4e8c\u53c9\u6811\u4e2d\uff0c\u8bbe\u8282\u70b9\u603b\u6570\u4e3a \\(n\\) \uff0c\u5219\u53f6\u8282\u70b9\u6570\u91cf\u4e3a \\((n + 1) / 2\\) \uff0c\u5176\u4e2d \\(/\\) \u4e3a\u5411\u4e0b\u6574\u9664\u3002\u56e0\u6b64\uff0c\u5728\u6392\u9664\u53f6\u8282\u70b9\u540e\uff0c\u9700\u8981\u5806\u5316\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\((n - 1)/2\\) \uff0c\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002
            • \u5728\u4ece\u9876\u81f3\u5e95\u5806\u5316\u7684\u8fc7\u7a0b\u4e2d\uff0c\u6bcf\u4e2a\u8282\u70b9\u6700\u591a\u5806\u5316\u5230\u53f6\u8282\u70b9\uff0c\u56e0\u6b64\u6700\u5927\u8fed\u4ee3\u6b21\u6570\u4e3a\u4e8c\u53c9\u6811\u9ad8\u5ea6 \\(O(\\log n)\\) \u3002

            \u5c06\u4e0a\u8ff0\u4e24\u8005\u76f8\u4e58\uff0c\u53ef\u5f97\u5230\u5efa\u5806\u8fc7\u7a0b\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u7136\u800c\uff0c\u8fd9\u4e2a\u4f30\u7b97\u7ed3\u679c\u5e76\u4e0d\u51c6\u786e\uff0c\u56e0\u4e3a\u6211\u4eec\u6ca1\u6709\u8003\u8651\u5230\u4e8c\u53c9\u6811\u5e95\u5c42\u8282\u70b9\u6570\u91cf\u8fdc\u591a\u4e8e\u9876\u5c42\u8282\u70b9\u7684\u7279\u6027\u3002

            \u63a5\u4e0b\u6765\u6211\u4eec\u6765\u8fdb\u884c\u66f4\u4e3a\u8be6\u7ec6\u7684\u8ba1\u7b97\u3002\u4e3a\u4e86\u51cf\u5c0f\u8ba1\u7b97\u96be\u5ea6\uff0c\u6211\u4eec\u5047\u8bbe\u6811\u662f\u4e00\u4e2a\u201c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u201d\uff0c\u8be5\u5047\u8bbe\u4e0d\u4f1a\u5f71\u54cd\u8ba1\u7b97\u7ed3\u679c\u7684\u6b63\u786e\u6027\u3002\u8bbe\u4e8c\u53c9\u6811\uff08\u5373\u5806\uff09\u8282\u70b9\u6570\u91cf\u4e3a \\(n\\) \uff0c\u6811\u9ad8\u5ea6\u4e3a \\(h\\) \u3002\u4e0a\u6587\u63d0\u5230\uff0c\u8282\u70b9\u5806\u5316\u6700\u5927\u8fed\u4ee3\u6b21\u6570\u7b49\u4e8e\u8be5\u8282\u70b9\u5230\u53f6\u8282\u70b9\u7684\u8ddd\u79bb\uff0c\u800c\u8be5\u8ddd\u79bb\u6b63\u662f\u201c\u8282\u70b9\u9ad8\u5ea6\u201d\u3002

            \u56fe\uff1a\u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u5404\u5c42\u8282\u70b9\u6570\u91cf

            \u56e0\u6b64\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5404\u5c42\u7684\u201c\u8282\u70b9\u6570\u91cf \\(\\times\\) \u8282\u70b9\u9ad8\u5ea6\u201d\u6c42\u548c\uff0c\u4ece\u800c\u5f97\u5230\u6240\u6709\u8282\u70b9\u7684\u5806\u5316\u8fed\u4ee3\u6b21\u6570\u7684\u603b\u548c\u3002

            \\[ T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \\cdots + 2^{(h-1)}\\times1 \\]

            \u5316\u7b80\u4e0a\u5f0f\u9700\u8981\u501f\u52a9\u4e2d\u5b66\u7684\u6570\u5217\u77e5\u8bc6\uff0c\u5148\u5bf9 \\(T(h)\\) \u4e58\u4ee5 \\(2\\) \uff0c\u5f97\u5230

            \\[ \\begin{aligned} T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \\cdots + 2^{h-1}\\times1 \\newline 2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \\cdots + 2^{h}\\times1 \\newline \\end{aligned} \\]

            \u4f7f\u7528\u9519\u4f4d\u76f8\u51cf\u6cd5\uff0c\u7528\u4e0b\u5f0f \\(2 T(h)\\) \u51cf\u53bb\u4e0a\u5f0f \\(T(h)\\) \uff0c\u53ef\u5f97

            \\[ 2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \\cdots + 2^{h-1} + 2^h \\]

            \u89c2\u5bdf\u4e0a\u5f0f\uff0c\u53d1\u73b0 \\(T(h)\\) \u662f\u4e00\u4e2a\u7b49\u6bd4\u6570\u5217\uff0c\u53ef\u76f4\u63a5\u4f7f\u7528\u6c42\u548c\u516c\u5f0f\uff0c\u5f97\u5230\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a

            \\[ \\begin{aligned} T(h) & = 2 \\frac{1 - 2^h}{1 - 2} - h \\newline & = 2^{h+1} - h - 2 \\newline & = O(2^h) \\end{aligned} \\]

            \u8fdb\u4e00\u6b65\u5730\uff0c\u9ad8\u5ea6\u4e3a \\(h\\) \u7684\u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u8282\u70b9\u6570\u91cf\u4e3a \\(n = 2^{h+1} - 1\\) \uff0c\u6613\u5f97\u590d\u6742\u5ea6\u4e3a \\(O(2^h) = O(n)\\) \u3002\u4ee5\u4e0a\u63a8\u7b97\u8868\u660e\uff0c\u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002

            "},{"location":"chapter_heap/heap/","title":"8.1 \u00a0 \u5806","text":"

            \u300c\u5806 heap\u300d\u662f\u4e00\u79cd\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u53ef\u5206\u4e3a\u4e24\u79cd\u7c7b\u578b\uff1a

            • \u300c\u5927\u9876\u5806 max heap\u300d\uff1a\u4efb\u610f\u8282\u70b9\u7684\u503c \\(\\geq\\) \u5176\u5b50\u8282\u70b9\u7684\u503c\u3002
            • \u300c\u5c0f\u9876\u5806 min heap\u300d\uff1a\u4efb\u610f\u8282\u70b9\u7684\u503c \\(\\leq\\) \u5176\u5b50\u8282\u70b9\u7684\u503c\u3002

            \u56fe\uff1a\u5c0f\u9876\u5806\u4e0e\u5927\u9876\u5806

            \u5806\u4f5c\u4e3a\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u4e00\u4e2a\u7279\u4f8b\uff0c\u5177\u6709\u4ee5\u4e0b\u7279\u6027\uff1a

            • \u6700\u5e95\u5c42\u8282\u70b9\u9760\u5de6\u586b\u5145\uff0c\u5176\u4ed6\u5c42\u7684\u8282\u70b9\u90fd\u88ab\u586b\u6ee1\u3002
            • \u6211\u4eec\u5c06\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\u79f0\u4e3a\u201c\u5806\u9876\u201d\uff0c\u5c06\u5e95\u5c42\u6700\u9760\u53f3\u7684\u8282\u70b9\u79f0\u4e3a\u201c\u5806\u5e95\u201d\u3002
            • \u5bf9\u4e8e\u5927\u9876\u5806\uff08\u5c0f\u9876\u5806\uff09\uff0c\u5806\u9876\u5143\u7d20\uff08\u5373\u6839\u8282\u70b9\uff09\u7684\u503c\u5206\u522b\u662f\u6700\u5927\uff08\u6700\u5c0f\uff09\u7684\u3002
            "},{"location":"chapter_heap/heap/#811","title":"8.1.1 \u00a0 \u5806\u5e38\u7528\u64cd\u4f5c","text":"

            \u9700\u8981\u6307\u51fa\u7684\u662f\uff0c\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684\u662f\u300c\u4f18\u5148\u961f\u5217 priority queue\u300d\uff0c\u8fd9\u662f\u4e00\u79cd\u62bd\u8c61\u6570\u636e\u7ed3\u6784\uff0c\u5b9a\u4e49\u4e3a\u5177\u6709\u4f18\u5148\u7ea7\u6392\u5e8f\u7684\u961f\u5217\u3002

            \u5b9e\u9645\u4e0a\uff0c\u5806\u901a\u5e38\u7528\u4f5c\u5b9e\u73b0\u4f18\u5148\u961f\u5217\uff0c\u5927\u9876\u5806\u76f8\u5f53\u4e8e\u5143\u7d20\u6309\u4ece\u5927\u5230\u5c0f\u987a\u5e8f\u51fa\u961f\u7684\u4f18\u5148\u961f\u5217\u3002\u4ece\u4f7f\u7528\u89d2\u5ea6\u6765\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u201c\u4f18\u5148\u961f\u5217\u201d\u548c\u201c\u5806\u201d\u770b\u4f5c\u7b49\u4ef7\u7684\u6570\u636e\u7ed3\u6784\u3002\u56e0\u6b64\uff0c\u672c\u4e66\u5bf9\u4e24\u8005\u4e0d\u505a\u7279\u522b\u533a\u5206\uff0c\u7edf\u4e00\u4f7f\u7528\u201c\u5806\u201c\u6765\u547d\u540d\u3002

            \u5806\u7684\u5e38\u7528\u64cd\u4f5c\u89c1\u4e0b\u8868\uff0c\u65b9\u6cd5\u540d\u9700\u8981\u6839\u636e\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002

            \u8868\uff1a\u5806\u7684\u64cd\u4f5c\u6548\u7387

            \u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u5806 \\(O(\\log n)\\) pop() \u5806\u9876\u5143\u7d20\u51fa\u5806 \\(O(\\log n)\\) peek() \u8bbf\u95ee\u5806\u9876\u5143\u7d20\uff08\u5927 / \u5c0f\u9876\u5806\u5206\u522b\u4e3a\u6700\u5927 / \u5c0f\u503c\uff09 \\(O(1)\\) size() \u83b7\u53d6\u5806\u7684\u5143\u7d20\u6570\u91cf \\(O(1)\\) isEmpty() \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a \\(O(1)\\)

            \u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u63d0\u4f9b\u7684\u5806\u7c7b\uff08\u6216\u4f18\u5148\u961f\u5217\u7c7b\uff09\u3002

            Tip

            \u7c7b\u4f3c\u4e8e\u6392\u5e8f\u7b97\u6cd5\u4e2d\u7684\u201c\u4ece\u5c0f\u5230\u5927\u6392\u5217\u201d\u548c\u201c\u4ece\u5927\u5230\u5c0f\u6392\u5217\u201d\uff0c\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539 Comparator \u6765\u5b9e\u73b0\u201c\u5c0f\u9876\u5806\u201d\u4e0e\u201c\u5927\u9876\u5806\u201d\u4e4b\u95f4\u7684\u8f6c\u6362\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust heap.java
            /* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\nQueue<Integer> minHeap = new PriorityQueue<>();\n// \u521d\u59cb\u5316\u5927\u9876\u5806\uff08\u4f7f\u7528 lambda \u8868\u8fbe\u5f0f\u4fee\u6539 Comparator \u5373\u53ef\uff09\nQueue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.offer(1);\nmaxHeap.offer(3);\nmaxHeap.offer(2);\nmaxHeap.offer(5);\nmaxHeap.offer(4);\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.peek(); // 5\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\npeek = heap.poll();  // 5\npeek = heap.poll();  // 4\npeek = heap.poll();  // 3\npeek = heap.poll();  // 2\npeek = heap.poll();  // 1\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.size();\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = maxHeap.isEmpty();\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nminHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));\n
            heap.cpp
            /* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\npriority_queue<int, vector<int>, greater<int>> minHeap;\n// \u521d\u59cb\u5316\u5927\u9876\u5806\npriority_queue<int, vector<int>, less<int>> maxHeap;\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.push(1);\nmaxHeap.push(3);\nmaxHeap.push(2);\nmaxHeap.push(5);\nmaxHeap.push(4);\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.top(); // 5\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\nmaxHeap.pop(); // 5\nmaxHeap.pop(); // 4\nmaxHeap.pop(); // 3\nmaxHeap.pop(); // 2\nmaxHeap.pop(); // 1\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.size();\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = maxHeap.empty();\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nvector<int> input{1, 3, 2, 5, 4};\npriority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());\n
            heap.py
            # \u521d\u59cb\u5316\u5c0f\u9876\u5806\nmin_heap, flag = [], 1\n# \u521d\u59cb\u5316\u5927\u9876\u5806\nmax_heap, flag = [], -1\n# Python \u7684 heapq \u6a21\u5757\u9ed8\u8ba4\u5b9e\u73b0\u5c0f\u9876\u5806\n# \u8003\u8651\u5c06\u201c\u5143\u7d20\u53d6\u8d1f\u201d\u540e\u518d\u5165\u5806\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5c06\u5927\u5c0f\u5173\u7cfb\u98a0\u5012\uff0c\u4ece\u800c\u5b9e\u73b0\u5927\u9876\u5806\n# \u5728\u672c\u793a\u4f8b\u4e2d\uff0cflag = 1 \u65f6\u5bf9\u5e94\u5c0f\u9876\u5806\uff0cflag = -1 \u65f6\u5bf9\u5e94\u5927\u9876\u5806\n# \u5143\u7d20\u5165\u5806\nheapq.heappush(max_heap, flag * 1)\nheapq.heappush(max_heap, flag * 3)\nheapq.heappush(max_heap, flag * 2)\nheapq.heappush(max_heap, flag * 5)\nheapq.heappush(max_heap, flag * 4)\n# \u83b7\u53d6\u5806\u9876\u5143\u7d20\npeek: int = flag * max_heap[0] # 5\n# \u5806\u9876\u5143\u7d20\u51fa\u5806\n# \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\nval = flag * heapq.heappop(max_heap) # 5\nval = flag * heapq.heappop(max_heap) # 4\nval = flag * heapq.heappop(max_heap) # 3\nval = flag * heapq.heappop(max_heap) # 2\nval = flag * heapq.heappop(max_heap) # 1\n# \u83b7\u53d6\u5806\u5927\u5c0f\nsize: int = len(max_heap)\n# \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = not max_heap\n# \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806\nmin_heap: list[int] = [1, 3, 2, 5, 4]\nheapq.heapify(min_heap)\n
            heap.go
            // Go \u8bed\u8a00\u4e2d\u53ef\u4ee5\u901a\u8fc7\u5b9e\u73b0 heap.Interface \u6765\u6784\u5efa\u6574\u6570\u5927\u9876\u5806\n// \u5b9e\u73b0 heap.Interface \u9700\u8981\u540c\u65f6\u5b9e\u73b0 sort.Interface\ntype intHeap []any\n// Push heap.Interface \u7684\u65b9\u6cd5\uff0c\u5b9e\u73b0\u63a8\u5165\u5143\u7d20\u5230\u5806\nfunc (h *intHeap) Push(x any) {\n// Push \u548c Pop \u4f7f\u7528 pointer receiver \u4f5c\u4e3a\u53c2\u6570\n// \u56e0\u4e3a\u5b83\u4eec\u4e0d\u4ec5\u4f1a\u5bf9\u5207\u7247\u7684\u5185\u5bb9\u8fdb\u884c\u8c03\u6574\uff0c\u8fd8\u4f1a\u4fee\u6539\u5207\u7247\u7684\u957f\u5ea6\u3002\n*h = append(*h, x.(int))\n}\n// Pop heap.Interface \u7684\u65b9\u6cd5\uff0c\u5b9e\u73b0\u5f39\u51fa\u5806\u9876\u5143\u7d20\nfunc (h *intHeap) Pop() any {\n// \u5f85\u51fa\u5806\u5143\u7d20\u5b58\u653e\u5728\u6700\u540e\nlast := (*h)[len(*h)-1]\n*h = (*h)[:len(*h)-1]\nreturn last\n}\n// Len sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Len() int {\nreturn len(*h)\n}\n// Less sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Less(i, j int) bool {\n// \u5982\u679c\u5b9e\u73b0\u5c0f\u9876\u5806\uff0c\u5219\u9700\u8981\u8c03\u6574\u4e3a\u5c0f\u4e8e\u53f7\nreturn (*h)[i].(int) > (*h)[j].(int)\n}\n// Swap sort.Interface \u7684\u65b9\u6cd5\nfunc (h *intHeap) Swap(i, j int) {\n(*h)[i], (*h)[j] = (*h)[j], (*h)[i]\n}\n// Top \u83b7\u53d6\u5806\u9876\u5143\u7d20\nfunc (h *intHeap) Top() any {\nreturn (*h)[0]\n}\n/* Driver Code */\nfunc TestHeap(t *testing.T) {\n/* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5927\u9876\u5806\nmaxHeap := &intHeap{}\nheap.Init(maxHeap)\n/* \u5143\u7d20\u5165\u5806 */\n// \u8c03\u7528 heap.Interface \u7684\u65b9\u6cd5\uff0c\u6765\u6dfb\u52a0\u5143\u7d20\nheap.Push(maxHeap, 1)\nheap.Push(maxHeap, 3)\nheap.Push(maxHeap, 2)\nheap.Push(maxHeap, 4)\nheap.Push(maxHeap, 5)\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\ntop := maxHeap.Top()\nfmt.Printf(\"\u5806\u9876\u5143\u7d20\u4e3a %d\\n\", top)\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u8c03\u7528 heap.Interface \u7684\u65b9\u6cd5\uff0c\u6765\u79fb\u9664\u5143\u7d20\nheap.Pop(maxHeap) // 5\nheap.Pop(maxHeap) // 4\nheap.Pop(maxHeap) // 3\nheap.Pop(maxHeap) // 2\nheap.Pop(maxHeap) // 1\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nsize := len(*maxHeap)\nfmt.Printf(\"\u5806\u5143\u7d20\u6570\u91cf\u4e3a %d\\n\", size)\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nisEmpty := len(*maxHeap) == 0\nfmt.Printf(\"\u5806\u662f\u5426\u4e3a\u7a7a %t\\n\", isEmpty)\n}\n
            heap.js
            // JavaScript \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
            heap.ts
            // TypeScript \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
            heap.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
            heap.cs
            /* \u521d\u59cb\u5316\u5806 */\n// \u521d\u59cb\u5316\u5c0f\u9876\u5806\nPriorityQueue<int, int> minHeap = new PriorityQueue<int, int>();\n// \u521d\u59cb\u5316\u5927\u9876\u5806\uff08\u4f7f\u7528 lambda \u8868\u8fbe\u5f0f\u4fee\u6539 Comparator \u5373\u53ef\uff09\nPriorityQueue<int, int> maxHeap = new PriorityQueue<int, int>(Comparer<int>.Create((x, y) => y - x));\n/* \u5143\u7d20\u5165\u5806 */\nmaxHeap.Enqueue(1, 1);\nmaxHeap.Enqueue(3, 3);\nmaxHeap.Enqueue(2, 2);\nmaxHeap.Enqueue(5, 5);\nmaxHeap.Enqueue(4, 4);\n/* \u83b7\u53d6\u5806\u9876\u5143\u7d20 */\nint peek = maxHeap.Peek();//5\n/* \u5806\u9876\u5143\u7d20\u51fa\u5806 */\n// \u51fa\u5806\u5143\u7d20\u4f1a\u5f62\u6210\u4e00\u4e2a\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\npeek = maxHeap.Dequeue();  // 5\npeek = maxHeap.Dequeue();  // 4\npeek = maxHeap.Dequeue();  // 3\npeek = maxHeap.Dequeue();  // 2\npeek = maxHeap.Dequeue();  // 1\n/* \u83b7\u53d6\u5806\u5927\u5c0f */\nint size = maxHeap.Count;\n/* \u5224\u65ad\u5806\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = maxHeap.Count == 0;\n/* \u8f93\u5165\u5217\u8868\u5e76\u5efa\u5806 */\nminHeap = new PriorityQueue<int, int>(new List<(int, int)> { (1, 1), (3, 3), (2, 2), (5, 5), (4, 4), });\n
            heap.swift
            // Swift \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
            heap.zig
            \n
            heap.dart
            // Dart \u672a\u63d0\u4f9b\u5185\u7f6e Heap \u7c7b\n
            heap.rs
            \n
            "},{"location":"chapter_heap/heap/#812","title":"8.1.2 \u00a0 \u5806\u7684\u5b9e\u73b0","text":"

            \u4e0b\u6587\u5b9e\u73b0\u7684\u662f\u5927\u9876\u5806\u3002\u82e5\u8981\u5c06\u5176\u8f6c\u6362\u4e3a\u5c0f\u9876\u5806\uff0c\u53ea\u9700\u5c06\u6240\u6709\u5927\u5c0f\u903b\u8f91\u5224\u65ad\u53d6\u9006\uff08\u4f8b\u5982\uff0c\u5c06 \\(\\geq\\) \u66ff\u6362\u4e3a \\(\\leq\\) \uff09\u3002\u611f\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u3002

            "},{"location":"chapter_heap/heap/#1","title":"1. \u00a0 \u5806\u7684\u5b58\u50a8\u4e0e\u8868\u793a","text":"

            \u6211\u4eec\u5728\u4e8c\u53c9\u6811\u7ae0\u8282\u4e2d\u5b66\u4e60\u5230\uff0c\u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u7528\u6570\u7ec4\u6765\u8868\u793a\u3002\u7531\u4e8e\u5806\u6b63\u662f\u4e00\u79cd\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u6211\u4eec\u5c06\u91c7\u7528\u6570\u7ec4\u6765\u5b58\u50a8\u5806\u3002

            \u5f53\u4f7f\u7528\u6570\u7ec4\u8868\u793a\u4e8c\u53c9\u6811\u65f6\uff0c\u5143\u7d20\u4ee3\u8868\u8282\u70b9\u503c\uff0c\u7d22\u5f15\u4ee3\u8868\u8282\u70b9\u5728\u4e8c\u53c9\u6811\u4e2d\u7684\u4f4d\u7f6e\u3002\u8282\u70b9\u6307\u9488\u901a\u8fc7\u7d22\u5f15\u6620\u5c04\u516c\u5f0f\u6765\u5b9e\u73b0\u3002

            \u5177\u4f53\u800c\u8a00\uff0c\u7ed9\u5b9a\u7d22\u5f15 \\(i\\) \uff0c\u5176\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 1\\) \uff0c\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 2\\) \uff0c\u7236\u8282\u70b9\u7d22\u5f15\u4e3a \\((i - 1) / 2\\)\uff08\u5411\u4e0b\u53d6\u6574\uff09\u3002\u5f53\u7d22\u5f15\u8d8a\u754c\u65f6\uff0c\u8868\u793a\u7a7a\u8282\u70b9\u6216\u8282\u70b9\u4e0d\u5b58\u5728\u3002

            \u56fe\uff1a\u5806\u7684\u8868\u793a\u4e0e\u5b58\u50a8

            \u6211\u4eec\u53ef\u4ee5\u5c06\u7d22\u5f15\u6620\u5c04\u516c\u5f0f\u5c01\u88c5\u6210\u51fd\u6570\uff0c\u65b9\u4fbf\u540e\u7eed\u4f7f\u7528\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_heap.java
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(int i) {\nreturn (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.cpp
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(int i) {\nreturn (i - 1) / 2; // \u5411\u4e0b\u53d6\u6574\n}\n
            my_heap.py
            def left(self, i: int) -> int:\n\"\"\"\u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\"\"\"\nreturn 2 * i + 1\ndef right(self, i: int) -> int:\n\"\"\"\u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\"\"\"\nreturn 2 * i + 2\ndef parent(self, i: int) -> int:\n\"\"\"\u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15\"\"\"\nreturn (i - 1) // 2  # \u5411\u4e0b\u6574\u9664\n
            my_heap.go
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc (h *maxHeap) left(i int) int {\nreturn 2*i + 1\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc (h *maxHeap) right(i int) int {\nreturn 2*i + 2\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nfunc (h *maxHeap) parent(i int) int {\n// \u5411\u4e0b\u6574\u9664\nreturn (i - 1) / 2\n}\n
            my_heap.js
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\n#left(i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\n#right(i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\n#parent(i) {\nreturn Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.ts
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nleft(i: number): number {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nright(i: number): number {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nparent(i: number): number {\nreturn Math.floor((i - 1) / 2); // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.c
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(maxHeap *h, int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(maxHeap *h, int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(maxHeap *h, int i) {\nreturn (i - 1) / 2;\n}\n
            my_heap.cs
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint parent(int i) {\nreturn (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.swift
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc left(i: Int) -> Int {\n2 * i + 1\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nfunc right(i: Int) -> Int {\n2 * i + 2\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nfunc parent(i: Int) -> Int {\n(i - 1) / 2 // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.zig
            // \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\nfn left(i: usize) usize {\nreturn 2 * i + 1;\n}\n// \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\nfn right(i: usize) usize {\nreturn 2 * i + 2;\n}\n// \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15\nfn parent(i: usize) usize {\n// return (i - 1) / 2; // \u5411\u4e0b\u6574\u9664\nreturn @divFloor(i - 1, 2);\n}\n
            my_heap.dart
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nint _left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nint _right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nint _parent(int i) {\nreturn (i - 1) ~/ 2; // \u5411\u4e0b\u6574\u9664\n}\n
            my_heap.rs
            /* \u83b7\u53d6\u5de6\u5b50\u8282\u70b9\u7d22\u5f15 */\nfn left(i: usize) -> usize {\n2 * i + 1\n}\n/* \u83b7\u53d6\u53f3\u5b50\u8282\u70b9\u7d22\u5f15 */\nfn right(i: usize) -> usize {\n2 * i + 2\n}\n/* \u83b7\u53d6\u7236\u8282\u70b9\u7d22\u5f15 */\nfn parent(i: usize) -> usize {\n(i - 1) / 2 // \u5411\u4e0b\u6574\u9664\n}\n
            "},{"location":"chapter_heap/heap/#2","title":"2. \u00a0 \u8bbf\u95ee\u5806\u9876\u5143\u7d20","text":"

            \u5806\u9876\u5143\u7d20\u5373\u4e3a\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\uff0c\u4e5f\u5c31\u662f\u5217\u8868\u7684\u9996\u4e2a\u5143\u7d20\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_heap.java
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\nreturn maxHeap.get(0);\n}\n
            my_heap.cpp
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\nreturn maxHeap[0];\n}\n
            my_heap.py
            def peek(self) -> int:\n\"\"\"\u8bbf\u95ee\u5806\u9876\u5143\u7d20\"\"\"\nreturn self.max_heap[0]\n
            my_heap.go
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunc (h *maxHeap) peek() any {\nreturn h.data[0]\n}\n
            my_heap.js
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\npeek() {\nreturn this.#maxHeap[0];\n}\n
            my_heap.ts
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\npeek(): number {\nreturn this.maxHeap[0];\n}\n
            my_heap.c
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek(maxHeap *h) {\nreturn h->data[0];\n}\n
            my_heap.cs
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\nreturn maxHeap[0];\n}\n
            my_heap.swift
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfunc peek() -> Int {\nmaxHeap[0]\n}\n
            my_heap.zig
            // \u8bbf\u95ee\u5806\u9876\u5143\u7d20\nfn peek(self: *Self) T {\nreturn self.max_heap.?.items[0];\n}  
            my_heap.dart
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nint peek() {\nreturn _maxHeap[0];\n}\n
            my_heap.rs
            /* \u8bbf\u95ee\u5806\u9876\u5143\u7d20 */\nfn peek(&self) -> Option<i32> {\nself.max_heap.first().copied()\n}\n
            "},{"location":"chapter_heap/heap/#3","title":"3. \u00a0 \u5143\u7d20\u5165\u5806","text":"

            \u7ed9\u5b9a\u5143\u7d20 val \uff0c\u6211\u4eec\u9996\u5148\u5c06\u5176\u6dfb\u52a0\u5230\u5806\u5e95\u3002\u6dfb\u52a0\u4e4b\u540e\uff0c\u7531\u4e8e val \u53ef\u80fd\u5927\u4e8e\u5806\u4e2d\u5176\u4ed6\u5143\u7d20\uff0c\u5806\u7684\u6210\u7acb\u6761\u4ef6\u53ef\u80fd\u5df2\u88ab\u7834\u574f\u3002\u56e0\u6b64\uff0c\u9700\u8981\u4fee\u590d\u4ece\u63d2\u5165\u8282\u70b9\u5230\u6839\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u7684\u5404\u4e2a\u8282\u70b9\uff0c\u8fd9\u4e2a\u64cd\u4f5c\u88ab\u79f0\u4e3a\u300c\u5806\u5316 heapify\u300d\u3002

            \u8003\u8651\u4ece\u5165\u5806\u8282\u70b9\u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u6267\u884c\u5806\u5316\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u6211\u4eec\u6bd4\u8f83\u63d2\u5165\u8282\u70b9\u4e0e\u5176\u7236\u8282\u70b9\u7684\u503c\uff0c\u5982\u679c\u63d2\u5165\u8282\u70b9\u66f4\u5927\uff0c\u5219\u5c06\u5b83\u4eec\u4ea4\u6362\u3002\u7136\u540e\u7ee7\u7eed\u6267\u884c\u6b64\u64cd\u4f5c\uff0c\u4ece\u5e95\u81f3\u9876\u4fee\u590d\u5806\u4e2d\u7684\u5404\u4e2a\u8282\u70b9\uff0c\u76f4\u81f3\u8d8a\u8fc7\u6839\u8282\u70b9\u6216\u9047\u5230\u65e0\u987b\u4ea4\u6362\u7684\u8282\u70b9\u65f6\u7ed3\u675f\u3002

            <1><2><3><4><5><6><7><8><9>

            \u56fe\uff1a\u5143\u7d20\u5165\u5806\u6b65\u9aa4

            \u8bbe\u8282\u70b9\u603b\u6570\u4e3a \\(n\\) \uff0c\u5219\u6811\u7684\u9ad8\u5ea6\u4e3a \\(O(\\log n)\\) \u3002\u7531\u6b64\u53ef\u77e5\uff0c\u5806\u5316\u64cd\u4f5c\u7684\u5faa\u73af\u8f6e\u6570\u6700\u591a\u4e3a \\(O(\\log n)\\) \uff0c\u5143\u7d20\u5165\u5806\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_heap.java
            /* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n// \u6dfb\u52a0\u8282\u70b9\nmaxHeap.add(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nint p = parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || maxHeap.get(i) <= maxHeap.get(p))\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.cpp
            /* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n// \u6dfb\u52a0\u8282\u70b9\nmaxHeap.push_back(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nint p = parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || maxHeap[i] <= maxHeap[p])\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(maxHeap[i], maxHeap[p]);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.py
            def push(self, val: int):\n\"\"\"\u5143\u7d20\u5165\u5806\"\"\"\n# \u6dfb\u52a0\u8282\u70b9\nself.max_heap.append(val)\n# \u4ece\u5e95\u81f3\u9876\u5806\u5316\nself.sift_up(self.size() - 1)\ndef sift_up(self, i: int):\n\"\"\"\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316\"\"\"\nwhile True:\n# \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\np = self.parent(i)\n# \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif p < 0 or self.max_heap[i] <= self.max_heap[p]:\nbreak\n# \u4ea4\u6362\u4e24\u8282\u70b9\nself.swap(i, p)\n# \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p\n
            my_heap.go
            /* \u5143\u7d20\u5165\u5806 */\nfunc (h *maxHeap) push(val any) {\n// \u6dfb\u52a0\u8282\u70b9\nh.data = append(h.data, val)\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nh.siftUp(len(h.data) - 1)\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfunc (h *maxHeap) siftUp(i int) {\nfor true {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\np := h.parent(i)\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif p < 0 || h.data[i].(int) <= h.data[p].(int) {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nh.swap(i, p)\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p\n}\n}\n
            my_heap.js
            /* \u5143\u7d20\u5165\u5806 */\npush(val) {\n// \u6dfb\u52a0\u8282\u70b9\nthis.#maxHeap.push(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nthis.#siftUp(this.size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\n#siftUp(i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nconst p = this.#parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || this.#maxHeap[i] <= this.#maxHeap[p]) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nthis.#swap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.ts
            /* \u5143\u7d20\u5165\u5806 */\npush(val: number): void {\n// \u6dfb\u52a0\u8282\u70b9\nthis.maxHeap.push(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nthis.siftUp(this.size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nsiftUp(i: number): void {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nconst p = this.parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || this.maxHeap[i] <= this.maxHeap[p]) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nthis.swap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.c
            /* \u5143\u7d20\u5165\u5806 */\nvoid push(maxHeap *h, int val) {\n// \u9ed8\u8ba4\u60c5\u51b5\u4e0b\uff0c\u4e0d\u5e94\u8be5\u6dfb\u52a0\u8fd9\u4e48\u591a\u8282\u70b9\nif (h->size == MAX_SIZE) {\nprintf(\"heap is full!\");\nreturn;\n}\n// \u6dfb\u52a0\u8282\u70b9\nh->data[h->size] = val;\nh->size++;\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(h, h->size - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(maxHeap *h, int i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nint p = parent(h, i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || h->data[i] <= h->data[p]) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(h, i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.cs
            /* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n// \u6dfb\u52a0\u8282\u70b9\nmaxHeap.Add(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nint p = parent(i);\n// \u82e5\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\uff0c\u5219\u7ed3\u675f\u5806\u5316\nif (p < 0 || maxHeap[i] <= maxHeap[p])\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.swift
            /* \u5143\u7d20\u5165\u5806 */\nfunc push(val: Int) {\n// \u6dfb\u52a0\u8282\u70b9\nmaxHeap.append(val)\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(i: size() - 1)\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfunc siftUp(i: Int) {\nvar i = i\nwhile true {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nlet p = parent(i: i)\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif p < 0 || maxHeap[i] <= maxHeap[p] {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i: i, j: p)\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p\n}\n}\n
            my_heap.zig
            // \u5143\u7d20\u5165\u5806\nfn push(self: *Self, val: T) !void {\n// \u6dfb\u52a0\u8282\u70b9\ntry self.max_heap.?.append(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\ntry self.siftUp(self.size() - 1);\n}  // \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316\nfn siftUp(self: *Self, i_: usize) !void {\nvar i = i_;\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nvar p = parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 or self.max_heap.?.items[i] <= self.max_heap.?.items[p]) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\ntry self.swap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.dart
            /* \u5143\u7d20\u5165\u5806 */\nvoid push(int val) {\n// \u6dfb\u52a0\u8282\u70b9\n_maxHeap.add(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nsiftUp(size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nvoid siftUp(int i) {\nwhile (true) {\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nint p = _parent(i);\n// \u5f53\u201c\u8d8a\u8fc7\u6839\u8282\u70b9\u201d\u6216\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif (p < 0 || _maxHeap[i] <= _maxHeap[p]) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\n_swap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            my_heap.rs
            /* \u5143\u7d20\u5165\u5806 */\nfn push(&mut self, val: i32) {\n// \u6dfb\u52a0\u8282\u70b9\nself.max_heap.push(val);\n// \u4ece\u5e95\u81f3\u9876\u5806\u5316\nself.sift_up(self.size() - 1);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u5e95\u81f3\u9876\u5806\u5316 */\nfn sift_up(&mut self, mut i: usize) {\nloop {\n// \u8282\u70b9 i \u5df2\u7ecf\u662f\u5806\u9876\u8282\u70b9\u4e86\uff0c\u7ed3\u675f\u5806\u5316\nif i == 0 {\nbreak;\n}\n// \u83b7\u53d6\u8282\u70b9 i \u7684\u7236\u8282\u70b9\nlet p = Self::parent(i);\n// \u5f53\u201c\u8282\u70b9\u65e0\u987b\u4fee\u590d\u201d\u65f6\uff0c\u7ed3\u675f\u5806\u5316\nif self.max_heap[i] <= self.max_heap[p] {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nself.swap(i, p);\n// \u5faa\u73af\u5411\u4e0a\u5806\u5316\ni = p;\n}\n}\n
            "},{"location":"chapter_heap/heap/#4","title":"4. \u00a0 \u5806\u9876\u5143\u7d20\u51fa\u5806","text":"

            \u5806\u9876\u5143\u7d20\u662f\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9\uff0c\u5373\u5217\u8868\u9996\u5143\u7d20\u3002\u5982\u679c\u6211\u4eec\u76f4\u63a5\u4ece\u5217\u8868\u4e2d\u5220\u9664\u9996\u5143\u7d20\uff0c\u90a3\u4e48\u4e8c\u53c9\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u7d22\u5f15\u90fd\u4f1a\u53d1\u751f\u53d8\u5316\uff0c\u8fd9\u5c06\u4f7f\u5f97\u540e\u7eed\u4f7f\u7528\u5806\u5316\u4fee\u590d\u53d8\u5f97\u56f0\u96be\u3002\u4e3a\u4e86\u5c3d\u91cf\u51cf\u5c11\u5143\u7d20\u7d22\u5f15\u7684\u53d8\u52a8\uff0c\u6211\u4eec\u91c7\u53d6\u4ee5\u4e0b\u64cd\u4f5c\u6b65\u9aa4\uff1a

            1. \u4ea4\u6362\u5806\u9876\u5143\u7d20\u4e0e\u5806\u5e95\u5143\u7d20\uff08\u5373\u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff09\u3002
            2. \u4ea4\u6362\u5b8c\u6210\u540e\uff0c\u5c06\u5806\u5e95\u4ece\u5217\u8868\u4e2d\u5220\u9664\uff08\u6ce8\u610f\uff0c\u7531\u4e8e\u5df2\u7ecf\u4ea4\u6362\uff0c\u5b9e\u9645\u4e0a\u5220\u9664\u7684\u662f\u539f\u6765\u7684\u5806\u9876\u5143\u7d20\uff09\u3002
            3. \u4ece\u6839\u8282\u70b9\u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u6267\u884c\u5806\u5316\u3002

            \u987e\u540d\u601d\u4e49\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\u7684\u64cd\u4f5c\u65b9\u5411\u4e0e\u4ece\u5e95\u81f3\u9876\u5806\u5316\u76f8\u53cd\uff0c\u6211\u4eec\u5c06\u6839\u8282\u70b9\u7684\u503c\u4e0e\u5176\u4e24\u4e2a\u5b50\u8282\u70b9\u7684\u503c\u8fdb\u884c\u6bd4\u8f83\uff0c\u5c06\u6700\u5927\u7684\u5b50\u8282\u70b9\u4e0e\u6839\u8282\u70b9\u4ea4\u6362\uff1b\u7136\u540e\u5faa\u73af\u6267\u884c\u6b64\u64cd\u4f5c\uff0c\u76f4\u5230\u8d8a\u8fc7\u53f6\u8282\u70b9\u6216\u9047\u5230\u65e0\u987b\u4ea4\u6362\u7684\u8282\u70b9\u65f6\u7ed3\u675f\u3002

            <1><2><3><4><5><6><7><8><9><10>

            \u56fe\uff1a\u5806\u9876\u5143\u7d20\u51fa\u5806\u6b65\u9aa4

            \u4e0e\u5143\u7d20\u5165\u5806\u64cd\u4f5c\u76f8\u4f3c\uff0c\u5806\u9876\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u4e3a \\(O(\\log n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust my_heap.java
            /* \u5143\u7d20\u51fa\u5806 */\nint pop() {\n// \u5224\u7a7a\u5904\u7406\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(0, size() - 1);\n// \u5220\u9664\u8282\u70b9\nint val = maxHeap.remove(size() - 1);\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = left(i), r = right(i), ma = i;\nif (l < size() && maxHeap.get(l) > maxHeap.get(ma))\nma = l;\nif (r < size() && maxHeap.get(r) > maxHeap.get(ma))\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i)\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.cpp
            /* \u5143\u7d20\u51fa\u5806 */\nvoid pop() {\n// \u5224\u7a7a\u5904\u7406\nif (empty()) {\nthrow out_of_range(\"\u5806\u4e3a\u7a7a\");\n}\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(maxHeap[0], maxHeap[size() - 1]);\n// \u5220\u9664\u8282\u70b9\nmaxHeap.pop_back();\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(0);\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = left(i), r = right(i), ma = i;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (l < size() && maxHeap[l] > maxHeap[ma])\nma = l;\nif (r < size() && maxHeap[r] > maxHeap[ma])\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i)\nbreak;\nswap(maxHeap[i], maxHeap[ma]);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.py
            def pop(self) -> int:\n\"\"\"\u5143\u7d20\u51fa\u5806\"\"\"\n# \u5224\u7a7a\u5904\u7406\nif self.is_empty():\nraise IndexError(\"\u5806\u4e3a\u7a7a\")\n# \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nself.swap(0, self.size() - 1)\n# \u5220\u9664\u8282\u70b9\nval = self.max_heap.pop()\n# \u4ece\u9876\u81f3\u5e95\u5806\u5316\nself.sift_down(0)\n# \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val\ndef sift_down(self, i: int):\n\"\"\"\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\"\"\"\nwhile True:\n# \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nl, r, ma = self.left(i), self.right(i), i\nif l < self.size() and self.max_heap[l] > self.max_heap[ma]:\nma = l\nif r < self.size() and self.max_heap[r] > self.max_heap[ma]:\nma = r\n# \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i:\nbreak\n# \u4ea4\u6362\u4e24\u8282\u70b9\nself.swap(i, ma)\n# \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma\n
            my_heap.go
            /* \u5143\u7d20\u51fa\u5806 */\nfunc (h *maxHeap) pop() any {\n// \u5224\u7a7a\u5904\u7406\nif h.isEmpty() {\nfmt.Println(\"error\")\nreturn nil\n}\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nh.swap(0, h.size()-1)\n// \u5220\u9664\u8282\u70b9\nval := h.data[len(h.data)-1]\nh.data = h.data[:len(h.data)-1]\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nh.siftDown(0)\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc (h *maxHeap) siftDown(i int) {\nfor true {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a max\nl, r, max := h.left(i), h.right(i), i\nif l < h.size() && h.data[l].(int) > h.data[max].(int) {\nmax = l\n}\nif r < h.size() && h.data[r].(int) > h.data[max].(int) {\nmax = r\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif max == i {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nh.swap(i, max)\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = max\n}\n}\n
            my_heap.js
            /* \u5143\u7d20\u51fa\u5806 */\npop() {\n// \u5224\u7a7a\u5904\u7406\nif (this.isEmpty()) throw new Error('\u5806\u4e3a\u7a7a');\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nthis.#swap(0, this.size() - 1);\n// \u5220\u9664\u8282\u70b9\nconst val = this.#maxHeap.pop();\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nthis.#siftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\n#siftDown(i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nconst l = this.#left(i),\nr = this.#right(i);\nlet ma = i;\nif (l < this.size() && this.#maxHeap[l] > this.#maxHeap[ma]) ma = l;\nif (r < this.size() && this.#maxHeap[r] > this.#maxHeap[ma]) ma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma === i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nthis.#swap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.ts
            /* \u5143\u7d20\u51fa\u5806 */\npop(): number {\n// \u5224\u7a7a\u5904\u7406\nif (this.isEmpty()) throw new RangeError('Heap is empty.');\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nthis.swap(0, this.size() - 1);\n// \u5220\u9664\u8282\u70b9\nconst val = this.maxHeap.pop();\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nthis.siftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nsiftDown(i: number): void {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nconst l = this.left(i),\nr = this.right(i);\nlet ma = i;\nif (l < this.size() && this.maxHeap[l] > this.maxHeap[ma]) ma = l;\nif (r < this.size() && this.maxHeap[r] > this.maxHeap[ma]) ma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma === i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nthis.swap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.c
            /* \u5143\u7d20\u51fa\u5806 */\nint pop(maxHeap *h) {\n// \u5224\u7a7a\u5904\u7406\nif (isEmpty(h)) {\nprintf(\"heap is empty!\");\nreturn INT_MAX;\n}\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(h, 0, size(h) - 1);\n// \u5220\u9664\u8282\u70b9\nint val = h->data[h->size - 1];\nh->size--;\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(h, 0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(maxHeap *h, int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a max\nint l = left(h, i);\nint r = right(h, i);\nint max = i;\nif (l < size(h) && h->data[l] > h->data[max]) {\nmax = l;\n}\nif (r < size(h) && h->data[r] > h->data[max]) {\nmax = r;\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (max == i) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(h, i, max);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = max;\n}\n}\n
            my_heap.cs
            /* \u5143\u7d20\u51fa\u5806 */\nint pop() {\n// \u5224\u7a7a\u5904\u7406\nif (isEmpty())\nthrow new IndexOutOfRangeException();\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(0, size() - 1);\n// \u5220\u9664\u8282\u70b9\nint val = maxHeap.Last();\nmaxHeap.RemoveAt(size() - 1);\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = left(i), r = right(i), ma = i;\nif (l < size() && maxHeap[l] > maxHeap[ma])\nma = l;\nif (r < size() && maxHeap[r] > maxHeap[ma])\nma = r;\n// \u82e5\u201c\u8282\u70b9 i \u6700\u5927\u201d\u6216\u201c\u8d8a\u8fc7\u53f6\u8282\u70b9\u201d\uff0c\u5219\u7ed3\u675f\u5806\u5316\nif (ma == i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.swift
            /* \u5143\u7d20\u51fa\u5806 */\nfunc pop() -> Int {\n// \u5224\u7a7a\u5904\u7406\nif isEmpty() {\nfatalError(\"\u5806\u4e3a\u7a7a\")\n}\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(i: 0, j: size() - 1)\n// \u5220\u9664\u8282\u70b9\nlet val = maxHeap.remove(at: size() - 1)\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(i: 0)\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(i: Int) {\nvar i = i\nwhile true {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet l = left(i: i)\nlet r = right(i: i)\nvar ma = i\nif l < size(), maxHeap[l] > maxHeap[ma] {\nma = l\n}\nif r < size(), maxHeap[r] > maxHeap[ma] {\nma = r\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(i: i, j: ma)\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma\n}\n}\n
            my_heap.zig
            // \u5143\u7d20\u51fa\u5806\nfn pop(self: *Self) !T {\n// \u5224\u65ad\u5904\u7406\nif (self.isEmpty()) unreachable;\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\ntry self.swap(0, self.size() - 1);\n// \u5220\u9664\u8282\u70b9\nvar val = self.max_heap.?.pop();\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\ntry self.siftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n} // \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\nfn siftDown(self: *Self, i_: usize) !void {\nvar i = i_;\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nvar l = left(i);\nvar r = right(i);\nvar ma = i;\nif (l < self.size() and self.max_heap.?.items[l] > self.max_heap.?.items[ma]) ma = l;\nif (r < self.size() and self.max_heap.?.items[r] > self.max_heap.?.items[ma]) ma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\ntry self.swap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.dart
            /* \u5143\u7d20\u51fa\u5806 */\nint pop() {\n// \u5224\u7a7a\u5904\u7406\nif (isEmpty()) throw Exception('\u5806\u4e3a\u7a7a');\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n_swap(0, size() - 1);\n// \u5220\u9664\u8282\u70b9\nint val = _maxHeap.removeLast();\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nsiftDown(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nreturn val;\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = _left(i);\nint r = _right(i);\nint ma = i;\nif (l < size() && _maxHeap[l] > _maxHeap[ma]) ma = l;\nif (r < size() && _maxHeap[r] > _maxHeap[ma]) ma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\n_swap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            my_heap.rs
            /* \u5143\u7d20\u51fa\u5806 */\nfn pop(&mut self) -> i32 {\n// \u5224\u7a7a\u5904\u7406\nif self.is_empty() {\npanic!(\"index out of bounds\");\n}\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nself.swap(0, self.size() - 1);\n// \u5220\u9664\u8282\u70b9\nlet val = self.max_heap.remove(self.size() - 1);\n// \u4ece\u9876\u81f3\u5e95\u5806\u5316\nself.sift_down(0);\n// \u8fd4\u56de\u5806\u9876\u5143\u7d20\nval\n}\n/* \u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfn sift_down(&mut self, mut i: usize) {\nloop {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet (l, r, mut ma) = (Self::left(i), Self::right(i), i);\nif l < self.size() && self.max_heap[l] > self.max_heap[ma] {\nma = l;\n}\nif r < self.size() && self.max_heap[r] > self.max_heap[ma] {\nma = r;\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nself.swap(i, ma);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n
            "},{"location":"chapter_heap/heap/#813","title":"8.1.3 \u00a0 \u5806\u5e38\u89c1\u5e94\u7528","text":"
            • \u4f18\u5148\u961f\u5217\uff1a\u5806\u901a\u5e38\u4f5c\u4e3a\u5b9e\u73b0\u4f18\u5148\u961f\u5217\u7684\u9996\u9009\u6570\u636e\u7ed3\u6784\uff0c\u5176\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log n)\\) \uff0c\u800c\u5efa\u961f\u64cd\u4f5c\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4e9b\u64cd\u4f5c\u90fd\u975e\u5e38\u9ad8\u6548\u3002
            • \u5806\u6392\u5e8f\uff1a\u7ed9\u5b9a\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u53ef\u4ee5\u7528\u5b83\u4eec\u5efa\u7acb\u4e00\u4e2a\u5806\uff0c\u7136\u540e\u4e0d\u65ad\u5730\u6267\u884c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\uff0c\u4ece\u800c\u5f97\u5230\u6709\u5e8f\u6570\u636e\u3002\u7136\u800c\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u4f7f\u7528\u4e00\u79cd\u66f4\u4f18\u96c5\u7684\u65b9\u5f0f\u5b9e\u73b0\u5806\u6392\u5e8f\uff0c\u8be6\u89c1\u540e\u7eed\u7684\u5806\u6392\u5e8f\u7ae0\u8282\u3002
            • \u83b7\u53d6\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\uff1a\u8fd9\u662f\u4e00\u4e2a\u7ecf\u5178\u7684\u7b97\u6cd5\u95ee\u9898\uff0c\u540c\u65f6\u4e5f\u662f\u4e00\u79cd\u5178\u578b\u5e94\u7528\uff0c\u4f8b\u5982\u9009\u62e9\u70ed\u5ea6\u524d 10 \u7684\u65b0\u95fb\u4f5c\u4e3a\u5fae\u535a\u70ed\u641c\uff0c\u9009\u53d6\u9500\u91cf\u524d 10 \u7684\u5546\u54c1\u7b49\u3002
            "},{"location":"chapter_heap/summary/","title":"8.4 \u00a0 \u5c0f\u7ed3","text":"
            • \u5806\u662f\u4e00\u68f5\u5b8c\u5168\u4e8c\u53c9\u6811\uff0c\u6839\u636e\u6210\u7acb\u6761\u4ef6\u53ef\u5206\u4e3a\u5927\u9876\u5806\u548c\u5c0f\u9876\u5806\u3002\u5927\uff08\u5c0f\uff09\u9876\u5806\u7684\u5806\u9876\u5143\u7d20\u662f\u6700\u5927\uff08\u5c0f\uff09\u7684\u3002
            • \u4f18\u5148\u961f\u5217\u7684\u5b9a\u4e49\u662f\u5177\u6709\u51fa\u961f\u4f18\u5148\u7ea7\u7684\u961f\u5217\uff0c\u901a\u5e38\u4f7f\u7528\u5806\u6765\u5b9e\u73b0\u3002
            • \u5806\u7684\u5e38\u7528\u64cd\u4f5c\u53ca\u5176\u5bf9\u5e94\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5305\u62ec\uff1a\u5143\u7d20\u5165\u5806 \\(O(\\log n)\\) \u3001\u5806\u9876\u5143\u7d20\u51fa\u5806 \\(O(\\log n)\\) \u548c\u8bbf\u95ee\u5806\u9876\u5143\u7d20 \\(O(1)\\) \u7b49\u3002
            • \u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u7528\u6570\u7ec4\u8868\u793a\uff0c\u56e0\u6b64\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u6570\u7ec4\u6765\u5b58\u50a8\u5806\u3002
            • \u5806\u5316\u64cd\u4f5c\u7528\u4e8e\u7ef4\u62a4\u5806\u7684\u6027\u8d28\uff0c\u5728\u5165\u5806\u548c\u51fa\u5806\u64cd\u4f5c\u4e2d\u90fd\u4f1a\u7528\u5230\u3002
            • \u8f93\u5165 \\(n\\) \u4e2a\u5143\u7d20\u5e76\u5efa\u5806\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(n)\\) \uff0c\u975e\u5e38\u9ad8\u6548\u3002
            • Top-K \u662f\u4e00\u4e2a\u7ecf\u5178\u7b97\u6cd5\u95ee\u9898\uff0c\u53ef\u4ee5\u4f7f\u7528\u5806\u6570\u636e\u7ed3\u6784\u9ad8\u6548\u89e3\u51b3\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log k)\\) \u3002
            "},{"location":"chapter_heap/summary/#841-q-a","title":"8.4.1 \u00a0 Q & A","text":"

            \u6570\u636e\u7ed3\u6784\u7684\u201c\u5806\u201d\u4e0e\u5185\u5b58\u7ba1\u7406\u7684\u201c\u5806\u201d\u662f\u540c\u4e00\u4e2a\u6982\u5ff5\u5417\uff1f

            \u4e24\u8005\u4e0d\u662f\u540c\u4e00\u4e2a\u6982\u5ff5\uff0c\u53ea\u662f\u78b0\u5de7\u90fd\u53eb\u5806\u3002\u8ba1\u7b97\u673a\u7cfb\u7edf\u5185\u5b58\u4e2d\u7684\u5806\u662f\u52a8\u6001\u5185\u5b58\u5206\u914d\u7684\u4e00\u90e8\u5206\uff0c\u7a0b\u5e8f\u5728\u8fd0\u884c\u65f6\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u5b58\u50a8\u6570\u636e\u3002\u7a0b\u5e8f\u53ef\u4ee5\u8bf7\u6c42\u4e00\u5b9a\u91cf\u7684\u5806\u5185\u5b58\uff0c\u7528\u4e8e\u5b58\u50a8\u5982\u5bf9\u8c61\u548c\u6570\u7ec4\u7b49\u590d\u6742\u7ed3\u6784\u3002\u5f53\u8fd9\u4e9b\u6570\u636e\u4e0d\u518d\u9700\u8981\u65f6\uff0c\u7a0b\u5e8f\u9700\u8981\u91ca\u653e\u8fd9\u4e9b\u5185\u5b58\uff0c\u4ee5\u9632\u6b62\u5185\u5b58\u6cc4\u9732\u3002\u76f8\u8f83\u4e8e\u6808\u5185\u5b58\uff0c\u5806\u5185\u5b58\u7684\u7ba1\u7406\u548c\u4f7f\u7528\u9700\u8981\u66f4\u8c28\u614e\uff0c\u4e0d\u6070\u5f53\u7684\u4f7f\u7528\u53ef\u80fd\u4f1a\u5bfc\u81f4\u5185\u5b58\u6cc4\u9732\u548c\u91ce\u6307\u9488\u7b49\u95ee\u9898\u3002

            "},{"location":"chapter_heap/top_k/","title":"8.3 \u00a0 Top-K \u95ee\u9898","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u65e0\u5e8f\u6570\u7ec4 nums \uff0c\u8bf7\u8fd4\u56de\u6570\u7ec4\u4e2d\u524d \\(k\\) \u5927\u7684\u5143\u7d20\u3002

            \u5bf9\u4e8e\u8be5\u95ee\u9898\uff0c\u6211\u4eec\u5148\u4ecb\u7ecd\u4e24\u79cd\u601d\u8def\u6bd4\u8f83\u76f4\u63a5\u7684\u89e3\u6cd5\uff0c\u518d\u4ecb\u7ecd\u6548\u7387\u66f4\u9ad8\u7684\u5806\u89e3\u6cd5\u3002

            "},{"location":"chapter_heap/top_k/#831","title":"8.3.1 \u00a0 \u65b9\u6cd5\u4e00\uff1a\u904d\u5386\u9009\u62e9","text":"

            \u6211\u4eec\u53ef\u4ee5\u8fdb\u884c \\(k\\) \u8f6e\u904d\u5386\uff0c\u5206\u522b\u5728\u6bcf\u8f6e\u4e2d\u63d0\u53d6\u7b2c \\(1\\) , \\(2\\) , \\(\\cdots\\) , \\(k\\) \u5927\u7684\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(nk)\\) \u3002

            \u8be5\u65b9\u6cd5\u53ea\u9002\u7528\u4e8e \\(k \\ll n\\) \u7684\u60c5\u51b5\uff0c\u56e0\u4e3a\u5f53 \\(k\\) \u4e0e \\(n\\) \u6bd4\u8f83\u63a5\u8fd1\u65f6\uff0c\u5176\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411\u4e8e \\(O(n^2)\\) \uff0c\u975e\u5e38\u8017\u65f6\u3002

            \u56fe\uff1a\u904d\u5386\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20

            Tip

            \u5f53 \\(k = n\\) \u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\u4ece\u5927\u5230\u5c0f\u7684\u5e8f\u5217\uff0c\u7b49\u4ef7\u4e8e\u201c\u9009\u62e9\u6392\u5e8f\u201d\u7b97\u6cd5\u3002

            "},{"location":"chapter_heap/top_k/#832","title":"8.3.2 \u00a0 \u65b9\u6cd5\u4e8c\uff1a\u6392\u5e8f","text":"

            \u6211\u4eec\u53ef\u4ee5\u5bf9\u6570\u7ec4 nums \u8fdb\u884c\u6392\u5e8f\uff0c\u5e76\u8fd4\u56de\u6700\u53f3\u8fb9\u7684 \\(k\\) \u4e2a\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002

            \u663e\u7136\uff0c\u8be5\u65b9\u6cd5\u201c\u8d85\u989d\u201d\u5b8c\u6210\u4efb\u52a1\u4e86\uff0c\u56e0\u4e3a\u6211\u4eec\u53ea\u9700\u8981\u627e\u51fa\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\u5373\u53ef\uff0c\u800c\u4e0d\u9700\u8981\u6392\u5e8f\u5176\u4ed6\u5143\u7d20\u3002

            \u56fe\uff1a\u6392\u5e8f\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20

            "},{"location":"chapter_heap/top_k/#833","title":"8.3.3 \u00a0 \u65b9\u6cd5\u4e09\uff1a\u5806","text":"

            \u6211\u4eec\u53ef\u4ee5\u57fa\u4e8e\u5806\u66f4\u52a0\u9ad8\u6548\u5730\u89e3\u51b3 Top-K \u95ee\u9898\uff0c\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u521d\u59cb\u5316\u4e00\u4e2a\u5c0f\u9876\u5806\uff0c\u5176\u5806\u9876\u5143\u7d20\u6700\u5c0f\u3002
            2. \u5148\u5c06\u6570\u7ec4\u7684\u524d \\(k\\) \u4e2a\u5143\u7d20\u4f9d\u6b21\u5165\u5806\u3002
            3. \u4ece\u7b2c \\(k + 1\\) \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\uff0c\u5e76\u5c06\u5f53\u524d\u5143\u7d20\u5165\u5806\u3002
            4. \u904d\u5386\u5b8c\u6210\u540e\uff0c\u5806\u4e2d\u4fdd\u5b58\u7684\u5c31\u662f\u6700\u5927\u7684 \\(k\\) \u4e2a\u5143\u7d20\u3002
            <1><2><3><4><5><6><7><8><9>

            \u56fe\uff1a\u57fa\u4e8e\u5806\u5bfb\u627e\u6700\u5927\u7684 k \u4e2a\u5143\u7d20

            \u603b\u5171\u6267\u884c\u4e86 \\(n\\) \u8f6e\u5165\u5806\u548c\u51fa\u5806\uff0c\u5806\u7684\u6700\u5927\u957f\u5ea6\u4e3a \\(k\\) \uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log k)\\) \u3002\u8be5\u65b9\u6cd5\u7684\u6548\u7387\u5f88\u9ad8\uff0c\u5f53 \\(k\\) \u8f83\u5c0f\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411 \\(O(n)\\) \uff1b\u5f53 \\(k\\) \u8f83\u5927\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e0d\u4f1a\u8d85\u8fc7 \\(O(n \\log n)\\) \u3002

            \u53e6\u5916\uff0c\u8be5\u65b9\u6cd5\u9002\u7528\u4e8e\u52a8\u6001\u6570\u636e\u6d41\u7684\u4f7f\u7528\u573a\u666f\u3002\u5728\u4e0d\u65ad\u52a0\u5165\u6570\u636e\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u6301\u7eed\u7ef4\u62a4\u5806\u5185\u7684\u5143\u7d20\uff0c\u4ece\u800c\u5b9e\u73b0\u6700\u5927 \\(k\\) \u4e2a\u5143\u7d20\u7684\u52a8\u6001\u66f4\u65b0\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust top_k.java
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nQueue<Integer> topKHeap(int[] nums, int k) {\nQueue<Integer> heap = new PriorityQueue<Integer>();\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor (int i = 0; i < k; i++) {\nheap.offer(nums[i]);\n}\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor (int i = k; i < nums.length; i++) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif (nums[i] > heap.peek()) {\nheap.poll();\nheap.offer(nums[i]);\n}\n}\nreturn heap;\n}\n
            top_k.cpp
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\npriority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {\npriority_queue<int, vector<int>, greater<int>> heap;\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor (int i = 0; i < k; i++) {\nheap.push(nums[i]);\n}\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor (int i = k; i < nums.size(); i++) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif (nums[i] > heap.top()) {\nheap.pop();\nheap.push(nums[i]);\n}\n}\nreturn heap;\n}\n
            top_k.py
            def top_k_heap(nums: list[int], k: int) -> list[int]:\n\"\"\"\u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20\"\"\"\nheap = []\n# \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor i in range(k):\nheapq.heappush(heap, nums[i])\n# \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor i in range(k, len(nums)):\n# \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif nums[i] > heap[0]:\nheapq.heappop(heap)\nheapq.heappush(heap, nums[i])\nreturn heap\n
            top_k.go
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunc topKHeap(nums []int, k int) *minHeap {\nh := &minHeap{}\nheap.Init(h)\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor i := 0; i < k; i++ {\nheap.Push(h, nums[i])\n}\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor i := k; i < len(nums); i++ {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif nums[i] > h.Top().(int) {\nheap.Pop(h)\nheap.Push(h, nums[i])\n}\n}\nreturn h\n}\n
            top_k.js
            [class]{}-[func]{topKHeap}\n
            top_k.ts
            [class]{}-[func]{topKHeap}\n
            top_k.c
            [class]{}-[func]{topKHeap}\n
            top_k.cs
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nPriorityQueue<int, int> topKHeap(int[] nums, int k) {\nPriorityQueue<int, int> heap = new PriorityQueue<int, int>();\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor (int i = 0; i < k; i++) {\nheap.Enqueue(nums[i], nums[i]);\n}\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor (int i = k; i < nums.Length; i++) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif (nums[i] > heap.Peek()) {\nheap.Dequeue();\nheap.Enqueue(nums[i], nums[i]);\n}\n}\nreturn heap;\n}\n
            top_k.swift
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfunc topKHeap(nums: [Int], k: Int) -> [Int] {\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nvar heap = Array(nums.prefix(k))\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor i in stride(from: k, to: nums.count, by: 1) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif nums[i] > heap.first! {\nheap.removeFirst()\nheap.insert(nums[i], at: 0)\n}\n}\nreturn heap\n}\n
            top_k.zig
            [class]{}-[func]{topKHeap}\n
            top_k.dart
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nMinHeap topKHeap(List<int> nums, int k) {\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nMinHeap heap = MinHeap(nums.sublist(0, k));\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor (int i = k; i < nums.length; i++) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif (nums[i] > heap.peek()) {\nheap.pop();\nheap.push(nums[i]);\n}\n}\nreturn heap;\n}\n
            top_k.rs
            /* \u57fa\u4e8e\u5806\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5927\u7684 k \u4e2a\u5143\u7d20 */\nfn top_k_heap(nums: Vec<i32>, k: usize) -> BinaryHeap<Reverse<i32>> {\n// Rust \u7684 BinaryHeap \u662f\u5927\u9876\u5806\uff0c\u4f7f\u7528 Reverse \u5c06\u5143\u7d20\u5927\u5c0f\u53cd\u8f6c\nlet mut heap = BinaryHeap::<Reverse<i32>>::new();\n// \u5c06\u6570\u7ec4\u7684\u524d k \u4e2a\u5143\u7d20\u5165\u5806\nfor &num in nums.iter().take(k) {\nheap.push(Reverse(num));\n}\n// \u4ece\u7b2c k+1 \u4e2a\u5143\u7d20\u5f00\u59cb\uff0c\u4fdd\u6301\u5806\u7684\u957f\u5ea6\u4e3a k\nfor &num in nums.iter().skip(k) {\n// \u82e5\u5f53\u524d\u5143\u7d20\u5927\u4e8e\u5806\u9876\u5143\u7d20\uff0c\u5219\u5c06\u5806\u9876\u5143\u7d20\u51fa\u5806\u3001\u5f53\u524d\u5143\u7d20\u5165\u5806\nif num > heap.peek().unwrap().0 {\nheap.pop();\nheap.push(Reverse(num));\n}\n}\nheap\n}\n
            "},{"location":"chapter_introduction/","title":"\u7b2c 1 \u7ae0 \u00a0 \u521d\u8bc6\u7b97\u6cd5","text":"

            Abstract

            \u4e00\u4f4d\u5c11\u5973\u7fe9\u7fe9\u8d77\u821e\uff0c\u4e0e\u6570\u636e\u4ea4\u7ec7\u5728\u4e00\u8d77\uff0c\u88d9\u6446\u4e0a\u98d8\u626c\u7740\u7b97\u6cd5\u7684\u65cb\u5f8b\u3002

            \u5979\u9080\u8bf7\u4f60\u5171\u821e\uff0c\u8bf7\u7d27\u8ddf\u5979\u7684\u6b65\u4f10\uff0c\u8e0f\u5165\u5145\u6ee1\u903b\u8f91\u4e0e\u7f8e\u611f\u7684\u7b97\u6cd5\u4e16\u754c\u3002

            "},{"location":"chapter_introduction/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 1.1 \u00a0 \u7b97\u6cd5\u65e0\u5904\u4e0d\u5728
            • 1.2 \u00a0 \u7b97\u6cd5\u662f\u4ec0\u4e48
            • 1.3 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_introduction/algorithms_are_everywhere/","title":"1.1 \u00a0 \u7b97\u6cd5\u65e0\u5904\u4e0d\u5728","text":"

            \u5f53\u6211\u4eec\u542c\u5230\u201c\u7b97\u6cd5\u201d\u8fd9\u4e2a\u8bcd\u65f6\uff0c\u5f88\u81ea\u7136\u5730\u4f1a\u60f3\u5230\u6570\u5b66\u3002\u7136\u800c\u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u7b97\u6cd5\u5e76\u4e0d\u6d89\u53ca\u590d\u6742\u6570\u5b66\uff0c\u800c\u662f\u66f4\u591a\u5730\u4f9d\u8d56\u4e8e\u57fa\u672c\u903b\u8f91\uff0c\u8fd9\u4e9b\u903b\u8f91\u5728\u6211\u4eec\u7684\u65e5\u5e38\u751f\u6d3b\u4e2d\u5904\u5904\u53ef\u89c1\u3002

            \u5728\u6b63\u5f0f\u63a2\u8ba8\u7b97\u6cd5\u4e4b\u524d\uff0c\u6709\u4e00\u4e2a\u6709\u8da3\u7684\u4e8b\u5b9e\u503c\u5f97\u5206\u4eab\uff1a\u4f60\u5df2\u7ecf\u5728\u4e0d\u77e5\u4e0d\u89c9\u4e2d\u5b66\u4f1a\u4e86\u8bb8\u591a\u7b97\u6cd5\uff0c\u5e76\u4e60\u60ef\u5c06\u5b83\u4eec\u5e94\u7528\u5230\u65e5\u5e38\u751f\u6d3b\u4e2d\u4e86\u3002\u4e0b\u9762\uff0c\u6211\u5c06\u4e3e\u51e0\u4e2a\u5177\u4f53\u4f8b\u5b50\u6765\u8bc1\u5b9e\u8fd9\u4e00\u70b9\u3002

            \u4f8b\u4e00\uff1a\u67e5\u9605\u5b57\u5178\u3002\u5728\u5b57\u5178\u91cc\uff0c\u6bcf\u4e2a\u6c49\u5b57\u90fd\u5bf9\u5e94\u4e00\u4e2a\u62fc\u97f3\uff0c\u800c\u5b57\u5178\u662f\u6309\u7167\u62fc\u97f3\u5b57\u6bcd\u987a\u5e8f\u6392\u5217\u7684\u3002\u5047\u8bbe\u6211\u4eec\u9700\u8981\u67e5\u627e\u4e00\u4e2a\u62fc\u97f3\u9996\u5b57\u6bcd\u4e3a \\(r\\) \u7684\u5b57\uff0c\u901a\u5e38\u4f1a\u6309\u7167\u4e0b\u56fe\u6240\u793a\u7684\u65b9\u5f0f\u5b9e\u73b0\u3002

            1. \u7ffb\u5f00\u5b57\u5178\u7ea6\u4e00\u534a\u7684\u9875\u6570\uff0c\u67e5\u770b\u8be5\u9875\u7684\u9996\u5b57\u6bcd\u662f\u4ec0\u4e48\uff0c\u5047\u8bbe\u9996\u5b57\u6bcd\u4e3a \\(m\\) \u3002
            2. \u7531\u4e8e\u5728\u62fc\u97f3\u5b57\u6bcd\u8868\u4e2d \\(r\\) \u4f4d\u4e8e \\(m\\) \u4e4b\u540e\uff0c\u6240\u4ee5\u6392\u9664\u5b57\u5178\u524d\u534a\u90e8\u5206\uff0c\u67e5\u627e\u8303\u56f4\u7f29\u5c0f\u5230\u540e\u534a\u90e8\u5206\u3002
            3. \u4e0d\u65ad\u91cd\u590d\u6b65\u9aa4 1. \u548c \u6b65\u9aa4 2. \uff0c\u76f4\u81f3\u627e\u5230\u62fc\u97f3\u9996\u5b57\u6bcd\u4e3a \\(r\\) \u7684\u9875\u7801\u4e3a\u6b62\u3002
            <1><2><3><4><5>

            \u56fe\uff1a\u67e5\u5b57\u5178\u6b65\u9aa4

            \u67e5\u9605\u5b57\u5178\u8fd9\u4e2a\u5c0f\u5b66\u751f\u5fc5\u5907\u6280\u80fd\uff0c\u5b9e\u9645\u4e0a\u5c31\u662f\u8457\u540d\u7684\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u3002\u4ece\u6570\u636e\u7ed3\u6784\u7684\u89d2\u5ea6\uff0c\u6211\u4eec\u53ef\u4ee5\u628a\u5b57\u5178\u89c6\u4e3a\u4e00\u4e2a\u5df2\u6392\u5e8f\u7684\u201c\u6570\u7ec4\u201d\uff1b\u4ece\u7b97\u6cd5\u7684\u89d2\u5ea6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u4e0a\u8ff0\u67e5\u5b57\u5178\u7684\u4e00\u7cfb\u5217\u64cd\u4f5c\u770b\u4f5c\u662f\u201c\u4e8c\u5206\u67e5\u627e\u201d\u3002

            \u4f8b\u4e8c\uff1a\u6574\u7406\u6251\u514b\u3002\u6211\u4eec\u5728\u6253\u724c\u65f6\uff0c\u6bcf\u5c40\u90fd\u9700\u8981\u6574\u7406\u6251\u514b\u724c\uff0c\u4f7f\u5176\u4ece\u5c0f\u5230\u5927\u6392\u5217\uff0c\u5b9e\u73b0\u6d41\u7a0b\u5982\u4e0b\u56fe\u6240\u793a\u3002

            1. \u5c06\u6251\u514b\u724c\u5212\u5206\u4e3a\u201c\u6709\u5e8f\u201d\u548c\u201c\u65e0\u5e8f\u201d\u4e24\u90e8\u5206\uff0c\u5e76\u5047\u8bbe\u521d\u59cb\u72b6\u6001\u4e0b\u6700\u5de6 1 \u5f20\u6251\u514b\u724c\u5df2\u7ecf\u6709\u5e8f\u3002
            2. \u5728\u65e0\u5e8f\u90e8\u5206\u62bd\u51fa\u4e00\u5f20\u6251\u514b\u724c\uff0c\u63d2\u5165\u81f3\u6709\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\uff1b\u5b8c\u6210\u540e\u6700\u5de6 2 \u5f20\u6251\u514b\u5df2\u7ecf\u6709\u5e8f\u3002
            3. \u4e0d\u65ad\u5faa\u73af\u6b65\u9aa4 2. \uff0c\u6bcf\u4e00\u8f6e\u5c06\u4e00\u5f20\u6251\u514b\u724c\u4ece\u65e0\u5e8f\u90e8\u5206\u63d2\u5165\u81f3\u6709\u5e8f\u90e8\u5206\uff0c\u76f4\u81f3\u6240\u6709\u6251\u514b\u724c\u90fd\u6709\u5e8f\u3002

            \u56fe\uff1a\u6251\u514b\u6392\u5e8f\u6b65\u9aa4

            \u4e0a\u8ff0\u6574\u7406\u6251\u514b\u724c\u7684\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u201c\u63d2\u5165\u6392\u5e8f\u201d\u7b97\u6cd5\uff0c\u5b83\u5728\u5904\u7406\u5c0f\u578b\u6570\u636e\u96c6\u65f6\u975e\u5e38\u9ad8\u6548\u3002\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\u7684\u6392\u5e8f\u5e93\u51fd\u6570\u4e2d\u90fd\u5b58\u5728\u63d2\u5165\u6392\u5e8f\u7684\u8eab\u5f71\u3002

            \u4f8b\u4e09\uff1a\u8d27\u5e01\u627e\u96f6\u3002\u5047\u8bbe\u6211\u4eec\u5728\u8d85\u5e02\u8d2d\u4e70\u4e86 \\(69\\) \u5143\u7684\u5546\u54c1\uff0c\u7ed9\u6536\u94f6\u5458\u4ed8\u4e86 \\(100\\) \u5143\uff0c\u5219\u6536\u94f6\u5458\u9700\u8981\u627e\u6211\u4eec \\(31\\) \u5143\u3002\u4ed6\u4f1a\u5f88\u81ea\u7136\u5730\u5b8c\u6210\u5982\u4e0b\u56fe\u6240\u793a\u7684\u601d\u8003\u3002

            1. \u53ef\u9009\u9879\u662f\u6bd4 \\(31\\) \u5143\u9762\u503c\u66f4\u5c0f\u7684\u8d27\u5e01\uff0c\u5305\u62ec \\(1\\) \u5143\u3001\\(5\\) \u5143\u3001\\(10\\) \u5143\u3001\\(20\\) \u5143\u3002
            2. \u4ece\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(20\\) \u5143\uff0c\u5269\u4f59 \\(31 - 20 = 11\\) \u5143\u3002
            3. \u4ece\u5269\u4f59\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(10\\) \u5143\uff0c\u5269\u4f59 \\(11 - 10 = 1\\) \u5143\u3002
            4. \u4ece\u5269\u4f59\u53ef\u9009\u9879\u4e2d\u62ff\u51fa\u6700\u5927\u7684 \\(1\\) \u5143\uff0c\u5269\u4f59 \\(1 - 1 = 0\\) \u5143\u3002
            5. \u5b8c\u6210\u627e\u96f6\uff0c\u65b9\u6848\u4e3a \\(20 + 10 + 1 = 31\\) \u5143\u3002

            \u56fe\uff1a\u8d27\u5e01\u627e\u96f6\u8fc7\u7a0b

            \u5728\u4ee5\u4e0a\u6b65\u9aa4\u4e2d\uff0c\u6211\u4eec\u6bcf\u4e00\u6b65\u90fd\u91c7\u53d6\u5f53\u524d\u770b\u6765\u6700\u597d\u7684\u9009\u62e9\uff08\u5c3d\u53ef\u80fd\u7528\u5927\u9762\u989d\u7684\u8d27\u5e01\uff09\uff0c\u6700\u7ec8\u5f97\u5230\u4e86\u53ef\u884c\u7684\u627e\u96f6\u65b9\u6848\u3002\u4ece\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u89d2\u5ea6\u770b\uff0c\u8fd9\u79cd\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u201c\u8d2a\u5fc3\u201d\u7b97\u6cd5\u3002

            \u5c0f\u5230\u70f9\u996a\u4e00\u9053\u83dc\uff0c\u5927\u5230\u661f\u9645\u822a\u884c\uff0c\u51e0\u4e4e\u6240\u6709\u95ee\u9898\u7684\u89e3\u51b3\u90fd\u79bb\u4e0d\u5f00\u7b97\u6cd5\u3002\u8ba1\u7b97\u673a\u7684\u51fa\u73b0\u4f7f\u6211\u4eec\u80fd\u591f\u901a\u8fc7\u7f16\u7a0b\u5c06\u6570\u636e\u7ed3\u6784\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\uff0c\u540c\u65f6\u7f16\u5199\u4ee3\u7801\u8c03\u7528 CPU \u548c GPU \u6267\u884c\u7b97\u6cd5\u3002\u8fd9\u6837\u4e00\u6765\uff0c\u6211\u4eec\u5c31\u80fd\u628a\u751f\u6d3b\u4e2d\u7684\u95ee\u9898\u8f6c\u79fb\u5230\u8ba1\u7b97\u673a\u4e0a\uff0c\u4ee5\u66f4\u9ad8\u6548\u7684\u65b9\u5f0f\u89e3\u51b3\u5404\u79cd\u590d\u6742\u95ee\u9898\u3002

            Tip

            \u9605\u8bfb\u81f3\u6b64\uff0c\u5982\u679c\u4f60\u5bf9\u6570\u636e\u7ed3\u6784\u3001\u7b97\u6cd5\u3001\u6570\u7ec4\u548c\u4e8c\u5206\u67e5\u627e\u7b49\u6982\u5ff5\u4ecd\u611f\u5230\u4e00\u77e5\u534a\u89e3\uff0c\u8bf7\u7ee7\u7eed\u5f80\u4e0b\u9605\u8bfb\uff0c\u56e0\u4e3a\u8fd9\u6b63\u662f\u672c\u4e66\u5b58\u5728\u7684\u610f\u4e49\u3002\u63a5\u4e0b\u6765\uff0c\u8fd9\u672c\u4e66\u5c06\u5f15\u5bfc\u4f60\u4e00\u6b65\u6b65\u6df1\u5165\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u77e5\u8bc6\u6bbf\u5802\u3002

            "},{"location":"chapter_introduction/summary/","title":"1.3 \u00a0 \u5c0f\u7ed3","text":"
            • \u7b97\u6cd5\u5728\u65e5\u5e38\u751f\u6d3b\u4e2d\u65e0\u5904\u4e0d\u5728\uff0c\u5e76\u4e0d\u662f\u9065\u4e0d\u53ef\u53ca\u7684\u9ad8\u6df1\u77e5\u8bc6\u3002\u5b9e\u9645\u4e0a\uff0c\u6211\u4eec\u5df2\u7ecf\u5728\u4e0d\u77e5\u4e0d\u89c9\u4e2d\u5b66\u4f1a\u4e86\u8bb8\u591a\u7b97\u6cd5\uff0c\u7528\u4ee5\u89e3\u51b3\u751f\u6d3b\u4e2d\u7684\u5927\u5c0f\u95ee\u9898\u3002
            • \u67e5\u9605\u5b57\u5178\u7684\u539f\u7406\u4e0e\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u76f8\u4e00\u81f4\u3002\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u4f53\u73b0\u4e86\u5206\u800c\u6cbb\u4e4b\u7684\u91cd\u8981\u7b97\u6cd5\u601d\u60f3\u3002
            • \u6574\u7406\u6251\u514b\u7684\u8fc7\u7a0b\u4e0e\u63d2\u5165\u6392\u5e8f\u7b97\u6cd5\u975e\u5e38\u7c7b\u4f3c\u3002\u63d2\u5165\u6392\u5e8f\u7b97\u6cd5\u9002\u5408\u6392\u5e8f\u5c0f\u578b\u6570\u636e\u96c6\u3002
            • \u8d27\u5e01\u627e\u96f6\u7684\u6b65\u9aa4\u672c\u8d28\u4e0a\u662f\u8d2a\u5fc3\u7b97\u6cd5\uff0c\u6bcf\u4e00\u6b65\u90fd\u91c7\u53d6\u5f53\u524d\u770b\u6765\u7684\u6700\u597d\u7684\u9009\u62e9\u3002
            • \u7b97\u6cd5\u662f\u5728\u6709\u9650\u65f6\u95f4\u5185\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u7684\u4e00\u7ec4\u6307\u4ee4\u6216\u64cd\u4f5c\u6b65\u9aa4\uff0c\u800c\u6570\u636e\u7ed3\u6784\u662f\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u548c\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\u3002
            • \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7d27\u5bc6\u76f8\u8fde\u3002\u6570\u636e\u7ed3\u6784\u662f\u7b97\u6cd5\u7684\u57fa\u77f3\uff0c\u800c\u7b97\u6cd5\u5219\u662f\u53d1\u6325\u6570\u636e\u7ed3\u6784\u4f5c\u7528\u7684\u821e\u53f0\u3002
            • \u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7c7b\u6bd4\u4e3a\u62fc\u88c5\u79ef\u6728\uff0c\u79ef\u6728\u4ee3\u8868\u6570\u636e\uff0c\u79ef\u6728\u7684\u5f62\u72b6\u548c\u8fde\u63a5\u65b9\u5f0f\u4ee3\u8868\u6570\u636e\u7ed3\u6784\uff0c\u62fc\u88c5\u79ef\u6728\u7684\u6b65\u9aa4\u5219\u5bf9\u5e94\u7b97\u6cd5\u3002
            "},{"location":"chapter_introduction/what_is_dsa/","title":"1.2 \u00a0 \u7b97\u6cd5\u662f\u4ec0\u4e48","text":""},{"location":"chapter_introduction/what_is_dsa/#121","title":"1.2.1 \u00a0 \u7b97\u6cd5\u5b9a\u4e49","text":"

            \u300c\u7b97\u6cd5 algorithm\u300d\u662f\u5728\u6709\u9650\u65f6\u95f4\u5185\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u7684\u4e00\u7ec4\u6307\u4ee4\u6216\u64cd\u4f5c\u6b65\u9aa4\uff0c\u5b83\u5177\u6709\u4ee5\u4e0b\u7279\u6027\uff1a

            • \u95ee\u9898\u662f\u660e\u786e\u7684\uff0c\u5305\u542b\u6e05\u6670\u7684\u8f93\u5165\u548c\u8f93\u51fa\u5b9a\u4e49\u3002
            • \u5177\u6709\u53ef\u884c\u6027\uff0c\u80fd\u591f\u5728\u6709\u9650\u6b65\u9aa4\u3001\u65f6\u95f4\u548c\u5185\u5b58\u7a7a\u95f4\u4e0b\u5b8c\u6210\u3002
            • \u5404\u6b65\u9aa4\u90fd\u6709\u786e\u5b9a\u7684\u542b\u4e49\uff0c\u76f8\u540c\u7684\u8f93\u5165\u548c\u8fd0\u884c\u6761\u4ef6\u4e0b\uff0c\u8f93\u51fa\u59cb\u7ec8\u76f8\u540c\u3002
            "},{"location":"chapter_introduction/what_is_dsa/#122","title":"1.2.2 \u00a0 \u6570\u636e\u7ed3\u6784\u5b9a\u4e49","text":"

            \u300c\u6570\u636e\u7ed3\u6784 data structure\u300d\u662f\u8ba1\u7b97\u673a\u4e2d\u7ec4\u7ec7\u548c\u5b58\u50a8\u6570\u636e\u7684\u65b9\u5f0f\uff0c\u5b83\u7684\u8bbe\u8ba1\u76ee\u6807\u5982\u4e0b\uff1a

            • \u7a7a\u95f4\u5360\u7528\u5c3d\u91cf\u51cf\u5c11\uff0c\u8282\u7701\u8ba1\u7b97\u673a\u5185\u5b58\u3002
            • \u6570\u636e\u64cd\u4f5c\u5c3d\u53ef\u80fd\u5feb\u901f\uff0c\u6db5\u76d6\u6570\u636e\u8bbf\u95ee\u3001\u6dfb\u52a0\u3001\u5220\u9664\u3001\u66f4\u65b0\u7b49\u3002
            • \u63d0\u4f9b\u7b80\u6d01\u7684\u6570\u636e\u8868\u793a\u548c\u903b\u8f91\u4fe1\u606f\uff0c\u4ee5\u4fbf\u4f7f\u5f97\u7b97\u6cd5\u9ad8\u6548\u8fd0\u884c\u3002

            \u6570\u636e\u7ed3\u6784\u8bbe\u8ba1\u662f\u4e00\u4e2a\u5145\u6ee1\u6743\u8861\u7684\u8fc7\u7a0b\u3002\u5982\u679c\u60f3\u8981\u5728\u67d0\u65b9\u9762\u53d6\u5f97\u63d0\u5347\uff0c\u5f80\u5f80\u9700\u8981\u5728\u53e6\u4e00\u65b9\u9762\u4f5c\u51fa\u59a5\u534f\uff0c\u4f8b\u5982\uff1a

            • \u94fe\u8868\u76f8\u8f83\u4e8e\u6570\u7ec4\uff0c\u5728\u6570\u636e\u6dfb\u52a0\u548c\u5220\u9664\u64cd\u4f5c\u4e0a\u66f4\u52a0\u4fbf\u6377\uff0c\u4f46\u727a\u7272\u4e86\u6570\u636e\u8bbf\u95ee\u901f\u5ea6\u3002
            • \u56fe\u76f8\u8f83\u4e8e\u94fe\u8868\uff0c\u63d0\u4f9b\u4e86\u66f4\u4e30\u5bcc\u7684\u903b\u8f91\u4fe1\u606f\uff0c\u4f46\u9700\u8981\u5360\u7528\u66f4\u5927\u7684\u5185\u5b58\u7a7a\u95f4\u3002
            "},{"location":"chapter_introduction/what_is_dsa/#123","title":"1.2.3 \u00a0 \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u5173\u7cfb","text":"

            \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u9ad8\u5ea6\u76f8\u5173\u3001\u7d27\u5bc6\u7ed3\u5408\uff0c\u5177\u4f53\u8868\u73b0\u5728\u4ee5\u4e0b\u51e0\u4e2a\u65b9\u9762\u3002

            • \u6570\u636e\u7ed3\u6784\u662f\u7b97\u6cd5\u7684\u57fa\u77f3\u3002\u6570\u636e\u7ed3\u6784\u4e3a\u7b97\u6cd5\u63d0\u4f9b\u4e86\u7ed3\u6784\u5316\u5b58\u50a8\u7684\u6570\u636e\uff0c\u4ee5\u53ca\u7528\u4e8e\u64cd\u4f5c\u6570\u636e\u7684\u65b9\u6cd5\u3002
            • \u7b97\u6cd5\u662f\u6570\u636e\u7ed3\u6784\u53d1\u6325\u4f5c\u7528\u7684\u821e\u53f0\u3002\u6570\u636e\u7ed3\u6784\u672c\u8eab\u4ec5\u5b58\u50a8\u6570\u636e\u4fe1\u606f\uff0c\u901a\u8fc7\u7ed3\u5408\u7b97\u6cd5\u624d\u80fd\u89e3\u51b3\u7279\u5b9a\u95ee\u9898\u3002
            • \u7279\u5b9a\u7b97\u6cd5\u901a\u5e38\u4f1a\u6709\u5bf9\u5e94\u6700\u4f18\u7684\u6570\u636e\u7ed3\u6784\u3002\u7b97\u6cd5\u901a\u5e38\u53ef\u4ee5\u57fa\u4e8e\u4e0d\u540c\u7684\u6570\u636e\u7ed3\u6784\u8fdb\u884c\u5b9e\u73b0\uff0c\u4f46\u6700\u7ec8\u6267\u884c\u6548\u7387\u53ef\u80fd\u76f8\u5dee\u5f88\u5927\u3002

            \u56fe\uff1a\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u5173\u7cfb

            \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u72b9\u5982\u4e0a\u56fe\u6240\u793a\u7684\u62fc\u88c5\u79ef\u6728\u3002\u4e00\u5957\u79ef\u6728\uff0c\u9664\u4e86\u5305\u542b\u8bb8\u591a\u96f6\u4ef6\u4e4b\u5916\uff0c\u8fd8\u9644\u6709\u8be6\u7ec6\u7684\u7ec4\u88c5\u8bf4\u660e\u4e66\u3002\u6211\u4eec\u6309\u7167\u8bf4\u660e\u4e66\u4e00\u6b65\u6b65\u64cd\u4f5c\uff0c\u5c31\u80fd\u7ec4\u88c5\u51fa\u7cbe\u7f8e\u7684\u79ef\u6728\u6a21\u578b\u3002

            \u56fe\uff1a\u62fc\u88c5\u79ef\u6728

            \u4e24\u8005\u7684\u8be6\u7ec6\u5bf9\u5e94\u5173\u7cfb\u5982\u4e0b\u8868\u6240\u793a\u3002

            \u8868\uff1a\u5c06\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7c7b\u6bd4\u4e3a\u79ef\u6728

            \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5 \u62fc\u88c5\u79ef\u6728 \u8f93\u5165\u6570\u636e \u672a\u62fc\u88c5\u7684\u79ef\u6728 \u6570\u636e\u7ed3\u6784 \u79ef\u6728\u7ec4\u7ec7\u5f62\u5f0f\uff0c\u5305\u62ec\u5f62\u72b6\u3001\u5927\u5c0f\u3001\u8fde\u63a5\u65b9\u5f0f\u7b49 \u7b97\u6cd5 \u628a\u79ef\u6728\u62fc\u6210\u76ee\u6807\u5f62\u6001\u7684\u4e00\u7cfb\u5217\u64cd\u4f5c\u6b65\u9aa4 \u8f93\u51fa\u6570\u636e \u79ef\u6728\u6a21\u578b

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u662f\u72ec\u7acb\u4e8e\u7f16\u7a0b\u8bed\u8a00\u7684\u3002\u6b63\u56e0\u5982\u6b64\uff0c\u672c\u4e66\u5f97\u4ee5\u63d0\u4f9b\u591a\u79cd\u7f16\u7a0b\u8bed\u8a00\u7684\u5b9e\u73b0\u3002

            \u7ea6\u5b9a\u4fd7\u6210\u7684\u7b80\u79f0

            \u5728\u5b9e\u9645\u8ba8\u8bba\u65f6\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u201c\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u201d\u7b80\u79f0\u4e3a\u201c\u7b97\u6cd5\u201d\u3002\u6bd4\u5982\u4f17\u6240\u5468\u77e5\u7684 LeetCode \u7b97\u6cd5\u9898\u76ee\uff0c\u5b9e\u9645\u4e0a\u540c\u65f6\u8003\u5bdf\u4e86\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u4e24\u65b9\u9762\u7684\u77e5\u8bc6\u3002

            "},{"location":"chapter_preface/","title":"\u7b2c 0 \u7ae0 \u00a0 \u524d\u8a00","text":"

            Abstract

            \u7b97\u6cd5\u72b9\u5982\u7f8e\u5999\u7684\u4ea4\u54cd\u4e50\uff0c\u6bcf\u4e00\u884c\u4ee3\u7801\u90fd\u50cf\u97f5\u5f8b\u822c\u6d41\u6dcc\u3002

            \u613f\u8fd9\u672c\u4e66\u5728\u4f60\u7684\u8111\u6d77\u4e2d\u8f7b\u8f7b\u54cd\u8d77\uff0c\u7559\u4e0b\u72ec\u7279\u800c\u6df1\u523b\u7684\u65cb\u5f8b\u3002

            "},{"location":"chapter_preface/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 0.1 \u00a0 \u5173\u4e8e\u672c\u4e66
            • 0.2 \u00a0 \u5982\u4f55\u4f7f\u7528\u672c\u4e66
            • 0.3 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_preface/about_the_book/","title":"0.1 \u00a0 \u5173\u4e8e\u672c\u4e66","text":"

            \u672c\u9879\u76ee\u65e8\u5728\u521b\u5efa\u4e00\u672c\u5f00\u6e90\u514d\u8d39\u3001\u65b0\u624b\u53cb\u597d\u7684\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5165\u95e8\u6559\u7a0b\u3002

            • \u5168\u4e66\u91c7\u7528\u52a8\u753b\u56fe\u89e3\uff0c\u7ed3\u6784\u5316\u5730\u8bb2\u89e3\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u77e5\u8bc6\uff0c\u5185\u5bb9\u6e05\u6670\u6613\u61c2\u3001\u5b66\u4e60\u66f2\u7ebf\u5e73\u6ed1\u3002
            • \u7b97\u6cd5\u6e90\u4ee3\u7801\u7686\u53ef\u4e00\u952e\u8fd0\u884c\uff0c\u652f\u6301 Java, C++, Python, Go, JS, TS, C#, Swift, Zig \u7b49\u8bed\u8a00\u3002
            • \u9f13\u52b1\u8bfb\u8005\u5728\u7ae0\u8282\u8ba8\u8bba\u533a\u4e92\u5e2e\u4e92\u52a9\u3001\u5171\u540c\u8fdb\u6b65\uff0c\u63d0\u95ee\u4e0e\u8bc4\u8bba\u901a\u5e38\u53ef\u5728\u4e24\u65e5\u5185\u5f97\u5230\u56de\u590d\u3002
            "},{"location":"chapter_preface/about_the_book/#011","title":"0.1.1 \u00a0 \u8bfb\u8005\u5bf9\u8c61","text":"

            \u82e5\u60a8\u662f\u7b97\u6cd5\u521d\u5b66\u8005\uff0c\u4ece\u672a\u63a5\u89e6\u8fc7\u7b97\u6cd5\uff0c\u6216\u8005\u5df2\u7ecf\u6709\u4e00\u4e9b\u5237\u9898\u7ecf\u9a8c\uff0c\u5bf9\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u6709\u6a21\u7cca\u7684\u8ba4\u8bc6\uff0c\u5728\u4f1a\u4e0e\u4e0d\u4f1a\u4e4b\u95f4\u53cd\u590d\u6a2a\u8df3\uff0c\u90a3\u4e48\u8fd9\u672c\u4e66\u6b63\u662f\u4e3a\u60a8\u91cf\u8eab\u5b9a\u5236\uff01

            \u5982\u679c\u60a8\u5df2\u7ecf\u79ef\u7d2f\u4e00\u5b9a\u5237\u9898\u91cf\uff0c\u719f\u6089\u5927\u90e8\u5206\u9898\u578b\uff0c\u90a3\u4e48\u672c\u4e66\u53ef\u52a9\u60a8\u56de\u987e\u4e0e\u68b3\u7406\u7b97\u6cd5\u77e5\u8bc6\u4f53\u7cfb\uff0c\u4ed3\u5e93\u6e90\u4ee3\u7801\u53ef\u4ee5\u88ab\u5f53\u4f5c\u201c\u5237\u9898\u5de5\u5177\u5e93\u201d\u6216\u201c\u7b97\u6cd5\u5b57\u5178\u201d\u6765\u4f7f\u7528\u3002

            \u82e5\u60a8\u662f\u7b97\u6cd5\u5927\u795e\uff0c\u6211\u4eec\u671f\u5f85\u6536\u5230\u60a8\u7684\u5b9d\u8d35\u5efa\u8bae\uff0c\u6216\u8005\u4e00\u8d77\u53c2\u4e0e\u521b\u4f5c\u3002

            \u524d\u7f6e\u6761\u4ef6

            \u60a8\u9700\u8981\u81f3\u5c11\u5177\u5907\u4efb\u4e00\u8bed\u8a00\u7684\u7f16\u7a0b\u57fa\u7840\uff0c\u80fd\u591f\u9605\u8bfb\u548c\u7f16\u5199\u7b80\u5355\u4ee3\u7801\u3002

            "},{"location":"chapter_preface/about_the_book/#012","title":"0.1.2 \u00a0 \u5185\u5bb9\u7ed3\u6784","text":"

            \u672c\u4e66\u4e3b\u8981\u5185\u5bb9\u5305\u62ec\uff1a

            • \u590d\u6742\u5ea6\u5206\u6790\uff1a\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u7684\u8bc4\u4ef7\u7ef4\u5ea6\u4e0e\u65b9\u6cd5\u3002\u65f6\u95f4\u590d\u6742\u5ea6\u3001\u7a7a\u95f4\u590d\u6742\u5ea6\u7684\u63a8\u7b97\u65b9\u6cd5\u3001\u5e38\u89c1\u7c7b\u578b\u3001\u793a\u4f8b\u7b49\u3002
            • \u6570\u636e\u7ed3\u6784\uff1a\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff0c\u6570\u636e\u7ed3\u6784\u7684\u5206\u7c7b\u65b9\u6cd5\u3002\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6808\u3001\u961f\u5217\u3001\u6563\u5217\u8868\u3001\u6811\u3001\u5806\u3001\u56fe\u7b49\u6570\u636e\u7ed3\u6784\u7684\u5b9a\u4e49\u3001\u4f18\u7f3a\u70b9\u3001\u5e38\u7528\u64cd\u4f5c\u3001\u5e38\u89c1\u7c7b\u578b\u3001\u5178\u578b\u5e94\u7528\u3001\u5b9e\u73b0\u65b9\u6cd5\u7b49\u3002
            • \u7b97\u6cd5\uff1a\u641c\u7d22\u3001\u6392\u5e8f\u3001\u5206\u6cbb\u3001\u56de\u6eaf\u3001\u52a8\u6001\u89c4\u5212\u3001\u8d2a\u5fc3\u7b49\u7b97\u6cd5\u7684\u5b9a\u4e49\u3001\u4f18\u7f3a\u70b9\u3001\u6548\u7387\u3001\u5e94\u7528\u573a\u666f\u3001\u89e3\u9898\u6b65\u9aa4\u3001\u793a\u4f8b\u9898\u76ee\u7b49\u3002

            \u56fe\uff1aHello \u7b97\u6cd5\u5185\u5bb9\u7ed3\u6784

            "},{"location":"chapter_preface/about_the_book/#013","title":"0.1.3 \u00a0 \u81f4\u8c22","text":"

            \u5728\u672c\u4e66\u7684\u521b\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u5f97\u5230\u4e86\u8bb8\u591a\u4eba\u7684\u5e2e\u52a9\uff0c\u5305\u62ec\u4f46\u4e0d\u9650\u4e8e\uff1a

            • \u611f\u8c22\u6211\u5728\u516c\u53f8\u7684\u5bfc\u5e08\u674e\u6c50\u535a\u58eb\uff0c\u5728\u4e00\u6b21\u7545\u8c08\u4e2d\u60a8\u9f13\u52b1\u6211\u201c\u5feb\u884c\u52a8\u8d77\u6765\u201d\uff0c\u575a\u5b9a\u4e86\u6211\u5199\u8fd9\u672c\u4e66\u7684\u51b3\u5fc3\u3002
            • \u611f\u8c22\u6211\u7684\u5973\u670b\u53cb\u6ce1\u6ce1\u4f5c\u4e3a\u672c\u4e66\u7684\u9996\u4f4d\u8bfb\u8005\uff0c\u4ece\u7b97\u6cd5\u5c0f\u767d\u7684\u89d2\u5ea6\u63d0\u51fa\u8bb8\u591a\u5b9d\u8d35\u5efa\u8bae\uff0c\u4f7f\u5f97\u672c\u4e66\u66f4\u9002\u5408\u65b0\u624b\u9605\u8bfb\u3002
            • \u611f\u8c22\u817e\u5b9d\u3001\u7426\u5b9d\u3001\u98de\u5b9d\u4e3a\u672c\u4e66\u8d77\u4e86\u4e00\u4e2a\u5bcc\u6709\u521b\u610f\u7684\u540d\u5b57\uff0c\u5524\u8d77\u5927\u5bb6\u5199\u4e0b\u7b2c\u4e00\u884c\u4ee3\u7801 \"Hello World!\" \u7684\u7f8e\u597d\u56de\u5fc6\u3002
            • \u611f\u8c22\u82cf\u6f7c\u4e3a\u672c\u4e66\u8bbe\u8ba1\u4e86\u7cbe\u7f8e\u7684\u5c01\u9762\u548c LOGO\uff0c\u5e76\u5728\u6211\u7684\u5f3a\u8feb\u75c7\u4e0b\u591a\u6b21\u8010\u5fc3\u4fee\u6539\u3002
            • \u611f\u8c22 @squidfunk \u63d0\u4f9b\u7684\u5199\u4f5c\u6392\u7248\u5efa\u8bae\uff0c\u4ee5\u53ca\u6770\u51fa\u7684\u5f00\u6e90\u9879\u76ee Material-for-MkDocs \u3002

            \u5728\u5199\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u9605\u8bfb\u4e86\u8bb8\u591a\u5173\u4e8e\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u6559\u6750\u548c\u6587\u7ae0\u3002\u8fd9\u4e9b\u4f5c\u54c1\u4e3a\u672c\u4e66\u63d0\u4f9b\u4e86\u4f18\u79c0\u7684\u8303\u672c\uff0c\u786e\u4fdd\u4e86\u672c\u4e66\u5185\u5bb9\u7684\u51c6\u786e\u6027\u4e0e\u54c1\u8d28\u3002\u5728\u6b64\u611f\u8c22\u6240\u6709\u8001\u5e08\u548c\u524d\u8f88\u4eec\u7684\u6770\u51fa\u8d21\u732e\uff01

            \u672c\u4e66\u5021\u5bfc\u624b\u8111\u5e76\u7528\u7684\u5b66\u4e60\u65b9\u5f0f\uff0c\u5728\u8fd9\u4e00\u70b9\u4e0a\u6df1\u53d7\u300a\u52a8\u624b\u5b66\u6df1\u5ea6\u5b66\u4e60\u300b\u7684\u542f\u53d1\u3002\u5728\u6b64\u5411\u5404\u4f4d\u8bfb\u8005\u5f3a\u70c8\u63a8\u8350\u8fd9\u672c\u4f18\u79c0\u8457\u4f5c\u3002

            \u8877\u5fc3\u611f\u8c22\u6211\u7684\u7236\u6bcd\uff0c\u6b63\u662f\u4f60\u4eec\u4e00\u76f4\u4ee5\u6765\u7684\u652f\u6301\u4e0e\u9f13\u52b1\uff0c\u8ba9\u6211\u6709\u673a\u4f1a\u505a\u8fd9\u4ef6\u5bcc\u6709\u8da3\u5473\u7684\u4e8b\u3002

            "},{"location":"chapter_preface/suggestions/","title":"0.2 \u00a0 \u5982\u4f55\u4f7f\u7528\u672c\u4e66","text":"

            Tip

            \u4e3a\u4e86\u83b7\u5f97\u6700\u4f73\u7684\u9605\u8bfb\u4f53\u9a8c\uff0c\u5efa\u8bae\u60a8\u901a\u8bfb\u672c\u8282\u5185\u5bb9\u3002

            "},{"location":"chapter_preface/suggestions/#021","title":"0.2.1 \u00a0 \u884c\u6587\u98ce\u683c\u7ea6\u5b9a","text":"
            • \u6807\u9898\u540e\u6807\u6ce8 * \u7684\u662f\u9009\u8bfb\u7ae0\u8282\uff0c\u5185\u5bb9\u76f8\u5bf9\u56f0\u96be\u3002\u5982\u679c\u4f60\u7684\u65f6\u95f4\u6709\u9650\uff0c\u5efa\u8bae\u53ef\u4ee5\u5148\u8df3\u8fc7\u3002
            • \u4e13\u6709\u540d\u8bcd\u548c\u6709\u7279\u6307\u542b\u4e49\u7684\u8bcd\u53e5\u4f1a\u4f7f\u7528 \u201c\u53cc\u5f15\u53f7\u201d \u6807\u6ce8\uff0c\u4ee5\u907f\u514d\u6b67\u4e49\u3002
            • \u91cd\u8981\u4e13\u6709\u540d\u8bcd\u53ca\u5176\u82f1\u6587\u7ffb\u8bd1\u4f1a\u7528 \u300c \u300d \u62ec\u53f7\u6807\u6ce8\uff0c\u4f8b\u5982 \u300c\u6570\u7ec4 array\u300d \u3002\u5efa\u8bae\u8bb0\u4f4f\u5b83\u4eec\uff0c\u4ee5\u4fbf\u9605\u8bfb\u6587\u732e\u3002
            • \u52a0\u7c97\u7684\u6587\u5b57 \u8868\u793a\u91cd\u70b9\u5185\u5bb9\u6216\u603b\u7ed3\u6027\u8bed\u53e5\uff0c\u8fd9\u7c7b\u6587\u5b57\u503c\u5f97\u7279\u522b\u5173\u6ce8\u3002
            • \u5f53\u6d89\u53ca\u5230\u7f16\u7a0b\u8bed\u8a00\u4e4b\u95f4\u4e0d\u4e00\u81f4\u7684\u540d\u8bcd\u65f6\uff0c\u672c\u4e66\u5747\u4ee5 Python \u4e3a\u51c6\uff0c\u4f8b\u5982\u4f7f\u7528 \\(\\text{None}\\) \u6765\u8868\u793a\u201c\u7a7a\u201d\u3002
            • \u672c\u4e66\u90e8\u5206\u653e\u5f03\u4e86\u7f16\u7a0b\u8bed\u8a00\u7684\u6ce8\u91ca\u89c4\u8303\uff0c\u4ee5\u6362\u53d6\u66f4\u52a0\u7d27\u51d1\u7684\u5185\u5bb9\u6392\u7248\u3002\u6ce8\u91ca\u4e3b\u8981\u5206\u4e3a\u4e09\u79cd\u7c7b\u578b\uff1a\u6807\u9898\u6ce8\u91ca\u3001\u5185\u5bb9\u6ce8\u91ca\u3001\u591a\u884c\u6ce8\u91ca\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            \"\"\"\u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49\"\"\"\n# \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n\"\"\"\n\u591a\u884c\n\u6ce8\u91ca\n\"\"\"\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            // \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n// \u591a\u884c\n// \u6ce8\u91ca\n
            /* \u6807\u9898\u6ce8\u91ca\uff0c\u7528\u4e8e\u6807\u6ce8\u51fd\u6570\u3001\u7c7b\u3001\u6d4b\u8bd5\u6837\u4f8b\u7b49 */\n// \u5185\u5bb9\u6ce8\u91ca\uff0c\u7528\u4e8e\u8be6\u89e3\u4ee3\u7801\n/**\n * \u591a\u884c\n * \u6ce8\u91ca\n */\n
            \n
            "},{"location":"chapter_preface/suggestions/#022","title":"0.2.2 \u00a0 \u5728\u52a8\u753b\u56fe\u89e3\u4e2d\u9ad8\u6548\u5b66\u4e60","text":"

            \u76f8\u8f83\u4e8e\u6587\u5b57\uff0c\u89c6\u9891\u548c\u56fe\u7247\u5177\u6709\u66f4\u9ad8\u7684\u4fe1\u606f\u5bc6\u5ea6\u548c\u7ed3\u6784\u5316\u7a0b\u5ea6\uff0c\u66f4\u6613\u4e8e\u7406\u89e3\u3002\u5728\u672c\u4e66\u4e2d\uff0c\u91cd\u70b9\u548c\u96be\u70b9\u77e5\u8bc6\u5c06\u4e3b\u8981\u901a\u8fc7\u52a8\u753b\u548c\u56fe\u89e3\u5f62\u5f0f\u5c55\u793a\uff0c\u800c\u6587\u5b57\u5219\u4f5c\u4e3a\u52a8\u753b\u548c\u56fe\u7247\u7684\u89e3\u91ca\u4e0e\u8865\u5145\u3002

            \u5728\u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u5982\u679c\u53d1\u73b0\u67d0\u6bb5\u5185\u5bb9\u63d0\u4f9b\u4e86\u52a8\u753b\u6216\u56fe\u89e3\uff0c\u5efa\u8bae\u4ee5\u56fe\u4e3a\u4e3b\u7ebf\uff0c\u4ee5\u6587\u5b57\uff08\u901a\u5e38\u4f4d\u4e8e\u56fe\u50cf\u4e0a\u65b9\uff09\u4e3a\u8f85\uff0c\u7efc\u5408\u4e24\u8005\u6765\u7406\u89e3\u5185\u5bb9\u3002

            \u56fe\uff1a\u52a8\u753b\u56fe\u89e3\u793a\u4f8b

            "},{"location":"chapter_preface/suggestions/#023","title":"0.2.3 \u00a0 \u5728\u4ee3\u7801\u5b9e\u8df5\u4e2d\u52a0\u6df1\u7406\u89e3","text":"

            \u672c\u4e66\u7684\u914d\u5957\u4ee3\u7801\u88ab\u6258\u7ba1\u5728 GitHub \u4ed3\u5e93\u3002\u6e90\u4ee3\u7801\u9644\u6709\u6d4b\u8bd5\u6837\u4f8b\uff0c\u53ef\u4e00\u952e\u8fd0\u884c\u3002

            \u5982\u679c\u65f6\u95f4\u5141\u8bb8\uff0c\u5efa\u8bae\u4f60\u53c2\u7167\u4ee3\u7801\u81ea\u884c\u6572\u4e00\u904d\u3002\u5982\u679c\u5b66\u4e60\u65f6\u95f4\u6709\u9650\uff0c\u8bf7\u81f3\u5c11\u901a\u8bfb\u5e76\u8fd0\u884c\u6240\u6709\u4ee3\u7801\u3002

            \u4e0e\u9605\u8bfb\u4ee3\u7801\u76f8\u6bd4\uff0c\u7f16\u5199\u4ee3\u7801\u7684\u8fc7\u7a0b\u5f80\u5f80\u80fd\u5e26\u6765\u66f4\u591a\u6536\u83b7\u3002\u52a8\u624b\u5b66\uff0c\u624d\u662f\u771f\u7684\u5b66\u3002

            \u56fe\uff1a\u8fd0\u884c\u4ee3\u7801\u793a\u4f8b

            \u7b2c\u4e00\u6b65\uff1a\u5b89\u88c5\u672c\u5730\u7f16\u7a0b\u73af\u5883\u3002\u8bf7\u53c2\u7167\u9644\u5f55\u6559\u7a0b\u8fdb\u884c\u5b89\u88c5\uff0c\u5982\u679c\u5df2\u5b89\u88c5\u5219\u53ef\u8df3\u8fc7\u6b64\u6b65\u9aa4\u3002

            \u7b2c\u4e8c\u6b65\uff1a\u4e0b\u8f7d\u4ee3\u7801\u4ed3\u3002\u5982\u679c\u5df2\u7ecf\u5b89\u88c5 Git \uff0c\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u547d\u4ee4\u514b\u9686\u672c\u4ed3\u5e93\u3002

            git clone https://github.com/krahets/hello-algo.git\n

            \u5f53\u7136\uff0c\u4f60\u4e5f\u53ef\u4ee5\u70b9\u51fb\u201cDownload ZIP\u201d\u76f4\u63a5\u4e0b\u8f7d\u4ee3\u7801\u538b\u7f29\u5305\uff0c\u7136\u540e\u5728\u672c\u5730\u89e3\u538b\u5373\u53ef\u3002

            \u56fe\uff1a\u514b\u9686\u4ed3\u5e93\u4e0e\u4e0b\u8f7d\u4ee3\u7801

            \u7b2c\u4e09\u6b65\uff1a\u8fd0\u884c\u6e90\u4ee3\u7801\u3002\u5982\u679c\u4ee3\u7801\u5757\u9876\u90e8\u6807\u6709\u6587\u4ef6\u540d\u79f0\uff0c\u5219\u53ef\u4ee5\u5728\u4ed3\u5e93\u7684 codes \u6587\u4ef6\u5939\u4e2d\u627e\u5230\u76f8\u5e94\u7684\u6e90\u4ee3\u7801\u6587\u4ef6\u3002\u6e90\u4ee3\u7801\u6587\u4ef6\u5c06\u5e2e\u52a9\u4f60\u8282\u7701\u4e0d\u5fc5\u8981\u7684\u8c03\u8bd5\u65f6\u95f4\uff0c\u8ba9\u4f60\u80fd\u591f\u4e13\u6ce8\u4e8e\u5b66\u4e60\u5185\u5bb9\u3002

            \u56fe\uff1a\u4ee3\u7801\u5757\u4e0e\u5bf9\u5e94\u7684\u6e90\u4ee3\u7801\u6587\u4ef6

            "},{"location":"chapter_preface/suggestions/#024","title":"0.2.4 \u00a0 \u5728\u63d0\u95ee\u8ba8\u8bba\u4e2d\u5171\u540c\u6210\u957f","text":"

            \u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u8bf7\u4e0d\u8981\u201c\u60ef\u7740\u201d\u90a3\u4e9b\u6ca1\u5b66\u660e\u767d\u7684\u77e5\u8bc6\u70b9\u3002\u6b22\u8fce\u5728\u8bc4\u8bba\u533a\u63d0\u51fa\u4f60\u7684\u95ee\u9898\uff0c\u6211\u548c\u5176\u4ed6\u5c0f\u4f19\u4f34\u4eec\u5c06\u7aed\u8bda\u4e3a\u4f60\u89e3\u7b54\uff0c\u4e00\u822c\u60c5\u51b5\u4e0b\u53ef\u5728\u4e24\u5929\u5185\u5f97\u5230\u56de\u590d\u3002

            \u540c\u65f6\uff0c\u4e5f\u5e0c\u671b\u60a8\u80fd\u5728\u8bc4\u8bba\u533a\u591a\u82b1\u4e9b\u65f6\u95f4\u3002\u4e00\u65b9\u9762\uff0c\u60a8\u53ef\u4ee5\u4e86\u89e3\u5927\u5bb6\u9047\u5230\u7684\u95ee\u9898\uff0c\u4ece\u800c\u67e5\u6f0f\u8865\u7f3a\uff0c\u8fd9\u5c06\u6709\u52a9\u4e8e\u6fc0\u53d1\u66f4\u6df1\u5165\u7684\u601d\u8003\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u5e0c\u671b\u60a8\u80fd\u6177\u6168\u5730\u56de\u7b54\u5176\u4ed6\u5c0f\u4f19\u4f34\u7684\u95ee\u9898\u3001\u5206\u4eab\u60a8\u7684\u89c1\u89e3\uff0c\u8ba9\u5927\u5bb6\u5171\u540c\u5b66\u4e60\u548c\u8fdb\u6b65\u3002

            \u56fe\uff1a\u8bc4\u8bba\u533a\u793a\u4f8b

            "},{"location":"chapter_preface/suggestions/#025","title":"0.2.5 \u00a0 \u7b97\u6cd5\u5b66\u4e60\u8def\u7ebf","text":"

            \u4ece\u603b\u4f53\u4e0a\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5b66\u4e60\u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u7684\u8fc7\u7a0b\u5212\u5206\u4e3a\u4e09\u4e2a\u9636\u6bb5\uff1a

            1. \u7b97\u6cd5\u5165\u95e8\u3002\u6211\u4eec\u9700\u8981\u719f\u6089\u5404\u79cd\u6570\u636e\u7ed3\u6784\u7684\u7279\u70b9\u548c\u7528\u6cd5\uff0c\u5b66\u4e60\u4e0d\u540c\u7b97\u6cd5\u7684\u539f\u7406\u3001\u6d41\u7a0b\u3001\u7528\u9014\u548c\u6548\u7387\u7b49\u65b9\u9762\u5185\u5bb9\u3002
            2. \u5237\u7b97\u6cd5\u9898\u3002\u5efa\u8bae\u4ece\u70ed\u95e8\u9898\u76ee\u5f00\u5237\uff0c\u5982\u5251\u6307 Offer\u548cLeetCode Hot 100\uff0c\u5148\u79ef\u7d2f\u81f3\u5c11 100 \u9053\u9898\u76ee\uff0c\u719f\u6089\u4e3b\u6d41\u7684\u7b97\u6cd5\u95ee\u9898\u3002\u521d\u6b21\u5237\u9898\u65f6\uff0c\u201c\u77e5\u8bc6\u9057\u5fd8\u201d\u53ef\u80fd\u662f\u4e00\u4e2a\u6311\u6218\uff0c\u4f46\u8bf7\u653e\u5fc3\uff0c\u8fd9\u662f\u5f88\u6b63\u5e38\u7684\u3002\u6211\u4eec\u53ef\u4ee5\u6309\u7167\u201c\u827e\u5bbe\u6d69\u65af\u9057\u5fd8\u66f2\u7ebf\u201d\u6765\u590d\u4e60\u9898\u76ee\uff0c\u901a\u5e38\u5728\u8fdb\u884c 3-5 \u8f6e\u7684\u91cd\u590d\u540e\uff0c\u5c31\u80fd\u5c06\u5176\u7262\u8bb0\u5728\u5fc3\u3002
            3. \u642d\u5efa\u77e5\u8bc6\u4f53\u7cfb\u3002\u5728\u5b66\u4e60\u65b9\u9762\uff0c\u6211\u4eec\u53ef\u4ee5\u9605\u8bfb\u7b97\u6cd5\u4e13\u680f\u6587\u7ae0\u3001\u89e3\u9898\u6846\u67b6\u548c\u7b97\u6cd5\u6559\u6750\uff0c\u4ee5\u4e0d\u65ad\u4e30\u5bcc\u77e5\u8bc6\u4f53\u7cfb\u3002\u5728\u5237\u9898\u65b9\u9762\uff0c\u53ef\u4ee5\u5c1d\u8bd5\u91c7\u7528\u8fdb\u9636\u5237\u9898\u7b56\u7565\uff0c\u5982\u6309\u4e13\u9898\u5206\u7c7b\u3001\u4e00\u9898\u591a\u89e3\u3001\u4e00\u89e3\u591a\u9898\u7b49\uff0c\u76f8\u5173\u7684\u5237\u9898\u5fc3\u5f97\u53ef\u4ee5\u5728\u5404\u4e2a\u793e\u533a\u627e\u5230\u3002

            \u4f5c\u4e3a\u4e00\u672c\u5165\u95e8\u6559\u7a0b\uff0c\u672c\u4e66\u5185\u5bb9\u4e3b\u8981\u6db5\u76d6\u201c\u7b2c\u4e00\u9636\u6bb5\u201d\uff0c\u65e8\u5728\u5e2e\u52a9\u4f60\u66f4\u9ad8\u6548\u5730\u5c55\u5f00\u7b2c\u4e8c\u548c\u7b2c\u4e09\u9636\u6bb5\u7684\u5b66\u4e60\u3002

            \u56fe\uff1a\u7b97\u6cd5\u5b66\u4e60\u8def\u7ebf

            "},{"location":"chapter_preface/summary/","title":"0.3 \u00a0 \u5c0f\u7ed3","text":"
            • \u672c\u4e66\u7684\u4e3b\u8981\u53d7\u4f17\u662f\u7b97\u6cd5\u521d\u5b66\u8005\u3002\u5982\u679c\u5df2\u6709\u4e00\u5b9a\u57fa\u7840\uff0c\u672c\u4e66\u80fd\u5e2e\u52a9\u60a8\u7cfb\u7edf\u56de\u987e\u7b97\u6cd5\u77e5\u8bc6\uff0c\u4e66\u5185\u6e90\u4ee3\u7801\u4e5f\u53ef\u4f5c\u4e3a\u201c\u5237\u9898\u5de5\u5177\u5e93\u201d\u4f7f\u7528\u3002
            • \u4e66\u4e2d\u5185\u5bb9\u4e3b\u8981\u5305\u62ec\u590d\u6742\u5ea6\u5206\u6790\u3001\u6570\u636e\u7ed3\u6784\u3001\u7b97\u6cd5\u4e09\u90e8\u5206\uff0c\u6db5\u76d6\u4e86\u8be5\u9886\u57df\u7684\u5927\u90e8\u5206\u4e3b\u9898\u3002
            • \u5bf9\u4e8e\u7b97\u6cd5\u65b0\u624b\uff0c\u5728\u521d\u5b66\u9636\u6bb5\u9605\u8bfb\u4e00\u672c\u5165\u95e8\u4e66\u7c4d\u81f3\u5173\u91cd\u8981\uff0c\u53ef\u4ee5\u5c11\u8d70\u8bb8\u591a\u5f2f\u8def\u3002
            • \u4e66\u5185\u7684\u52a8\u753b\u548c\u56fe\u89e3\u901a\u5e38\u7528\u4e8e\u4ecb\u7ecd\u91cd\u70b9\u548c\u96be\u70b9\u77e5\u8bc6\u3002\u9605\u8bfb\u672c\u4e66\u65f6\uff0c\u5e94\u7ed9\u4e88\u8fd9\u4e9b\u5185\u5bb9\u66f4\u591a\u5173\u6ce8\u3002
            • \u5b9e\u8df5\u4e43\u5b66\u4e60\u7f16\u7a0b\u4e4b\u6700\u4f73\u9014\u5f84\u3002\u5f3a\u70c8\u5efa\u8bae\u8fd0\u884c\u6e90\u4ee3\u7801\u5e76\u4eb2\u81ea\u6572\u6253\u4ee3\u7801\u3002
            • \u672c\u4e66\u7f51\u9875\u7248\u7684\u6bcf\u4e2a\u7ae0\u8282\u90fd\u8bbe\u6709\u8ba8\u8bba\u533a\uff0c\u6b22\u8fce\u968f\u65f6\u5206\u4eab\u4f60\u7684\u7591\u60d1\u4e0e\u89c1\u89e3\u3002
            "},{"location":"chapter_reference/","title":"\u53c2\u8003\u6587\u732e","text":"

            [1] Thomas H. Cormen, et al. Introduction to Algorithms (3rd Edition).

            [2] Aditya Bhargava. Grokking Algorithms: An Illustrated Guide for Programmers and Other Curious People (1st Edition).

            [3] \u4e25\u851a\u654f. \u6570\u636e\u7ed3\u6784\uff08C \u8bed\u8a00\u7248\uff09.

            [4] \u9093\u4fca\u8f89. \u6570\u636e\u7ed3\u6784\uff08C++ \u8bed\u8a00\u7248\uff0c\u7b2c\u4e09\u7248\uff09.

            [5] \u9a6c\u514b \u827e\u4f26 \u7ef4\u65af\u8457\uff0c\u9648\u8d8a\u8bd1. \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u5206\u6790\uff1aJava\u8bed\u8a00\u63cf\u8ff0\uff08\u7b2c\u4e09\u7248\uff09.

            [6] \u7a0b\u6770. \u5927\u8bdd\u6570\u636e\u7ed3\u6784.

            [7] \u738b\u4e89. \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\u4e4b\u7f8e.

            [8] Gayle Laakmann McDowell. Cracking the Coding Interview: 189 Programming Questions and Solutions (6th Edition).

            [9] Aston Zhang, et al. Dive into Deep Learning.

            "},{"location":"chapter_searching/","title":"\u7b2c 10 \u7ae0 \u00a0 \u641c\u7d22","text":"

            Abstract

            \u641c\u7d22\u662f\u4e00\u573a\u672a\u77e5\u7684\u5192\u9669\uff0c\u6211\u4eec\u6216\u8bb8\u9700\u8981\u8d70\u904d\u795e\u79d8\u7a7a\u95f4\u7684\u6bcf\u4e2a\u89d2\u843d\uff0c\u53c8\u6216\u8bb8\u53ef\u4ee5\u5feb\u901f\u9501\u5b9a\u76ee\u6807\u3002

            \u5728\u8fd9\u573a\u5bfb\u89c5\u4e4b\u65c5\u4e2d\uff0c\u6bcf\u4e00\u6b21\u63a2\u7d22\u90fd\u53ef\u80fd\u5f97\u5230\u4e00\u4e2a\u672a\u66fe\u6599\u60f3\u7684\u7b54\u6848\u3002

            "},{"location":"chapter_searching/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 10.1 \u00a0 \u4e8c\u5206\u67e5\u627e
            • 10.2 \u00a0 \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9
            • 10.3 \u00a0 \u4e8c\u5206\u67e5\u627e\u8fb9\u754c
            • 10.4 \u00a0 \u54c8\u5e0c\u4f18\u5316\u7b56\u7565
            • 10.5 \u00a0 \u91cd\u8bc6\u641c\u7d22\u7b97\u6cd5
            • 10.6 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_searching/binary_search/","title":"10.1 \u00a0 \u4e8c\u5206\u67e5\u627e","text":"

            \u300c\u4e8c\u5206\u67e5\u627e binary search\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5206\u6cbb\u601d\u60f3\u7684\u9ad8\u6548\u641c\u7d22\u7b97\u6cd5\u3002\u5b83\u5229\u7528\u6570\u636e\u7684\u6709\u5e8f\u6027\uff0c\u6bcf\u8f6e\u51cf\u5c11\u4e00\u534a\u641c\u7d22\u8303\u56f4\uff0c\u76f4\u81f3\u627e\u5230\u76ee\u6807\u5143\u7d20\u6216\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u4e3a\u6b62\u3002

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5143\u7d20\u6309\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u6392\u5217\uff0c\u6570\u7ec4\u4e0d\u5305\u542b\u91cd\u590d\u5143\u7d20\u3002\u8bf7\u67e5\u627e\u5e76\u8fd4\u56de\u5143\u7d20 target \u5728\u8be5\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15\u3002\u82e5\u6570\u7ec4\u4e0d\u5305\u542b\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002

            \u56fe\uff1a\u4e8c\u5206\u67e5\u627e\u793a\u4f8b\u6570\u636e

            \u5bf9\u4e8e\u4e0a\u8ff0\u95ee\u9898\uff0c\u6211\u4eec\u5148\u521d\u59cb\u5316\u6307\u9488 \\(i = 0\\) \u548c \\(j = n - 1\\) \uff0c\u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u548c\u5c3e\u5143\u7d20\uff0c\u4ee3\u8868\u641c\u7d22\u533a\u95f4 \\([0, n - 1]\\) \u3002\u8bf7\u6ce8\u610f\uff0c\u4e2d\u62ec\u53f7\u8868\u793a\u95ed\u533a\u95f4\uff0c\u5176\u5305\u542b\u8fb9\u754c\u503c\u672c\u8eab\u3002

            \u63a5\u4e0b\u6765\uff0c\u5faa\u73af\u6267\u884c\u4ee5\u4e0b\u4e24\u4e2a\u6b65\u9aa4\uff1a

            1. \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 \\(m = \\lfloor {(i + j) / 2} \\rfloor\\) \uff0c\u5176\u4e2d \\(\\lfloor \\space \\rfloor\\) \u8868\u793a\u5411\u4e0b\u53d6\u6574\u64cd\u4f5c\u3002
            2. \u5224\u65ad nums[m] \u548c target \u7684\u5927\u5c0f\u5173\u7cfb\uff0c\u5206\u4e3a\u4e09\u79cd\u60c5\u51b5\uff1a
              1. \u5f53 nums[m] < target \u65f6\uff0c\u8bf4\u660e target \u5728\u533a\u95f4 \\([m + 1, j]\\) \u4e2d\uff0c\u56e0\u6b64\u6267\u884c \\(i = m + 1\\) \u3002
              2. \u5f53 nums[m] > target \u65f6\uff0c\u8bf4\u660e target \u5728\u533a\u95f4 \\([i, m - 1]\\) \u4e2d\uff0c\u56e0\u6b64\u6267\u884c \\(j = m - 1\\) \u3002
              3. \u5f53 nums[m] = target \u65f6\uff0c\u8bf4\u660e\u627e\u5230 target \uff0c\u56e0\u6b64\u8fd4\u56de\u7d22\u5f15 \\(m\\) \u3002

            \u82e5\u6570\u7ec4\u4e0d\u5305\u542b\u76ee\u6807\u5143\u7d20\uff0c\u641c\u7d22\u533a\u95f4\u6700\u7ec8\u4f1a\u7f29\u5c0f\u4e3a\u7a7a\u3002\u6b64\u65f6\u8fd4\u56de \\(-1\\) \u3002

            <1><2><3><4><5><6><7>

            \u56fe\uff1abinary_search_step1

            \u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e \\(i\\) \u548c \\(j\\) \u90fd\u662f int \u7c7b\u578b\uff0c\u56e0\u6b64 \\(i + j\\) \u53ef\u80fd\u4f1a\u8d85\u51fa int \u7c7b\u578b\u7684\u53d6\u503c\u8303\u56f4\u3002\u4e3a\u4e86\u907f\u514d\u5927\u6570\u8d8a\u754c\uff0c\u6211\u4eec\u901a\u5e38\u91c7\u7528\u516c\u5f0f \\(m = \\lfloor {i + (j - i) / 2} \\rfloor\\) \u6765\u8ba1\u7b97\u4e2d\u70b9\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search.java
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(int[] nums, int target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nint i = 0, j = nums.length - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.cpp
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(vector<int> &nums, int target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nint i = 0, j = nums.size() - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.py
            def binary_search(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09\"\"\"\n# \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\ni, j = 0, len(nums) - 1\n# \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile i <= j:\n# \u7406\u8bba\u4e0a Python \u7684\u6570\u5b57\u53ef\u4ee5\u65e0\u9650\u5927\uff08\u53d6\u51b3\u4e8e\u5185\u5b58\u5927\u5c0f\uff09\uff0c\u65e0\u987b\u8003\u8651\u5927\u6570\u8d8a\u754c\u95ee\u9898\nm = (i + j) // 2  # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target:\ni = m + 1  # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\nelif nums[m] > target:\nj = m - 1  # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nelse:\nreturn m  # \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn -1  # \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n
            binary_search.go
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunc binarySearch(nums []int, target int) int {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\ni, j := 0, len(nums)-1\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nfor i <= j {\nm := i + (j-i)/2      // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1\n} else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1\n} else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1\n}\n
            binary_search.js
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunction binarySearch(nums, target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nlet i = 0,\nj = nums.length - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m \uff0c\u4f7f\u7528 parseInt() \u5411\u4e0b\u53d6\u6574\nconst m = parseInt(i + (j - i) / 2);\nif (nums[m] < target)\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\nelse if (nums[m] > target)\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\nelse return m; // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.ts
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunction binarySearch(nums: number[], target: number): number {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nlet i = 0,\nj = nums.length - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nconst m = Math.floor(i + (j - i) / 2);\nif (nums[m] < target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\n} else if (nums[m] > target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\nreturn -1; // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n}\n
            binary_search.c
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(int *nums, int len, int target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nint i = 0, j = len - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.cs
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(int[] nums, int target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nint i = 0, j = nums.Length - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nint m = i + (j - i) / 2;   // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)      // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\nelse                       // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.swift
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfunc binarySearch(nums: [Int], target: Int) -> Int {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nvar i = 0\nvar j = nums.count - 1\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile i <= j {\nlet m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1\n} else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1\n} else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1\n}\n
            binary_search.zig
            // \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09\nfn binarySearch(comptime T: type, nums: std.ArrayList(T), target: T) T {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nvar i: usize = 0;\nvar j: usize = nums.items.len - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nvar m = i + (j - i) / 2;                // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums.items[m] < target) {           // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\n} else if (nums.items[m] > target) {    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\n} else {                                // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn @intCast(m);\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.dart
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nint binarySearch(List<int> nums, int target) {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nint i = 0, j = nums.length - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nint m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\n} else if (nums[m] > target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.rs
            /* \u4e8c\u5206\u67e5\u627e\uff08\u53cc\u95ed\u533a\u95f4\uff09 */\nfn binary_search(nums: &[i32], target: i32) -> i32 {\n// \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1] \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20\nlet mut i = 0;\nlet mut j = nums.len() as i32 - 1;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i > j \u65f6\u4e3a\u7a7a\uff09\nwhile i <= j {\nlet m = i + (j - i) / 2;      // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m as usize] < target {         // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j] \u4e2d\ni = m + 1;\n} else if nums[m as usize] > target {  // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nj = m - 1;\n} else {                      // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}                       }\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n

            \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u3002\u6bcf\u8f6e\u7f29\u5c0f\u4e00\u534a\u533a\u95f4\uff0c\u56e0\u6b64\u4e8c\u5206\u5faa\u73af\u6b21\u6570\u4e3a \\(\\log_2 n\\) \u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002\u6307\u9488 i , j \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7a7a\u95f4\u3002

            "},{"location":"chapter_searching/binary_search/#1011","title":"10.1.1 \u00a0 \u533a\u95f4\u8868\u793a\u65b9\u6cd5","text":"

            \u9664\u4e86\u4e0a\u8ff0\u7684\u53cc\u95ed\u533a\u95f4\u5916\uff0c\u5e38\u89c1\u7684\u533a\u95f4\u8868\u793a\u8fd8\u6709\u201c\u5de6\u95ed\u53f3\u5f00\u201d\u533a\u95f4\uff0c\u5b9a\u4e49\u4e3a \\([0, n)\\) \uff0c\u5373\u5de6\u8fb9\u754c\u5305\u542b\u81ea\u8eab\uff0c\u53f3\u8fb9\u754c\u4e0d\u5305\u542b\u81ea\u8eab\u3002\u5728\u8be5\u8868\u793a\u4e0b\uff0c\u533a\u95f4 \\([i, j]\\) \u5728 \\(i = j\\) \u65f6\u4e3a\u7a7a\u3002

            \u6211\u4eec\u53ef\u4ee5\u57fa\u4e8e\u8be5\u8868\u793a\u5b9e\u73b0\u5177\u6709\u76f8\u540c\u529f\u80fd\u7684\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search.java
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nint binarySearchLCRO(int[] nums, int target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nint i = 0, j = nums.length;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.cpp
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nint binarySearchLCRO(vector<int> &nums, int target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nint i = 0, j = nums.size();\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.py
            def binary_search_lcro(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09\"\"\"\n# \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\ni, j = 0, len(nums)\n# \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile i < j:\nm = (i + j) // 2  # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target:\ni = m + 1  # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\nelif nums[m] > target:\nj = m  # \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nelse:\nreturn m  # \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn -1  # \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n
            binary_search.go
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nfunc binarySearchLCRO(nums []int, target int) int {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\ni, j := 0, len(nums)\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nfor i < j {\nm := i + (j-i)/2      // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1\n} else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m\n} else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1\n}\n
            binary_search.js
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nfunction binarySearchLCRO(nums, target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nlet i = 0,\nj = nums.length;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m \uff0c\u4f7f\u7528 parseInt() \u5411\u4e0b\u53d6\u6574\nconst m = parseInt(i + (j - i) / 2);\nif (nums[m] < target)\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\nelse if (nums[m] > target)\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nelse return m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.ts
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nfunction binarySearchLCRO(nums: number[], target: number): number {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nlet i = 0,\nj = nums.length;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\n// \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nconst m = Math.floor(i + (j - i) / 2);\nif (nums[m] < target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\n} else if (nums[m] > target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\nreturn -1; // \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\n}\n
            binary_search.c
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nint binarySearchLCRO(int *nums, int len, int target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nint i = 0, j = len;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\nelse // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.cs
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nint binarySearchLCRO(int[] nums, int target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nint i = 0, j = nums.Length;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\nint m = i + (j - i) / 2;   // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target)      // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\nelse if (nums[m] > target) // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\nelse                       // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.swift
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nfunc binarySearchLCRO(nums: [Int], target: Int) -> Int {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nvar i = 0\nvar j = nums.count\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile i < j {\nlet m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1\n} else if nums[m] > target { // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m\n} else { // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1\n}\n
            binary_search.zig
            // \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09\nfn binarySearchLCRO(comptime T: type, nums: std.ArrayList(T), target: T) T {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nvar i: usize = 0;\nvar j: usize = nums.items.len;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i <= j) {\nvar m = i + (j - i) / 2;                // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums.items[m] < target) {           // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\n} else if (nums.items[m] > target) {    // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\n} else {                                // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn @intCast(m);\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.dart
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\u533a\u95f4\uff09 */\nint binarySearchLCRO(List<int> nums, int target) {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nint i = 0, j = nums.length;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile (i < j) {\nint m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\n} else if (nums[m] > target) {\n// \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m;\n} else {\n// \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}\n}\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n
            binary_search.rs
            /* \u4e8c\u5206\u67e5\u627e\uff08\u5de6\u95ed\u53f3\u5f00\uff09 */\nfn binary_search_lcro(nums: &[i32], target: i32) -> i32 {\n// \u521d\u59cb\u5316\u5de6\u95ed\u53f3\u5f00 [0, n) \uff0c\u5373 i, j \u5206\u522b\u6307\u5411\u6570\u7ec4\u9996\u5143\u7d20\u3001\u5c3e\u5143\u7d20+1\nlet mut i = 0;\nlet mut j = nums.len() as i32;\n// \u5faa\u73af\uff0c\u5f53\u641c\u7d22\u533a\u95f4\u4e3a\u7a7a\u65f6\u8df3\u51fa\uff08\u5f53 i = j \u65f6\u4e3a\u7a7a\uff09\nwhile i < j {\nlet m = i + (j - i) / 2;      // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m as usize] < target {         // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [m+1, j) \u4e2d\ni = m + 1;\n} else if nums[m as usize] > target {  // \u6b64\u60c5\u51b5\u8bf4\u660e target \u5728\u533a\u95f4 [i, m) \u4e2d\nj = m - 1;\n} else {                      // \u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de\u5176\u7d22\u5f15\nreturn m;\n}                       }\n// \u672a\u627e\u5230\u76ee\u6807\u5143\u7d20\uff0c\u8fd4\u56de -1\nreturn -1;\n}\n

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5728\u4e24\u79cd\u533a\u95f4\u8868\u793a\u4e0b\uff0c\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u7684\u521d\u59cb\u5316\u3001\u5faa\u73af\u6761\u4ef6\u548c\u7f29\u5c0f\u533a\u95f4\u64cd\u4f5c\u7686\u6709\u6240\u4e0d\u540c\u3002

            \u5728\u201c\u53cc\u95ed\u533a\u95f4\u201d\u8868\u793a\u6cd5\u4e2d\uff0c\u7531\u4e8e\u5de6\u53f3\u8fb9\u754c\u90fd\u88ab\u5b9a\u4e49\u4e3a\u95ed\u533a\u95f4\uff0c\u56e0\u6b64\u6307\u9488 \\(i\\) \u548c \\(j\\) \u7f29\u5c0f\u533a\u95f4\u64cd\u4f5c\u4e5f\u662f\u5bf9\u79f0\u7684\u3002\u8fd9\u6837\u66f4\u4e0d\u5bb9\u6613\u51fa\u9519\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u901a\u5e38\u91c7\u7528\u201c\u53cc\u95ed\u533a\u95f4\u201d\u7684\u5199\u6cd5\u3002

            \u56fe\uff1a\u4e24\u79cd\u533a\u95f4\u5b9a\u4e49

            "},{"location":"chapter_searching/binary_search/#1012","title":"10.1.2 \u00a0 \u4f18\u70b9\u4e0e\u5c40\u9650\u6027","text":"

            \u4e8c\u5206\u67e5\u627e\u5728\u65f6\u95f4\u548c\u7a7a\u95f4\u65b9\u9762\u90fd\u6709\u8f83\u597d\u7684\u6027\u80fd\uff1a

            • \u4e8c\u5206\u67e5\u627e\u7684\u65f6\u95f4\u6548\u7387\u9ad8\u3002\u5728\u5927\u6570\u636e\u91cf\u4e0b\uff0c\u5bf9\u6570\u9636\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5177\u6709\u663e\u8457\u4f18\u52bf\u3002\u4f8b\u5982\uff0c\u5f53\u6570\u636e\u5927\u5c0f \\(n = 2^{20}\\) \u65f6\uff0c\u7ebf\u6027\u67e5\u627e\u9700\u8981 \\(2^{20} = 1048576\\) \u8f6e\u5faa\u73af\uff0c\u800c\u4e8c\u5206\u67e5\u627e\u4ec5\u9700 \\(\\log_2 2^{20} = 20\\) \u8f6e\u5faa\u73af\u3002
            • \u4e8c\u5206\u67e5\u627e\u65e0\u987b\u989d\u5916\u7a7a\u95f4\u3002\u76f8\u8f83\u4e8e\u9700\u8981\u501f\u52a9\u989d\u5916\u7a7a\u95f4\u7684\u641c\u7d22\u7b97\u6cd5\uff08\u4f8b\u5982\u54c8\u5e0c\u67e5\u627e\uff09\uff0c\u4e8c\u5206\u67e5\u627e\u66f4\u52a0\u8282\u7701\u7a7a\u95f4\u3002

            \u7136\u800c\uff0c\u4e8c\u5206\u67e5\u627e\u5e76\u975e\u9002\u7528\u4e8e\u6240\u6709\u60c5\u51b5\uff0c\u539f\u56e0\u5982\u4e0b\uff1a

            • \u4e8c\u5206\u67e5\u627e\u4ec5\u9002\u7528\u4e8e\u6709\u5e8f\u6570\u636e\u3002\u82e5\u8f93\u5165\u6570\u636e\u65e0\u5e8f\uff0c\u4e3a\u4e86\u4f7f\u7528\u4e8c\u5206\u67e5\u627e\u800c\u4e13\u95e8\u8fdb\u884c\u6392\u5e8f\uff0c\u5f97\u4e0d\u507f\u5931\u3002\u56e0\u4e3a\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u901a\u5e38\u4e3a \\(O(n \\log n)\\) \uff0c\u6bd4\u7ebf\u6027\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u90fd\u66f4\u9ad8\u3002\u5bf9\u4e8e\u9891\u7e41\u63d2\u5165\u5143\u7d20\u7684\u573a\u666f\uff0c\u4e3a\u4fdd\u6301\u6570\u7ec4\u6709\u5e8f\u6027\uff0c\u9700\u8981\u5c06\u5143\u7d20\u63d2\u5165\u5230\u7279\u5b9a\u4f4d\u7f6e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u4e5f\u662f\u975e\u5e38\u6602\u8d35\u7684\u3002
            • \u4e8c\u5206\u67e5\u627e\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u3002\u4e8c\u5206\u67e5\u627e\u9700\u8981\u8df3\u8dc3\u5f0f\uff08\u975e\u8fde\u7eed\u5730\uff09\u8bbf\u95ee\u5143\u7d20\uff0c\u800c\u5728\u94fe\u8868\u4e2d\u6267\u884c\u8df3\u8dc3\u5f0f\u8bbf\u95ee\u7684\u6548\u7387\u8f83\u4f4e\uff0c\u56e0\u6b64\u4e0d\u9002\u5408\u5e94\u7528\u5728\u94fe\u8868\u6216\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u3002
            • \u5c0f\u6570\u636e\u91cf\u4e0b\uff0c\u7ebf\u6027\u67e5\u627e\u6027\u80fd\u66f4\u4f73\u3002\u5728\u7ebf\u6027\u67e5\u627e\u4e2d\uff0c\u6bcf\u8f6e\u53ea\u9700\u8981 1 \u6b21\u5224\u65ad\u64cd\u4f5c\uff1b\u800c\u5728\u4e8c\u5206\u67e5\u627e\u4e2d\uff0c\u9700\u8981 1 \u6b21\u52a0\u6cd5\u30011 \u6b21\u9664\u6cd5\u30011 ~ 3 \u6b21\u5224\u65ad\u64cd\u4f5c\u30011 \u6b21\u52a0\u6cd5\uff08\u51cf\u6cd5\uff09\uff0c\u5171 4 ~ 6 \u4e2a\u5355\u5143\u64cd\u4f5c\uff1b\u56e0\u6b64\uff0c\u5f53\u6570\u636e\u91cf \\(n\\) \u8f83\u5c0f\u65f6\uff0c\u7ebf\u6027\u67e5\u627e\u53cd\u800c\u6bd4\u4e8c\u5206\u67e5\u627e\u66f4\u5feb\u3002
            "},{"location":"chapter_searching/binary_search_edge/","title":"10.3 \u00a0 \u4e8c\u5206\u67e5\u627e\u8fb9\u754c","text":""},{"location":"chapter_searching/binary_search_edge/#1031","title":"10.3.1 \u00a0 \u67e5\u627e\u5de6\u8fb9\u754c","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \uff0c\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\u3002\u8bf7\u8fd4\u56de\u6570\u7ec4\u4e2d\u6700\u5de6\u4e00\u4e2a\u5143\u7d20 target \u7684\u7d22\u5f15\u3002\u82e5\u6570\u7ec4\u4e2d\u4e0d\u5305\u542b\u8be5\u5143\u7d20\uff0c\u5219\u8fd4\u56de \\(-1\\) \u3002

            \u56de\u5fc6\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\u7684\u65b9\u6cd5\uff0c\u641c\u7d22\u5b8c\u6210\u540e \\(i\\) \u6307\u5411\u6700\u5de6\u4e00\u4e2a target \uff0c\u56e0\u6b64\u67e5\u627e\u63d2\u5165\u70b9\u672c\u8d28\u4e0a\u662f\u5728\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target \u7684\u7d22\u5f15\u3002

            \u8003\u8651\u901a\u8fc7\u67e5\u627e\u63d2\u5165\u70b9\u7684\u51fd\u6570\u5b9e\u73b0\u67e5\u627e\u5de6\u8fb9\u754c\u3002\u8bf7\u6ce8\u610f\uff0c\u6570\u7ec4\u4e2d\u53ef\u80fd\u4e0d\u5305\u542b target \uff0c\u6b64\u65f6\u6709\u4e24\u79cd\u53ef\u80fd\uff1a

            1. \u63d2\u5165\u70b9\u7684\u7d22\u5f15 \\(i\\) \u8d8a\u754c\uff1b
            2. \u5143\u7d20 nums[i] \u4e0e target \u4e0d\u76f8\u7b49\uff1b

            \u5f53\u9047\u5230\u4ee5\u4e0a\u4e24\u79cd\u60c5\u51b5\u65f6\uff0c\u76f4\u63a5\u8fd4\u56de \\(-1\\) \u5373\u53ef\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_edge.java
            /* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(int[] nums, int target) {\n// \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\nint i = binary_search_insertion.binarySearchInsertion(nums, target);\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (i == nums.length || nums[i] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i;\n}\n
            binary_search_edge.cpp
            /* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(vector<int> &nums, int target) {\n// \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\nint i = binarySearchInsertion(nums, target);\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (i == nums.size() || nums[i] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i;\n}\n
            binary_search_edge.py
            def binary_search_left_edge(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target\"\"\"\n# \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\ni = binary_search_insertion(nums, target)\n# \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif i == len(nums) or nums[i] != target:\nreturn -1\n# \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i\n
            binary_search_edge.go
            [class]{}-[func]{binarySearchLeftEdge}\n
            binary_search_edge.js
            [class]{}-[func]{binarySearchLeftEdge}\n
            binary_search_edge.ts
            [class]{}-[func]{binarySearchLeftEdge}\n
            binary_search_edge.c
            [class]{}-[func]{binarySearchLeftEdge}\n
            binary_search_edge.cs
            /* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(int[] nums, int target) {\n// \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\nint i = binary_search_insertion.binarySearchInsertion(nums, target);\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (i == nums.Length || nums[i] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i;\n}\n
            binary_search_edge.swift
            /* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nfunc binarySearchLeftEdge(nums: [Int], target: Int) -> Int {\n// \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\nlet i = binarySearchInsertion(nums: nums, target: target)\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif i == nums.count || nums[i] != target {\nreturn -1\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i\n}\n
            binary_search_edge.zig
            [class]{}-[func]{binarySearchLeftEdge}\n
            binary_search_edge.dart
            /* \u4e8c\u5206\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target */\nint binarySearchLeftEdge(List<int> nums, int target) {\n// \u7b49\u4ef7\u4e8e\u67e5\u627e target \u7684\u63d2\u5165\u70b9\nint i = binarySearchInsertion(nums, target);\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (i == nums.length || nums[i] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 i\nreturn i;\n}\n
            binary_search_edge.rs
            [class]{}-[func]{binary_search_left_edge}\n
            "},{"location":"chapter_searching/binary_search_edge/#1032","title":"10.3.2 \u00a0 \u67e5\u627e\u53f3\u8fb9\u754c","text":"

            \u90a3\u4e48\u5982\u4f55\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target \u5462\uff1f\u6700\u76f4\u63a5\u7684\u65b9\u5f0f\u662f\u4fee\u6539\u4ee3\u7801\uff0c\u66ff\u6362\u5728 nums[m] == target \u60c5\u51b5\u4e0b\u7684\u6307\u9488\u6536\u7f29\u64cd\u4f5c\u3002\u4ee3\u7801\u5728\u6b64\u7701\u7565\uff0c\u6709\u5174\u8da3\u7684\u540c\u5b66\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u3002

            \u4e0b\u9762\u6211\u4eec\u4ecb\u7ecd\u4e24\u79cd\u66f4\u52a0\u53d6\u5de7\u7684\u65b9\u6cd5\u3002

            "},{"location":"chapter_searching/binary_search_edge/#1","title":"1. \u00a0 \u590d\u7528\u67e5\u627e\u5de6\u8fb9\u754c","text":"

            \u5b9e\u9645\u4e0a\uff0c\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u67e5\u627e\u6700\u5de6\u5143\u7d20\u7684\u51fd\u6570\u6765\u67e5\u627e\u6700\u53f3\u5143\u7d20\uff0c\u5177\u4f53\u65b9\u6cd5\u4e3a\uff1a\u5c06\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\u3002

            \u67e5\u627e\u5b8c\u6210\u540e\uff0c\u6307\u9488 \\(i\\) \u6307\u5411\u6700\u5de6\u4e00\u4e2a target + 1\uff08\u5982\u679c\u5b58\u5728\uff09\uff0c\u800c \\(j\\) \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0c\u56e0\u6b64\u8fd4\u56de \\(j\\) \u5373\u53ef\u3002

            \u56fe\uff1a\u5c06\u67e5\u627e\u53f3\u8fb9\u754c\u8f6c\u5316\u4e3a\u67e5\u627e\u5de6\u8fb9\u754c

            \u8bf7\u6ce8\u610f\uff0c\u8fd4\u56de\u7684\u63d2\u5165\u70b9\u662f \\(i\\) \uff0c\u56e0\u6b64\u9700\u8981\u5c06\u5176\u51cf \\(1\\) \uff0c\u4ece\u800c\u83b7\u5f97 \\(j\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_edge.java
            /* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(int[] nums, int target) {\n// \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\nint i = binary_search_insertion.binarySearchInsertion(nums, target + 1);\n// j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nint j = i - 1;\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (j == -1 || nums[j] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j;\n}\n
            binary_search_edge.cpp
            /* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(vector<int> &nums, int target) {\n// \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\nint i = binarySearchInsertion(nums, target + 1);\n// j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nint j = i - 1;\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (j == -1 || nums[j] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j;\n}\n
            binary_search_edge.py
            def binary_search_right_edge(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target\"\"\"\n# \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\ni = binary_search_insertion(nums, target + 1)\n# j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nj = i - 1\n# \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif j == -1 or nums[j] != target:\nreturn -1\n# \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j\n
            binary_search_edge.go
            [class]{}-[func]{binarySearchRightEdge}\n
            binary_search_edge.js
            [class]{}-[func]{binarySearchRightEdge}\n
            binary_search_edge.ts
            [class]{}-[func]{binarySearchRightEdge}\n
            binary_search_edge.c
            [class]{}-[func]{binarySearchRightEdge}\n
            binary_search_edge.cs
            /* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(int[] nums, int target) {\n// \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\nint i = binary_search_insertion.binarySearchInsertion(nums, target + 1);\n// j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nint j = i - 1;\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (j == -1 || nums[j] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j;\n}\n
            binary_search_edge.swift
            /* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nfunc binarySearchRightEdge(nums: [Int], target: Int) -> Int {\n// \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\nlet i = binarySearchInsertion(nums: nums, target: target + 1)\n// j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nlet j = i - 1\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif j == -1 || nums[j] != target {\nreturn -1\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j\n}\n
            binary_search_edge.zig
            [class]{}-[func]{binarySearchRightEdge}\n
            binary_search_edge.dart
            /* \u4e8c\u5206\u67e5\u627e\u6700\u53f3\u4e00\u4e2a target */\nint binarySearchRightEdge(List<int> nums, int target) {\n// \u8f6c\u5316\u4e3a\u67e5\u627e\u6700\u5de6\u4e00\u4e2a target + 1\nint i = binarySearchInsertion(nums, target + 1);\n// j \u6307\u5411\u6700\u53f3\u4e00\u4e2a target \uff0ci \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\nint j = i - 1;\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de -1\nif (j == -1 || nums[j] != target) {\nreturn -1;\n}\n// \u627e\u5230 target \uff0c\u8fd4\u56de\u7d22\u5f15 j\nreturn j;\n}\n
            binary_search_edge.rs
            [class]{}-[func]{binary_search_right_edge}\n
            "},{"location":"chapter_searching/binary_search_edge/#2","title":"2. \u00a0 \u8f6c\u5316\u4e3a\u67e5\u627e\u5143\u7d20","text":"

            \u6211\u4eec\u77e5\u9053\uff0c\u5f53\u6570\u7ec4\u4e0d\u5305\u542b target \u65f6\uff0c\u6700\u540e \\(i\\) , \\(j\\) \u4f1a\u5206\u522b\u6307\u5411\u9996\u4e2a\u5927\u4e8e\u3001\u5c0f\u4e8e target \u7684\u5143\u7d20\u3002

            \u6839\u636e\u4e0a\u8ff0\u7ed3\u8bba\uff0c\u6211\u4eec\u53ef\u4ee5\u6784\u9020\u4e00\u4e2a\u6570\u7ec4\u4e2d\u4e0d\u5b58\u5728\u7684\u5143\u7d20\uff0c\u7528\u4e8e\u67e5\u627e\u5de6\u53f3\u8fb9\u754c\uff1a

            • \u67e5\u627e\u6700\u5de6\u4e00\u4e2a target \uff1a\u53ef\u4ee5\u8f6c\u5316\u4e3a\u67e5\u627e target - 0.5 \uff0c\u5e76\u8fd4\u56de\u6307\u9488 \\(i\\) \u3002
            • \u67e5\u627e\u6700\u53f3\u4e00\u4e2a target \uff1a\u53ef\u4ee5\u8f6c\u5316\u4e3a\u67e5\u627e target + 0.5 \uff0c\u5e76\u8fd4\u56de\u6307\u9488 \\(j\\) \u3002

            \u56fe\uff1a\u5c06\u67e5\u627e\u8fb9\u754c\u8f6c\u5316\u4e3a\u67e5\u627e\u5143\u7d20

            \u4ee3\u7801\u5728\u6b64\u7701\u7565\uff0c\u503c\u5f97\u6ce8\u610f\u7684\u6709\uff1a

            • \u7ed9\u5b9a\u6570\u7ec4\u4e0d\u5305\u542b\u5c0f\u6570\uff0c\u8fd9\u610f\u5473\u7740\u6211\u4eec\u65e0\u987b\u5173\u5fc3\u5982\u4f55\u5904\u7406\u76f8\u7b49\u7684\u60c5\u51b5\u3002
            • \u56e0\u4e3a\u8be5\u65b9\u6cd5\u5f15\u5165\u4e86\u5c0f\u6570\uff0c\u6240\u4ee5\u9700\u8981\u5c06\u51fd\u6570\u4e2d\u7684\u53d8\u91cf target \u6539\u4e3a\u6d6e\u70b9\u6570\u7c7b\u578b\u3002
            "},{"location":"chapter_searching/binary_search_insertion/","title":"10.2 \u00a0 \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9","text":"

            \u4e8c\u5206\u67e5\u627e\u4e0d\u4ec5\u53ef\u7528\u4e8e\u641c\u7d22\u76ee\u6807\u5143\u7d20\uff0c\u8fd8\u5177\u6709\u8bb8\u591a\u53d8\u79cd\u95ee\u9898\uff0c\u6bd4\u5982\u641c\u7d22\u76ee\u6807\u5143\u7d20\u7684\u63d2\u5165\u4f4d\u7f6e\u3002

            "},{"location":"chapter_searching/binary_search_insertion/#1021","title":"10.2.1 \u00a0 \u65e0\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6709\u5e8f\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u5143\u7d20 target \uff0c\u6570\u7ec4\u4e0d\u5b58\u5728\u91cd\u590d\u5143\u7d20\u3002\u73b0\u5c06 target \u63d2\u5165\u5230\u6570\u7ec4 nums \u4e2d\uff0c\u5e76\u4fdd\u6301\u5176\u6709\u5e8f\u6027\u3002\u82e5\u6570\u7ec4\u4e2d\u5df2\u5b58\u5728\u5143\u7d20 target \uff0c\u5219\u63d2\u5165\u5230\u5176\u5de6\u65b9\u3002\u8bf7\u8fd4\u56de\u63d2\u5165\u540e target \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15\u3002

            \u56fe\uff1a\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\u793a\u4f8b\u6570\u636e

            \u5982\u679c\u60f3\u8981\u590d\u7528\u4e0a\u8282\u7684\u4e8c\u5206\u67e5\u627e\u4ee3\u7801\uff0c\u5219\u9700\u8981\u56de\u7b54\u4ee5\u4e0b\u4e24\u4e2a\u95ee\u9898\u3002

            \u95ee\u9898\u4e00\uff1a\u5f53\u6570\u7ec4\u4e2d\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u70b9\u7684\u7d22\u5f15\u662f\u5426\u662f\u8be5\u5143\u7d20\u7684\u7d22\u5f15\uff1f

            \u9898\u76ee\u8981\u6c42\u5c06 target \u63d2\u5165\u5230\u76f8\u7b49\u5143\u7d20\u7684\u5de6\u8fb9\uff0c\u8fd9\u610f\u5473\u7740\u65b0\u63d2\u5165\u7684 target \u66ff\u6362\u4e86\u539f\u6765 target \u7684\u4f4d\u7f6e\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u5f53\u6570\u7ec4\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u70b9\u7684\u7d22\u5f15\u5c31\u662f\u8be5 target \u7684\u7d22\u5f15\u3002

            \u95ee\u9898\u4e8c\uff1a\u5f53\u6570\u7ec4\u4e2d\u4e0d\u5b58\u5728 target \u65f6\uff0c\u63d2\u5165\u70b9\u662f\u54ea\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\uff1f

            \u8fdb\u4e00\u6b65\u601d\u8003\u4e8c\u5206\u67e5\u627e\u8fc7\u7a0b\uff1a\u5f53 nums[m] < target \u65f6 \\(i\\) \u79fb\u52a8\uff0c\u8fd9\u610f\u5473\u7740\u6307\u9488 \\(i\\) \u5728\u5411\u5927\u4e8e\u7b49\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002\u540c\u7406\uff0c\u6307\u9488 \\(j\\) \u59cb\u7ec8\u5728\u5411\u5c0f\u4e8e\u7b49\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002

            \u56e0\u6b64\u4e8c\u5206\u7ed3\u675f\u65f6\u4e00\u5b9a\u6709\uff1a\\(i\\) \u6307\u5411\u9996\u4e2a\u5927\u4e8e target \u7684\u5143\u7d20\uff0c\\(j\\) \u6307\u5411\u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u3002\u6613\u5f97\u5f53\u6570\u7ec4\u4e0d\u5305\u542b target \u65f6\uff0c\u63d2\u5165\u7d22\u5f15\u4e3a \\(i\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_insertion.java
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(int[] nums, int target) {\nint i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nreturn m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n}\n}\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.cpp
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(vector<int> &nums, int target) {\nint i = 0, j = nums.size() - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nreturn m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n}\n}\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.py
            def binary_search_insertion_simple(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09\"\"\"\ni, j = 0, len(nums) - 1  # \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile i <= j:\nm = (i + j) // 2  # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target:\ni = m + 1  # target \u5728\u533a\u95f4 [m+1, j] \u4e2d\nelif nums[m] > target:\nj = m - 1  # target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nelse:\nreturn m  # \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n# \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i\n
            binary_search_insertion.go
            [class]{}-[func]{binarySearchInsertionSimple}\n
            binary_search_insertion.js
            [class]{}-[func]{binarySearchInsertionSimple}\n
            binary_search_insertion.ts
            [class]{}-[func]{binarySearchInsertionSimple}\n
            binary_search_insertion.c
            [class]{}-[func]{binarySearchInsertionSimple}\n
            binary_search_insertion.cs
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(int[] nums, int target) {\nint i = 0, j = nums.Length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nreturn m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n}\n}\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.swift
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertionSimple(nums: [Int], target: Int) -> Int {\nvar i = 0, j = nums.count - 1 // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile i <= j {\nlet m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target {\ni = m + 1 // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if nums[m] > target {\nj = m - 1 // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nreturn m // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n}\n}\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i\n}\n
            binary_search_insertion.zig
            [class]{}-[func]{binarySearchInsertionSimple}\n
            binary_search_insertion.dart
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u65e0\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertionSimple(List<int> nums, int target) {\nint i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nreturn m; // \u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 m\n}\n}\n// \u672a\u627e\u5230 target \uff0c\u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.rs
            [class]{}-[func]{binary_search_insertion}\n
            "},{"location":"chapter_searching/binary_search_insertion/#1022","title":"10.2.2 \u00a0 \u5b58\u5728\u91cd\u590d\u5143\u7d20\u7684\u60c5\u51b5","text":"

            Question

            \u5728\u4e0a\u4e00\u9898\u7684\u57fa\u7840\u4e0a\uff0c\u89c4\u5b9a\u6570\u7ec4\u53ef\u80fd\u5305\u542b\u91cd\u590d\u5143\u7d20\uff0c\u5176\u4f59\u4e0d\u53d8\u3002

            \u5047\u8bbe\u6570\u7ec4\u4e2d\u5b58\u5728\u591a\u4e2a target \uff0c\u5219\u666e\u901a\u4e8c\u5206\u67e5\u627e\u53ea\u80fd\u8fd4\u56de\u5176\u4e2d\u4e00\u4e2a target \u7684\u7d22\u5f15\uff0c\u800c\u65e0\u6cd5\u786e\u5b9a\u8be5\u5143\u7d20\u7684\u5de6\u8fb9\u548c\u53f3\u8fb9\u8fd8\u6709\u591a\u5c11 target\u3002

            \u9898\u76ee\u8981\u6c42\u5c06\u76ee\u6807\u5143\u7d20\u63d2\u5165\u5230\u6700\u5de6\u8fb9\uff0c\u6240\u4ee5\u6211\u4eec\u9700\u8981\u67e5\u627e\u6570\u7ec4\u4e2d\u6700\u5de6\u4e00\u4e2a target \u7684\u7d22\u5f15\u3002\u521d\u6b65\u8003\u8651\u901a\u8fc7\u4ee5\u4e0b\u4e24\u6b65\u5b9e\u73b0\uff1a

            1. \u6267\u884c\u4e8c\u5206\u67e5\u627e\uff0c\u5f97\u5230\u4efb\u610f\u4e00\u4e2a target \u7684\u7d22\u5f15\uff0c\u8bb0\u4e3a \\(k\\) \u3002
            2. \u4ece\u7d22\u5f15 \\(k\\) \u5f00\u59cb\uff0c\u5411\u5de6\u8fdb\u884c\u7ebf\u6027\u904d\u5386\uff0c\u5f53\u627e\u5230\u6700\u5de6\u8fb9\u7684 target \u65f6\u8fd4\u56de\u3002

            \u56fe\uff1a\u7ebf\u6027\u67e5\u627e\u91cd\u590d\u5143\u7d20\u7684\u63d2\u5165\u70b9

            \u6b64\u65b9\u6cd5\u867d\u7136\u53ef\u7528\uff0c\u4f46\u5176\u5305\u542b\u7ebf\u6027\u67e5\u627e\uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u5f53\u6570\u7ec4\u4e2d\u5b58\u5728\u5f88\u591a\u91cd\u590d\u7684 target \u65f6\uff0c\u8be5\u65b9\u6cd5\u6548\u7387\u5f88\u4f4e\u3002

            \u73b0\u8003\u8651\u4fee\u6539\u4e8c\u5206\u67e5\u627e\u4ee3\u7801\u3002\u6574\u4f53\u6d41\u7a0b\u4e0d\u53d8\uff0c\u6bcf\u8f6e\u5148\u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 \\(m\\) \uff0c\u518d\u5224\u65ad target \u548c nums[m] \u5927\u5c0f\u5173\u7cfb\uff1a

            1. \u5f53 nums[m] < target \u6216 nums[m] > target \u65f6\uff0c\u8bf4\u660e\u8fd8\u6ca1\u6709\u627e\u5230 target \uff0c\u56e0\u6b64\u91c7\u7528\u666e\u901a\u4e8c\u5206\u67e5\u627e\u7684\u7f29\u5c0f\u533a\u95f4\u64cd\u4f5c\uff0c\u4ece\u800c\u4f7f\u6307\u9488 \\(i\\) \u548c \\(j\\) \u5411 target \u9760\u8fd1\u3002
            2. \u5f53 nums[m] == target \u65f6\uff0c\u8bf4\u660e\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 \\([i, m - 1]\\) \u4e2d\uff0c\u56e0\u6b64\u91c7\u7528 \\(j = m - 1\\) \u6765\u7f29\u5c0f\u533a\u95f4\uff0c\u4ece\u800c\u4f7f\u6307\u9488 \\(j\\) \u5411\u5c0f\u4e8e target \u7684\u5143\u7d20\u9760\u8fd1\u3002

            \u5faa\u73af\u5b8c\u6210\u540e\uff0c\\(i\\) \u6307\u5411\u6700\u5de6\u8fb9\u7684 target \uff0c\\(j\\) \u6307\u5411\u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\uff0c\u56e0\u6b64\u7d22\u5f15 \\(i\\) \u5c31\u662f\u63d2\u5165\u70b9\u3002

            <1><2><3><4><5><6><7><8>

            \u56fe\uff1a\u4e8c\u5206\u67e5\u627e\u91cd\u590d\u5143\u7d20\u7684\u63d2\u5165\u70b9\u7684\u6b65\u9aa4

            \u89c2\u5bdf\u4ee5\u4e0b\u4ee3\u7801\uff0c\u5224\u65ad\u5206\u652f nums[m] > target \u548c nums[m] == target \u7684\u64cd\u4f5c\u76f8\u540c\uff0c\u56e0\u6b64\u4e24\u8005\u53ef\u4ee5\u5408\u5e76\u3002

            \u5373\u4fbf\u5982\u6b64\uff0c\u6211\u4eec\u4ecd\u7136\u53ef\u4ee5\u5c06\u5224\u65ad\u6761\u4ef6\u4fdd\u6301\u5c55\u5f00\uff0c\u56e0\u4e3a\u5176\u903b\u8f91\u66f4\u52a0\u6e05\u6670\u3001\u53ef\u8bfb\u6027\u66f4\u597d\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_insertion.java
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(int[] nums, int target) {\nint i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nj = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n}\n}\n// \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.cpp
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(vector<int> &nums, int target) {\nint i = 0, j = nums.size() - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nj = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n}\n}\n// \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.py
            def binary_search_insertion(nums: list[int], target: int) -> int:\n\"\"\"\u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09\"\"\"\ni, j = 0, len(nums) - 1  # \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile i <= j:\nm = (i + j) // 2  # \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target:\ni = m + 1  # target \u5728\u533a\u95f4 [m+1, j] \u4e2d\nelif nums[m] > target:\nj = m - 1  # target \u5728\u533a\u95f4 [i, m-1] \u4e2d\nelse:\nj = m - 1  # \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n# \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i\n
            binary_search_insertion.go
            [class]{}-[func]{binarySearchInsertion}\n
            binary_search_insertion.js
            [class]{}-[func]{binarySearchInsertion}\n
            binary_search_insertion.ts
            [class]{}-[func]{binarySearchInsertion}\n
            binary_search_insertion.c
            [class]{}-[func]{binarySearchInsertion}\n
            binary_search_insertion.cs
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(int[] nums, int target) {\nint i = 0, j = nums.Length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) / 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nj = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n}\n}\n// \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.swift
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nfunc binarySearchInsertion(nums: [Int], target: Int) -> Int {\nvar i = 0, j = nums.count - 1 // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile i <= j {\nlet m = i + (j - i) / 2 // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif nums[m] < target {\ni = m + 1 // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if nums[m] > target {\nj = m - 1 // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nj = m - 1 // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n}\n}\n// \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i\n}\n
            binary_search_insertion.zig
            [class]{}-[func]{binarySearchInsertion}\n
            binary_search_insertion.dart
            /* \u4e8c\u5206\u67e5\u627e\u63d2\u5165\u70b9\uff08\u5b58\u5728\u91cd\u590d\u5143\u7d20\uff09 */\nint binarySearchInsertion(List<int> nums, int target) {\nint i = 0, j = nums.length - 1; // \u521d\u59cb\u5316\u53cc\u95ed\u533a\u95f4 [0, n-1]\nwhile (i <= j) {\nint m = i + (j - i) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\u7d22\u5f15 m\nif (nums[m] < target) {\ni = m + 1; // target \u5728\u533a\u95f4 [m+1, j] \u4e2d\n} else if (nums[m] > target) {\nj = m - 1; // target \u5728\u533a\u95f4 [i, m-1] \u4e2d\n} else {\nj = m - 1; // \u9996\u4e2a\u5c0f\u4e8e target \u7684\u5143\u7d20\u5728\u533a\u95f4 [i, m-1] \u4e2d\n}\n}\n// \u8fd4\u56de\u63d2\u5165\u70b9 i\nreturn i;\n}\n
            binary_search_insertion.rs
            [class]{}-[func]{binary_search_insertion}\n

            Tip

            \u672c\u8282\u7684\u4ee3\u7801\u90fd\u662f\u201c\u53cc\u95ed\u533a\u95f4\u201d\u5199\u6cd5\u3002\u6709\u5174\u8da3\u7684\u8bfb\u8005\u53ef\u4ee5\u81ea\u884c\u5b9e\u73b0\u201c\u5de6\u95ed\u53f3\u5f00\u201d\u5199\u6cd5\u3002

            \u603b\u7684\u6765\u770b\uff0c\u4e8c\u5206\u67e5\u627e\u65e0\u975e\u5c31\u662f\u7ed9\u6307\u9488 \\(i\\) , \\(j\\) \u5206\u522b\u8bbe\u5b9a\u641c\u7d22\u76ee\u6807\uff0c\u76ee\u6807\u53ef\u80fd\u662f\u4e00\u4e2a\u5177\u4f53\u7684\u5143\u7d20\uff08\u4f8b\u5982 target \uff09\uff0c\u4e5f\u53ef\u80fd\u662f\u4e00\u4e2a\u5143\u7d20\u8303\u56f4\uff08\u4f8b\u5982\u5c0f\u4e8e target \u7684\u5143\u7d20\uff09\u3002

            \u5728\u4e0d\u65ad\u7684\u5faa\u73af\u4e8c\u5206\u4e2d\uff0c\u6307\u9488 \\(i\\) , \\(j\\) \u90fd\u9010\u6e10\u903c\u8fd1\u9884\u5148\u8bbe\u5b9a\u7684\u76ee\u6807\u3002\u6700\u7ec8\uff0c\u5b83\u4eec\u6216\u662f\u6210\u529f\u627e\u5230\u7b54\u6848\uff0c\u6216\u662f\u8d8a\u8fc7\u8fb9\u754c\u540e\u505c\u6b62\u3002

            "},{"location":"chapter_searching/replace_linear_by_hashing/","title":"10.4 \u00a0 \u54c8\u5e0c\u4f18\u5316\u7b56\u7565","text":"

            \u5728\u7b97\u6cd5\u9898\u4e2d\uff0c\u6211\u4eec\u5e38\u901a\u8fc7\u5c06\u7ebf\u6027\u67e5\u627e\u66ff\u6362\u4e3a\u54c8\u5e0c\u67e5\u627e\u6765\u964d\u4f4e\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u3002\u6211\u4eec\u501f\u52a9\u4e00\u4e2a\u7b97\u6cd5\u9898\u6765\u52a0\u6df1\u7406\u89e3\u3002

            Question

            \u7ed9\u5b9a\u4e00\u4e2a\u6574\u6570\u6570\u7ec4 nums \u548c\u4e00\u4e2a\u76ee\u6807\u5143\u7d20 target \uff0c\u8bf7\u5728\u6570\u7ec4\u4e2d\u641c\u7d22\u201c\u548c\u201d\u4e3a target \u7684\u4e24\u4e2a\u5143\u7d20\uff0c\u5e76\u8fd4\u56de\u5b83\u4eec\u7684\u6570\u7ec4\u7d22\u5f15\u3002\u8fd4\u56de\u4efb\u610f\u4e00\u4e2a\u89e3\u5373\u53ef\u3002

            "},{"location":"chapter_searching/replace_linear_by_hashing/#1041","title":"10.4.1 \u00a0 \u7ebf\u6027\u67e5\u627e\uff1a\u4ee5\u65f6\u95f4\u6362\u7a7a\u95f4","text":"

            \u8003\u8651\u76f4\u63a5\u904d\u5386\u6240\u6709\u53ef\u80fd\u7684\u7ec4\u5408\u3002\u5f00\u542f\u4e00\u4e2a\u4e24\u5c42\u5faa\u73af\uff0c\u5728\u6bcf\u8f6e\u4e2d\u5224\u65ad\u4e24\u4e2a\u6574\u6570\u7684\u548c\u662f\u5426\u4e3a target \uff0c\u82e5\u662f\uff0c\u5219\u8fd4\u56de\u5b83\u4eec\u7684\u7d22\u5f15\u3002

            \u56fe\uff1a\u7ebf\u6027\u67e5\u627e\u6c42\u89e3\u4e24\u6570\u4e4b\u548c

            JavaC++PythonGoJSTSCC#SwiftZigDartRust two_sum.java
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint[] twoSumBruteForce(int[] nums, int target) {\nint size = nums.length;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (int i = 0; i < size - 1; i++) {\nfor (int j = i + 1; j < size; j++) {\nif (nums[i] + nums[j] == target)\nreturn new int[] { i, j };\n}\n}\nreturn new int[0];\n}\n
            two_sum.cpp
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nvector<int> twoSumBruteForce(vector<int> &nums, int target) {\nint size = nums.size();\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (int i = 0; i < size - 1; i++) {\nfor (int j = i + 1; j < size; j++) {\nif (nums[i] + nums[j] == target)\nreturn {i, j};\n}\n}\nreturn {};\n}\n
            two_sum.py
            def two_sum_brute_force(nums: list[int], target: int) -> list[int]:\n\"\"\"\u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e\"\"\"\n# \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor i in range(len(nums) - 1):\nfor j in range(i + 1, len(nums)):\nif nums[i] + nums[j] == target:\nreturn [i, j]\nreturn []\n
            two_sum.go
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunc twoSumBruteForce(nums []int, target int) []int {\nsize := len(nums)\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor i := 0; i < size-1; i++ {\nfor j := i + 1; i < size; j++ {\nif nums[i]+nums[j] == target {\nreturn []int{i, j}\n}\n}\n}\nreturn nil\n}\n
            two_sum.js
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunction twoSumBruteForce(nums, target) {\nconst n = nums.length;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (let i = 0; i < n; i++) {\nfor (let j = i + 1; j < n; j++) {\nif (nums[i] + nums[j] === target) {\nreturn [i, j];\n}\n}\n}\nreturn [];\n}\n
            two_sum.ts
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunction twoSumBruteForce(nums: number[], target: number): number[] {\nconst n = nums.length;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (let i = 0; i < n; i++) {\nfor (let j = i + 1; j < n; j++) {\nif (nums[i] + nums[j] === target) {\nreturn [i, j];\n}\n}\n}\nreturn [];\n}\n
            two_sum.c
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint *twoSumBruteForce(int *nums, int numsSize, int target, int *returnSize) {\nfor (int i = 0; i < numsSize; ++i) {\nfor (int j = i + 1; j < numsSize; ++j) {\nif (nums[i] + nums[j] == target) {\nint *res = malloc(sizeof(int) * 2);\nres[0] = i, res[1] = j;\n*returnSize = 2;\nreturn res;\n}\n}\n}\n*returnSize = 0;\nreturn NULL;\n}\n
            two_sum.cs
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nint[] twoSumBruteForce(int[] nums, int target) {\nint size = nums.Length;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (int i = 0; i < size - 1; i++) {\nfor (int j = i + 1; j < size; j++) {\nif (nums[i] + nums[j] == target)\nreturn new int[] { i, j };\n}\n}\nreturn Array.Empty<int>();\n}\n
            two_sum.swift
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\nfunc twoSumBruteForce(nums: [Int], target: Int) -> [Int] {\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor i in nums.indices.dropLast() {\nfor j in nums.indices.dropFirst(i + 1) {\nif nums[i] + nums[j] == target {\nreturn [i, j]\n}\n}\n}\nreturn [0]\n}\n
            two_sum.zig
            // \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e\nfn twoSumBruteForce(nums: []i32, target: i32) ?[2]i32 {\nvar size: usize = nums.len;\nvar i: usize = 0;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nwhile (i < size - 1) : (i += 1) {\nvar j = i + 1;\nwhile (j < size) : (j += 1) {\nif (nums[i] + nums[j] == target) {\nreturn [_]i32{@intCast(i), @intCast(j)};\n}\n}\n}\nreturn null;\n}\n
            two_sum.dart
            /* \u65b9\u6cd5\u4e00\uff1a \u66b4\u529b\u679a\u4e3e */\nList<int> twoSumBruteForce(List<int> nums, int target) {\nint size = nums.length;\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor (var i = 0; i < size - 1; i++) {\nfor (var j = i + 1; j < size; j++) {\nif (nums[i] + nums[j] == target) return [i, j];\n}\n}\nreturn [0];\n}\n
            two_sum.rs
            /* \u65b9\u6cd5\u4e00\uff1a\u66b4\u529b\u679a\u4e3e */\npub fn two_sum_brute_force(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {\nlet size = nums.len();\n// \u4e24\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n^2)\nfor i in 0..size - 1 {\nfor j in i + 1..size {\nif nums[i] + nums[j] == target {\nreturn Some(vec![i as i32, j as i32]);\n}\n}\n}\nNone\n}\n

            \u6b64\u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \uff0c\u5728\u5927\u6570\u636e\u91cf\u4e0b\u975e\u5e38\u8017\u65f6\u3002

            "},{"location":"chapter_searching/replace_linear_by_hashing/#1042","title":"10.4.2 \u00a0 \u54c8\u5e0c\u67e5\u627e\uff1a\u4ee5\u7a7a\u95f4\u6362\u65f6\u95f4","text":"

            \u8003\u8651\u501f\u52a9\u4e00\u4e2a\u54c8\u5e0c\u8868\uff0c\u952e\u503c\u5bf9\u5206\u522b\u4e3a\u6570\u7ec4\u5143\u7d20\u548c\u5143\u7d20\u7d22\u5f15\u3002\u5faa\u73af\u904d\u5386\u6570\u7ec4\uff0c\u6bcf\u8f6e\u6267\u884c\uff1a

            1. \u5224\u65ad\u6570\u5b57 target - nums[i] \u662f\u5426\u5728\u54c8\u5e0c\u8868\u4e2d\uff0c\u82e5\u662f\u5219\u76f4\u63a5\u8fd4\u56de\u8fd9\u4e24\u4e2a\u5143\u7d20\u7684\u7d22\u5f15\u3002
            2. \u5c06\u952e\u503c\u5bf9 nums[i] \u548c\u7d22\u5f15 i \u6dfb\u52a0\u8fdb\u54c8\u5e0c\u8868\u3002
            <1><2><3>

            \u56fe\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868\u6c42\u89e3\u4e24\u6570\u4e4b\u548c

            \u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\uff0c\u4ec5\u9700\u5355\u5c42\u5faa\u73af\u5373\u53ef\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust two_sum.java
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint[] twoSumHashTable(int[] nums, int target) {\nint size = nums.length;\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nMap<Integer, Integer> dic = new HashMap<>();\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (int i = 0; i < size; i++) {\nif (dic.containsKey(target - nums[i])) {\nreturn new int[] { dic.get(target - nums[i]), i };\n}\ndic.put(nums[i], i);\n}\nreturn new int[0];\n}\n
            two_sum.cpp
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nvector<int> twoSumHashTable(vector<int> &nums, int target) {\nint size = nums.size();\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nunordered_map<int, int> dic;\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (int i = 0; i < size; i++) {\nif (dic.find(target - nums[i]) != dic.end()) {\nreturn {dic[target - nums[i]], i};\n}\ndic.emplace(nums[i], i);\n}\nreturn {};\n}\n
            two_sum.py
            def two_sum_hash_table(nums: list[int], target: int) -> list[int]:\n\"\"\"\u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868\"\"\"\n# \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\ndic = {}\n# \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor i in range(len(nums)):\nif target - nums[i] in dic:\nreturn [dic[target - nums[i]], i]\ndic[nums[i]] = i\nreturn []\n
            two_sum.go
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunc twoSumHashTable(nums []int, target int) []int {\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nhashTable := map[int]int{}\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor idx, val := range nums {\nif preIdx, ok := hashTable[target-val]; ok {\nreturn []int{preIdx, idx}\n}\nhashTable[val] = idx\n}\nreturn nil\n}\n
            two_sum.js
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunction twoSumHashTable(nums, target) {\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nlet m = {};\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (let i = 0; i < nums.length; i++) {\nif (m[target - nums[i]] !== undefined) {\nreturn [m[target-nums[i]], i];\n} else {\nm[nums[i]] = i;\n}\n}\nreturn [];\n}\n
            two_sum.ts
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunction twoSumHashTable(nums: number[], target: number): number[] {\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nlet m: Map<number, number> = new Map();\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (let i = 0; i < nums.length; i++) {\nlet index = m.get(target - nums[i]);\nif (index !== undefined) {\nreturn [index, i];\n} else {\nm.set(nums[i], i);\n}\n}\nreturn [];\n}\n
            two_sum.c
            /* \u54c8\u5e0c\u8868 */\nstruct hashTable {\nint key;\nint val;\nUT_hash_handle hh; // \u57fa\u4e8e uthash.h \u5b9e\u73b0\n};\ntypedef struct hashTable hashTable;\n/* \u54c8\u5e0c\u8868\u67e5\u8be2 */\nhashTable *find(hashTable *h, int key) {\nhashTable *tmp;\nHASH_FIND_INT(h, &key, tmp);\nreturn tmp;\n}\n/* \u54c8\u5e0c\u8868\u5143\u7d20\u63d2\u5165 */\nvoid insert(hashTable *h, int key, int val) {\nhashTable *t = find(h, key);\nif (t == NULL) {\nhashTable *tmp = malloc(sizeof(hashTable));\ntmp->key = key, tmp->val = val;\nHASH_ADD_INT(h, key, tmp);\n} else {\nt->val = val;\n}\n}\n/* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint *twoSumHashTable(int *nums, int numsSize, int target, int *returnSize) {\nhashTable *hashtable = NULL;\nfor (int i = 0; i < numsSize; i++) {\nhashTable *t = find(hashtable, target - nums[i]);\nif (t != NULL) {\nint *res = malloc(sizeof(int) * 2);\nres[0] = t->val, res[1] = i;\n*returnSize = 2;\nreturn res;\n}\ninsert(hashtable, nums[i], i);\n}\n*returnSize = 0;\nreturn NULL;\n}\n
            two_sum.cs
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nint[] twoSumHashTable(int[] nums, int target) {\nint size = nums.Length;\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nDictionary<int, int> dic = new();\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (int i = 0; i < size; i++) {\nif (dic.ContainsKey(target - nums[i])) {\nreturn new int[] { dic[target - nums[i]], i };\n}\ndic.Add(nums[i], i);\n}\nreturn Array.Empty<int>();\n}\n
            two_sum.swift
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\nfunc twoSumHashTable(nums: [Int], target: Int) -> [Int] {\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nvar dic: [Int: Int] = [:]\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor i in nums.indices {\nif let j = dic[target - nums[i]] {\nreturn [j, i]\n}\ndic[nums[i]] = i\n}\nreturn [0]\n}\n
            two_sum.zig
            // \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868\nfn twoSumHashTable(nums: []i32, target: i32) !?[2]i32 {\nvar size: usize = nums.len;\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nvar dic = std.AutoHashMap(i32, i32).init(std.heap.page_allocator);\ndefer dic.deinit();\nvar i: usize = 0;\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nwhile (i < size) : (i += 1) {\nif (dic.contains(target - nums[i])) {\nreturn [_]i32{dic.get(target - nums[i]).?, @intCast(i)};\n}\ntry dic.put(nums[i], @intCast(i));\n}\nreturn null;\n}\n
            two_sum.dart
            /* \u65b9\u6cd5\u4e8c\uff1a \u8f85\u52a9\u54c8\u5e0c\u8868 */\nList<int> twoSumHashTable(List<int> nums, int target) {\nint size = nums.length;\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nMap<int, int> dic = HashMap();\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (var i = 0; i < size; i++) {\nif (dic.containsKey(target - nums[i])) {\nreturn [dic[target - nums[i]]!, i];\n}\ndic.putIfAbsent(nums[i], () => i);\n}\nreturn [0];\n}\n
            two_sum.rs
            /* \u65b9\u6cd5\u4e8c\uff1a\u8f85\u52a9\u54c8\u5e0c\u8868 */\npub fn two_sum_hash_table(nums: &Vec<i32>, target: i32) -> Option<Vec<i32>> {\n// \u8f85\u52a9\u54c8\u5e0c\u8868\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6 O(n)\nlet mut dic = HashMap::new();\n// \u5355\u5c42\u5faa\u73af\uff0c\u65f6\u95f4\u590d\u6742\u5ea6 O(n)\nfor (i, num) in nums.iter().enumerate() {\nmatch dic.get(&(target - num)) {\nSome(v) => return Some(vec![*v as i32, i as i32]),\nNone => dic.insert(num, i as i32)\n};\n}\nNone\n}\n

            \u6b64\u65b9\u6cd5\u901a\u8fc7\u54c8\u5e0c\u67e5\u627e\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n^2)\\) \u964d\u4f4e\u81f3 \\(O(n)\\) \uff0c\u5927\u5e45\u63d0\u5347\u8fd0\u884c\u6548\u7387\u3002

            \u7531\u4e8e\u9700\u8981\u7ef4\u62a4\u4e00\u4e2a\u989d\u5916\u7684\u54c8\u5e0c\u8868\uff0c\u56e0\u6b64\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \u3002\u5c3d\u7ba1\u5982\u6b64\uff0c\u8be5\u65b9\u6cd5\u7684\u6574\u4f53\u65f6\u7a7a\u6548\u7387\u66f4\u4e3a\u5747\u8861\uff0c\u56e0\u6b64\u5b83\u662f\u672c\u9898\u7684\u6700\u4f18\u89e3\u6cd5\u3002

            "},{"location":"chapter_searching/searching_algorithm_revisited/","title":"10.5 \u00a0 \u91cd\u8bc6\u641c\u7d22\u7b97\u6cd5","text":"

            \u300c\u641c\u7d22\u7b97\u6cd5 searching algorithm\u300d\u7528\u4e8e\u5728\u6570\u636e\u7ed3\u6784\uff08\u4f8b\u5982\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6811\u6216\u56fe\uff09\u4e2d\u641c\u7d22\u4e00\u4e2a\u6216\u4e00\u7ec4\u6ee1\u8db3\u7279\u5b9a\u6761\u4ef6\u7684\u5143\u7d20\u3002

            \u6839\u636e\u5b9e\u73b0\u601d\u8def\uff0c\u641c\u7d22\u7b97\u6cd5\u603b\u4f53\u53ef\u5206\u4e3a\u4e24\u79cd\uff1a

            • \u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u6765\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\uff0c\u4f8b\u5982\u6570\u7ec4\u3001\u94fe\u8868\u3001\u6811\u548c\u56fe\u7684\u904d\u5386\u7b49\u3002
            • \u5229\u7528\u6570\u636e\u7ec4\u7ec7\u7ed3\u6784\u6216\u6570\u636e\u5305\u542b\u7684\u5148\u9a8c\u4fe1\u606f\uff0c\u5b9e\u73b0\u9ad8\u6548\u5143\u7d20\u67e5\u627e\uff0c\u4f8b\u5982\u4e8c\u5206\u67e5\u627e\u3001\u54c8\u5e0c\u67e5\u627e\u548c\u4e8c\u53c9\u641c\u7d22\u6811\u67e5\u627e\u7b49\u3002

            \u4e0d\u96be\u53d1\u73b0\uff0c\u8fd9\u4e9b\u77e5\u8bc6\u70b9\u90fd\u5df2\u5728\u524d\u9762\u7684\u7ae0\u8282\u4e2d\u4ecb\u7ecd\u8fc7\uff0c\u56e0\u6b64\u641c\u7d22\u7b97\u6cd5\u5bf9\u4e8e\u6211\u4eec\u6765\u8bf4\u5e76\u4e0d\u964c\u751f\u3002\u5728\u672c\u8282\u4e2d\uff0c\u6211\u4eec\u5c06\u4ece\u66f4\u52a0\u7cfb\u7edf\u7684\u89c6\u89d2\u5207\u5165\uff0c\u91cd\u65b0\u5ba1\u89c6\u641c\u7d22\u7b97\u6cd5\u3002

            "},{"location":"chapter_searching/searching_algorithm_revisited/#1051","title":"10.5.1 \u00a0 \u66b4\u529b\u641c\u7d22","text":"

            \u66b4\u529b\u641c\u7d22\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u7684\u6bcf\u4e2a\u5143\u7d20\u6765\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002

            • \u201c\u7ebf\u6027\u641c\u7d22\u201d\u9002\u7528\u4e8e\u6570\u7ec4\u548c\u94fe\u8868\u7b49\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002\u5b83\u4ece\u6570\u636e\u7ed3\u6784\u7684\u4e00\u7aef\u5f00\u59cb\uff0c\u9010\u4e2a\u8bbf\u95ee\u5143\u7d20\uff0c\u76f4\u5230\u627e\u5230\u76ee\u6807\u5143\u7d20\u6216\u5230\u8fbe\u53e6\u4e00\u7aef\u4ecd\u6ca1\u6709\u627e\u5230\u76ee\u6807\u5143\u7d20\u4e3a\u6b62\u3002
            • \u201c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u201d\u548c\u201c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u201d\u662f\u56fe\u548c\u6811\u7684\u4e24\u79cd\u904d\u5386\u7b56\u7565\u3002\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u4ece\u521d\u59cb\u8282\u70b9\u5f00\u59cb\u9010\u5c42\u641c\u7d22\uff0c\u7531\u8fd1\u53ca\u8fdc\u5730\u8bbf\u95ee\u5404\u4e2a\u8282\u70b9\u3002\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u662f\u4ece\u521d\u59cb\u8282\u70b9\u5f00\u59cb\uff0c\u6cbf\u7740\u4e00\u6761\u8def\u5f84\u8d70\u5230\u5934\u4e3a\u6b62\uff0c\u518d\u56de\u6eaf\u5e76\u5c1d\u8bd5\u5176\u4ed6\u8def\u5f84\uff0c\u76f4\u5230\u904d\u5386\u5b8c\u6574\u4e2a\u6570\u636e\u7ed3\u6784\u3002

            \u66b4\u529b\u641c\u7d22\u7684\u4f18\u70b9\u662f\u7b80\u5355\u4e14\u901a\u7528\u6027\u597d\uff0c\u65e0\u987b\u5bf9\u6570\u636e\u505a\u9884\u5904\u7406\u548c\u501f\u52a9\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\u3002

            \u7136\u800c\uff0c\u6b64\u7c7b\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u5176\u4e2d \\(n\\) \u4e3a\u5143\u7d20\u6570\u91cf\uff0c\u56e0\u6b64\u5728\u6570\u636e\u91cf\u8f83\u5927\u7684\u60c5\u51b5\u4e0b\u6027\u80fd\u8f83\u5dee\u3002

            "},{"location":"chapter_searching/searching_algorithm_revisited/#1052","title":"10.5.2 \u00a0 \u81ea\u9002\u5e94\u641c\u7d22","text":"

            \u81ea\u9002\u5e94\u641c\u7d22\u5229\u7528\u6570\u636e\u7684\u7279\u6709\u5c5e\u6027\uff08\u4f8b\u5982\u6709\u5e8f\u6027\uff09\u6765\u4f18\u5316\u641c\u7d22\u8fc7\u7a0b\uff0c\u4ece\u800c\u66f4\u9ad8\u6548\u5730\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002

            • \u201c\u4e8c\u5206\u67e5\u627e\u201d\u5229\u7528\u6570\u636e\u7684\u6709\u5e8f\u6027\u5b9e\u73b0\u9ad8\u6548\u67e5\u627e\uff0c\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u3002
            • \u201c\u54c8\u5e0c\u67e5\u627e\u201d\u5229\u7528\u54c8\u5e0c\u8868\u5c06\u641c\u7d22\u6570\u636e\u548c\u76ee\u6807\u6570\u636e\u5efa\u7acb\u4e3a\u952e\u503c\u5bf9\u6620\u5c04\uff0c\u4ece\u800c\u5b9e\u73b0\u67e5\u8be2\u64cd\u4f5c\u3002
            • \u201c\u6811\u67e5\u627e\u201d\u5728\u7279\u5b9a\u7684\u6811\u7ed3\u6784\uff08\u4f8b\u5982\u4e8c\u53c9\u641c\u7d22\u6811\uff09\u4e2d\uff0c\u57fa\u4e8e\u6bd4\u8f83\u8282\u70b9\u503c\u6765\u5feb\u901f\u6392\u9664\u8282\u70b9\uff0c\u4ece\u800c\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002

            \u6b64\u7c7b\u7b97\u6cd5\u7684\u4f18\u70b9\u662f\u6548\u7387\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe\u5230 \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \u3002

            \u7136\u800c\uff0c\u4f7f\u7528\u8fd9\u4e9b\u7b97\u6cd5\u5f80\u5f80\u9700\u8981\u5bf9\u6570\u636e\u8fdb\u884c\u9884\u5904\u7406\u3002\u4f8b\u5982\uff0c\u4e8c\u5206\u67e5\u627e\u9700\u8981\u9884\u5148\u5bf9\u6570\u7ec4\u8fdb\u884c\u6392\u5e8f\uff0c\u54c8\u5e0c\u67e5\u627e\u548c\u6811\u67e5\u627e\u90fd\u9700\u8981\u501f\u52a9\u989d\u5916\u7684\u6570\u636e\u7ed3\u6784\uff0c\u7ef4\u62a4\u8fd9\u4e9b\u6570\u636e\u7ed3\u6784\u4e5f\u9700\u8981\u989d\u5916\u7684\u65f6\u95f4\u548c\u7a7a\u95f4\u5f00\u652f\u3002

            Note

            \u81ea\u9002\u5e94\u641c\u7d22\u7b97\u6cd5\u5e38\u88ab\u79f0\u4e3a\u67e5\u627e\u7b97\u6cd5\uff0c\u4e3b\u8981\u5173\u6ce8\u5728\u7279\u5b9a\u6570\u636e\u7ed3\u6784\u4e2d\u5feb\u901f\u68c0\u7d22\u76ee\u6807\u5143\u7d20\u3002

            "},{"location":"chapter_searching/searching_algorithm_revisited/#1053","title":"10.5.3 \u00a0 \u641c\u7d22\u65b9\u6cd5\u9009\u53d6","text":"

            \u7ed9\u5b9a\u5927\u5c0f\u4e3a \\(n\\) \u7684\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u7ebf\u6027\u641c\u7d22\u3001\u4e8c\u5206\u67e5\u627e\u3001\u6811\u67e5\u627e\u3001\u54c8\u5e0c\u67e5\u627e\u7b49\u591a\u79cd\u65b9\u6cd5\u5728\u8be5\u6570\u636e\u4e2d\u641c\u7d22\u76ee\u6807\u5143\u7d20\u3002\u5404\u4e2a\u65b9\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u5982\u4e0b\u56fe\u6240\u793a\u3002

            \u56fe\uff1a\u591a\u79cd\u641c\u7d22\u7b56\u7565

            \u4e0a\u8ff0\u51e0\u79cd\u65b9\u6cd5\u7684\u64cd\u4f5c\u6548\u7387\u4e0e\u7279\u6027\u5982\u4e0b\u8868\u6240\u793a\u3002

            \u8868\uff1a\u67e5\u627e\u7b97\u6cd5\u6548\u7387\u5bf9\u6bd4

            \u7ebf\u6027\u641c\u7d22 \u4e8c\u5206\u67e5\u627e \u6811\u67e5\u627e \u54c8\u5e0c\u67e5\u627e \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u63d2\u5165\u5143\u7d20 \\(O(1)\\) \\(O(n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(n)\\) \\(O(\\log n)\\) \\(O(1)\\) \u989d\u5916\u7a7a\u95f4 \\(O(1)\\) \\(O(1)\\) \\(O(n)\\) \\(O(n)\\) \u6570\u636e\u9884\u5904\u7406 / \u6392\u5e8f \\(O(n \\log n)\\) \u5efa\u6811 \\(O(n \\log n)\\) \u5efa\u54c8\u5e0c\u8868 \\(O(n)\\) \u6570\u636e\u662f\u5426\u6709\u5e8f \u65e0\u5e8f \u6709\u5e8f \u6709\u5e8f \u65e0\u5e8f

            \u9664\u4e86\u4ee5\u4e0a\u8868\u683c\u5185\u5bb9\uff0c\u641c\u7d22\u7b97\u6cd5\u7684\u9009\u62e9\u8fd8\u53d6\u51b3\u4e8e\u6570\u636e\u4f53\u91cf\u3001\u641c\u7d22\u6027\u80fd\u8981\u6c42\u3001\u6570\u636e\u67e5\u8be2\u4e0e\u66f4\u65b0\u9891\u7387\u7b49\u3002

            \u7ebf\u6027\u641c\u7d22

            • \u901a\u7528\u6027\u8f83\u597d\uff0c\u65e0\u987b\u4efb\u4f55\u6570\u636e\u9884\u5904\u7406\u64cd\u4f5c\u3002\u5047\u5982\u6211\u4eec\u4ec5\u9700\u67e5\u8be2\u4e00\u6b21\u6570\u636e\uff0c\u90a3\u4e48\u5176\u4ed6\u4e09\u79cd\u65b9\u6cd5\u7684\u6570\u636e\u9884\u5904\u7406\u7684\u65f6\u95f4\u6bd4\u7ebf\u6027\u641c\u7d22\u7684\u65f6\u95f4\u8fd8\u8981\u66f4\u957f\u3002
            • \u9002\u7528\u4e8e\u4f53\u91cf\u8f83\u5c0f\u7684\u6570\u636e\uff0c\u6b64\u60c5\u51b5\u4e0b\u65f6\u95f4\u590d\u6742\u5ea6\u5bf9\u6548\u7387\u5f71\u54cd\u8f83\u5c0f\u3002
            • \u9002\u7528\u4e8e\u6570\u636e\u66f4\u65b0\u9891\u7387\u8f83\u9ad8\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u8be5\u65b9\u6cd5\u4e0d\u9700\u8981\u5bf9\u6570\u636e\u8fdb\u884c\u4efb\u4f55\u989d\u5916\u7ef4\u62a4\u3002

            \u4e8c\u5206\u67e5\u627e

            • \u9002\u7528\u4e8e\u5927\u6570\u636e\u91cf\u7684\u60c5\u51b5\uff0c\u6548\u7387\u8868\u73b0\u7a33\u5b9a\uff0c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \u3002
            • \u6570\u636e\u91cf\u4e0d\u80fd\u8fc7\u5927\uff0c\u56e0\u4e3a\u5b58\u50a8\u6570\u7ec4\u9700\u8981\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u3002
            • \u4e0d\u9002\u7528\u4e8e\u9ad8\u9891\u589e\u5220\u6570\u636e\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u7ef4\u62a4\u6709\u5e8f\u6570\u7ec4\u7684\u5f00\u9500\u8f83\u5927\u3002

            \u54c8\u5e0c\u67e5\u627e

            • \u9002\u5408\u5bf9\u67e5\u8be2\u6027\u80fd\u8981\u6c42\u5f88\u9ad8\u7684\u573a\u666f\uff0c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3002
            • \u4e0d\u9002\u5408\u9700\u8981\u6709\u5e8f\u6570\u636e\u6216\u8303\u56f4\u67e5\u627e\u7684\u573a\u666f\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u65e0\u6cd5\u7ef4\u62a4\u6570\u636e\u7684\u6709\u5e8f\u6027\u3002
            • \u5bf9\u54c8\u5e0c\u51fd\u6570\u548c\u54c8\u5e0c\u51b2\u7a81\u5904\u7406\u7b56\u7565\u7684\u4f9d\u8d56\u6027\u8f83\u9ad8\uff0c\u5177\u6709\u8f83\u5927\u7684\u6027\u80fd\u52a3\u5316\u98ce\u9669\u3002
            • \u4e0d\u9002\u5408\u6570\u636e\u91cf\u8fc7\u5927\u7684\u60c5\u51b5\uff0c\u56e0\u4e3a\u54c8\u5e0c\u8868\u9700\u8981\u989d\u5916\u7a7a\u95f4\u6765\u6700\u5927\u7a0b\u5ea6\u5730\u51cf\u5c11\u51b2\u7a81\uff0c\u4ece\u800c\u63d0\u4f9b\u826f\u597d\u7684\u67e5\u8be2\u6027\u80fd\u3002

            \u6811\u67e5\u627e

            • \u9002\u7528\u4e8e\u6d77\u91cf\u6570\u636e\uff0c\u56e0\u4e3a\u6811\u8282\u70b9\u5728\u5185\u5b58\u4e2d\u662f\u79bb\u6563\u5b58\u50a8\u7684\u3002
            • \u9002\u5408\u9700\u8981\u7ef4\u62a4\u6709\u5e8f\u6570\u636e\u6216\u8303\u56f4\u67e5\u627e\u7684\u573a\u666f\u3002
            • \u5728\u6301\u7eed\u589e\u5220\u8282\u70b9\u7684\u8fc7\u7a0b\u4e2d\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u53ef\u80fd\u4ea7\u751f\u503e\u659c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n)\\) \u3002
            • \u82e5\u4f7f\u7528 AVL \u6811\u6216\u7ea2\u9ed1\u6811\uff0c\u5219\u5404\u9879\u64cd\u4f5c\u53ef\u5728 \\(O(\\log n)\\) \u6548\u7387\u4e0b\u7a33\u5b9a\u8fd0\u884c\uff0c\u4f46\u7ef4\u62a4\u6811\u5e73\u8861\u7684\u64cd\u4f5c\u4f1a\u589e\u52a0\u989d\u5916\u5f00\u9500\u3002
            "},{"location":"chapter_searching/summary/","title":"10.6 \u00a0 \u5c0f\u7ed3","text":"
            • \u4e8c\u5206\u67e5\u627e\u4f9d\u8d56\u4e8e\u6570\u636e\u7684\u6709\u5e8f\u6027\uff0c\u901a\u8fc7\u5faa\u73af\u9010\u6b65\u7f29\u51cf\u4e00\u534a\u641c\u7d22\u533a\u95f4\u6765\u5b9e\u73b0\u67e5\u627e\u3002\u5b83\u8981\u6c42\u8f93\u5165\u6570\u636e\u6709\u5e8f\uff0c\u4e14\u4ec5\u9002\u7528\u4e8e\u6570\u7ec4\u6216\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6570\u636e\u7ed3\u6784\u3002
            • \u66b4\u529b\u641c\u7d22\u901a\u8fc7\u904d\u5386\u6570\u636e\u7ed3\u6784\u6765\u5b9a\u4f4d\u6570\u636e\u3002\u7ebf\u6027\u641c\u7d22\u9002\u7528\u4e8e\u6570\u7ec4\u548c\u94fe\u8868\uff0c\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u548c\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\u9002\u7528\u4e8e\u56fe\u548c\u6811\u3002\u6b64\u7c7b\u7b97\u6cd5\u901a\u7528\u6027\u597d\uff0c\u65e0\u987b\u5bf9\u6570\u636e\u9884\u5904\u7406\uff0c\u4f46\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u8f83\u9ad8\u3002
            • \u54c8\u5e0c\u67e5\u627e\u3001\u6811\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u5c5e\u4e8e\u9ad8\u6548\u641c\u7d22\u65b9\u6cd5\uff0c\u53ef\u5728\u7279\u5b9a\u6570\u636e\u7ed3\u6784\u4e2d\u5feb\u901f\u5b9a\u4f4d\u76ee\u6807\u5143\u7d20\u3002\u6b64\u7c7b\u7b97\u6cd5\u6548\u7387\u9ad8\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe \\(O(\\log n)\\) \u751a\u81f3 \\(O(1)\\) \uff0c\u4f46\u901a\u5e38\u9700\u8981\u501f\u52a9\u989d\u5916\u6570\u636e\u7ed3\u6784\u3002
            • \u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u5bf9\u6570\u636e\u4f53\u91cf\u3001\u641c\u7d22\u6027\u80fd\u8981\u6c42\u3001\u6570\u636e\u67e5\u8be2\u548c\u66f4\u65b0\u9891\u7387\u7b49\u56e0\u7d20\u8fdb\u884c\u5177\u4f53\u5206\u6790\uff0c\u4ece\u800c\u9009\u62e9\u5408\u9002\u7684\u641c\u7d22\u65b9\u6cd5\u3002
            • \u7ebf\u6027\u641c\u7d22\u9002\u7528\u4e8e\u5c0f\u578b\u6216\u9891\u7e41\u66f4\u65b0\u7684\u6570\u636e\uff1b\u4e8c\u5206\u67e5\u627e\u9002\u7528\u4e8e\u5927\u578b\u3001\u6392\u5e8f\u7684\u6570\u636e\uff1b\u54c8\u5e0c\u67e5\u627e\u9002\u5408\u5bf9\u67e5\u8be2\u6548\u7387\u8981\u6c42\u8f83\u9ad8\u4e14\u65e0\u987b\u8303\u56f4\u67e5\u8be2\u7684\u6570\u636e\uff1b\u6811\u67e5\u627e\u9002\u7528\u4e8e\u9700\u8981\u7ef4\u62a4\u987a\u5e8f\u548c\u652f\u6301\u8303\u56f4\u67e5\u8be2\u7684\u5927\u578b\u52a8\u6001\u6570\u636e\u3002
            • \u7528\u54c8\u5e0c\u67e5\u627e\u66ff\u6362\u7ebf\u6027\u67e5\u627e\u662f\u4e00\u79cd\u5e38\u7528\u7684\u4f18\u5316\u8fd0\u884c\u65f6\u95f4\u7684\u7b56\u7565\uff0c\u53ef\u5c06\u65f6\u95f4\u590d\u6742\u5ea6\u4ece \\(O(n)\\) \u964d\u4f4e\u81f3 \\(O(1)\\) \u3002
            "},{"location":"chapter_sorting/","title":"\u7b2c 11 \u7ae0 \u00a0 \u6392\u5e8f","text":"

            Abstract

            \u6392\u5e8f\u72b9\u5982\u4e00\u628a\u5c06\u6df7\u4e71\u53d8\u4e3a\u79e9\u5e8f\u7684\u9b54\u6cd5\u94a5\u5319\uff0c\u4f7f\u6211\u4eec\u80fd\u4ee5\u66f4\u9ad8\u6548\u7684\u65b9\u5f0f\u7406\u89e3\u4e0e\u5904\u7406\u6570\u636e\u3002

            \u65e0\u8bba\u662f\u7b80\u5355\u7684\u5347\u5e8f\uff0c\u8fd8\u662f\u590d\u6742\u7684\u5206\u7c7b\u6392\u5217\uff0c\u6392\u5e8f\u90fd\u5411\u6211\u4eec\u5c55\u793a\u4e86\u6570\u636e\u7684\u548c\u8c10\u7f8e\u611f\u3002

            "},{"location":"chapter_sorting/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 11.1 \u00a0 \u6392\u5e8f\u7b97\u6cd5
            • 11.2 \u00a0 \u9009\u62e9\u6392\u5e8f
            • 11.3 \u00a0 \u5192\u6ce1\u6392\u5e8f
            • 11.4 \u00a0 \u63d2\u5165\u6392\u5e8f
            • 11.5 \u00a0 \u5feb\u901f\u6392\u5e8f
            • 11.6 \u00a0 \u5f52\u5e76\u6392\u5e8f
            • 11.7 \u00a0 \u5806\u6392\u5e8f
            • 11.8 \u00a0 \u6876\u6392\u5e8f
            • 11.9 \u00a0 \u8ba1\u6570\u6392\u5e8f
            • 11.10 \u00a0 \u57fa\u6570\u6392\u5e8f
            • 11.11 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_sorting/bubble_sort/","title":"11.3 \u00a0 \u5192\u6ce1\u6392\u5e8f","text":"

            \u300c\u5192\u6ce1\u6392\u5e8f bubble sort\u300d\u901a\u8fc7\u8fde\u7eed\u5730\u6bd4\u8f83\u4e0e\u4ea4\u6362\u76f8\u90bb\u5143\u7d20\u5b9e\u73b0\u6392\u5e8f\u3002\u8fd9\u4e2a\u8fc7\u7a0b\u5c31\u50cf\u6c14\u6ce1\u4ece\u5e95\u90e8\u5347\u5230\u9876\u90e8\u4e00\u6837\uff0c\u56e0\u6b64\u5f97\u540d\u5192\u6ce1\u6392\u5e8f\u3002

            \u6211\u4eec\u53ef\u4ee5\u5229\u7528\u5143\u7d20\u4ea4\u6362\u64cd\u4f5c\u6a21\u62df\u4e0a\u8ff0\u8fc7\u7a0b\uff1a\u4ece\u6570\u7ec4\u6700\u5de6\u7aef\u5f00\u59cb\u5411\u53f3\u904d\u5386\uff0c\u4f9d\u6b21\u6bd4\u8f83\u76f8\u90bb\u5143\u7d20\u5927\u5c0f\uff0c\u5982\u679c\u201c\u5de6\u5143\u7d20 > \u53f3\u5143\u7d20\u201d\u5c31\u4ea4\u6362\u5b83\u4fe9\u3002\u904d\u5386\u5b8c\u6210\u540e\uff0c\u6700\u5927\u7684\u5143\u7d20\u4f1a\u88ab\u79fb\u52a8\u5230\u6570\u7ec4\u7684\u6700\u53f3\u7aef\u3002

            <1><2><3><4><5><6><7>

            \u56fe\uff1a\u5229\u7528\u5143\u7d20\u4ea4\u6362\u64cd\u4f5c\u6a21\u62df\u5192\u6ce1

            "},{"location":"chapter_sorting/bubble_sort/#1131","title":"11.3.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u6b65\u9aa4\u4e3a\uff1a

            1. \u9996\u5148\uff0c\u5bf9 \\(n\\) \u4e2a\u5143\u7d20\u6267\u884c\u201c\u5192\u6ce1\u201d\uff0c\u5c06\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\uff0c
            2. \u63a5\u4e0b\u6765\uff0c\u5bf9\u5269\u4f59 \\(n - 1\\) \u4e2a\u5143\u7d20\u6267\u884c\u201c\u5192\u6ce1\u201d\uff0c\u5c06\u7b2c\u4e8c\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\u3002
            3. \u4ee5\u6b64\u7c7b\u63a8\uff0c\u7ecf\u8fc7 \\(n - 1\\) \u8f6e\u201c\u5192\u6ce1\u201d\u540e\uff0c\u524d \\(n - 1\\) \u5927\u7684\u5143\u7d20\u90fd\u88ab\u4ea4\u6362\u81f3\u6b63\u786e\u4f4d\u7f6e\u3002
            4. \u4ec5\u5269\u7684\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u662f\u6700\u5c0f\u5143\u7d20\uff0c\u65e0\u987b\u6392\u5e8f\uff0c\u56e0\u6b64\u6570\u7ec4\u6392\u5e8f\u5b8c\u6210\u3002

            \u56fe\uff1a\u5192\u6ce1\u6392\u5e8f\u6d41\u7a0b

            JavaC++PythonGoJSTSCC#SwiftZigDartRust bubble_sort.java
            /* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.cpp
            /* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(vector<int> &nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.size() - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n// \u8fd9\u91cc\u4f7f\u7528\u4e86 std::swap() \u51fd\u6570\nswap(nums[j], nums[j + 1]);\n}\n}\n}\n}\n
            bubble_sort.py
            def bubble_sort(nums: list[int]):\n\"\"\"\u5192\u6ce1\u6392\u5e8f\"\"\"\nn = len(nums)\n# \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in range(n - 1, 0, -1):\n# \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in range(i):\nif nums[j] > nums[j + 1]:\n# \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nnums[j], nums[j + 1] = nums[j + 1], nums[j]\n
            bubble_sort.go
            /* \u5192\u6ce1\u6392\u5e8f */\nfunc bubbleSort(nums []int) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i := len(nums) - 1; i > 0; i-- {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor j := 0; j < i; j++ {\nif nums[j] > nums[j+1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nnums[j], nums[j+1] = nums[j+1], nums[j]\n}\n}\n}\n}\n
            bubble_sort.js
            /* \u5192\u6ce1\u6392\u5e8f */\nfunction bubbleSort(nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.ts
            /* \u5192\u6ce1\u6392\u5e8f */\nfunction bubbleSort(nums: number[]): void {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.c
            /* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(int nums[], int size) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = 0; i < size - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < size - 1 - i; j++) {\nif (nums[j] > nums[j + 1]) {\nint temp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = temp;\n}\n}\n}\n}\n
            bubble_sort.cs
            /* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.Length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.swift
            /* \u5192\u6ce1\u6392\u5e8f */\nfunc bubbleSort(nums: inout [Int]) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in stride(from: nums.count - 1, to: 0, by: -1) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in stride(from: 0, to: i, by: 1) {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j]\nnums[j] = nums[j + 1]\nnums[j + 1] = tmp\n}\n}\n}\n}\n
            bubble_sort.zig
            // \u5192\u6ce1\u6392\u5e8f\nfn bubbleSort(nums: []i32) void {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nvar i: usize = nums.len - 1;\nwhile (i > 0) : (i -= 1) {\nvar j: usize = 0;\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nwhile (j < i) : (j += 1) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nvar tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.dart
            /* \u5192\u6ce1\u6392\u5e8f */\nvoid bubbleSort(List<int> nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.length - 1; i > 0; i--) {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            bubble_sort.rs
            /* \u5192\u6ce1\u6392\u5e8f */\nfn bubble_sort(nums: &mut [i32]) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in (1..nums.len()).rev() {\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in 0..i {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\n}\n}\n}\n}\n
            "},{"location":"chapter_sorting/bubble_sort/#1132","title":"11.3.2 \u00a0 \u6548\u7387\u4f18\u5316","text":"

            \u6211\u4eec\u53d1\u73b0\uff0c\u5982\u679c\u67d0\u8f6e\u201c\u5192\u6ce1\u201d\u4e2d\u6ca1\u6709\u6267\u884c\u4efb\u4f55\u4ea4\u6362\u64cd\u4f5c\uff0c\u8bf4\u660e\u6570\u7ec4\u5df2\u7ecf\u5b8c\u6210\u6392\u5e8f\uff0c\u53ef\u76f4\u63a5\u8fd4\u56de\u7ed3\u679c\u3002\u56e0\u6b64\uff0c\u53ef\u4ee5\u589e\u52a0\u4e00\u4e2a\u6807\u5fd7\u4f4d flag \u6765\u76d1\u6d4b\u8fd9\u79cd\u60c5\u51b5\uff0c\u4e00\u65e6\u51fa\u73b0\u5c31\u7acb\u5373\u8fd4\u56de\u3002

            \u7ecf\u8fc7\u4f18\u5316\uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u6700\u5dee\u548c\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4ecd\u4e3a \\(O(n^2)\\) \uff1b\u4f46\u5f53\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u6709\u5e8f\u65f6\uff0c\u53ef\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust bubble_sort.java
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09 */\nvoid bubbleSortWithFlag(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.length - 1; i > 0; i--) {\nboolean flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag)\nbreak; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.cpp
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(vector<int> &nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.size() - 1; i > 0; i--) {\nbool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\n// \u8fd9\u91cc\u4f7f\u7528\u4e86 std::swap() \u51fd\u6570\nswap(nums[j], nums[j + 1]);\nflag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag)\nbreak; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.py
            def bubble_sort_with_flag(nums: list[int]):\n\"\"\"\u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09\"\"\"\nn = len(nums)\n# \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in range(n - 1, 0, -1):\nflag = False  # \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n# \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in range(i):\nif nums[j] > nums[j + 1]:\n# \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nnums[j], nums[j + 1] = nums[j + 1], nums[j]\nflag = True  # \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\nif not flag:\nbreak  # \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n
            bubble_sort.go
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunc bubbleSortWithFlag(nums []int) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i := len(nums) - 1; i > 0; i-- {\nflag := false // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor j := 0; j < i; j++ {\nif nums[j] > nums[j+1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nnums[j], nums[j+1] = nums[j+1], nums[j]\nflag = true // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif flag == false { // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\nbreak\n}\n}\n}\n
            bubble_sort.js
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunction bubbleSortWithFlag(nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\nlet flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.ts
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunction bubbleSortWithFlag(nums: number[]): void {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (let i = nums.length - 1; i > 0; i--) {\nlet flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (let j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.c
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(int nums[], int size) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = 0; i < size - 1; i++) {\nbool flag = false;\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < size - 1 - i; j++) {\nif (nums[j] > nums[j + 1]) {\nint temp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = temp;\nflag = true;\n}\n}\nif (!flag)\nbreak;\n}\n}\n
            bubble_sort.cs
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.Length - 1; i > 0; i--) {\nbool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true;  // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag) break;     // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.swift
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nfunc bubbleSortWithFlag(nums: inout [Int]) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in stride(from: nums.count - 1, to: 0, by: -1) {\nvar flag = false // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\nfor j in stride(from: 0, to: i, by: 1) {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j]\nnums[j] = nums[j + 1]\nnums[j + 1] = tmp\nflag = true // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif !flag { // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\nbreak\n}\n}\n}\n
            bubble_sort.zig
            // \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09\nfn bubbleSortWithFlag(nums: []i32) void {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nvar i: usize = nums.len - 1;\nwhile (i > 0) : (i -= 1) {\nvar flag = false;   // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\nvar j: usize = 0;\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nwhile (j < i) : (j += 1) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nvar tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true;\n}\n}\nif (!flag) break;   // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.dart
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09*/\nvoid bubbleSortWithFlag(List<int> nums) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor (int i = nums.length - 1; i > 0; i--) {\nbool flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef\nfor (int j = 0; j < i; j++) {\nif (nums[j] > nums[j + 1]) {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nint tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true; // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif (!flag) break; // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            bubble_sort.rs
            /* \u5192\u6ce1\u6392\u5e8f\uff08\u6807\u5fd7\u4f18\u5316\uff09 */\nfn bubble_sort_with_flag(nums: &mut [i32]) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i in (1..nums.len()).rev() {\nlet mut flag = false; // \u521d\u59cb\u5316\u6807\u5fd7\u4f4d\n// \u5185\u5faa\u73af\uff1a\u5c06\u672a\u6392\u5e8f\u533a\u95f4 [0, i] \u4e2d\u7684\u6700\u5927\u5143\u7d20\u4ea4\u6362\u81f3\u8be5\u533a\u95f4\u7684\u6700\u53f3\u7aef \nfor j in 0..i {\nif nums[j] > nums[j + 1] {\n// \u4ea4\u6362 nums[j] \u4e0e nums[j + 1]\nlet tmp = nums[j];\nnums[j] = nums[j + 1];\nnums[j + 1] = tmp;\nflag = true;  // \u8bb0\u5f55\u4ea4\u6362\u5143\u7d20\n}\n}\nif !flag {break};  // \u6b64\u8f6e\u5192\u6ce1\u672a\u4ea4\u6362\u4efb\u4f55\u5143\u7d20\uff0c\u76f4\u63a5\u8df3\u51fa\n}\n}\n
            "},{"location":"chapter_sorting/bubble_sort/#1133","title":"11.3.3 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3001\u81ea\u9002\u5e94\u6392\u5e8f \uff1a\u5404\u8f6e\u201c\u5192\u6ce1\u201d\u904d\u5386\u7684\u6570\u7ec4\u957f\u5ea6\u4f9d\u6b21\u4e3a \\(n - 1\\) , \\(n - 2\\) , \\(\\cdots\\) , \\(2\\) , \\(1\\) \uff0c\u603b\u548c\u4e3a \\(\\frac{(n - 1) n}{2}\\) \u3002\u5728\u5f15\u5165 flag \u4f18\u5316\u540e\uff0c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe\u5230 \\(O(n)\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(1)\\) \u3001\u539f\u5730\u6392\u5e8f\uff1a\u6307\u9488 \\(i\\) , \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
            • \u7a33\u5b9a\u6392\u5e8f\uff1a\u7531\u4e8e\u5728\u201c\u5192\u6ce1\u201d\u4e2d\u9047\u5230\u76f8\u7b49\u5143\u7d20\u4e0d\u4ea4\u6362\u3002
            "},{"location":"chapter_sorting/bucket_sort/","title":"11.8 \u00a0 \u6876\u6392\u5e8f","text":"

            \u524d\u8ff0\u7684\u51e0\u79cd\u6392\u5e8f\u7b97\u6cd5\u90fd\u5c5e\u4e8e\u201c\u57fa\u4e8e\u6bd4\u8f83\u7684\u6392\u5e8f\u7b97\u6cd5\u201d\uff0c\u5b83\u4eec\u901a\u8fc7\u6bd4\u8f83\u5143\u7d20\u95f4\u7684\u5927\u5c0f\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u6b64\u7c7b\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u65e0\u6cd5\u8d85\u8d8a \\(O(n \\log n)\\) \u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c06\u63a2\u8ba8\u51e0\u79cd\u201c\u975e\u6bd4\u8f83\u6392\u5e8f\u7b97\u6cd5\u201d\uff0c\u5b83\u4eec\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u8fbe\u5230\u7ebf\u6027\u9636\u3002

            \u300c\u6876\u6392\u5e8f bucket sort\u300d\u662f\u5206\u6cbb\u601d\u60f3\u7684\u4e00\u4e2a\u5178\u578b\u5e94\u7528\u3002\u5b83\u901a\u8fc7\u8bbe\u7f6e\u4e00\u4e9b\u5177\u6709\u5927\u5c0f\u987a\u5e8f\u7684\u6876\uff0c\u6bcf\u4e2a\u6876\u5bf9\u5e94\u4e00\u4e2a\u6570\u636e\u8303\u56f4\uff0c\u5c06\u6570\u636e\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff1b\u7136\u540e\uff0c\u5728\u6bcf\u4e2a\u6876\u5185\u90e8\u5206\u522b\u6267\u884c\u6392\u5e8f\uff1b\u6700\u7ec8\u6309\u7167\u6876\u7684\u987a\u5e8f\u5c06\u6240\u6709\u6570\u636e\u5408\u5e76\u3002

            "},{"location":"chapter_sorting/bucket_sort/#1181","title":"11.8.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u8003\u8651\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\uff0c\u5143\u7d20\u662f\u8303\u56f4 \\([0, 1)\\) \u7684\u6d6e\u70b9\u6570\u3002\u6876\u6392\u5e8f\u7684\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u521d\u59cb\u5316 \\(k\\) \u4e2a\u6876\uff0c\u5c06 \\(n\\) \u4e2a\u5143\u7d20\u5206\u914d\u5230 \\(k\\) \u4e2a\u6876\u4e2d\u3002
            2. \u5bf9\u6bcf\u4e2a\u6876\u5206\u522b\u6267\u884c\u6392\u5e8f\uff08\u672c\u6587\u91c7\u7528\u7f16\u7a0b\u8bed\u8a00\u7684\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff09\u3002
            3. \u6309\u7167\u6876\u7684\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\uff0c\u5408\u5e76\u7ed3\u679c\u3002

            \u56fe\uff1a\u6876\u6392\u5e8f\u7b97\u6cd5\u6d41\u7a0b

            JavaC++PythonGoJSTSCC#SwiftZigDartRust bucket_sort.java
            /* \u6876\u6392\u5e8f */\nvoid bucketSort(float[] nums) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nint k = nums.length / 2;\nList<List<Float>> buckets = new ArrayList<>();\nfor (int i = 0; i < k; i++) {\nbuckets.add(new ArrayList<>());\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (float num : nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nint i = (int) (num * k);\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets.get(i).add(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (List<Float> bucket : buckets) {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nCollections.sort(bucket);\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nint i = 0;\nfor (List<Float> bucket : buckets) {\nfor (float num : bucket) {\nnums[i++] = num;\n}\n}\n}\n
            bucket_sort.cpp
            /* \u6876\u6392\u5e8f */\nvoid bucketSort(vector<float> &nums) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nint k = nums.size() / 2;\nvector<vector<float>> buckets(k);\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (float num : nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nint i = num * k;\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 bucket_idx\nbuckets[i].push_back(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (vector<float> &bucket : buckets) {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nsort(bucket.begin(), bucket.end());\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nint i = 0;\nfor (vector<float> &bucket : buckets) {\nfor (float num : bucket) {\nnums[i++] = num;\n}\n}\n}\n
            bucket_sort.py
            def bucket_sort(nums: list[float]):\n\"\"\"\u6876\u6392\u5e8f\"\"\"\n# \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nk = len(nums) // 2\nbuckets = [[] for _ in range(k)]\n# 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor num in nums:\n# \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\ni = int(num * k)\n# \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].append(num)\n# 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor bucket in buckets:\n# \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbucket.sort()\n# 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\ni = 0\nfor bucket in buckets:\nfor num in bucket:\nnums[i] = num\ni += 1\n
            bucket_sort.go
            /* \u6876\u6392\u5e8f */\nfunc bucketSort(nums []float64) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nk := len(nums) / 2\nbuckets := make([][]float64, k)\nfor i := 0; i < k; i++ {\nbuckets[i] = make([]float64, 0)\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor _, num := range nums {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\ni := int(num * float64(k))\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i] = append(buckets[i], num)\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor i := 0; i < k; i++ {\n// \u4f7f\u7528\u5185\u7f6e\u5207\u7247\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nsort.Float64s(buckets[i])\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\ni := 0\nfor _, bucket := range buckets {\nfor _, num := range bucket {\nnums[i] = num\ni++\n}\n}\n}\n
            bucket_sort.js
            /* \u6876\u6392\u5e8f */\nfunction bucketSort(nums) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nconst k = nums.length / 2;\nconst buckets = [];\nfor (let i = 0; i < k; i++) {\nbuckets.push([]);\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (const num of nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nconst i = Math.floor(num * k);\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].push(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (const bucket of buckets) {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbucket.sort((a, b) => a - b);\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nlet i = 0;\nfor (const bucket of buckets) {\nfor (const num of bucket) {\nnums[i++] = num;\n}\n}\n}\n
            bucket_sort.ts
            /* \u6876\u6392\u5e8f */\nfunction bucketSort(nums: number[]): void {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nconst k = nums.length / 2;\nconst buckets: number[][] = [];\nfor (let i = 0; i < k; i++) {\nbuckets.push([]);\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (const num of nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nconst i = Math.floor(num * k);\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].push(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (const bucket of buckets) {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbucket.sort((a, b) => a - b);\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nlet i = 0;\nfor (const bucket of buckets) {\nfor (const num of bucket) {\nnums[i++] = num;\n}\n}\n}\n
            bucket_sort.c
            /* \u6876\u6392\u5e8f */\nvoid bucketSort(float nums[], int size) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nint k = size / 2;\nfloat **buckets = calloc(k, sizeof(float *));\nfor (int i = 0; i < k; i++) {\n// \u6bcf\u4e2a\u6876\u6700\u591a\u53ef\u4ee5\u5206\u914d k \u4e2a\u5143\u7d20\nbuckets[i] = calloc(ARRAY_SIZE, sizeof(float));\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (int i = 0; i < size; i++) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nint bucket_idx = nums[i] * k;\nint j = 0;\n// \u5982\u679c\u6876\u4e2d\u6709\u6570\u636e\u4e14\u6570\u636e\u5c0f\u4e8e\u5f53\u524d\u503c nums[i], \u8981\u5c06\u5176\u653e\u5230\u5f53\u524d\u6876\u7684\u540e\u9762\uff0c\u76f8\u5f53\u4e8e cpp \u4e2d\u7684 push_back\nwhile (buckets[bucket_idx][j] > 0 && buckets[bucket_idx][j] < nums[i]) {\nj++;\n}\nfloat temp = nums[i];\nwhile (j < ARRAY_SIZE && buckets[bucket_idx][j] > 0) {\nswap(&temp, &buckets[bucket_idx][j]);\nj++;\n}\nbuckets[bucket_idx][j] = temp;\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (int i = 0; i < k; i++) {\nqsort(buckets[i], ARRAY_SIZE, sizeof(float), compare_float);\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nfor (int i = 0, j = 0; j < k; j++) {\nfor (int l = 0; l < ARRAY_SIZE; l++) {\nif (buckets[j][l] > 0) {\nnums[i++] = buckets[j][l];\n}\n}\n}\n// \u91ca\u653e\u4e0a\u8ff0\u5206\u914d\u7684\u5185\u5b58\nfor (int i = 0; i < k; i++) {\nfree(buckets[i]);\n}\nfree(buckets);\n}\n
            bucket_sort.cs
            /* \u6876\u6392\u5e8f */\nvoid bucketSort(float[] nums) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nint k = nums.Length / 2;\nList<List<float>> buckets = new List<List<float>>();\nfor (int i = 0; i < k; i++) {\nbuckets.Add(new List<float>());\n}\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nforeach (float num in nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nint i = (int) (num * k);\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].Add(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nforeach (List<float> bucket in buckets) {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbucket.Sort();\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nint j = 0;\nforeach (List<float> bucket in buckets) {\nforeach (float num in bucket) {\nnums[j++] = num;\n}\n}\n}\n
            bucket_sort.swift
            /* \u6876\u6392\u5e8f */\nfunc bucketSort(nums: inout [Double]) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nlet k = nums.count / 2\nvar buckets = (0 ..< k).map { _ in [Double]() }\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor num in nums {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nlet i = Int(num * Double(k))\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].append(num)\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor i in buckets.indices {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbuckets[i].sort()\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nvar i = nums.startIndex\nfor bucket in buckets {\nfor num in bucket {\nnums[i] = num\nnums.formIndex(after: &i)\n}\n}\n}\n
            bucket_sort.zig
            [class]{}-[func]{bucketSort}\n
            bucket_sort.dart
            /* \u6876\u6392\u5e8f */\nvoid bucketSort(List<double> nums) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nint k = nums.length ~/ 2;\nList<List<double>> buckets = List.generate(k, (index) => []);\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor (double num in nums) {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nint i = (num * k).toInt();\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 bucket_idx\nbuckets[i].add(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor (List<double> bucket in buckets) {\nbucket.sort();\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nint i = 0;\nfor (List<double> bucket in buckets) {\nfor (double num in bucket) {\nnums[i++] = num;\n}\n}\n}\n
            bucket_sort.rs
            /* \u6876\u6392\u5e8f */\nfn bucket_sort(nums: &mut [f64]) {\n// \u521d\u59cb\u5316 k = n/2 \u4e2a\u6876\uff0c\u9884\u671f\u5411\u6bcf\u4e2a\u6876\u5206\u914d 2 \u4e2a\u5143\u7d20\nlet k = nums.len() / 2;\nlet mut buckets = vec![vec![]; k];\n// 1. \u5c06\u6570\u7ec4\u5143\u7d20\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\nfor &mut num in &mut *nums {\n// \u8f93\u5165\u6570\u636e\u8303\u56f4 [0, 1)\uff0c\u4f7f\u7528 num * k \u6620\u5c04\u5230\u7d22\u5f15\u8303\u56f4 [0, k-1]\nlet i = (num * k as f64) as usize;\n// \u5c06 num \u6dfb\u52a0\u8fdb\u6876 i\nbuckets[i].push(num);\n}\n// 2. \u5bf9\u5404\u4e2a\u6876\u6267\u884c\u6392\u5e8f\nfor bucket in &mut buckets {\n// \u4f7f\u7528\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\uff0c\u4e5f\u53ef\u4ee5\u66ff\u6362\u6210\u5176\u4ed6\u6392\u5e8f\u7b97\u6cd5\nbucket.sort_by(|a, b| a.partial_cmp(b).unwrap());\n}\n// 3. \u904d\u5386\u6876\u5408\u5e76\u7ed3\u679c\nlet mut i = 0;\nfor bucket in &mut buckets {\nfor &mut num in bucket {\nnums[i] = num;\ni += 1;\n}\n}\n}\n

            \u6876\u6392\u5e8f\u7684\u9002\u7528\u573a\u666f\u662f\u4ec0\u4e48\uff1f

            \u6876\u6392\u5e8f\u9002\u7528\u4e8e\u5904\u7406\u4f53\u91cf\u5f88\u5927\u7684\u6570\u636e\u3002\u4f8b\u5982\uff0c\u8f93\u5165\u6570\u636e\u5305\u542b 100 \u4e07\u4e2a\u5143\u7d20\uff0c\u7531\u4e8e\u7a7a\u95f4\u9650\u5236\uff0c\u7cfb\u7edf\u5185\u5b58\u65e0\u6cd5\u4e00\u6b21\u6027\u52a0\u8f7d\u6240\u6709\u6570\u636e\u3002\u6b64\u65f6\uff0c\u53ef\u4ee5\u5c06\u6570\u636e\u5206\u6210 1000 \u4e2a\u6876\uff0c\u7136\u540e\u5206\u522b\u5bf9\u6bcf\u4e2a\u6876\u8fdb\u884c\u6392\u5e8f\uff0c\u6700\u540e\u5c06\u7ed3\u679c\u5408\u5e76\u3002

            "},{"location":"chapter_sorting/bucket_sort/#1182","title":"11.8.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n + k)\\) \uff1a\u5047\u8bbe\u5143\u7d20\u5728\u5404\u4e2a\u6876\u5185\u5e73\u5747\u5206\u5e03\uff0c\u90a3\u4e48\u6bcf\u4e2a\u6876\u5185\u7684\u5143\u7d20\u6570\u91cf\u4e3a \\(\\frac{n}{k}\\) \u3002\u5047\u8bbe\u6392\u5e8f\u5355\u4e2a\u6876\u4f7f\u7528 \\(O(\\frac{n}{k} \\log\\frac{n}{k})\\) \u65f6\u95f4\uff0c\u5219\u6392\u5e8f\u6240\u6709\u6876\u4f7f\u7528 \\(O(n \\log\\frac{n}{k})\\) \u65f6\u95f4\u3002\u5f53\u6876\u6570\u91cf \\(k\\) \u6bd4\u8f83\u5927\u65f6\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5219\u8d8b\u5411\u4e8e \\(O(n)\\) \u3002\u5408\u5e76\u7ed3\u679c\u65f6\u9700\u8981\u904d\u5386\u6240\u6709\u6876\u548c\u5143\u7d20\uff0c\u82b1\u8d39 \\(O(n + k)\\) \u65f6\u95f4\u3002
            • \u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5728\u6700\u574f\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u6570\u636e\u88ab\u5206\u914d\u5230\u4e00\u4e2a\u6876\u4e2d\uff0c\u4e14\u6392\u5e8f\u8be5\u6876\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n + k)\\) \u3001\u975e\u539f\u5730\u6392\u5e8f \uff1a\u9700\u8981\u501f\u52a9 \\(k\\) \u4e2a\u6876\u548c\u603b\u5171 \\(n\\) \u4e2a\u5143\u7d20\u7684\u989d\u5916\u7a7a\u95f4\u3002
            • \u6876\u6392\u5e8f\u662f\u5426\u7a33\u5b9a\u53d6\u51b3\u4e8e\u6392\u5e8f\u6876\u5185\u5143\u7d20\u7684\u7b97\u6cd5\u662f\u5426\u7a33\u5b9a\u3002
            "},{"location":"chapter_sorting/bucket_sort/#1183","title":"11.8.3 \u00a0 \u5982\u4f55\u5b9e\u73b0\u5e73\u5747\u5206\u914d","text":"

            \u6876\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u7406\u8bba\u4e0a\u53ef\u4ee5\u8fbe\u5230 \\(O(n)\\) \uff0c\u5173\u952e\u5728\u4e8e\u5c06\u5143\u7d20\u5747\u5300\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\uff0c\u56e0\u4e3a\u5b9e\u9645\u6570\u636e\u5f80\u5f80\u4e0d\u662f\u5747\u5300\u5206\u5e03\u7684\u3002\u4f8b\u5982\uff0c\u6211\u4eec\u60f3\u8981\u5c06\u6dd8\u5b9d\u4e0a\u7684\u6240\u6709\u5546\u54c1\u6309\u4ef7\u683c\u8303\u56f4\u5e73\u5747\u5206\u914d\u5230 10 \u4e2a\u6876\u4e2d\uff0c\u4f46\u5546\u54c1\u4ef7\u683c\u5206\u5e03\u4e0d\u5747\uff0c\u4f4e\u4e8e 100 \u5143\u7684\u975e\u5e38\u591a\uff0c\u9ad8\u4e8e 1000 \u5143\u7684\u975e\u5e38\u5c11\u3002\u82e5\u5c06\u4ef7\u683c\u533a\u95f4\u5e73\u5747\u5212\u5206\u4e3a 10 \u4efd\uff0c\u5404\u4e2a\u6876\u4e2d\u7684\u5546\u54c1\u6570\u91cf\u5dee\u8ddd\u4f1a\u975e\u5e38\u5927\u3002

            \u4e3a\u5b9e\u73b0\u5e73\u5747\u5206\u914d\uff0c\u6211\u4eec\u53ef\u4ee5\u5148\u8bbe\u5b9a\u4e00\u4e2a\u5927\u81f4\u7684\u5206\u754c\u7ebf\uff0c\u5c06\u6570\u636e\u7c97\u7565\u5730\u5206\u5230 3 \u4e2a\u6876\u4e2d\u3002\u5206\u914d\u5b8c\u6bd5\u540e\uff0c\u518d\u5c06\u5546\u54c1\u8f83\u591a\u7684\u6876\u7ee7\u7eed\u5212\u5206\u4e3a 3 \u4e2a\u6876\uff0c\u76f4\u81f3\u6240\u6709\u6876\u4e2d\u7684\u5143\u7d20\u6570\u91cf\u5927\u81f4\u76f8\u7b49\u3002\u8fd9\u79cd\u65b9\u6cd5\u672c\u8d28\u4e0a\u662f\u521b\u5efa\u4e00\u4e2a\u9012\u5f52\u6811\uff0c\u4f7f\u53f6\u8282\u70b9\u7684\u503c\u5c3d\u53ef\u80fd\u5e73\u5747\u3002\u5f53\u7136\uff0c\u4e0d\u4e00\u5b9a\u8981\u6bcf\u8f6e\u5c06\u6570\u636e\u5212\u5206\u4e3a 3 \u4e2a\u6876\uff0c\u5177\u4f53\u5212\u5206\u65b9\u5f0f\u53ef\u6839\u636e\u6570\u636e\u7279\u70b9\u7075\u6d3b\u9009\u62e9\u3002

            \u56fe\uff1a\u9012\u5f52\u5212\u5206\u6876

            \u5982\u679c\u6211\u4eec\u63d0\u524d\u77e5\u9053\u5546\u54c1\u4ef7\u683c\u7684\u6982\u7387\u5206\u5e03\uff0c\u5219\u53ef\u4ee5\u6839\u636e\u6570\u636e\u6982\u7387\u5206\u5e03\u8bbe\u7f6e\u6bcf\u4e2a\u6876\u7684\u4ef7\u683c\u5206\u754c\u7ebf\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u6570\u636e\u5206\u5e03\u5e76\u4e0d\u4e00\u5b9a\u9700\u8981\u7279\u610f\u7edf\u8ba1\uff0c\u4e5f\u53ef\u4ee5\u6839\u636e\u6570\u636e\u7279\u70b9\u91c7\u7528\u67d0\u79cd\u6982\u7387\u6a21\u578b\u8fdb\u884c\u8fd1\u4f3c\u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u6211\u4eec\u5047\u8bbe\u5546\u54c1\u4ef7\u683c\u670d\u4ece\u6b63\u6001\u5206\u5e03\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5408\u7406\u5730\u8bbe\u5b9a\u4ef7\u683c\u533a\u95f4\uff0c\u4ece\u800c\u5c06\u5546\u54c1\u5e73\u5747\u5206\u914d\u5230\u5404\u4e2a\u6876\u4e2d\u3002

            \u56fe\uff1a\u6839\u636e\u6982\u7387\u5206\u5e03\u5212\u5206\u6876

            "},{"location":"chapter_sorting/counting_sort/","title":"11.9 \u00a0 \u8ba1\u6570\u6392\u5e8f","text":"

            \u300c\u8ba1\u6570\u6392\u5e8f counting sort\u300d\u901a\u8fc7\u7edf\u8ba1\u5143\u7d20\u6570\u91cf\u6765\u5b9e\u73b0\u6392\u5e8f\uff0c\u901a\u5e38\u5e94\u7528\u4e8e\u6574\u6570\u6570\u7ec4\u3002

            "},{"location":"chapter_sorting/counting_sort/#1191","title":"11.9.1 \u00a0 \u7b80\u5355\u5b9e\u73b0","text":"

            \u5148\u6765\u770b\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u3002\u7ed9\u5b9a\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4 nums \uff0c\u5176\u4e2d\u7684\u5143\u7d20\u90fd\u662f\u201c\u975e\u8d1f\u6574\u6570\u201d\u3002\u8ba1\u6570\u6392\u5e8f\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u904d\u5386\u6570\u7ec4\uff0c\u627e\u51fa\u6570\u7ec4\u4e2d\u7684\u6700\u5927\u6570\u5b57\uff0c\u8bb0\u4e3a \\(m\\) \uff0c\u7136\u540e\u521b\u5efa\u4e00\u4e2a\u957f\u5ea6\u4e3a \\(m + 1\\) \u7684\u8f85\u52a9\u6570\u7ec4 counter \u3002
            2. \u501f\u52a9 counter \u7edf\u8ba1 nums \u4e2d\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\uff0c\u5176\u4e2d counter[num] \u5bf9\u5e94\u6570\u5b57 num \u7684\u51fa\u73b0\u6b21\u6570\u3002\u7edf\u8ba1\u65b9\u6cd5\u5f88\u7b80\u5355\uff0c\u53ea\u9700\u904d\u5386 nums\uff08\u8bbe\u5f53\u524d\u6570\u5b57\u4e3a num\uff09\uff0c\u6bcf\u8f6e\u5c06 counter[num] \u589e\u52a0 \\(1\\) \u5373\u53ef\u3002
            3. \u7531\u4e8e counter \u7684\u5404\u4e2a\u7d22\u5f15\u5929\u7136\u6709\u5e8f\uff0c\u56e0\u6b64\u76f8\u5f53\u4e8e\u6240\u6709\u6570\u5b57\u5df2\u7ecf\u88ab\u6392\u5e8f\u597d\u4e86\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u904d\u5386 counter \uff0c\u6839\u636e\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\uff0c\u5c06\u5b83\u4eec\u6309\u4ece\u5c0f\u5230\u5927\u7684\u987a\u5e8f\u586b\u5165 nums \u5373\u53ef\u3002

            \u56fe\uff1a\u8ba1\u6570\u6392\u5e8f\u6d41\u7a0b

            JavaC++PythonGoJSTSCC#SwiftZigDartRust counting_sort.java
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(int[] nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num : nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint[] counter = new int[m + 1];\nfor (int num : nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nint i = 0;\nfor (int num = 0; num < m + 1; num++) {\nfor (int j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.cpp
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(vector<int> &nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num : nums) {\nm = max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nvector<int> counter(m + 1, 0);\nfor (int num : nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nint i = 0;\nfor (int num = 0; num < m + 1; num++) {\nfor (int j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.py
            def counting_sort_naive(nums: list[int]):\n\"\"\"\u8ba1\u6570\u6392\u5e8f\"\"\"\n# \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\n# 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nm = 0\nfor num in nums:\nm = max(m, num)\n# 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n# counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\ncounter = [0] * (m + 1)\nfor num in nums:\ncounter[num] += 1\n# 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\ni = 0\nfor num in range(m + 1):\nfor _ in range(counter[num]):\nnums[i] = num\ni += 1\n
            counting_sort.go
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunc countingSortNaive(nums []int) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nm := 0\nfor _, num := range nums {\nif num > m {\nm = num\n}\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\ncounter := make([]int, m+1)\nfor _, num := range nums {\ncounter[num]++\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nfor i, num := 0, 0; num < m+1; num++ {\nfor j := 0; j < counter[num]; j++ {\nnums[i] = num\ni++\n}\n}\n}\n
            counting_sort.js
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunction countingSortNaive(nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = 0;\nfor (const num of nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nconst counter = new Array(m + 1).fill(0);\nfor (const num of nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nlet i = 0;\nfor (let num = 0; num < m + 1; num++) {\nfor (let j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.ts
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunction countingSortNaive(nums: number[]): void {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = 0;\nfor (const num of nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nconst counter: number[] = new Array<number>(m + 1).fill(0);\nfor (const num of nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nlet i = 0;\nfor (let num = 0; num < m + 1; num++) {\nfor (let j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.c
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(int nums[], int size) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int i = 0; i < size; i++) {\nif (nums[i] > m) {\nm = nums[i];\n}\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint *counter = malloc(sizeof(int) * m);\nfor (int i = 0; i < size; i++) {\ncounter[nums[i]]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nint i = 0;\nfor (int num = 0; num < m + 1; num++) {\nfor (int j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.cs
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(int[] nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nforeach (int num in nums) {\nm = Math.Max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint[] counter = new int[m + 1];\nforeach (int num in nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nint i = 0;\nfor (int num = 0; num < m + 1; num++) {\nfor (int j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.swift
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfunc countingSortNaive(nums: inout [Int]) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = nums.max()!\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nvar counter = Array(repeating: 0, count: m + 1)\nfor num in nums {\ncounter[num] += 1\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nvar i = 0\nfor num in stride(from: 0, to: m + 1, by: 1) {\nfor _ in stride(from: 0, to: counter[num], by: 1) {\nnums[i] = num\ni += 1\n}\n}\n}\n
            counting_sort.zig
            [class]{}-[func]{countingSortNaive}\n
            counting_sort.dart
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nvoid countingSortNaive(List<int> nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num in nums) {\nm = max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nList<int> counter = List.filled(m + 1, 0);\nfor (int num in nums) {\ncounter[num]++;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nint i = 0;\nfor (int num = 0; num < m + 1; num++) {\nfor (int j = 0; j < counter[num]; j++, i++) {\nnums[i] = num;\n}\n}\n}\n
            counting_sort.rs
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u7b80\u5355\u5b9e\u73b0\uff0c\u65e0\u6cd5\u7528\u4e8e\u6392\u5e8f\u5bf9\u8c61\nfn counting_sort_naive(nums: &mut [i32]) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = *nums.into_iter().max().unwrap();\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nlet mut counter = vec![0; m as usize + 1];\nfor &num in &*nums {\ncounter[num as usize] += 1;\n}\n// 3. \u904d\u5386 counter \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u539f\u6570\u7ec4 nums\nlet mut i = 0;\nfor num in 0..m + 1 {\nfor _ in 0..counter[num as usize] {\nnums[i] = num;\ni += 1;\n}\n}\n}\n

            \u8ba1\u6570\u6392\u5e8f\u4e0e\u6876\u6392\u5e8f\u7684\u8054\u7cfb

            \u4ece\u6876\u6392\u5e8f\u7684\u89d2\u5ea6\u770b\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u8ba1\u6570\u6392\u5e8f\u4e2d\u7684\u8ba1\u6570\u6570\u7ec4 counter \u7684\u6bcf\u4e2a\u7d22\u5f15\u89c6\u4e3a\u4e00\u4e2a\u6876\uff0c\u5c06\u7edf\u8ba1\u6570\u91cf\u7684\u8fc7\u7a0b\u770b\u4f5c\u662f\u5c06\u5404\u4e2a\u5143\u7d20\u5206\u914d\u5230\u5bf9\u5e94\u7684\u6876\u4e2d\u3002\u672c\u8d28\u4e0a\uff0c\u8ba1\u6570\u6392\u5e8f\u662f\u6876\u6392\u5e8f\u5728\u6574\u578b\u6570\u636e\u4e0b\u7684\u4e00\u4e2a\u7279\u4f8b\u3002

            "},{"location":"chapter_sorting/counting_sort/#1192","title":"11.9.2 \u00a0 \u5b8c\u6574\u5b9e\u73b0","text":"

            \u7ec6\u5fc3\u7684\u540c\u5b66\u53ef\u80fd\u53d1\u73b0\uff0c\u5982\u679c\u8f93\u5165\u6570\u636e\u662f\u5bf9\u8c61\uff0c\u4e0a\u8ff0\u6b65\u9aa4 3. \u5c31\u5931\u6548\u4e86\u3002\u4f8b\u5982\uff0c\u8f93\u5165\u6570\u636e\u662f\u5546\u54c1\u5bf9\u8c61\uff0c\u6211\u4eec\u60f3\u8981\u6309\u7167\u5546\u54c1\u4ef7\u683c\uff08\u7c7b\u7684\u6210\u5458\u53d8\u91cf\uff09\u5bf9\u5546\u54c1\u8fdb\u884c\u6392\u5e8f\uff0c\u800c\u4e0a\u8ff0\u7b97\u6cd5\u53ea\u80fd\u7ed9\u51fa\u4ef7\u683c\u7684\u6392\u5e8f\u7ed3\u679c\u3002

            \u90a3\u4e48\u5982\u4f55\u624d\u80fd\u5f97\u5230\u539f\u6570\u636e\u7684\u6392\u5e8f\u7ed3\u679c\u5462\uff1f\u6211\u4eec\u9996\u5148\u8ba1\u7b97 counter \u7684\u201c\u524d\u7f00\u548c\u201d\u3002\u987e\u540d\u601d\u4e49\uff0c\u7d22\u5f15 i \u5904\u7684\u524d\u7f00\u548c prefix[i] \u7b49\u4e8e\u6570\u7ec4\u524d i \u4e2a\u5143\u7d20\u4e4b\u548c\uff0c\u5373\uff1a

            \\[ \\text{prefix}[i] = \\sum_{j=0}^i \\text{counter[j]} \\]

            \u524d\u7f00\u548c\u5177\u6709\u660e\u786e\u7684\u610f\u4e49\uff0cprefix[num] - 1 \u4ee3\u8868\u5143\u7d20 num \u5728\u7ed3\u679c\u6570\u7ec4 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\u3002\u8fd9\u4e2a\u4fe1\u606f\u975e\u5e38\u5173\u952e\uff0c\u56e0\u4e3a\u5b83\u544a\u8bc9\u6211\u4eec\u5404\u4e2a\u5143\u7d20\u5e94\u8be5\u51fa\u73b0\u5728\u7ed3\u679c\u6570\u7ec4\u7684\u54ea\u4e2a\u4f4d\u7f6e\u3002\u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5012\u5e8f\u904d\u5386\u539f\u6570\u7ec4 nums \u7684\u6bcf\u4e2a\u5143\u7d20 num \uff0c\u5728\u6bcf\u8f6e\u8fed\u4ee3\u4e2d\u6267\u884c\uff1a

            1. \u5c06 num \u586b\u5165\u6570\u7ec4 res \u7684\u7d22\u5f15 prefix[num] - 1 \u5904\u3002
            2. \u4ee4\u524d\u7f00\u548c prefix[num] \u51cf\u5c0f \\(1\\) \uff0c\u4ece\u800c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\u3002

            \u904d\u5386\u5b8c\u6210\u540e\uff0c\u6570\u7ec4 res \u4e2d\u5c31\u662f\u6392\u5e8f\u597d\u7684\u7ed3\u679c\uff0c\u6700\u540e\u4f7f\u7528 res \u8986\u76d6\u539f\u6570\u7ec4 nums \u5373\u53ef\u3002

            <1><2><3><4><5><6><7><8>

            \u56fe\uff1a\u8ba1\u6570\u6392\u5e8f\u6b65\u9aa4

            \u8ba1\u6570\u6392\u5e8f\u7684\u5b9e\u73b0\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust counting_sort.java
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(int[] nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num : nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint[] counter = new int[m + 1];\nfor (int num : nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (int i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nint n = nums.length;\nint[] res = new int[n];\nfor (int i = n - 1; i >= 0; i--) {\nint num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n
            counting_sort.cpp
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(vector<int> &nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num : nums) {\nm = max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nvector<int> counter(m + 1, 0);\nfor (int num : nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (int i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nint n = nums.size();\nvector<int> res(n);\nfor (int i = n - 1; i >= 0; i--) {\nint num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--;              // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nnums = res;\n}\n
            counting_sort.py
            def counting_sort(nums: list[int]):\n\"\"\"\u8ba1\u6570\u6392\u5e8f\"\"\"\n# \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\n# 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nm = max(nums)\n# 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n# counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\ncounter = [0] * (m + 1)\nfor num in nums:\ncounter[num] += 1\n# 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n# \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor i in range(m):\ncounter[i + 1] += counter[i]\n# 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n# \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nn = len(nums)\nres = [0] * n\nfor i in range(n - 1, -1, -1):\nnum = nums[i]\nres[counter[num] - 1] = num  # \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num] -= 1  # \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n# \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in range(n):\nnums[i] = res[i]\n
            counting_sort.go
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunc countingSort(nums []int) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nm := 0\nfor _, num := range nums {\nif num > m {\nm = num\n}\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\ncounter := make([]int, m+1)\nfor _, num := range nums {\ncounter[num]++\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor i := 0; i < m; i++ {\ncounter[i+1] += counter[i]\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nn := len(nums)\nres := make([]int, n)\nfor i := n - 1; i >= 0; i-- {\nnum := nums[i]\n// \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\nres[counter[num]-1] = num\n// \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\ncounter[num]--\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\ncopy(nums, res)\n}\n
            counting_sort.js
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunction countingSort(nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = 0;\nfor (const num of nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nconst counter = new Array(m + 1).fill(0);\nfor (const num of nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (let i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nconst n = nums.length;\nconst res = new Array(n);\nfor (let i = n - 1; i >= 0; i--) {\nconst num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (let i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n
            counting_sort.ts
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunction countingSort(nums: number[]): void {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = 0;\nfor (const num of nums) {\nm = Math.max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nconst counter: number[] = new Array<number>(m + 1).fill(0);\nfor (const num of nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (let i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nconst n = nums.length;\nconst res: number[] = new Array<number>(n);\nfor (let i = n - 1; i >= 0; i--) {\nconst num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (let i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n
            counting_sort.c
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(int nums[], int size) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int i = 0; i < size; i++) {\nif (nums[i] > m) {\nm = nums[i];\n}\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint *counter = malloc(sizeof(int) * m);\nfor (int i = 0; i < size; i++) {\ncounter[nums[i]]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (int i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nint *res = malloc(sizeof(int) * size);\nfor (int i = size - 1; i >= 0; i--) {\nint num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--;              // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nmemcpy(nums, res, size * sizeof(int));\n}\n
            counting_sort.cs
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(int[] nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nforeach (int num in nums) {\nm = Math.Max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nint[] counter = new int[m + 1];\nforeach (int num in nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (int i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nint n = nums.Length;\nint[] res = new int[n];\nfor (int i = n - 1; i >= 0; i--) {\nint num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n
            counting_sort.swift
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfunc countingSort(nums: inout [Int]) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = nums.max()!\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nvar counter = Array(repeating: 0, count: m + 1)\nfor num in nums {\ncounter[num] += 1\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor i in stride(from: 0, to: m, by: 1) {\ncounter[i + 1] += counter[i]\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nvar res = Array(repeating: 0, count: nums.count)\nfor i in stride(from: nums.count - 1, through: 0, by: -1) {\nlet num = nums[i]\nres[counter[num] - 1] = num // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num] -= 1 // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in stride(from: 0, to: nums.count, by: 1) {\nnums[i] = res[i]\n}\n}\n
            counting_sort.zig
            [class]{}-[func]{countingSort}\n
            counting_sort.dart
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nvoid countingSort(List<int> nums) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nint m = 0;\nfor (int num in nums) {\nm = max(m, num);\n}\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nList<int> counter = List.filled(m + 1, 0);\nfor (int num in nums) {\ncounter[num]++;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor (int i = 0; i < m; i++) {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nint n = nums.length;\nList<int> res = List.filled(n, 0);\nfor (int i = n - 1; i >= 0; i--) {\nint num = nums[i];\nres[counter[num] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num]--; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nnums.setAll(0, res);\n}\n
            counting_sort.rs
            /* \u8ba1\u6570\u6392\u5e8f */\n// \u5b8c\u6574\u5b9e\u73b0\uff0c\u53ef\u6392\u5e8f\u5bf9\u8c61\uff0c\u5e76\u4e14\u662f\u7a33\u5b9a\u6392\u5e8f\nfn counting_sort(nums: &mut [i32]) {\n// 1. \u7edf\u8ba1\u6570\u7ec4\u6700\u5927\u5143\u7d20 m\nlet m = *nums.into_iter().max().unwrap();\n// 2. \u7edf\u8ba1\u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\n// counter[num] \u4ee3\u8868 num \u7684\u51fa\u73b0\u6b21\u6570\nlet mut counter = vec![0; m as usize + 1];\nfor &num in &*nums {\ncounter[num as usize] += 1;\n}\n// 3. \u6c42 counter \u7684\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u6b21\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u5c3e\u7d22\u5f15\u201d\n// \u5373 counter[num]-1 \u662f num \u5728 res \u4e2d\u6700\u540e\u4e00\u6b21\u51fa\u73b0\u7684\u7d22\u5f15\nfor i in 0..m as usize {\ncounter[i + 1] += counter[i];\n}\n// 4. \u5012\u5e8f\u904d\u5386 nums \uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165\u7ed3\u679c\u6570\u7ec4 res\n// \u521d\u59cb\u5316\u6570\u7ec4 res \u7528\u4e8e\u8bb0\u5f55\u7ed3\u679c\nlet n = nums.len();\nlet mut res = vec![0; n];\nfor i in (0..n).rev() {\nlet num = nums[i];\nres[counter[num as usize] - 1] = num; // \u5c06 num \u653e\u7f6e\u5230\u5bf9\u5e94\u7d22\u5f15\u5904\ncounter[num as usize] -= 1; // \u4ee4\u524d\u7f00\u548c\u81ea\u51cf 1 \uff0c\u5f97\u5230\u4e0b\u6b21\u653e\u7f6e num \u7684\u7d22\u5f15\n}\n// \u4f7f\u7528\u7ed3\u679c\u6570\u7ec4 res \u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in 0..n {\nnums[i] = res[i];\n}\n}\n
            "},{"location":"chapter_sorting/counting_sort/#1193","title":"11.9.3 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n + m)\\) \uff1a\u6d89\u53ca\u904d\u5386 nums \u548c\u904d\u5386 counter \uff0c\u90fd\u4f7f\u7528\u7ebf\u6027\u65f6\u95f4\u3002\u4e00\u822c\u60c5\u51b5\u4e0b \\(n \\gg m\\) \uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u4e8e \\(O(n)\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n + m)\\) \u3001\u975e\u539f\u5730\u6392\u5e8f \uff1a\u501f\u52a9\u4e86\u957f\u5ea6\u5206\u522b\u4e3a \\(n\\) \u548c \\(m\\) \u7684\u6570\u7ec4 res \u548c counter \u3002
            • \u7a33\u5b9a\u6392\u5e8f\uff1a\u7531\u4e8e\u5411 res \u4e2d\u586b\u5145\u5143\u7d20\u7684\u987a\u5e8f\u662f\u201c\u4ece\u53f3\u5411\u5de6\u201d\u7684\uff0c\u56e0\u6b64\u5012\u5e8f\u904d\u5386 nums \u53ef\u4ee5\u907f\u514d\u6539\u53d8\u76f8\u7b49\u5143\u7d20\u4e4b\u95f4\u7684\u76f8\u5bf9\u4f4d\u7f6e\uff0c\u4ece\u800c\u5b9e\u73b0\u7a33\u5b9a\u6392\u5e8f\u3002\u5b9e\u9645\u4e0a\uff0c\u6b63\u5e8f\u904d\u5386 nums \u4e5f\u53ef\u4ee5\u5f97\u5230\u6b63\u786e\u7684\u6392\u5e8f\u7ed3\u679c\uff0c\u4f46\u7ed3\u679c\u662f\u975e\u7a33\u5b9a\u7684\u3002
            "},{"location":"chapter_sorting/counting_sort/#1194","title":"11.9.4 \u00a0 \u5c40\u9650\u6027","text":"

            \u770b\u5230\u8fd9\u91cc\uff0c\u4f60\u4e5f\u8bb8\u4f1a\u89c9\u5f97\u8ba1\u6570\u6392\u5e8f\u975e\u5e38\u5de7\u5999\uff0c\u4ec5\u901a\u8fc7\u7edf\u8ba1\u6570\u91cf\u5c31\u53ef\u4ee5\u5b9e\u73b0\u9ad8\u6548\u7684\u6392\u5e8f\u5de5\u4f5c\u3002\u7136\u800c\uff0c\u4f7f\u7528\u8ba1\u6570\u6392\u5e8f\u7684\u524d\u7f6e\u6761\u4ef6\u76f8\u5bf9\u8f83\u4e3a\u4e25\u683c\u3002

            \u8ba1\u6570\u6392\u5e8f\u53ea\u9002\u7528\u4e8e\u975e\u8d1f\u6574\u6570\u3002\u82e5\u60f3\u8981\u5c06\u5176\u7528\u4e8e\u5176\u4ed6\u7c7b\u578b\u7684\u6570\u636e\uff0c\u9700\u8981\u786e\u4fdd\u8fd9\u4e9b\u6570\u636e\u53ef\u4ee5\u88ab\u8f6c\u6362\u4e3a\u975e\u8d1f\u6574\u6570\uff0c\u5e76\u4e14\u5728\u8f6c\u6362\u8fc7\u7a0b\u4e2d\u4e0d\u80fd\u6539\u53d8\u5404\u4e2a\u5143\u7d20\u4e4b\u95f4\u7684\u76f8\u5bf9\u5927\u5c0f\u5173\u7cfb\u3002\u4f8b\u5982\uff0c\u5bf9\u4e8e\u5305\u542b\u8d1f\u6570\u7684\u6574\u6570\u6570\u7ec4\uff0c\u53ef\u4ee5\u5148\u7ed9\u6240\u6709\u6570\u5b57\u52a0\u4e0a\u4e00\u4e2a\u5e38\u6570\uff0c\u5c06\u5168\u90e8\u6570\u5b57\u8f6c\u5316\u4e3a\u6b63\u6570\uff0c\u6392\u5e8f\u5b8c\u6210\u540e\u518d\u8f6c\u6362\u56de\u53bb\u5373\u53ef\u3002

            \u8ba1\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u636e\u91cf\u5927\u4f46\u6570\u636e\u8303\u56f4\u8f83\u5c0f\u7684\u60c5\u51b5\u3002\u6bd4\u5982\uff0c\u5728\u4e0a\u8ff0\u793a\u4f8b\u4e2d \\(m\\) \u4e0d\u80fd\u592a\u5927\uff0c\u5426\u5219\u4f1a\u5360\u7528\u8fc7\u591a\u7a7a\u95f4\u3002\u800c\u5f53 \\(n \\ll m\\) \u65f6\uff0c\u8ba1\u6570\u6392\u5e8f\u4f7f\u7528 \\(O(m)\\) \u65f6\u95f4\uff0c\u53ef\u80fd\u6bd4 \\(O(n \\log n)\\) \u7684\u6392\u5e8f\u7b97\u6cd5\u8fd8\u8981\u6162\u3002

            "},{"location":"chapter_sorting/heap_sort/","title":"11.7 \u00a0 \u5806\u6392\u5e8f","text":"

            Tip

            \u9605\u8bfb\u672c\u8282\u524d\uff0c\u8bf7\u786e\u4fdd\u5df2\u5b66\u5b8c\u201c\u5806\u201c\u7ae0\u8282\u3002

            \u300c\u5806\u6392\u5e8f heap sort\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5806\u6570\u636e\u7ed3\u6784\u5b9e\u73b0\u7684\u9ad8\u6548\u6392\u5e8f\u7b97\u6cd5\u3002\u6211\u4eec\u53ef\u4ee5\u5229\u7528\u5df2\u7ecf\u5b66\u8fc7\u7684\u201c\u5efa\u5806\u64cd\u4f5c\u201d\u548c\u201c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u201d\u5b9e\u73b0\u5806\u6392\u5e8f\uff1a

            1. \u8f93\u5165\u6570\u7ec4\u5e76\u5efa\u7acb\u5c0f\u9876\u5806\uff0c\u6b64\u65f6\u6700\u5c0f\u5143\u7d20\u4f4d\u4e8e\u5806\u9876\u3002
            2. \u4e0d\u65ad\u6267\u884c\u51fa\u5806\u64cd\u4f5c\uff0c\u4f9d\u6b21\u8bb0\u5f55\u51fa\u5806\u5143\u7d20\uff0c\u5373\u53ef\u5f97\u5230\u4ece\u5c0f\u5230\u5927\u6392\u5e8f\u7684\u5e8f\u5217\u3002

            \u4ee5\u4e0a\u65b9\u6cd5\u867d\u7136\u53ef\u884c\uff0c\u4f46\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u989d\u5916\u6570\u7ec4\u6765\u4fdd\u5b58\u5f39\u51fa\u7684\u5143\u7d20\uff0c\u6bd4\u8f83\u6d6a\u8d39\u7a7a\u95f4\u3002\u5728\u5b9e\u9645\u4e2d\uff0c\u6211\u4eec\u901a\u5e38\u4f7f\u7528\u4e00\u79cd\u66f4\u52a0\u4f18\u96c5\u7684\u5b9e\u73b0\u65b9\u5f0f\u3002

            "},{"location":"chapter_sorting/heap_sort/#1171","title":"11.7.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u5806\u6392\u5e8f\u7684\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u8f93\u5165\u6570\u7ec4\u5e76\u5efa\u7acb\u5927\u9876\u5806\u3002\u5b8c\u6210\u540e\uff0c\u6700\u5927\u5143\u7d20\u4f4d\u4e8e\u5806\u9876\u3002
            2. \u5c06\u5806\u9876\u5143\u7d20\uff08\u7b2c\u4e00\u4e2a\u5143\u7d20\uff09\u4e0e\u5806\u5e95\u5143\u7d20\uff08\u6700\u540e\u4e00\u4e2a\u5143\u7d20\uff09\u4ea4\u6362\u3002\u5b8c\u6210\u4ea4\u6362\u540e\uff0c\u5806\u7684\u957f\u5ea6\u51cf \\(1\\) \uff0c\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u52a0 \\(1\\) \u3002
            3. \u4ece\u5806\u9876\u5143\u7d20\u5f00\u59cb\uff0c\u4ece\u9876\u5230\u5e95\u6267\u884c\u5806\u5316\u64cd\u4f5c\uff08Sift Down\uff09\u3002\u5b8c\u6210\u5806\u5316\u540e\uff0c\u5806\u7684\u6027\u8d28\u5f97\u5230\u4fee\u590d\u3002
            4. \u5faa\u73af\u6267\u884c\u7b2c 2. \u548c 3. \u6b65\u3002\u5faa\u73af \\(n - 1\\) \u8f6e\u540e\uff0c\u5373\u53ef\u5b8c\u6210\u6570\u7ec4\u6392\u5e8f\u3002

            \u5b9e\u9645\u4e0a\uff0c\u5143\u7d20\u51fa\u5806\u64cd\u4f5c\u4e2d\u4e5f\u5305\u542b\u7b2c 2. \u548c 3. \u6b65\uff0c\u53ea\u662f\u591a\u4e86\u4e00\u4e2a\u5f39\u51fa\u5143\u7d20\u7684\u6b65\u9aa4\u3002

            <1><2><3><4><5><6><7><8><9><10><11><12>

            \u56fe\uff1a\u5806\u6392\u5e8f\u6b65\u9aa4

            \u5728\u4ee3\u7801\u5b9e\u73b0\u4e2d\uff0c\u6211\u4eec\u4f7f\u7528\u4e86\u4e0e\u5806\u7ae0\u8282\u76f8\u540c\u7684\u4ece\u9876\u81f3\u5e95\u5806\u5316\uff08Sift Down\uff09\u7684\u51fd\u6570\u3002\u503c\u5f97\u6ce8\u610f\u7684\u662f\uff0c\u7531\u4e8e\u5806\u7684\u957f\u5ea6\u4f1a\u968f\u7740\u63d0\u53d6\u6700\u5927\u5143\u7d20\u800c\u51cf\u5c0f\uff0c\u56e0\u6b64\u6211\u4eec\u9700\u8981\u7ed9 Sift Down \u51fd\u6570\u6dfb\u52a0\u4e00\u4e2a\u957f\u5ea6\u53c2\u6570 \\(n\\) \uff0c\u7528\u4e8e\u6307\u5b9a\u5806\u7684\u5f53\u524d\u6709\u6548\u957f\u5ea6\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust heap_sort.java
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int[] nums, int n, int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = 2 * i + 1;\nint r = 2 * i + 2;\nint ma = i;\nif (l < n && nums[l] > nums[ma])\nma = l;\nif (r < n && nums[r] > nums[ma])\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i)\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nint temp = nums[i];\nnums[i] = nums[ma];\nnums[ma] = temp;\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nvoid heapSort(int[] nums) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = nums.length / 2 - 1; i >= 0; i--) {\nsiftDown(nums, nums.length, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (int i = nums.length - 1; i > 0; i--) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nint tmp = nums[0];\nnums[0] = nums[i];\nnums[i] = tmp;\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.cpp
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(vector<int> &nums, int n, int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = 2 * i + 1;\nint r = 2 * i + 2;\nint ma = i;\nif (l < n && nums[l] > nums[ma])\nma = l;\nif (r < n && nums[r] > nums[ma])\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nswap(nums[i], nums[ma]);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nvoid heapSort(vector<int> &nums) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = nums.size() / 2 - 1; i >= 0; --i) {\nsiftDown(nums, nums.size(), i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (int i = nums.size() - 1; i > 0; --i) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nswap(nums[0], nums[i]);\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.py
            def sift_down(nums: list[int], n: int, i: int):\n\"\"\"\u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316\"\"\"\nwhile True:\n# \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nl = 2 * i + 1\nr = 2 * i + 2\nma = i\nif l < n and nums[l] > nums[ma]:\nma = l\nif r < n and nums[r] > nums[ma]:\nma = r\n# \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i:\nbreak\n# \u4ea4\u6362\u4e24\u8282\u70b9\nnums[i], nums[ma] = nums[ma], nums[i]\n# \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma\ndef heap_sort(nums: list[int]):\n\"\"\"\u5806\u6392\u5e8f\"\"\"\n# \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in range(len(nums) // 2 - 1, -1, -1):\nsift_down(nums, len(nums), i)\n# \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor i in range(len(nums) - 1, 0, -1):\n# \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nnums[0], nums[i] = nums[i], nums[0]\n# \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsift_down(nums, i, 0)\n
            heap_sort.go
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(nums *[]int, n, i int) {\nfor true {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nl := 2*i + 1\nr := 2*i + 2\nma := i\nif l < n && (*nums)[l] > (*nums)[ma] {\nma = l\n}\nif r < n && (*nums)[r] > (*nums)[ma] {\nma = r\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\n(*nums)[i], (*nums)[ma] = (*nums)[ma], (*nums)[i]\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma\n}\n}\n/* \u5806\u6392\u5e8f */\nfunc heapSort(nums *[]int) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i := len(*nums)/2 - 1; i >= 0; i-- {\nsiftDown(nums, len(*nums), i)\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor i := len(*nums) - 1; i > 0; i-- {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n(*nums)[0], (*nums)[i] = (*nums)[i], (*nums)[0]\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0)\n}\n}\n
            heap_sort.js
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunction siftDown(nums, n, i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet l = 2 * i + 1;\nlet r = 2 * i + 2;\nlet ma = i;\nif (l < n && nums[l] > nums[ma]) {\nma = l;\n}\nif (r < n && nums[r] > nums[ma]) {\nma = r;\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma === i) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\n[nums[i], nums[ma]] = [nums[ma], nums[i]];\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nfunction heapSort(nums) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {\nsiftDown(nums, nums.length, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n[nums[0], nums[i]] = [nums[i], nums[0]];\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.ts
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunction siftDown(nums: number[], n: number, i: number): void {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet l = 2 * i + 1;\nlet r = 2 * i + 2;\nlet ma = i;\nif (l < n && nums[l] > nums[ma]) {\nma = l;\n}\nif (r < n && nums[r] > nums[ma]) {\nma = r;\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma === i) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\n[nums[i], nums[ma]] = [nums[ma], nums[i]];\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nfunction heapSort(nums: number[]): void {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (let i = Math.floor(nums.length / 2) - 1; i >= 0; i--) {\nsiftDown(nums, nums.length, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (let i = nums.length - 1; i > 0; i--) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n[nums[0], nums[i]] = [nums[i], nums[0]];\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.c
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int nums[], int n, int i) {\nwhile (1) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = 2 * i + 1;\nint r = 2 * i + 2;\nint ma = i;\nif (l < n && nums[l] > nums[ma])\nma = l;\nif (r < n && nums[r] > nums[ma])\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i) {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nint temp = nums[i];\nnums[i] = nums[ma];\nnums[ma] = temp;\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nvoid heapSort(int nums[], int n) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = n / 2 - 1; i >= 0; --i) {\nsiftDown(nums, n, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (int i = n - 1; i > 0; --i) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nint tmp = nums[0];\nnums[0] = nums[i];\nnums[i] = tmp;\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.cs
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(int[] nums, int n, int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = 2 * i + 1;\nint r = 2 * i + 2;\nint ma = i;\nif (l < n && nums[l] > nums[ma])\nma = l;\nif (r < n && nums[r] > nums[ma])\nma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i)\nbreak;\n// \u4ea4\u6362\u4e24\u8282\u70b9\n(nums[ma], nums[i]) = (nums[i], nums[ma]);\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nvoid heapSort(int[] nums) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = nums.Length / 2 - 1; i >= 0; i--) {\nsiftDown(nums, nums.Length, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (int i = nums.Length - 1; i > 0; i--) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\n(nums[i], nums[0]) = (nums[0], nums[i]);\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.swift
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfunc siftDown(nums: inout [Int], n: Int, i: Int) {\nvar i = i\nwhile true {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet l = 2 * i + 1\nlet r = 2 * i + 2\nvar ma = i\nif l < n, nums[l] > nums[ma] {\nma = l\n}\nif r < n, nums[r] > nums[ma] {\nma = r\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i {\nbreak\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nnums.swapAt(i, ma)\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma\n}\n}\n/* \u5806\u6392\u5e8f */\nfunc heapSort(nums: inout [Int]) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in stride(from: nums.count / 2 - 1, through: 0, by: -1) {\nsiftDown(nums: &nums, n: nums.count, i: i)\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor i in stride(from: nums.count - 1, to: 0, by: -1) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nnums.swapAt(0, i)\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums: &nums, n: i, i: 0)\n}\n}\n
            heap_sort.zig
            [class]{}-[func]{siftDown}\n[class]{}-[func]{heapSort}\n
            heap_sort.dart
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nvoid siftDown(List<int> nums, int n, int i) {\nwhile (true) {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nint l = 2 * i + 1;\nint r = 2 * i + 2;\nint ma = i;\nif (l < n && nums[l] > nums[ma]) ma = l;\nif (r < n && nums[r] > nums[ma]) ma = r;\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif (ma == i) break;\n// \u4ea4\u6362\u4e24\u8282\u70b9\nint temp = nums[i];\nnums[i] = nums[ma];\nnums[ma] = temp;\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nvoid heapSort(List<int> nums) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor (int i = nums.length ~/ 2 - 1; i >= 0; i--) {\nsiftDown(nums, nums.length, i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor (int i = nums.length - 1; i > 0; i--) {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nint tmp = nums[0];\nnums[0] = nums[i];\nnums[i] = tmp;\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsiftDown(nums, i, 0);\n}\n}\n
            heap_sort.rs
            /* \u5806\u7684\u957f\u5ea6\u4e3a n \uff0c\u4ece\u8282\u70b9 i \u5f00\u59cb\uff0c\u4ece\u9876\u81f3\u5e95\u5806\u5316 */\nfn sift_down(nums: &mut [i32], n: usize, mut i: usize) {\nloop {\n// \u5224\u65ad\u8282\u70b9 i, l, r \u4e2d\u503c\u6700\u5927\u7684\u8282\u70b9\uff0c\u8bb0\u4e3a ma\nlet l = 2 * i + 1;\nlet r = 2 * i + 2;\nlet mut ma = i;\nif l < n && nums[l] > nums[ma] {\nma = l;\n}\nif r < n && nums[r] > nums[ma] {\nma = r;\n}\n// \u82e5\u8282\u70b9 i \u6700\u5927\u6216\u7d22\u5f15 l, r \u8d8a\u754c\uff0c\u5219\u65e0\u987b\u7ee7\u7eed\u5806\u5316\uff0c\u8df3\u51fa\nif ma == i {\nbreak;\n}\n// \u4ea4\u6362\u4e24\u8282\u70b9\nlet temp = nums[i];\nnums[i] = nums[ma];\nnums[ma] = temp;\n// \u5faa\u73af\u5411\u4e0b\u5806\u5316\ni = ma;\n}\n}\n/* \u5806\u6392\u5e8f */\nfn heap_sort(nums: &mut [i32]) {\n// \u5efa\u5806\u64cd\u4f5c\uff1a\u5806\u5316\u9664\u53f6\u8282\u70b9\u4ee5\u5916\u7684\u5176\u4ed6\u6240\u6709\u8282\u70b9\nfor i in (0..=nums.len() / 2 - 1).rev() {\nsift_down(nums, nums.len(), i);\n}\n// \u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\uff0c\u5faa\u73af n-1 \u8f6e\nfor i in (1..=nums.len() - 1).rev() {\n// \u4ea4\u6362\u6839\u8282\u70b9\u4e0e\u6700\u53f3\u53f6\u8282\u70b9\uff08\u5373\u4ea4\u6362\u9996\u5143\u7d20\u4e0e\u5c3e\u5143\u7d20\uff09\nlet tmp = nums[0];\nnums[0] = nums[i];\nnums[i] = tmp;\n// \u4ee5\u6839\u8282\u70b9\u4e3a\u8d77\u70b9\uff0c\u4ece\u9876\u81f3\u5e95\u8fdb\u884c\u5806\u5316\nsift_down(nums, i, 0);\n}\n}\n
            "},{"location":"chapter_sorting/heap_sort/#1172","title":"11.7.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\log n)\\) \u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f \uff1a\u5efa\u5806\u64cd\u4f5c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\u3002\u4ece\u5806\u4e2d\u63d0\u53d6\u6700\u5927\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(\\log n)\\) \uff0c\u5171\u5faa\u73af \\(n - 1\\) \u8f6e\u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(1)\\) \u3001\u539f\u5730\u6392\u5e8f \uff1a\u51e0\u4e2a\u6307\u9488\u53d8\u91cf\u4f7f\u7528 \\(O(1)\\) \u7a7a\u95f4\u3002\u5143\u7d20\u4ea4\u6362\u548c\u5806\u5316\u64cd\u4f5c\u90fd\u662f\u5728\u539f\u6570\u7ec4\u4e0a\u8fdb\u884c\u7684\u3002
            • \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u4ea4\u6362\u5806\u9876\u5143\u7d20\u548c\u5806\u5e95\u5143\u7d20\u65f6\uff0c\u76f8\u7b49\u5143\u7d20\u7684\u76f8\u5bf9\u4f4d\u7f6e\u53ef\u80fd\u53d1\u751f\u53d8\u5316\u3002
            "},{"location":"chapter_sorting/insertion_sort/","title":"11.4 \u00a0 \u63d2\u5165\u6392\u5e8f","text":"

            \u300c\u63d2\u5165\u6392\u5e8f insertion sort\u300d\u662f\u4e00\u79cd\u7b80\u5355\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u5b83\u7684\u5de5\u4f5c\u539f\u7406\u4e0e\u624b\u52a8\u6574\u7406\u4e00\u526f\u724c\u7684\u8fc7\u7a0b\u975e\u5e38\u76f8\u4f3c\u3002

            \u5177\u4f53\u6765\u8bf4\uff0c\u6211\u4eec\u5728\u672a\u6392\u5e8f\u533a\u95f4\u9009\u62e9\u4e00\u4e2a\u57fa\u51c6\u5143\u7d20\uff0c\u5c06\u8be5\u5143\u7d20\u4e0e\u5176\u5de6\u4fa7\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u5143\u7d20\u9010\u4e00\u6bd4\u8f83\u5927\u5c0f\uff0c\u5e76\u5c06\u8be5\u5143\u7d20\u63d2\u5165\u5230\u6b63\u786e\u7684\u4f4d\u7f6e\u3002

            \u56de\u5fc6\u6570\u7ec4\u7684\u5143\u7d20\u63d2\u5165\u64cd\u4f5c\uff0c\u8bbe\u57fa\u51c6\u5143\u7d20\u4e3a base \uff0c\u6211\u4eec\u9700\u8981\u5c06\u4ece\u76ee\u6807\u7d22\u5f15\u5230 base \u4e4b\u95f4\u7684\u6240\u6709\u5143\u7d20\u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\uff0c\u7136\u540e\u518d\u5c06 base \u8d4b\u503c\u7ed9\u76ee\u6807\u7d22\u5f15\u3002

            \u56fe\uff1a\u5355\u6b21\u63d2\u5165\u64cd\u4f5c

            "},{"location":"chapter_sorting/insertion_sort/#1141","title":"11.4.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u63d2\u5165\u6392\u5e8f\u7684\u6574\u4f53\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6570\u7ec4\u7684\u7b2c 1 \u4e2a\u5143\u7d20\u5df2\u5b8c\u6210\u6392\u5e8f\u3002
            2. \u9009\u53d6\u6570\u7ec4\u7684\u7b2c 2 \u4e2a\u5143\u7d20\u4f5c\u4e3a base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6570\u7ec4\u7684\u524d 2 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
            3. \u9009\u53d6\u7b2c 3 \u4e2a\u5143\u7d20\u4f5c\u4e3a base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6570\u7ec4\u7684\u524d 3 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
            4. \u4ee5\u6b64\u7c7b\u63a8\uff0c\u5728\u6700\u540e\u4e00\u8f6e\u4e2d\uff0c\u9009\u53d6\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u4f5c\u4e3a base \uff0c\u5c06\u5176\u63d2\u5165\u5230\u6b63\u786e\u4f4d\u7f6e\u540e\uff0c\u6240\u6709\u5143\u7d20\u5747\u5df2\u6392\u5e8f\u3002

            \u56fe\uff1a\u63d2\u5165\u6392\u5e8f\u6d41\u7a0b

            JavaC++PythonGoJSTSCC#SwiftZigDartRust insertion_sort.java
            /* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (int i = 1; i < nums.length; i++) {\nint base = nums[i], j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = base;        // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.cpp
            /* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(vector<int> &nums) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (int i = 1; i < nums.size(); i++) {\nint base = nums[i], j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.py
            def insertion_sort(nums: list[int]):\n\"\"\"\u63d2\u5165\u6392\u5e8f\"\"\"\n# \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u533a\u95f4\u4e3a [0, i-1]\nfor i in range(1, len(nums)):\nbase = nums[i]\nj = i - 1\n# \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u533a\u95f4 [0, i-1] \u4e2d\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile j >= 0 and nums[j] > base:\nnums[j + 1] = nums[j]  # \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj -= 1\nnums[j + 1] = base  # \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n
            insertion_sort.go
            /* \u63d2\u5165\u6392\u5e8f */\nfunc insertionSort(nums []int) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [0, i]\nfor i := 1; i < len(nums); i++ {\nbase := nums[i]\nj := i - 1\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nfor j >= 0 && nums[j] > base {\nnums[j+1] = nums[j] // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--\n}\nnums[j+1] = base // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.js
            /* \u63d2\u5165\u6392\u5e8f */\nfunction insertionSort(nums) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (let i = 1; i < nums.length; i++) {\nlet base = nums[i],\nj = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.ts
            /* \u63d2\u5165\u6392\u5e8f */\nfunction insertionSort(nums: number[]): void {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (let i = 1; i < nums.length; i++) {\nconst base = nums[i];\nlet j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.c
            /* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(int nums[], int size) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (int i = 1; i < size; i++) {\nint base = nums[i], j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\n// \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nnums[j + 1] = nums[j];\nj--;\n}\n// \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\nnums[j + 1] = base;\n}\n}\n
            insertion_sort.cs
            /* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(int[] nums) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (int i = 1; i < nums.Length; i++) {\nint bas = nums[i], j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > bas) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = bas;         // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.swift
            /* \u63d2\u5165\u6392\u5e8f */\nfunc insertionSort(nums: inout [Int]) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor i in stride(from: 1, to: nums.count, by: 1) {\nlet base = nums[i]\nvar j = i - 1\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile j >= 0, nums[j] > base {\nnums[j + 1] = nums[j] // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj -= 1\n}\nnums[j + 1] = base // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.zig
            // \u63d2\u5165\u6392\u5e8f\nfn insertionSort(nums: []i32) void {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nvar i: usize = 1;\nwhile (i < nums.len) : (i += 1) {\nvar base = nums[i];\nvar j: usize = i;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 1 and nums[j - 1] > base) : (j -= 1) {\nnums[j] = nums[j - 1];  // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n}\nnums[j] = base;             // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.dart
            /* \u63d2\u5165\u6392\u5e8f */\nvoid insertionSort(List<int> nums) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor (int i = 1; i < nums.length; i++) {\nint base = nums[i], j = i - 1;\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile (j >= 0 && nums[j] > base) {\nnums[j + 1] = nums[j]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj--;\n}\nnums[j + 1] = base; // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            insertion_sort.rs
            /* \u63d2\u5165\u6392\u5e8f */\nfn insertion_sort(nums: &mut [i32]) {\n// \u5916\u5faa\u73af\uff1a\u5df2\u6392\u5e8f\u5143\u7d20\u6570\u91cf\u4e3a 1, 2, ..., n\nfor i in 1..nums.len() {\nlet (base, mut j) = (nums[i],  (i - 1) as i32);\n// \u5185\u5faa\u73af\uff1a\u5c06 base \u63d2\u5165\u5230\u5df2\u6392\u5e8f\u90e8\u5206\u7684\u6b63\u786e\u4f4d\u7f6e\nwhile j >= 0 && nums[j as usize] > base {\nnums[(j + 1) as usize] = nums[j as usize]; // \u5c06 nums[j] \u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\nj -= 1;\n}\nnums[(j + 1) as usize] = base;  // \u5c06 base \u8d4b\u503c\u5230\u6b63\u786e\u4f4d\u7f6e\n}\n}\n
            "},{"location":"chapter_sorting/insertion_sort/#1142","title":"11.4.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n^2)\\) \u3001\u81ea\u9002\u5e94\u6392\u5e8f \uff1a\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6bcf\u6b21\u63d2\u5165\u64cd\u4f5c\u5206\u522b\u9700\u8981\u5faa\u73af \\(n - 1\\) , \\(n-2\\) , \\(\\cdots\\) , \\(2\\) , \\(1\\) \u6b21\uff0c\u6c42\u548c\u5f97\u5230 \\(\\frac{(n - 1) n}{2}\\) \uff0c\u56e0\u6b64\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002\u5728\u9047\u5230\u6709\u5e8f\u6570\u636e\u65f6\uff0c\u63d2\u5165\u64cd\u4f5c\u4f1a\u63d0\u524d\u7ec8\u6b62\u3002\u5f53\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u6709\u5e8f\u65f6\uff0c\u63d2\u5165\u6392\u5e8f\u8fbe\u5230\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(1)\\) \u3001\u539f\u5730\u6392\u5e8f \uff1a\u6307\u9488 \\(i\\) , \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
            • \u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u63d2\u5165\u64cd\u4f5c\u8fc7\u7a0b\u4e2d\uff0c\u6211\u4eec\u4f1a\u5c06\u5143\u7d20\u63d2\u5165\u5230\u76f8\u7b49\u5143\u7d20\u7684\u53f3\u4fa7\uff0c\u4e0d\u4f1a\u6539\u53d8\u5b83\u4eec\u7684\u987a\u5e8f\u3002
            "},{"location":"chapter_sorting/insertion_sort/#1143","title":"11.4.3 \u00a0 \u63d2\u5165\u6392\u5e8f\u4f18\u52bf","text":"

            \u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u800c\u6211\u4eec\u5373\u5c06\u5b66\u4e60\u7684\u5feb\u901f\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u5c3d\u7ba1\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u76f8\u6bd4\u5feb\u901f\u6392\u5e8f\u66f4\u9ad8\uff0c\u4f46\u5728\u6570\u636e\u91cf\u8f83\u5c0f\u7684\u60c5\u51b5\u4e0b\uff0c\u63d2\u5165\u6392\u5e8f\u901a\u5e38\u66f4\u5feb\u3002

            \u8fd9\u4e2a\u7ed3\u8bba\u4e0e\u7ebf\u6027\u67e5\u627e\u548c\u4e8c\u5206\u67e5\u627e\u7684\u9002\u7528\u60c5\u51b5\u7684\u7ed3\u8bba\u7c7b\u4f3c\u3002\u5feb\u901f\u6392\u5e8f\u8fd9\u7c7b \\(O(n \\log n)\\) \u7684\u7b97\u6cd5\u5c5e\u4e8e\u57fa\u4e8e\u5206\u6cbb\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u5f80\u5f80\u5305\u542b\u66f4\u591a\u5355\u5143\u8ba1\u7b97\u64cd\u4f5c\u3002\u800c\u5728\u6570\u636e\u91cf\u8f83\u5c0f\u65f6\uff0c\\(n^2\\) \u548c \\(n \\log n\\) \u7684\u6570\u503c\u6bd4\u8f83\u63a5\u8fd1\uff0c\u590d\u6742\u5ea6\u4e0d\u5360\u4e3b\u5bfc\u4f5c\u7528\uff1b\u6bcf\u8f6e\u4e2d\u7684\u5355\u5143\u64cd\u4f5c\u6570\u91cf\u8d77\u5230\u51b3\u5b9a\u6027\u56e0\u7d20\u3002

            \u5b9e\u9645\u4e0a\uff0c\u8bb8\u591a\u7f16\u7a0b\u8bed\u8a00\uff08\u4f8b\u5982 Java\uff09\u7684\u5185\u7f6e\u6392\u5e8f\u51fd\u6570\u90fd\u91c7\u7528\u4e86\u63d2\u5165\u6392\u5e8f\uff0c\u5927\u81f4\u601d\u8def\u4e3a\uff1a\u5bf9\u4e8e\u957f\u6570\u7ec4\uff0c\u91c7\u7528\u57fa\u4e8e\u5206\u6cbb\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u4f8b\u5982\u5feb\u901f\u6392\u5e8f\uff1b\u5bf9\u4e8e\u77ed\u6570\u7ec4\uff0c\u76f4\u63a5\u4f7f\u7528\u63d2\u5165\u6392\u5e8f\u3002

            \u867d\u7136\u5192\u6ce1\u6392\u5e8f\u3001\u9009\u62e9\u6392\u5e8f\u548c\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n^2)\\) \uff0c\u4f46\u5728\u5b9e\u9645\u60c5\u51b5\u4e2d\uff0c\u63d2\u5165\u6392\u5e8f\u7684\u4f7f\u7528\u9891\u7387\u663e\u8457\u9ad8\u4e8e\u5192\u6ce1\u6392\u5e8f\u548c\u9009\u62e9\u6392\u5e8f\u3002\u8fd9\u662f\u56e0\u4e3a\uff1a

            • \u5192\u6ce1\u6392\u5e8f\u57fa\u4e8e\u5143\u7d20\u4ea4\u6362\u5b9e\u73b0\uff0c\u9700\u8981\u501f\u52a9\u4e00\u4e2a\u4e34\u65f6\u53d8\u91cf\uff0c\u5171\u6d89\u53ca 3 \u4e2a\u5355\u5143\u64cd\u4f5c\uff1b\u63d2\u5165\u6392\u5e8f\u57fa\u4e8e\u5143\u7d20\u8d4b\u503c\u5b9e\u73b0\uff0c\u4ec5\u9700 1 \u4e2a\u5355\u5143\u64cd\u4f5c\u3002\u56e0\u6b64\uff0c\u5192\u6ce1\u6392\u5e8f\u7684\u8ba1\u7b97\u5f00\u9500\u901a\u5e38\u6bd4\u63d2\u5165\u6392\u5e8f\u66f4\u9ad8\u3002
            • \u9009\u62e9\u6392\u5e8f\u5728\u4efb\u4f55\u60c5\u51b5\u4e0b\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(n^2)\\) \u3002\u5982\u679c\u7ed9\u5b9a\u4e00\u7ec4\u90e8\u5206\u6709\u5e8f\u7684\u6570\u636e\uff0c\u63d2\u5165\u6392\u5e8f\u901a\u5e38\u6bd4\u9009\u62e9\u6392\u5e8f\u6548\u7387\u66f4\u9ad8\u3002
            • \u9009\u62e9\u6392\u5e8f\u4e0d\u7a33\u5b9a\uff0c\u65e0\u6cd5\u5e94\u7528\u4e8e\u591a\u7ea7\u6392\u5e8f\u3002
            "},{"location":"chapter_sorting/merge_sort/","title":"11.6 \u00a0 \u5f52\u5e76\u6392\u5e8f","text":"

            \u300c\u5f52\u5e76\u6392\u5e8f merge sort\u300d\u57fa\u4e8e\u5206\u6cbb\u601d\u60f3\u5b9e\u73b0\u6392\u5e8f\uff0c\u5305\u542b\u201c\u5212\u5206\u201d\u548c\u201c\u5408\u5e76\u201d\u4e24\u4e2a\u9636\u6bb5\uff1a

            1. \u5212\u5206\u9636\u6bb5\uff1a\u901a\u8fc7\u9012\u5f52\u4e0d\u65ad\u5730\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5904\u5206\u5f00\uff0c\u5c06\u957f\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u8f6c\u6362\u4e3a\u77ed\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u3002
            2. \u5408\u5e76\u9636\u6bb5\uff1a\u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u5212\u5206\uff0c\u5f00\u59cb\u5408\u5e76\uff0c\u6301\u7eed\u5730\u5c06\u5de6\u53f3\u4e24\u4e2a\u8f83\u77ed\u7684\u6709\u5e8f\u6570\u7ec4\u5408\u5e76\u4e3a\u4e00\u4e2a\u8f83\u957f\u7684\u6709\u5e8f\u6570\u7ec4\uff0c\u76f4\u81f3\u7ed3\u675f\u3002

            \u56fe\uff1a\u5f52\u5e76\u6392\u5e8f\u7684\u5212\u5206\u4e0e\u5408\u5e76\u9636\u6bb5

            "},{"location":"chapter_sorting/merge_sort/#1161","title":"11.6.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u201c\u5212\u5206\u9636\u6bb5\u201d\u4ece\u9876\u81f3\u5e95\u9012\u5f52\u5730\u5c06\u6570\u7ec4\u4ece\u4e2d\u70b9\u5207\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\uff1a

            1. \u8ba1\u7b97\u6570\u7ec4\u4e2d\u70b9 mid \uff0c\u9012\u5f52\u5212\u5206\u5de6\u5b50\u6570\u7ec4\uff08\u533a\u95f4 [left, mid] \uff09\u548c\u53f3\u5b50\u6570\u7ec4\uff08\u533a\u95f4 [mid + 1, right] \uff09\u3002
            2. \u9012\u5f52\u6267\u884c\u6b65\u9aa4 1. \uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u533a\u95f4\u957f\u5ea6\u4e3a 1 \u65f6\uff0c\u7ec8\u6b62\u9012\u5f52\u5212\u5206\u3002

            \u201c\u5408\u5e76\u9636\u6bb5\u201d\u4ece\u5e95\u81f3\u9876\u5730\u5c06\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u5408\u5e76\u4e3a\u4e00\u4e2a\u6709\u5e8f\u6570\u7ec4\u3002\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4ece\u957f\u5ea6\u4e3a 1 \u7684\u5b50\u6570\u7ec4\u5f00\u59cb\u5408\u5e76\uff0c\u5408\u5e76\u9636\u6bb5\u4e2d\u7684\u6bcf\u4e2a\u5b50\u6570\u7ec4\u90fd\u662f\u6709\u5e8f\u7684\u3002

            <1><2><3><4><5><6><7><8><9><10>

            \u56fe\uff1a\u5f52\u5e76\u6392\u5e8f\u6b65\u9aa4

            \u89c2\u5bdf\u53d1\u73b0\uff0c\u5f52\u5e76\u6392\u5e8f\u7684\u9012\u5f52\u987a\u5e8f\u4e0e\u4e8c\u53c9\u6811\u7684\u540e\u5e8f\u904d\u5386\u76f8\u540c\uff0c\u5177\u4f53\u6765\u770b\uff1a

            • \u540e\u5e8f\u904d\u5386\uff1a\u5148\u9012\u5f52\u5de6\u5b50\u6811\uff0c\u518d\u9012\u5f52\u53f3\u5b50\u6811\uff0c\u6700\u540e\u5904\u7406\u6839\u8282\u70b9\u3002
            • \u5f52\u5e76\u6392\u5e8f\uff1a\u5148\u9012\u5f52\u5de6\u5b50\u6570\u7ec4\uff0c\u518d\u9012\u5f52\u53f3\u5b50\u6570\u7ec4\uff0c\u6700\u540e\u5904\u7406\u5408\u5e76\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust merge_sort.java
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nvoid merge(int[] nums, int left, int mid, int right) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nint[] tmp = Arrays.copyOfRange(nums, left, right + 1);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint leftStart = left - left, leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint rightStart = mid + 1 - left, rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nint i = leftStart, j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (int k = left; k <= right; k++) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd)\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if (j > rightEnd || tmp[i] <= tmp[j])\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse\nnums[k] = tmp[j++];\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(int[] nums, int left, int right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right)\nreturn;                      // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nint mid = (left + right) / 2;    // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid);      // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.cpp
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nvoid merge(vector<int> &nums, int left, int mid, int right) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nvector<int> tmp(nums.begin() + left, nums.begin() + right + 1);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint leftStart = left - left, leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint rightStart = mid + 1 - left, rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nint i = leftStart, j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (int k = left; k <= right; k++) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd)\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if (j > rightEnd || tmp[i] <= tmp[j])\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse\nnums[k] = tmp[j++];\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(vector<int> &nums, int left, int right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right)\nreturn; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nint mid = (left + right) / 2;    // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid);      // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.py
            def merge(nums: list[int], left: int, mid: int, right: int):\n\"\"\"\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\"\"\"\n# \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n# \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\n# \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\ntmp = list(nums[left : right + 1])\n# \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nleft_start = 0\nleft_end = mid - left\n# \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nright_start = mid + 1 - left\nright_end = right - left\n# i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\ni = left_start\nj = right_start\n# \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor k in range(left, right + 1):\n# \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif i > left_end:\nnums[k] = tmp[j]\nj += 1\n# \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelif j > right_end or tmp[i] <= tmp[j]:\nnums[k] = tmp[i]\ni += 1\n# \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse:\nnums[k] = tmp[j]\nj += 1\ndef merge_sort(nums: list[int], left: int, right: int):\n\"\"\"\u5f52\u5e76\u6392\u5e8f\"\"\"\n# \u7ec8\u6b62\u6761\u4ef6\nif left >= right:\nreturn  # \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n# \u5212\u5206\u9636\u6bb5\nmid = (left + right) // 2  # \u8ba1\u7b97\u4e2d\u70b9\nmerge_sort(nums, left, mid)  # \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmerge_sort(nums, mid + 1, right)  # \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n# \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right)\n
            merge_sort.go
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfunc merge(nums []int, left, mid, right int) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4 \u501f\u52a9 copy \u6a21\u5757\ntmp := make([]int, right-left+1)\nfor i := left; i <= right; i++ {\ntmp[i-left] = nums[i]\n}\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nleftStart, leftEnd := left-left, mid-left\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nrightStart, rightEnd := mid+1-left, right-left\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\ni, j := leftStart, rightStart\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor k := left; k <= right; k++ {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif i > leftEnd {\nnums[k] = tmp[j]\nj++\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\n} else if j > rightEnd || tmp[i] <= tmp[j] {\nnums[k] = tmp[i]\ni++\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\n} else {\nnums[k] = tmp[j]\nj++\n}\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nfunc mergeSort(nums []int, left, right int) {\n// \u7ec8\u6b62\u6761\u4ef6\nif left >= right {\nreturn\n}\n// \u5212\u5206\u9636\u6bb5\nmid := (left + right) / 2\nmergeSort(nums, left, mid)\nmergeSort(nums, mid+1, right)\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right)\n}\n
            merge_sort.js
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfunction merge(nums, left, mid, right) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nlet tmp = nums.slice(left, right + 1);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet leftStart = left - left,\nleftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet rightStart = mid + 1 - left,\nrightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nlet i = leftStart,\nj = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (let k = left; k <= right; k++) {\nif (i > leftEnd) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nnums[k] = tmp[j++];\n} else if (j > rightEnd || tmp[i] <= tmp[j]) {\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nnums[k] = tmp[i++];\n} else {\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nnums[k] = tmp[j++];\n}\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nfunction mergeSort(nums, left, right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nlet mid = Math.floor((left + right) / 2); // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.ts
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfunction merge(nums: number[], left: number, mid: number, right: number): void {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nlet tmp = nums.slice(left, right + 1);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet leftStart = left - left,\nleftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet rightStart = mid + 1 - left,\nrightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nlet i = leftStart,\nj = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (let k = left; k <= right; k++) {\nif (i > leftEnd) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\n} else if (j > rightEnd || tmp[i] <= tmp[j]) {\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\n} else {\nnums[k] = tmp[j++];\n}\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nfunction mergeSort(nums: number[], left: number, right: number): void {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nlet mid = Math.floor((left + right) / 2); // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.c
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nvoid merge(int *nums, int left, int mid, int right) {\nint index;\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nint tmp[right + 1 - left];\nfor (index = left; index < right + 1; index++) {\ntmp[index - left] = nums[index];\n}\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint leftStart = left - left, leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint rightStart = mid + 1 - left, rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nint i = leftStart, j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (int k = left; k <= right; k++) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd)\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if (j > rightEnd || tmp[i] <= tmp[j])\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse\nnums[k] = tmp[j++];\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(int *nums, int left, int right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right)\nreturn; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nint mid = (left + right) / 2;    // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid);      // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.cs
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nvoid merge(int[] nums, int left, int mid, int right) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nint[] tmp = nums[left..(right + 1)];\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15  \nint leftStart = left - left, leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15       \nint rightStart = mid + 1 - left, rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nint i = leftStart, j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (int k = left; k <= right; k++) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd)\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if (j > rightEnd || tmp[i] <= tmp[j])\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse\nnums[k] = tmp[j++];\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(int[] nums, int left, int right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right) return;       // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nint mid = (left + right) / 2;    // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid);      // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.swift
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfunc merge(nums: inout [Int], left: Int, mid: Int, right: Int) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nlet tmp = Array(nums[left ..< (right + 1)])\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet leftStart = left - left\nlet leftEnd = mid - left\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet rightStart = mid + 1 - left\nlet rightEnd = right - left\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nvar i = leftStart\nvar j = rightStart\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor k in left ... right {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif i > leftEnd {\nnums[k] = tmp[j]\nj += 1\n}\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if j > rightEnd || tmp[i] <= tmp[j] {\nnums[k] = tmp[i]\ni += 1\n}\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse {\nnums[k] = tmp[j]\nj += 1\n}\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nfunc mergeSort(nums: inout [Int], left: Int, right: Int) {\n// \u7ec8\u6b62\u6761\u4ef6\nif left >= right { // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nreturn\n}\n// \u5212\u5206\u9636\u6bb5\nlet mid = (left + right) / 2 // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums: &nums, left: left, right: mid) // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums: &nums, left: mid + 1, right: right) // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums: &nums, left: left, mid: mid, right: right)\n}\n
            merge_sort.zig
            // \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfn merge(nums: []i32, left: usize, mid: usize, right: usize) !void {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nvar mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);\ndefer mem_arena.deinit();\nconst mem_allocator = mem_arena.allocator();\nvar tmp = try mem_allocator.alloc(i32, right + 1 - left);\nstd.mem.copy(i32, tmp, nums[left..right+1]);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15  \nvar leftStart = left - left;\nvar leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15       \nvar rightStart = mid + 1 - left;\nvar rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nvar i = leftStart;\nvar j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nvar k = left;\nwhile (k <= right) : (k += 1) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd) {\nnums[k] = tmp[j];\nj += 1;\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\n} else if  (j > rightEnd or tmp[i] <= tmp[j]) {\nnums[k] = tmp[i];\ni += 1;\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\n} else {\nnums[k] = tmp[j];\nj += 1;\n}\n}\n}\n// \u5f52\u5e76\u6392\u5e8f\nfn mergeSort(nums: []i32, left: usize, right: usize) !void {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right) return;              // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nvar mid = (left + right) / 2;           // \u8ba1\u7b97\u4e2d\u70b9\ntry mergeSort(nums, left, mid);         // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\ntry mergeSort(nums, mid + 1, right);    // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\ntry merge(nums, left, mid, right);\n}\n
            merge_sort.dart
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nvoid merge(List<int> nums, int left, int mid, int right) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nList<int> tmp = nums.sublist(left, right + 1);\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint leftStart = left - left, leftEnd = mid - left;\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nint rightStart = mid + 1 - left, rightEnd = right - left;\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nint i = leftStart, j = rightStart;\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor (int k = left; k <= right; k++) {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif (i > leftEnd)\nnums[k] = tmp[j++];\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if (j > rightEnd || tmp[i] <= tmp[j])\nnums[k] = tmp[i++];\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse\nnums[k] = tmp[j++];\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nvoid mergeSort(List<int> nums, int left, int right) {\n// \u7ec8\u6b62\u6761\u4ef6\nif (left >= right) return; // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nint mid = (left + right) ~/ 2; // \u8ba1\u7b97\u4e2d\u70b9\nmergeSort(nums, left, mid); // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmergeSort(nums, mid + 1, right); // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n
            merge_sort.rs
            /* \u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4 */\n// \u5de6\u5b50\u6570\u7ec4\u533a\u95f4 [left, mid]\n// \u53f3\u5b50\u6570\u7ec4\u533a\u95f4 [mid + 1, right]\nfn merge(nums: &mut [i32], left: usize, mid: usize, right: usize) {\n// \u521d\u59cb\u5316\u8f85\u52a9\u6570\u7ec4\nlet tmp: Vec<i32> = nums[left..right + 1].to_vec();\n// \u5de6\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet (left_start, left_end) = (left - left, mid - left);\n// \u53f3\u5b50\u6570\u7ec4\u7684\u8d77\u59cb\u7d22\u5f15\u548c\u7ed3\u675f\u7d22\u5f15\nlet (right_start, right_end) = (mid + 1 - left, right-left);\n// i, j \u5206\u522b\u6307\u5411\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\u7684\u9996\u5143\u7d20\nlet (mut l_corrent, mut r_corrent) = (left_start, right_start);\n// \u901a\u8fc7\u8986\u76d6\u539f\u6570\u7ec4 nums \u6765\u5408\u5e76\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\nfor k in left..right + 1 {\n// \u82e5\u201c\u5de6\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nif l_corrent > left_end {\nnums[k] = tmp[r_corrent];\nr_corrent += 1;\n}\n// \u5426\u5219\uff0c\u82e5\u201c\u53f3\u5b50\u6570\u7ec4\u5df2\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u6216\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 <= \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u5de6\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 i++\nelse if r_corrent > right_end || tmp[l_corrent] <= tmp[r_corrent] {\nnums[k] = tmp[l_corrent];\nl_corrent += 1;\n}\n// \u5426\u5219\uff0c\u82e5\u201c\u5de6\u53f3\u5b50\u6570\u7ec4\u90fd\u672a\u5168\u90e8\u5408\u5e76\u5b8c\u201d\u4e14\u201c\u5de6\u5b50\u6570\u7ec4\u5143\u7d20 > \u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u201d\uff0c\u5219\u9009\u53d6\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\uff0c\u5e76\u4e14 j++\nelse {\nnums[k] = tmp[r_corrent];\nr_corrent += 1;\n}\n}\n}\n/* \u5f52\u5e76\u6392\u5e8f */\nfn merge_sort(left: usize, right: usize, nums: &mut [i32]) {\n// \u7ec8\u6b62\u6761\u4ef6\nif left >= right { return; }       // \u5f53\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\n// \u5212\u5206\u9636\u6bb5\nlet mid = (left + right) / 2;     // \u8ba1\u7b97\u4e2d\u70b9\nmerge_sort(left, mid, nums);      // \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\nmerge_sort(mid + 1, right, nums);  // \u9012\u5f52\u53f3\u5b50\u6570\u7ec4\n// \u5408\u5e76\u9636\u6bb5\nmerge(nums, left, mid, right);\n}\n

            \u5408\u5e76\u65b9\u6cd5 merge() \u4ee3\u7801\u4e2d\u7684\u96be\u70b9\u5305\u62ec\uff1a

            • \u5728\u9605\u8bfb\u4ee3\u7801\u65f6\uff0c\u9700\u8981\u7279\u522b\u6ce8\u610f\u5404\u4e2a\u53d8\u91cf\u7684\u542b\u4e49\u3002nums \u7684\u5f85\u5408\u5e76\u533a\u95f4\u4e3a [left, right] \uff0c\u4f46\u7531\u4e8e tmp \u4ec5\u590d\u5236\u4e86 nums \u8be5\u533a\u95f4\u7684\u5143\u7d20\uff0c\u56e0\u6b64 tmp \u5bf9\u5e94\u533a\u95f4\u4e3a [0, right - left] \u3002
            • \u5728\u6bd4\u8f83 tmp[i] \u548c tmp[j] \u7684\u5927\u5c0f\u65f6\uff0c\u8fd8\u9700\u8003\u8651\u5b50\u6570\u7ec4\u904d\u5386\u5b8c\u6210\u540e\u7684\u7d22\u5f15\u8d8a\u754c\u95ee\u9898\uff0c\u5373 i > leftEnd \u548c j > rightEnd \u7684\u60c5\u51b5\u3002\u7d22\u5f15\u8d8a\u754c\u7684\u4f18\u5148\u7ea7\u662f\u6700\u9ad8\u7684\uff0c\u5982\u679c\u5de6\u5b50\u6570\u7ec4\u5df2\u7ecf\u88ab\u5408\u5e76\u5b8c\u4e86\uff0c\u90a3\u4e48\u4e0d\u9700\u8981\u7ee7\u7eed\u6bd4\u8f83\uff0c\u76f4\u63a5\u5408\u5e76\u53f3\u5b50\u6570\u7ec4\u5143\u7d20\u5373\u53ef\u3002
            "},{"location":"chapter_sorting/merge_sort/#1162","title":"11.6.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\log n)\\) \u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f \uff1a\u5212\u5206\u4ea7\u751f\u9ad8\u5ea6\u4e3a \\(\\log n\\) \u7684\u9012\u5f52\u6811\uff0c\u6bcf\u5c42\u5408\u5e76\u7684\u603b\u64cd\u4f5c\u6570\u91cf\u4e3a \\(n\\) \uff0c\u56e0\u6b64\u603b\u4f53\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3001\u975e\u539f\u5730\u6392\u5e8f \uff1a\u9012\u5f52\u6df1\u5ea6\u4e3a \\(\\log n\\) \uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\u3002\u5408\u5e76\u64cd\u4f5c\u9700\u8981\u501f\u52a9\u8f85\u52a9\u6570\u7ec4\u5b9e\u73b0\uff0c\u4f7f\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
            • \u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u5408\u5e76\u8fc7\u7a0b\u4e2d\uff0c\u76f8\u7b49\u5143\u7d20\u7684\u6b21\u5e8f\u4fdd\u6301\u4e0d\u53d8\u3002
            "},{"location":"chapter_sorting/merge_sort/#1163","title":"11.6.3 \u00a0 \u94fe\u8868\u6392\u5e8f *","text":"

            \u5f52\u5e76\u6392\u5e8f\u5728\u6392\u5e8f\u94fe\u8868\u65f6\u5177\u6709\u663e\u8457\u4f18\u52bf\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(1)\\) \uff0c\u539f\u56e0\u5982\u4e0b\uff1a

            • \u7531\u4e8e\u94fe\u8868\u4ec5\u9700\u6539\u53d8\u6307\u9488\u5c31\u53ef\u5b9e\u73b0\u8282\u70b9\u7684\u589e\u5220\u64cd\u4f5c\uff0c\u56e0\u6b64\u5408\u5e76\u9636\u6bb5\uff08\u5c06\u4e24\u4e2a\u77ed\u6709\u5e8f\u94fe\u8868\u5408\u5e76\u4e3a\u4e00\u4e2a\u957f\u6709\u5e8f\u94fe\u8868\uff09\u65e0\u987b\u521b\u5efa\u8f85\u52a9\u94fe\u8868\u3002
            • \u901a\u8fc7\u4f7f\u7528\u201c\u8fed\u4ee3\u5212\u5206\u201d\u66ff\u4ee3\u201c\u9012\u5f52\u5212\u5206\u201d\uff0c\u53ef\u7701\u53bb\u9012\u5f52\u4f7f\u7528\u7684\u6808\u5e27\u7a7a\u95f4\u3002

            \u5177\u4f53\u5b9e\u73b0\u7ec6\u8282\u6bd4\u8f83\u590d\u6742\uff0c\u6709\u5174\u8da3\u7684\u540c\u5b66\u53ef\u4ee5\u67e5\u9605\u76f8\u5173\u8d44\u6599\u8fdb\u884c\u5b66\u4e60\u3002

            "},{"location":"chapter_sorting/quick_sort/","title":"11.5 \u00a0 \u5feb\u901f\u6392\u5e8f","text":"

            \u300c\u5feb\u901f\u6392\u5e8f quick sort\u300d\u662f\u4e00\u79cd\u57fa\u4e8e\u5206\u6cbb\u601d\u60f3\u7684\u6392\u5e8f\u7b97\u6cd5\uff0c\u8fd0\u884c\u9ad8\u6548\uff0c\u5e94\u7528\u5e7f\u6cdb\u3002

            \u5feb\u901f\u6392\u5e8f\u7684\u6838\u5fc3\u64cd\u4f5c\u662f\u201c\u54e8\u5175\u5212\u5206\u201d\uff0c\u5176\u76ee\u6807\u662f\uff1a\u9009\u62e9\u6570\u7ec4\u4e2d\u7684\u67d0\u4e2a\u5143\u7d20\u4f5c\u4e3a\u201c\u57fa\u51c6\u6570\u201d\uff0c\u5c06\u6240\u6709\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\u79fb\u5230\u5176\u5de6\u4fa7\uff0c\u800c\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\u79fb\u5230\u5176\u53f3\u4fa7\u3002\u5177\u4f53\u6765\u8bf4\uff0c\u54e8\u5175\u5212\u5206\u7684\u6d41\u7a0b\u4e3a\uff1a

            1. \u9009\u53d6\u6570\u7ec4\u6700\u5de6\u7aef\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\uff0c\u521d\u59cb\u5316\u4e24\u4e2a\u6307\u9488 i \u548c j \u5206\u522b\u6307\u5411\u6570\u7ec4\u7684\u4e24\u7aef\u3002
            2. \u8bbe\u7f6e\u4e00\u4e2a\u5faa\u73af\uff0c\u5728\u6bcf\u8f6e\u4e2d\u4f7f\u7528 i\uff08j\uff09\u5206\u522b\u5bfb\u627e\u7b2c\u4e00\u4e2a\u6bd4\u57fa\u51c6\u6570\u5927\uff08\u5c0f\uff09\u7684\u5143\u7d20\uff0c\u7136\u540e\u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\u3002
            3. \u5faa\u73af\u6267\u884c\u6b65\u9aa4 2. \uff0c\u76f4\u5230 i \u548c j \u76f8\u9047\u65f6\u505c\u6b62\uff0c\u6700\u540e\u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u4e2a\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\u3002

            \u54e8\u5175\u5212\u5206\u5b8c\u6210\u540e\uff0c\u539f\u6570\u7ec4\u88ab\u5212\u5206\u6210\u4e09\u90e8\u5206\uff1a\u5de6\u5b50\u6570\u7ec4\u3001\u57fa\u51c6\u6570\u3001\u53f3\u5b50\u6570\u7ec4\uff0c\u4e14\u6ee1\u8db3\u201c\u5de6\u5b50\u6570\u7ec4\u4efb\u610f\u5143\u7d20 \\(\\leq\\) \u57fa\u51c6\u6570 \\(\\leq\\) \u53f3\u5b50\u6570\u7ec4\u4efb\u610f\u5143\u7d20\u201d\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u63a5\u4e0b\u6765\u53ea\u9700\u5bf9\u8fd9\u4e24\u4e2a\u5b50\u6570\u7ec4\u8fdb\u884c\u6392\u5e8f\u3002

            <1><2><3><4><5><6><7><8><9>

            \u56fe\uff1a\u54e8\u5175\u5212\u5206\u6b65\u9aa4

            \u5feb\u901f\u6392\u5e8f\u7684\u5206\u6cbb\u601d\u60f3

            \u54e8\u5175\u5212\u5206\u7684\u5b9e\u8d28\u662f\u5c06\u4e00\u4e2a\u8f83\u957f\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u7b80\u5316\u4e3a\u4e24\u4e2a\u8f83\u77ed\u6570\u7ec4\u7684\u6392\u5e8f\u95ee\u9898\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust quick_sort.java
            /* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(int[] nums, int i, int j) {\nint tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\nint partition(int[] nums, int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--;          // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;             // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.cpp
            /* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(vector<int> &nums, int i, int j) {\nint tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\nint partition(vector<int> &nums, int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;            // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.py
            def partition(self, nums: list[int], left: int, right: int) -> int:\n\"\"\"\u54e8\u5175\u5212\u5206\"\"\"\n# \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\ni, j = left, right\nwhile i < j:\nwhile i < j and nums[j] >= nums[left]:\nj -= 1  # \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile i < j and nums[i] <= nums[left]:\ni += 1  # \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n# \u5143\u7d20\u4ea4\u6362\nnums[i], nums[j] = nums[j], nums[i]\n# \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nnums[i], nums[left] = nums[left], nums[i]\nreturn i  # \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n
            quick_sort.go
            /* \u54e8\u5175\u5212\u5206 */\nfunc (q *quickSort) partition(nums []int, left, right int) int {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\ni, j := left, right\nfor i < j {\nfor i < j && nums[j] >= nums[left] {\nj-- // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nfor i < j && nums[i] <= nums[left] {\ni++ // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\n// \u5143\u7d20\u4ea4\u6362\nnums[i], nums[j] = nums[j], nums[i]\n}\n// \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nnums[i], nums[left] = nums[left], nums[i]\nreturn i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.js
            /* \u5143\u7d20\u4ea4\u6362 */\nswap(nums, i, j) {\nlet tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\npartition(nums, left, right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet i = left,\nj = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) {\nj -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile (i < j && nums[i] <= nums[left]) {\ni += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\n// \u5143\u7d20\u4ea4\u6362\nthis.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nthis.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.ts
            /* \u5143\u7d20\u4ea4\u6362 */\nswap(nums: number[], i: number, j: number): void {\nlet tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\npartition(nums: number[], left: number, right: number): number {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet i = left,\nj = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) {\nj -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile (i < j && nums[i] <= nums[left]) {\ni += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\n// \u5143\u7d20\u4ea4\u6362\nthis.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nthis.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.c
            /* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(int nums[], int i, int j) {\nint tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u5feb\u901f\u6392\u5e8f\u7c7b */\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u54e8\u5175\u5212\u5206\nint partition(int nums[], int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) {\n// \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nj--;\n}\nwhile (i < j && nums[i] <= nums[left]) {\n// \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\ni++;\n}\n// \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\nswap(nums, i, j);\n}\n// \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nswap(nums, i, left);\n// \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\nreturn i;\n}\n
            quick_sort.cs
            /* \u5143\u7d20\u4ea4\u6362 */\nvoid swap(int[] nums, int i, int j) {\nint tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\nint partition(int[] nums, int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--;          // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;             // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.swift
            /* \u5143\u7d20\u4ea4\u6362 */\nfunc swap(nums: inout [Int], i: Int, j: Int) {\nlet tmp = nums[i]\nnums[i] = nums[j]\nnums[j] = tmp\n}\n/* \u54e8\u5175\u5212\u5206 */\nfunc partition(nums: inout [Int], left: Int, right: Int) -> Int {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nvar i = left\nvar j = right\nwhile i < j {\nwhile i < j, nums[j] >= nums[left] {\nj -= 1 // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile i < j, nums[i] <= nums[left] {\ni += 1 // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nswap(nums: &nums, i: i, j: j) // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums: &nums, i: i, j: left) // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.zig
            // \u5143\u7d20\u4ea4\u6362\nfn swap(nums: []i32, i: usize, j: usize) void {\nvar tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n// \u54e8\u5175\u5212\u5206\nfn partition(nums: []i32, left: usize, right: usize) usize {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nvar i = left;\nvar j = right;\nwhile (i < j) {\nwhile (i < j and nums[j] >= nums[left]) j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j and nums[i] <= nums[left]) i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j);   // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);    // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;               // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.dart
            /* \u5143\u7d20\u4ea4\u6362 */\nvoid _swap(List<int> nums, int i, int j) {\nint tmp = nums[i];\nnums[i] = nums[j];\nnums[j] = tmp;\n}\n/* \u54e8\u5175\u5212\u5206 */\nint _partition(List<int> nums, int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n_swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\n_swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.rs
            /* \u54e8\u5175\u5212\u5206 */\nfn partition(nums: &mut [i32], left: usize, right: usize) -> usize {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet (mut i, mut j) = (left, right);\nwhile i < j {\nwhile i < j && nums[j] >= nums[left] {\nj -= 1;      // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile i < j && nums[i] <= nums[left] {\ni += 1;      // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nnums.swap(i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nnums.swap(i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\ni                    // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            "},{"location":"chapter_sorting/quick_sort/#1151","title":"11.5.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"
            1. \u9996\u5148\uff0c\u5bf9\u539f\u6570\u7ec4\u6267\u884c\u4e00\u6b21\u201c\u54e8\u5175\u5212\u5206\u201d\uff0c\u5f97\u5230\u672a\u6392\u5e8f\u7684\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u3002
            2. \u7136\u540e\uff0c\u5bf9\u5de6\u5b50\u6570\u7ec4\u548c\u53f3\u5b50\u6570\u7ec4\u5206\u522b\u9012\u5f52\u6267\u884c\u201c\u54e8\u5175\u5212\u5206\u201d\u3002
            3. \u6301\u7eed\u9012\u5f52\uff0c\u76f4\u81f3\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\uff0c\u4ece\u800c\u5b8c\u6210\u6574\u4e2a\u6570\u7ec4\u7684\u6392\u5e8f\u3002

            \u56fe\uff1a\u5feb\u901f\u6392\u5e8f\u6d41\u7a0b

            JavaC++PythonGoJSTSCC#SwiftZigDartRust quick_sort.java
            /* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(int[] nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right)\nreturn;\n// \u54e8\u5175\u5212\u5206\nint pivot = partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.cpp
            /* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(vector<int> &nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right)\nreturn;\n// \u54e8\u5175\u5212\u5206\nint pivot = partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.py
            def quick_sort(self, nums: list[int], left: int, right: int):\n\"\"\"\u5feb\u901f\u6392\u5e8f\"\"\"\n# \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif left >= right:\nreturn\n# \u54e8\u5175\u5212\u5206\npivot = self.partition(nums, left, right)\n# \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nself.quick_sort(nums, left, pivot - 1)\nself.quick_sort(nums, pivot + 1, right)\n
            quick_sort.go
            /* \u5feb\u901f\u6392\u5e8f */\nfunc (q *quickSort) quickSort(nums []int, left, right int) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif left >= right {\nreturn\n}\n// \u54e8\u5175\u5212\u5206\npivot := q.partition(nums, left, right)\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nq.quickSort(nums, left, pivot-1)\nq.quickSort(nums, pivot+1, right)\n}\n
            quick_sort.js
            /* \u5feb\u901f\u6392\u5e8f */\nquickSort(nums, left, right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right) return;\n// \u54e8\u5175\u5212\u5206\nconst pivot = this.partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nthis.quickSort(nums, left, pivot - 1);\nthis.quickSort(nums, pivot + 1, right);\n}\n
            quick_sort.ts
            /* \u5feb\u901f\u6392\u5e8f */\nquickSort(nums: number[], left: number, right: number): void {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right) {\nreturn;\n}\n// \u54e8\u5175\u5212\u5206\nconst pivot = this.partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nthis.quickSort(nums, left, pivot - 1);\nthis.quickSort(nums, pivot + 1, right);\n}\n
            quick_sort.c
            /* \u5feb\u901f\u6392\u5e8f\u7c7b */\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u54e8\u5175\u5212\u5206\nint partition(int nums[], int left, int right) {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) {\n// \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nj--;\n}\nwhile (i < j && nums[i] <= nums[left]) {\n// \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\ni++;\n}\n// \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\nswap(nums, i, j);\n}\n// \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nswap(nums, i, left);\n// \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\nreturn i;\n}\n// \u5feb\u901f\u6392\u5e8f\u7c7b-\u5feb\u901f\u6392\u5e8f\nvoid quickSort(int nums[], int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right) {\nreturn;\n}\n// \u54e8\u5175\u5212\u5206\nint pivot = partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.cs
            /* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(int[] nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right)\nreturn;\n// \u54e8\u5175\u5212\u5206\nint pivot = partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.swift
            /* \u5feb\u901f\u6392\u5e8f */\nfunc quickSort(nums: inout [Int], left: Int, right: Int) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif left >= right {\nreturn\n}\n// \u54e8\u5175\u5212\u5206\nlet pivot = partition(nums: &nums, left: left, right: right)\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums: &nums, left: left, right: pivot - 1)\nquickSort(nums: &nums, left: pivot + 1, right: right)\n}\n
            quick_sort.zig
            // \u5feb\u901f\u6392\u5e8f\nfn quickSort(nums: []i32, left: usize, right: usize) void {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right) return;\n// \u54e8\u5175\u5212\u5206\nvar pivot = partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.dart
            /* \u5feb\u901f\u6392\u5e8f */\nvoid quickSort(List<int> nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif (left >= right) return;\n// \u54e8\u5175\u5212\u5206\nint pivot = _partition(nums, left, right);\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nquickSort(nums, left, pivot - 1);\nquickSort(nums, pivot + 1, right);\n}\n
            quick_sort.rs
            /* \u5feb\u901f\u6392\u5e8f */\npub fn quick_sort(left: i32, right: i32, nums: &mut [i32]) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nif left >= right {\nreturn;\n}\n// \u54e8\u5175\u5212\u5206\nlet pivot = Self::partition(nums, left as usize, right as usize) as i32;\n// \u9012\u5f52\u5de6\u5b50\u6570\u7ec4\u3001\u53f3\u5b50\u6570\u7ec4\nSelf::quick_sort(left, pivot - 1, nums);\nSelf::quick_sort(pivot + 1, right, nums);\n}\n
            "},{"location":"chapter_sorting/quick_sort/#1152","title":"11.5.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(n \\log n)\\) \u3001\u81ea\u9002\u5e94\u6392\u5e8f \uff1a\u5728\u5e73\u5747\u60c5\u51b5\u4e0b\uff0c\u54e8\u5175\u5212\u5206\u7684\u9012\u5f52\u5c42\u6570\u4e3a \\(\\log n\\) \uff0c\u6bcf\u5c42\u4e2d\u7684\u603b\u5faa\u73af\u6570\u4e3a \\(n\\) \uff0c\u603b\u4f53\u4f7f\u7528 \\(O(n \\log n)\\) \u65f6\u95f4\u3002\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u90fd\u5c06\u957f\u5ea6\u4e3a \\(n\\) \u7684\u6570\u7ec4\u5212\u5206\u4e3a\u957f\u5ea6\u4e3a \\(0\\) \u548c \\(n - 1\\) \u7684\u4e24\u4e2a\u5b50\u6570\u7ec4\uff0c\u6b64\u65f6\u9012\u5f52\u5c42\u6570\u8fbe\u5230 \\(n\\) \u5c42\uff0c\u6bcf\u5c42\u4e2d\u7684\u5faa\u73af\u6570\u4e3a \\(n\\) \uff0c\u603b\u4f53\u4f7f\u7528 \\(O(n^2)\\) \u65f6\u95f4\u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n)\\) \u3001\u539f\u5730\u6392\u5e8f \uff1a\u5728\u8f93\u5165\u6570\u7ec4\u5b8c\u5168\u5012\u5e8f\u7684\u60c5\u51b5\u4e0b\uff0c\u8fbe\u5230\u6700\u5dee\u9012\u5f52\u6df1\u5ea6 \\(n\\) \uff0c\u4f7f\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002\u6392\u5e8f\u64cd\u4f5c\u662f\u5728\u539f\u6570\u7ec4\u4e0a\u8fdb\u884c\u7684\uff0c\u672a\u501f\u52a9\u989d\u5916\u6570\u7ec4\u3002
            • \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u54e8\u5175\u5212\u5206\u7684\u6700\u540e\u4e00\u6b65\uff0c\u57fa\u51c6\u6570\u53ef\u80fd\u4f1a\u88ab\u4ea4\u6362\u81f3\u76f8\u7b49\u5143\u7d20\u7684\u53f3\u4fa7\u3002
            "},{"location":"chapter_sorting/quick_sort/#1153","title":"11.5.3 \u00a0 \u5feb\u6392\u4e3a\u4ec0\u4e48\u5feb\uff1f","text":"

            \u4ece\u540d\u79f0\u4e0a\u5c31\u80fd\u770b\u51fa\uff0c\u5feb\u901f\u6392\u5e8f\u5728\u6548\u7387\u65b9\u9762\u5e94\u8be5\u5177\u6709\u4e00\u5b9a\u7684\u4f18\u52bf\u3002\u5c3d\u7ba1\u5feb\u901f\u6392\u5e8f\u7684\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u4e0e\u201c\u5f52\u5e76\u6392\u5e8f\u201d\u548c\u201c\u5806\u6392\u5e8f\u201d\u76f8\u540c\uff0c\u4f46\u901a\u5e38\u5feb\u901f\u6392\u5e8f\u7684\u6548\u7387\u66f4\u9ad8\uff0c\u539f\u56e0\u5982\u4e0b\uff1a

            • \u51fa\u73b0\u6700\u5dee\u60c5\u51b5\u7684\u6982\u7387\u5f88\u4f4e\uff1a\u867d\u7136\u5feb\u901f\u6392\u5e8f\u7684\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u6ca1\u6709\u5f52\u5e76\u6392\u5e8f\u7a33\u5b9a\uff0c\u4f46\u5728\u7edd\u5927\u591a\u6570\u60c5\u51b5\u4e0b\uff0c\u5feb\u901f\u6392\u5e8f\u80fd\u5728 \\(O(n \\log n)\\) \u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e0b\u8fd0\u884c\u3002
            • \u7f13\u5b58\u4f7f\u7528\u6548\u7387\u9ad8\uff1a\u5728\u6267\u884c\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u65f6\uff0c\u7cfb\u7edf\u53ef\u5c06\u6574\u4e2a\u5b50\u6570\u7ec4\u52a0\u8f7d\u5230\u7f13\u5b58\uff0c\u56e0\u6b64\u8bbf\u95ee\u5143\u7d20\u7684\u6548\u7387\u8f83\u9ad8\u3002\u800c\u50cf\u201c\u5806\u6392\u5e8f\u201d\u8fd9\u7c7b\u7b97\u6cd5\u9700\u8981\u8df3\u8dc3\u5f0f\u8bbf\u95ee\u5143\u7d20\uff0c\u4ece\u800c\u7f3a\u4e4f\u8fd9\u4e00\u7279\u6027\u3002
            • \u590d\u6742\u5ea6\u7684\u5e38\u6570\u7cfb\u6570\u4f4e\uff1a\u5728\u4e0a\u8ff0\u4e09\u79cd\u7b97\u6cd5\u4e2d\uff0c\u5feb\u901f\u6392\u5e8f\u7684\u6bd4\u8f83\u3001\u8d4b\u503c\u3001\u4ea4\u6362\u7b49\u64cd\u4f5c\u7684\u603b\u6570\u91cf\u6700\u5c11\u3002\u8fd9\u4e0e\u201c\u63d2\u5165\u6392\u5e8f\u201d\u6bd4\u201c\u5192\u6ce1\u6392\u5e8f\u201d\u66f4\u5feb\u7684\u539f\u56e0\u7c7b\u4f3c\u3002
            "},{"location":"chapter_sorting/quick_sort/#1154","title":"11.5.4 \u00a0 \u57fa\u51c6\u6570\u4f18\u5316","text":"

            \u5feb\u901f\u6392\u5e8f\u5728\u67d0\u4e9b\u8f93\u5165\u4e0b\u7684\u65f6\u95f4\u6548\u7387\u53ef\u80fd\u964d\u4f4e\u3002\u4e3e\u4e00\u4e2a\u6781\u7aef\u4f8b\u5b50\uff0c\u5047\u8bbe\u8f93\u5165\u6570\u7ec4\u662f\u5b8c\u5168\u5012\u5e8f\u7684\uff0c\u7531\u4e8e\u6211\u4eec\u9009\u62e9\u6700\u5de6\u7aef\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\uff0c\u90a3\u4e48\u5728\u54e8\u5175\u5212\u5206\u5b8c\u6210\u540e\uff0c\u57fa\u51c6\u6570\u88ab\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u53f3\u7aef\uff0c\u5bfc\u81f4\u5de6\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(n - 1\\) \u3001\u53f3\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(0\\) \u3002\u5982\u6b64\u9012\u5f52\u4e0b\u53bb\uff0c\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u540e\u7684\u53f3\u5b50\u6570\u7ec4\u957f\u5ea6\u90fd\u4e3a \\(0\\) \uff0c\u5206\u6cbb\u7b56\u7565\u5931\u6548\uff0c\u5feb\u901f\u6392\u5e8f\u9000\u5316\u4e3a\u201c\u5192\u6ce1\u6392\u5e8f\u201d\u3002

            \u4e3a\u4e86\u5c3d\u91cf\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u53d1\u751f\uff0c\u6211\u4eec\u53ef\u4ee5\u4f18\u5316\u54e8\u5175\u5212\u5206\u4e2d\u7684\u57fa\u51c6\u6570\u7684\u9009\u53d6\u7b56\u7565\u3002\u4f8b\u5982\uff0c\u6211\u4eec\u53ef\u4ee5\u968f\u673a\u9009\u53d6\u4e00\u4e2a\u5143\u7d20\u4f5c\u4e3a\u57fa\u51c6\u6570\u3002\u7136\u800c\uff0c\u5982\u679c\u8fd0\u6c14\u4e0d\u4f73\uff0c\u6bcf\u6b21\u90fd\u9009\u5230\u4e0d\u7406\u60f3\u7684\u57fa\u51c6\u6570\uff0c\u6548\u7387\u4ecd\u7136\u4e0d\u5c3d\u5982\u4eba\u610f\u3002

            \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u7f16\u7a0b\u8bed\u8a00\u901a\u5e38\u751f\u6210\u7684\u662f\u201c\u4f2a\u968f\u673a\u6570\u201d\u3002\u5982\u679c\u6211\u4eec\u9488\u5bf9\u4f2a\u968f\u673a\u6570\u5e8f\u5217\u6784\u5efa\u4e00\u4e2a\u7279\u5b9a\u7684\u6d4b\u8bd5\u6837\u4f8b\uff0c\u90a3\u4e48\u5feb\u901f\u6392\u5e8f\u7684\u6548\u7387\u4ecd\u7136\u53ef\u80fd\u52a3\u5316\u3002

            \u4e3a\u4e86\u8fdb\u4e00\u6b65\u6539\u8fdb\uff0c\u6211\u4eec\u53ef\u4ee5\u5728\u6570\u7ec4\u4e2d\u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\uff08\u901a\u5e38\u4e3a\u6570\u7ec4\u7684\u9996\u3001\u5c3e\u3001\u4e2d\u70b9\u5143\u7d20\uff09\uff0c\u5e76\u5c06\u8fd9\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\u4f5c\u4e3a\u57fa\u51c6\u6570\u3002\u8fd9\u6837\u4e00\u6765\uff0c\u57fa\u51c6\u6570\u201c\u65e2\u4e0d\u592a\u5c0f\u4e5f\u4e0d\u592a\u5927\u201d\u7684\u6982\u7387\u5c06\u5927\u5e45\u63d0\u5347\u3002\u5f53\u7136\uff0c\u6211\u4eec\u8fd8\u53ef\u4ee5\u9009\u53d6\u66f4\u591a\u5019\u9009\u5143\u7d20\uff0c\u4ee5\u8fdb\u4e00\u6b65\u63d0\u9ad8\u7b97\u6cd5\u7684\u7a33\u5065\u6027\u3002\u91c7\u7528\u8fd9\u79cd\u65b9\u6cd5\u540e\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n^2)\\) \u7684\u6982\u7387\u5927\u5927\u964d\u4f4e\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust quick_sort.java
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint medianThree(int[] nums, int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint partition(int[] nums, int left, int right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint med = medianThree(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--;          // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;             // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.cpp
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint medianThree(vector<int> &nums, int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint partition(vector<int> &nums, int left, int right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint med = medianThree(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;            // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.py
            def median_three(self, nums: list[int], left: int, mid: int, right: int) -> int:\n\"\"\"\u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\"\"\"\n# \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n# \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif (nums[left] < nums[mid]) ^ (nums[left] < nums[right]):\nreturn left\nelif (nums[mid] < nums[left]) ^ (nums[mid] < nums[right]):\nreturn mid\nreturn right\ndef partition(self, nums: list[int], left: int, right: int) -> int:\n\"\"\"\u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09\"\"\"\n# \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nmed = self.median_three(nums, left, (left + right) // 2, right)\n# \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nnums[left], nums[med] = nums[med], nums[left]\n# \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\ni, j = left, right\nwhile i < j:\nwhile i < j and nums[j] >= nums[left]:\nj -= 1  # \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile i < j and nums[i] <= nums[left]:\ni += 1  # \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n# \u5143\u7d20\u4ea4\u6362\nnums[i], nums[j] = nums[j], nums[i]\n# \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nnums[i], nums[left] = nums[left], nums[i]\nreturn i  # \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n
            quick_sort.go
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfunc (q *quickSortMedian) medianThree(nums []int, left, mid, right int) int {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\uff08!= \u5728\u8fd9\u91cc\u8d77\u5230\u5f02\u6216\u7684\u4f5c\u7528\uff09\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif (nums[left] < nums[mid]) != (nums[left] < nums[right]) {\nreturn left\n} else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {\nreturn mid\n}\nreturn right\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09*/\nfunc (q *quickSortMedian) partition(nums []int, left, right int) int {\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nmed := q.medianThree(nums, left, (left+right)/2, right)\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nnums[left], nums[med] = nums[med], nums[left]\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\ni, j := left, right\nfor i < j {\nfor i < j && nums[j] >= nums[left] {\nj-- //\u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nfor i < j && nums[i] <= nums[left] {\ni++ //\u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\n//\u5143\u7d20\u4ea4\u6362\nnums[i], nums[j] = nums[j], nums[i]\n}\n//\u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nnums[i], nums[left] = nums[left], nums[i]\nreturn i //\u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.js
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nmedianThree(nums, left, mid, right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right])) return left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse return right;\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\npartition(nums, left, right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nlet med = this.medianThree(\nnums,\nleft,\nMath.floor((left + right) / 2),\nright\n);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nthis.swap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet i = left,\nj = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nthis.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nthis.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.ts
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nmedianThree(\nnums: number[],\nleft: number,\nmid: number,\nright: number\n): number {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif (Number(nums[left] < nums[mid]) ^ Number(nums[left] < nums[right])) {\nreturn left;\n} else if (\nNumber(nums[mid] < nums[left]) ^ Number(nums[mid] < nums[right])\n) {\nreturn mid;\n} else {\nreturn right;\n}\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\npartition(nums: number[], left: number, right: number): number {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nlet med = this.medianThree(\nnums,\nleft,\nMath.floor((left + right) / 2),\nright\n);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nthis.swap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet i = left,\nj = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) {\nj--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile (i < j && nums[i] <= nums[left]) {\ni++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nthis.swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nthis.swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.c
            /* \u5feb\u901f\u6392\u5e8f\u7c7b\uff08\u4e2d\u4f4d\u57fa\u51c6\u6570\u4f18\u5316\uff09 */\n// \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint medianThree(int nums[], int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n/* \u5feb\u901f\u6392\u5e8f\u7c7b\uff08\u4e2d\u4f4d\u57fa\u51c6\u6570\u4f18\u5316\uff09 */\n// \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint medianThree(int nums[], int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n// \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09\nint partitionMedian(int nums[], int left, int right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint med = medianThree(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;            // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.cs
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint medianThree(int[] nums, int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint partition(int[] nums, int left, int right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint med = medianThree(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left])\nj--;          // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left])\ni++;          // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;             // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.swift
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfunc medianThree(nums: [Int], left: Int, mid: Int, right: Int) -> Int {\nif (nums[left] < nums[mid]) != (nums[left] < nums[right]) {\nreturn left\n} else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {\nreturn mid\n} else {\nreturn right\n}\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nfunc partitionMedian(nums: inout [Int], left: Int, right: Int) -> Int {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nlet med = medianThree(nums: nums, left: left, mid: (left + right) / 2, right: right)\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums: &nums, i: left, j: med)\nreturn partition(nums: &nums, left: left, right: right)\n}\n
            quick_sort.zig
            // \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nfn medianThree(nums: []i32, left: usize, mid: usize, right: usize) usize {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) != (nums[left] < nums[right])) {\nreturn left;\n} else if ((nums[mid] < nums[left]) != (nums[mid] < nums[right])) {\nreturn mid;\n} else {\nreturn right;\n}\n}\n// \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09\nfn partition(nums: []i32, left: usize, right: usize) usize {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nvar med = medianThree(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nswap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nvar i = left;\nvar j = right;\nwhile (i < j) {\nwhile (i < j and nums[j] >= nums[left]) j -= 1; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j and nums[i] <= nums[left]) i += 1; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nswap(nums, i, j);   // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nswap(nums, i, left);    // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i;               // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.dart
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nint _medianThree(List<int> nums, int left, int mid, int right) {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))\nreturn left;\nelse if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))\nreturn mid;\nelse\nreturn right;\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nint _partition(List<int> nums, int left, int right) {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nint med = _medianThree(nums, left, (left + right) ~/ 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\n_swap(nums, left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nint i = left, j = right;\nwhile (i < j) {\nwhile (i < j && nums[j] >= nums[left]) j--; // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\nwhile (i < j && nums[i] <= nums[left]) i++; // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n_swap(nums, i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\n_swap(nums, i, left); // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\nreturn i; // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            quick_sort.rs
            /* \u9009\u53d6\u4e09\u4e2a\u5143\u7d20\u7684\u4e2d\u4f4d\u6570 */\nfn median_three(nums: &mut [i32], left: usize, mid: usize, right: usize) -> usize {\n// \u6b64\u5904\u4f7f\u7528\u5f02\u6216\u8fd0\u7b97\u6765\u7b80\u5316\u4ee3\u7801\n// \u5f02\u6216\u89c4\u5219\u4e3a 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1\nif (nums[left] < nums[mid]) ^ (nums[left] < nums[right]) {\nreturn left;\n} else if (nums[mid] < nums[left]) ^ (nums[mid] < nums[right]) {\nreturn mid;\n} right\n}\n/* \u54e8\u5175\u5212\u5206\uff08\u4e09\u6570\u53d6\u4e2d\u503c\uff09 */\nfn partition(nums: &mut [i32], left: usize, right: usize) -> usize {\n// \u9009\u53d6\u4e09\u4e2a\u5019\u9009\u5143\u7d20\u7684\u4e2d\u4f4d\u6570\nlet med = Self::median_three(nums, left, (left + right) / 2, right);\n// \u5c06\u4e2d\u4f4d\u6570\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\nnums.swap(left, med);\n// \u4ee5 nums[left] \u4f5c\u4e3a\u57fa\u51c6\u6570\nlet (mut i, mut j) = (left, right);\nwhile i < j {\nwhile i < j && nums[j] >= nums[left] {\nj -= 1;      // \u4ece\u53f3\u5411\u5de6\u627e\u9996\u4e2a\u5c0f\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nwhile i < j && nums[i] <= nums[left] {\ni += 1;      // \u4ece\u5de6\u5411\u53f3\u627e\u9996\u4e2a\u5927\u4e8e\u57fa\u51c6\u6570\u7684\u5143\u7d20\n}\nnums.swap(i, j); // \u4ea4\u6362\u8fd9\u4e24\u4e2a\u5143\u7d20\n}\nnums.swap(i, left);  // \u5c06\u57fa\u51c6\u6570\u4ea4\u6362\u81f3\u4e24\u5b50\u6570\u7ec4\u7684\u5206\u754c\u7ebf\ni                    // \u8fd4\u56de\u57fa\u51c6\u6570\u7684\u7d22\u5f15\n}\n
            "},{"location":"chapter_sorting/quick_sort/#1155","title":"11.5.5 \u00a0 \u5c3e\u9012\u5f52\u4f18\u5316","text":"

            \u5728\u67d0\u4e9b\u8f93\u5165\u4e0b\uff0c\u5feb\u901f\u6392\u5e8f\u53ef\u80fd\u5360\u7528\u7a7a\u95f4\u8f83\u591a\u3002\u4ee5\u5b8c\u5168\u5012\u5e8f\u7684\u8f93\u5165\u6570\u7ec4\u4e3a\u4f8b\uff0c\u7531\u4e8e\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u540e\u53f3\u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a \\(0\\) \uff0c\u9012\u5f52\u6811\u7684\u9ad8\u5ea6\u4f1a\u8fbe\u5230 \\(n - 1\\) \uff0c\u6b64\u65f6\u9700\u8981\u5360\u7528 \\(O(n)\\) \u5927\u5c0f\u7684\u6808\u5e27\u7a7a\u95f4\u3002

            \u4e3a\u4e86\u9632\u6b62\u6808\u5e27\u7a7a\u95f4\u7684\u7d2f\u79ef\uff0c\u6211\u4eec\u53ef\u4ee5\u5728\u6bcf\u8f6e\u54e8\u5175\u6392\u5e8f\u5b8c\u6210\u540e\uff0c\u6bd4\u8f83\u4e24\u4e2a\u5b50\u6570\u7ec4\u7684\u957f\u5ea6\uff0c\u4ec5\u5bf9\u8f83\u77ed\u7684\u5b50\u6570\u7ec4\u8fdb\u884c\u9012\u5f52\u3002\u7531\u4e8e\u8f83\u77ed\u5b50\u6570\u7ec4\u7684\u957f\u5ea6\u4e0d\u4f1a\u8d85\u8fc7 \\(\\frac{n}{2}\\) \uff0c\u56e0\u6b64\u8fd9\u79cd\u65b9\u6cd5\u80fd\u786e\u4fdd\u9012\u5f52\u6df1\u5ea6\u4e0d\u8d85\u8fc7 \\(\\log n\\) \uff0c\u4ece\u800c\u5c06\u6700\u5dee\u7a7a\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u81f3 \\(O(\\log n)\\) \u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust quick_sort.java
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(int[] nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nint pivot = partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.cpp
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(vector<int> &nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nint pivot = partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1;                 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1;                 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.py
            def quick_sort(self, nums: list[int], left: int, right: int):\n\"\"\"\u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\"\"\"\n# \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile left < right:\n# \u54e8\u5175\u5212\u5206\u64cd\u4f5c\npivot = self.partition(nums, left, right)\n# \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif pivot - left < right - pivot:\nself.quick_sort(nums, left, pivot - 1)  # \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1  # \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\nelse:\nself.quick_sort(nums, pivot + 1, right)  # \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1  # \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n
            quick_sort.go
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09*/\nfunc (q *quickSortTailCall) quickSort(nums []int, left, right int) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nfor left < right {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\npivot := q.partition(nums, left, right)\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif pivot-left < right-pivot {\nq.quickSort(nums, left, pivot-1) // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1                 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nq.quickSort(nums, pivot+1, right) // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1                 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.js
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nquickSort(nums, left, right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nlet pivot = this.partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nthis.quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nthis.quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.ts
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nquickSort(nums: number[], left: number, right: number): void {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nlet pivot = this.partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nthis.quickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nthis.quickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.c
            /* \u5feb\u901f\u6392\u5e8f\u7c7b\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\n// \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\nvoid quickSortTailCall(int nums[], int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nint pivot = partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSortTailCall(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1;                         // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSortTailCall(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1;                         // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.cs
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(int[] nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nint pivot = partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSort(nums, left, pivot - 1);  // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1;  // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.swift
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nfunc quickSortTailCall(nums: inout [Int], left: Int, right: Int) {\nvar left = left\nvar right = right\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile left < right {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nlet pivot = partition(nums: &nums, left: left, right: right)\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left) < (right - pivot) {\nquickSortTailCall(nums: &nums, left: left, right: pivot - 1) // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSortTailCall(nums: &nums, left: pivot + 1, right: right) // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1 // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.zig
            // \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09\nfn quickSort(nums: []i32, left_: usize, right_: usize) void {\nvar left = left_;\nvar right = right_;\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\u9012\u5f52\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nvar pivot = partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSort(nums, left, pivot - 1);   // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1;                   // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSort(nums, pivot + 1, right);  // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1;                  // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.dart
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\nvoid quickSort(List<int> nums, int left, int right) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile (left < right) {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nint pivot = _partition(nums, left, right);\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif (pivot - left < right - pivot) {\nquickSort(nums, left, pivot - 1); // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nquickSort(nums, pivot + 1, right); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            quick_sort.rs
            /* \u5feb\u901f\u6392\u5e8f\uff08\u5c3e\u9012\u5f52\u4f18\u5316\uff09 */\npub fn quick_sort(mut left: i32, mut right: i32, nums: &mut [i32]) {\n// \u5b50\u6570\u7ec4\u957f\u5ea6\u4e3a 1 \u65f6\u7ec8\u6b62\nwhile left < right {\n// \u54e8\u5175\u5212\u5206\u64cd\u4f5c\nlet pivot = Self::partition(nums, left as usize, right as usize) as i32;\n// \u5bf9\u4e24\u4e2a\u5b50\u6570\u7ec4\u4e2d\u8f83\u77ed\u7684\u90a3\u4e2a\u6267\u884c\u5feb\u6392\nif  pivot - left < right - pivot {\nSelf::quick_sort(left, pivot - 1, nums);  // \u9012\u5f52\u6392\u5e8f\u5de6\u5b50\u6570\u7ec4\nleft = pivot + 1;  // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [pivot + 1, right]\n} else {\nSelf::quick_sort(pivot + 1, right, nums); // \u9012\u5f52\u6392\u5e8f\u53f3\u5b50\u6570\u7ec4\nright = pivot - 1; // \u5269\u4f59\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [left, pivot - 1]\n}\n}\n}\n
            "},{"location":"chapter_sorting/radix_sort/","title":"11.10 \u00a0 \u57fa\u6570\u6392\u5e8f","text":"

            \u4e0a\u4e00\u8282\u6211\u4eec\u4ecb\u7ecd\u4e86\u8ba1\u6570\u6392\u5e8f\uff0c\u5b83\u9002\u7528\u4e8e\u6570\u636e\u91cf \\(n\\) \u8f83\u5927\u4f46\u6570\u636e\u8303\u56f4 \\(m\\) \u8f83\u5c0f\u7684\u60c5\u51b5\u3002\u5047\u8bbe\u6211\u4eec\u9700\u8981\u5bf9 \\(n = 10^6\\) \u4e2a\u5b66\u53f7\u8fdb\u884c\u6392\u5e8f\uff0c\u800c\u5b66\u53f7\u662f\u4e00\u4e2a \\(8\\) \u4f4d\u6570\u5b57\uff0c\u8fd9\u610f\u5473\u7740\u6570\u636e\u8303\u56f4 \\(m = 10^8\\) \u975e\u5e38\u5927\uff0c\u4f7f\u7528\u8ba1\u6570\u6392\u5e8f\u9700\u8981\u5206\u914d\u5927\u91cf\u5185\u5b58\u7a7a\u95f4\uff0c\u800c\u57fa\u6570\u6392\u5e8f\u53ef\u4ee5\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u3002

            \u300c\u57fa\u6570\u6392\u5e8f radix sort\u300d\u7684\u6838\u5fc3\u601d\u60f3\u4e0e\u8ba1\u6570\u6392\u5e8f\u4e00\u81f4\uff0c\u4e5f\u901a\u8fc7\u7edf\u8ba1\u4e2a\u6570\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u5728\u6b64\u57fa\u7840\u4e0a\uff0c\u57fa\u6570\u6392\u5e8f\u5229\u7528\u6570\u5b57\u5404\u4f4d\u4e4b\u95f4\u7684\u9012\u8fdb\u5173\u7cfb\uff0c\u4f9d\u6b21\u5bf9\u6bcf\u4e00\u4f4d\u8fdb\u884c\u6392\u5e8f\uff0c\u4ece\u800c\u5f97\u5230\u6700\u7ec8\u7684\u6392\u5e8f\u7ed3\u679c\u3002

            "},{"location":"chapter_sorting/radix_sort/#11101","title":"11.10.1 \u00a0 \u7b97\u6cd5\u6d41\u7a0b","text":"

            \u4ee5\u5b66\u53f7\u6570\u636e\u4e3a\u4f8b\uff0c\u5047\u8bbe\u6570\u5b57\u7684\u6700\u4f4e\u4f4d\u662f\u7b2c \\(1\\) \u4f4d\uff0c\u6700\u9ad8\u4f4d\u662f\u7b2c \\(8\\) \u4f4d\uff0c\u57fa\u6570\u6392\u5e8f\u7684\u6b65\u9aa4\u5982\u4e0b\uff1a

            1. \u521d\u59cb\u5316\u4f4d\u6570 \\(k = 1\\) \u3002
            2. \u5bf9\u5b66\u53f7\u7684\u7b2c \\(k\\) \u4f4d\u6267\u884c\u201c\u8ba1\u6570\u6392\u5e8f\u201d\u3002\u5b8c\u6210\u540e\uff0c\u6570\u636e\u4f1a\u6839\u636e\u7b2c \\(k\\) \u4f4d\u4ece\u5c0f\u5230\u5927\u6392\u5e8f\u3002
            3. \u5c06 \\(k\\) \u589e\u52a0 \\(1\\) \uff0c\u7136\u540e\u8fd4\u56de\u6b65\u9aa4 2. \u7ee7\u7eed\u8fed\u4ee3\uff0c\u76f4\u5230\u6240\u6709\u4f4d\u90fd\u6392\u5e8f\u5b8c\u6210\u540e\u7ed3\u675f\u3002

            \u56fe\uff1a\u57fa\u6570\u6392\u5e8f\u7b97\u6cd5\u6d41\u7a0b

            \u4e0b\u9762\u6765\u5256\u6790\u4ee3\u7801\u5b9e\u73b0\u3002\u5bf9\u4e8e\u4e00\u4e2a \\(d\\) \u8fdb\u5236\u7684\u6570\u5b57 \\(x\\) \uff0c\u8981\u83b7\u53d6\u5176\u7b2c \\(k\\) \u4f4d \\(x_k\\) \uff0c\u53ef\u4ee5\u4f7f\u7528\u4ee5\u4e0b\u8ba1\u7b97\u516c\u5f0f\uff1a

            \\[ x_k = \\lfloor\\frac{x}{d^{k-1}}\\rfloor \\bmod d \\]

            \u5176\u4e2d \\(\\lfloor a \\rfloor\\) \u8868\u793a\u5bf9\u6d6e\u70b9\u6570 \\(a\\) \u5411\u4e0b\u53d6\u6574\uff0c\u800c \\(\\bmod \\space d\\) \u8868\u793a\u5bf9 \\(d\\) \u53d6\u4f59\u3002\u5bf9\u4e8e\u5b66\u53f7\u6570\u636e\uff0c\\(d = 10\\) \u4e14 \\(k \\in [1, 8]\\) \u3002

            \u6b64\u5916\uff0c\u6211\u4eec\u9700\u8981\u5c0f\u5e45\u6539\u52a8\u8ba1\u6570\u6392\u5e8f\u4ee3\u7801\uff0c\u4f7f\u4e4b\u53ef\u4ee5\u6839\u636e\u6570\u5b57\u7684\u7b2c \\(k\\) \u4f4d\u8fdb\u884c\u6392\u5e8f\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust radix_sort.java
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(int[] nums, int exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nint[] counter = new int[10];\nint n = nums.length;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (int i = 0; i < n; i++) {\nint d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++;                // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (int i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nint[] res = new int[n];\nfor (int i = n - 1; i >= 0; i--) {\nint d = digit(nums[i], exp);\nint j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i];       // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--;           // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++)\nnums[i] = res[i];\n}\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(int[] nums) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nint m = Integer.MIN_VALUE;\nfor (int num : nums)\nif (num > m)\nm = num;\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (int exp = 1; exp <= m; exp *= 10)\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n
            radix_sort.cpp
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(vector<int> &nums, int exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nvector<int> counter(10, 0);\nint n = nums.size();\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (int i = 0; i < n; i++) {\nint d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++;                // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (int i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nvector<int> res(n, 0);\nfor (int i = n - 1; i >= 0; i--) {\nint d = digit(nums[i], exp);\nint j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i];       // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--;           // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++)\nnums[i] = res[i];\n}\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(vector<int> &nums) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nint m = *max_element(nums.begin(), nums.end());\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (int exp = 1; exp <= m; exp *= 10)\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n
            radix_sort.py
            def digit(num: int, exp: int) -> int:\n\"\"\"\u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1)\"\"\"\n# \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num // exp) % 10\ndef counting_sort_digit(nums: list[int], exp: int):\n\"\"\"\u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09\"\"\"\n# \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\ncounter = [0] * 10\nn = len(nums)\n# \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor i in range(n):\nd = digit(nums[i], exp)  # \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d] += 1  # \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n# \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor i in range(1, 10):\ncounter[i] += counter[i - 1]\n# \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nres = [0] * n\nfor i in range(n - 1, -1, -1):\nd = digit(nums[i], exp)\nj = counter[d] - 1  # \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]  # \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d] -= 1  # \u5c06 d \u7684\u6570\u91cf\u51cf 1\n# \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in range(n):\nnums[i] = res[i]\ndef radix_sort(nums: list[int]):\n\"\"\"\u57fa\u6570\u6392\u5e8f\"\"\"\n# \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nm = max(nums)\n# \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nexp = 1\nwhile exp <= m:\n# \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n# k = 1 -> exp = 1\n# k = 2 -> exp = 10\n# \u5373 exp = 10^(k-1)\ncounting_sort_digit(nums, exp)\nexp *= 10\n
            radix_sort.go
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunc digit(num, exp int) int {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num / exp) % 10\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunc countingSortDigit(nums []int, exp int) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\ncounter := make([]int, 10)\nn := len(nums)\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor i := 0; i < n; i++ {\nd := digit(nums[i], exp) // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++             // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor i := 1; i < 10; i++ {\ncounter[i] += counter[i-1]\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nres := make([]int, n)\nfor i := n - 1; i >= 0; i-- {\nd := digit(nums[i], exp)\nj := counter[d] - 1 // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]    // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--        // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i := 0; i < n; i++ {\nnums[i] = res[i]\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nfunc radixSort(nums []int) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nmax := math.MinInt\nfor _, num := range nums {\nif num > max {\nmax = num\n}\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor exp := 1; max >= exp; exp *= 10 {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp)\n}\n}\n
            radix_sort.js
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunction digit(num, exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn Math.floor(num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunction countingSortDigit(nums, exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nconst counter = new Array(10).fill(0);\nconst n = nums.length;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (let i = 0; i < n; i++) {\nconst d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (let i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nconst res = new Array(n).fill(0);\nfor (let i = n - 1; i >= 0; i--) {\nconst d = digit(nums[i], exp);\nconst j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (let i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nfunction radixSort(nums) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nlet m = Number.MIN_VALUE;\nfor (const num of nums) {\nif (num > m) {\nm = num;\n}\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (let exp = 1; exp <= m; exp *= 10) {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n}\n
            radix_sort.ts
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunction digit(num: number, exp: number): number {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn Math.floor(num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunction countingSortDigit(nums: number[], exp: number): void {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nconst counter = new Array(10).fill(0);\nconst n = nums.length;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (let i = 0; i < n; i++) {\nconst d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (let i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nconst res = new Array(n).fill(0);\nfor (let i = n - 1; i >= 0; i--) {\nconst d = digit(nums[i], exp);\nconst j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (let i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nfunction radixSort(nums: number[]): void {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nlet m = Number.MIN_VALUE;\nfor (const num of nums) {\nif (num > m) {\nm = num;\n}\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (let exp = 1; exp <= m; exp *= 10) {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n}\n
            radix_sort.c
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(int nums[], int size, int exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nint *counter = (int *)malloc((sizeof(int) * 10));\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (int i = 0; i < size; i++) {\n// \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\nint d = digit(nums[i], exp);\n// \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\ncounter[d]++;\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (int i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nint *res = (int *)malloc(sizeof(int) * size);\nfor (int i = size - 1; i >= 0; i--) {\nint d = digit(nums[i], exp);\nint j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i];       // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--;           // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < size; i++) {\nnums[i] = res[i];\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(int nums[], int size) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nint max = INT32_MIN;\nfor (size_t i = 0; i < size - 1; i++) {\nif (nums[i] > max) {\nmax = nums[i];\n}\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (int exp = 1; max >= exp; exp *= 10)\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, size, exp);\n}\n
            radix_sort.cs
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num / exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(int[] nums, int exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nint[] counter = new int[10];\nint n = nums.Length;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (int i = 0; i < n; i++) {\nint d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++;                // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (int i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nint[] res = new int[n];\nfor (int i = n - 1; i >= 0; i--) {\nint d = digit(nums[i], exp);\nint j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i];       // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--;           // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++) {\nnums[i] = res[i];\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(int[] nums) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nint m = int.MinValue;\nforeach (int num in nums) {\nif (num > m) m = num;\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (int exp = 1; exp <= m; exp *= 10) {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n}\n
            radix_sort.swift
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfunc digit(num: Int, exp: Int) -> Int {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\n(num / exp) % 10\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfunc countingSortDigit(nums: inout [Int], exp: Int) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nvar counter = Array(repeating: 0, count: 10)\nlet n = nums.count\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor i in nums.indices {\nlet d = digit(num: nums[i], exp: exp) // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d] += 1 // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor i in 1 ..< 10 {\ncounter[i] += counter[i - 1]\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nvar res = Array(repeating: 0, count: n)\nfor i in stride(from: n - 1, through: 0, by: -1) {\nlet d = digit(num: nums[i], exp: exp)\nlet j = counter[d] - 1 // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i] // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d] -= 1 // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in nums.indices {\nnums[i] = res[i]\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nfunc radixSort(nums: inout [Int]) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nvar m = Int.min\nfor num in nums {\nif num > m {\nm = num\n}\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor exp in sequence(first: 1, next: { m >= ($0 * 10) ? $0 * 10 : nil }) {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums: &nums, exp: exp)\n}\n}\n
            radix_sort.zig
            // \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1)\nfn digit(num: i32, exp: i32) i32 {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn @mod(@divFloor(num, exp), 10);\n}\n// \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09\nfn countingSortDigit(nums: []i32, exp: i32) !void {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nvar mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);\n// defer mem_arena.deinit();\nconst mem_allocator = mem_arena.allocator();\nvar counter = try mem_allocator.alloc(usize, 10);\n@memset(counter, 0);\nvar n = nums.len;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (nums) |num| {\nvar d: u32 = @bitCast(digit(num, exp)); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d] += 1; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nvar i: usize = 1;\nwhile (i < 10) : (i += 1) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nvar res = try mem_allocator.alloc(i32, n);\ni = n - 1;\nwhile (i >= 0) : (i -= 1) {\nvar d: u32 = @bitCast(digit(nums[i], exp));\nvar j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i];       // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d] -= 1;        // \u5c06 d \u7684\u6570\u91cf\u51cf 1\nif (i == 0) break;\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\ni = 0;\nwhile (i < n) : (i += 1) {\nnums[i] = res[i];\n}\n}\n// \u57fa\u6570\u6392\u5e8f\nfn radixSort(nums: []i32) !void {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nvar m: i32 = std.math.minInt(i32);\nfor (nums) |num| {\nif (num > m) m = num;\n}\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nvar exp: i32 = 1;\nwhile (exp <= m) : (exp *= 10) {\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ntry countingSortDigit(nums, exp);    }\n} 
            radix_sort.dart
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nint digit(int num, int exp) {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn (num ~/ exp) % 10;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nvoid countingSortDigit(List<int> nums, int exp) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nList<int> counter = List<int>.filled(10, 0);\nint n = nums.length;\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor (int i = 0; i < n; i++) {\nint d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d]++; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor (int i = 1; i < 10; i++) {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nList<int> res = List<int>.filled(n, 0);\nfor (int i = n - 1; i >= 0; i--) {\nint d = digit(nums[i], exp);\nint j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d]--; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor (int i = 0; i < n; i++) nums[i] = res[i];\n}\n/* \u57fa\u6570\u6392\u5e8f */\nvoid radixSort(List<int> nums) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\n// dart \u4e2d int \u7684\u957f\u5ea6\u662f 64 \u4f4d\u7684\nint m = -1 << 63;\nfor (int num in nums) if (num > m) m = num;\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nfor (int exp = 1; exp <= m; exp *= 10)\n// \u5bf9\u6570\u7ec4\u5143\u7d20\u7684\u7b2c k \u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\n// k = 1 -> exp = 1\n// k = 2 -> exp = 10\n// \u5373 exp = 10^(k-1)\ncountingSortDigit(nums, exp);\n}\n
            radix_sort.rs
            /* \u83b7\u53d6\u5143\u7d20 num \u7684\u7b2c k \u4f4d\uff0c\u5176\u4e2d exp = 10^(k-1) */\nfn digit(num: i32, exp: i32) -> usize {\n// \u4f20\u5165 exp \u800c\u975e k \u53ef\u4ee5\u907f\u514d\u5728\u6b64\u91cd\u590d\u6267\u884c\u6602\u8d35\u7684\u6b21\u65b9\u8ba1\u7b97\nreturn ((num / exp) % 10) as usize;\n}\n/* \u8ba1\u6570\u6392\u5e8f\uff08\u6839\u636e nums \u7b2c k \u4f4d\u6392\u5e8f\uff09 */\nfn counting_sort_digit(nums: &mut [i32], exp: i32) {\n// \u5341\u8fdb\u5236\u7684\u4f4d\u8303\u56f4\u4e3a 0~9 \uff0c\u56e0\u6b64\u9700\u8981\u957f\u5ea6\u4e3a 10 \u7684\u6876\nlet mut counter = [0; 10];\nlet n = nums.len();\n// \u7edf\u8ba1 0~9 \u5404\u6570\u5b57\u7684\u51fa\u73b0\u6b21\u6570\nfor i in 0..n {\nlet d = digit(nums[i], exp); // \u83b7\u53d6 nums[i] \u7b2c k \u4f4d\uff0c\u8bb0\u4e3a d\ncounter[d] += 1; // \u7edf\u8ba1\u6570\u5b57 d \u7684\u51fa\u73b0\u6b21\u6570\n}\n// \u6c42\u524d\u7f00\u548c\uff0c\u5c06\u201c\u51fa\u73b0\u4e2a\u6570\u201d\u8f6c\u6362\u4e3a\u201c\u6570\u7ec4\u7d22\u5f15\u201d\nfor i in 1..10 {\ncounter[i] += counter[i - 1];\n}\n// \u5012\u5e8f\u904d\u5386\uff0c\u6839\u636e\u6876\u5185\u7edf\u8ba1\u7ed3\u679c\uff0c\u5c06\u5404\u5143\u7d20\u586b\u5165 res\nlet mut res = vec![0; n];\nfor i in (0..n).rev() {\nlet d = digit(nums[i], exp);\nlet j = counter[d] - 1; // \u83b7\u53d6 d \u5728\u6570\u7ec4\u4e2d\u7684\u7d22\u5f15 j\nres[j] = nums[i]; // \u5c06\u5f53\u524d\u5143\u7d20\u586b\u5165\u7d22\u5f15 j\ncounter[d] -= 1; // \u5c06 d \u7684\u6570\u91cf\u51cf 1\n}\n// \u4f7f\u7528\u7ed3\u679c\u8986\u76d6\u539f\u6570\u7ec4 nums\nfor i in 0..n {\nnums[i] = res[i];\n}\n}\n/* \u57fa\u6570\u6392\u5e8f */\nfn radix_sort(nums: &mut [i32]) {\n// \u83b7\u53d6\u6570\u7ec4\u7684\u6700\u5927\u5143\u7d20\uff0c\u7528\u4e8e\u5224\u65ad\u6700\u5927\u4f4d\u6570\nlet m = *nums.into_iter().max().unwrap();\n// \u6309\u7167\u4ece\u4f4e\u4f4d\u5230\u9ad8\u4f4d\u7684\u987a\u5e8f\u904d\u5386\nlet mut exp = 1;\nwhile exp <= m {\ncounting_sort_digit(nums, exp);\nexp *= 10;\n}\n}\n

            \u4e3a\u4ec0\u4e48\u4ece\u6700\u4f4e\u4f4d\u5f00\u59cb\u6392\u5e8f\uff1f

            \u5728\u8fde\u7eed\u7684\u6392\u5e8f\u8f6e\u6b21\u4e2d\uff0c\u540e\u4e00\u8f6e\u6392\u5e8f\u4f1a\u8986\u76d6\u524d\u4e00\u8f6e\u6392\u5e8f\u7684\u7ed3\u679c\u3002\u4e3e\u4f8b\u6765\u8bf4\uff0c\u5982\u679c\u7b2c\u4e00\u8f6e\u6392\u5e8f\u7ed3\u679c \\(a < b\\) \uff0c\u800c\u7b2c\u4e8c\u8f6e\u6392\u5e8f\u7ed3\u679c \\(a > b\\) \uff0c\u90a3\u4e48\u7b2c\u4e8c\u8f6e\u7684\u7ed3\u679c\u5c06\u53d6\u4ee3\u7b2c\u4e00\u8f6e\u7684\u7ed3\u679c\u3002\u7531\u4e8e\u6570\u5b57\u7684\u9ad8\u4f4d\u4f18\u5148\u7ea7\u9ad8\u4e8e\u4f4e\u4f4d\uff0c\u6211\u4eec\u5e94\u8be5\u5148\u6392\u5e8f\u4f4e\u4f4d\u518d\u6392\u5e8f\u9ad8\u4f4d\u3002

            "},{"location":"chapter_sorting/radix_sort/#11102","title":"11.10.2 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"

            \u76f8\u8f83\u4e8e\u8ba1\u6570\u6392\u5e8f\uff0c\u57fa\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u503c\u8303\u56f4\u8f83\u5927\u7684\u60c5\u51b5\uff0c\u4f46\u524d\u63d0\u662f\u6570\u636e\u5fc5\u987b\u53ef\u4ee5\u8868\u793a\u4e3a\u56fa\u5b9a\u4f4d\u6570\u7684\u683c\u5f0f\uff0c\u4e14\u4f4d\u6570\u4e0d\u80fd\u8fc7\u5927\u3002\u4f8b\u5982\uff0c\u6d6e\u70b9\u6570\u4e0d\u9002\u5408\u4f7f\u7528\u57fa\u6570\u6392\u5e8f\uff0c\u56e0\u4e3a\u5176\u4f4d\u6570 \\(k\\) \u8fc7\u5927\uff0c\u53ef\u80fd\u5bfc\u81f4\u65f6\u95f4\u590d\u6742\u5ea6 \\(O(nk) \\gg O(n^2)\\) \u3002

            • \u65f6\u95f4\u590d\u6742\u5ea6 \\(O(nk)\\) \uff1a\u8bbe\u6570\u636e\u91cf\u4e3a \\(n\\) \u3001\u6570\u636e\u4e3a \\(d\\) \u8fdb\u5236\u3001\u6700\u5927\u4f4d\u6570\u4e3a \\(k\\) \uff0c\u5219\u5bf9\u67d0\u4e00\u4f4d\u6267\u884c\u8ba1\u6570\u6392\u5e8f\u4f7f\u7528 \\(O(n + d)\\) \u65f6\u95f4\uff0c\u6392\u5e8f\u6240\u6709 \\(k\\) \u4f4d\u4f7f\u7528 \\(O((n + d)k)\\) \u65f6\u95f4\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\\(d\\) \u548c \\(k\\) \u90fd\u76f8\u5bf9\u8f83\u5c0f\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u8d8b\u5411 \\(O(n)\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(n + d)\\) \u3001\u975e\u539f\u5730\u6392\u5e8f \uff1a\u4e0e\u8ba1\u6570\u6392\u5e8f\u76f8\u540c\uff0c\u57fa\u6570\u6392\u5e8f\u9700\u8981\u501f\u52a9\u957f\u5ea6\u4e3a \\(n\\) \u548c \\(d\\) \u7684\u6570\u7ec4 res \u548c counter \u3002
            • \u7a33\u5b9a\u6392\u5e8f\uff1a\u4e0e\u8ba1\u6570\u6392\u5e8f\u76f8\u540c\u3002
            "},{"location":"chapter_sorting/selection_sort/","title":"11.2 \u00a0 \u9009\u62e9\u6392\u5e8f","text":"

            \u300c\u9009\u62e9\u6392\u5e8f selection sort\u300d\u7684\u5de5\u4f5c\u539f\u7406\u975e\u5e38\u76f4\u63a5\uff1a\u5f00\u542f\u4e00\u4e2a\u5faa\u73af\uff0c\u6bcf\u8f6e\u4ece\u672a\u6392\u5e8f\u533a\u95f4\u9009\u62e9\u6700\u5c0f\u7684\u5143\u7d20\uff0c\u5c06\u5176\u653e\u5230\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u672b\u5c3e\u3002

            \u8bbe\u6570\u7ec4\u7684\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u9009\u62e9\u6392\u5e8f\u7684\u7b97\u6cd5\u6d41\u7a0b\u5982\u4e0b\uff1a

            1. \u521d\u59cb\u72b6\u6001\u4e0b\uff0c\u6240\u6709\u5143\u7d20\u672a\u6392\u5e8f\uff0c\u5373\u672a\u6392\u5e8f\uff08\u7d22\u5f15\uff09\u533a\u95f4\u4e3a \\([0, n-1]\\) \u3002
            2. \u9009\u53d6\u533a\u95f4 \\([0, n-1]\\) \u4e2d\u7684\u6700\u5c0f\u5143\u7d20\uff0c\u5c06\u5176\u4e0e\u7d22\u5f15 \\(0\\) \u5904\u5143\u7d20\u4ea4\u6362\u3002\u5b8c\u6210\u540e\uff0c\u6570\u7ec4\u524d 1 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
            3. \u9009\u53d6\u533a\u95f4 \\([1, n-1]\\) \u4e2d\u7684\u6700\u5c0f\u5143\u7d20\uff0c\u5c06\u5176\u4e0e\u7d22\u5f15 \\(1\\) \u5904\u5143\u7d20\u4ea4\u6362\u3002\u5b8c\u6210\u540e\uff0c\u6570\u7ec4\u524d 2 \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
            4. \u4ee5\u6b64\u7c7b\u63a8\u3002\u7ecf\u8fc7 \\(n - 1\\) \u8f6e\u9009\u62e9\u4e0e\u4ea4\u6362\u540e\uff0c\u6570\u7ec4\u524d \\(n - 1\\) \u4e2a\u5143\u7d20\u5df2\u6392\u5e8f\u3002
            5. \u4ec5\u5269\u7684\u4e00\u4e2a\u5143\u7d20\u5fc5\u5b9a\u662f\u6700\u5927\u5143\u7d20\uff0c\u65e0\u987b\u6392\u5e8f\uff0c\u56e0\u6b64\u6570\u7ec4\u6392\u5e8f\u5b8c\u6210\u3002
            <1><2><3><4><5><6><7><8><9><10><11>

            \u56fe\uff1a\u9009\u62e9\u6392\u5e8f\u6b65\u9aa4

            \u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u7528 \\(k\\) \u6765\u8bb0\u5f55\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust selection_sort.java
            /* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(int[] nums) {\nint n = nums.length;\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (int i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nint k = i;\nfor (int j = i + 1; j < n; j++) {\nif (nums[j] < nums[k])\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nint temp = nums[i];\nnums[i] = nums[k];\nnums[k] = temp;\n}\n}\n
            selection_sort.cpp
            /* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(vector<int> &nums) {\nint n = nums.size();\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (int i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nint k = i;\nfor (int j = i + 1; j < n; j++) {\nif (nums[j] < nums[k])\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nswap(nums[i], nums[k]);\n}\n}\n
            selection_sort.py
            def selection_sort(nums: list[int]):\n\"\"\"\u9009\u62e9\u6392\u5e8f\"\"\"\nn = len(nums)\n# \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor i in range(n - 1):\n# \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nk = i\nfor j in range(i + 1, n):\nif nums[j] < nums[k]:\nk = j  # \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n# \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nnums[i], nums[k] = nums[k], nums[i]\n
            selection_sort.go
            /* \u9009\u62e9\u6392\u5e8f */\nfunc selectionSort(nums []int) {\nn := len(nums)\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor i := 0; i < n-1; i++ {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nk := i\nfor j := i + 1; j < n; j++ {\nif nums[j] < nums[k] {\n// \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\nk = j\n}\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nnums[i], nums[k] = nums[k], nums[i]\n}\n}\n
            selection_sort.js
            /* \u9009\u62e9\u6392\u5e8f */\nfunction selectionSort(nums) {\nlet n = nums.length;\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (let i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nlet k = i;\nfor (let j = i + 1; j < n; j++) {\nif (nums[j] < nums[k]) {\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n[nums[i], nums[k]] = [nums[k], nums[i]];\n}\n}\n
            selection_sort.ts
            /* \u9009\u62e9\u6392\u5e8f */\nfunction selectionSort(nums: number[]): void {\nlet n = nums.length;\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (let i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nlet k = i;\nfor (let j = i + 1; j < n; j++) {\nif (nums[j] < nums[k]) {\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n[nums[i], nums[k]] = [nums[k], nums[i]];\n}\n}\n
            selection_sort.c
            /* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(int nums[], int n) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (int i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nint k = i;\nfor (int j = i + 1; j < n; j++) {\nif (nums[j] < nums[k])\nk = j;  // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nint temp = nums[i];\nnums[i] = nums[k];\nnums[k] = temp;\n}\n}\n
            selection_sort.cs
            /* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(int[] nums) {\nint n = nums.Length;\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (int i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nint k = i;\nfor (int j = i + 1; j < n; j++) {\nif (nums[j] < nums[k])\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\n(nums[k], nums[i]) = (nums[i], nums[k]);\n}\n}\n
            selection_sort.swift
            /* \u9009\u62e9\u6392\u5e8f */\nfunc selectionSort(nums: inout [Int]) {\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor i in nums.indices.dropLast() {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nvar k = i\nfor j in nums.indices.dropFirst(i + 1) {\nif nums[j] < nums[k] {\nk = j // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nnums.swapAt(i, k)\n}\n}\n
            selection_sort.zig
            [class]{}-[func]{selectionSort}\n
            selection_sort.dart
            /* \u9009\u62e9\u6392\u5e8f */\nvoid selectionSort(List<int> nums) {\nint n = nums.length;\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor (int i = 0; i < n - 1; i++) {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nint k = i;\nfor (int j = i + 1; j < n; j++) {\nif (nums[j] < nums[k]) k = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nint temp = nums[i];\nnums[i] = nums[k];\nnums[k] = temp;\n}\n}\n
            selection_sort.rs
            /* \u9009\u62e9\u6392\u5e8f */\nfn selection_sort(nums: &mut [i32]) {\nlet n = nums.len();\n// \u5916\u5faa\u73af\uff1a\u672a\u6392\u5e8f\u533a\u95f4\u4e3a [i, n-1]\nfor i in 0..n-1 {\n// \u5185\u5faa\u73af\uff1a\u627e\u5230\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u6700\u5c0f\u5143\u7d20\nlet mut k = i;\nfor j in i+1..n {\nif nums[j] < nums[k] {\nk = j; // \u8bb0\u5f55\u6700\u5c0f\u5143\u7d20\u7684\u7d22\u5f15\n}\n}\n// \u5c06\u8be5\u6700\u5c0f\u5143\u7d20\u4e0e\u672a\u6392\u5e8f\u533a\u95f4\u7684\u9996\u4e2a\u5143\u7d20\u4ea4\u6362\nnums.swap(i, k);\n}\n}\n
            "},{"location":"chapter_sorting/selection_sort/#1121","title":"11.2.1 \u00a0 \u7b97\u6cd5\u7279\u6027","text":"
            • \u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3001\u975e\u81ea\u9002\u5e94\u6392\u5e8f\uff1a\u5916\u5faa\u73af\u5171 \\(n - 1\\) \u8f6e\uff0c\u7b2c\u4e00\u8f6e\u7684\u672a\u6392\u5e8f\u533a\u95f4\u957f\u5ea6\u4e3a \\(n\\) \uff0c\u6700\u540e\u4e00\u8f6e\u7684\u672a\u6392\u5e8f\u533a\u95f4\u957f\u5ea6\u4e3a \\(2\\) \uff0c\u5373\u5404\u8f6e\u5916\u5faa\u73af\u5206\u522b\u5305\u542b \\(n\\) , \\(n - 1\\) , \\(\\cdots\\) , \\(2\\) \u8f6e\u5185\u5faa\u73af\uff0c\u6c42\u548c\u4e3a \\(\\frac{(n - 1)(n + 2)}{2}\\) \u3002
            • \u7a7a\u95f4\u590d\u6742\u5ea6 \\(O(1)\\) \u3001\u539f\u5730\u6392\u5e8f\uff1a\u6307\u9488 \\(i\\) , \\(j\\) \u4f7f\u7528\u5e38\u6570\u5927\u5c0f\u7684\u989d\u5916\u7a7a\u95f4\u3002
            • \u975e\u7a33\u5b9a\u6392\u5e8f\uff1a\u5728\u4ea4\u6362\u5143\u7d20\u65f6\uff0c\u6709\u53ef\u80fd\u5c06 nums[i] \u4ea4\u6362\u81f3\u5176\u76f8\u7b49\u5143\u7d20\u7684\u53f3\u8fb9\uff0c\u5bfc\u81f4\u4e24\u8005\u7684\u76f8\u5bf9\u987a\u5e8f\u53d1\u751f\u6539\u53d8\u3002

            \u56fe\uff1a\u9009\u62e9\u6392\u5e8f\u975e\u7a33\u5b9a\u793a\u4f8b

            "},{"location":"chapter_sorting/sorting_algorithm/","title":"11.1 \u00a0 \u6392\u5e8f\u7b97\u6cd5","text":"

            \u300c\u6392\u5e8f\u7b97\u6cd5 sorting algorithm\u300d\u7528\u4e8e\u5bf9\u4e00\u7ec4\u6570\u636e\u6309\u7167\u7279\u5b9a\u987a\u5e8f\u8fdb\u884c\u6392\u5217\u3002\u6392\u5e8f\u7b97\u6cd5\u6709\u7740\u5e7f\u6cdb\u7684\u5e94\u7528\uff0c\u56e0\u4e3a\u6709\u5e8f\u6570\u636e\u901a\u5e38\u80fd\u591f\u88ab\u66f4\u6709\u6548\u5730\u67e5\u627e\u3001\u5206\u6790\u548c\u5904\u7406\u3002

            \u5728\u6392\u5e8f\u7b97\u6cd5\u4e2d\uff0c\u6570\u636e\u7c7b\u578b\u53ef\u4ee5\u662f\u6574\u6570\u3001\u6d6e\u70b9\u6570\u3001\u5b57\u7b26\u6216\u5b57\u7b26\u4e32\u7b49\uff1b\u987a\u5e8f\u7684\u5224\u65ad\u89c4\u5219\u53ef\u6839\u636e\u9700\u6c42\u8bbe\u5b9a\uff0c\u5982\u6570\u5b57\u5927\u5c0f\u3001\u5b57\u7b26 ASCII \u7801\u987a\u5e8f\u6216\u81ea\u5b9a\u4e49\u89c4\u5219\u3002

            \u56fe\uff1a\u6570\u636e\u7c7b\u578b\u548c\u5224\u65ad\u89c4\u5219\u793a\u4f8b

            "},{"location":"chapter_sorting/sorting_algorithm/#1111","title":"11.1.1 \u00a0 \u8bc4\u4ef7\u7ef4\u5ea6","text":"

            \u8fd0\u884c\u6548\u7387\uff1a\u6211\u4eec\u671f\u671b\u6392\u5e8f\u7b97\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5c3d\u91cf\u4f4e\uff0c\u4e14\u603b\u4f53\u64cd\u4f5c\u6570\u91cf\u8f83\u5c11\uff08\u5373\u65f6\u95f4\u590d\u6742\u5ea6\u4e2d\u7684\u5e38\u6570\u9879\u964d\u4f4e\uff09\u3002\u5bf9\u4e8e\u5927\u6570\u636e\u91cf\u60c5\u51b5\uff0c\u8fd0\u884c\u6548\u7387\u663e\u5f97\u5c24\u4e3a\u91cd\u8981\u3002

            \u5c31\u5730\u6027\uff1a\u987e\u540d\u601d\u4e49\uff0c\u300c\u539f\u5730\u6392\u5e8f\u300d\u901a\u8fc7\u5728\u539f\u6570\u7ec4\u4e0a\u76f4\u63a5\u64cd\u4f5c\u5b9e\u73b0\u6392\u5e8f\uff0c\u65e0\u987b\u501f\u52a9\u989d\u5916\u7684\u8f85\u52a9\u6570\u7ec4\uff0c\u4ece\u800c\u8282\u7701\u5185\u5b58\u3002\u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u539f\u5730\u6392\u5e8f\u7684\u6570\u636e\u642c\u8fd0\u64cd\u4f5c\u8f83\u5c11\uff0c\u8fd0\u884c\u901f\u5ea6\u4e5f\u66f4\u5feb\u3002

            \u7a33\u5b9a\u6027\uff1a\u300c\u7a33\u5b9a\u6392\u5e8f\u300d\u5728\u5b8c\u6210\u6392\u5e8f\u540e\uff0c\u76f8\u7b49\u5143\u7d20\u5728\u6570\u7ec4\u4e2d\u7684\u76f8\u5bf9\u987a\u5e8f\u4e0d\u53d1\u751f\u6539\u53d8\u3002

            \u7a33\u5b9a\u6392\u5e8f\u662f\u591a\u7ea7\u6392\u5e8f\u573a\u666f\u7684\u5fc5\u8981\u6761\u4ef6\u3002\u5047\u8bbe\u6211\u4eec\u6709\u4e00\u4e2a\u5b58\u50a8\u5b66\u751f\u4fe1\u606f\u7684\u8868\u683c\uff0c\u7b2c 1 \u5217\u548c\u7b2c 2 \u5217\u5206\u522b\u662f\u59d3\u540d\u548c\u5e74\u9f84\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u300c\u975e\u7a33\u5b9a\u6392\u5e8f\u300d\u53ef\u80fd\u5bfc\u81f4\u8f93\u5165\u6570\u636e\u7684\u6709\u5e8f\u6027\u4e27\u5931\u3002

            # \u8f93\u5165\u6570\u636e\u662f\u6309\u7167\u59d3\u540d\u6392\u5e8f\u597d\u7684\n# (name, age)\n('A', 19)\n('B', 18)\n('C', 21)\n('D', 19)\n('E', 23)\n# \u5047\u8bbe\u4f7f\u7528\u975e\u7a33\u5b9a\u6392\u5e8f\u7b97\u6cd5\u6309\u5e74\u9f84\u6392\u5e8f\u5217\u8868\uff0c\n# \u7ed3\u679c\u4e2d ('D', 19) \u548c ('A', 19) \u7684\u76f8\u5bf9\u4f4d\u7f6e\u6539\u53d8\uff0c\n# \u8f93\u5165\u6570\u636e\u6309\u59d3\u540d\u6392\u5e8f\u7684\u6027\u8d28\u4e22\u5931\n('B', 18)\n('D', 19)\n('A', 19)\n('C', 21)\n('E', 23)\n

            \u81ea\u9002\u5e94\u6027\uff1a\u300c\u81ea\u9002\u5e94\u6392\u5e8f\u300d\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u53d7\u8f93\u5165\u6570\u636e\u7684\u5f71\u54cd\uff0c\u5373\u6700\u4f73\u3001\u6700\u5dee\u3001\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\u5e76\u4e0d\u5b8c\u5168\u76f8\u7b49\u3002

            \u81ea\u9002\u5e94\u6027\u9700\u8981\u6839\u636e\u5177\u4f53\u60c5\u51b5\u6765\u8bc4\u4f30\u3002\u5982\u679c\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u5dee\u4e8e\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u8bf4\u660e\u6392\u5e8f\u7b97\u6cd5\u5728\u67d0\u4e9b\u6570\u636e\u4e0b\u6027\u80fd\u53ef\u80fd\u52a3\u5316\uff0c\u56e0\u6b64\u88ab\u89c6\u4e3a\u8d1f\u9762\u5c5e\u6027\uff1b\u800c\u5982\u679c\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u4e8e\u5e73\u5747\u65f6\u95f4\u590d\u6742\u5ea6\uff0c\u5219\u88ab\u89c6\u4e3a\u6b63\u9762\u5c5e\u6027\u3002

            \u662f\u5426\u57fa\u4e8e\u6bd4\u8f83\uff1a\u300c\u57fa\u4e8e\u6bd4\u8f83\u7684\u6392\u5e8f\u300d\u4f9d\u8d56\u4e8e\u6bd4\u8f83\u8fd0\u7b97\u7b26\uff08\\(<\\) , \\(=\\) , \\(>\\)\uff09\u6765\u5224\u65ad\u5143\u7d20\u7684\u76f8\u5bf9\u987a\u5e8f\uff0c\u4ece\u800c\u6392\u5e8f\u6574\u4e2a\u6570\u7ec4\uff0c\u7406\u8bba\u6700\u4f18\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n \\log n)\\) \u3002\u800c\u300c\u975e\u6bd4\u8f83\u6392\u5e8f\u300d\u4e0d\u4f7f\u7528\u6bd4\u8f83\u8fd0\u7b97\u7b26\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u53ef\u8fbe \\(O(n)\\) \uff0c\u4f46\u5176\u901a\u7528\u6027\u76f8\u5bf9\u8f83\u5dee\u3002

            "},{"location":"chapter_sorting/sorting_algorithm/#1112","title":"11.1.2 \u00a0 \u7406\u60f3\u6392\u5e8f\u7b97\u6cd5","text":"

            \u8fd0\u884c\u5feb\u3001\u539f\u5730\u3001\u7a33\u5b9a\u3001\u6b63\u5411\u81ea\u9002\u5e94\u3001\u901a\u7528\u6027\u597d\u3002\u663e\u7136\uff0c\u8fc4\u4eca\u4e3a\u6b62\u5c1a\u672a\u53d1\u73b0\u517c\u5177\u4ee5\u4e0a\u6240\u6709\u7279\u6027\u7684\u6392\u5e8f\u7b97\u6cd5\u3002\u56e0\u6b64\uff0c\u5728\u9009\u62e9\u6392\u5e8f\u7b97\u6cd5\u65f6\uff0c\u9700\u8981\u6839\u636e\u5177\u4f53\u7684\u6570\u636e\u7279\u70b9\u548c\u95ee\u9898\u9700\u6c42\u6765\u51b3\u5b9a\u3002

            \u63a5\u4e0b\u6765\uff0c\u6211\u4eec\u5c06\u5171\u540c\u5b66\u4e60\u5404\u79cd\u6392\u5e8f\u7b97\u6cd5\uff0c\u5e76\u57fa\u4e8e\u4e0a\u8ff0\u8bc4\u4ef7\u7ef4\u5ea6\u5bf9\u5404\u4e2a\u6392\u5e8f\u7b97\u6cd5\u7684\u4f18\u7f3a\u70b9\u8fdb\u884c\u5206\u6790\u3002

            "},{"location":"chapter_sorting/summary/","title":"11.11 \u00a0 \u5c0f\u7ed3","text":"
            • \u5192\u6ce1\u6392\u5e8f\u901a\u8fc7\u4ea4\u6362\u76f8\u90bb\u5143\u7d20\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u901a\u8fc7\u6dfb\u52a0\u4e00\u4e2a\u6807\u5fd7\u4f4d\u6765\u5b9e\u73b0\u63d0\u524d\u8fd4\u56de\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u5192\u6ce1\u6392\u5e8f\u7684\u6700\u4f73\u65f6\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u5230 \\(O(n)\\) \u3002
            • \u63d2\u5165\u6392\u5e8f\u6bcf\u8f6e\u5c06\u672a\u6392\u5e8f\u533a\u95f4\u5185\u7684\u5143\u7d20\u63d2\u5165\u5230\u5df2\u6392\u5e8f\u533a\u95f4\u7684\u6b63\u786e\u4f4d\u7f6e\uff0c\u4ece\u800c\u5b8c\u6210\u6392\u5e8f\u3002\u867d\u7136\u63d2\u5165\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \uff0c\u4f46\u7531\u4e8e\u5355\u5143\u64cd\u4f5c\u76f8\u5bf9\u8f83\u5c11\uff0c\u5b83\u5728\u5c0f\u6570\u636e\u91cf\u7684\u6392\u5e8f\u4efb\u52a1\u4e2d\u975e\u5e38\u53d7\u6b22\u8fce\u3002
            • \u5feb\u901f\u6392\u5e8f\u57fa\u4e8e\u54e8\u5175\u5212\u5206\u64cd\u4f5c\u5b9e\u73b0\u6392\u5e8f\u3002\u5728\u54e8\u5175\u5212\u5206\u4e2d\uff0c\u6709\u53ef\u80fd\u6bcf\u6b21\u90fd\u9009\u53d6\u5230\u6700\u5dee\u7684\u57fa\u51c6\u6570\uff0c\u5bfc\u81f4\u65f6\u95f4\u590d\u6742\u5ea6\u52a3\u5316\u81f3 \\(O(n^2)\\) \u3002\u5f15\u5165\u4e2d\u4f4d\u6570\u57fa\u51c6\u6570\u6216\u968f\u673a\u57fa\u51c6\u6570\u53ef\u4ee5\u964d\u4f4e\u8fd9\u79cd\u52a3\u5316\u7684\u6982\u7387\u3002\u5c3e\u9012\u5f52\u65b9\u6cd5\u53ef\u4ee5\u6709\u6548\u5730\u51cf\u5c11\u9012\u5f52\u6df1\u5ea6\uff0c\u5c06\u7a7a\u95f4\u590d\u6742\u5ea6\u4f18\u5316\u5230 \\(O(\\log n)\\) \u3002
            • \u5f52\u5e76\u6392\u5e8f\u5305\u62ec\u5212\u5206\u548c\u5408\u5e76\u4e24\u4e2a\u9636\u6bb5\uff0c\u5178\u578b\u5730\u4f53\u73b0\u4e86\u5206\u6cbb\u7b56\u7565\u3002\u5728\u5f52\u5e76\u6392\u5e8f\u4e2d\uff0c\u6392\u5e8f\u6570\u7ec4\u9700\u8981\u521b\u5efa\u8f85\u52a9\u6570\u7ec4\uff0c\u7a7a\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff1b\u7136\u800c\u6392\u5e8f\u94fe\u8868\u7684\u7a7a\u95f4\u590d\u6742\u5ea6\u53ef\u4ee5\u4f18\u5316\u81f3 \\(O(1)\\) \u3002
            • \u6876\u6392\u5e8f\u5305\u542b\u4e09\u4e2a\u6b65\u9aa4\uff1a\u6570\u636e\u5206\u6876\u3001\u6876\u5185\u6392\u5e8f\u548c\u5408\u5e76\u7ed3\u679c\u3002\u5b83\u540c\u6837\u4f53\u73b0\u4e86\u5206\u6cbb\u7b56\u7565\uff0c\u9002\u7528\u4e8e\u6570\u636e\u4f53\u91cf\u5f88\u5927\u7684\u60c5\u51b5\u3002\u6876\u6392\u5e8f\u7684\u5173\u952e\u5728\u4e8e\u5bf9\u6570\u636e\u8fdb\u884c\u5e73\u5747\u5206\u914d\u3002
            • \u8ba1\u6570\u6392\u5e8f\u662f\u6876\u6392\u5e8f\u7684\u4e00\u4e2a\u7279\u4f8b\uff0c\u5b83\u901a\u8fc7\u7edf\u8ba1\u6570\u636e\u51fa\u73b0\u7684\u6b21\u6570\u6765\u5b9e\u73b0\u6392\u5e8f\u3002\u8ba1\u6570\u6392\u5e8f\u9002\u7528\u4e8e\u6570\u636e\u91cf\u5927\u4f46\u6570\u636e\u8303\u56f4\u6709\u9650\u7684\u60c5\u51b5\uff0c\u5e76\u4e14\u8981\u6c42\u6570\u636e\u80fd\u591f\u8f6c\u6362\u4e3a\u6b63\u6574\u6570\u3002
            • \u57fa\u6570\u6392\u5e8f\u901a\u8fc7\u9010\u4f4d\u6392\u5e8f\u6765\u5b9e\u73b0\u6570\u636e\u6392\u5e8f\uff0c\u8981\u6c42\u6570\u636e\u80fd\u591f\u8868\u793a\u4e3a\u56fa\u5b9a\u4f4d\u6570\u7684\u6570\u5b57\u3002
            • \u603b\u7684\u6765\u8bf4\uff0c\u6211\u4eec\u5e0c\u671b\u627e\u5230\u4e00\u79cd\u6392\u5e8f\u7b97\u6cd5\uff0c\u5177\u6709\u9ad8\u6548\u7387\u3001\u7a33\u5b9a\u3001\u539f\u5730\u4ee5\u53ca\u6b63\u5411\u81ea\u9002\u5e94\u6027\u7b49\u4f18\u70b9\u3002\u7136\u800c\uff0c\u6b63\u5982\u5176\u4ed6\u6570\u636e\u7ed3\u6784\u548c\u7b97\u6cd5\u4e00\u6837\uff0c\u6ca1\u6709\u4e00\u79cd\u6392\u5e8f\u7b97\u6cd5\u80fd\u591f\u540c\u65f6\u6ee1\u8db3\u6240\u6709\u8fd9\u4e9b\u6761\u4ef6\u3002\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\uff0c\u6211\u4eec\u9700\u8981\u6839\u636e\u6570\u636e\u7684\u7279\u6027\u6765\u9009\u62e9\u5408\u9002\u7684\u6392\u5e8f\u7b97\u6cd5\u3002

            \u56fe\uff1a\u6392\u5e8f\u7b97\u6cd5\u5bf9\u6bd4

            "},{"location":"chapter_sorting/summary/#11111-q-a","title":"11.11.1 \u00a0 Q & A","text":"

            \u6392\u5e8f\u7b97\u6cd5\u7a33\u5b9a\u6027\u5728\u4ec0\u4e48\u60c5\u51b5\u4e0b\u662f\u5fc5\u987b\u7684\uff1f

            \u5728\u73b0\u5b9e\u4e2d\uff0c\u6211\u4eec\u6709\u53ef\u80fd\u662f\u5728\u5bf9\u8c61\u7684\u67d0\u4e2a\u5c5e\u6027\u4e0a\u8fdb\u884c\u6392\u5e8f\u3002\u4f8b\u5982\uff0c\u5b66\u751f\u6709\u59d3\u540d\u548c\u8eab\u9ad8\u4e24\u4e2a\u5c5e\u6027\uff0c\u6211\u4eec\u5e0c\u671b\u5b9e\u73b0\u4e00\u4e2a\u591a\u7ea7\u6392\u5e8f/

            \u5148\u6309\u7167\u59d3\u540d\u8fdb\u884c\u6392\u5e8f\uff0c\u5f97\u5230 (A, 180) (B, 185) (C, 170) (D, 170) \uff1b\u63a5\u4e0b\u6765\u5bf9\u8eab\u9ad8\u8fdb\u884c\u6392\u5e8f\u3002\u7531\u4e8e\u6392\u5e8f\u7b97\u6cd5\u4e0d\u7a33\u5b9a\uff0c\u6211\u4eec\u53ef\u80fd\u5f97\u5230 (D, 170) (C, 170) (A, 180) (B, 185) \u3002

            \u53ef\u4ee5\u53d1\u73b0\uff0c\u5b66\u751f D \u548c C \u7684\u4f4d\u7f6e\u53d1\u751f\u4e86\u4ea4\u6362\uff0c\u59d3\u540d\u7684\u6709\u5e8f\u6027\u88ab\u7834\u574f\u4e86\uff0c\u800c\u8fd9\u662f\u6211\u4eec\u4e0d\u5e0c\u671b\u770b\u5230\u7684\u3002

            \u54e8\u5175\u5212\u5206\u4e2d\u201c\u4ece\u53f3\u5f80\u5de6\u67e5\u627e\u201d\u4e0e\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u7684\u987a\u5e8f\u53ef\u4ee5\u4ea4\u6362\u5417\uff1f

            \u4e0d\u884c\uff0c\u5f53\u6211\u4eec\u4ee5\u6700\u5de6\u7aef\u5143\u7d20\u4e3a\u57fa\u51c6\u6570\u65f6\uff0c\u5fc5\u987b\u5148\u201c\u4ece\u53f3\u5f80\u5de6\u67e5\u627e\u201d\u518d\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u3002\u8fd9\u4e2a\u7ed3\u8bba\u6709\u4e9b\u53cd\u76f4\u89c9\uff0c\u6211\u4eec\u6765\u5256\u6790\u4e00\u4e0b\u539f\u56e0\u3002

            \u54e8\u5175\u5212\u5206 partition() \u7684\u6700\u540e\u4e00\u6b65\u662f\u4ea4\u6362 nums[left] \u548c nums[i] \u3002\u5b8c\u6210\u4ea4\u6362\u540e\uff0c\u57fa\u51c6\u6570\u5de6\u8fb9\u7684\u5143\u7d20\u90fd <= \u57fa\u51c6\u6570\uff0c\u8fd9\u5c31\u8981\u6c42\u6700\u540e\u4e00\u6b65\u4ea4\u6362\u524d nums[left] >= nums[i] \u5fc5\u987b\u6210\u7acb\u3002\u5047\u8bbe\u6211\u4eec\u5148\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\uff0c\u90a3\u4e48\u5982\u679c\u627e\u4e0d\u5230\u6bd4\u57fa\u51c6\u6570\u66f4\u5c0f\u7684\u5143\u7d20\uff0c\u5219\u4f1a\u5728 i == j \u65f6\u8df3\u51fa\u5faa\u73af\uff0c\u6b64\u65f6\u53ef\u80fd nums[j] == nums[i] > nums[left]\u3002\u4e5f\u5c31\u662f\u8bf4\uff0c\u6b64\u65f6\u6700\u540e\u4e00\u6b65\u4ea4\u6362\u64cd\u4f5c\u4f1a\u628a\u4e00\u4e2a\u6bd4\u57fa\u51c6\u6570\u66f4\u5927\u7684\u5143\u7d20\u4ea4\u6362\u81f3\u6570\u7ec4\u6700\u5de6\u7aef\uff0c\u5bfc\u81f4\u54e8\u5175\u5212\u5206\u5931\u8d25\u3002

            \u4e3e\u4e2a\u4f8b\u5b50\uff0c\u7ed9\u5b9a\u6570\u7ec4 [0, 0, 0, 0, 1] \uff0c\u5982\u679c\u5148\u201c\u4ece\u5de6\u5411\u53f3\u67e5\u627e\u201d\uff0c\u54e8\u5175\u5212\u5206\u540e\u6570\u7ec4\u4e3a [1, 0, 0, 0, 0] \uff0c\u8fd9\u4e2a\u7ed3\u679c\u662f\u4e0d\u6b63\u786e\u7684\u3002

            \u518d\u6df1\u5165\u601d\u8003\u4e00\u4e0b\uff0c\u5982\u679c\u6211\u4eec\u9009\u62e9 nums[right] \u4e3a\u57fa\u51c6\u6570\uff0c\u90a3\u4e48\u6b63\u597d\u53cd\u8fc7\u6765\uff0c\u5fc5\u987b\u5148\u201c\u4ece\u5de6\u5f80\u53f3\u67e5\u627e\u201d\u3002

            \u5173\u4e8e\u5c3e\u9012\u5f52\u4f18\u5316\uff0c\u4e3a\u4ec0\u4e48\u9009\u77ed\u7684\u6570\u7ec4\u80fd\u4fdd\u8bc1\u9012\u5f52\u6df1\u5ea6\u4e0d\u8d85\u8fc7 \\(\\log n\\) \uff1f

            \u9012\u5f52\u6df1\u5ea6\u5c31\u662f\u5f53\u524d\u672a\u8fd4\u56de\u7684\u9012\u5f52\u65b9\u6cd5\u7684\u6570\u91cf\u3002\u6bcf\u8f6e\u54e8\u5175\u5212\u5206\u6211\u4eec\u5c06\u539f\u6570\u7ec4\u5212\u5206\u4e3a\u4e24\u4e2a\u5b50\u6570\u7ec4\u3002\u5728\u5c3e\u9012\u5f52\u4f18\u5316\u540e\uff0c\u5411\u4e0b\u9012\u5f52\u7684\u5b50\u6570\u7ec4\u957f\u5ea6\u6700\u5927\u4e3a\u539f\u6570\u7ec4\u7684\u4e00\u534a\u957f\u5ea6\u3002\u5047\u8bbe\u6700\u5dee\u60c5\u51b5\uff0c\u4e00\u76f4\u4e3a\u4e00\u534a\u957f\u5ea6\uff0c\u90a3\u4e48\u6700\u7ec8\u7684\u9012\u5f52\u6df1\u5ea6\u5c31\u662f \\(\\log n\\) \u3002

            \u56de\u987e\u539f\u59cb\u7684\u5feb\u901f\u6392\u5e8f\uff0c\u6211\u4eec\u6709\u53ef\u80fd\u4f1a\u8fde\u7eed\u5730\u9012\u5f52\u957f\u5ea6\u8f83\u5927\u7684\u6570\u7ec4\uff0c\u6700\u5dee\u60c5\u51b5\u4e0b\u4e3a \\(n, n - 1, n - 2, ..., 2, 1\\) \uff0c\u4ece\u800c\u9012\u5f52\u6df1\u5ea6\u4e3a \\(n\\) \u3002\u5c3e\u9012\u5f52\u4f18\u5316\u53ef\u4ee5\u907f\u514d\u8fd9\u79cd\u60c5\u51b5\u7684\u51fa\u73b0\u3002

            \u5f53\u6570\u7ec4\u4e2d\u6240\u6709\u5143\u7d20\u90fd\u76f8\u7b49\u65f6\uff0c\u5feb\u901f\u6392\u5e8f\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u662f \\(O(n^2)\\) \u5417\uff1f\u8be5\u5982\u4f55\u5904\u7406\u8fd9\u79cd\u9000\u5316\u60c5\u51b5\uff1f

            \u662f\u7684\u3002\u8fd9\u79cd\u60c5\u51b5\u53ef\u4ee5\u8003\u8651\u901a\u8fc7\u54e8\u5175\u5212\u5206\u5c06\u6570\u7ec4\u5212\u5206\u4e3a\u4e09\u4e2a\u90e8\u5206\uff1a\u5c0f\u4e8e\u3001\u7b49\u4e8e\u3001\u5927\u4e8e\u57fa\u51c6\u6570\u3002\u4ec5\u5411\u4e0b\u9012\u5f52\u5c0f\u4e8e\u548c\u5927\u4e8e\u7684\u4e24\u90e8\u5206\u3002\u5728\u8be5\u65b9\u6cd5\u4e0b\uff0c\u8f93\u5165\u5143\u7d20\u5168\u90e8\u76f8\u7b49\u7684\u6570\u7ec4\uff0c\u4ec5\u4e00\u8f6e\u54e8\u5175\u5212\u5206\u5373\u53ef\u5b8c\u6210\u6392\u5e8f\u3002

            \u6876\u6392\u5e8f\u7684\u6700\u5dee\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a\u4ec0\u4e48\u662f \\(O(n^2)\\) \uff1f

            \u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u5143\u7d20\u88ab\u5206\u81f3\u540c\u4e00\u4e2a\u6876\u4e2d\u3002\u5982\u679c\u6211\u4eec\u91c7\u7528\u4e00\u4e2a \\(O(n^2)\\) \u7b97\u6cd5\u6765\u6392\u5e8f\u8fd9\u4e9b\u5143\u7d20\uff0c\u5219\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n^2)\\) \u3002

            "},{"location":"chapter_stack_and_queue/","title":"\u7b2c 5 \u7ae0 \u00a0 \u6808\u4e0e\u961f\u5217","text":"

            Abstract

            \u6808\u5982\u540c\u53e0\u732b\u732b\uff0c\u800c\u961f\u5217\u5c31\u50cf\u732b\u732b\u6392\u961f\u3002

            \u4e24\u8005\u5206\u522b\u4ee3\u8868\u7740\u5148\u5165\u540e\u51fa\u548c\u5148\u5165\u5148\u51fa\u7684\u903b\u8f91\u5173\u7cfb\u3002

            "},{"location":"chapter_stack_and_queue/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 5.1 \u00a0 \u6808
            • 5.2 \u00a0 \u961f\u5217
            • 5.3 \u00a0 \u53cc\u5411\u961f\u5217
            • 5.4 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_stack_and_queue/deque/","title":"5.3 \u00a0 \u53cc\u5411\u961f\u5217","text":"

            \u5bf9\u4e8e\u961f\u5217\uff0c\u6211\u4eec\u4ec5\u80fd\u5728\u5934\u90e8\u5220\u9664\u6216\u5728\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u3002\u7136\u800c\uff0c\u300c\u53cc\u5411\u961f\u5217 deque\u300d\u63d0\u4f9b\u4e86\u66f4\u9ad8\u7684\u7075\u6d3b\u6027\uff0c\u5141\u8bb8\u5728\u5934\u90e8\u548c\u5c3e\u90e8\u6267\u884c\u5143\u7d20\u7684\u6dfb\u52a0\u6216\u5220\u9664\u64cd\u4f5c\u3002

            \u56fe\uff1a\u53cc\u5411\u961f\u5217\u7684\u64cd\u4f5c

            "},{"location":"chapter_stack_and_queue/deque/#531","title":"5.3.1 \u00a0 \u53cc\u5411\u961f\u5217\u5e38\u7528\u64cd\u4f5c","text":"

            \u53cc\u5411\u961f\u5217\u7684\u5e38\u7528\u64cd\u4f5c\u5982\u4e0b\u8868\u6240\u793a\uff0c\u5177\u4f53\u7684\u65b9\u6cd5\u540d\u79f0\u9700\u8981\u6839\u636e\u6240\u4f7f\u7528\u7684\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002

            \u8868\uff1a\u53cc\u5411\u961f\u5217\u64cd\u4f5c\u6548\u7387

            \u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 pushFirst() \u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u9996 \\(O(1)\\) pushLast() \u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u5c3e \\(O(1)\\) popFirst() \u5220\u9664\u961f\u9996\u5143\u7d20 \\(O(1)\\) popLast() \u5220\u9664\u961f\u5c3e\u5143\u7d20 \\(O(1)\\) peekFirst() \u8bbf\u95ee\u961f\u9996\u5143\u7d20 \\(O(1)\\) peekLast() \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 \\(O(1)\\)

            \u540c\u6837\u5730\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u4e2d\u5df2\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\u7c7b\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust deque.java
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\nDeque<Integer> deque = new LinkedList<>();\n/* \u5143\u7d20\u5165\u961f */\ndeque.offerLast(2);   // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.offerLast(5);\ndeque.offerLast(4);\ndeque.offerFirst(3);  // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.offerFirst(1);\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.peekFirst();  // \u961f\u9996\u5143\u7d20\nint peekLast = deque.peekLast();    // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\nint popFirst = deque.pollFirst();  // \u961f\u9996\u5143\u7d20\u51fa\u961f\nint popLast = deque.pollLast();    // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.size();\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = deque.isEmpty();\n
            deque.cpp
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\ndeque<int> deque;\n/* \u5143\u7d20\u5165\u961f */\ndeque.push_back(2);   // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.push_back(5);\ndeque.push_back(4);\ndeque.push_front(3);  // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.push_front(1);\n/* \u8bbf\u95ee\u5143\u7d20 */\nint front = deque.front(); // \u961f\u9996\u5143\u7d20\nint back = deque.back();   // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\ndeque.pop_front();  // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.pop_back();   // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.size();\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty = deque.empty();\n
            deque.py
            # \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217\ndeque: Deque[int] = collections.deque()\n# \u5143\u7d20\u5165\u961f\ndeque.append(2)      # \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.append(5)\ndeque.append(4)\ndeque.appendleft(3)  # \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.appendleft(1)\n# \u8bbf\u95ee\u5143\u7d20\nfront: int = deque[0]  # \u961f\u9996\u5143\u7d20\nrear: int = deque[-1]  # \u961f\u5c3e\u5143\u7d20\n# \u5143\u7d20\u51fa\u961f\npop_front: int = deque.popleft()  # \u961f\u9996\u5143\u7d20\u51fa\u961f\npop_rear: int = deque.pop()       # \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n# \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nsize: int = len(deque)\n# \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(deque) == 0\n
            deque_test.go
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 Go \u4e2d\uff0c\u5c06 list \u4f5c\u4e3a\u53cc\u5411\u961f\u5217\u4f7f\u7528\ndeque := list.New()\n/* \u5143\u7d20\u5165\u961f */\ndeque.PushBack(2)      // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.PushBack(5)\ndeque.PushBack(4)\ndeque.PushFront(3)     // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.PushFront(1)\n/* \u8bbf\u95ee\u5143\u7d20 */\nfront := deque.Front() // \u961f\u9996\u5143\u7d20\nrear := deque.Back()   // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\ndeque.Remove(front)    // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.Remove(rear)     // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize := deque.Len()\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty := deque.Len() == 0\n
            deque.js
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// JavaScript \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u7aef\u961f\u5217\uff0c\u53ea\u80fd\u628a Array \u5f53\u4f5c\u53cc\u7aef\u961f\u5217\u6765\u4f7f\u7528\nconst deque = [];\n/* \u5143\u7d20\u5165\u961f */\ndeque.push(2);\ndeque.push(5);\ndeque.push(4);\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cunshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\ndeque.unshift(3);\ndeque.unshift(1);\nconsole.log(\"\u53cc\u5411\u961f\u5217 deque = \", deque);\n/* \u8bbf\u95ee\u5143\u7d20 */\nconst peekFirst = deque[0];\nconsole.log(\"\u961f\u9996\u5143\u7d20 peekFirst = \" + peekFirst);\nconst peekLast = deque[deque.length - 1];\nconsole.log(\"\u961f\u5c3e\u5143\u7d20 peekLast = \" + peekLast);\n/* \u5143\u7d20\u51fa\u961f */\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst popFront = deque.shift();\nconsole.log(\"\u961f\u9996\u51fa\u961f\u5143\u7d20 popFront = \" + popFront + \"\uff0c\u961f\u9996\u51fa\u961f\u540e deque = \" + deque);\nconst popBack = deque.pop();\nconsole.log(\"\u961f\u5c3e\u51fa\u961f\u5143\u7d20 popBack = \" + popBack + \"\uff0c\u961f\u5c3e\u51fa\u961f\u540e deque = \" + deque);\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = deque.length;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u957f\u5ea6 size = \" + size);\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst isEmpty = size === 0;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a = \" + isEmpty);\n
            deque.ts
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// TypeScript \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u7aef\u961f\u5217\uff0c\u53ea\u80fd\u628a Array \u5f53\u4f5c\u53cc\u7aef\u961f\u5217\u6765\u4f7f\u7528\nconst deque: number[] = [];\n/* \u5143\u7d20\u5165\u961f */\ndeque.push(2);\ndeque.push(5);\ndeque.push(4);\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cunshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\ndeque.unshift(3);\ndeque.unshift(1);\nconsole.log(\"\u53cc\u5411\u961f\u5217 deque = \", deque);\n/* \u8bbf\u95ee\u5143\u7d20 */\nconst peekFirst: number = deque[0];\nconsole.log(\"\u961f\u9996\u5143\u7d20 peekFirst = \" + peekFirst);\nconst peekLast: number = deque[deque.length - 1];\nconsole.log(\"\u961f\u5c3e\u5143\u7d20 peekLast = \" + peekLast);\n/* \u5143\u7d20\u51fa\u961f */\n// \u8bf7\u6ce8\u610f\uff0c\u7531\u4e8e\u662f\u6570\u7ec4\uff0cshift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst popFront: number = deque.shift() as number;\nconsole.log(\"\u961f\u9996\u51fa\u961f\u5143\u7d20 popFront = \" + popFront + \"\uff0c\u961f\u9996\u51fa\u961f\u540e deque = \" + deque);\nconst popBack: number = deque.pop() as number;\nconsole.log(\"\u961f\u5c3e\u51fa\u961f\u5143\u7d20 popBack = \" + popBack + \"\uff0c\u961f\u5c3e\u51fa\u961f\u540e deque = \" + deque);\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nconst size: number = deque.length;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u957f\u5ea6 size = \" + size);\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst isEmpty: boolean = size === 0;\nconsole.log(\"\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a = \" + isEmpty);\n
            deque.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u53cc\u5411\u961f\u5217\n
            deque.cs
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 C# \u4e2d\uff0c\u5c06\u94fe\u8868 LinkedList \u770b\u4f5c\u53cc\u5411\u961f\u5217\u6765\u4f7f\u7528\nLinkedList<int> deque = new LinkedList<int>();\n/* \u5143\u7d20\u5165\u961f */\ndeque.AddLast(2);   // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.AddLast(5);\ndeque.AddLast(4);\ndeque.AddFirst(3);  // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.AddFirst(1);\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.First.Value;  // \u961f\u9996\u5143\u7d20\nint peekLast = deque.Last.Value;    // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\ndeque.RemoveFirst();  // \u961f\u9996\u5143\u7d20\u51fa\u961f\ndeque.RemoveLast();   // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.Count;\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = deque.Count == 0;\n
            deque.swift
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u53cc\u5411\u961f\u5217\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u53cc\u5411\u961f\u5217\u6765\u4f7f\u7528\nvar deque: [Int] = []\n/* \u5143\u7d20\u5165\u961f */\ndeque.append(2) // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.append(5)\ndeque.append(4)\ndeque.insert(3, at: 0) // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.insert(1, at: 0)\n/* \u8bbf\u95ee\u5143\u7d20 */\nlet peekFirst = deque.first! // \u961f\u9996\u5143\u7d20\nlet peekLast = deque.last! // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\n// \u4f7f\u7528 Array \u6a21\u62df\u65f6 popFirst \u7684\u590d\u6742\u5ea6\u4e3a O(n)\nlet popFirst = deque.removeFirst() // \u961f\u9996\u5143\u7d20\u51fa\u961f\nlet popLast = deque.removeLast() // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = deque.count\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = deque.isEmpty\n
            deque.zig
            \n
            deque.dart
            /* \u521d\u59cb\u5316\u53cc\u5411\u961f\u5217 */\n// \u5728 Dart \u4e2d\uff0cQueue \u88ab\u5b9a\u4e49\u4e3a\u53cc\u5411\u961f\u5217\nQueue<int> deque = Queue<int>();\n/* \u5143\u7d20\u5165\u961f */\ndeque.addLast(2);  // \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque.addLast(5);\ndeque.addLast(4);\ndeque.addFirst(3); // \u6dfb\u52a0\u81f3\u961f\u9996\ndeque.addFirst(1);\n/* \u8bbf\u95ee\u5143\u7d20 */\nint peekFirst = deque.first; // \u961f\u9996\u5143\u7d20\nint peekLast = deque.last;   // \u961f\u5c3e\u5143\u7d20\n/* \u5143\u7d20\u51fa\u961f */\nint popFirst = deque.removeFirst(); // \u961f\u9996\u5143\u7d20\u51fa\u961f\nint popLast = deque.removeLast();   // \u961f\u5c3e\u5143\u7d20\u51fa\u961f\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size = deque.length;\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = deque.isEmpty;W\n
            deque.rs
            \n
            "},{"location":"chapter_stack_and_queue/deque/#532","title":"5.3.2 \u00a0 \u53cc\u5411\u961f\u5217\u5b9e\u73b0 *","text":"

            \u53cc\u5411\u961f\u5217\u7684\u5b9e\u73b0\u4e0e\u961f\u5217\u7c7b\u4f3c\uff0c\u53ef\u4ee5\u9009\u62e9\u94fe\u8868\u6216\u6570\u7ec4\u4f5c\u4e3a\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002

            "},{"location":"chapter_stack_and_queue/deque/#1","title":"1. \u00a0 \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u7684\u5b9e\u73b0","text":"

            \u56de\u987e\u4e0a\u4e00\u8282\u5185\u5bb9\uff0c\u6211\u4eec\u4f7f\u7528\u666e\u901a\u5355\u5411\u94fe\u8868\u6765\u5b9e\u73b0\u961f\u5217\uff0c\u56e0\u4e3a\u5b83\u53ef\u4ee5\u65b9\u4fbf\u5730\u5220\u9664\u5934\u8282\u70b9\uff08\u5bf9\u5e94\u51fa\u961f\u64cd\u4f5c\uff09\u548c\u5728\u5c3e\u8282\u70b9\u540e\u6dfb\u52a0\u65b0\u8282\u70b9\uff08\u5bf9\u5e94\u5165\u961f\u64cd\u4f5c\uff09\u3002

            \u5bf9\u4e8e\u53cc\u5411\u961f\u5217\u800c\u8a00\uff0c\u5934\u90e8\u548c\u5c3e\u90e8\u90fd\u53ef\u4ee5\u6267\u884c\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u53cc\u5411\u961f\u5217\u9700\u8981\u5b9e\u73b0\u53e6\u4e00\u4e2a\u5bf9\u79f0\u65b9\u5411\u7684\u64cd\u4f5c\u3002\u4e3a\u6b64\uff0c\u6211\u4eec\u91c7\u7528\u201c\u53cc\u5411\u94fe\u8868\u201d\u4f5c\u4e3a\u53cc\u5411\u961f\u5217\u7684\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002

            \u6211\u4eec\u5c06\u53cc\u5411\u94fe\u8868\u7684\u5934\u8282\u70b9\u548c\u5c3e\u8282\u70b9\u89c6\u4e3a\u53cc\u5411\u961f\u5217\u7684\u961f\u9996\u548c\u961f\u5c3e\uff0c\u540c\u65f6\u5b9e\u73b0\u5728\u4e24\u7aef\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u7684\u529f\u80fd\u3002

            LinkedListDequepushLast()pushFirst()popLast()popFirst()

            \u56fe\uff1a\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c

            \u4ee5\u4e0b\u662f\u5177\u4f53\u5b9e\u73b0\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linkedlist_deque.java
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\nint val; // \u8282\u70b9\u503c\nListNode next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\nListNode prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\nListNode(int val) {\nthis.val = val;\nprev = next = null;\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\nprivate ListNode front, rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\nprivate int queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\npublic LinkedListDeque() {\nfront = rear = null;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f\u64cd\u4f5c */\nprivate void push(int num, boolean isFront) {\nListNode node = new ListNode(num);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (isEmpty())\nfront = rear = node;\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelse if (isFront) {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nfront.prev = node;\nnode.next = front;\nfront = node; // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nrear.next = node;\nnode.prev = rear;\nrear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\npublic void pushFirst(int num) {\npush(num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\npublic void pushLast(int num) {\npush(num, false);\n}\n/* \u51fa\u961f\u64cd\u4f5c */\nprivate Integer pop(boolean isFront) {\n// \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de null\nif (isEmpty())\nreturn null;\nint val;\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif (isFront) {\nval = front.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nListNode fNext = front.next;\nif (fNext != null) {\nfNext.prev = null;\nfront.next = null;\n}\nfront = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n} else {\nval = rear.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nListNode rPrev = rear.prev;\nif (rPrev != null) {\nrPrev.next = null;\nrear.prev = null;\n}\nrear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n}\n/* \u961f\u9996\u51fa\u961f */\npublic Integer popFirst() {\nreturn pop(true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\npublic Integer popLast() {\nreturn pop(false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic Integer peekFirst() {\nreturn isEmpty() ? null : front.val;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npublic Integer peekLast() {\nreturn isEmpty() ? null : rear.val;\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\npublic int[] toArray() {\nListNode node = front;\nint[] res = new int[size()];\nfor (int i = 0; i < res.length; i++) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_deque.cpp
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nstruct DoublyListNode {\nint val;              // \u8282\u70b9\u503c\nDoublyListNode *next; // \u540e\u7ee7\u8282\u70b9\u6307\u9488\nDoublyListNode *prev; // \u524d\u9a71\u8282\u70b9\u6307\u9488\nDoublyListNode(int val) : val(val), prev(nullptr), next(nullptr) {\n}\n};\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\nprivate:\nDoublyListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\nint queSize = 0;              // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nLinkedListDeque() : front(nullptr), rear(nullptr) {\n}\n/* \u6790\u6784\u65b9\u6cd5 */\n~LinkedListDeque() {\n// \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\nDoublyListNode *pre, *cur = front;\nwhile (cur != nullptr) {\npre = cur;\ncur = cur->next;\ndelete pre;\n}\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f\u64cd\u4f5c */\nvoid push(int num, bool isFront) {\nDoublyListNode *node = new DoublyListNode(num);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (isEmpty())\nfront = rear = node;\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelse if (isFront) {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nfront->prev = node;\nnode->next = front;\nfront = node; // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nrear->next = node;\nnode->prev = rear;\nrear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(int num) {\npush(num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(int num) {\npush(num, false);\n}\n/* \u51fa\u961f\u64cd\u4f5c */\nint pop(bool isFront) {\n// \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de -1\nif (isEmpty())\nreturn -1;\nint val;\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif (isFront) {\nval = front->val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nDoublyListNode *fNext = front->next;\nif (fNext != nullptr) {\nfNext->prev = nullptr;\nfront->next = nullptr;\ndelete front;\n}\nfront = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n} else {\nval = rear->val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nDoublyListNode *rPrev = rear->prev;\nif (rPrev != nullptr) {\nrPrev->next = nullptr;\nrear->prev = nullptr;\ndelete rear;\n}\nrear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n}\n/* \u961f\u9996\u51fa\u961f */\nint popFirst() {\nreturn pop(true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast() {\nreturn pop(false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst() {\nreturn isEmpty() ? -1 : front->val;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast() {\nreturn isEmpty() ? -1 : rear->val;\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nvector<int> toVector() {\nDoublyListNode *node = front;\nvector<int> res(size());\nfor (int i = 0; i < res.size(); i++) {\nres[i] = node->val;\nnode = node->next;\n}\nreturn res;\n}\n};\n
            linkedlist_deque.py
            class ListNode:\n\"\"\"\u53cc\u5411\u94fe\u8868\u8282\u70b9\"\"\"\ndef __init__(self, val: int):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.val: int = val\nself.next: ListNode | None = None  # \u540e\u7ee7\u8282\u70b9\u5f15\u7528\nself.prev: ListNode | None = None  # \u524d\u9a71\u8282\u70b9\u5f15\u7528\nclass LinkedListDeque:\n\"\"\"\u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.front: ListNode | None = None  # \u5934\u8282\u70b9 front\nself.rear: ListNode | None = None  # \u5c3e\u8282\u70b9 rear\nself.__size: int = 0  # \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\"\"\"\nreturn self.__size\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn self.size() == 0\ndef push(self, num: int, is_front: bool):\n\"\"\"\u5165\u961f\u64cd\u4f5c\"\"\"\nnode = ListNode(num)\n# \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif self.is_empty():\nself.front = self.rear = node\n# \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelif is_front:\n# \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nself.front.prev = node\nnode.next = self.front\nself.front = node  # \u66f4\u65b0\u5934\u8282\u70b9\n# \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\nelse:\n# \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nself.rear.next = node\nnode.prev = self.rear\nself.rear = node  # \u66f4\u65b0\u5c3e\u8282\u70b9\nself.__size += 1  # \u66f4\u65b0\u961f\u5217\u957f\u5ea6\ndef push_first(self, num: int):\n\"\"\"\u961f\u9996\u5165\u961f\"\"\"\nself.push(num, True)\ndef push_last(self, num: int):\n\"\"\"\u961f\u5c3e\u5165\u961f\"\"\"\nself.push(num, False)\ndef pop(self, is_front: bool) -> int:\n\"\"\"\u51fa\u961f\u64cd\u4f5c\"\"\"\n# \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de None\nif self.is_empty():\nreturn None\n# \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif is_front:\nval: int = self.front.val  # \u6682\u5b58\u5934\u8282\u70b9\u503c\n# \u5220\u9664\u5934\u8282\u70b9\nfnext: ListNode | None = self.front.next\nif fnext != None:\nfnext.prev = None\nself.front.next = None\nself.front = fnext  # \u66f4\u65b0\u5934\u8282\u70b9\n# \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nelse:\nval: int = self.rear.val  # \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n# \u5220\u9664\u5c3e\u8282\u70b9\nrprev: ListNode | None = self.rear.prev\nif rprev != None:\nrprev.next = None\nself.rear.prev = None\nself.rear = rprev  # \u66f4\u65b0\u5c3e\u8282\u70b9\nself.__size -= 1  # \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val\ndef pop_first(self) -> int:\n\"\"\"\u961f\u9996\u51fa\u961f\"\"\"\nreturn self.pop(True)\ndef pop_last(self) -> int:\n\"\"\"\u961f\u5c3e\u51fa\u961f\"\"\"\nreturn self.pop(False)\ndef peek_first(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\nreturn None if self.is_empty() else self.front.val\ndef peek_last(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\"\"\"\nreturn None if self.is_empty() else self.rear.val\ndef to_array(self) -> list[int]:\n\"\"\"\u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\"\"\"\nnode = self.front\nres = [0] * self.size()\nfor i in range(self.size()):\nres[i] = node.val\nnode = node.next\nreturn res\n
            linkedlist_deque.go
            /* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntype linkedListDeque struct {\n// \u4f7f\u7528\u5185\u7f6e\u5305 list\ndata *list.List\n}\n/* \u521d\u59cb\u5316\u53cc\u7aef\u961f\u5217 */\nfunc newLinkedListDeque() *linkedListDeque {\nreturn &linkedListDeque{\ndata: list.New(),\n}\n}\n/* \u961f\u9996\u5143\u7d20\u5165\u961f */\nfunc (s *linkedListDeque) pushFirst(value any) {\ns.data.PushFront(value)\n}\n/* \u961f\u5c3e\u5143\u7d20\u5165\u961f */\nfunc (s *linkedListDeque) pushLast(value any) {\ns.data.PushBack(value)\n}\n/* \u961f\u9996\u5143\u7d20\u51fa\u961f */\nfunc (s *linkedListDeque) popFirst() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Front()\ns.data.Remove(e)\nreturn e.Value\n}\n/* \u961f\u5c3e\u5143\u7d20\u51fa\u961f */\nfunc (s *linkedListDeque) popLast() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Back()\ns.data.Remove(e)\nreturn e.Value\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (s *linkedListDeque) peekFirst() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Front()\nreturn e.Value\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc (s *linkedListDeque) peekLast() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Back()\nreturn e.Value\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (s *linkedListDeque) size() int {\nreturn s.data.Len()\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListDeque) isEmpty() bool {\nreturn s.data.Len() == 0\n}\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListDeque) toList() *list.List {\nreturn s.data\n}\n
            linkedlist_deque.js
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\nprev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\nnext; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\nval; // \u8282\u70b9\u503c\nconstructor(val) {\nthis.val = val;\nthis.next = null;\nthis.prev = null;\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\n#front; // \u5934\u8282\u70b9 front\n#rear; // \u5c3e\u8282\u70b9 rear\n#queSize; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nconstructor() {\nthis.#front = null;\nthis.#rear = null;\nthis.#queSize = 0;\n}\n/* \u961f\u5c3e\u5165\u961f\u64cd\u4f5c */\npushLast(val) {\nconst node = new ListNode(val);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (this.#queSize === 0) {\nthis.#front = node;\nthis.#rear = node;\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nthis.#rear.next = node;\nnode.prev = this.#rear;\nthis.#rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nthis.#queSize++;\n}\n/* \u961f\u9996\u5165\u961f\u64cd\u4f5c */\npushFirst(val) {\nconst node = new ListNode(val);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (this.#queSize === 0) {\nthis.#front = node;\nthis.#rear = node;\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nthis.#front.prev = node;\nnode.next = this.#front;\nthis.#front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n}\nthis.#queSize++;\n}\n/* \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c */\npopLast() {\nif (this.#queSize === 0) {\nreturn null;\n}\nconst value = this.#rear.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nlet temp = this.#rear.prev;\nif (temp !== null) {\ntemp.next = null;\nthis.#rear.prev = null;\n}\nthis.#rear = temp; // \u66f4\u65b0\u5c3e\u8282\u70b9\nthis.#queSize--;\nreturn value;\n}\n/* \u961f\u9996\u51fa\u961f\u64cd\u4f5c */\npopFirst() {\nif (this.#queSize === 0) {\nreturn null;\n}\nconst value = this.#front.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nlet temp = this.#front.next;\nif (temp !== null) {\ntemp.prev = null;\nthis.#front.next = null;\n}\nthis.#front = temp; // \u66f4\u65b0\u5934\u8282\u70b9\nthis.#queSize--;\nreturn value;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npeekLast() {\nreturn this.#queSize === 0 ? null : this.#rear.val;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeekFirst() {\nreturn this.#queSize === 0 ? null : this.#front.val;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize() {\nreturn this.#queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty() {\nreturn this.#queSize === 0;\n}\n/* \u6253\u5370\u53cc\u5411\u961f\u5217 */\nprint() {\nconst arr = [];\nlet temp = this.#front;\nwhile (temp !== null) {\narr.push(temp.val);\ntemp = temp.next;\n}\nconsole.log('[' + arr.join(', ') + ']');\n}\n}\n
            linkedlist_deque.ts
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\nprev: ListNode; // \u524d\u9a71\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\nnext: ListNode; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528 (\u6307\u9488)\nval: number; // \u8282\u70b9\u503c\nconstructor(val: number) {\nthis.val = val;\nthis.next = null;\nthis.prev = null;\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\nprivate front: ListNode; // \u5934\u8282\u70b9 front\nprivate rear: ListNode; // \u5c3e\u8282\u70b9 rear\nprivate queSize: number; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nconstructor() {\nthis.front = null;\nthis.rear = null;\nthis.queSize = 0;\n}\n/* \u961f\u5c3e\u5165\u961f\u64cd\u4f5c */\npushLast(val: number): void {\nconst node: ListNode = new ListNode(val);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (this.queSize === 0) {\nthis.front = node;\nthis.rear = node;\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nthis.rear.next = node;\nnode.prev = this.rear;\nthis.rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nthis.queSize++;\n}\n/* \u961f\u9996\u5165\u961f\u64cd\u4f5c */\npushFirst(val: number): void {\nconst node: ListNode = new ListNode(val);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (this.queSize === 0) {\nthis.front = node;\nthis.rear = node;\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nthis.front.prev = node;\nnode.next = this.front;\nthis.front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n}\nthis.queSize++;\n}\n/* \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c */\npopLast(): number {\nif (this.queSize === 0) {\nreturn null;\n}\nconst value: number = this.rear.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nlet temp: ListNode = this.rear.prev;\nif (temp !== null) {\ntemp.next = null;\nthis.rear.prev = null;\n}\nthis.rear = temp; // \u66f4\u65b0\u5c3e\u8282\u70b9\nthis.queSize--;\nreturn value;\n}\n/* \u961f\u9996\u51fa\u961f\u64cd\u4f5c */\npopFirst(): number {\nif (this.queSize === 0) {\nreturn null;\n}\nconst value: number = this.front.val; // \u5b58\u50a8\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nlet temp: ListNode = this.front.next;\nif (temp !== null) {\ntemp.prev = null;\nthis.front.next = null;\n}\nthis.front = temp; // \u66f4\u65b0\u5934\u8282\u70b9\nthis.queSize--;\nreturn value;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npeekLast(): number {\nreturn this.queSize === 0 ? null : this.rear.val;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeekFirst(): number {\nreturn this.queSize === 0 ? null : this.front.val;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize(): number {\nreturn this.queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty(): boolean {\nreturn this.queSize === 0;\n}\n/* \u6253\u5370\u53cc\u5411\u961f\u5217 */\nprint(): void {\nconst arr: number[] = [];\nlet temp: ListNode = this.front;\nwhile (temp !== null) {\narr.push(temp.val);\ntemp = temp.next;\n}\nconsole.log('[' + arr.join(', ') + ']');\n}\n}\n
            linkedlist_deque.c
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nstruct doublyListNode {\nint val;                     // \u8282\u70b9\u503c\nstruct doublyListNode *next; // \u540e\u7ee7\u8282\u70b9\nstruct doublyListNode *prev; // \u524d\u9a71\u8282\u70b9\n};\ntypedef struct doublyListNode doublyListNode;\n/* \u6784\u9020\u51fd\u6570 */\ndoublyListNode *newDoublyListNode(int num) {\ndoublyListNode *new = (doublyListNode *)malloc(sizeof(doublyListNode));\nnew->val = num;\nnew->next = NULL;\nnew->prev = NULL;\nreturn new;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delDoublyListNode(doublyListNode *node) {\nfree(node);\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nstruct linkedListDeque {\ndoublyListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\nint queSize;                  // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n};\ntypedef struct linkedListDeque linkedListDeque;\n/* \u6784\u9020\u51fd\u6570 */\nlinkedListDeque *newLinkedListDeque() {\nlinkedListDeque *deque = (linkedListDeque *)malloc(sizeof(linkedListDeque));\ndeque->front = NULL;\ndeque->rear = NULL;\ndeque->queSize = 0;\nreturn deque;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListdeque(linkedListDeque *deque) {\n// \u91ca\u653e\u6240\u6709\u8282\u70b9\nfor (int i = 0; i < deque->queSize && deque->front != NULL; i++) {\ndoublyListNode *tmp = deque->front;\ndeque->front = deque->front->next;\nfree(tmp);\n}\n// \u91ca\u653e deque \u7ed3\u6784\u4f53\nfree(deque);\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(linkedListDeque *deque) {\nreturn deque->queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(linkedListDeque *deque) {\nreturn (size(deque) == 0);\n}\n/* \u5165\u961f */\nvoid push(linkedListDeque *deque, int num, bool isFront) {\ndoublyListNode *node = newDoublyListNode(num);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411node\nif (empty(deque)) {\ndeque->front = deque->rear = node;\n}\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelse if (isFront) {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\ndeque->front->prev = node;\nnode->next = deque->front;\ndeque->front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n}\n// \u5bf9\u5c3e\u5165\u961f\u64cd\u4f5c\nelse {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\ndeque->rear->next = node;\nnode->prev = deque->rear;\ndeque->rear = node;\n}\ndeque->queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(linkedListDeque *deque, int num) {\npush(deque, num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(linkedListDeque *deque, int num) {\npush(deque, num, false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst(linkedListDeque *deque) {\nassert(size(deque) && deque->front);\nreturn deque->front->val;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast(linkedListDeque *deque) {\nassert(size(deque) && deque->rear);\nreturn deque->rear->val;\n}\n/* \u51fa\u961f */\nint pop(linkedListDeque *deque, bool isFront) {\nif (empty(deque))\nreturn -1;\nint val;\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif (isFront) {\nval = peekFirst(deque); // \u6682\u5b58\u5934\u8282\u70b9\u503c\ndoublyListNode *fNext = deque->front->next;\nif (fNext) {\nfNext->prev = NULL;\ndeque->front->next = NULL;\ndelDoublyListNode(deque->front);\n}\ndeque->front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n}\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nelse {\nval = peekLast(deque); // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\ndoublyListNode *rPrev = deque->rear->prev;\nif (rPrev) {\nrPrev->next = NULL;\ndeque->rear->prev = NULL;\ndelDoublyListNode(deque->rear);\n}\ndeque->rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\ndeque->queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n}\n/* \u961f\u9996\u51fa\u961f */\nint popFirst(linkedListDeque *deque) {\nreturn pop(deque, true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast(linkedListDeque *deque) {\nreturn pop(deque, false);\n}\n/* \u6253\u5370\u961f\u5217 */\nvoid printLinkedListDeque(linkedListDeque *deque) {\nint arr[deque->queSize];\n// \u62f7\u8d1d\u94fe\u8868\u4e2d\u7684\u6570\u636e\u5230\u6570\u7ec4\nint i;\ndoublyListNode *node;\nfor (i = 0, node = deque->front; i < deque->queSize; i++) {\narr[i] = node->val;\nnode = node->next;\n}\nprintArray(arr, deque->queSize);\n}\n
            linkedlist_deque.cs
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\npublic int val;       // \u8282\u70b9\u503c\npublic ListNode? next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\npublic ListNode? prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\npublic ListNode(int val) {\nthis.val = val;\nprev = null;\nnext = null;\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\nprivate ListNode? front, rear; // \u5934\u8282\u70b9 front, \u5c3e\u8282\u70b9 rear\nprivate int queSize = 0;      // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\npublic LinkedListDeque() {\nfront = null;\nrear = null;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f\u64cd\u4f5c */\nprivate void push(int num, bool isFront) {\nListNode node = new ListNode(num);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (isEmpty()) {\nfront = node;\nrear = node;\n}\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelse if (isFront) {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nfront.prev = node;\nnode.next = front;\nfront = node; // \u66f4\u65b0\u5934\u8282\u70b9                           \n}\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\nelse {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nrear.next = node;\nnode.prev = rear;\nrear = node;  // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\npublic void pushFirst(int num) {\npush(num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\npublic void pushLast(int num) {\npush(num, false);\n}\n/* \u51fa\u961f\u64cd\u4f5c */\nprivate int? pop(bool isFront) {\n// \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de null\nif (isEmpty()) {\nreturn null;\n}\nint val;\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif (isFront) {\nval = front.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nListNode fNext = front.next;\nif (fNext != null) {\nfNext.prev = null;\nfront.next = null;\n}\nfront = fNext;   // \u66f4\u65b0\u5934\u8282\u70b9\n}\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nelse {\nval = rear.val;  // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nListNode rPrev = rear.prev;\nif (rPrev != null) {\nrPrev.next = null;\nrear.prev = null;\n}\nrear = rPrev;    // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n}\n/* \u961f\u9996\u51fa\u961f */\npublic int? popFirst() {\nreturn pop(true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\npublic int? popLast() {\nreturn pop(false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int? peekFirst() {\nreturn isEmpty() ? null : front.val;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npublic int? peekLast() {\nreturn isEmpty() ? null : rear.val;\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\npublic int[] toArray() {\nListNode node = front;\nint[] res = new int[size()];\nfor (int i = 0; i < res.Length; i++) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_deque.swift
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\nvar val: Int // \u8282\u70b9\u503c\nvar next: ListNode? // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\nweak var prev: ListNode? // \u524d\u9a71\u8282\u70b9\u5f15\u7528\ninit(val: Int) {\nself.val = val\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass LinkedListDeque {\nprivate var front: ListNode? // \u5934\u8282\u70b9 front\nprivate var rear: ListNode? // \u5c3e\u8282\u70b9 rear\nprivate var queSize: Int // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\ninit() {\nqueSize = 0\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nfunc size() -> Int {\nqueSize\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nsize() == 0\n}\n/* \u5165\u961f\u64cd\u4f5c */\nprivate func push(num: Int, isFront: Bool) {\nlet node = ListNode(val: num)\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif isEmpty() {\nfront = node\nrear = node\n}\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nelse if isFront {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nfront?.prev = node\nnode.next = front\nfront = node // \u66f4\u65b0\u5934\u8282\u70b9\n}\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\nelse {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nrear?.next = node\nnode.prev = rear\nrear = node // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize += 1 // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\nfunc pushFirst(num: Int) {\npush(num: num, isFront: true)\n}\n/* \u961f\u5c3e\u5165\u961f */\nfunc pushLast(num: Int) {\npush(num: num, isFront: false)\n}\n/* \u51fa\u961f\u64cd\u4f5c */\nprivate func pop(isFront: Bool) -> Int {\nif isEmpty() {\nfatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n}\nlet val: Int\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif isFront {\nval = front!.val // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nlet fNext = front?.next\nif fNext != nil {\nfNext?.prev = nil\nfront?.next = nil\n}\nfront = fNext // \u66f4\u65b0\u5934\u8282\u70b9\n}\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nelse {\nval = rear!.val // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nlet rPrev = rear?.prev\nif rPrev != nil {\nrPrev?.next = nil\nrear?.prev = nil\n}\nrear = rPrev // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nqueSize -= 1 // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val\n}\n/* \u961f\u9996\u51fa\u961f */\nfunc popFirst() -> Int {\npop(isFront: true)\n}\n/* \u961f\u5c3e\u51fa\u961f */\nfunc popLast() -> Int {\npop(isFront: false)\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc peekFirst() -> Int? {\nisEmpty() ? nil : front?.val\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc peekLast() -> Int? {\nisEmpty() ? nil : rear?.val\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nfunc toArray() -> [Int] {\nvar node = front\nvar res = Array(repeating: 0, count: size())\nfor i in res.indices {\nres[i] = node!.val\nnode = node?.next\n}\nreturn res\n}\n}\n
            linkedlist_deque.zig
            // \u53cc\u5411\u94fe\u8868\u8282\u70b9\nfn ListNode(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nval: T = undefined,     // \u8282\u70b9\u503c\nnext: ?*Self = null,    // \u540e\u7ee7\u8282\u70b9\u6307\u9488\nprev: ?*Self = null,    // \u524d\u9a71\u8282\u70b9\u6307\u9488\n// Initialize a list node with specific value\npub fn init(self: *Self, x: i32) void {\nself.val = x;\nself.next = null;\nself.prev = null;\n}\n};\n}\n// \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\nfn LinkedListDeque(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nfront: ?*ListNode(T) = null,                    // \u5934\u8282\u70b9 front\nrear: ?*ListNode(T) = null,                     // \u5c3e\u8282\u70b9 rear\nque_size: usize = 0,                             // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nmem_arena: ?std.heap.ArenaAllocator = null,\nmem_allocator: std.mem.Allocator = undefined,   // \u5185\u5b58\u5206\u914d\u5668\n// \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u961f\u5217\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator) !void {\nif (self.mem_arena == null) {\nself.mem_arena = std.heap.ArenaAllocator.init(allocator);\nself.mem_allocator = self.mem_arena.?.allocator();\n}\nself.front = null;\nself.rear = null;\nself.que_size = 0;\n}\n// \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.mem_arena == null) return;\nself.mem_arena.?.deinit();\n}\n// \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\npub fn size(self: *Self) usize {\nreturn self.que_size;\n}\n// \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\npub fn isEmpty(self: *Self) bool {\nreturn self.size() == 0;\n}\n// \u5165\u961f\u64cd\u4f5c\npub fn push(self: *Self, num: T, is_front: bool) !void {\nvar node = try self.mem_allocator.create(ListNode(T));\nnode.init(num);\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nif (self.isEmpty()) {\nself.front = node;\nself.rear = node;\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\n} else if (is_front) {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nself.front.?.prev = node;\nnode.next = self.front;\nself.front = node;  // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n} else {\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nself.rear.?.next = node;\nnode.prev = self.rear;\nself.rear = node;   // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nself.que_size += 1;      // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n} // \u961f\u9996\u5165\u961f\npub fn pushFirst(self: *Self, num: T) !void {\ntry self.push(num, true);\n} // \u961f\u5c3e\u5165\u961f\npub fn pushLast(self: *Self, num: T) !void {\ntry self.push(num, false);\n} // \u51fa\u961f\u64cd\u4f5c\npub fn pop(self: *Self, is_front: bool) T {\nif (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\nvar val: T = undefined;\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif (is_front) {\nval = self.front.?.val;     // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nvar fNext = self.front.?.next;\nif (fNext != null) {\nfNext.?.prev = null;\nself.front.?.next = null;\n}\nself.front = fNext;         // \u66f4\u65b0\u5934\u8282\u70b9\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\n} else {\nval = self.rear.?.val;      // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nvar rPrev = self.rear.?.prev;\nif (rPrev != null) {\nrPrev.?.next = null;\nself.rear.?.prev = null;\n}\nself.rear = rPrev;          // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nself.que_size -= 1;              // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n} // \u961f\u9996\u51fa\u961f\npub fn popFirst(self: *Self) T {\nreturn self.pop(true);\n} // \u961f\u5c3e\u51fa\u961f\npub fn popLast(self: *Self) T {\nreturn self.pop(false);\n} // \u8bbf\u95ee\u961f\u9996\u5143\u7d20\npub fn peekFirst(self: *Self) T {\nif (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\nreturn self.front.?.val;\n}  // \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\npub fn peekLast(self: *Self) T {\nif (self.isEmpty()) @panic(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\nreturn self.rear.?.val;\n}\n// \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\npub fn toArray(self: *Self) ![]T {\nvar node = self.front;\nvar res = try self.mem_allocator.alloc(T, self.size());\n@memset(res, @as(T, 0));\nvar i: usize = 0;\nwhile (i < res.len) : (i += 1) {\nres[i] = node.?.val;\nnode = node.?.next;\n}\nreturn res;\n}\n};\n}\n
            linkedlist_deque.dart
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\nclass ListNode {\nint val; // \u8282\u70b9\u503c\nListNode? next; // \u540e\u7ee7\u8282\u70b9\u5f15\u7528\nListNode? prev; // \u524d\u9a71\u8282\u70b9\u5f15\u7528\nListNode(this.val, {this.next, this.prev});\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u5bf9\u5217 */\nclass LinkedListDeque {\nlate ListNode? _front; // \u5934\u8282\u70b9 _front\nlate ListNode? _rear; // \u5c3e\u8282\u70b9 _rear\nint _queSize = 0; // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\nLinkedListDeque() {\nthis._front = null;\nthis._rear = null;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u957f\u5ea6 */\nint size() {\nreturn this._queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f\u64cd\u4f5c */\nvoid push(int num, bool isFront) {\nfinal ListNode node = ListNode(num);\nif (isEmpty()) {\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 _front\uff0c_rear \u90fd\u6307\u5411 node\n_front = _rear = node;\n} else if (isFront) {\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\n_front!.prev = node;\nnode.next = _front;\n_front = node; // \u66f4\u65b0\u5934\u8282\u70b9\n} else {\n// \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\n_rear!.next = node;\nnode.prev = _rear;\n_rear = node; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\n_queSize++; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(int num) {\npush(num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(int num) {\npush(num, false);\n}\n/* \u51fa\u961f\u64cd\u4f5c */\nint? pop(bool isFront) {\n// \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de null\nif (isEmpty()) {\nreturn null;\n}\nfinal int val;\nif (isFront) {\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nval = _front!.val; // \u6682\u5b58\u5934\u8282\u70b9\u503c\n// \u5220\u9664\u5934\u8282\u70b9\nListNode? fNext = _front!.next;\nif (fNext != null) {\nfNext.prev = null;\n_front!.next = null;\n}\n_front = fNext; // \u66f4\u65b0\u5934\u8282\u70b9\n} else {\n// \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nval = _rear!.val; // \u6682\u5b58\u5c3e\u8282\u70b9\u503c\n// \u5220\u9664\u5c3e\u8282\u70b9\nListNode? rPrev = _rear!.prev;\nif (rPrev != null) {\nrPrev.next = null;\n_rear!.prev = null;\n}\n_rear = rPrev; // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\n_queSize--; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nreturn val;\n}\n/* \u961f\u9996\u51fa\u961f */\nint? popFirst() {\nreturn pop(true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint? popLast() {\nreturn pop(false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint? peekFirst() {\nreturn _front?.val;\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint? peekLast() {\nreturn _rear?.val;\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nList<int> toArray() {\nListNode? node = _front;\nfinal List<int> res = [];\nfor (int i = 0; i < _queSize; i++) {\nres.add(node!.val);\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_deque.rs
            /* \u53cc\u5411\u94fe\u8868\u8282\u70b9 */\npub struct ListNode<T> {\npub val: T,                                 // \u8282\u70b9\u503c\npub next: Option<Rc<RefCell<ListNode<T>>>>, // \u540e\u7ee7\u8282\u70b9\u6307\u9488\npub prev: Option<Rc<RefCell<ListNode<T>>>>, // \u524d\u9a71\u8282\u70b9\u6307\u9488\n}\nimpl<T> ListNode<T> {\npub fn new(val: T) -> Rc<RefCell<ListNode<T>>> {\nRc::new(RefCell::new(ListNode {\nval,\nnext: None,\nprev: None,\n}))\n}\n}\n/* \u57fa\u4e8e\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\n#[allow(dead_code)]\npub struct LinkedListDeque<T> {\nfront: Option<Rc<RefCell<ListNode<T>>>>,    // \u5934\u8282\u70b9 front\nrear: Option<Rc<RefCell<ListNode<T>>>>,     // \u5c3e\u8282\u70b9 rear \nque_size: usize,                            // \u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\n}\nimpl<T: Copy> LinkedListDeque<T> {\npub fn new() -> Self {\nSelf {\nfront: None,\nrear: None,\nque_size: 0, }\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npub fn size(&self) -> usize {\nreturn self.que_size;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npub fn is_empty(&self) -> bool {\nreturn self.size() == 0;\n}\n/* \u5165\u961f\u64cd\u4f5c */\npub fn push(&mut self, num: T, is_front: bool) {\nlet node = ListNode::new(num);\n// \u961f\u9996\u5165\u961f\u64cd\u4f5c\nif is_front {\nmatch self.front.take() {\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nNone => {\nself.rear = Some(node.clone());\nself.front = Some(node);\n}\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5934\u90e8\nSome(old_front) => {\nold_front.borrow_mut().prev = Some(node.clone());\nnode.borrow_mut().next = Some(old_front);\nself.front = Some(node); // \u66f4\u65b0\u5934\u8282\u70b9\n}\n}\n} // \u961f\u5c3e\u5165\u961f\u64cd\u4f5c\nelse {\nmatch self.rear.take() {\n// \u82e5\u94fe\u8868\u4e3a\u7a7a\uff0c\u5219\u4ee4 front, rear \u90fd\u6307\u5411 node\nNone => {\nself.front = Some(node.clone());\nself.rear = Some(node);\n}\n// \u5c06 node \u6dfb\u52a0\u81f3\u94fe\u8868\u5c3e\u90e8\nSome(old_rear) => {\nold_rear.borrow_mut().next = Some(node.clone());\nnode.borrow_mut().prev = Some(old_rear);\nself.rear = Some(node); // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\n}\n}\nself.que_size += 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\n}\n/* \u961f\u9996\u5165\u961f */\npub fn push_first(&mut self, num: T) {\nself.push(num, true);\n}\n/* \u961f\u5c3e\u5165\u961f */\npub fn push_last(&mut self, num: T) {\nself.push(num, false);\n}\n/* \u51fa\u961f\u64cd\u4f5c */\npub fn pop(&mut self, is_front: bool) -> Option<T> {\n// \u82e5\u961f\u5217\u4e3a\u7a7a\uff0c\u76f4\u63a5\u8fd4\u56de None\nif self.is_empty() { return None };\n// \u961f\u9996\u51fa\u961f\u64cd\u4f5c\nif is_front {\nself.front.take().map(|old_front| {\nmatch old_front.borrow_mut().next.take() {\nSome(new_front) => {\nnew_front.borrow_mut().prev.take();\nself.front = Some(new_front);   // \u66f4\u65b0\u5934\u8282\u70b9\n}\nNone => {\nself.rear.take();\n}\n}\nself.que_size -= 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nRc::try_unwrap(old_front).ok().unwrap().into_inner().val\n})\n} // \u961f\u5c3e\u51fa\u961f\u64cd\u4f5c\nelse {\nself.rear.take().map(|old_rear| {\nmatch old_rear.borrow_mut().prev.take() {\nSome(new_rear) => {\nnew_rear.borrow_mut().next.take();\nself.rear = Some(new_rear);     // \u66f4\u65b0\u5c3e\u8282\u70b9\n}\nNone => {\nself.front.take();\n}\n}\nself.que_size -= 1; // \u66f4\u65b0\u961f\u5217\u957f\u5ea6\nRc::try_unwrap(old_rear).ok().unwrap().into_inner().val\n})\n}\n}\n/* \u961f\u9996\u51fa\u961f */\npub fn pop_first(&mut self) -> Option<T> {\nreturn self.pop(true);\n}\n/* \u961f\u5c3e\u51fa\u961f */\npub fn pop_last(&mut self) -> Option<T> {\nreturn self.pop(false);\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npub fn peek_first(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\nself.front.as_ref()\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npub fn peek_last(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\nself.rear.as_ref()\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\npub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\nif let Some(node) = head {\nlet mut nums = self.to_array(node.borrow().next.as_ref());\nnums.insert(0, node.borrow().val);\nreturn nums;\n}\nreturn Vec::new();\n}\n}\n
            "},{"location":"chapter_stack_and_queue/deque/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"

            \u4e0e\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u961f\u5217\u7c7b\u4f3c\uff0c\u6211\u4eec\u4e5f\u53ef\u4ee5\u4f7f\u7528\u73af\u5f62\u6570\u7ec4\u6765\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u3002\u5728\u961f\u5217\u7684\u5b9e\u73b0\u57fa\u7840\u4e0a\uff0c\u4ec5\u9700\u589e\u52a0\u201c\u961f\u9996\u5165\u961f\u201d\u548c\u201c\u961f\u5c3e\u51fa\u961f\u201d\u7684\u65b9\u6cd5\u3002

            ArrayDequepushLast()pushFirst()popLast()popFirst()

            \u56fe\uff1a\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u53cc\u5411\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c

            \u4ee5\u4e0b\u662f\u5177\u4f53\u5b9e\u73b0\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array_deque.java
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nprivate int[] nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate int queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\npublic ArrayDeque(int capacity) {\nthis.nums = new int[capacity];\nfront = queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\npublic int capacity() {\nreturn nums.length;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn queSize == 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nprivate int index(int i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + capacity()) % capacity();\n}\n/* \u961f\u9996\u5165\u961f */\npublic void pushFirst(int num) {\nif (queSize == capacity()) {\nSystem.out.println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nfront = index(front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nnums[front] = num;\nqueSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\npublic void pushLast(int num) {\nif (queSize == capacity()) {\nSystem.out.println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nint rear = index(front + queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\npublic int popFirst() {\nint num = peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfront = index(front + 1);\nqueSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\npublic int popLast() {\nint num = peekLast();\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peekFirst() {\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\nreturn nums[front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npublic int peekLast() {\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nint last = index(front + queSize - 1);\nreturn nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\npublic int[] toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] res = new int[queSize];\nfor (int i = 0, j = front; i < queSize; i++, j++) {\nres[i] = nums[index(j)];\n}\nreturn res;\n}\n}\n
            array_deque.cpp
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nprivate:\nvector<int> nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nint front;        // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nint queSize;      // \u53cc\u5411\u961f\u5217\u957f\u5ea6\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nArrayDeque(int capacity) {\nnums.resize(capacity);\nfront = queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity() {\nreturn nums.size();\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn queSize == 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nint index(int i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + capacity()) % capacity();\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(int num) {\nif (queSize == capacity()) {\ncout << \"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\" << endl;\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nfront = index(front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nnums[front] = num;\nqueSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(int num) {\nif (queSize == capacity()) {\ncout << \"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\" << endl;\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nint rear = index(front + queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\nint popFirst() {\nint num = peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfront = index(front + 1);\nqueSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast() {\nint num = peekLast();\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst() {\nif (isEmpty())\nthrow out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\nreturn nums[front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast() {\nif (isEmpty())\nthrow out_of_range(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nint last = index(front + queSize - 1);\nreturn nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nvector<int> toVector() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvector<int> res(queSize);\nfor (int i = 0, j = front; i < queSize; i++, j++) {\nres[i] = nums[index(j)];\n}\nreturn res;\n}\n};\n
            array_deque.py
            class ArrayDeque:\n\"\"\"\u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217\"\"\"\ndef __init__(self, capacity: int):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__nums: list[int] = [0] * capacity\nself.__front: int = 0\nself.__size: int = 0\ndef capacity(self) -> int:\n\"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf\"\"\"\nreturn len(self.__nums)\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6\"\"\"\nreturn self.__size\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn self.__size == 0\ndef index(self, i: int) -> int:\n\"\"\"\u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15\"\"\"\n# \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n# \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n# \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + self.capacity()) % self.capacity()\ndef push_first(self, num: int):\n\"\"\"\u961f\u9996\u5165\u961f\"\"\"\nif self.__size == self.capacity():\nprint(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n# \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n# \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nself.__front = self.index(self.__front - 1)\n# \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nself.__nums[self.__front] = num\nself.__size += 1\ndef push_last(self, num: int):\n\"\"\"\u961f\u5c3e\u5165\u961f\"\"\"\nif self.__size == self.capacity():\nprint(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n# \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nrear = self.index(self.__front + self.__size)\n# \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nself.__nums[rear] = num\nself.__size += 1\ndef pop_first(self) -> int:\n\"\"\"\u961f\u9996\u51fa\u961f\"\"\"\nnum = self.peek_first()\n# \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nself.__front = self.index(self.__front + 1)\nself.__size -= 1\nreturn num\ndef pop_last(self) -> int:\n\"\"\"\u961f\u5c3e\u51fa\u961f\"\"\"\nnum = self.peek_last()\nself.__size -= 1\nreturn num\ndef peek_first(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\nif self.is_empty():\nraise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\nreturn self.__nums[self.__front]\ndef peek_last(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u5c3e\u5143\u7d20\"\"\"\nif self.is_empty():\nraise IndexError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n# \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nlast = self.index(self.__front + self.__size - 1)\nreturn self.__nums[last]\ndef to_array(self) -> list[int]:\n\"\"\"\u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370\"\"\"\n# \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nres = []\nfor i in range(self.__size):\nres.append(self.__nums[self.index(self.__front + i)])\nreturn res\n
            array_deque.go
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\ntype arrayDeque struct {\nnums        []int // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nfront       int   // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nqueSize     int   // \u53cc\u5411\u961f\u5217\u957f\u5ea6\nqueCapacity int   // \u961f\u5217\u5bb9\u91cf\uff08\u5373\u6700\u5927\u5bb9\u7eb3\u5143\u7d20\u6570\u91cf\uff09\n}\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newArrayDeque(queCapacity int) *arrayDeque {\nreturn &arrayDeque{\nnums:        make([]int, queCapacity),\nqueCapacity: queCapacity,\nfront:       0,\nqueSize:     0,\n}\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (q *arrayDeque) size() int {\nreturn q.queSize\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (q *arrayDeque) isEmpty() bool {\nreturn q.queSize == 0\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nfunc (q *arrayDeque) index(i int) int {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + q.queCapacity) % q.queCapacity\n}\n/* \u961f\u9996\u5165\u961f */\nfunc (q *arrayDeque) pushFirst(num int) {\nif q.queSize == q.queCapacity {\nfmt.Println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nq.front = q.index(q.front - 1)\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nq.nums[q.front] = num\nq.queSize++\n}\n/* \u961f\u5c3e\u5165\u961f */\nfunc (q *arrayDeque) pushLast(num int) {\nif q.queSize == q.queCapacity {\nfmt.Println(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nrear := q.index(q.front + q.queSize)\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nq.nums[rear] = num\nq.queSize++\n}\n/* \u961f\u9996\u51fa\u961f */\nfunc (q *arrayDeque) popFirst() any {\nnum := q.peekFirst()\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nq.front = q.index(q.front + 1)\nq.queSize--\nreturn num\n}\n/* \u961f\u5c3e\u51fa\u961f */\nfunc (q *arrayDeque) popLast() any {\nnum := q.peekLast()\nq.queSize--\nreturn num\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (q *arrayDeque) peekFirst() any {\nif q.isEmpty() {\nreturn nil\n}\nreturn q.nums[q.front]\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc (q *arrayDeque) peekLast() any {\nif q.isEmpty() {\nreturn nil\n}\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nlast := q.index(q.front + q.queSize - 1)\nreturn q.nums[last]\n}\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (q *arrayDeque) toSlice() []int {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nres := make([]int, q.queSize)\nfor i, j := 0, q.front; i < q.queSize; i++ {\nres[i] = q.nums[q.index(j)]\nj++\n}\nreturn res\n}\n
            array_deque.js
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\n#nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n#front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n#queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(capacity) {\nthis.#nums = new Array(capacity);\nthis.#front = 0;\nthis.#queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\ncapacity() {\nreturn this.#nums.length;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize() {\nreturn this.#queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty() {\nreturn this.#queSize === 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nindex(i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + this.capacity()) % this.capacity();\n}\n/* \u961f\u9996\u5165\u961f */\npushFirst(num) {\nif (this.#queSize === this.capacity()) {\nconsole.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nthis.#front = this.index(this.#front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nthis.#nums[this.#front] = num;\nthis.#queSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\npushLast(num) {\nif (this.#queSize === this.capacity()) {\nconsole.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nconst rear = this.index(this.#front + this.#queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nthis.#nums[rear] = num;\nthis.#queSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\npopFirst() {\nconst num = this.peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nthis.#front = this.index(this.#front + 1);\nthis.#queSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\npopLast() {\nconst num = this.peekLast();\nthis.#queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeekFirst() {\nif (this.isEmpty()) throw new Error('The Deque Is Empty.');\nreturn this.#nums[this.#front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npeekLast() {\nif (this.isEmpty()) throw new Error('The Deque Is Empty.');\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nconst last = this.index(this.#front + this.#queSize - 1);\nreturn this.#nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\ntoArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst res = [];\nfor (let i = 0, j = this.#front; i < this.#queSize; i++, j++) {\nres[i] = this.#nums[this.index(j)];\n}\nreturn res;\n}\n}\n
            array_deque.ts
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nprivate nums: number[]; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate front: number; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate queSize: number; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(capacity: number) {\nthis.nums = new Array(capacity);\nthis.front = 0;\nthis.queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\ncapacity(): number {\nreturn this.nums.length;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nsize(): number {\nreturn this.queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty(): boolean {\nreturn this.queSize === 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nindex(i: number): number {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + this.capacity()) % this.capacity();\n}\n/* \u961f\u9996\u5165\u961f */\npushFirst(num: number): void {\nif (this.queSize === this.capacity()) {\nconsole.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nthis.front = this.index(this.front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nthis.nums[this.front] = num;\nthis.queSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\npushLast(num: number): void {\nif (this.queSize === this.capacity()) {\nconsole.log('\u53cc\u5411\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nconst rear: number = this.index(this.front + this.queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nthis.nums[rear] = num;\nthis.queSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\npopFirst(): number {\nconst num: number = this.peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nthis.front = this.index(this.front + 1);\nthis.queSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\npopLast(): number {\nconst num: number = this.peekLast();\nthis.queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeekFirst(): number {\nif (this.isEmpty()) throw new Error('The Deque Is Empty.');\nreturn this.nums[this.front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npeekLast(): number {\nif (this.isEmpty()) throw new Error('The Deque Is Empty.');\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nconst last = this.index(this.front + this.queSize - 1);\nreturn this.nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\ntoArray(): number[] {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst res: number[] = [];\nfor (let i = 0, j = this.front; i < this.queSize; i++, j++) {\nres[i] = this.nums[this.index(j)];\n}\nreturn res;\n}\n}\n
            array_deque.c
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nstruct arrayDeque {\nint *nums;       // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nint front;       // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nint queSize;     // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\nint queCapacity; // \u961f\u5217\u5bb9\u91cf\n};\ntypedef struct arrayDeque arrayDeque;\n/* \u6784\u9020\u51fd\u6570 */\narrayDeque *newArrayDeque(int capacity) {\narrayDeque *deque = (arrayDeque *)malloc(sizeof(arrayDeque));\n// \u521d\u59cb\u5316\u6570\u7ec4\ndeque->queCapacity = capacity;\ndeque->nums = (int *)malloc(sizeof(int) * deque->queCapacity);\ndeque->front = deque->queSize = 0;\nreturn deque;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayDeque(arrayDeque *deque) {\nfree(deque->nums);\ndeque->queCapacity = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity(arrayDeque *deque) {\nreturn deque->queCapacity;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size(arrayDeque *deque) {\nreturn deque->queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(arrayDeque *deque) {\nreturn deque->queSize == 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nint dequeIndex(arrayDeque *deque, int i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn ((i + capacity(deque)) % capacity(deque));\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(arrayDeque *deque, int num) {\nif (deque->queSize == capacity(deque)) {\nprintf(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\\r\\n\");\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u56de\u5230\u5c3e\u90e8\ndeque->front = dequeIndex(deque, deque->front - 1);\n// \u5c06 num \u6dfb\u52a0\u5230\u961f\u9996\ndeque->nums[deque->front] = num;\ndeque->queSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(arrayDeque *deque, int num) {\nif (deque->queSize == capacity(deque)) {\nprintf(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\\r\\n\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nint rear = dequeIndex(deque, deque->front + deque->queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\ndeque->nums[rear] = num;\ndeque->queSize++;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst(arrayDeque *deque) {\n// \u8bbf\u95ee\u5f02\u5e38\uff1a\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\nassert(empty(deque) == 0);\nreturn deque->nums[deque->front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast(arrayDeque *deque) {\n// \u8bbf\u95ee\u5f02\u5e38\uff1a\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\nassert(empty(deque) == 0);\nint last = dequeIndex(deque, deque->front + deque->queSize - 1);\nreturn deque->nums[last];\n}\n/* \u961f\u9996\u51fa\u961f */\nint popFirst(arrayDeque *deque) {\nint num = peekFirst(deque);\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\ndeque->front = dequeIndex(deque, deque->front + 1);\ndeque->queSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast(arrayDeque *deque) {\nint num = peekLast(deque);\ndeque->queSize--;\nreturn num;\n}\n/* \u6253\u5370\u961f\u5217 */\nvoid printArrayDeque(arrayDeque *deque) {\nint arr[deque->queSize];\n// \u62f7\u8d1d\nfor (int i = 0, j = deque->front; i < deque->queSize; i++, j++) {\narr[i] = deque->nums[j % deque->queCapacity];\n}\nprintArray(arr, deque->queSize);\n}\n
            array_deque.cs
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nprivate readonly int[] nums;  // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate int front;   // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate int queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\npublic ArrayDeque(int capacity) {\nthis.nums = new int[capacity];\nfront = queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\npublic int capacity() {\nreturn nums.Length;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn queSize == 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nprivate int index(int i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + capacity()) % capacity();\n}\n/* \u961f\u9996\u5165\u961f */\npublic void pushFirst(int num) {\nif (queSize == capacity()) {\nConsole.WriteLine(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nfront = index(front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nnums[front] = num;\nqueSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\npublic void pushLast(int num) {\nif (queSize == capacity()) {\nConsole.WriteLine(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nint rear = index(front + queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\npublic int popFirst() {\nint num = peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfront = index(front + 1);\nqueSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\npublic int popLast() {\nint num = peekLast();\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peekFirst() {\nif (isEmpty()) {\nthrow new InvalidOperationException();\n}\nreturn nums[front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\npublic int peekLast() {\nif (isEmpty()) {\nthrow new InvalidOperationException();\n}\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nint last = index(front + queSize - 1);\nreturn nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\npublic int[] toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] res = new int[queSize];\nfor (int i = 0, j = front; i < queSize; i++, j++) {\nres[i] = nums[index(j)];\n}\nreturn res;\n}\n}\n
            array_deque.swift
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nprivate var nums: [Int] // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate var front: Int // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate var queSize: Int // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\ninit(capacity: Int) {\nnums = Array(repeating: 0, count: capacity)\nfront = 0\nqueSize = 0\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\nfunc capacity() -> Int {\nnums.count\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nfunc size() -> Int {\nqueSize\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nsize() == 0\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nprivate func index(i: Int) -> Int {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\n(i + capacity()) % capacity()\n}\n/* \u961f\u9996\u5165\u961f */\nfunc pushFirst(num: Int) {\nif size() == capacity() {\nprint(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nfront = index(i: front - 1)\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nnums[front] = num\nqueSize += 1\n}\n/* \u961f\u5c3e\u5165\u961f */\nfunc pushLast(num: Int) {\nif size() == capacity() {\nprint(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\")\nreturn\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nlet rear = index(i: front + size())\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num\nqueSize += 1\n}\n/* \u961f\u9996\u51fa\u961f */\nfunc popFirst() -> Int {\nlet num = peekFirst()\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nfront = index(i: front + 1)\nqueSize -= 1\nreturn num\n}\n/* \u961f\u5c3e\u51fa\u961f */\nfunc popLast() -> Int {\nlet num = peekLast()\nqueSize -= 1\nreturn num\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc peekFirst() -> Int {\nif isEmpty() {\nfatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n}\nreturn nums[front]\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfunc peekLast() -> Int {\nif isEmpty() {\nfatalError(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\")\n}\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nlet last = index(i: front + size() - 1)\nreturn nums[last]\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nfunc toArray() -> [Int] {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvar res = Array(repeating: 0, count: size())\nfor (i, j) in sequence(first: (0, front), next: { $0 < self.size() - 1 ? ($0 + 1, $1 + 1) : nil }) {\nres[i] = nums[index(i: j)]\n}\nreturn res\n}\n}\n
            array_deque.zig
            [class]{ArrayDeque}-[func]{}\n
            array_deque.dart
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nclass ArrayDeque {\nlate List<int> _nums; // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nlate int _front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nlate int _queSize; // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n/* \u6784\u9020\u65b9\u6cd5 */\nArrayDeque(int capacity) {\nthis._nums = List.filled(capacity, 0);\nthis._front = this._queSize = 0;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity() {\nreturn _nums.length;\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn _queSize;\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn _queSize == 0;\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nint index(int i) {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn (i + capacity()) % capacity();\n}\n/* \u961f\u9996\u5165\u961f */\nvoid pushFirst(int num) {\nif (_queSize == capacity()) {\nthrow Exception(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 _front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\n_front = index(_front - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\n_nums[_front] = num;\n_queSize++;\n}\n/* \u961f\u5c3e\u5165\u961f */\nvoid pushLast(int num) {\nif (_queSize == capacity()) {\nthrow Exception(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nint rear = index(_front + _queSize);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n_nums[rear] = num;\n_queSize++;\n}\n/* \u961f\u9996\u51fa\u961f */\nint popFirst() {\nint num = peekFirst();\n// \u961f\u9996\u6307\u9488\u5411\u53f3\u79fb\u52a8\u4e00\u4f4d\n_front = index(_front + 1);\n_queSize--;\nreturn num;\n}\n/* \u961f\u5c3e\u51fa\u961f */\nint popLast() {\nint num = peekLast();\n_queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peekFirst() {\nif (isEmpty()) {\nthrow Exception(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n}\nreturn _nums[_front];\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nint peekLast() {\nif (isEmpty()) {\nthrow Exception(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\");\n}\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nint last = index(_front + _queSize - 1);\nreturn _nums[last];\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nList<int> toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nList<int> res = List.filled(_queSize, 0);\nfor (int i = 0, j = _front; i < _queSize; i++, j++) {\nres[i] = _nums[index(j)];\n}\nreturn res;\n}\n}\n
            array_deque.rs
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u53cc\u5411\u961f\u5217 */\nstruct ArrayDeque {\nnums: Vec<i32>,     // \u7528\u4e8e\u5b58\u50a8\u53cc\u5411\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nfront: usize,       // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nque_size: usize,    // \u53cc\u5411\u961f\u5217\u957f\u5ea6\n}\nimpl ArrayDeque {\n/* \u6784\u9020\u65b9\u6cd5 */\npub fn new(capacity: usize) -> Self {\nSelf {\nnums: vec![0; capacity],\nfront: 0,\nque_size: 0,\n}\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u5bb9\u91cf */\npub fn capacity(&self) -> usize {\nself.nums.len()\n}\n/* \u83b7\u53d6\u53cc\u5411\u961f\u5217\u7684\u957f\u5ea6 */\npub fn size(&self) -> usize {\nself.que_size\n}\n/* \u5224\u65ad\u53cc\u5411\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npub fn is_empty(&self) -> bool {\nself.que_size == 0\n}\n/* \u8ba1\u7b97\u73af\u5f62\u6570\u7ec4\u7d22\u5f15 */\nfn index(&self, i: i32) -> usize {\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\u5b9e\u73b0\u6570\u7ec4\u9996\u5c3e\u76f8\u8fde\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\uff0c\u56de\u5230\u5934\u90e8\n// \u5f53 i \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\uff0c\u56de\u5230\u5c3e\u90e8\nreturn ((i + self.capacity() as i32) % self.capacity() as i32) as usize;\n}\n/* \u961f\u9996\u5165\u961f */\npub fn push_first(&mut self, num: i32) {\nif self.que_size == self.capacity() {\nprintln!(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn\n}\n// \u961f\u9996\u6307\u9488\u5411\u5de6\u79fb\u52a8\u4e00\u4f4d\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 front \u8d8a\u8fc7\u6570\u7ec4\u5934\u90e8\u540e\u56de\u5230\u5c3e\u90e8\nself.front = self.index(self.front as i32 - 1);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u9996\nself.nums[self.front] = num;\nself.que_size += 1;\n}\n/* \u961f\u5c3e\u5165\u961f */\npub fn push_last(&mut self, num: i32) {\nif self.que_size == self.capacity() {\nprintln!(\"\u53cc\u5411\u961f\u5217\u5df2\u6ee1\");\nreturn\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\nlet rear = self.index(self.front as i32 + self.que_size as i32);\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nself.nums[rear] = num;\nself.que_size += 1;\n}\n/* \u961f\u9996\u51fa\u961f */\nfn pop_first(&mut self) -> i32 {\nlet num = self.peek_first();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\nself.front = self.index(self.front as i32 + 1);\nself.que_size -= 1;\nnum\n}\n/* \u961f\u5c3e\u51fa\u961f */\nfn pop_last(&mut self) -> i32 {\nlet num = self.peek_last();\nself.que_size -= 1;\nnum\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfn peek_first(&self) -> i32 {\nif self.is_empty() { panic!(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\") };\nself.nums[self.front]\n}\n/* \u8bbf\u95ee\u961f\u5c3e\u5143\u7d20 */\nfn peek_last(&self) -> i32 {\nif self.is_empty() { panic!(\"\u53cc\u5411\u961f\u5217\u4e3a\u7a7a\") };\n// \u8ba1\u7b97\u5c3e\u5143\u7d20\u7d22\u5f15\nlet last = self.index(self.front as i32 + self.que_size as i32 - 1);\nself.nums[last]\n}\n/* \u8fd4\u56de\u6570\u7ec4\u7528\u4e8e\u6253\u5370 */\nfn to_array(&self) -> Vec<i32> {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nlet mut res = vec![0; self.que_size];\nlet mut j = self.front;\nfor i in 0..self.que_size {\nres[i] = self.nums[self.index(j as i32)];\nj += 1;\n}\nres\n}\n}\n
            "},{"location":"chapter_stack_and_queue/deque/#533","title":"5.3.3 \u00a0 \u53cc\u5411\u961f\u5217\u5e94\u7528","text":"

            \u53cc\u5411\u961f\u5217\u517c\u5177\u6808\u4e0e\u961f\u5217\u7684\u903b\u8f91\uff0c\u56e0\u6b64\u5b83\u53ef\u4ee5\u5b9e\u73b0\u8fd9\u4e24\u8005\u7684\u6240\u6709\u5e94\u7528\u573a\u666f\uff0c\u540c\u65f6\u63d0\u4f9b\u66f4\u9ad8\u7684\u81ea\u7531\u5ea6\u3002

            \u6211\u4eec\u77e5\u9053\uff0c\u8f6f\u4ef6\u7684\u201c\u64a4\u9500\u201d\u529f\u80fd\u901a\u5e38\u4f7f\u7528\u6808\u6765\u5b9e\u73b0\uff1a\u7cfb\u7edf\u5c06\u6bcf\u6b21\u66f4\u6539\u64cd\u4f5c push \u5230\u6808\u4e2d\uff0c\u7136\u540e\u901a\u8fc7 pop \u5b9e\u73b0\u64a4\u9500\u3002\u7136\u800c\uff0c\u8003\u8651\u5230\u7cfb\u7edf\u8d44\u6e90\u7684\u9650\u5236\uff0c\u8f6f\u4ef6\u901a\u5e38\u4f1a\u9650\u5236\u64a4\u9500\u7684\u6b65\u6570\uff08\u4f8b\u5982\u4ec5\u5141\u8bb8\u4fdd\u5b58 \\(50\\) \u6b65\uff09\u3002\u5f53\u6808\u7684\u957f\u5ea6\u8d85\u8fc7 \\(50\\) \u65f6\uff0c\u8f6f\u4ef6\u9700\u8981\u5728\u6808\u5e95\uff08\u5373\u961f\u9996\uff09\u6267\u884c\u5220\u9664\u64cd\u4f5c\u3002\u4f46\u6808\u65e0\u6cd5\u5b9e\u73b0\u8be5\u529f\u80fd\uff0c\u6b64\u65f6\u5c31\u9700\u8981\u4f7f\u7528\u53cc\u5411\u961f\u5217\u6765\u66ff\u4ee3\u6808\u3002\u8bf7\u6ce8\u610f\uff0c\u201c\u64a4\u9500\u201d\u7684\u6838\u5fc3\u903b\u8f91\u4ecd\u7136\u9075\u5faa\u6808\u7684\u5148\u5165\u540e\u51fa\u539f\u5219\uff0c\u53ea\u662f\u53cc\u5411\u961f\u5217\u80fd\u591f\u66f4\u52a0\u7075\u6d3b\u5730\u5b9e\u73b0\u4e00\u4e9b\u989d\u5916\u903b\u8f91\u3002

            "},{"location":"chapter_stack_and_queue/queue/","title":"5.2 \u00a0 \u961f\u5217","text":"

            \u300c\u961f\u5217 queue\u300d\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u5148\u51fa\u89c4\u5219\u7684\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002\u987e\u540d\u601d\u4e49\uff0c\u961f\u5217\u6a21\u62df\u4e86\u6392\u961f\u73b0\u8c61\uff0c\u5373\u65b0\u6765\u7684\u4eba\u4e0d\u65ad\u52a0\u5165\u961f\u5217\u7684\u5c3e\u90e8\uff0c\u800c\u4f4d\u4e8e\u961f\u5217\u5934\u90e8\u7684\u4eba\u9010\u4e2a\u79bb\u5f00\u3002

            \u6211\u4eec\u628a\u961f\u5217\u7684\u5934\u90e8\u79f0\u4e3a\u201c\u961f\u9996\u201d\uff0c\u5c3e\u90e8\u79f0\u4e3a\u201c\u961f\u5c3e\u201d\uff0c\u628a\u5c06\u5143\u7d20\u52a0\u5165\u961f\u5c3e\u7684\u64cd\u4f5c\u79f0\u4e3a\u201c\u5165\u961f\u201d\uff0c\u5220\u9664\u961f\u9996\u5143\u7d20\u7684\u64cd\u4f5c\u79f0\u4e3a\u201c\u51fa\u961f\u201d\u3002

            \u56fe\uff1a\u961f\u5217\u7684\u5148\u5165\u5148\u51fa\u89c4\u5219

            "},{"location":"chapter_stack_and_queue/queue/#521","title":"5.2.1 \u00a0 \u961f\u5217\u5e38\u7528\u64cd\u4f5c","text":"

            \u961f\u5217\u7684\u5e38\u89c1\u64cd\u4f5c\u5982\u4e0b\u8868\u6240\u793a\u3002\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u4e0d\u540c\u7f16\u7a0b\u8bed\u8a00\u7684\u65b9\u6cd5\u540d\u79f0\u53ef\u80fd\u4f1a\u6709\u6240\u4e0d\u540c\u3002\u6211\u4eec\u5728\u6b64\u91c7\u7528\u4e0e\u6808\u76f8\u540c\u7684\u65b9\u6cd5\u547d\u540d\u3002

            \u8868\uff1a\u961f\u5217\u64cd\u4f5c\u6548\u7387

            \u65b9\u6cd5\u540d \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u961f\uff0c\u5373\u5c06\u5143\u7d20\u6dfb\u52a0\u81f3\u961f\u5c3e \\(O(1)\\) pop() \u961f\u9996\u5143\u7d20\u51fa\u961f \\(O(1)\\) peek() \u8bbf\u95ee\u961f\u9996\u5143\u7d20 \\(O(1)\\)

            \u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u4e2d\u73b0\u6210\u7684\u961f\u5217\u7c7b\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust queue.java
            /* \u521d\u59cb\u5316\u961f\u5217 */\nQueue<Integer> queue = new LinkedList<>();\n/* \u5143\u7d20\u5165\u961f */\nqueue.offer(1);\nqueue.offer(3);\nqueue.offer(2);\nqueue.offer(5);\nqueue.offer(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.peek();\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.poll();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.size();\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = queue.isEmpty();\n
            queue.cpp
            /* \u521d\u59cb\u5316\u961f\u5217 */\nqueue<int> queue;\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint front = queue.front();\n/* \u5143\u7d20\u51fa\u961f */\nqueue.pop();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.size();\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty = queue.empty();\n
            queue.py
            # \u521d\u59cb\u5316\u961f\u5217\n# \u5728 Python \u4e2d\uff0c\u6211\u4eec\u4e00\u822c\u5c06\u53cc\u5411\u961f\u5217\u7c7b deque \u770b\u4f5c\u961f\u5217\u4f7f\u7528\n# \u867d\u7136 queue.Queue() \u662f\u7eaf\u6b63\u7684\u961f\u5217\u7c7b\uff0c\u4f46\u4e0d\u592a\u597d\u7528\uff0c\u56e0\u6b64\u4e0d\u5efa\u8bae\nque: Deque[int] = collections.deque()\n# \u5143\u7d20\u5165\u961f\nque.append(1)\nque.append(3)\nque.append(2)\nque.append(5)\nque.append(4)\n# \u8bbf\u95ee\u961f\u9996\u5143\u7d20\nfront: int = que[0];\n# \u5143\u7d20\u51fa\u961f\npop: int = que.popleft()\n# \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\nsize: int = len(que)\n# \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(que) == 0\n
            queue_test.go
            /* \u521d\u59cb\u5316\u961f\u5217 */\n// \u5728 Go \u4e2d\uff0c\u5c06 list \u4f5c\u4e3a\u961f\u5217\u6765\u4f7f\u7528\nqueue := list.New()\n/* \u5143\u7d20\u5165\u961f */\nqueue.PushBack(1)\nqueue.PushBack(3)\nqueue.PushBack(2)\nqueue.PushBack(5)\nqueue.PushBack(4)\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek := queue.Front()\n/* \u5143\u7d20\u51fa\u961f */\npop := queue.Front()\nqueue.Remove(pop)\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nsize := queue.Len()\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty := queue.Len() == 0\n
            queue.js
            /* \u521d\u59cb\u5316\u961f\u5217 */\n// JavaScript \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528\nconst queue = [];\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nconst peek = queue[0];\n/* \u5143\u7d20\u51fa\u961f */\n// \u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 shift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst pop = queue.shift();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = queue.length;\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst empty = queue.length === 0;\n
            queue.ts
            /* \u521d\u59cb\u5316\u961f\u5217 */\n// TypeScript \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528 \nconst queue: number[] = [];\n/* \u5143\u7d20\u5165\u961f */\nqueue.push(1);\nqueue.push(3);\nqueue.push(2);\nqueue.push(5);\nqueue.push(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nconst peek = queue[0];\n/* \u5143\u7d20\u51fa\u961f */\n// \u5e95\u5c42\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 shift() \u65b9\u6cd5\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a O(n)\nconst pop = queue.shift();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nconst size = queue.length;\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nconst empty = queue.length === 0;\n
            queue.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u961f\u5217\n
            queue.cs
            /* \u521d\u59cb\u5316\u961f\u5217 */\nQueue<int> queue = new();\n/* \u5143\u7d20\u5165\u961f */\nqueue.Enqueue(1);\nqueue.Enqueue(3);\nqueue.Enqueue(2);\nqueue.Enqueue(5);\nqueue.Enqueue(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.Peek();\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.Dequeue();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.Count;\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = queue.Count == 0;\n
            queue.swift
            /* \u521d\u59cb\u5316\u961f\u5217 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u961f\u5217\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u961f\u5217\u6765\u4f7f\u7528\nvar queue: [Int] = []\n/* \u5143\u7d20\u5165\u961f */\nqueue.append(1)\nqueue.append(3)\nqueue.append(2)\nqueue.append(5)\nqueue.append(4)\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nlet peek = queue.first!\n/* \u5143\u7d20\u51fa\u961f */\n// \u7531\u4e8e\u662f\u6570\u7ec4\uff0c\u56e0\u6b64 removeFirst \u7684\u590d\u6742\u5ea6\u4e3a O(n)\nlet pool = queue.removeFirst()\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nlet size = queue.count\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = queue.isEmpty\n
            queue.zig
            \n
            queue.dart
            /* \u521d\u59cb\u5316\u961f\u5217 */\n// \u5728 Dart \u4e2d\uff0c\u961f\u5217\u7c7b Qeque \u662f\u53cc\u5411\u961f\u5217\uff0c\u4e5f\u53ef\u4f5c\u4e3a\u961f\u5217\u4f7f\u7528\nQueue<int> queue = Queue();\n/* \u5143\u7d20\u5165\u961f */\nqueue.add(1);\nqueue.add(3);\nqueue.add(2);\nqueue.add(5);\nqueue.add(4);\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek = queue.first;\n/* \u5143\u7d20\u51fa\u961f */\nint pop = queue.removeFirst();\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size = queue.length;\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = queue.isEmpty;\n
            queue.rs
            \n
            "},{"location":"chapter_stack_and_queue/queue/#522","title":"5.2.2 \u00a0 \u961f\u5217\u5b9e\u73b0","text":"

            \u4e3a\u4e86\u5b9e\u73b0\u961f\u5217\uff0c\u6211\u4eec\u9700\u8981\u4e00\u79cd\u6570\u636e\u7ed3\u6784\uff0c\u53ef\u4ee5\u5728\u4e00\u7aef\u6dfb\u52a0\u5143\u7d20\uff0c\u5e76\u5728\u53e6\u4e00\u7aef\u5220\u9664\u5143\u7d20\u3002\u56e0\u6b64\uff0c\u94fe\u8868\u548c\u6570\u7ec4\u90fd\u53ef\u4ee5\u7528\u6765\u5b9e\u73b0\u961f\u5217\u3002

            "},{"location":"chapter_stack_and_queue/queue/#1","title":"1. \u00a0 \u57fa\u4e8e\u94fe\u8868\u7684\u5b9e\u73b0","text":"

            \u5bf9\u4e8e\u94fe\u8868\u5b9e\u73b0\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u94fe\u8868\u7684\u201c\u5934\u8282\u70b9\u201d\u548c\u201c\u5c3e\u8282\u70b9\u201d\u5206\u522b\u89c6\u4e3a\u201c\u961f\u9996\u201d\u548c\u201c\u961f\u5c3e\u201d\uff0c\u89c4\u5b9a\u961f\u5c3e\u4ec5\u53ef\u6dfb\u52a0\u8282\u70b9\uff0c\u961f\u9996\u4ec5\u53ef\u5220\u9664\u8282\u70b9\u3002

            LinkedListQueuepush()pop()

            \u56fe\uff1a\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c

            \u4ee5\u4e0b\u662f\u7528\u94fe\u8868\u5b9e\u73b0\u961f\u5217\u7684\u793a\u4f8b\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linkedlist_queue.java
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nprivate ListNode front, rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\nprivate int queSize = 0;\npublic LinkedListQueue() {\nfront = null;\nrear = null;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f */\npublic void push(int num) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nListNode node = new ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (front == null) {\nfront = node;\nrear = node;\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n} else {\nrear.next = node;\nrear = node;\n}\nqueSize++;\n}\n/* \u51fa\u961f */\npublic int pop() {\nint num = peek();\n// \u5220\u9664\u5934\u8282\u70b9\nfront = front.next;\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peek() {\nif (size() == 0)\nthrow new IndexOutOfBoundsException();\nreturn front.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic int[] toArray() {\nListNode node = front;\nint[] res = new int[size()];\nfor (int i = 0; i < res.length; i++) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_queue.cpp
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nprivate:\nListNode *front, *rear; // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear\nint queSize;\npublic:\nLinkedListQueue() {\nfront = nullptr;\nrear = nullptr;\nqueSize = 0;\n}\n~LinkedListQueue() {\n// \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\nfreeMemoryLinkedList(front);\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty() {\nreturn queSize == 0;\n}\n/* \u5165\u961f */\nvoid push(int num) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nListNode *node = new ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (front == nullptr) {\nfront = node;\nrear = node;\n}\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\nelse {\nrear->next = node;\nrear = node;\n}\nqueSize++;\n}\n/* \u51fa\u961f */\nvoid pop() {\nint num = peek();\n// \u5220\u9664\u5934\u8282\u70b9\nListNode *tmp = front;\nfront = front->next;\n// \u91ca\u653e\u5185\u5b58\ndelete tmp;\nqueSize--;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek() {\nif (size() == 0)\nthrow out_of_range(\"\u961f\u5217\u4e3a\u7a7a\");\nreturn front->val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Vector \u5e76\u8fd4\u56de */\nvector<int> toVector() {\nListNode *node = front;\nvector<int> res(size());\nfor (int i = 0; i < res.size(); i++) {\nres[i] = node->val;\nnode = node->next;\n}\nreturn res;\n}\n};\n
            linkedlist_queue.py
            class LinkedListQueue:\n\"\"\"\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__front: ListNode | None = None  # \u5934\u8282\u70b9 front\nself.__rear: ListNode | None = None  # \u5c3e\u8282\u70b9 rear\nself.__size: int = 0\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\"\"\"\nreturn self.__size\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn not self.__front\ndef push(self, num: int):\n\"\"\"\u5165\u961f\"\"\"\n# \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nnode = ListNode(num)\n# \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif self.__front is None:\nself.__front = node\nself.__rear = node\n# \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\nelse:\nself.__rear.next = node\nself.__rear = node\nself.__size += 1\ndef pop(self) -> int:\n\"\"\"\u51fa\u961f\"\"\"\nnum = self.peek()\n# \u5220\u9664\u5934\u8282\u70b9\nself.__front = self.__front.next\nself.__size -= 1\nreturn num\ndef peek(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\nif self.size() == 0:\nprint(\"\u961f\u5217\u4e3a\u7a7a\")\nreturn False\nreturn self.__front.val\ndef to_list(self) -> list[int]:\n\"\"\"\u8f6c\u5316\u4e3a\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\nqueue = []\ntemp = self.__front\nwhile temp:\nqueue.append(temp.val)\ntemp = temp.next\nreturn queue\n
            linkedlist_queue.go
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\ntype linkedListQueue struct {\n// \u4f7f\u7528\u5185\u7f6e\u5305 list \u6765\u5b9e\u73b0\u961f\u5217\ndata *list.List\n}\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newLinkedListQueue() *linkedListQueue {\nreturn &linkedListQueue{\ndata: list.New(),\n}\n}\n/* \u5165\u961f */\nfunc (s *linkedListQueue) push(value any) {\ns.data.PushBack(value)\n}\n/* \u51fa\u961f */\nfunc (s *linkedListQueue) pop() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Front()\ns.data.Remove(e)\nreturn e.Value\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (s *linkedListQueue) peek() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Front()\nreturn e.Value\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (s *linkedListQueue) size() int {\nreturn s.data.Len()\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListQueue) isEmpty() bool {\nreturn s.data.Len() == 0\n}\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListQueue) toList() *list.List {\nreturn s.data\n}\n
            linkedlist_queue.js
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\n#front; // \u5934\u8282\u70b9 #front\n#rear; // \u5c3e\u8282\u70b9 #rear\n#queSize = 0;\nconstructor() {\nthis.#front = null;\nthis.#rear = null;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nget size() {\nreturn this.#queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty() {\nreturn this.size === 0;\n}\n/* \u5165\u961f */\npush(num) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nconst node = new ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (!this.#front) {\nthis.#front = node;\nthis.#rear = node;\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n} else {\nthis.#rear.next = node;\nthis.#rear = node;\n}\nthis.#queSize++;\n}\n/* \u51fa\u961f */\npop() {\nconst num = this.peek();\n// \u5220\u9664\u5934\u8282\u70b9\nthis.#front = this.#front.next;\nthis.#queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek() {\nif (this.size === 0) throw new Error('\u961f\u5217\u4e3a\u7a7a');\nreturn this.#front.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\ntoArray() {\nlet node = this.#front;\nconst res = new Array(this.size);\nfor (let i = 0; i < res.length; i++) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_queue.ts
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nprivate front: ListNode | null; // \u5934\u8282\u70b9 front\nprivate rear: ListNode | null; // \u5c3e\u8282\u70b9 rear\nprivate queSize: number = 0;\nconstructor() {\nthis.front = null;\nthis.rear = null;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nget size(): number {\nreturn this.queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nisEmpty(): boolean {\nreturn this.size === 0;\n}\n/* \u5165\u961f */\npush(num: number): void {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nconst node = new ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (!this.front) {\nthis.front = node;\nthis.rear = node;\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n} else {\nthis.rear!.next = node;\nthis.rear = node;\n}\nthis.queSize++;\n}\n/* \u51fa\u961f */\npop(): number {\nconst num = this.peek();\nif (!this.front) throw new Error('\u961f\u5217\u4e3a\u7a7a');\n// \u5220\u9664\u5934\u8282\u70b9\nthis.front = this.front.next;\nthis.queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek(): number {\nif (this.size === 0) throw new Error('\u961f\u5217\u4e3a\u7a7a');\nreturn this.front!.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\ntoArray(): number[] {\nlet node = this.front;\nconst res = new Array<number>(this.size);\nfor (let i = 0; i < res.length; i++) {\nres[i] = node!.val;\nnode = node!.next;\n}\nreturn res;\n}\n}\n
            linkedlist_queue.c
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nstruct linkedListQueue {\nListNode *front, *rear;\nint queSize;\n};\ntypedef struct linkedListQueue linkedListQueue;\n/* \u6784\u9020\u51fd\u6570 */\nlinkedListQueue *newLinkedListQueue() {\nlinkedListQueue *queue = (linkedListQueue *)malloc(sizeof(linkedListQueue));\nqueue->front = NULL;\nqueue->rear = NULL;\nqueue->queSize = 0;\nreturn queue;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListQueue(linkedListQueue *queue) {\n// \u91ca\u653e\u6240\u6709\u8282\u70b9\nfor (int i = 0; i < queue->queSize && queue->front != NULL; i++) {\nListNode *tmp = queue->front;\nqueue->front = queue->front->next;\nfree(tmp);\n}\n// \u91ca\u653e queue \u7ed3\u6784\u4f53\nfree(queue);\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(linkedListQueue *queue) {\nreturn queue->queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(linkedListQueue *queue) {\nreturn (size(queue) == 0);\n}\n/* \u5165\u961f */\nvoid push(linkedListQueue *queue, int num) {\n// \u5c3e\u8282\u70b9\u5904\u6dfb\u52a0 node\nListNode *node = newListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (queue->front == NULL) {\nqueue->front = node;\nqueue->rear = node;\n}\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\nelse {\nqueue->rear->next = node;\nqueue->rear = node;\n}\nqueue->queSize++;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek(linkedListQueue *queue) {\nassert(size(queue) && queue->front);\nreturn queue->front->val;\n}\n/* \u51fa\u961f */\nvoid pop(linkedListQueue *queue) {\nint num = peek(queue);\nListNode *tmp = queue->front;\nqueue->front = queue->front->next;\nfree(tmp);\nqueue->queSize--;\n}\n/* \u6253\u5370\u961f\u5217 */\nvoid printLinkedListQueue(linkedListQueue *queue) {\nint arr[queue->queSize];\n// \u62f7\u8d1d\u94fe\u8868\u4e2d\u7684\u6570\u636e\u5230\u6570\u7ec4\nint i;\nListNode *node;\nfor (i = 0, node = queue->front; i < queue->queSize && queue->front != queue->rear; i++) {\narr[i] = node->val;\nnode = node->next;\n}\nprintArray(arr, queue->queSize);\n}\n
            linkedlist_queue.cs
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nprivate ListNode? front, rear;  // \u5934\u8282\u70b9 front \uff0c\u5c3e\u8282\u70b9 rear \nprivate int queSize = 0;\npublic LinkedListQueue() {\nfront = null;\nrear = null;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u961f */\npublic void push(int num) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nListNode node = new ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (front == null) {\nfront = node;\nrear = node;\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n} else if (rear != null) {\nrear.next = node;\nrear = node;\n}\nqueSize++;\n}\n/* \u51fa\u961f */\npublic int pop() {\nint num = peek();\n// \u5220\u9664\u5934\u8282\u70b9\nfront = front?.next;\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peek() {\nif (size() == 0 || front == null)\nthrow new Exception();\nreturn front.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic int[] toArray() {\nif (front == null)\nreturn Array.Empty<int>();\nListNode node = front;\nint[] res = new int[size()];\nfor (int i = 0; i < res.Length; i++) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_queue.swift
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nprivate var front: ListNode? // \u5934\u8282\u70b9\nprivate var rear: ListNode? // \u5c3e\u8282\u70b9\nprivate var _size = 0\ninit() {}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc size() -> Int {\n_size\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nsize() == 0\n}\n/* \u5165\u961f */\nfunc push(num: Int) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nlet node = ListNode(x: num)\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif front == nil {\nfront = node\nrear = node\n}\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\nelse {\nrear?.next = node\nrear = node\n}\n_size += 1\n}\n/* \u51fa\u961f */\n@discardableResult\nfunc pop() -> Int {\nlet num = peek()\n// \u5220\u9664\u5934\u8282\u70b9\nfront = front?.next\n_size -= 1\nreturn num\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc peek() -> Int {\nif isEmpty() {\nfatalError(\"\u961f\u5217\u4e3a\u7a7a\")\n}\nreturn front!.val\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nfunc toArray() -> [Int] {\nvar node = front\nvar res = Array(repeating: 0, count: size())\nfor i in res.indices {\nres[i] = node!.val\nnode = node?.next\n}\nreturn res\n}\n}\n
            linkedlist_queue.zig
            // \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217\nfn LinkedListQueue(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nfront: ?*inc.ListNode(T) = null,                // \u5934\u8282\u70b9 front\nrear: ?*inc.ListNode(T) = null,                 // \u5c3e\u8282\u70b9 rear\nque_size: usize = 0,                            // \u961f\u5217\u7684\u957f\u5ea6\nmem_arena: ?std.heap.ArenaAllocator = null,\nmem_allocator: std.mem.Allocator = undefined,   // \u5185\u5b58\u5206\u914d\u5668\n// \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u961f\u5217\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator) !void {\nif (self.mem_arena == null) {\nself.mem_arena = std.heap.ArenaAllocator.init(allocator);\nself.mem_allocator = self.mem_arena.?.allocator();\n}\nself.front = null;\nself.rear = null;\nself.que_size = 0;\n}\n// \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.mem_arena == null) return;\nself.mem_arena.?.deinit();\n}\n// \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\npub fn size(self: *Self) usize {\nreturn self.que_size;\n}\n// \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\npub fn isEmpty(self: *Self) bool {\nreturn self.size() == 0;\n}\n// \u8bbf\u95ee\u961f\u9996\u5143\u7d20\npub fn peek(self: *Self) T {\nif (self.size() == 0) @panic(\"\u961f\u5217\u4e3a\u7a7a\");\nreturn self.front.?.val;\n}  // \u5165\u961f\npub fn push(self: *Self, num: T) !void {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nvar node = try self.mem_allocator.create(inc.ListNode(T));\nnode.init(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (self.front == null) {\nself.front = node;\nself.rear = node;\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n} else {\nself.rear.?.next = node;\nself.rear = node;\n}\nself.que_size += 1;\n} // \u51fa\u961f\npub fn pop(self: *Self) T {\nvar num = self.peek();\n// \u5220\u9664\u5934\u8282\u70b9\nself.front = self.front.?.next;\nself.que_size -= 1;\nreturn num;\n} // \u5c06\u94fe\u8868\u8f6c\u6362\u4e3a\u6570\u7ec4\npub fn toArray(self: *Self) ![]T {\nvar node = self.front;\nvar res = try self.mem_allocator.alloc(T, self.size());\n@memset(res, @as(T, 0));\nvar i: usize = 0;\nwhile (i < res.len) : (i += 1) {\nres[i] = node.?.val;\nnode = node.?.next;\n}\nreturn res;\n}\n};\n}\n
            linkedlist_queue.dart
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\nclass LinkedListQueue {\nListNode? _front; // \u5934\u8282\u70b9 _front\nListNode? _rear; // \u5c3e\u8282\u70b9 _rear\nint _queSize = 0; // \u961f\u5217\u957f\u5ea6\nLinkedListQueue() {\n_front = null;\n_rear = null;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn _queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn _queSize == 0;\n}\n/* \u5165\u961f */\nvoid push(int num) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nfinal node = ListNode(num);\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nif (_front == null) {\n_front = node;\n_rear = node;\n} else {\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\n_rear!.next = node;\n_rear = node;\n}\n_queSize++;\n}\n/* \u51fa\u961f */\nint pop() {\nfinal int num = peek();\n// \u5220\u9664\u5934\u8282\u70b9\n_front = _front!.next;\n_queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek() {\nif (_queSize == 0) {\nthrow Exception('\u961f\u5217\u4e3a\u7a7a');\n}\nreturn _front!.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nList<int> toArray() {\nListNode? node = _front;\nfinal List<int> queue = [];\nwhile (node != null) {\nqueue.add(node.val);\nnode = node.next;\n}\nreturn queue;\n}\n}\n
            linkedlist_queue.rs
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u961f\u5217 */\n#[allow(dead_code)]\npub struct LinkedListQueue<T> {\nfront: Option<Rc<RefCell<ListNode<T>>>>,    // \u5934\u8282\u70b9 front\nrear: Option<Rc<RefCell<ListNode<T>>>>,     // \u5c3e\u8282\u70b9 rear \nque_size: usize,                            // \u961f\u5217\u7684\u957f\u5ea6\n}\nimpl<T: Copy> LinkedListQueue<T> {\npub fn new() -> Self {\nSelf {\nfront: None,\nrear: None,\nque_size: 0, }\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\npub fn size(&self) -> usize {\nreturn self.que_size;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npub fn is_empty(&self) -> bool {\nreturn self.size() == 0;\n}\n/* \u5165\u961f */\npub fn push(&mut self, num: T) {\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nlet new_rear = ListNode::new(num);\nmatch self.rear.take() {\n// \u5982\u679c\u961f\u5217\u4e0d\u4e3a\u7a7a\uff0c\u5219\u5c06\u8be5\u8282\u70b9\u6dfb\u52a0\u5230\u5c3e\u8282\u70b9\u540e\nSome(old_rear) => {\nold_rear.borrow_mut().next = Some(new_rear.clone());\nself.rear = Some(new_rear);\n}\n// \u5982\u679c\u961f\u5217\u4e3a\u7a7a\uff0c\u5219\u4ee4\u5934\u3001\u5c3e\u8282\u70b9\u90fd\u6307\u5411\u8be5\u8282\u70b9\nNone => {\nself.front = Some(new_rear.clone());\nself.rear = Some(new_rear);\n}\n}\nself.que_size += 1;\n}\n/* \u51fa\u961f */\npub fn pop(&mut self) -> Option<T> {\nself.front.take().map(|old_front| {\nmatch old_front.borrow_mut().next.take() {\nSome(new_front) => {\nself.front = Some(new_front);\n}\nNone => {\nself.rear.take();\n}\n}\nself.que_size -= 1;\nRc::try_unwrap(old_front).ok().unwrap().into_inner().val\n})\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npub fn peek(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\nself.front.as_ref()\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\nif let Some(node) = head {\nlet mut nums = self.to_array(node.borrow().next.as_ref());\nnums.insert(0, node.borrow().val);\nreturn nums;\n}\nreturn Vec::new();\n}\n}\n
            "},{"location":"chapter_stack_and_queue/queue/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"

            \u7531\u4e8e\u6570\u7ec4\u5220\u9664\u9996\u5143\u7d20\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e3a \\(O(n)\\) \uff0c\u8fd9\u4f1a\u5bfc\u81f4\u51fa\u961f\u64cd\u4f5c\u6548\u7387\u8f83\u4f4e\u3002\u7136\u800c\uff0c\u6211\u4eec\u53ef\u4ee5\u91c7\u7528\u4ee5\u4e0b\u5de7\u5999\u65b9\u6cd5\u6765\u907f\u514d\u8fd9\u4e2a\u95ee\u9898\u3002

            \u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e00\u4e2a\u53d8\u91cf front \u6307\u5411\u961f\u9996\u5143\u7d20\u7684\u7d22\u5f15\uff0c\u5e76\u7ef4\u62a4\u4e00\u4e2a\u53d8\u91cf queSize \u7528\u4e8e\u8bb0\u5f55\u961f\u5217\u957f\u5ea6\u3002\u5b9a\u4e49 rear = front + queSize \uff0c\u8fd9\u4e2a\u516c\u5f0f\u8ba1\u7b97\u51fa\u7684 rear \u6307\u5411\u961f\u5c3e\u5143\u7d20\u4e4b\u540e\u7684\u4e0b\u4e00\u4e2a\u4f4d\u7f6e\u3002

            \u57fa\u4e8e\u6b64\u8bbe\u8ba1\uff0c\u6570\u7ec4\u4e2d\u5305\u542b\u5143\u7d20\u7684\u6709\u6548\u533a\u95f4\u4e3a [front, rear - 1]\uff0c\u8fdb\u800c\uff1a

            • \u5bf9\u4e8e\u5165\u961f\u64cd\u4f5c\uff0c\u5c06\u8f93\u5165\u5143\u7d20\u8d4b\u503c\u7ed9 rear \u7d22\u5f15\u5904\uff0c\u5e76\u5c06 queSize \u589e\u52a0 1 \u3002
            • \u5bf9\u4e8e\u51fa\u961f\u64cd\u4f5c\uff0c\u53ea\u9700\u5c06 front \u589e\u52a0 1 \uff0c\u5e76\u5c06 queSize \u51cf\u5c11 1 \u3002

            \u53ef\u4ee5\u770b\u5230\uff0c\u5165\u961f\u548c\u51fa\u961f\u64cd\u4f5c\u90fd\u53ea\u9700\u8fdb\u884c\u4e00\u6b21\u64cd\u4f5c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(1)\\) \u3002

            ArrayQueuepush()pop()

            \u56fe\uff1a\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u961f\u5217\u7684\u5165\u961f\u51fa\u961f\u64cd\u4f5c

            \u4f60\u53ef\u80fd\u4f1a\u53d1\u73b0\u4e00\u4e2a\u95ee\u9898\uff1a\u5728\u4e0d\u65ad\u8fdb\u884c\u5165\u961f\u548c\u51fa\u961f\u7684\u8fc7\u7a0b\u4e2d\uff0cfront \u548c rear \u90fd\u5728\u5411\u53f3\u79fb\u52a8\uff0c\u5f53\u5b83\u4eec\u5230\u8fbe\u6570\u7ec4\u5c3e\u90e8\u65f6\u5c31\u65e0\u6cd5\u7ee7\u7eed\u79fb\u52a8\u4e86\u3002\u4e3a\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u89c6\u4e3a\u9996\u5c3e\u76f8\u63a5\u7684\u201c\u73af\u5f62\u6570\u7ec4\u201d\u3002

            \u5bf9\u4e8e\u73af\u5f62\u6570\u7ec4\uff0c\u6211\u4eec\u9700\u8981\u8ba9 front \u6216 rear \u5728\u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u65f6\uff0c\u76f4\u63a5\u56de\u5230\u6570\u7ec4\u5934\u90e8\u7ee7\u7eed\u904d\u5386\u3002\u8fd9\u79cd\u5468\u671f\u6027\u89c4\u5f8b\u53ef\u4ee5\u901a\u8fc7\u201c\u53d6\u4f59\u64cd\u4f5c\u201d\u6765\u5b9e\u73b0\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array_queue.java
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nprivate int[] nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate int front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate int queSize; // \u961f\u5217\u957f\u5ea6\npublic ArrayQueue(int capacity) {\nnums = new int[capacity];\nfront = queSize = 0;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\npublic int capacity() {\nreturn nums.length;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn queSize == 0;\n}\n/* \u5165\u961f */\npublic void push(int num) {\nif (queSize == capacity()) {\nSystem.out.println(\"\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nint rear = (front + queSize) % capacity();\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u51fa\u961f */\npublic int pop() {\nint num = peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nfront = (front + 1) % capacity();\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peek() {\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\nreturn nums[front];\n}\n/* \u8fd4\u56de\u6570\u7ec4 */\npublic int[] toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] res = new int[queSize];\nfor (int i = 0, j = front; i < queSize; i++, j++) {\nres[i] = nums[j % capacity()];\n}\nreturn res;\n}\n}\n
            array_queue.cpp
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nprivate:\nint *nums;       // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nint front;       // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nint queSize;     // \u961f\u5217\u957f\u5ea6\nint queCapacity; // \u961f\u5217\u5bb9\u91cf\npublic:\nArrayQueue(int capacity) {\n// \u521d\u59cb\u5316\u6570\u7ec4\nnums = new int[capacity];\nqueCapacity = capacity;\nfront = queSize = 0;\n}\n~ArrayQueue() {\ndelete[] nums;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity() {\nreturn queCapacity;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty() {\nreturn size() == 0;\n}\n/* \u5165\u961f */\nvoid push(int num) {\nif (queSize == queCapacity) {\ncout << \"\u961f\u5217\u5df2\u6ee1\" << endl;\nreturn;\n}\n// \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nint rear = (front + queSize) % queCapacity;\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u51fa\u961f */\nvoid pop() {\nint num = peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nfront = (front + 1) % queCapacity;\nqueSize--;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek() {\nif (empty())\nthrow out_of_range(\"\u961f\u5217\u4e3a\u7a7a\");\nreturn nums[front];\n}\n/* \u5c06\u6570\u7ec4\u8f6c\u5316\u4e3a Vector \u5e76\u8fd4\u56de */\nvector<int> toVector() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvector<int> arr(queSize);\nfor (int i = 0, j = front; i < queSize; i++, j++) {\narr[i] = nums[j % queCapacity];\n}\nreturn arr;\n}\n};\n
            array_queue.py
            class ArrayQueue:\n\"\"\"\u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217\"\"\"\ndef __init__(self, size: int):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__nums: list[int] = [0] * size  # \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nself.__front: int = 0  # \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nself.__size: int = 0  # \u961f\u5217\u957f\u5ea6\ndef capacity(self) -> int:\n\"\"\"\u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf\"\"\"\nreturn len(self.__nums)\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\"\"\"\nreturn self.__size\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn self.__size == 0\ndef push(self, num: int):\n\"\"\"\u5165\u961f\"\"\"\nif self.__size == self.capacity():\nraise IndexError(\"\u961f\u5217\u5df2\u6ee1\")\n# \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n# \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nrear: int = (self.__front + self.__size) % self.capacity()\n# \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nself.__nums[rear] = num\nself.__size += 1\ndef pop(self) -> int:\n\"\"\"\u51fa\u961f\"\"\"\nnum: int = self.peek()\n# \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nself.__front = (self.__front + 1) % self.capacity()\nself.__size -= 1\nreturn num\ndef peek(self) -> int:\n\"\"\"\u8bbf\u95ee\u961f\u9996\u5143\u7d20\"\"\"\nif self.is_empty():\nraise IndexError(\"\u961f\u5217\u4e3a\u7a7a\")\nreturn self.__nums[self.__front]\ndef to_list(self) -> list[int]:\n\"\"\"\u8fd4\u56de\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\nres = [0] * self.size()\nj: int = self.__front\nfor i in range(self.size()):\nres[i] = self.__nums[(j % self.capacity())]\nj += 1\nreturn res\n
            array_queue.go
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\ntype arrayQueue struct {\nnums        []int // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nfront       int   // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nqueSize     int   // \u961f\u5217\u957f\u5ea6\nqueCapacity int   // \u961f\u5217\u5bb9\u91cf\uff08\u5373\u6700\u5927\u5bb9\u7eb3\u5143\u7d20\u6570\u91cf\uff09\n}\n/* \u521d\u59cb\u5316\u961f\u5217 */\nfunc newArrayQueue(queCapacity int) *arrayQueue {\nreturn &arrayQueue{\nnums:        make([]int, queCapacity),\nqueCapacity: queCapacity,\nfront:       0,\nqueSize:     0,\n}\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc (q *arrayQueue) size() int {\nreturn q.queSize\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc (q *arrayQueue) isEmpty() bool {\nreturn q.queSize == 0\n}\n/* \u5165\u961f */\nfunc (q *arrayQueue) push(num int) {\n// \u5f53 rear == queCapacity \u8868\u793a\u961f\u5217\u5df2\u6ee1\nif q.queSize == q.queCapacity {\nreturn\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nrear := (q.front + q.queSize) % q.queCapacity\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nq.nums[rear] = num\nq.queSize++\n}\n/* \u51fa\u961f */\nfunc (q *arrayQueue) pop() any {\nnum := q.peek()\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nq.front = (q.front + 1) % q.queCapacity\nq.queSize--\nreturn num\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc (q *arrayQueue) peek() any {\nif q.isEmpty() {\nreturn nil\n}\nreturn q.nums[q.front]\n}\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (q *arrayQueue) toSlice() []int {\nrear := (q.front + q.queSize)\nif rear >= q.queCapacity {\nrear %= q.queCapacity\nreturn append(q.nums[q.front:], q.nums[:rear]...)\n}\nreturn q.nums[q.front:rear]\n}\n
            array_queue.js
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\n#nums; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\n#front = 0; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\n#queSize = 0; // \u961f\u5217\u957f\u5ea6\nconstructor(capacity) {\nthis.#nums = new Array(capacity);\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nget capacity() {\nreturn this.#nums.length;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nget size() {\nreturn this.#queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nempty() {\nreturn this.#queSize === 0;\n}\n/* \u5165\u961f */\npush(num) {\nif (this.size === this.capacity) {\nconsole.log('\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nconst rear = (this.#front + this.size) % this.capacity;\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nthis.#nums[rear] = num;\nthis.#queSize++;\n}\n/* \u51fa\u961f */\npop() {\nconst num = this.peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nthis.#front = (this.#front + 1) % this.capacity;\nthis.#queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek() {\nif (this.empty()) throw new Error('\u961f\u5217\u4e3a\u7a7a');\nreturn this.#nums[this.#front];\n}\n/* \u8fd4\u56de Array */\ntoArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst arr = new Array(this.size);\nfor (let i = 0, j = this.#front; i < this.size; i++, j++) {\narr[i] = this.#nums[j % this.capacity];\n}\nreturn arr;\n}\n}\n
            array_queue.ts
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nprivate nums: number[]; // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate front: number; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate queSize: number; // \u961f\u5217\u957f\u5ea6\nconstructor(capacity: number) {\nthis.nums = new Array(capacity);\nthis.front = this.queSize = 0;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nget capacity(): number {\nreturn this.nums.length;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nget size(): number {\nreturn this.queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nempty(): boolean {\nreturn this.queSize === 0;\n}\n/* \u5165\u961f */\npush(num: number): void {\nif (this.size === this.capacity) {\nconsole.log('\u961f\u5217\u5df2\u6ee1');\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nconst rear = (this.front + this.queSize) % this.capacity;\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nthis.nums[rear] = num;\nthis.queSize++;\n}\n/* \u51fa\u961f */\npop(): number {\nconst num = this.peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nthis.front = (this.front + 1) % this.capacity;\nthis.queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npeek(): number {\nif (this.empty()) throw new Error('\u961f\u5217\u4e3a\u7a7a');\nreturn this.nums[this.front];\n}\n/* \u8fd4\u56de Array */\ntoArray(): number[] {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nconst arr = new Array(this.size);\nfor (let i = 0, j = this.front; i < this.size; i++, j++) {\narr[i] = this.nums[j % this.capacity];\n}\nreturn arr;\n}\n}\n
            array_queue.c
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nstruct arrayQueue {\nint *nums;       // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nint front;       // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nint queSize;     // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\nint queCapacity; // \u961f\u5217\u5bb9\u91cf\n};\ntypedef struct arrayQueue arrayQueue;\n/* \u6784\u9020\u51fd\u6570 */\narrayQueue *newArrayQueue(int capacity) {\narrayQueue *queue = (arrayQueue *)malloc(sizeof(arrayQueue));\n// \u521d\u59cb\u5316\u6570\u7ec4\nqueue->queCapacity = capacity;\nqueue->nums = (int *)malloc(sizeof(int) * queue->queCapacity);\nqueue->front = queue->queSize = 0;\nreturn queue;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delArrayQueue(arrayQueue *queue) {\nfree(queue->nums);\nqueue->queCapacity = 0;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nint capacity(arrayQueue *queue) {\nreturn queue->queCapacity;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size(arrayQueue *queue) {\nreturn queue->queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool empty(arrayQueue *queue) {\nreturn queue->queSize == 0;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek(arrayQueue *queue) {\nassert(size(queue) != 0);\nreturn queue->nums[queue->front];\n}\n/* \u5165\u961f */\nvoid push(arrayQueue *queue, int num) {\nif (size(queue) == capacity(queue)) {\nprintf(\"\u961f\u5217\u5df2\u6ee1\\r\\n\");\nreturn;\n}\n// \u8ba1\u7b97\u961f\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nint rear = (queue->front + queue->queSize) % queue->queCapacity;\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nqueue->nums[rear] = num;\nqueue->queSize++;\n}\n/* \u51fa\u961f */\nvoid pop(arrayQueue *queue) {\nint num = peek(queue);\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nqueue->front = (queue->front + 1) % queue->queCapacity;\nqueue->queSize--;\n}\n/* \u6253\u5370\u961f\u5217 */\nvoid printArrayQueue(arrayQueue *queue) {\nint arr[queue->queSize];\n// \u62f7\u8d1d\nfor (int i = 0, j = queue->front; i < queue->queSize; i++, j++) {\narr[i] = queue->nums[j % queue->queCapacity];\n}\nprintArray(arr, queue->queSize);\n}\n
            array_queue.cs
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nprivate int[] nums;  // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate int front;   // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate int queSize; // \u961f\u5217\u957f\u5ea6\npublic ArrayQueue(int capacity) {\nnums = new int[capacity];\nfront = queSize = 0;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\npublic int capacity() {\nreturn nums.Length;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\npublic int size() {\nreturn queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn queSize == 0;\n}\n/* \u5165\u961f */\npublic void push(int num) {\nif (queSize == capacity()) {\nConsole.WriteLine(\"\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nint rear = (front + queSize) % capacity();\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num;\nqueSize++;\n}\n/* \u51fa\u961f */\npublic int pop() {\nint num = peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nfront = (front + 1) % capacity();\nqueSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\npublic int peek() {\nif (isEmpty())\nthrow new Exception();\nreturn nums[front];\n}\n/* \u8fd4\u56de\u6570\u7ec4 */\npublic int[] toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nint[] res = new int[queSize];\nfor (int i = 0, j = front; i < queSize; i++, j++) {\nres[i] = nums[j % this.capacity()];\n}\nreturn res;\n}\n}\n
            array_queue.swift
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nprivate var nums: [Int] // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nprivate var front = 0 // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nprivate var queSize = 0 // \u961f\u5217\u957f\u5ea6\ninit(capacity: Int) {\n// \u521d\u59cb\u5316\u6570\u7ec4\nnums = Array(repeating: 0, count: capacity)\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nfunc capacity() -> Int {\nnums.count\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfunc size() -> Int {\nqueSize\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nqueSize == 0\n}\n/* \u5165\u961f */\nfunc push(num: Int) {\nif size() == capacity() {\nprint(\"\u961f\u5217\u5df2\u6ee1\")\nreturn\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nlet rear = (front + queSize) % capacity()\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nnums[rear] = num\nqueSize += 1\n}\n/* \u51fa\u961f */\n@discardableResult\nfunc pop() -> Int {\nlet num = peek()\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nfront = (front + 1) % capacity()\nqueSize -= 1\nreturn num\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfunc peek() -> Int {\nif isEmpty() {\nfatalError(\"\u961f\u5217\u4e3a\u7a7a\")\n}\nreturn nums[front]\n}\n/* \u8fd4\u56de\u6570\u7ec4 */\nfunc toArray() -> [Int] {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvar res = Array(repeating: 0, count: queSize)\nfor (i, j) in sequence(first: (0, front), next: { $0 < self.queSize - 1 ? ($0 + 1, $1 + 1) : nil }) {\nres[i] = nums[j % capacity()]\n}\nreturn res\n}\n}\n
            array_queue.zig
            // \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217\nfn ArrayQueue(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nnums: []T = undefined,                          // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4     \ncap: usize = 0,                                 // \u961f\u5217\u5bb9\u91cf\nfront: usize = 0,                               // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nqueSize: usize = 0,                             // \u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e + 1\nmem_arena: ?std.heap.ArenaAllocator = null,\nmem_allocator: std.mem.Allocator = undefined,   // \u5185\u5b58\u5206\u914d\u5668\n// \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6570\u7ec4\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator, cap: usize) !void {\nif (self.mem_arena == null) {\nself.mem_arena = std.heap.ArenaAllocator.init(allocator);\nself.mem_allocator = self.mem_arena.?.allocator();\n}\nself.cap = cap;\nself.nums = try self.mem_allocator.alloc(T, self.cap);\n@memset(self.nums, @as(T, 0));\n}\n// \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.mem_arena == null) return;\nself.mem_arena.?.deinit();\n}\n// \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf\npub fn capacity(self: *Self) usize {\nreturn self.cap;\n}\n// \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6\npub fn size(self: *Self) usize {\nreturn self.queSize;\n}\n// \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a\npub fn isEmpty(self: *Self) bool {\nreturn self.queSize == 0;\n}\n// \u5165\u961f\npub fn push(self: *Self, num: T) !void {\nif (self.size() == self.capacity()) {\nstd.debug.print(\"\u961f\u5217\u5df2\u6ee1\\n\", .{});\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nvar rear = (self.front + self.queSize) % self.capacity();\n// \u5c3e\u8282\u70b9\u540e\u6dfb\u52a0 num\nself.nums[rear] = num;\nself.queSize += 1;\n} // \u51fa\u961f\npub fn pop(self: *Self) T {\nvar num = self.peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nself.front = (self.front + 1) % self.capacity();\nself.queSize -= 1;\nreturn num;\n} // \u8bbf\u95ee\u961f\u9996\u5143\u7d20\npub fn peek(self: *Self) T {\nif (self.isEmpty()) @panic(\"\u961f\u5217\u4e3a\u7a7a\");\nreturn self.nums[self.front];\n} // \u8fd4\u56de\u6570\u7ec4\npub fn toArray(self: *Self) ![]T {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nvar res = try self.mem_allocator.alloc(T, self.size());\n@memset(res, @as(T, 0));\nvar i: usize = 0;\nvar j: usize = self.front;\nwhile (i < self.size()) : ({ i += 1; j += 1; }) {\nres[i] = self.nums[j % self.capacity()];\n}\nreturn res;\n}\n};\n}\n
            array_queue.dart
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nclass ArrayQueue {\nlate List<int> _nums; // \u7528\u4e8e\u50a8\u5b58\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nlate int _front; // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nlate int _queSize; // \u961f\u5217\u957f\u5ea6\nArrayQueue(int capacity) {\n_nums = List.filled(capacity, 0);\n_front = _queSize = 0;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nint capaCity() {\nreturn _nums.length;\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nint size() {\nreturn _queSize;\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn _queSize == 0;\n}\n/* \u5165\u961f */\nvoid push(int num) {\nif (_queSize == capaCity()) {\nthrow Exception(\"\u961f\u5217\u5df2\u6ee1\");\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nint rear = (_front + _queSize) % capaCity();\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\n_nums[rear] = num;\n_queSize++;\n}\n/* \u51fa\u961f */\nint pop() {\nint num = peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\n_front = (_front + 1) % capaCity();\n_queSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nint peek() {\nif (isEmpty()) {\nthrow Exception(\"\u961f\u5217\u4e3a\u7a7a\");\n}\nreturn _nums[_front];\n}\n/* \u8fd4\u56de Array */\nList<int> toArray() {\n// \u4ec5\u8f6c\u6362\u6709\u6548\u957f\u5ea6\u8303\u56f4\u5185\u7684\u5217\u8868\u5143\u7d20\nfinal List<int> res = List.filled(_queSize, 0);\nfor (int i = 0, j = _front; i < _queSize; i++, j++) {\nres[i] = _nums[j % capaCity()];\n}\nreturn res;\n}\n}\n
            array_queue.rs
            /* \u57fa\u4e8e\u73af\u5f62\u6570\u7ec4\u5b9e\u73b0\u7684\u961f\u5217 */\nstruct ArrayQueue {\nnums: Vec<i32>,     // \u7528\u4e8e\u5b58\u50a8\u961f\u5217\u5143\u7d20\u7684\u6570\u7ec4\nfront: i32,         // \u961f\u9996\u6307\u9488\uff0c\u6307\u5411\u961f\u9996\u5143\u7d20\nque_size: i32,      // \u961f\u5217\u957f\u5ea6\nque_capacity: i32,  // \u961f\u5217\u5bb9\u91cf\n}\nimpl ArrayQueue {\n/* \u6784\u9020\u65b9\u6cd5 */\nfn new(capacity: i32) -> ArrayQueue {\nArrayQueue {\nnums: vec![0; capacity as usize],\nfront: 0,\nque_size: 0,\nque_capacity: capacity,\n}\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u5bb9\u91cf */\nfn capacity(&self) -> i32 {\nself.que_capacity\n}\n/* \u83b7\u53d6\u961f\u5217\u7684\u957f\u5ea6 */\nfn size(&self) -> i32 {\nself.que_size\n}\n/* \u5224\u65ad\u961f\u5217\u662f\u5426\u4e3a\u7a7a */\nfn is_empty(&self) -> bool {\nself.que_size == 0\n}\n/* \u5165\u961f */\nfn push(&mut self, num: i32) {\nif self.que_size == self.capacity() {\nprintln!(\"\u961f\u5217\u5df2\u6ee1\");\nreturn;\n}\n// \u8ba1\u7b97\u5c3e\u6307\u9488\uff0c\u6307\u5411\u961f\u5c3e\u7d22\u5f15 + 1\n// \u901a\u8fc7\u53d6\u4f59\u64cd\u4f5c\uff0c\u5b9e\u73b0 rear \u8d8a\u8fc7\u6570\u7ec4\u5c3e\u90e8\u540e\u56de\u5230\u5934\u90e8\nlet rear = (self.front + self.que_size) % self.que_capacity;\n// \u5c06 num \u6dfb\u52a0\u81f3\u961f\u5c3e\nself.nums[rear as usize] = num;\nself.que_size += 1;\n}\n/* \u51fa\u961f */\nfn pop(&mut self) -> i32 {\nlet num = self.peek();\n// \u961f\u9996\u6307\u9488\u5411\u540e\u79fb\u52a8\u4e00\u4f4d\uff0c\u82e5\u8d8a\u8fc7\u5c3e\u90e8\u5219\u8fd4\u56de\u5230\u6570\u7ec4\u5934\u90e8\nself.front = (self.front + 1) % self.que_capacity;\nself.que_size -= 1;\nnum\n}\n/* \u8bbf\u95ee\u961f\u9996\u5143\u7d20 */\nfn peek(&self) -> i32 {\nif self.is_empty() {\npanic!(\"index out of bounds\");\n}\nself.nums[self.front as usize]\n}\n/* \u8fd4\u56de\u6570\u7ec4 */\nfn to_vector(&self) -> Vec<i32> {\nlet cap = self.que_capacity;\nlet mut j = self.front;\nlet mut arr = vec![0; self.que_size as usize];\nfor i in 0..self.que_size {\narr[i as usize] = self.nums[(j % cap) as usize];\nj += 1;\n}\narr\n}\n}\n

            \u4ee5\u4e0a\u5b9e\u73b0\u7684\u961f\u5217\u4ecd\u7136\u5177\u6709\u5c40\u9650\u6027\uff0c\u5373\u5176\u957f\u5ea6\u4e0d\u53ef\u53d8\u3002\u7136\u800c\uff0c\u8fd9\u4e2a\u95ee\u9898\u4e0d\u96be\u89e3\u51b3\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u66ff\u6362\u4e3a\u52a8\u6001\u6570\u7ec4\uff0c\u4ece\u800c\u5f15\u5165\u6269\u5bb9\u673a\u5236\u3002\u6709\u5174\u8da3\u7684\u540c\u5b66\u53ef\u4ee5\u5c1d\u8bd5\u81ea\u884c\u5b9e\u73b0\u3002

            \u4e24\u79cd\u5b9e\u73b0\u7684\u5bf9\u6bd4\u7ed3\u8bba\u4e0e\u6808\u4e00\u81f4\uff0c\u5728\u6b64\u4e0d\u518d\u8d58\u8ff0\u3002

            "},{"location":"chapter_stack_and_queue/queue/#523","title":"5.2.3 \u00a0 \u961f\u5217\u5178\u578b\u5e94\u7528","text":"
            • \u6dd8\u5b9d\u8ba2\u5355\u3002\u8d2d\u7269\u8005\u4e0b\u5355\u540e\uff0c\u8ba2\u5355\u5c06\u52a0\u5165\u961f\u5217\u4e2d\uff0c\u7cfb\u7edf\u968f\u540e\u4f1a\u6839\u636e\u987a\u5e8f\u4f9d\u6b21\u5904\u7406\u961f\u5217\u4e2d\u7684\u8ba2\u5355\u3002\u5728\u53cc\u5341\u4e00\u671f\u95f4\uff0c\u77ed\u65f6\u95f4\u5185\u4f1a\u4ea7\u751f\u6d77\u91cf\u8ba2\u5355\uff0c\u9ad8\u5e76\u53d1\u6210\u4e3a\u5de5\u7a0b\u5e08\u4eec\u9700\u8981\u91cd\u70b9\u653b\u514b\u7684\u95ee\u9898\u3002
            • \u5404\u7c7b\u5f85\u529e\u4e8b\u9879\u3002\u4efb\u4f55\u9700\u8981\u5b9e\u73b0\u201c\u5148\u6765\u540e\u5230\u201d\u529f\u80fd\u7684\u573a\u666f\uff0c\u4f8b\u5982\u6253\u5370\u673a\u7684\u4efb\u52a1\u961f\u5217\u3001\u9910\u5385\u7684\u51fa\u9910\u961f\u5217\u7b49\u3002\u961f\u5217\u5728\u8fd9\u4e9b\u573a\u666f\u4e2d\u53ef\u4ee5\u6709\u6548\u5730\u7ef4\u62a4\u5904\u7406\u987a\u5e8f\u3002
            "},{"location":"chapter_stack_and_queue/stack/","title":"5.1 \u00a0 \u6808","text":"

            \u300c\u6808 stack\u300d\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u540e\u51fa\u7684\u903b\u8f91\u7684\u7ebf\u6027\u6570\u636e\u7ed3\u6784\u3002

            \u6211\u4eec\u53ef\u4ee5\u5c06\u6808\u7c7b\u6bd4\u4e3a\u684c\u9762\u4e0a\u7684\u4e00\u645e\u76d8\u5b50\uff0c\u5982\u679c\u9700\u8981\u62ff\u51fa\u5e95\u90e8\u7684\u76d8\u5b50\uff0c\u5219\u9700\u8981\u5148\u5c06\u4e0a\u9762\u7684\u76d8\u5b50\u4f9d\u6b21\u53d6\u51fa\u3002\u6211\u4eec\u5c06\u76d8\u5b50\u66ff\u6362\u4e3a\u5404\u79cd\u7c7b\u578b\u7684\u5143\u7d20\uff08\u5982\u6574\u6570\u3001\u5b57\u7b26\u3001\u5bf9\u8c61\u7b49\uff09\uff0c\u5c31\u5f97\u5230\u4e86\u6808\u6570\u636e\u7ed3\u6784\u3002

            \u5728\u6808\u4e2d\uff0c\u6211\u4eec\u628a\u5806\u53e0\u5143\u7d20\u7684\u9876\u90e8\u79f0\u4e3a\u201c\u6808\u9876\u201d\uff0c\u5e95\u90e8\u79f0\u4e3a\u201c\u6808\u5e95\u201d\u3002\u5c06\u628a\u5143\u7d20\u6dfb\u52a0\u5230\u6808\u9876\u7684\u64cd\u4f5c\u53eb\u505a\u201c\u5165\u6808\u201d\uff0c\u800c\u5220\u9664\u6808\u9876\u5143\u7d20\u7684\u64cd\u4f5c\u53eb\u505a\u201c\u51fa\u6808\u201d\u3002

            \u56fe\uff1a\u6808\u7684\u5148\u5165\u540e\u51fa\u89c4\u5219

            "},{"location":"chapter_stack_and_queue/stack/#511","title":"5.1.1 \u00a0 \u6808\u5e38\u7528\u64cd\u4f5c","text":"

            \u6808\u7684\u5e38\u7528\u64cd\u4f5c\u5982\u4e0b\u8868\u6240\u793a\uff0c\u5177\u4f53\u7684\u65b9\u6cd5\u540d\u9700\u8981\u6839\u636e\u6240\u4f7f\u7528\u7684\u7f16\u7a0b\u8bed\u8a00\u6765\u786e\u5b9a\u3002\u5728\u6b64\uff0c\u6211\u4eec\u4ee5\u5e38\u89c1\u7684 push() , pop() , peek() \u547d\u540d\u4e3a\u4f8b\u3002

            \u8868\uff1a\u6808\u7684\u64cd\u4f5c\u6548\u7387

            \u65b9\u6cd5 \u63cf\u8ff0 \u65f6\u95f4\u590d\u6742\u5ea6 push() \u5143\u7d20\u5165\u6808\uff08\u6dfb\u52a0\u81f3\u6808\u9876\uff09 \\(O(1)\\) pop() \u6808\u9876\u5143\u7d20\u51fa\u6808 \\(O(1)\\) peek() \u8bbf\u95ee\u6808\u9876\u5143\u7d20 \\(O(1)\\)

            \u901a\u5e38\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u53ef\u4ee5\u76f4\u63a5\u4f7f\u7528\u7f16\u7a0b\u8bed\u8a00\u5185\u7f6e\u7684\u6808\u7c7b\u3002\u7136\u800c\uff0c\u67d0\u4e9b\u8bed\u8a00\u53ef\u80fd\u6ca1\u6709\u4e13\u95e8\u63d0\u4f9b\u6808\u7c7b\uff0c\u8fd9\u65f6\u6211\u4eec\u53ef\u4ee5\u5c06\u8be5\u8bed\u8a00\u7684\u201c\u6570\u7ec4\u201d\u6216\u201c\u94fe\u8868\u201d\u89c6\u4f5c\u6808\u6765\u4f7f\u7528\uff0c\u5e76\u5728\u7a0b\u5e8f\u903b\u8f91\u4e0a\u5ffd\u7565\u4e0e\u6808\u65e0\u5173\u7684\u64cd\u4f5c\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust stack.java
            /* \u521d\u59cb\u5316\u6808 */\nStack<Integer> stack = new Stack<>();\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.peek();\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.pop();\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.size();\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nboolean isEmpty = stack.isEmpty();\n
            stack.cpp
            /* \u521d\u59cb\u5316\u6808 */\nstack<int> stack;\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint top = stack.top();\n/* \u5143\u7d20\u51fa\u6808 */\nstack.pop(); // \u65e0\u8fd4\u56de\u503c\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.size();\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool empty = stack.empty();\n
            stack.py
            # \u521d\u59cb\u5316\u6808\n# Python \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a List \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nstack: list[int] = []\n# \u5143\u7d20\u5165\u6808\nstack.append(1)\nstack.append(3)\nstack.append(2)\nstack.append(5)\nstack.append(4)\n# \u8bbf\u95ee\u6808\u9876\u5143\u7d20\npeek: int = stack[-1]\n# \u5143\u7d20\u51fa\u6808\npop: int = stack.pop()\n# \u83b7\u53d6\u6808\u7684\u957f\u5ea6\nsize: int = len(stack)\n# \u5224\u65ad\u662f\u5426\u4e3a\u7a7a\nis_empty: bool = len(stack) == 0\n
            stack_test.go
            /* \u521d\u59cb\u5316\u6808 */\n// \u5728 Go \u4e2d\uff0c\u63a8\u8350\u5c06 Slice \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nvar stack []int\n/* \u5143\u7d20\u5165\u6808 */\nstack = append(stack, 1)\nstack = append(stack, 3)\nstack = append(stack, 2)\nstack = append(stack, 5)\nstack = append(stack, 4)\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npeek := stack[len(stack)-1]\n/* \u5143\u7d20\u51fa\u6808 */\npop := stack[len(stack)-1]\nstack = stack[:len(stack)-1]\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nsize := len(stack)\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nisEmpty := len(stack) == 0\n
            stack.js
            /* \u521d\u59cb\u5316\u6808 */\n// Javascript \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nconst stack = [];\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nconst peek = stack[stack.length-1];\n/* \u5143\u7d20\u51fa\u6808 */\nconst pop = stack.pop();\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nconst size = stack.length;\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nconst is_empty = stack.length === 0;\n
            stack.ts
            /* \u521d\u59cb\u5316\u6808 */\n// Typescript \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528 \nconst stack: number[] = [];\n/* \u5143\u7d20\u5165\u6808 */\nstack.push(1);\nstack.push(3);\nstack.push(2);\nstack.push(5);\nstack.push(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nconst peek = stack[stack.length - 1];\n/* \u5143\u7d20\u51fa\u6808 */\nconst pop = stack.pop();\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nconst size = stack.length;\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nconst is_empty = stack.length === 0;\n
            stack.c
            // C \u672a\u63d0\u4f9b\u5185\u7f6e\u6808\n
            stack.cs
            /* \u521d\u59cb\u5316\u6808 */\nStack<int> stack = new ();\n/* \u5143\u7d20\u5165\u6808 */\nstack.Push(1);\nstack.Push(3);\nstack.Push(2);\nstack.Push(5);\nstack.Push(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.Peek();\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.Pop();\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.Count;\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = stack.Count == 0;\n
            stack.swift
            /* \u521d\u59cb\u5316\u6808 */\n// Swift \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a Array \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nvar stack: [Int] = []\n/* \u5143\u7d20\u5165\u6808 */\nstack.append(1)\nstack.append(3)\nstack.append(2)\nstack.append(5)\nstack.append(4)\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nlet peek = stack.last!\n/* \u5143\u7d20\u51fa\u6808 */\nlet pop = stack.removeLast()\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nlet size = stack.count\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nlet isEmpty = stack.isEmpty\n
            stack.zig
            \n
            stack.dart
            /* \u521d\u59cb\u5316\u6808 */\n// Dart \u6ca1\u6709\u5185\u7f6e\u7684\u6808\u7c7b\uff0c\u53ef\u4ee5\u628a List \u5f53\u4f5c\u6808\u6765\u4f7f\u7528\nList<int> stack = [];\n/* \u5143\u7d20\u5165\u6808 */\nstack.add(1);\nstack.add(3);\nstack.add(2);\nstack.add(5);\nstack.add(4);\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek = stack.last;\n/* \u5143\u7d20\u51fa\u6808 */\nint pop = stack.removeLast();\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size = stack.length;\n/* \u5224\u65ad\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty = stack.isEmpty;\n
            stack.rs
            \n
            "},{"location":"chapter_stack_and_queue/stack/#512","title":"5.1.2 \u00a0 \u6808\u7684\u5b9e\u73b0","text":"

            \u4e3a\u4e86\u6df1\u5165\u4e86\u89e3\u6808\u7684\u8fd0\u884c\u673a\u5236\uff0c\u6211\u4eec\u6765\u5c1d\u8bd5\u81ea\u5df1\u5b9e\u73b0\u4e00\u4e2a\u6808\u7c7b\u3002

            \u6808\u9075\u5faa\u5148\u5165\u540e\u51fa\u7684\u539f\u5219\uff0c\u56e0\u6b64\u6211\u4eec\u53ea\u80fd\u5728\u6808\u9876\u6dfb\u52a0\u6216\u5220\u9664\u5143\u7d20\u3002\u7136\u800c\uff0c\u6570\u7ec4\u548c\u94fe\u8868\u90fd\u53ef\u4ee5\u5728\u4efb\u610f\u4f4d\u7f6e\u6dfb\u52a0\u548c\u5220\u9664\u5143\u7d20\uff0c\u56e0\u6b64\u6808\u53ef\u4ee5\u88ab\u89c6\u4e3a\u4e00\u79cd\u53d7\u9650\u5236\u7684\u6570\u7ec4\u6216\u94fe\u8868\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u6211\u4eec\u53ef\u4ee5\u201c\u5c4f\u853d\u201d\u6570\u7ec4\u6216\u94fe\u8868\u7684\u90e8\u5206\u65e0\u5173\u64cd\u4f5c\uff0c\u4f7f\u5176\u5bf9\u5916\u8868\u73b0\u7684\u903b\u8f91\u7b26\u5408\u6808\u7684\u7279\u6027\u3002

            "},{"location":"chapter_stack_and_queue/stack/#1","title":"1. \u00a0 \u57fa\u4e8e\u94fe\u8868\u7684\u5b9e\u73b0","text":"

            \u4f7f\u7528\u94fe\u8868\u6765\u5b9e\u73b0\u6808\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u94fe\u8868\u7684\u5934\u8282\u70b9\u89c6\u4e3a\u6808\u9876\uff0c\u5c3e\u8282\u70b9\u89c6\u4e3a\u6808\u5e95\u3002

            \u5bf9\u4e8e\u5165\u6808\u64cd\u4f5c\uff0c\u6211\u4eec\u53ea\u9700\u5c06\u5143\u7d20\u63d2\u5165\u94fe\u8868\u5934\u90e8\uff0c\u8fd9\u79cd\u8282\u70b9\u63d2\u5165\u65b9\u6cd5\u88ab\u79f0\u4e3a\u201c\u5934\u63d2\u6cd5\u201d\u3002\u800c\u5bf9\u4e8e\u51fa\u6808\u64cd\u4f5c\uff0c\u53ea\u9700\u5c06\u5934\u8282\u70b9\u4ece\u94fe\u8868\u4e2d\u5220\u9664\u5373\u53ef\u3002

            LinkedListStackpush()pop()

            \u56fe\uff1a\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u6808\u7684\u5165\u6808\u51fa\u6808\u64cd\u4f5c

            \u4ee5\u4e0b\u662f\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u6808\u7684\u793a\u4f8b\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust linkedlist_stack.java
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nprivate ListNode stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nprivate int stkSize = 0; // \u6808\u7684\u957f\u5ea6\npublic LinkedListStack() {\nstackPeek = null;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\npublic int size() {\nreturn stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u6808 */\npublic void push(int num) {\nListNode node = new ListNode(num);\nnode.next = stackPeek;\nstackPeek = node;\nstkSize++;\n}\n/* \u51fa\u6808 */\npublic int pop() {\nint num = peek();\nstackPeek = stackPeek.next;\nstkSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npublic int peek() {\nif (size() == 0)\nthrow new IndexOutOfBoundsException();\nreturn stackPeek.val;\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic int[] toArray() {\nListNode node = stackPeek;\nint[] res = new int[size()];\nfor (int i = res.length - 1; i >= 0; i--) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_stack.cpp
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nprivate:\nListNode *stackTop; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nint stkSize;        // \u6808\u7684\u957f\u5ea6\npublic:\nLinkedListStack() {\nstackTop = nullptr;\nstkSize = 0;\n}\n~LinkedListStack() {\n// \u904d\u5386\u94fe\u8868\u5220\u9664\u8282\u70b9\uff0c\u91ca\u653e\u5185\u5b58\nfreeMemoryLinkedList(stackTop);\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size() {\nreturn stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool empty() {\nreturn size() == 0;\n}\n/* \u5165\u6808 */\nvoid push(int num) {\nListNode *node = new ListNode(num);\nnode->next = stackTop;\nstackTop = node;\nstkSize++;\n}\n/* \u51fa\u6808 */\nvoid pop() {\nint num = top();\nListNode *tmp = stackTop;\nstackTop = stackTop->next;\n// \u91ca\u653e\u5185\u5b58\ndelete tmp;\nstkSize--;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint top() {\nif (size() == 0)\nthrow out_of_range(\"\u6808\u4e3a\u7a7a\");\nreturn stackTop->val;\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nvector<int> toVector() {\nListNode *node = stackTop;\nvector<int> res(size());\nfor (int i = res.size() - 1; i >= 0; i--) {\nres[i] = node->val;\nnode = node->next;\n}\nreturn res;\n}\n};\n
            linkedlist_stack.py
            class LinkedListStack:\n\"\"\"\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__peek: ListNode | None = None\nself.__size: int = 0\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u6808\u7684\u957f\u5ea6\"\"\"\nreturn self.__size\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn not self.__peek\ndef push(self, val: int):\n\"\"\"\u5165\u6808\"\"\"\nnode = ListNode(val)\nnode.next = self.__peek\nself.__peek = node\nself.__size += 1\ndef pop(self) -> int:\n\"\"\"\u51fa\u6808\"\"\"\nnum: int = self.peek()\nself.__peek = self.__peek.next\nself.__size -= 1\nreturn num\ndef peek(self) -> int:\n\"\"\"\u8bbf\u95ee\u6808\u9876\u5143\u7d20\"\"\"\n# \u5224\u7a7a\u5904\u7406\nif not self.__peek:\nreturn None\nreturn self.__peek.val\ndef to_list(self) -> list[int]:\n\"\"\"\u8f6c\u5316\u4e3a\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\narr = []\nnode = self.__peek\nwhile node:\narr.append(node.val)\nnode = node.next\narr.reverse()\nreturn arr\n
            linkedlist_stack.go
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\ntype linkedListStack struct {\n// \u4f7f\u7528\u5185\u7f6e\u5305 list \u6765\u5b9e\u73b0\u6808\ndata *list.List\n}\n/* \u521d\u59cb\u5316\u6808 */\nfunc newLinkedListStack() *linkedListStack {\nreturn &linkedListStack{\ndata: list.New(),\n}\n}\n/* \u5165\u6808 */\nfunc (s *linkedListStack) push(value int) {\ns.data.PushBack(value)\n}\n/* \u51fa\u6808 */\nfunc (s *linkedListStack) pop() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Back()\ns.data.Remove(e)\nreturn e.Value\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nfunc (s *linkedListStack) peek() any {\nif s.isEmpty() {\nreturn nil\n}\ne := s.data.Back()\nreturn e.Value\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nfunc (s *linkedListStack) size() int {\nreturn s.data.Len()\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nfunc (s *linkedListStack) isEmpty() bool {\nreturn s.data.Len() == 0\n}\n/* \u83b7\u53d6 List \u7528\u4e8e\u6253\u5370 */\nfunc (s *linkedListStack) toList() *list.List {\nreturn s.data\n}\n
            linkedlist_stack.js
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\n#stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\n#stkSize = 0; // \u6808\u7684\u957f\u5ea6\nconstructor() {\nthis.#stackPeek = null;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nget size() {\nreturn this.#stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nisEmpty() {\nreturn this.size === 0;\n}\n/* \u5165\u6808 */\npush(num) {\nconst node = new ListNode(num);\nnode.next = this.#stackPeek;\nthis.#stackPeek = node;\nthis.#stkSize++;\n}\n/* \u51fa\u6808 */\npop() {\nconst num = this.peek();\nthis.#stackPeek = this.#stackPeek.next;\nthis.#stkSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npeek() {\nif (!this.#stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.#stackPeek.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\ntoArray() {\nlet node = this.#stackPeek;\nconst res = new Array(this.size);\nfor (let i = res.length - 1; i >= 0; i--) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_stack.ts
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nprivate stackPeek: ListNode | null; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nprivate stkSize: number = 0; // \u6808\u7684\u957f\u5ea6\nconstructor() {\nthis.stackPeek = null;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nget size(): number {\nreturn this.stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nisEmpty(): boolean {\nreturn this.size === 0;\n}\n/* \u5165\u6808 */\npush(num: number): void {\nconst node = new ListNode(num);\nnode.next = this.stackPeek;\nthis.stackPeek = node;\nthis.stkSize++;\n}\n/* \u51fa\u6808 */\npop(): number {\nconst num = this.peek();\nif (!this.stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\nthis.stackPeek = this.stackPeek.next;\nthis.stkSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npeek(): number {\nif (!this.stackPeek) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.stackPeek.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\ntoArray(): number[] {\nlet node = this.stackPeek;\nconst res = new Array<number>(this.size);\nfor (let i = res.length - 1; i >= 0; i--) {\nres[i] = node!.val;\nnode = node!.next;\n}\nreturn res;\n}\n}\n
            linkedlist_stack.c
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nstruct linkedListStack {\nListNode *top; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nint size;      // \u6808\u7684\u957f\u5ea6\n};\ntypedef struct linkedListStack linkedListStack;\n/* \u6784\u9020\u51fd\u6570 */\nlinkedListStack *newLinkedListStack() {\nlinkedListStack *s = malloc(sizeof(linkedListStack));\ns->top = NULL;\ns->size = 0;\nreturn s;\n}\n/* \u6790\u6784\u51fd\u6570 */\nvoid delLinkedListStack(linkedListStack *s) {\nwhile (s->top) {\nListNode *n = s->top->next;\nfree(s->top);\ns->top = n;\n}\nfree(s);\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size(linkedListStack *s) {\nassert(s);\nreturn s->size;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty(linkedListStack *s) {\nassert(s);\nreturn size(s) == 0;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek(linkedListStack *s) {\nassert(s);\nassert(size(s) != 0);\nreturn s->top->val;\n}\n/* \u5165\u6808 */\nvoid push(linkedListStack *s, int num) {\nassert(s);\nListNode *node = (ListNode *)malloc(sizeof(ListNode));\nnode->next = s->top; // \u66f4\u65b0\u65b0\u52a0\u8282\u70b9\u6307\u9488\u57df\nnode->val = num;     // \u66f4\u65b0\u65b0\u52a0\u8282\u70b9\u6570\u636e\u57df\ns->top = node;       // \u66f4\u65b0\u6808\u9876\ns->size++;           // \u66f4\u65b0\u6808\u5927\u5c0f\n}\n/* \u51fa\u6808 */\nint pop(linkedListStack *s) {\nif (s->size == 0) {\nprintf(\"stack is empty.\\n\");\nreturn INT_MAX;\n}\nassert(s);\nint val = peek(s);\nListNode *tmp = s->top;\ns->top = s->top->next;\n// \u91ca\u653e\u5185\u5b58\nfree(tmp);\ns->size--;\nreturn val;\n}\n
            linkedlist_stack.cs
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nprivate ListNode? stackPeek;  // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nprivate int stkSize = 0;   // \u6808\u7684\u957f\u5ea6\npublic LinkedListStack() {\nstackPeek = null;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\npublic int size() {\nreturn stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u6808 */\npublic void push(int num) {\nListNode node = new ListNode(num);\nnode.next = stackPeek;\nstackPeek = node;\nstkSize++;\n}\n/* \u51fa\u6808 */\npublic int pop() {\nif (stackPeek == null)\nthrow new Exception();\nint num = peek();\nstackPeek = stackPeek.next;\nstkSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npublic int peek() {\nif (size() == 0 || stackPeek == null)\nthrow new Exception();\nreturn stackPeek.val;\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic int[] toArray() {\nif (stackPeek == null)\nreturn Array.Empty<int>();\nListNode node = stackPeek;\nint[] res = new int[size()];\nfor (int i = res.Length - 1; i >= 0; i--) {\nres[i] = node.val;\nnode = node.next;\n}\nreturn res;\n}\n}\n
            linkedlist_stack.swift
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nprivate var _peek: ListNode? // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nprivate var _size = 0 // \u6808\u7684\u957f\u5ea6\ninit() {}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nfunc size() -> Int {\n_size\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nsize() == 0\n}\n/* \u5165\u6808 */\nfunc push(num: Int) {\nlet node = ListNode(x: num)\nnode.next = _peek\n_peek = node\n_size += 1\n}\n/* \u51fa\u6808 */\n@discardableResult\nfunc pop() -> Int {\nlet num = peek()\n_peek = _peek?.next\n_size -= 1\nreturn num\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nfunc peek() -> Int {\nif isEmpty() {\nfatalError(\"\u6808\u4e3a\u7a7a\")\n}\nreturn _peek!.val\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nfunc toArray() -> [Int] {\nvar node = _peek\nvar res = Array(repeating: 0, count: _size)\nfor i in sequence(first: res.count - 1, next: { $0 >= 0 + 1 ? $0 - 1 : nil }) {\nres[i] = node!.val\nnode = node?.next\n}\nreturn res\n}\n}\n
            linkedlist_stack.zig
            // \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\nfn LinkedListStack(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nstack_top: ?*inc.ListNode(T) = null,             // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nstk_size: usize = 0,                             // \u6808\u7684\u957f\u5ea6\nmem_arena: ?std.heap.ArenaAllocator = null,\nmem_allocator: std.mem.Allocator = undefined,    // \u5185\u5b58\u5206\u914d\u5668\n// \u6784\u9020\u51fd\u6570\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6808\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator) !void {\nif (self.mem_arena == null) {\nself.mem_arena = std.heap.ArenaAllocator.init(allocator);\nself.mem_allocator = self.mem_arena.?.allocator();\n}\nself.stack_top = null;\nself.stk_size = 0;\n}\n// \u6790\u6784\u51fd\u6570\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.mem_arena == null) return;\nself.mem_arena.?.deinit();\n}\n// \u83b7\u53d6\u6808\u7684\u957f\u5ea6\npub fn size(self: *Self) usize {\nreturn self.stk_size;\n}\n// \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\npub fn isEmpty(self: *Self) bool {\nreturn self.size() == 0;\n}\n// \u8bbf\u95ee\u6808\u9876\u5143\u7d20\npub fn peek(self: *Self) T {\nif (self.size() == 0) @panic(\"\u6808\u4e3a\u7a7a\");\nreturn self.stack_top.?.val;\n}  // \u5165\u6808\npub fn push(self: *Self, num: T) !void {\nvar node = try self.mem_allocator.create(inc.ListNode(T));\nnode.init(num);\nnode.next = self.stack_top;\nself.stack_top = node;\nself.stk_size += 1;\n} // \u51fa\u6808\npub fn pop(self: *Self) T {\nvar num = self.peek();\nself.stack_top = self.stack_top.?.next;\nself.stk_size -= 1;\nreturn num;\n} // \u5c06\u6808\u8f6c\u6362\u4e3a\u6570\u7ec4\npub fn toArray(self: *Self) ![]T {\nvar node = self.stack_top;\nvar res = try self.mem_allocator.alloc(T, self.size());\n@memset(res, @as(T, 0));\nvar i: usize = 0;\nwhile (i < res.len) : (i += 1) {\nres[res.len - i - 1] = node.?.val;\nnode = node.?.next;\n}\nreturn res;\n}\n};\n}\n
            linkedlist_stack.dart
            /* \u57fa\u4e8e\u94fe\u8868\u7c7b\u5b9e\u73b0\u7684\u6808 */\nclass LinkedListStack {\nListNode? _stackPeek; // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nint _stkSize = 0; // \u6808\u7684\u957f\u5ea6\nLinkedListStack() {\n_stackPeek = null;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size() {\nreturn _stkSize;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn _stkSize == 0;\n}\n/* \u5165\u6808 */\nvoid push(int num) {\nfinal ListNode node = ListNode(num);\nnode.next = _stackPeek;\n_stackPeek = node;\n_stkSize++;\n}\n/* \u51fa\u6808 */\nint pop() {\nfinal int num = peek();\n_stackPeek = _stackPeek!.next;\n_stkSize--;\nreturn num;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek() {\nif (_stackPeek == null) {\nthrow Exception(\"\u6808\u4e3a\u7a7a\");\n}\nreturn _stackPeek!.val;\n}\n/* \u5c06\u94fe\u8868\u8f6c\u5316\u4e3a List \u5e76\u8fd4\u56de */\nList<int> toList() {\nListNode? node = _stackPeek;\nList<int> list = [];\nwhile (node != null) {\nlist.add(node.val);\nnode = node.next;\n}\nlist = list.reversed.toList();\nreturn list;\n}\n}\n
            linkedlist_stack.rs
            /* \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808 */\n#[allow(dead_code)]\npub struct LinkedListStack<T> {\nstack_peek: Option<Rc<RefCell<ListNode<T>>>>,   // \u5c06\u5934\u8282\u70b9\u4f5c\u4e3a\u6808\u9876\nstk_size: usize,                                // \u6808\u7684\u957f\u5ea6\n}\nimpl<T: Copy> LinkedListStack<T> {\npub fn new() -> Self {\nSelf {\nstack_peek: None,\nstk_size: 0,\n}\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\npub fn size(&self) -> usize {\nreturn self.stk_size;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\npub fn is_empty(&self) -> bool {\nreturn self.size() == 0;\n}\n/* \u5165\u6808 */\npub fn push(&mut self, num: T) {\nlet node = ListNode::new(num);\nnode.borrow_mut().next = self.stack_peek.take();\nself.stack_peek = Some(node);\nself.stk_size += 1;\n}\n/* \u51fa\u6808 */\npub fn pop(&mut self) -> Option<T> {\nself.stack_peek.take().map(|old_head| {\nmatch old_head.borrow_mut().next.take() {\nSome(new_head) => {\nself.stack_peek = Some(new_head);\n}\nNone => {\nself.stack_peek = None;\n}\n}\nself.stk_size -= 1;\nRc::try_unwrap(old_head).ok().unwrap().into_inner().val\n})\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npub fn peek(&self) -> Option<&Rc<RefCell<ListNode<T>>>> {\nself.stack_peek.as_ref()\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> {\nif let Some(node) = head {\nlet mut nums = self.to_array(node.borrow().next.as_ref());\nnums.push(node.borrow().val);\nreturn nums;\n}\nreturn Vec::new();\n}\n}\n
            "},{"location":"chapter_stack_and_queue/stack/#2","title":"2. \u00a0 \u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0","text":"

            \u4f7f\u7528\u6570\u7ec4\u5b9e\u73b0\u6808\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5c06\u6570\u7ec4\u7684\u5c3e\u90e8\u4f5c\u4e3a\u6808\u9876\u3002\u5728\u8fd9\u6837\u7684\u8bbe\u8ba1\u4e0b\uff0c\u5165\u6808\u4e0e\u51fa\u6808\u64cd\u4f5c\u5c31\u5206\u522b\u5bf9\u5e94\u5728\u6570\u7ec4\u5c3e\u90e8\u6dfb\u52a0\u5143\u7d20\u4e0e\u5220\u9664\u5143\u7d20\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u4e3a \\(O(1)\\) \u3002

            ArrayStackpush()pop()

            \u56fe\uff1a\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u6808\u7684\u5165\u6808\u51fa\u6808\u64cd\u4f5c

            \u7531\u4e8e\u5165\u6808\u7684\u5143\u7d20\u53ef\u80fd\u4f1a\u6e90\u6e90\u4e0d\u65ad\u5730\u589e\u52a0\uff0c\u56e0\u6b64\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u52a8\u6001\u6570\u7ec4\uff0c\u8fd9\u6837\u5c31\u65e0\u987b\u81ea\u884c\u5904\u7406\u6570\u7ec4\u6269\u5bb9\u95ee\u9898\u3002\u4ee5\u4e0b\u4e3a\u793a\u4f8b\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust array_stack.java
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nprivate ArrayList<Integer> stack;\npublic ArrayStack() {\n// \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\nstack = new ArrayList<>();\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\npublic int size() {\nreturn stack.size();\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\npublic boolean isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u6808 */\npublic void push(int num) {\nstack.add(num);\n}\n/* \u51fa\u6808 */\npublic int pop() {\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\nreturn stack.remove(size() - 1);\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npublic int peek() {\nif (isEmpty())\nthrow new IndexOutOfBoundsException();\nreturn stack.get(size() - 1);\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic Object[] toArray() {\nreturn stack.toArray();\n}\n}\n
            array_stack.cpp
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nprivate:\nvector<int> stack;\npublic:\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size() {\nreturn stack.size();\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool empty() {\nreturn stack.empty();\n}\n/* \u5165\u6808 */\nvoid push(int num) {\nstack.push_back(num);\n}\n/* \u51fa\u6808 */\nvoid pop() {\nint oldTop = top();\nstack.pop_back();\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint top() {\nif (empty())\nthrow out_of_range(\"\u6808\u4e3a\u7a7a\");\nreturn stack.back();\n}\n/* \u8fd4\u56de Vector */\nvector<int> toVector() {\nreturn stack;\n}\n};\n
            array_stack.py
            class ArrayStack:\n\"\"\"\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\"\"\"\ndef __init__(self):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__stack: list[int] = []\ndef size(self) -> int:\n\"\"\"\u83b7\u53d6\u6808\u7684\u957f\u5ea6\"\"\"\nreturn len(self.__stack)\ndef is_empty(self) -> bool:\n\"\"\"\u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\"\"\"\nreturn self.__stack == []\ndef push(self, item: int):\n\"\"\"\u5165\u6808\"\"\"\nself.__stack.append(item)\ndef pop(self) -> int:\n\"\"\"\u51fa\u6808\"\"\"\nif self.is_empty():\nraise IndexError(\"\u6808\u4e3a\u7a7a\")\nreturn self.__stack.pop()\ndef peek(self) -> int:\n\"\"\"\u8bbf\u95ee\u6808\u9876\u5143\u7d20\"\"\"\nif self.is_empty():\nraise IndexError(\"\u6808\u4e3a\u7a7a\")\nreturn self.__stack[-1]\ndef to_list(self) -> list[int]:\n\"\"\"\u8fd4\u56de\u5217\u8868\u7528\u4e8e\u6253\u5370\"\"\"\nreturn self.__stack\n
            array_stack.go
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\ntype arrayStack struct {\ndata []int // \u6570\u636e\n}\n/* \u521d\u59cb\u5316\u6808 */\nfunc newArrayStack() *arrayStack {\nreturn &arrayStack{\n// \u8bbe\u7f6e\u6808\u7684\u957f\u5ea6\u4e3a 0\uff0c\u5bb9\u91cf\u4e3a 16\ndata: make([]int, 0, 16),\n}\n}\n/* \u6808\u7684\u957f\u5ea6 */\nfunc (s *arrayStack) size() int {\nreturn len(s.data)\n}\n/* \u6808\u662f\u5426\u4e3a\u7a7a */\nfunc (s *arrayStack) isEmpty() bool {\nreturn s.size() == 0\n}\n/* \u5165\u6808 */\nfunc (s *arrayStack) push(v int) {\n// \u5207\u7247\u4f1a\u81ea\u52a8\u6269\u5bb9\ns.data = append(s.data, v)\n}\n/* \u51fa\u6808 */\nfunc (s *arrayStack) pop() any {\nval := s.peek()\ns.data = s.data[:len(s.data)-1]\nreturn val\n}\n/* \u83b7\u53d6\u6808\u9876\u5143\u7d20 */\nfunc (s *arrayStack) peek() any {\nif s.isEmpty() {\nreturn nil\n}\nval := s.data[len(s.data)-1]\nreturn val\n}\n/* \u83b7\u53d6 Slice \u7528\u4e8e\u6253\u5370 */\nfunc (s *arrayStack) toSlice() []int {\nreturn s.data\n}\n
            array_stack.js
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\n#stack;\nconstructor() {\nthis.#stack = [];\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nget size() {\nreturn this.#stack.length;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nempty() {\nreturn this.#stack.length === 0;\n}\n/* \u5165\u6808 */\npush(num) {\nthis.#stack.push(num);\n}\n/* \u51fa\u6808 */\npop() {\nif (this.empty()) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.#stack.pop();\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\ntop() {\nif (this.empty()) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.#stack[this.#stack.length - 1];\n}\n/* \u8fd4\u56de Array */\ntoArray() {\nreturn this.#stack;\n}\n}\n
            array_stack.ts
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nprivate stack: number[];\nconstructor() {\nthis.stack = [];\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nget size(): number {\nreturn this.stack.length;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nempty(): boolean {\nreturn this.stack.length === 0;\n}\n/* \u5165\u6808 */\npush(num: number): void {\nthis.stack.push(num);\n}\n/* \u51fa\u6808 */\npop(): number | undefined {\nif (this.empty()) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.stack.pop();\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\ntop(): number | undefined {\nif (this.empty()) throw new Error('\u6808\u4e3a\u7a7a');\nreturn this.stack[this.stack.length - 1];\n}\n/* \u8fd4\u56de Array */\ntoArray() {\nreturn this.stack;\n}\n}\n
            array_stack.c
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nstruct arrayStack {\nint *data;\nint size;\n};\ntypedef struct arrayStack arrayStack;\n/* \u6784\u9020\u51fd\u6570 */\narrayStack *newArrayStack() {\narrayStack *s = malloc(sizeof(arrayStack));\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5927\u5bb9\u91cf\uff0c\u907f\u514d\u6269\u5bb9\ns->data = malloc(sizeof(int) * MAX_SIZE);\ns->size = 0;\nreturn s;\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size(arrayStack *s) {\nreturn s->size;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty(arrayStack *s) {\nreturn s->size == 0;\n}\n/* \u5165\u6808 */\nvoid push(arrayStack *s, int num) {\nif (s->size == MAX_SIZE) {\nprintf(\"stack is full.\\n\");\nreturn;\n}\ns->data[s->size] = num;\ns->size++;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek(arrayStack *s) {\nif (s->size == 0) {\nprintf(\"stack is empty.\\n\");\nreturn INT_MAX;\n}\nreturn s->data[s->size - 1];\n}\n/* \u51fa\u6808 */\nint pop(arrayStack *s) {\nif (s->size == 0) {\nprintf(\"stack is empty.\\n\");\nreturn INT_MAX;\n}\nint val = peek(s);\ns->size--;\nreturn val;\n}\n
            array_stack.cs
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nprivate List<int> stack;\npublic ArrayStack() {\n// \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\nstack = new();\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\npublic int size() {\nreturn stack.Count();\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\npublic bool isEmpty() {\nreturn size() == 0;\n}\n/* \u5165\u6808 */\npublic void push(int num) {\nstack.Add(num);\n}\n/* \u51fa\u6808 */\npublic int pop() {\nif (isEmpty())\nthrow new Exception();\nvar val = peek();\nstack.RemoveAt(size() - 1);\nreturn val;\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\npublic int peek() {\nif (isEmpty())\nthrow new Exception();\nreturn stack[size() - 1];\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\npublic int[] toArray() {\nreturn stack.ToArray();\n}\n}\n
            array_stack.swift
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nprivate var stack: [Int]\ninit() {\n// \u521d\u59cb\u5316\u5217\u8868\uff08\u52a8\u6001\u6570\u7ec4\uff09\nstack = []\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nfunc size() -> Int {\nstack.count\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nfunc isEmpty() -> Bool {\nstack.isEmpty\n}\n/* \u5165\u6808 */\nfunc push(num: Int) {\nstack.append(num)\n}\n/* \u51fa\u6808 */\n@discardableResult\nfunc pop() -> Int {\nif isEmpty() {\nfatalError(\"\u6808\u4e3a\u7a7a\")\n}\nreturn stack.removeLast()\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nfunc peek() -> Int {\nif isEmpty() {\nfatalError(\"\u6808\u4e3a\u7a7a\")\n}\nreturn stack.last!\n}\n/* \u5c06 List \u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nfunc toArray() -> [Int] {\nstack\n}\n}\n
            array_stack.zig
            // \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\nfn ArrayStack(comptime T: type) type {\nreturn struct {\nconst Self = @This();\nstack: ?std.ArrayList(T) = null,     // \u6784\u9020\u65b9\u6cd5\uff08\u5206\u914d\u5185\u5b58+\u521d\u59cb\u5316\u6808\uff09\npub fn init(self: *Self, allocator: std.mem.Allocator) void {\nif (self.stack == null) {\nself.stack = std.ArrayList(T).init(allocator);\n}\n}\n// \u6790\u6784\u65b9\u6cd5\uff08\u91ca\u653e\u5185\u5b58\uff09\npub fn deinit(self: *Self) void {\nif (self.stack == null) return;\nself.stack.?.deinit();\n}\n// \u83b7\u53d6\u6808\u7684\u957f\u5ea6\npub fn size(self: *Self) usize {\nreturn self.stack.?.items.len;\n}\n// \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a\npub fn isEmpty(self: *Self) bool {\nreturn self.size() == 0;\n}\n// \u8bbf\u95ee\u6808\u9876\u5143\u7d20\npub fn peek(self: *Self) T {\nif (self.isEmpty()) @panic(\"\u6808\u4e3a\u7a7a\");\nreturn self.stack.?.items[self.size() - 1];\n}  // \u5165\u6808\npub fn push(self: *Self, num: T) !void {\ntry self.stack.?.append(num);\n} // \u51fa\u6808\npub fn pop(self: *Self) T {\nvar num = self.stack.?.pop();\nreturn num;\n} // \u8fd4\u56de ArrayList\npub fn toList(self: *Self) std.ArrayList(T) {\nreturn self.stack.?;\n}\n};\n}\n
            array_stack.dart
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nclass ArrayStack {\nlate List<int> _stack;\nArrayStack() {\n_stack = [];\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nint size() {\nreturn _stack.length;\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nbool isEmpty() {\nreturn _stack.isEmpty;\n}\n/* \u5165\u6808 */\nvoid push(int num) {\n_stack.add(num);\n}\n/* \u51fa\u6808 */\nint pop() {\nif (isEmpty()) {\nthrow Exception(\"\u6808\u4e3a\u7a7a\");\n}\nreturn _stack.removeLast();\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nint peek() {\nif (isEmpty()) {\nthrow Exception(\"\u6808\u4e3a\u7a7a\");\n}\nreturn _stack.last;\n}\n/* \u5c06\u6808\u8f6c\u5316\u4e3a Array \u5e76\u8fd4\u56de */\nList<int> toArray() => _stack;\n}\n
            array_stack.rs
            /* \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808 */\nstruct ArrayStack<T> {\nstack: Vec<T>,\n}\nimpl<T> ArrayStack<T> {\n/* \u521d\u59cb\u5316\u6808 */\nfn new() -> ArrayStack<T> {\nArrayStack::<T> { stack: Vec::<T>::new() }\n}\n/* \u83b7\u53d6\u6808\u7684\u957f\u5ea6 */\nfn size(&self) -> usize {\nself.stack.len()\n}\n/* \u5224\u65ad\u6808\u662f\u5426\u4e3a\u7a7a */\nfn is_empty(&self) -> bool {\nself.size() == 0\n}\n/* \u5165\u6808 */\nfn push(&mut self, num: T) {\nself.stack.push(num);\n}\n/* \u51fa\u6808 */\nfn pop(&mut self) -> Option<T> {\nmatch self.stack.pop() {\nSome(num) => Some(num),\nNone => None,\n}\n}\n/* \u8bbf\u95ee\u6808\u9876\u5143\u7d20 */\nfn peek(&self) -> Option<&T> {\nif self.is_empty() { panic!(\"\u6808\u4e3a\u7a7a\") };\nself.stack.last()\n}\n/* \u8fd4\u56de &Vec */\nfn to_array(&self) -> &Vec<T> {\n&self.stack\n}\n}\n
            "},{"location":"chapter_stack_and_queue/stack/#513","title":"5.1.3 \u00a0 \u4e24\u79cd\u5b9e\u73b0\u5bf9\u6bd4","text":""},{"location":"chapter_stack_and_queue/stack/#1_1","title":"1. \u00a0 \u652f\u6301\u64cd\u4f5c","text":"

            \u4e24\u79cd\u5b9e\u73b0\u90fd\u652f\u6301\u6808\u5b9a\u4e49\u4e2d\u7684\u5404\u9879\u64cd\u4f5c\u3002\u6570\u7ec4\u5b9e\u73b0\u989d\u5916\u652f\u6301\u968f\u673a\u8bbf\u95ee\uff0c\u4f46\u8fd9\u5df2\u8d85\u51fa\u4e86\u6808\u7684\u5b9a\u4e49\u8303\u7574\uff0c\u56e0\u6b64\u4e00\u822c\u4e0d\u4f1a\u7528\u5230\u3002

            "},{"location":"chapter_stack_and_queue/stack/#2_1","title":"2. \u00a0 \u65f6\u95f4\u6548\u7387","text":"

            \u5728\u57fa\u4e8e\u6570\u7ec4\u7684\u5b9e\u73b0\u4e2d\uff0c\u5165\u6808\u548c\u51fa\u6808\u64cd\u4f5c\u90fd\u662f\u5728\u9884\u5148\u5206\u914d\u597d\u7684\u8fde\u7eed\u5185\u5b58\u4e2d\u8fdb\u884c\uff0c\u5177\u6709\u5f88\u597d\u7684\u7f13\u5b58\u672c\u5730\u6027\uff0c\u56e0\u6b64\u6548\u7387\u8f83\u9ad8\u3002\u7136\u800c\uff0c\u5982\u679c\u5165\u6808\u65f6\u8d85\u51fa\u6570\u7ec4\u5bb9\u91cf\uff0c\u4f1a\u89e6\u53d1\u6269\u5bb9\u673a\u5236\uff0c\u5bfc\u81f4\u8be5\u6b21\u5165\u6808\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u53d8\u4e3a \\(O(n)\\) \u3002

            \u5728\u94fe\u8868\u5b9e\u73b0\u4e2d\uff0c\u94fe\u8868\u7684\u6269\u5bb9\u975e\u5e38\u7075\u6d3b\uff0c\u4e0d\u5b58\u5728\u4e0a\u8ff0\u6570\u7ec4\u6269\u5bb9\u65f6\u6548\u7387\u964d\u4f4e\u7684\u95ee\u9898\u3002\u4f46\u662f\uff0c\u5165\u6808\u64cd\u4f5c\u9700\u8981\u521d\u59cb\u5316\u8282\u70b9\u5bf9\u8c61\u5e76\u4fee\u6539\u6307\u9488\uff0c\u56e0\u6b64\u6548\u7387\u76f8\u5bf9\u8f83\u4f4e\u3002\u4e0d\u8fc7\uff0c\u5982\u679c\u5165\u6808\u5143\u7d20\u672c\u8eab\u5c31\u662f\u8282\u70b9\u5bf9\u8c61\uff0c\u90a3\u4e48\u53ef\u4ee5\u7701\u53bb\u521d\u59cb\u5316\u6b65\u9aa4\uff0c\u4ece\u800c\u63d0\u9ad8\u6548\u7387\u3002

            \u7efc\u4e0a\u6240\u8ff0\uff0c\u5f53\u5165\u6808\u4e0e\u51fa\u6808\u64cd\u4f5c\u7684\u5143\u7d20\u662f\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff08\u5982 int , double \uff09\u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u51fa\u4ee5\u4e0b\u7ed3\u8bba\uff1a

            • \u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\u5728\u89e6\u53d1\u6269\u5bb9\u65f6\u6548\u7387\u4f1a\u964d\u4f4e\uff0c\u4f46\u7531\u4e8e\u6269\u5bb9\u662f\u4f4e\u9891\u64cd\u4f5c\uff0c\u56e0\u6b64\u5e73\u5747\u6548\u7387\u66f4\u9ad8\u3002
            • \u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\u53ef\u4ee5\u63d0\u4f9b\u66f4\u52a0\u7a33\u5b9a\u7684\u6548\u7387\u8868\u73b0\u3002
            "},{"location":"chapter_stack_and_queue/stack/#3","title":"3. \u00a0 \u7a7a\u95f4\u6548\u7387","text":"

            \u5728\u521d\u59cb\u5316\u5217\u8868\u65f6\uff0c\u7cfb\u7edf\u4f1a\u4e3a\u5217\u8868\u5206\u914d\u201c\u521d\u59cb\u5bb9\u91cf\u201d\uff0c\u8be5\u5bb9\u91cf\u53ef\u80fd\u8d85\u8fc7\u5b9e\u9645\u9700\u6c42\u3002\u5e76\u4e14\uff0c\u6269\u5bb9\u673a\u5236\u901a\u5e38\u662f\u6309\u7167\u7279\u5b9a\u500d\u7387\uff08\u4f8b\u5982 2 \u500d\uff09\u8fdb\u884c\u6269\u5bb9\uff0c\u6269\u5bb9\u540e\u7684\u5bb9\u91cf\u4e5f\u53ef\u80fd\u8d85\u51fa\u5b9e\u9645\u9700\u6c42\u3002\u56e0\u6b64\uff0c\u57fa\u4e8e\u6570\u7ec4\u5b9e\u73b0\u7684\u6808\u53ef\u80fd\u9020\u6210\u4e00\u5b9a\u7684\u7a7a\u95f4\u6d6a\u8d39\u3002

            \u7136\u800c\uff0c\u7531\u4e8e\u94fe\u8868\u8282\u70b9\u9700\u8981\u989d\u5916\u5b58\u50a8\u6307\u9488\uff0c\u56e0\u6b64\u94fe\u8868\u8282\u70b9\u5360\u7528\u7684\u7a7a\u95f4\u76f8\u5bf9\u8f83\u5927\u3002

            \u7efc\u4e0a\uff0c\u6211\u4eec\u4e0d\u80fd\u7b80\u5355\u5730\u786e\u5b9a\u54ea\u79cd\u5b9e\u73b0\u66f4\u52a0\u8282\u7701\u5185\u5b58\uff0c\u9700\u8981\u9488\u5bf9\u5177\u4f53\u60c5\u51b5\u8fdb\u884c\u5206\u6790\u3002

            "},{"location":"chapter_stack_and_queue/stack/#514","title":"5.1.4 \u00a0 \u6808\u5178\u578b\u5e94\u7528","text":"
            • \u6d4f\u89c8\u5668\u4e2d\u7684\u540e\u9000\u4e0e\u524d\u8fdb\u3001\u8f6f\u4ef6\u4e2d\u7684\u64a4\u9500\u4e0e\u53cd\u64a4\u9500\u3002\u6bcf\u5f53\u6211\u4eec\u6253\u5f00\u65b0\u7684\u7f51\u9875\uff0c\u6d4f\u89c8\u5668\u5c31\u4f1a\u5c06\u4e0a\u4e00\u4e2a\u7f51\u9875\u6267\u884c\u5165\u6808\uff0c\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u901a\u8fc7\u540e\u9000\u64cd\u4f5c\u56de\u5230\u4e0a\u4e00\u9875\u9762\u3002\u540e\u9000\u64cd\u4f5c\u5b9e\u9645\u4e0a\u662f\u5728\u6267\u884c\u51fa\u6808\u3002\u5982\u679c\u8981\u540c\u65f6\u652f\u6301\u540e\u9000\u548c\u524d\u8fdb\uff0c\u90a3\u4e48\u9700\u8981\u4e24\u4e2a\u6808\u6765\u914d\u5408\u5b9e\u73b0\u3002
            • \u7a0b\u5e8f\u5185\u5b58\u7ba1\u7406\u3002\u6bcf\u6b21\u8c03\u7528\u51fd\u6570\u65f6\uff0c\u7cfb\u7edf\u90fd\u4f1a\u5728\u6808\u9876\u6dfb\u52a0\u4e00\u4e2a\u6808\u5e27\uff0c\u7528\u4e8e\u8bb0\u5f55\u51fd\u6570\u7684\u4e0a\u4e0b\u6587\u4fe1\u606f\u3002\u5728\u9012\u5f52\u51fd\u6570\u4e2d\uff0c\u5411\u4e0b\u9012\u63a8\u9636\u6bb5\u4f1a\u4e0d\u65ad\u6267\u884c\u5165\u6808\u64cd\u4f5c\uff0c\u800c\u5411\u4e0a\u56de\u6eaf\u9636\u6bb5\u5219\u4f1a\u6267\u884c\u51fa\u6808\u64cd\u4f5c\u3002
            "},{"location":"chapter_stack_and_queue/summary/","title":"5.4 \u00a0 \u5c0f\u7ed3","text":"
            • \u6808\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u540e\u51fa\u539f\u5219\u7684\u6570\u636e\u7ed3\u6784\uff0c\u53ef\u901a\u8fc7\u6570\u7ec4\u6216\u94fe\u8868\u6765\u5b9e\u73b0\u3002
            • \u4ece\u65f6\u95f4\u6548\u7387\u89d2\u5ea6\u770b\uff0c\u6808\u7684\u6570\u7ec4\u5b9e\u73b0\u5177\u6709\u8f83\u9ad8\u7684\u5e73\u5747\u6548\u7387\uff0c\u4f46\u5728\u6269\u5bb9\u8fc7\u7a0b\u4e2d\uff0c\u5355\u6b21\u5165\u6808\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u964d\u4f4e\u81f3 \\(O(n)\\) \u3002\u76f8\u6bd4\u4e4b\u4e0b\uff0c\u57fa\u4e8e\u94fe\u8868\u5b9e\u73b0\u7684\u6808\u5177\u6709\u66f4\u4e3a\u7a33\u5b9a\u7684\u6548\u7387\u8868\u73b0\u3002
            • \u5728\u7a7a\u95f4\u6548\u7387\u65b9\u9762\uff0c\u6808\u7684\u6570\u7ec4\u5b9e\u73b0\u53ef\u80fd\u5bfc\u81f4\u4e00\u5b9a\u7a0b\u5ea6\u7684\u7a7a\u95f4\u6d6a\u8d39\u3002\u4f46\u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u94fe\u8868\u8282\u70b9\u6240\u5360\u7528\u7684\u5185\u5b58\u7a7a\u95f4\u6bd4\u6570\u7ec4\u5143\u7d20\u66f4\u5927\u3002
            • \u961f\u5217\u662f\u4e00\u79cd\u9075\u5faa\u5148\u5165\u5148\u51fa\u539f\u5219\u7684\u6570\u636e\u7ed3\u6784\uff0c\u540c\u6837\u53ef\u4ee5\u901a\u8fc7\u6570\u7ec4\u6216\u94fe\u8868\u6765\u5b9e\u73b0\u3002\u5728\u65f6\u95f4\u6548\u7387\u548c\u7a7a\u95f4\u6548\u7387\u7684\u5bf9\u6bd4\u4e0a\uff0c\u961f\u5217\u7684\u7ed3\u8bba\u4e0e\u524d\u8ff0\u6808\u7684\u7ed3\u8bba\u76f8\u4f3c\u3002
            • \u53cc\u5411\u961f\u5217\u662f\u4e00\u79cd\u5177\u6709\u66f4\u9ad8\u81ea\u7531\u5ea6\u7684\u961f\u5217\uff0c\u5b83\u5141\u8bb8\u5728\u4e24\u7aef\u8fdb\u884c\u5143\u7d20\u7684\u6dfb\u52a0\u548c\u5220\u9664\u64cd\u4f5c\u3002
            "},{"location":"chapter_stack_and_queue/summary/#541-q-a","title":"5.4.1 \u00a0 Q & A","text":"

            \u6d4f\u89c8\u5668\u7684\u524d\u8fdb\u540e\u9000\u662f\u5426\u662f\u53cc\u5411\u94fe\u8868\u5b9e\u73b0\uff1f

            \u6d4f\u89c8\u5668\u7684\u524d\u8fdb\u540e\u9000\u529f\u80fd\u672c\u8d28\u4e0a\u662f\u201c\u6808\u201d\u7684\u4f53\u73b0\u3002\u5f53\u7528\u6237\u8bbf\u95ee\u4e00\u4e2a\u65b0\u9875\u9762\u65f6\uff0c\u8be5\u9875\u9762\u4f1a\u88ab\u6dfb\u52a0\u5230\u6808\u9876\uff1b\u5f53\u7528\u6237\u70b9\u51fb\u540e\u9000\u6309\u94ae\u65f6\uff0c\u8be5\u9875\u9762\u4f1a\u4ece\u6808\u9876\u5f39\u51fa\u3002\u4f7f\u7528\u53cc\u5411\u961f\u5217\u53ef\u4ee5\u65b9\u4fbf\u5b9e\u73b0\u4e00\u4e9b\u989d\u5916\u64cd\u4f5c\uff0c\u8fd9\u4e2a\u5728\u53cc\u5411\u961f\u5217\u7ae0\u8282\u6709\u63d0\u5230\u3002

            \u5728\u51fa\u6808\u540e\uff0c\u662f\u5426\u9700\u8981\u91ca\u653e\u51fa\u6808\u8282\u70b9\u7684\u5185\u5b58\uff1f

            \u5982\u679c\u540e\u7eed\u4ecd\u9700\u8981\u4f7f\u7528\u5f39\u51fa\u8282\u70b9\uff0c\u5219\u4e0d\u9700\u8981\u91ca\u653e\u5185\u5b58\u3002\u82e5\u4e4b\u540e\u4e0d\u9700\u8981\u7528\u5230\uff0cJava \u548c Python \u7b49\u8bed\u8a00\u62e5\u6709\u81ea\u52a8\u5783\u573e\u56de\u6536\u673a\u5236\uff0c\u56e0\u6b64\u4e0d\u9700\u8981\u624b\u52a8\u91ca\u653e\u5185\u5b58\uff1b\u5728 C \u548c C++ \u4e2d\u9700\u8981\u624b\u52a8\u91ca\u653e\u5185\u5b58\u3002

            \u53cc\u5411\u961f\u5217\u50cf\u662f\u4e24\u4e2a\u6808\u62fc\u63a5\u5728\u4e86\u4e00\u8d77\uff0c\u5b83\u7684\u7528\u9014\u662f\u4ec0\u4e48\uff1f

            \u53cc\u5411\u961f\u5217\u5c31\u50cf\u662f\u6808\u548c\u961f\u5217\u7684\u7ec4\u5408\uff0c\u6216\u8005\u662f\u4e24\u4e2a\u6808\u62fc\u5728\u4e86\u4e00\u8d77\u3002\u5b83\u8868\u73b0\u7684\u662f\u6808 + \u961f\u5217\u7684\u903b\u8f91\uff0c\u56e0\u6b64\u53ef\u4ee5\u5b9e\u73b0\u6808\u4e0e\u961f\u5217\u7684\u6240\u6709\u5e94\u7528\uff0c\u5e76\u4e14\u66f4\u52a0\u7075\u6d3b\u3002

            "},{"location":"chapter_tree/","title":"\u7b2c 7 \u7ae0 \u00a0 \u6811","text":"

            Abstract

            \u53c2\u5929\u5927\u6811\u5145\u6ee1\u751f\u547d\u529b\uff0c\u5176\u6839\u6df1\u53f6\u8302\uff0c\u5206\u679d\u6276\u758f\u3002

            \u5b83\u4e3a\u6211\u4eec\u5c55\u73b0\u4e86\u6570\u636e\u5206\u6cbb\u7684\u751f\u52a8\u5f62\u6001\u3002

            "},{"location":"chapter_tree/#_1","title":"\u672c\u7ae0\u5185\u5bb9","text":"
            • 7.1 \u00a0 \u4e8c\u53c9\u6811
            • 7.2 \u00a0 \u4e8c\u53c9\u6811\u904d\u5386
            • 7.3 \u00a0 \u4e8c\u53c9\u6811\u6570\u7ec4\u8868\u793a
            • 7.4 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811
            • 7.5 \u00a0 AVL \u6811 *
            • 7.6 \u00a0 \u5c0f\u7ed3
            "},{"location":"chapter_tree/array_representation_of_tree/","title":"7.3 \u00a0 \u4e8c\u53c9\u6811\u6570\u7ec4\u8868\u793a","text":"

            \u5728\u94fe\u8868\u8868\u793a\u4e0b\uff0c\u4e8c\u53c9\u6811\u7684\u5b58\u50a8\u5355\u5143\u4e3a\u8282\u70b9 TreeNode \uff0c\u8282\u70b9\u4e4b\u95f4\u901a\u8fc7\u6307\u9488\u76f8\u8fde\u63a5\u3002\u5728\u4e0a\u8282\u4e2d\uff0c\u6211\u4eec\u5b66\u4e60\u4e86\u5728\u94fe\u8868\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7684\u5404\u9879\u57fa\u672c\u64cd\u4f5c\u3002

            \u90a3\u4e48\uff0c\u6211\u4eec\u80fd\u5426\u7528\u6570\u7ec4\u6765\u8868\u793a\u4e8c\u53c9\u6811\u5462\uff1f\u7b54\u6848\u662f\u80af\u5b9a\u7684\u3002

            "},{"location":"chapter_tree/array_representation_of_tree/#731","title":"7.3.1 \u00a0 \u8868\u793a\u5b8c\u7f8e\u4e8c\u53c9\u6811","text":"

            \u5148\u5206\u6790\u4e00\u4e2a\u7b80\u5355\u6848\u4f8b\u3002\u7ed9\u5b9a\u4e00\u4e2a\u5b8c\u7f8e\u4e8c\u53c9\u6811\uff0c\u6211\u4eec\u5c06\u6240\u6709\u8282\u70b9\u6309\u7167\u5c42\u5e8f\u904d\u5386\u7684\u987a\u5e8f\u5b58\u50a8\u5728\u4e00\u4e2a\u6570\u7ec4\u4e2d\uff0c\u5219\u6bcf\u4e2a\u8282\u70b9\u90fd\u5bf9\u5e94\u552f\u4e00\u7684\u6570\u7ec4\u7d22\u5f15\u3002

            \u6839\u636e\u5c42\u5e8f\u904d\u5386\u7684\u7279\u6027\uff0c\u6211\u4eec\u53ef\u4ee5\u63a8\u5bfc\u51fa\u7236\u8282\u70b9\u7d22\u5f15\u4e0e\u5b50\u8282\u70b9\u7d22\u5f15\u4e4b\u95f4\u7684\u201c\u6620\u5c04\u516c\u5f0f\u201d\uff1a\u82e5\u8282\u70b9\u7684\u7d22\u5f15\u4e3a \\(i\\) \uff0c\u5219\u8be5\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 1\\) \uff0c\u53f3\u5b50\u8282\u70b9\u7d22\u5f15\u4e3a \\(2i + 2\\) \u3002

            \u56fe\uff1a\u5b8c\u7f8e\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a

            \u6620\u5c04\u516c\u5f0f\u7684\u89d2\u8272\u76f8\u5f53\u4e8e\u94fe\u8868\u4e2d\u7684\u6307\u9488\u3002\u7ed9\u5b9a\u6570\u7ec4\u4e2d\u7684\u4efb\u610f\u4e00\u4e2a\u8282\u70b9\uff0c\u6211\u4eec\u90fd\u53ef\u4ee5\u901a\u8fc7\u6620\u5c04\u516c\u5f0f\u6765\u8bbf\u95ee\u5b83\u7684\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u3002

            "},{"location":"chapter_tree/array_representation_of_tree/#732","title":"7.3.2 \u00a0 \u8868\u793a\u4efb\u610f\u4e8c\u53c9\u6811","text":"

            \u7136\u800c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u4e00\u4e2a\u7279\u4f8b\uff0c\u5728\u4e8c\u53c9\u6811\u7684\u4e2d\u95f4\u5c42\uff0c\u901a\u5e38\u5b58\u5728\u8bb8\u591a \\(\\text{None}\\) \u3002\u7531\u4e8e\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5e76\u4e0d\u5305\u542b\u8fd9\u4e9b \\(\\text{None}\\) \uff0c\u56e0\u6b64\u6211\u4eec\u65e0\u6cd5\u4ec5\u51ed\u8be5\u5e8f\u5217\u6765\u63a8\u6d4b \\(\\text{None}\\) \u7684\u6570\u91cf\u548c\u5206\u5e03\u4f4d\u7f6e\u3002\u8fd9\u610f\u5473\u7740\u5b58\u5728\u591a\u79cd\u4e8c\u53c9\u6811\u7ed3\u6784\u90fd\u7b26\u5408\u8be5\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u3002\u663e\u7136\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u4e0a\u8ff0\u7684\u6570\u7ec4\u8868\u793a\u65b9\u6cd5\u5df2\u7ecf\u5931\u6548\u3002

            \u56fe\uff1a\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5bf9\u5e94\u591a\u79cd\u4e8c\u53c9\u6811\u53ef\u80fd\u6027

            \u4e3a\u4e86\u89e3\u51b3\u6b64\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u8003\u8651\u5728\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u4e2d\u663e\u5f0f\u5730\u5199\u51fa\u6240\u6709 \\(\\text{None}\\) \u3002\u5982\u4e0b\u56fe\u6240\u793a\uff0c\u8fd9\u6837\u5904\u7406\u540e\uff0c\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u5c31\u53ef\u4ee5\u552f\u4e00\u8868\u793a\u4e8c\u53c9\u6811\u4e86\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u7684\u5305\u88c5\u7c7b Integer \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nInteger[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u6700\u5927\u503c INT_MAX \u6807\u8bb0\u7a7a\u4f4d\nvector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};\n
            # \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a\n# \u4f7f\u7528 None \u6765\u8868\u793a\u7a7a\u4f4d\ntree = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 any \u7c7b\u578b\u7684\u5207\u7247, \u5c31\u53ef\u4ee5\u4f7f\u7528 nil \u6765\u6807\u8bb0\u7a7a\u4f4d\ntree := []any{1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15}\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 null \u6765\u8868\u793a\u7a7a\u4f4d\nlet tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 null \u6765\u8868\u793a\u7a7a\u4f4d\nlet tree: (number | null)[] = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int \u6700\u5927\u503c\u6807\u8bb0\u7a7a\u4f4d\uff0c\u56e0\u6b64\u8981\u6c42\u8282\u70b9\u503c\u4e0d\u80fd\u4e3a INT_MAX\nint tree[] = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nint?[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };\n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 Int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 nil \u6765\u6807\u8bb0\u7a7a\u4f4d\nlet tree: [Int?] = [1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15]\n
            \n
            /* \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a */\n// \u4f7f\u7528 int? \u53ef\u7a7a\u7c7b\u578b \uff0c\u5c31\u53ef\u4ee5\u4f7f\u7528 null \u6765\u6807\u8bb0\u7a7a\u4f4d\nList<int?> tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];\n
            \n

            \u56fe\uff1a\u4efb\u610f\u7c7b\u578b\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a

            \u503c\u5f97\u8bf4\u660e\u7684\u662f\uff0c\u5b8c\u5168\u4e8c\u53c9\u6811\u975e\u5e38\u9002\u5408\u4f7f\u7528\u6570\u7ec4\u6765\u8868\u793a\u3002\u56de\u987e\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u5b9a\u4e49\uff0c\\(\\text{None}\\) \u53ea\u51fa\u73b0\u5728\u6700\u5e95\u5c42\u4e14\u9760\u53f3\u7684\u4f4d\u7f6e\uff0c\u56e0\u6b64\u6240\u6709 \\(\\text{None}\\) \u4e00\u5b9a\u51fa\u73b0\u5728\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u7684\u672b\u5c3e\u3002\u8fd9\u610f\u5473\u7740\u4f7f\u7528\u6570\u7ec4\u8868\u793a\u5b8c\u5168\u4e8c\u53c9\u6811\u65f6\uff0c\u53ef\u4ee5\u7701\u7565\u5b58\u50a8\u6240\u6709 \\(\\text{None}\\) \uff0c\u975e\u5e38\u65b9\u4fbf\u3002

            \u56fe\uff1a\u5b8c\u5168\u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a

            \u5982\u4e0b\u4ee3\u7801\u7ed9\u51fa\u4e86\u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7684\u7b80\u5355\u5b9e\u73b0\uff0c\u5305\u62ec\u4ee5\u4e0b\u64cd\u4f5c\uff1a

            • \u7ed9\u5b9a\u67d0\u8282\u70b9\uff0c\u83b7\u53d6\u5b83\u7684\u503c\u3001\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u3001\u7236\u8282\u70b9\u3002
            • \u83b7\u53d6\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u3001\u540e\u5e8f\u904d\u5386\u3001\u5c42\u5e8f\u904d\u5386\u5e8f\u5217\u3002
            JavaC++PythonGoJSTSCC#SwiftZigDartRust array_binary_tree.java
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\nprivate List<Integer> tree;\n/* \u6784\u9020\u65b9\u6cd5 */\npublic ArrayBinaryTree(List<Integer> arr) {\ntree = new ArrayList<>(arr);\n}\n/* \u8282\u70b9\u6570\u91cf */\npublic int size() {\nreturn tree.size();\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\npublic Integer val(int i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= size())\nreturn null;\nreturn tree.get(i);\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\npublic Integer left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\npublic Integer right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\npublic Integer parent(int i) {\nreturn (i - 1) / 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\npublic List<Integer> levelOrder() {\nList<Integer> res = new ArrayList<>();\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size(); i++) {\nif (val(i) != null)\nres.add(val(i));\n}\nreturn res;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nprivate void dfs(Integer i, String order, List<Integer> res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (val(i) == null)\nreturn;\n// \u524d\u5e8f\u904d\u5386\nif (order == \"pre\")\nres.add(val(i));\ndfs(left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order == \"in\")\nres.add(val(i));\ndfs(right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order == \"post\")\nres.add(val(i));\n}\n/* \u524d\u5e8f\u904d\u5386 */\npublic List<Integer> preOrder() {\nList<Integer> res = new ArrayList<>();\ndfs(0, \"pre\", res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\npublic List<Integer> inOrder() {\nList<Integer> res = new ArrayList<>();\ndfs(0, \"in\", res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\npublic List<Integer> postOrder() {\nList<Integer> res = new ArrayList<>();\ndfs(0, \"post\", res);\nreturn res;\n}\n}\n
            array_binary_tree.cpp
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\npublic:\n/* \u6784\u9020\u65b9\u6cd5 */\nArrayBinaryTree(vector<int> arr) {\ntree = arr;\n}\n/* \u8282\u70b9\u6570\u91cf */\nint size() {\nreturn tree.size();\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nint val(int i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de INT_MAX \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= size())\nreturn INT_MAX;\nreturn tree[i];\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nint parent(int i) {\nreturn (i - 1) / 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nvector<int> levelOrder() {\nvector<int> res;\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size(); i++) {\nif (val(i) != INT_MAX)\nres.push_back(val(i));\n}\nreturn res;\n}\n/* \u524d\u5e8f\u904d\u5386 */\nvector<int> preOrder() {\nvector<int> res;\ndfs(0, \"pre\", res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvector<int> inOrder() {\nvector<int> res;\ndfs(0, \"in\", res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvector<int> postOrder() {\nvector<int> res;\ndfs(0, \"post\", res);\nreturn res;\n}\nprivate:\nvector<int> tree;\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nvoid dfs(int i, string order, vector<int> &res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (val(i) == INT_MAX)\nreturn;\n// \u524d\u5e8f\u904d\u5386\nif (order == \"pre\")\nres.push_back(val(i));\ndfs(left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order == \"in\")\nres.push_back(val(i));\ndfs(right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order == \"post\")\nres.push_back(val(i));\n}\n};\n
            array_binary_tree.py
            class ArrayBinaryTree:\n\"\"\"\u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b\"\"\"\ndef __init__(self, arr: list[int | None]):\n\"\"\"\u6784\u9020\u65b9\u6cd5\"\"\"\nself.__tree = list(arr)\ndef size(self):\n\"\"\"\u8282\u70b9\u6570\u91cf\"\"\"\nreturn len(self.__tree)\ndef val(self, i: int) -> int:\n\"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c\"\"\"\n# \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de None \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif i < 0 or i >= self.size():\nreturn None\nreturn self.__tree[i]\ndef left(self, i: int) -> int | None:\n\"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\nreturn 2 * i + 1\ndef right(self, i: int) -> int | None:\n\"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\nreturn 2 * i + 2\ndef parent(self, i: int) -> int | None:\n\"\"\"\u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15\"\"\"\nreturn (i - 1) // 2\ndef level_order(self) -> list[int]:\n\"\"\"\u5c42\u5e8f\u904d\u5386\"\"\"\nself.res = []\n# \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor i in range(self.size()):\nif self.val(i) is not None:\nself.res.append(self.val(i))\nreturn self.res\ndef __dfs(self, i: int, order: str):\n\"\"\"\u6df1\u5ea6\u4f18\u5148\u904d\u5386\"\"\"\nif self.val(i) is None:\nreturn\n# \u524d\u5e8f\u904d\u5386\nif order == \"pre\":\nself.res.append(self.val(i))\nself.__dfs(self.left(i), order)\n# \u4e2d\u5e8f\u904d\u5386\nif order == \"in\":\nself.res.append(self.val(i))\nself.__dfs(self.right(i), order)\n# \u540e\u5e8f\u904d\u5386\nif order == \"post\":\nself.res.append(self.val(i))\ndef pre_order(self) -> list[int]:\n\"\"\"\u524d\u5e8f\u904d\u5386\"\"\"\nself.res = []\nself.__dfs(0, order=\"pre\")\nreturn self.res\ndef in_order(self) -> list[int]:\n\"\"\"\u4e2d\u5e8f\u904d\u5386\"\"\"\nself.res = []\nself.__dfs(0, order=\"in\")\nreturn self.res\ndef post_order(self) -> list[int]:\n\"\"\"\u540e\u5e8f\u904d\u5386\"\"\"\nself.res = []\nself.__dfs(0, order=\"post\")\nreturn self.res\n
            array_binary_tree.go
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\ntype arrayBinaryTree struct {\ntree []any\n}\n/* \u6784\u9020\u65b9\u6cd5 */\nfunc newArrayBinaryTree(arr []any) *arrayBinaryTree {\nreturn &arrayBinaryTree{\ntree: arr,\n}\n}\n/* \u8282\u70b9\u6570\u91cf */\nfunc (abt *arrayBinaryTree) size() int {\nreturn len(abt.tree)\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nfunc (abt *arrayBinaryTree) val(i int) any {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif i < 0 || i >= abt.size() {\nreturn nil\n}\nreturn abt.tree[i]\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) left(i int) int {\nreturn 2*i + 1\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) right(i int) int {\nreturn 2*i + 2\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc (abt *arrayBinaryTree) parent(i int) int {\nreturn (i - 1) / 2\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) levelOrder() []any {\nvar res []any\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor i := 0; i < abt.size(); i++ {\nif abt.val(i) != nil {\nres = append(res, abt.val(i))\n}\n}\nreturn res\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nfunc (abt *arrayBinaryTree) dfs(i int, order string, res *[]any) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif abt.val(i) == nil {\nreturn\n}\n// \u524d\u5e8f\u904d\u5386\nif order == \"pre\" {\n*res = append(*res, abt.val(i))\n}\nabt.dfs(abt.left(i), order, res)\n// \u4e2d\u5e8f\u904d\u5386\nif order == \"in\" {\n*res = append(*res, abt.val(i))\n}\nabt.dfs(abt.right(i), order, res)\n// \u540e\u5e8f\u904d\u5386\nif order == \"post\" {\n*res = append(*res, abt.val(i))\n}\n}\n/* \u524d\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) preOrder() []any {\nvar res []any\nabt.dfs(0, \"pre\", &res)\nreturn res\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) inOrder() []any {\nvar res []any\nabt.dfs(0, \"in\", &res)\nreturn res\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunc (abt *arrayBinaryTree) postOrder() []any {\nvar res []any\nabt.dfs(0, \"post\", &res)\nreturn res\n}\n
            array_binary_tree.js
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n#tree;\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(arr) {\nthis.#tree = arr;\n}\n/* \u8282\u70b9\u6570\u91cf */\nsize() {\nreturn this.#tree.length;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nval(i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= this.size()) return null;\nreturn this.#tree[i];\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nleft(i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nright(i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nparent(i) {\nreturn (i - 1) / 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nlevelOrder() {\nlet res = [];\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (let i = 0; i < this.size(); i++) {\nif (this.val(i) !== null) res.push(this.val(i));\n}\nreturn res;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n#dfs(i, order, res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (this.val(i) === null) return;\n// \u524d\u5e8f\u904d\u5386\nif (order === 'pre') res.push(this.val(i));\nthis.#dfs(this.left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order === 'in') res.push(this.val(i));\nthis.#dfs(this.right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order === 'post') res.push(this.val(i));\n}\n/* \u524d\u5e8f\u904d\u5386 */\npreOrder() {\nconst res = [];\nthis.#dfs(0, 'pre', res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\ninOrder() {\nconst res = [];\nthis.#dfs(0, 'in', res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\npostOrder() {\nconst res = [];\nthis.#dfs(0, 'post', res);\nreturn res;\n}\n}\n
            array_binary_tree.ts
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\n#tree: (number | null)[];\n/* \u6784\u9020\u65b9\u6cd5 */\nconstructor(arr: (number | null)[]) {\nthis.#tree = arr;\n}\n/* \u8282\u70b9\u6570\u91cf */\nsize(): number {\nreturn this.#tree.length;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nval(i: number): number | null {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= this.size()) return null;\nreturn this.#tree[i];\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nleft(i: number): number {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nright(i: number): number {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nparent(i: number): number {\nreturn (i - 1) / 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nlevelOrder(): number[] {\nlet res = [];\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (let i = 0; i < this.size(); i++) {\nif (this.val(i) !== null) res.push(this.val(i));\n}\nreturn res;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\n#dfs(i: number, order: Order, res: (number | null)[]): void {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (this.val(i) === null) return;\n// \u524d\u5e8f\u904d\u5386\nif (order === 'pre') res.push(this.val(i));\nthis.#dfs(this.left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order === 'in') res.push(this.val(i));\nthis.#dfs(this.right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order === 'post') res.push(this.val(i));\n}\n/* \u524d\u5e8f\u904d\u5386 */\npreOrder(): (number | null)[] {\nconst res = [];\nthis.#dfs(0, 'pre', res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\ninOrder(): (number | null)[] {\nconst res = [];\nthis.#dfs(0, 'in', res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\npostOrder(): (number | null)[] {\nconst res = [];\nthis.#dfs(0, 'post', res);\nreturn res;\n}\n}\n
            array_binary_tree.c
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nstruct arrayBinaryTree {\nvector *tree;\n};\ntypedef struct arrayBinaryTree arrayBinaryTree;\n/* \u6784\u9020\u51fd\u6570 */\narrayBinaryTree *newArrayBinaryTree(vector *arr) {\narrayBinaryTree *newABT = malloc(sizeof(arrayBinaryTree));\nnewABT->tree = arr;\nreturn newABT;\n}\n/* \u8282\u70b9\u6570\u91cf */\nint size(arrayBinaryTree *abt) {\nreturn abt->tree->size;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nint val(arrayBinaryTree *abt, int i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de INT_MAX \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= size(abt))\nreturn INT_MAX;\nreturn *(int *)abt->tree->data[i];\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nvoid dfs(arrayBinaryTree *abt, int i, const char *order, vector *res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (val(abt, i) == INT_MAX)\nreturn;\n// \u524d\u5e8f\u904d\u5386\nif (strcmp(order, \"pre\") == 0) {\nint tmp = val(abt, i);\nvectorPushback(res, &tmp, sizeof(tmp));\n}\ndfs(abt, left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (strcmp(order, \"in\") == 0) {\nint tmp = val(abt, i);\nvectorPushback(res, &tmp, sizeof(tmp));\n}\ndfs(abt, right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (strcmp(order, \"post\") == 0) {\nint tmp = val(abt, i);\nvectorPushback(res, &tmp, sizeof(tmp));\n}\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nvector *levelOrder(arrayBinaryTree *abt) {\nvector *res = newVector();\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size(abt); i++) {\nif (val(abt, i) != INT_MAX) {\nint tmp = val(abt, i);\nvectorPushback(res, &tmp, sizeof(int));\n}\n}\nreturn res;\n}\n/* \u524d\u5e8f\u904d\u5386 */\nvector *preOrder(arrayBinaryTree *abt) {\nvector *res = newVector();\ndfs(abt, 0, \"pre\", res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvector *inOrder(arrayBinaryTree *abt) {\nvector *res = newVector();\ndfs(abt, 0, \"in\", res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvector *postOrder(arrayBinaryTree *abt) {\nvector *res = newVector();\ndfs(abt, 0, \"post\", res);\nreturn res;\n}\n
            array_binary_tree.cs
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\nprivate List<int?> tree;\n/* \u6784\u9020\u65b9\u6cd5 */\npublic ArrayBinaryTree(List<int?> arr) {\ntree = new List<int?>(arr);\n}\n/* \u8282\u70b9\u6570\u91cf */\npublic int size() {\nreturn tree.Count;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\npublic int? val(int i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= size())\nreturn null;\nreturn tree[i];\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\npublic int left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\npublic int right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\npublic int parent(int i) {\nreturn (i - 1) / 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\npublic List<int> levelOrder() {\nList<int> res = new List<int>();\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor (int i = 0; i < size(); i++) {\nif (val(i).HasValue)\nres.Add(val(i).Value);\n}\nreturn res;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nprivate void dfs(int i, string order, List<int> res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (!val(i).HasValue)\nreturn;\n// \u524d\u5e8f\u904d\u5386\nif (order == \"pre\")\nres.Add(val(i).Value);\ndfs(left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order == \"in\")\nres.Add(val(i).Value);\ndfs(right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order == \"post\")\nres.Add(val(i).Value);\n}\n/* \u524d\u5e8f\u904d\u5386 */\npublic List<int> preOrder() {\nList<int> res = new List<int>();\ndfs(0, \"pre\", res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\npublic List<int> inOrder() {\nList<int> res = new List<int>();\ndfs(0, \"in\", res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\npublic List<int> postOrder() {\nList<int> res = new List<int>();\ndfs(0, \"post\", res);\nreturn res;\n}\n}\n
            array_binary_tree.swift
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\nprivate var tree: [Int?]\n/* \u6784\u9020\u65b9\u6cd5 */\ninit(arr: [Int?]) {\ntree = arr\n}\n/* \u8282\u70b9\u6570\u91cf */\nfunc size() -> Int {\ntree.count\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nfunc val(i: Int) -> Int? {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif i < 0 || i >= size() {\nreturn nil\n}\nreturn tree[i]\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc left(i: Int) -> Int {\n2 * i + 1\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc right(i: Int) -> Int {\n2 * i + 2\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfunc parent(i: Int) -> Int {\n(i - 1) / 2\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nfunc levelOrder() -> [Int] {\nvar res: [Int] = []\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor i in stride(from: 0, to: size(), by: 1) {\nif let val = val(i: i) {\nres.append(val)\n}\n}\nreturn res\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nprivate func dfs(i: Int, order: String, res: inout [Int]) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nguard let val = val(i: i) else {\nreturn\n}\n// \u524d\u5e8f\u904d\u5386\nif order == \"pre\" {\nres.append(val)\n}\ndfs(i: left(i: i), order: order, res: &res)\n// \u4e2d\u5e8f\u904d\u5386\nif order == \"in\" {\nres.append(val)\n}\ndfs(i: right(i: i), order: order, res: &res)\n// \u540e\u5e8f\u904d\u5386\nif order == \"post\" {\nres.append(val)\n}\n}\n/* \u524d\u5e8f\u904d\u5386 */\nfunc preOrder() -> [Int] {\nvar res: [Int] = []\ndfs(i: 0, order: \"pre\", res: &res)\nreturn res\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc inOrder() -> [Int] {\nvar res: [Int] = []\ndfs(i: 0, order: \"in\", res: &res)\nreturn res\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunc postOrder() -> [Int] {\nvar res: [Int] = []\ndfs(i: 0, order: \"post\", res: &res)\nreturn res\n}\n}\n
            array_binary_tree.zig
            [class]{ArrayBinaryTree}-[func]{}\n
            array_binary_tree.dart
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nclass ArrayBinaryTree {\nlate List<int?> _tree;\n/* \u6784\u9020\u65b9\u6cd5 */\nArrayBinaryTree(this._tree);\n/* \u8282\u70b9\u6570\u91cf */\nint size() {\nreturn _tree.length;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nint? val(int i) {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de null \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif (i < 0 || i >= size()) {\nreturn null;\n}\nreturn _tree[i];\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint? left(int i) {\nreturn 2 * i + 1;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nint? right(int i) {\nreturn 2 * i + 2;\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nint? parent(int i) {\nreturn (i - 1) ~/ 2;\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nList<int> levelOrder() {\nList<int> res = [];\nfor (int i = 0; i < size(); i++) {\nif (val(i) != null) {\nres.add(val(i)!);\n}\n}\nreturn res;\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nvoid dfs(int i, String order, List<int?> res) {\n// \u82e5\u4e3a\u7a7a\u4f4d\uff0c\u5219\u8fd4\u56de\nif (val(i) == null) {\nreturn;\n}\n// \u524d\u5e8f\u904d\u5386\nif (order == 'pre') {\nres.add(val(i));\n}\ndfs(left(i)!, order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif (order == 'in') {\nres.add(val(i));\n}\ndfs(right(i)!, order, res);\n// \u540e\u5e8f\u904d\u5386\nif (order == 'post') {\nres.add(val(i));\n}\n}\n/* \u524d\u5e8f\u904d\u5386 */\nList<int?> preOrder() {\nList<int?> res = [];\ndfs(0, 'pre', res);\nreturn res;\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nList<int?> inOrder() {\nList<int?> res = [];\ndfs(0, 'in', res);\nreturn res;\n}\n/* \u540e\u5e8f\u904d\u5386 */\nList<int?> postOrder() {\nList<int?> res = [];\ndfs(0, 'post', res);\nreturn res;\n}\n}\n
            array_binary_tree.rs
            /* \u6570\u7ec4\u8868\u793a\u4e0b\u7684\u4e8c\u53c9\u6811\u7c7b */\nstruct ArrayBinaryTree {\ntree: Vec<Option<i32>>,\n}\nimpl ArrayBinaryTree {\n/* \u6784\u9020\u65b9\u6cd5 */\nfn new(arr: Vec<Option<i32>>) -> Self {\nSelf { tree: arr }\n}\n/* \u8282\u70b9\u6570\u91cf */\nfn size(&self) -> i32 {\nself.tree.len() as i32\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u503c */\nfn val(&self, i: i32) -> Option<i32> {\n// \u82e5\u7d22\u5f15\u8d8a\u754c\uff0c\u5219\u8fd4\u56de None \uff0c\u4ee3\u8868\u7a7a\u4f4d\nif i < 0 || i >= self.size() {\nNone\n} else {\nself.tree[i as usize]\n}\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfn left(&self, i: i32) -> i32 {\n2 * i + 1\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u53f3\u5b50\u8282\u70b9\u7684\u7d22\u5f15 */\nfn right(&self, i: i32) -> i32 {\n2 * i + 2\n}\n/* \u83b7\u53d6\u7d22\u5f15\u4e3a i \u8282\u70b9\u7684\u7236\u8282\u70b9\u7684\u7d22\u5f15 */\nfn parent(&self, i: i32) -> i32 {\n(i - 1) / 2\n}\n/* \u5c42\u5e8f\u904d\u5386 */\nfn level_order(&self) -> Vec<i32> {\nlet mut res = vec![];\n// \u76f4\u63a5\u904d\u5386\u6570\u7ec4\nfor i in 0..self.size() {\nif let Some(val) = self.val(i) {\nres.push(val)\n}\n}\nres\n}\n/* \u6df1\u5ea6\u4f18\u5148\u904d\u5386 */\nfn dfs(&self, i: i32, order: &str, res: &mut Vec<i32>) {\nif self.val(i).is_none() {\nreturn;\n}\nlet val = self.val(i).unwrap();\n// \u524d\u5e8f\u904d\u5386\nif order == \"pre\" {\nres.push(val);\n}\nself.dfs(self.left(i), order, res);\n// \u4e2d\u5e8f\u904d\u5386\nif order == \"in\" {\nres.push(val);\n}\nself.dfs(self.right(i), order, res);\n// \u540e\u5e8f\u904d\u5386\nif order == \"post\" {\nres.push(val);\n}\n}\n/* \u524d\u5e8f\u904d\u5386 */\nfn pre_order(&self) -> Vec<i32> {\nlet mut res = vec![];\nself.dfs(0, \"pre\", &mut res);\nres\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfn in_order(&self) -> Vec<i32> {\nlet mut res = vec![];\nself.dfs(0, \"in\", &mut res);\nres\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfn post_order(&self) -> Vec<i32> {\nlet mut res = vec![];\nself.dfs(0, \"post\", &mut res);\nres\n}\n}\n
            "},{"location":"chapter_tree/array_representation_of_tree/#733","title":"7.3.3 \u00a0 \u4f18\u52bf\u4e0e\u5c40\u9650\u6027","text":"

            \u4e8c\u53c9\u6811\u7684\u6570\u7ec4\u8868\u793a\u7684\u4f18\u70b9\u5305\u62ec\uff1a

            • \u6570\u7ec4\u5b58\u50a8\u5728\u8fde\u7eed\u7684\u5185\u5b58\u7a7a\u95f4\u4e2d\uff0c\u5bf9\u7f13\u5b58\u53cb\u597d\uff0c\u8bbf\u95ee\u4e0e\u904d\u5386\u901f\u5ea6\u8f83\u5feb\u3002
            • \u4e0d\u9700\u8981\u5b58\u50a8\u6307\u9488\uff0c\u6bd4\u8f83\u8282\u7701\u7a7a\u95f4\u3002
            • \u5141\u8bb8\u968f\u673a\u8bbf\u95ee\u8282\u70b9\u3002

            \u7136\u800c\uff0c\u6570\u7ec4\u8868\u793a\u4e5f\u5177\u6709\u4e00\u4e9b\u5c40\u9650\u6027\uff1a

            • \u6570\u7ec4\u5b58\u50a8\u9700\u8981\u8fde\u7eed\u5185\u5b58\u7a7a\u95f4\uff0c\u56e0\u6b64\u4e0d\u9002\u5408\u5b58\u50a8\u6570\u636e\u91cf\u8fc7\u5927\u7684\u6811\u3002
            • \u589e\u5220\u8282\u70b9\u9700\u8981\u901a\u8fc7\u6570\u7ec4\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u5b9e\u73b0\uff0c\u6548\u7387\u8f83\u4f4e\u3002
            • \u5f53\u4e8c\u53c9\u6811\u4e2d\u5b58\u5728\u5927\u91cf \\(\\text{None}\\) \u65f6\uff0c\u6570\u7ec4\u4e2d\u5305\u542b\u7684\u8282\u70b9\u6570\u636e\u6bd4\u91cd\u8f83\u4f4e\uff0c\u7a7a\u95f4\u5229\u7528\u7387\u8f83\u4f4e\u3002
            "},{"location":"chapter_tree/avl_tree/","title":"7.5 \u00a0 AVL \u6811 *","text":"

            \u5728\u4e8c\u53c9\u641c\u7d22\u6811\u7ae0\u8282\u4e2d\uff0c\u6211\u4eec\u63d0\u5230\u4e86\u5728\u591a\u6b21\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u540e\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u53ef\u80fd\u9000\u5316\u4e3a\u94fe\u8868\u3002\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u6240\u6709\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5c06\u4ece \\(O(\\log n)\\) \u6076\u5316\u4e3a \\(O(n)\\)\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u7ecf\u8fc7\u4e24\u6b21\u5220\u9664\u8282\u70b9\u64cd\u4f5c\uff0c\u8fd9\u4e2a\u4e8c\u53c9\u641c\u7d22\u6811\u4fbf\u4f1a\u9000\u5316\u4e3a\u94fe\u8868\u3002

            \u56fe\uff1aAVL \u6811\u5728\u5220\u9664\u8282\u70b9\u540e\u53d1\u751f\u9000\u5316

            \u518d\u4f8b\u5982\uff0c\u5728\u4ee5\u4e0b\u5b8c\u7f8e\u4e8c\u53c9\u6811\u4e2d\u63d2\u5165\u4e24\u4e2a\u8282\u70b9\u540e\uff0c\u6811\u5c06\u4e25\u91cd\u5411\u5de6\u503e\u659c\uff0c\u67e5\u627e\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u968f\u4e4b\u6076\u5316\u3002

            \u56fe\uff1aAVL \u6811\u5728\u63d2\u5165\u8282\u70b9\u540e\u53d1\u751f\u9000\u5316

            G. M. Adelson-Velsky \u548c E. M. Landis \u5728\u5176 1962 \u5e74\u53d1\u8868\u7684\u8bba\u6587 \"An algorithm for the organization of information\" \u4e2d\u63d0\u51fa\u4e86\u300cAVL \u6811\u300d\u3002\u8bba\u6587\u4e2d\u8be6\u7ec6\u63cf\u8ff0\u4e86\u4e00\u7cfb\u5217\u64cd\u4f5c\uff0c\u786e\u4fdd\u5728\u6301\u7eed\u6dfb\u52a0\u548c\u5220\u9664\u8282\u70b9\u540e\uff0cAVL \u6811\u4e0d\u4f1a\u9000\u5316\uff0c\u4ece\u800c\u4f7f\u5f97\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4fdd\u6301\u5728 \\(O(\\log n)\\) \u7ea7\u522b\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u5728\u9700\u8981\u9891\u7e41\u8fdb\u884c\u589e\u5220\u67e5\u6539\u64cd\u4f5c\u7684\u573a\u666f\u4e2d\uff0cAVL \u6811\u80fd\u59cb\u7ec8\u4fdd\u6301\u9ad8\u6548\u7684\u6570\u636e\u64cd\u4f5c\u6027\u80fd\uff0c\u5177\u6709\u5f88\u597d\u7684\u5e94\u7528\u4ef7\u503c\u3002

            "},{"location":"chapter_tree/avl_tree/#751-avl","title":"7.5.1 \u00a0 AVL \u6811\u5e38\u89c1\u672f\u8bed","text":"

            AVL \u6811\u65e2\u662f\u4e8c\u53c9\u641c\u7d22\u6811\u4e5f\u662f\u5e73\u8861\u4e8c\u53c9\u6811\uff0c\u540c\u65f6\u6ee1\u8db3\u8fd9\u4e24\u7c7b\u4e8c\u53c9\u6811\u7684\u6240\u6709\u6027\u8d28\uff0c\u56e0\u6b64\u4e5f\u88ab\u79f0\u4e3a\u300c\u5e73\u8861\u4e8c\u53c9\u641c\u7d22\u6811 balanced binary search tree\u300d\u3002

            "},{"location":"chapter_tree/avl_tree/#1","title":"1. \u00a0 \u8282\u70b9\u9ad8\u5ea6","text":"

            \u5728\u64cd\u4f5c AVL \u6811\u65f6\uff0c\u6211\u4eec\u9700\u8981\u83b7\u53d6\u8282\u70b9\u7684\u9ad8\u5ea6\uff0c\u56e0\u6b64\u9700\u8981\u4e3a AVL \u6811\u7684\u8282\u70b9\u7c7b\u6dfb\u52a0 height \u53d8\u91cf\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\npublic int val;        // \u8282\u70b9\u503c\npublic int height;     // \u8282\u70b9\u9ad8\u5ea6\npublic TreeNode left;  // \u5de6\u5b50\u8282\u70b9\npublic TreeNode right; // \u53f3\u5b50\u8282\u70b9\npublic TreeNode(int x) { val = x; }\n}\n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nstruct TreeNode {\nint val{};          // \u8282\u70b9\u503c\nint height = 0;     // \u8282\u70b9\u9ad8\u5ea6\nTreeNode *left{};   // \u5de6\u5b50\u8282\u70b9\nTreeNode *right{};  // \u53f3\u5b50\u8282\u70b9\nTreeNode() = default;\nexplicit TreeNode(int x) : val(x){}\n};\n
            class TreeNode:\n\"\"\"AVL \u6811\u8282\u70b9\u7c7b\"\"\"\ndef __init__(self, val: int):\nself.val: int = val                    # \u8282\u70b9\u503c\nself.height: int = 0                   # \u8282\u70b9\u9ad8\u5ea6\nself.left: Optional[TreeNode] = None   # \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nself.right: Optional[TreeNode] = None  # \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n
            /* AVL \u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype TreeNode struct {\nVal    int       // \u8282\u70b9\u503c\nHeight int       // \u8282\u70b9\u9ad8\u5ea6\nLeft   *TreeNode // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nRight  *TreeNode // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nval; // \u8282\u70b9\u503c\nheight; //\u8282\u70b9\u9ad8\u5ea6\nleft; // \u5de6\u5b50\u8282\u70b9\u6307\u9488\nright; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\nconstructor(val, left, right, height) {\nthis.val = val === undefined ? 0 : val;\nthis.height = height === undefined ? 0 : height;\nthis.left = left === undefined ? null : left;\nthis.right = right === undefined ? null : right;\n}\n}\n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nval: number;            // \u8282\u70b9\u503c\nheight: number;         // \u8282\u70b9\u9ad8\u5ea6\nleft: TreeNode | null;  // \u5de6\u5b50\u8282\u70b9\u6307\u9488\nright: TreeNode | null; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\nconstructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {\nthis.val = val === undefined ? 0 : val;\nthis.height = height === undefined ? 0 : height; this.left = left === undefined ? null : left; this.right = right === undefined ? null : right; }\n}\n
            /* AVL \u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\nint val;\nint height;\nstruct TreeNode *left;\nstruct TreeNode *right;\n};\ntypedef struct TreeNode TreeNode;\n/* \u6784\u9020\u51fd\u6570 */\nTreeNode *newTreeNode(int val) {\nTreeNode *node;\nnode = (TreeNode *)malloc(sizeof(TreeNode));\nnode->val = val;\nnode->height = 0;\nnode->left = NULL;\nnode->right = NULL;\nreturn node;\n}\n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\npublic int val;          // \u8282\u70b9\u503c\npublic int height;       // \u8282\u70b9\u9ad8\u5ea6\npublic TreeNode? left;   // \u5de6\u5b50\u8282\u70b9\npublic TreeNode? right;  // \u53f3\u5b50\u8282\u70b9\npublic TreeNode(int x) { val = x; }\n}\n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nvar val: Int // \u8282\u70b9\u503c\nvar height: Int // \u8282\u70b9\u9ad8\u5ea6\nvar left: TreeNode? // \u5de6\u5b50\u8282\u70b9\nvar right: TreeNode? // \u53f3\u5b50\u8282\u70b9\ninit(x: Int) {\nval = x\nheight = 0\n}\n}\n
            \n
            /* AVL \u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nint val;         // \u8282\u70b9\u503c\nint height;      // \u8282\u70b9\u9ad8\u5ea6\nTreeNode? left;  // \u5de6\u5b50\u8282\u70b9\nTreeNode? right; // \u53f3\u5b50\u8282\u70b9\nTreeNode(this.val, [this.height = 0, this.left, this.right]);\n}\n
            \n

            \u201c\u8282\u70b9\u9ad8\u5ea6\u201d\u662f\u6307\u4ece\u8be5\u8282\u70b9\u5230\u6700\u8fdc\u53f6\u8282\u70b9\u7684\u8ddd\u79bb\uff0c\u5373\u6240\u7ecf\u8fc7\u7684\u201c\u8fb9\u201d\u7684\u6570\u91cf\u3002\u9700\u8981\u7279\u522b\u6ce8\u610f\u7684\u662f\uff0c\u53f6\u8282\u70b9\u7684\u9ad8\u5ea6\u4e3a 0 \uff0c\u800c\u7a7a\u8282\u70b9\u7684\u9ad8\u5ea6\u4e3a -1 \u3002\u6211\u4eec\u5c06\u521b\u5efa\u4e24\u4e2a\u5de5\u5177\u51fd\u6570\uff0c\u5206\u522b\u7528\u4e8e\u83b7\u53d6\u548c\u66f4\u65b0\u8282\u70b9\u7684\u9ad8\u5ea6\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node == null ? -1 : node.height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode node) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.height = Math.max(height(node.left), height(node.right)) + 1;\n}\n
            avl_tree.cpp
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode *node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node == nullptr ? -1 : node->height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode *node) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode->height = max(height(node->left), height(node->right)) + 1;\n}\n
            avl_tree.py
            def height(self, node: TreeNode | None) -> int:\n\"\"\"\u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6\"\"\"\n# \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nif node is not None:\nreturn node.height\nreturn -1\ndef __update_height(self, node: TreeNode | None):\n\"\"\"\u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\"\"\"\n# \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.height = max([self.height(node.left), self.height(node.right)]) + 1\n
            avl_tree.go
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfunc (t *aVLTree) height(node *TreeNode) int {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nif node != nil {\nreturn node.Height\n}\nreturn -1\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfunc (t *aVLTree) updateHeight(node *TreeNode) {\nlh := t.height(node.Left)\nrh := t.height(node.Right)\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nif lh > rh {\nnode.Height = lh + 1\n} else {\nnode.Height = rh + 1\n}\n}\n
            avl_tree.js
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nheight(node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node === null ? -1 : node.height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\n#updateHeight(node) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.height =\nMath.max(this.height(node.left), this.height(node.right)) + 1;\n}\n
            avl_tree.ts
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nheight(node: TreeNode): number {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node === null ? -1 : node.height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nupdateHeight(node: TreeNode): void {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.height =\nMath.max(this.height(node.left), this.height(node.right)) + 1;\n}\n
            avl_tree.c
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode *node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nif (node != NULL) {\nreturn node->height;\n}\nreturn -1;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode *node) {\nint lh = height(node->left);\nint rh = height(node->right);\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nif (lh > rh) {\nnode->height = lh + 1;\n} else {\nnode->height = rh + 1;\n}\n}\n
            avl_tree.cs
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode? node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node == null ? -1 : node.height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode node) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.height = Math.Max(height(node.left), height(node.right)) + 1;\n}\n
            avl_tree.swift
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfunc height(node: TreeNode?) -> Int {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nnode == nil ? -1 : node!.height\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfunc updateHeight(node: TreeNode?) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode?.height = max(height(node: node?.left), height(node: node?.right)) + 1\n}\n
            avl_tree.zig
            // \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6\nfn height(self: *Self, node: ?*inc.TreeNode(T)) i32 {\n_ = self;\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn if (node == null) -1 else node.?.height;\n}\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nfn updateHeight(self: *Self, node: ?*inc.TreeNode(T)) void {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.?.height = @max(self.height(node.?.left), self.height(node.?.right)) + 1;\n}\n
            avl_tree.dart
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nint height(TreeNode? node) {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nreturn node == null ? -1 : node.height;\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nvoid updateHeight(TreeNode? node) {\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode!.height = max(height(node.left), height(node.right)) + 1;\n}\n
            avl_tree.rs
            /* \u83b7\u53d6\u8282\u70b9\u9ad8\u5ea6 */\nfn height(node: OptionTreeNodeRc) -> i32 {\n// \u7a7a\u8282\u70b9\u9ad8\u5ea6\u4e3a -1 \uff0c\u53f6\u8282\u70b9\u9ad8\u5ea6\u4e3a 0\nmatch node {\nSome(node) => node.borrow().height,\nNone => -1,\n}\n}\n/* \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6 */\nfn update_height(node: OptionTreeNodeRc) {\nif let Some(node) = node {\nlet left = node.borrow().left.clone();\nlet right = node.borrow().right.clone();\n// \u8282\u70b9\u9ad8\u5ea6\u7b49\u4e8e\u6700\u9ad8\u5b50\u6811\u9ad8\u5ea6 + 1\nnode.borrow_mut().height = std::cmp::max(Self::height(left), Self::height(right)) + 1;\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#2","title":"2. \u00a0 \u8282\u70b9\u5e73\u8861\u56e0\u5b50","text":"

            \u8282\u70b9\u7684\u300c\u5e73\u8861\u56e0\u5b50 balance factor\u300d\u5b9a\u4e49\u4e3a\u8282\u70b9\u5de6\u5b50\u6811\u7684\u9ad8\u5ea6\u51cf\u53bb\u53f3\u5b50\u6811\u7684\u9ad8\u5ea6\uff0c\u540c\u65f6\u89c4\u5b9a\u7a7a\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u4e3a 0 \u3002\u6211\u4eec\u540c\u6837\u5c06\u83b7\u53d6\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u7684\u529f\u80fd\u5c01\u88c5\u6210\u51fd\u6570\uff0c\u65b9\u4fbf\u540e\u7eed\u4f7f\u7528\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == null)\nreturn 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node.left) - height(node.right);\n}\n
            avl_tree.cpp
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode *node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == nullptr)\nreturn 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node->left) - height(node->right);\n}\n
            avl_tree.py
            def balance_factor(self, node: TreeNode | None) -> int:\n\"\"\"\u83b7\u53d6\u5e73\u8861\u56e0\u5b50\"\"\"\n# \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif node is None:\nreturn 0\n# \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn self.height(node.left) - self.height(node.right)\n
            avl_tree.go
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfunc (t *aVLTree) balanceFactor(node *TreeNode) int {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif node == nil {\nreturn 0\n}\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn t.height(node.Left) - t.height(node.Right)\n}\n
            avl_tree.js
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nbalanceFactor(node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node === null) return 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn this.height(node.left) - this.height(node.right);\n}\n
            avl_tree.ts
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nbalanceFactor(node: TreeNode): number {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node === null) return 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn this.height(node.left) - this.height(node.right);\n}\n
            avl_tree.c
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode *node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == NULL) {\nreturn 0;\n}\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node->left) - height(node->right);\n}\n
            avl_tree.cs
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode? node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == null) return 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node.left) - height(node.right);\n}\n
            avl_tree.swift
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfunc balanceFactor(node: TreeNode?) -> Int {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nguard let node = node else { return 0 }\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node: node.left) - height(node: node.right)\n}\n
            avl_tree.zig
            // \u83b7\u53d6\u5e73\u8861\u56e0\u5b50\nfn balanceFactor(self: *Self, node: ?*inc.TreeNode(T)) i32 {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == null) return 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn self.height(node.?.left) - self.height(node.?.right);\n}\n
            avl_tree.dart
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nint balanceFactor(TreeNode? node) {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nif (node == null) return 0;\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nreturn height(node.left) - height(node.right);\n}\n
            avl_tree.rs
            /* \u83b7\u53d6\u5e73\u8861\u56e0\u5b50 */\nfn balance_factor(node: OptionTreeNodeRc) -> i32 {\nmatch node {\n// \u7a7a\u8282\u70b9\u5e73\u8861\u56e0\u5b50\u4e3a 0\nNone => 0,\n// \u8282\u70b9\u5e73\u8861\u56e0\u5b50 = \u5de6\u5b50\u6811\u9ad8\u5ea6 - \u53f3\u5b50\u6811\u9ad8\u5ea6\nSome(node) => {\nSelf::height(node.borrow().left.clone()) - Self::height(node.borrow().right.clone())\n}\n}\n}\n

            Note

            \u8bbe\u5e73\u8861\u56e0\u5b50\u4e3a \\(f\\) \uff0c\u5219\u4e00\u68f5 AVL \u6811\u7684\u4efb\u610f\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u7686\u6ee1\u8db3 \\(-1 \\le f \\le 1\\) \u3002

            "},{"location":"chapter_tree/avl_tree/#752-avl","title":"7.5.2 \u00a0 AVL \u6811\u65cb\u8f6c","text":"

            AVL \u6811\u7684\u7279\u70b9\u5728\u4e8e\u201c\u65cb\u8f6c\u201d\u64cd\u4f5c\uff0c\u5b83\u80fd\u591f\u5728\u4e0d\u5f71\u54cd\u4e8c\u53c9\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u7684\u524d\u63d0\u4e0b\uff0c\u4f7f\u5931\u8861\u8282\u70b9\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u65cb\u8f6c\u64cd\u4f5c\u65e2\u80fd\u4fdd\u6301\u201c\u4e8c\u53c9\u641c\u7d22\u6811\u201d\u7684\u6027\u8d28\uff0c\u4e5f\u80fd\u4f7f\u6811\u91cd\u65b0\u53d8\u4e3a\u201c\u5e73\u8861\u4e8c\u53c9\u6811\u201d\u3002

            \u6211\u4eec\u5c06\u5e73\u8861\u56e0\u5b50\u7edd\u5bf9\u503c \\(> 1\\) \u7684\u8282\u70b9\u79f0\u4e3a\u201c\u5931\u8861\u8282\u70b9\u201d\u3002\u6839\u636e\u8282\u70b9\u5931\u8861\u60c5\u51b5\u7684\u4e0d\u540c\uff0c\u65cb\u8f6c\u64cd\u4f5c\u5206\u4e3a\u56db\u79cd\uff1a\u53f3\u65cb\u3001\u5de6\u65cb\u3001\u5148\u53f3\u65cb\u540e\u5de6\u65cb\u3001\u5148\u5de6\u65cb\u540e\u53f3\u65cb\u3002\u4e0b\u9762\u6211\u4eec\u5c06\u8be6\u7ec6\u4ecb\u7ecd\u8fd9\u4e9b\u65cb\u8f6c\u64cd\u4f5c\u3002

            "},{"location":"chapter_tree/avl_tree/#1_1","title":"1. \u00a0 \u53f3\u65cb","text":"

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u8282\u70b9\u4e0b\u65b9\u4e3a\u5e73\u8861\u56e0\u5b50\u3002\u4ece\u5e95\u81f3\u9876\u770b\uff0c\u4e8c\u53c9\u6811\u4e2d\u9996\u4e2a\u5931\u8861\u8282\u70b9\u662f\u201c\u8282\u70b9 3\u201d\u3002\u6211\u4eec\u5173\u6ce8\u4ee5\u8be5\u5931\u8861\u8282\u70b9\u4e3a\u6839\u8282\u70b9\u7684\u5b50\u6811\uff0c\u5c06\u8be5\u8282\u70b9\u8bb0\u4e3a node \uff0c\u5176\u5de6\u5b50\u8282\u70b9\u8bb0\u4e3a child \uff0c\u6267\u884c\u201c\u53f3\u65cb\u201d\u64cd\u4f5c\u3002\u5b8c\u6210\u53f3\u65cb\u540e\uff0c\u5b50\u6811\u5df2\u7ecf\u6062\u590d\u5e73\u8861\uff0c\u5e76\u4e14\u4ecd\u7136\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u7279\u6027\u3002

            <1><2><3><4>

            \u56fe\uff1a\u53f3\u65cb\u64cd\u4f5c\u6b65\u9aa4

            \u6b64\u5916\uff0c\u5982\u679c\u8282\u70b9 child \u672c\u8eab\u6709\u53f3\u5b50\u8282\u70b9\uff08\u8bb0\u4e3a grandChild \uff09\uff0c\u5219\u9700\u8981\u5728\u53f3\u65cb\u4e2d\u6dfb\u52a0\u4e00\u6b65\uff1a\u5c06 grandChild \u4f5c\u4e3a node \u7684\u5de6\u5b50\u8282\u70b9\u3002

            \u56fe\uff1a\u6709 grandChild \u7684\u53f3\u65cb\u64cd\u4f5c

            \u201c\u5411\u53f3\u65cb\u8f6c\u201d\u662f\u4e00\u79cd\u5f62\u8c61\u5316\u7684\u8bf4\u6cd5\uff0c\u5b9e\u9645\u4e0a\u9700\u8981\u901a\u8fc7\u4fee\u6539\u8282\u70b9\u6307\u9488\u6765\u5b9e\u73b0\uff0c\u4ee3\u7801\u5982\u4e0b\u6240\u793a\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode rightRotate(TreeNode node) {\nTreeNode child = node.left;\nTreeNode grandChild = child.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node;\nnode.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.cpp
            /* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode *rightRotate(TreeNode *node) {\nTreeNode *child = node->left;\nTreeNode *grandChild = child->right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild->right = node;\nnode->left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.py
            def __right_rotate(self, node: TreeNode | None) -> TreeNode | None:\n\"\"\"\u53f3\u65cb\u64cd\u4f5c\"\"\"\nchild = node.left\ngrand_child = child.right\n# \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node\nnode.left = grand_child\n# \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.__update_height(node)\nself.__update_height(child)\n# \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n
            avl_tree.go
            /* \u53f3\u65cb\u64cd\u4f5c */\nfunc (t *aVLTree) rightRotate(node *TreeNode) *TreeNode {\nchild := node.Left\ngrandChild := child.Right\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.Right = node\nnode.Left = grandChild\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nt.updateHeight(node)\nt.updateHeight(child)\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n}\n
            avl_tree.js
            /* \u53f3\u65cb\u64cd\u4f5c */\n#rightRotate(node) {\nconst child = node.left;\nconst grandChild = child.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node;\nnode.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nthis.#updateHeight(node);\nthis.#updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.ts
            /* \u53f3\u65cb\u64cd\u4f5c */\nrightRotate(node: TreeNode): TreeNode {\nconst child = node.left;\nconst grandChild = child.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node;\nnode.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nthis.updateHeight(node);\nthis.updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.c
            /* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode *rightRotate(TreeNode *node) {\nTreeNode *child, *grandChild;\nchild = node->left;\ngrandChild = child->right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild->right = node;\nnode->left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.cs
            /* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode? rightRotate(TreeNode? node) {\nTreeNode? child = node.left;\nTreeNode? grandChild = child?.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node;\nnode.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.swift
            /* \u53f3\u65cb\u64cd\u4f5c */\nfunc rightRotate(node: TreeNode?) -> TreeNode? {\nlet child = node?.left\nlet grandChild = child?.right\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild?.right = node\nnode?.left = grandChild\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node: node)\nupdateHeight(node: child)\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n}\n
            avl_tree.zig
            // \u53f3\u65cb\u64cd\u4f5c\nfn rightRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\nvar child = node.?.left;\nvar grandChild = child.?.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.?.right = node;\nnode.?.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.updateHeight(node);\nself.updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.dart
            /* \u53f3\u65cb\u64cd\u4f5c */\nTreeNode? rightRotate(TreeNode? node) {\nTreeNode? child = node!.left;\nTreeNode? grandChild = child!.right;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.right = node;\nnode.left = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.rs
            /* \u53f3\u65cb\u64cd\u4f5c */\nfn right_rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\nmatch node {\nSome(node) => {\nlet child = node.borrow().left.clone().unwrap();\nlet grand_child = child.borrow().right.clone();\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u53f3\u65cb\u8f6c\nchild.borrow_mut().right = Some(node.clone());\nnode.borrow_mut().left = grand_child;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nSelf::update_height(Some(node));\nSelf::update_height(Some(child.clone()));\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nSome(child)\n}\nNone => None,\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#2_1","title":"2. \u00a0 \u5de6\u65cb","text":"

            \u76f8\u5e94\u7684\uff0c\u5982\u679c\u8003\u8651\u4e0a\u8ff0\u5931\u8861\u4e8c\u53c9\u6811\u7684\u201c\u955c\u50cf\u201d\uff0c\u5219\u9700\u8981\u6267\u884c\u201c\u5de6\u65cb\u201d\u64cd\u4f5c\u3002

            \u56fe\uff1a\u5de6\u65cb\u64cd\u4f5c

            \u540c\u7406\uff0c\u82e5\u8282\u70b9 child \u672c\u8eab\u6709\u5de6\u5b50\u8282\u70b9\uff08\u8bb0\u4e3a grandChild \uff09\uff0c\u5219\u9700\u8981\u5728\u5de6\u65cb\u4e2d\u6dfb\u52a0\u4e00\u6b65\uff1a\u5c06 grandChild \u4f5c\u4e3a node \u7684\u53f3\u5b50\u8282\u70b9\u3002

            \u56fe\uff1a\u6709 grandChild \u7684\u5de6\u65cb\u64cd\u4f5c

            \u53ef\u4ee5\u89c2\u5bdf\u5230\uff0c\u53f3\u65cb\u548c\u5de6\u65cb\u64cd\u4f5c\u5728\u903b\u8f91\u4e0a\u662f\u955c\u50cf\u5bf9\u79f0\u7684\uff0c\u5b83\u4eec\u5206\u522b\u89e3\u51b3\u7684\u4e24\u79cd\u5931\u8861\u60c5\u51b5\u4e5f\u662f\u5bf9\u79f0\u7684\u3002\u57fa\u4e8e\u5bf9\u79f0\u6027\uff0c\u6211\u4eec\u53ea\u9700\u5c06\u53f3\u65cb\u7684\u5b9e\u73b0\u4ee3\u7801\u4e2d\u7684\u6240\u6709\u7684 left \u66ff\u6362\u4e3a right \uff0c\u5c06\u6240\u6709\u7684 right \u66ff\u6362\u4e3a left \uff0c\u5373\u53ef\u5f97\u5230\u5de6\u65cb\u7684\u5b9e\u73b0\u4ee3\u7801\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode leftRotate(TreeNode node) {\nTreeNode child = node.right;\nTreeNode grandChild = child.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node;\nnode.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.cpp
            /* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode *leftRotate(TreeNode *node) {\nTreeNode *child = node->right;\nTreeNode *grandChild = child->left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild->left = node;\nnode->right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.py
            def __left_rotate(self, node: TreeNode | None) -> TreeNode | None:\n\"\"\"\u5de6\u65cb\u64cd\u4f5c\"\"\"\nchild = node.right\ngrand_child = child.left\n# \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node\nnode.right = grand_child\n# \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.__update_height(node)\nself.__update_height(child)\n# \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n
            avl_tree.go
            /* \u5de6\u65cb\u64cd\u4f5c */\nfunc (t *aVLTree) leftRotate(node *TreeNode) *TreeNode {\nchild := node.Right\ngrandChild := child.Left\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.Left = node\nnode.Right = grandChild\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nt.updateHeight(node)\nt.updateHeight(child)\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n}\n
            avl_tree.js
            /* \u5de6\u65cb\u64cd\u4f5c */\n#leftRotate(node) {\nconst child = node.right;\nconst grandChild = child.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node;\nnode.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nthis.#updateHeight(node);\nthis.#updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.ts
            /* \u5de6\u65cb\u64cd\u4f5c */\nleftRotate(node: TreeNode): TreeNode {\nconst child = node.right;\nconst grandChild = child.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node;\nnode.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nthis.updateHeight(node);\nthis.updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.c
            /* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode *leftRotate(TreeNode *node) {\nTreeNode *child, *grandChild;\nchild = node->right;\ngrandChild = child->left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild->left = node;\nnode->right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.cs
            /* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode? leftRotate(TreeNode? node) {\nTreeNode? child = node.right;\nTreeNode? grandChild = child?.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node;\nnode.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.swift
            /* \u5de6\u65cb\u64cd\u4f5c */\nfunc leftRotate(node: TreeNode?) -> TreeNode? {\nlet child = node?.right\nlet grandChild = child?.left\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild?.left = node\nnode?.right = grandChild\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node: node)\nupdateHeight(node: child)\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child\n}\n
            avl_tree.zig
            // \u5de6\u65cb\u64cd\u4f5c\nfn leftRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\nvar child = node.?.right;\nvar grandChild = child.?.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.?.left = node;\nnode.?.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.updateHeight(node);\nself.updateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.dart
            /* \u5de6\u65cb\u64cd\u4f5c */\nTreeNode? leftRotate(TreeNode? node) {\nTreeNode? child = node!.right;\nTreeNode? grandChild = child!.left;\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.left = node;\nnode.right = grandChild;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\nupdateHeight(child);\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn child;\n}\n
            avl_tree.rs
            /* \u5de6\u65cb\u64cd\u4f5c */\nfn left_rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\nmatch node {\nSome(node) => {\nlet child = node.borrow().right.clone().unwrap();\nlet grand_child = child.borrow().left.clone();\n// \u4ee5 child \u4e3a\u539f\u70b9\uff0c\u5c06 node \u5411\u5de6\u65cb\u8f6c\nchild.borrow_mut().left = Some(node.clone());\nnode.borrow_mut().right = grand_child;\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nSelf::update_height(Some(node));\nSelf::update_height(Some(child.clone()));\n// \u8fd4\u56de\u65cb\u8f6c\u540e\u5b50\u6811\u7684\u6839\u8282\u70b9\nSome(child)\n}\nNone => None,\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#3","title":"3. \u00a0 \u5148\u5de6\u65cb\u540e\u53f3\u65cb","text":"

            \u5bf9\u4e8e\u4e0b\u56fe\u4e2d\u7684\u5931\u8861\u8282\u70b9 3\uff0c\u4ec5\u4f7f\u7528\u5de6\u65cb\u6216\u53f3\u65cb\u90fd\u65e0\u6cd5\u4f7f\u5b50\u6811\u6062\u590d\u5e73\u8861\u3002\u6b64\u65f6\u9700\u8981\u5148\u5de6\u65cb\u540e\u53f3\u65cb\uff0c\u5373\u5148\u5bf9 child \u6267\u884c\u201c\u5de6\u65cb\u201d\uff0c\u518d\u5bf9 node \u6267\u884c\u201c\u53f3\u65cb\u201d\u3002

            \u56fe\uff1a\u5148\u5de6\u65cb\u540e\u53f3\u65cb

            "},{"location":"chapter_tree/avl_tree/#4","title":"4. \u00a0 \u5148\u53f3\u65cb\u540e\u5de6\u65cb","text":"

            \u540c\u7406\uff0c\u5bf9\u4e8e\u4e0a\u8ff0\u5931\u8861\u4e8c\u53c9\u6811\u7684\u955c\u50cf\u60c5\u51b5\uff0c\u9700\u8981\u5148\u53f3\u65cb\u540e\u5de6\u65cb\uff0c\u5373\u5148\u5bf9 child \u6267\u884c\u201c\u53f3\u65cb\u201d\uff0c\u7136\u540e\u5bf9 node \u6267\u884c\u201c\u5de6\u65cb\u201d\u3002

            \u56fe\uff1a\u5148\u53f3\u65cb\u540e\u5de6\u65cb

            "},{"location":"chapter_tree/avl_tree/#5","title":"5. \u00a0 \u65cb\u8f6c\u7684\u9009\u62e9","text":"

            \u4e0b\u56fe\u5c55\u793a\u7684\u56db\u79cd\u5931\u8861\u60c5\u51b5\u4e0e\u4e0a\u8ff0\u6848\u4f8b\u9010\u4e2a\u5bf9\u5e94\uff0c\u5206\u522b\u9700\u8981\u91c7\u7528\u53f3\u65cb\u3001\u5de6\u65cb\u3001\u5148\u53f3\u540e\u5de6\u3001\u5148\u5de6\u540e\u53f3\u7684\u65cb\u8f6c\u64cd\u4f5c\u3002

            \u56fe\uff1aAVL \u6811\u7684\u56db\u79cd\u65cb\u8f6c\u60c5\u51b5

            \u5728\u4ee3\u7801\u4e2d\uff0c\u6211\u4eec\u901a\u8fc7\u5224\u65ad\u5931\u8861\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u4ee5\u53ca\u8f83\u9ad8\u4e00\u4fa7\u5b50\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50\u7684\u6b63\u8d1f\u53f7\uff0c\u6765\u786e\u5b9a\u5931\u8861\u8282\u70b9\u5c5e\u4e8e\u4e0a\u56fe\u4e2d\u7684\u54ea\u79cd\u60c5\u51b5\u3002

            \u8868\uff1a\u56db\u79cd\u65cb\u8f6c\u60c5\u51b5\u7684\u9009\u62e9\u6761\u4ef6

            \u5931\u8861\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50 \u5b50\u8282\u70b9\u7684\u5e73\u8861\u56e0\u5b50 \u5e94\u91c7\u7528\u7684\u65cb\u8f6c\u65b9\u6cd5 \\(> 1\\) \uff08\u5373\u5de6\u504f\u6811\uff09 \\(\\geq 0\\) \u53f3\u65cb \\(> 1\\) \uff08\u5373\u5de6\u504f\u6811\uff09 \\(<0\\) \u5148\u5de6\u65cb\u540e\u53f3\u65cb \\(< -1\\) \uff08\u5373\u53f3\u504f\u6811\uff09 \\(\\leq 0\\) \u5de6\u65cb \\(< -1\\) \uff08\u5373\u53f3\u504f\u6811\uff09 \\(>0\\) \u5148\u53f3\u65cb\u540e\u5de6\u65cb

            \u4e3a\u4e86\u4fbf\u4e8e\u4f7f\u7528\uff0c\u6211\u4eec\u5c06\u65cb\u8f6c\u64cd\u4f5c\u5c01\u88c5\u6210\u4e00\u4e2a\u51fd\u6570\u3002\u6709\u4e86\u8fd9\u4e2a\u51fd\u6570\uff0c\u6211\u4eec\u5c31\u80fd\u5bf9\u5404\u79cd\u5931\u8861\u60c5\u51b5\u8fdb\u884c\u65cb\u8f6c\uff0c\u4f7f\u5931\u8861\u8282\u70b9\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode rotate(TreeNode node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nint balanceFactor = balanceFactor(node);\n// \u5de6\u504f\u6811\nif (balanceFactor > 1) {\nif (balanceFactor(node.left) >= 0) {\n// \u53f3\u65cb\nreturn rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = leftRotate(node.left);\nreturn rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (balanceFactor < -1) {\nif (balanceFactor(node.right) <= 0) {\n// \u5de6\u65cb\nreturn leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = rightRotate(node.right);\nreturn leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.cpp
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode *rotate(TreeNode *node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nint _balanceFactor = balanceFactor(node);\n// \u5de6\u504f\u6811\nif (_balanceFactor > 1) {\nif (balanceFactor(node->left) >= 0) {\n// \u53f3\u65cb\nreturn rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode->left = leftRotate(node->left);\nreturn rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (_balanceFactor < -1) {\nif (balanceFactor(node->right) <= 0) {\n// \u5de6\u65cb\nreturn leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode->right = rightRotate(node->right);\nreturn leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.py
            def __rotate(self, node: TreeNode | None) -> TreeNode | None:\n\"\"\"\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\"\"\"\n# \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nbalance_factor = self.balance_factor(node)\n# \u5de6\u504f\u6811\nif balance_factor > 1:\nif self.balance_factor(node.left) >= 0:\n# \u53f3\u65cb\nreturn self.__right_rotate(node)\nelse:\n# \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = self.__left_rotate(node.left)\nreturn self.__right_rotate(node)\n# \u53f3\u504f\u6811\nelif balance_factor < -1:\nif self.balance_factor(node.right) <= 0:\n# \u5de6\u65cb\nreturn self.__left_rotate(node)\nelse:\n# \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = self.__right_rotate(node.right)\nreturn self.__left_rotate(node)\n# \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node\n
            avl_tree.go
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfunc (t *aVLTree) rotate(node *TreeNode) *TreeNode {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\n// Go \u63a8\u8350\u77ed\u53d8\u91cf\uff0c\u8fd9\u91cc bf \u6307\u4ee3 t.balanceFactor\nbf := t.balanceFactor(node)\n// \u5de6\u504f\u6811\nif bf > 1 {\nif t.balanceFactor(node.Left) >= 0 {\n// \u53f3\u65cb\nreturn t.rightRotate(node)\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.Left = t.leftRotate(node.Left)\nreturn t.rightRotate(node)\n}\n}\n// \u53f3\u504f\u6811\nif bf < -1 {\nif t.balanceFactor(node.Right) <= 0 {\n// \u5de6\u65cb\nreturn t.leftRotate(node)\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.Right = t.rightRotate(node.Right)\nreturn t.leftRotate(node)\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node\n}\n
            avl_tree.js
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\n#rotate(node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nconst balanceFactor = this.balanceFactor(node);\n// \u5de6\u504f\u6811\nif (balanceFactor > 1) {\nif (this.balanceFactor(node.left) >= 0) {\n// \u53f3\u65cb\nreturn this.#rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = this.#leftRotate(node.left);\nreturn this.#rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (balanceFactor < -1) {\nif (this.balanceFactor(node.right) <= 0) {\n// \u5de6\u65cb\nreturn this.#leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = this.#rightRotate(node.right);\nreturn this.#leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.ts
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nrotate(node: TreeNode): TreeNode {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nconst balanceFactor = this.balanceFactor(node);\n// \u5de6\u504f\u6811\nif (balanceFactor > 1) {\nif (this.balanceFactor(node.left) >= 0) {\n// \u53f3\u65cb\nreturn this.rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = this.leftRotate(node.left);\nreturn this.rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (balanceFactor < -1) {\nif (this.balanceFactor(node.right) <= 0) {\n// \u5de6\u65cb\nreturn this.leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = this.rightRotate(node.right);\nreturn this.leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.c
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode *rotate(TreeNode *node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nint bf = balanceFactor(node);\n// \u5de6\u504f\u6811\nif (bf > 1) {\nif (balanceFactor(node->left) >= 0) {\n// \u53f3\u65cb\nreturn rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode->left = leftRotate(node->left);\nreturn rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (bf < -1) {\nif (balanceFactor(node->right) <= 0) {\n// \u5de6\u65cb\nreturn leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode->right = rightRotate(node->right);\nreturn leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.cs
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode? rotate(TreeNode? node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nint balanceFactorInt = balanceFactor(node);\n// \u5de6\u504f\u6811\nif (balanceFactorInt > 1) {\nif (balanceFactor(node.left) >= 0) {\n// \u53f3\u65cb\nreturn rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = leftRotate(node?.left);\nreturn rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (balanceFactorInt < -1) {\nif (balanceFactor(node.right) <= 0) {\n// \u5de6\u65cb\nreturn leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = rightRotate(node?.right);\nreturn leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.swift
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfunc rotate(node: TreeNode?) -> TreeNode? {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nlet balanceFactor = balanceFactor(node: node)\n// \u5de6\u504f\u6811\nif balanceFactor > 1 {\nif self.balanceFactor(node: node?.left) >= 0 {\n// \u53f3\u65cb\nreturn rightRotate(node: node)\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode?.left = leftRotate(node: node?.left)\nreturn rightRotate(node: node)\n}\n}\n// \u53f3\u504f\u6811\nif balanceFactor < -1 {\nif self.balanceFactor(node: node?.right) <= 0 {\n// \u5de6\u65cb\nreturn leftRotate(node: node)\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode?.right = rightRotate(node: node?.right)\nreturn leftRotate(node: node)\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node\n}\n
            avl_tree.zig
            // \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nfn rotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nvar balance_factor = self.balanceFactor(node);\n// \u5de6\u504f\u6811\nif (balance_factor > 1) {\nif (self.balanceFactor(node.?.left) >= 0) {\n// \u53f3\u65cb\nreturn self.rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.?.left = self.leftRotate(node.?.left);\nreturn self.rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (balance_factor < -1) {\nif (self.balanceFactor(node.?.right) <= 0) {\n// \u5de6\u65cb\nreturn self.leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.?.right = self.rightRotate(node.?.right);\nreturn self.leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.dart
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nTreeNode? rotate(TreeNode? node) {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nint factor = balanceFactor(node);\n// \u5de6\u504f\u6811\nif (factor > 1) {\nif (balanceFactor(node!.left) >= 0) {\n// \u53f3\u65cb\nreturn rightRotate(node);\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nnode.left = leftRotate(node.left);\nreturn rightRotate(node);\n}\n}\n// \u53f3\u504f\u6811\nif (factor < -1) {\nif (balanceFactor(node!.right) <= 0) {\n// \u5de6\u65cb\nreturn leftRotate(node);\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nnode.right = rightRotate(node.right);\nreturn leftRotate(node);\n}\n}\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n
            avl_tree.rs
            /* \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nfn rotate(node: OptionTreeNodeRc) -> OptionTreeNodeRc {\n// \u83b7\u53d6\u8282\u70b9 node \u7684\u5e73\u8861\u56e0\u5b50\nlet balance_factor = Self::balance_factor(node.clone());\n// \u5de6\u504f\u6811\nif balance_factor > 1 {\nlet node = node.unwrap();\nif Self::balance_factor(node.borrow().left.clone()) >= 0 {\n// \u53f3\u65cb\nSelf::right_rotate(Some(node))\n} else {\n// \u5148\u5de6\u65cb\u540e\u53f3\u65cb\nlet left = node.borrow().left.clone();\nnode.borrow_mut().left = Self::left_rotate(left);\nSelf::right_rotate(Some(node))\n}\n}\n// \u53f3\u504f\u6811\nelse if balance_factor < -1 {\nlet node = node.unwrap();\nif Self::balance_factor(node.borrow().right.clone()) <= 0 {\n// \u5de6\u65cb\nSelf::left_rotate(Some(node))\n} else {\n// \u5148\u53f3\u65cb\u540e\u5de6\u65cb\nlet right = node.borrow().right.clone();\nnode.borrow_mut().right = Self::right_rotate(right);\nSelf::left_rotate(Some(node))\n}\n} else {\n// \u5e73\u8861\u6811\uff0c\u65e0\u987b\u65cb\u8f6c\uff0c\u76f4\u63a5\u8fd4\u56de\nnode\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#753-avl","title":"7.5.3 \u00a0 AVL \u6811\u5e38\u7528\u64cd\u4f5c","text":""},{"location":"chapter_tree/avl_tree/#1_2","title":"1. \u00a0 \u63d2\u5165\u8282\u70b9","text":"

            AVL \u6811\u7684\u8282\u70b9\u63d2\u5165\u64cd\u4f5c\u4e0e\u4e8c\u53c9\u641c\u7d22\u6811\u5728\u4e3b\u4f53\u4e0a\u7c7b\u4f3c\u3002\u552f\u4e00\u7684\u533a\u522b\u5728\u4e8e\uff0c\u5728 AVL \u6811\u4e2d\u63d2\u5165\u8282\u70b9\u540e\uff0c\u4ece\u8be5\u8282\u70b9\u5230\u6839\u8282\u70b9\u7684\u8def\u5f84\u4e0a\u53ef\u80fd\u4f1a\u51fa\u73b0\u4e00\u7cfb\u5217\u5931\u8861\u8282\u70b9\u3002\u56e0\u6b64\uff0c\u6211\u4eec\u9700\u8981\u4ece\u8fd9\u4e2a\u8282\u70b9\u5f00\u59cb\uff0c\u81ea\u5e95\u5411\u4e0a\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6240\u6709\u5931\u8861\u8282\u70b9\u6062\u590d\u5e73\u8861\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\nroot = insertHelper(root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode insertHelper(TreeNode node, int val) {\nif (node == null)\nreturn new TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node.val)\nnode.left = insertHelper(node.left, val);\nelse if (val > node.val)\nnode.right = insertHelper(node.right, val);\nelse\nreturn node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.cpp
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\nroot = insertHelper(root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode *insertHelper(TreeNode *node, int val) {\nif (node == nullptr)\nreturn new TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node->val)\nnode->left = insertHelper(node->left, val);\nelse if (val > node->val)\nnode->right = insertHelper(node->right, val);\nelse\nreturn node;    // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.py
            def insert(self, val):\n\"\"\"\u63d2\u5165\u8282\u70b9\"\"\"\nself.root = self.__insert_helper(self.root, val)\ndef __insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:\n\"\"\"\u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\"\"\"\nif node is None:\nreturn TreeNode(val)\n# 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9\nif val < node.val:\nnode.left = self.__insert_helper(node.left, val)\nelif val > node.val:\nnode.right = self.__insert_helper(node.right, val)\nelse:\n# \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node\n# \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.__update_height(node)\n# 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nreturn self.__rotate(node)\n
            avl_tree.go
            /* \u63d2\u5165\u8282\u70b9 */\nfunc (t *aVLTree) insert(val int) {\nt.root = t.insertHelper(t.root, val)\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nfunc (t *aVLTree) insertHelper(node *TreeNode, val int) *TreeNode {\nif node == nil {\nreturn NewTreeNode(val)\n}\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif val < node.Val.(int) {\nnode.Left = t.insertHelper(node.Left, val)\n} else if val > node.Val.(int) {\nnode.Right = t.insertHelper(node.Right, val)\n} else {\n// \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node\n}\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nt.updateHeight(node)\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = t.rotate(node)\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node\n}\n
            avl_tree.js
            /* \u63d2\u5165\u8282\u70b9 */\ninsert(val) {\nthis.root = this.#insertHelper(this.root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\n#insertHelper(node, val) {\nif (node === null) return new TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node.val) node.left = this.#insertHelper(node.left, val);\nelse if (val > node.val)\nnode.right = this.#insertHelper(node.right, val);\nelse return node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nthis.#updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = this.#rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.ts
            /* \u63d2\u5165\u8282\u70b9 */\ninsert(val: number): void {\nthis.root = this.insertHelper(this.root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\ninsertHelper(node: TreeNode, val: number): TreeNode {\nif (node === null) return new TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node.val) {\nnode.left = this.insertHelper(node.left, val);\n} else if (val > node.val) {\nnode.right = this.insertHelper(node.right, val);\n} else {\nreturn node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n}\nthis.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = this.rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.c
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(aVLTree *tree, int val) {\ntree->root = insertHelper(tree->root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nTreeNode *insertHelper(TreeNode *node, int val) {\nif (node == NULL) {\nreturn newTreeNode(val);\n}\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node->val) {\nnode->left = insertHelper(node->left, val);\n} else if (val > node->val) {\nnode->right = insertHelper(node->right, val);\n} else {\n// \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nreturn node;\n}\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.cs
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\nroot = insertHelper(root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? insertHelper(TreeNode? node, int val) {\nif (node == null) return new TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node.val)\nnode.left = insertHelper(node.left, val);\nelse if (val > node.val)\nnode.right = insertHelper(node.right, val);\nelse\nreturn node;     // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nupdateHeight(node);  // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.swift
            /* \u63d2\u5165\u8282\u70b9 */\nfunc insert(val: Int) {\nroot = insertHelper(node: root, val: val)\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfunc insertHelper(node: TreeNode?, val: Int) -> TreeNode? {\nvar node = node\nif node == nil {\nreturn TreeNode(x: val)\n}\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif val < node!.val {\nnode?.left = insertHelper(node: node?.left, val: val)\n} else if val > node!.val {\nnode?.right = insertHelper(node: node?.right, val: val)\n} else {\nreturn node // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n}\nupdateHeight(node: node) // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node: node)\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node\n}\n
            avl_tree.zig
            // \u63d2\u5165\u8282\u70b9\nfn insert(self: *Self, val: T) !void {\nself.root = (try self.insertHelper(self.root, val)).?;\n}\n// \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\nfn insertHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) !?*inc.TreeNode(T) {\nvar node = node_;\nif (node == null) {\nvar tmp_node = try self.mem_allocator.create(inc.TreeNode(T));\ntmp_node.init(val);\nreturn tmp_node;\n}\n// 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9\nif (val < node.?.val) {\nnode.?.left = try self.insertHelper(node.?.left, val);\n} else if (val > node.?.val) {\nnode.?.right = try self.insertHelper(node.?.right, val);\n} else {\nreturn node;            // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n}\nself.updateHeight(node);    // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n// 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nnode = self.rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.dart
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int val) {\nroot = insertHelper(root, val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? insertHelper(TreeNode? node, int val) {\nif (node == null) return TreeNode(val);\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nif (val < node.val)\nnode.left = insertHelper(node.left, val);\nelse if (val > node.val)\nnode.right = insertHelper(node.right, val);\nelse\nreturn node; // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.rs
            /* \u63d2\u5165\u8282\u70b9 */\nfn insert(&mut self, val: i32) {\nself.root = Self::insert_helper(self.root.clone(), val);\n}\n/* \u9012\u5f52\u63d2\u5165\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfn insert_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {\nmatch node {\nSome(mut node) => {\n/* 1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff0c\u5e76\u63d2\u5165\u8282\u70b9 */\nmatch {\nlet node_val = node.borrow().val;\nnode_val\n}\n.cmp(&val)\n{\nOrdering::Greater => {\nlet left = node.borrow().left.clone();\nnode.borrow_mut().left = Self::insert_helper(left, val);\n}\nOrdering::Less => {\nlet right = node.borrow().right.clone();\nnode.borrow_mut().right = Self::insert_helper(right, val);\n}\nOrdering::Equal => {\nreturn Some(node); // \u91cd\u590d\u8282\u70b9\u4e0d\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\n}\n}\nSelf::update_height(Some(node.clone())); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = Self::rotate(Some(node)).unwrap();\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nSome(node)\n}\nNone => Some(TreeNode::new(val)),\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#2_2","title":"2. \u00a0 \u5220\u9664\u8282\u70b9","text":"

            \u7c7b\u4f3c\u5730\uff0c\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u5220\u9664\u8282\u70b9\u65b9\u6cd5\u7684\u57fa\u7840\u4e0a\uff0c\u9700\u8981\u4ece\u5e95\u81f3\u9876\u5730\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6240\u6709\u5931\u8861\u8282\u70b9\u6062\u590d\u5e73\u8861\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust avl_tree.java
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\nroot = removeHelper(root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode removeHelper(TreeNode node, int val) {\nif (node == null)\nreturn null;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node.val)\nnode.left = removeHelper(node.left, val);\nelse if (val > node.val)\nnode.right = removeHelper(node.right, val);\nelse {\nif (node.left == null || node.right == null) {\nTreeNode child = node.left != null ? node.left : node.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == null)\nreturn null;\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse\nnode = child;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nTreeNode temp = node.right;\nwhile (temp.left != null) {\ntemp = temp.left;\n}\nnode.right = removeHelper(node.right, temp.val);\nnode.val = temp.val;\n}\n}\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.cpp
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\nroot = removeHelper(root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode *removeHelper(TreeNode *node, int val) {\nif (node == nullptr)\nreturn nullptr;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node->val)\nnode->left = removeHelper(node->left, val);\nelse if (val > node->val)\nnode->right = removeHelper(node->right, val);\nelse {\nif (node->left == nullptr || node->right == nullptr) {\nTreeNode *child = node->left != nullptr ? node->left : node->right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == nullptr) {\ndelete node;\nreturn nullptr;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse {\ndelete node;\nnode = child;\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nTreeNode *temp = node->right;\nwhile (temp->left != nullptr) {\ntemp = temp->left;\n}\nint tempVal = temp->val;\nnode->right = removeHelper(node->right, temp->val);\nnode->val = tempVal;\n}\n}\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.py
            def remove(self, val: int):\n\"\"\"\u5220\u9664\u8282\u70b9\"\"\"\nself.root = self.__remove_helper(self.root, val)\ndef __remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:\n\"\"\"\u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\"\"\"\nif node is None:\nreturn None\n# 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b\nif val < node.val:\nnode.left = self.__remove_helper(node.left, val)\nelif val > node.val:\nnode.right = self.__remove_helper(node.right, val)\nelse:\nif node.left is None or node.right is None:\nchild = node.left or node.right\n# \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif child is None:\nreturn None\n# \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse:\nnode = child\nelse:\n# \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\ntemp = node.right\nwhile temp.left is not None:\ntemp = temp.left\nnode.right = self.__remove_helper(node.right, temp.val)\nnode.val = temp.val\n# \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nself.__update_height(node)\n# 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nreturn self.__rotate(node)\n
            avl_tree.go
            /* \u5220\u9664\u8282\u70b9 */\nfunc (t *aVLTree) remove(val int) {\nt.root = t.removeHelper(t.root, val)\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nfunc (t *aVLTree) removeHelper(node *TreeNode, val int) *TreeNode {\nif node == nil {\nreturn nil\n}\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif val < node.Val.(int) {\nnode.Left = t.removeHelper(node.Left, val)\n} else if val > node.Val.(int) {\nnode.Right = t.removeHelper(node.Right, val)\n} else {\nif node.Left == nil || node.Right == nil {\nchild := node.Left\nif node.Right != nil {\nchild = node.Right\n}\nif child == nil {\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nreturn nil\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nnode = child\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\ntemp := node.Right\nfor temp.Left != nil {\ntemp = temp.Left\n}\nnode.Right = t.removeHelper(node.Right, temp.Val.(int))\nnode.Val = temp.Val\n}\n}\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nt.updateHeight(node)\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = t.rotate(node)\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node\n}\n
            avl_tree.js
            /* \u5220\u9664\u8282\u70b9 */\nremove(val) {\nthis.root = this.#removeHelper(this.root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\n#removeHelper(node, val) {\nif (node === null) return null;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node.val) node.left = this.#removeHelper(node.left, val);\nelse if (val > node.val)\nnode.right = this.#removeHelper(node.right, val);\nelse {\nif (node.left === null || node.right === null) {\nconst child = node.left !== null ? node.left : node.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child === null) return null;\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse node = child;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nlet temp = node.right;\nwhile (temp.left !== null) {\ntemp = temp.left;\n}\nnode.right = this.#removeHelper(node.right, temp.val);\nnode.val = temp.val;\n}\n}\nthis.#updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = this.#rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.ts
            /* \u5220\u9664\u8282\u70b9 */\nremove(val: number): void {\nthis.root = this.removeHelper(this.root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nremoveHelper(node: TreeNode, val: number): TreeNode {\nif (node === null) return null;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node.val) {\nnode.left = this.removeHelper(node.left, val);\n} else if (val > node.val) {\nnode.right = this.removeHelper(node.right, val);\n} else {\nif (node.left === null || node.right === null) {\nconst child = node.left !== null ? node.left : node.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child === null) {\nreturn null;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nnode = child;\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nlet temp = node.right;\nwhile (temp.left !== null) {\ntemp = temp.left;\n}\nnode.right = this.removeHelper(node.right, temp.val);\nnode.val = temp.val;\n}\n}\nthis.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = this.rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.c
            /* \u5220\u9664\u8282\u70b9 */\n// \u7531\u4e8e\u5f15\u5165\u4e86 stdio.h \uff0c\u6b64\u5904\u65e0\u6cd5\u4f7f\u7528 remove \u5173\u952e\u8bcd\nvoid removeNode(aVLTree *tree, int val) {\nTreeNode *root = removeHelper(tree->root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u51fd\u6570\uff09 */\nTreeNode *removeHelper(TreeNode *node, int val) {\nTreeNode *child, *grandChild;\nif (node == NULL) {\nreturn NULL;\n}\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node->val) {\nnode->left = removeHelper(node->left, val);\n} else if (val > node->val) {\nnode->right = removeHelper(node->right, val);\n} else {\nif (node->left == NULL || node->right == NULL) {\nchild = node->left;\nif (node->right != NULL) {\nchild = node->right;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == NULL) {\nreturn NULL;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nnode = child;\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nTreeNode *temp = node->right;\nwhile (temp->left != NULL) {\ntemp = temp->left;\n}\nint tempVal = temp->val;\nnode->right = removeHelper(node->right, temp->val);\nnode->val = tempVal;\n}\n}\n// \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\nupdateHeight(node);\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.cs
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\nroot = removeHelper(root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? removeHelper(TreeNode? node, int val) {\nif (node == null) return null;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node.val)\nnode.left = removeHelper(node.left, val);\nelse if (val > node.val)\nnode.right = removeHelper(node.right, val);\nelse {\nif (node.left == null || node.right == null) {\nTreeNode? child = node.left != null ? node.left : node.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == null)\nreturn null;\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse\nnode = child;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nTreeNode? temp = node.right;\nwhile (temp.left != null) {\ntemp = temp.left;\n}\nnode.right = removeHelper(node.right, temp.val);\nnode.val = temp.val;\n}\n}\nupdateHeight(node);  // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.swift
            /* \u5220\u9664\u8282\u70b9 */\nfunc remove(val: Int) {\nroot = removeHelper(node: root, val: val)\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfunc removeHelper(node: TreeNode?, val: Int) -> TreeNode? {\nvar node = node\nif node == nil {\nreturn nil\n}\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif val < node!.val {\nnode?.left = removeHelper(node: node?.left, val: val)\n} else if val > node!.val {\nnode?.right = removeHelper(node: node?.right, val: val)\n} else {\nif node?.left == nil || node?.right == nil {\nlet child = node?.left != nil ? node?.left : node?.right\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif child == nil {\nreturn nil\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse {\nnode = child\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nvar temp = node?.right\nwhile temp?.left != nil {\ntemp = temp?.left\n}\nnode?.right = removeHelper(node: node?.right, val: temp!.val)\nnode?.val = temp!.val\n}\n}\nupdateHeight(node: node) // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node: node)\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node\n}\n
            avl_tree.zig
            // \u5220\u9664\u8282\u70b9\nfn remove(self: *Self, val: T) void {\nself.root = self.removeHelper(self.root, val).?;\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09\nfn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) {\nvar node = node_;\nif (node == null) return null;\n// 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b\nif (val < node.?.val) {\nnode.?.left = self.removeHelper(node.?.left, val);\n} else if (val > node.?.val) {\nnode.?.right = self.removeHelper(node.?.right, val);\n} else {\nif (node.?.left == null or node.?.right == null) {\nvar child = if (node.?.left != null) node.?.left else node.?.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == null) {\nreturn null;\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\n} else {\nnode = child;\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nvar temp = node.?.right;\nwhile (temp.?.left != null) {\ntemp = temp.?.left;\n}\nnode.?.right = self.removeHelper(node.?.right, temp.?.val);\nnode.?.val = temp.?.val;\n}\n}\nself.updateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n// 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\nnode = self.rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.dart
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int val) {\nroot = removeHelper(root, val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nTreeNode? removeHelper(TreeNode? node, int val) {\nif (node == null) return null;\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif (val < node.val)\nnode.left = removeHelper(node.left, val);\nelse if (val > node.val)\nnode.right = removeHelper(node.right, val);\nelse {\nif (node.left == null || node.right == null) {\nTreeNode? child = node.left ?? node.right;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nif (child == null)\nreturn null;\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nelse\nnode = child;\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nTreeNode? temp = node.right;\nwhile (temp!.left != null) {\ntemp = temp.left;\n}\nnode.right = removeHelper(node.right, temp.val);\nnode.val = temp.val;\n}\n}\nupdateHeight(node); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = rotate(node);\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nreturn node;\n}\n
            avl_tree.rs
            /* \u5220\u9664\u8282\u70b9 */\nfn remove(&self, val: i32) {\nSelf::remove_helper(self.root.clone(), val);\n}\n/* \u9012\u5f52\u5220\u9664\u8282\u70b9\uff08\u8f85\u52a9\u65b9\u6cd5\uff09 */\nfn remove_helper(node: OptionTreeNodeRc, val: i32) -> OptionTreeNodeRc {\nmatch node {\nSome(mut node) => {\n/* 1. \u67e5\u627e\u8282\u70b9\uff0c\u5e76\u5220\u9664\u4e4b */\nif val < node.borrow().val {\nlet left = node.borrow().left.clone();\nnode.borrow_mut().left = Self::remove_helper(left, val);\n} else if val > node.borrow().val {\nlet right = node.borrow().right.clone();\nnode.borrow_mut().right = Self::remove_helper(right, val);\n} else if node.borrow().left.is_none() || node.borrow().right.is_none() {\nlet child = if node.borrow().left.is_some() {\nnode.borrow().left.clone()\n} else {\nnode.borrow().right.clone()\n};\nmatch child {\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 \uff0c\u76f4\u63a5\u5220\u9664 node \u5e76\u8fd4\u56de\nNone => {\nreturn None;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 1 \uff0c\u76f4\u63a5\u5220\u9664 node\nSome(child) => node = child,\n}\n} else {\n// \u5b50\u8282\u70b9\u6570\u91cf = 2 \uff0c\u5219\u5c06\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e2a\u8282\u70b9\u5220\u9664\uff0c\u5e76\u7528\u8be5\u8282\u70b9\u66ff\u6362\u5f53\u524d\u8282\u70b9\nlet mut temp = node.borrow().right.clone().unwrap();\nloop {\nlet temp_left = temp.borrow().left.clone();\nif temp_left.is_none() {\nbreak;\n}\ntemp = temp_left.unwrap();\n}\nlet right = node.borrow().right.clone();\nnode.borrow_mut().right = Self::remove_helper(right, temp.borrow().val);\nnode.borrow_mut().val = temp.borrow().val;\n}\nSelf::update_height(Some(node.clone())); // \u66f4\u65b0\u8282\u70b9\u9ad8\u5ea6\n/* 2. \u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u8be5\u5b50\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861 */\nnode = Self::rotate(Some(node)).unwrap();\n// \u8fd4\u56de\u5b50\u6811\u7684\u6839\u8282\u70b9\nSome(node)\n}\nNone => None,\n}\n}\n
            "},{"location":"chapter_tree/avl_tree/#3_1","title":"3. \u00a0 \u67e5\u627e\u8282\u70b9","text":"

            AVL \u6811\u7684\u8282\u70b9\u67e5\u627e\u64cd\u4f5c\u4e0e\u4e8c\u53c9\u641c\u7d22\u6811\u4e00\u81f4\uff0c\u5728\u6b64\u4e0d\u518d\u8d58\u8ff0\u3002

            "},{"location":"chapter_tree/avl_tree/#754-avl","title":"7.5.4 \u00a0 AVL \u6811\u5178\u578b\u5e94\u7528","text":"
            • \u7ec4\u7ec7\u548c\u5b58\u50a8\u5927\u578b\u6570\u636e\uff0c\u9002\u7528\u4e8e\u9ad8\u9891\u67e5\u627e\u3001\u4f4e\u9891\u589e\u5220\u7684\u573a\u666f\u3002
            • \u7528\u4e8e\u6784\u5efa\u6570\u636e\u5e93\u4e2d\u7684\u7d22\u5f15\u7cfb\u7edf\u3002

            \u4e3a\u4ec0\u4e48\u7ea2\u9ed1\u6811\u6bd4 AVL \u6811\u66f4\u53d7\u6b22\u8fce\uff1f

            \u7ea2\u9ed1\u6811\u7684\u5e73\u8861\u6761\u4ef6\u76f8\u5bf9\u5bbd\u677e\uff0c\u56e0\u6b64\u5728\u7ea2\u9ed1\u6811\u4e2d\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\u6240\u9700\u7684\u65cb\u8f6c\u64cd\u4f5c\u76f8\u5bf9\u8f83\u5c11\uff0c\u5728\u8282\u70b9\u589e\u5220\u64cd\u4f5c\u4e0a\u7684\u5e73\u5747\u6548\u7387\u9ad8\u4e8e AVL \u6811\u3002

            "},{"location":"chapter_tree/binary_search_tree/","title":"7.4 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811","text":"

            \u300c\u4e8c\u53c9\u641c\u7d22\u6811 binary search tree\u300d\u6ee1\u8db3\u4ee5\u4e0b\u6761\u4ef6\uff1a

            1. \u5bf9\u4e8e\u6839\u8282\u70b9\uff0c\u5de6\u5b50\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u503c \\(<\\) \u6839\u8282\u70b9\u7684\u503c \\(<\\) \u53f3\u5b50\u6811\u4e2d\u6240\u6709\u8282\u70b9\u7684\u503c\u3002
            2. \u4efb\u610f\u8282\u70b9\u7684\u5de6\u3001\u53f3\u5b50\u6811\u4e5f\u662f\u4e8c\u53c9\u641c\u7d22\u6811\uff0c\u5373\u540c\u6837\u6ee1\u8db3\u6761\u4ef6 1. \u3002

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811

            "},{"location":"chapter_tree/binary_search_tree/#741","title":"7.4.1 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u64cd\u4f5c","text":"

            \u6211\u4eec\u5c06\u4e8c\u53c9\u641c\u7d22\u6811\u5c01\u88c5\u4e3a\u4e00\u4e2a\u7c7b ArrayBinaryTree \uff0c\u5e76\u58f0\u660e\u4e00\u4e2a\u6210\u5458\u53d8\u91cf root \uff0c\u6307\u5411\u6811\u7684\u6839\u8282\u70b9\u3002

            "},{"location":"chapter_tree/binary_search_tree/#1","title":"1. \u00a0 \u67e5\u627e\u8282\u70b9","text":"

            \u7ed9\u5b9a\u76ee\u6807\u8282\u70b9\u503c num \uff0c\u53ef\u4ee5\u6839\u636e\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6027\u8d28\u6765\u67e5\u627e\u3002\u6211\u4eec\u58f0\u660e\u4e00\u4e2a\u8282\u70b9 cur \uff0c\u4ece\u4e8c\u53c9\u6811\u7684\u6839\u8282\u70b9 root \u51fa\u53d1\uff0c\u5faa\u73af\u6bd4\u8f83\u8282\u70b9\u503c cur.val \u548c num \u4e4b\u95f4\u7684\u5927\u5c0f\u5173\u7cfb

            • \u82e5 cur.val < num \uff0c\u8bf4\u660e\u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\uff0c\u56e0\u6b64\u6267\u884c cur = cur.right \u3002
            • \u82e5 cur.val > num \uff0c\u8bf4\u660e\u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\uff0c\u56e0\u6b64\u6267\u884c cur = cur.left \u3002
            • \u82e5 cur.val = num \uff0c\u8bf4\u660e\u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\u5e76\u8fd4\u56de\u8be5\u8282\u70b9\u3002
            <1><2><3><4>

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u67e5\u627e\u8282\u70b9\u793a\u4f8b

            \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u67e5\u627e\u64cd\u4f5c\u4e0e\u4e8c\u5206\u67e5\u627e\u7b97\u6cd5\u7684\u5de5\u4f5c\u539f\u7406\u4e00\u81f4\uff0c\u90fd\u662f\u6bcf\u8f6e\u6392\u9664\u4e00\u534a\u60c5\u51b5\u3002\u5faa\u73af\u6b21\u6570\u6700\u591a\u4e3a\u4e8c\u53c9\u6811\u7684\u9ad8\u5ea6\uff0c\u5f53\u4e8c\u53c9\u6811\u5e73\u8861\u65f6\uff0c\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_tree.java
            /* \u67e5\u627e\u8282\u70b9 */\nTreeNode search(int num) {\nTreeNode cur = root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if (cur.val > num)\ncur = cur.left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse\nbreak;\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.cpp
            /* \u67e5\u627e\u8282\u70b9 */\nTreeNode *search(int num) {\nTreeNode *cur = root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != nullptr) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur->val < num)\ncur = cur->right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if (cur->val > num)\ncur = cur->left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse\nbreak;\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.py
            def search(self, num: int) -> TreeNode | None:\n\"\"\"\u67e5\u627e\u8282\u70b9\"\"\"\ncur: TreeNode | None = self.root\n# \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile cur is not None:\n# \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur.val < num:\ncur = cur.right\n# \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelif cur.val > num:\ncur = cur.left\n# \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse:\nbreak\nreturn cur\n
            binary_search_tree.go
            /* \u67e5\u627e\u8282\u70b9 */\nfunc (bst *binarySearchTree) search(num int) *TreeNode {\nnode := bst.root\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nfor node != nil {\nif node.Val.(int) < num {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nnode = node.Right\n} else if node.Val.(int) > num {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nnode = node.Left\n} else {\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nbreak\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn node\n}\n
            binary_search_tree.js
            /* \u67e5\u627e\u8282\u70b9 */\nfunction search(num) {\nlet cur = root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num) cur = cur.right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if (cur.val > num) cur = cur.left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse break;\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.ts
            /* \u67e5\u627e\u8282\u70b9 */\nfunction search(num: number): TreeNode | null {\nlet cur = root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\nif (cur.val < num) {\ncur = cur.right; // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n} else if (cur.val > num) {\ncur = cur.left; // \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n} else {\nbreak; // \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.c
            /* \u67e5\u627e\u8282\u70b9 */\nTreeNode *search(binarySearchTree *bst, int num) {\nTreeNode *cur = bst->root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != NULL) {\nif (cur->val < num) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\ncur = cur->right;\n} else if (cur->val > num) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\ncur = cur->left;\n} else {\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nbreak;\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.cs
            /* \u67e5\u627e\u8282\u70b9 */\nTreeNode? search(int num) {\nTreeNode? cur = root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num) cur =\ncur.right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if (cur.val > num)\ncur = cur.left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse\nbreak;\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.swift
            /* \u67e5\u627e\u8282\u70b9 */\nfunc search(num: Int) -> TreeNode? {\nvar cur = root\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile cur != nil {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur!.val < num {\ncur = cur?.right\n}\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if cur!.val > num {\ncur = cur?.left\n}\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse {\nbreak\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur\n}\n
            binary_search_tree.zig
            // \u67e5\u627e\u8282\u70b9\nfn search(self: *Self, num: T) ?*inc.TreeNode(T) {\nvar cur = self.root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.?.val < num) {\ncur = cur.?.right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n} else if (cur.?.val > num) {\ncur = cur.?.left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n} else {\nbreak;\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.dart
            /* \u67e5\u627e\u8282\u70b9 */\nTreeNode? search(int num) {\nTreeNode? cur = _root;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if (cur.val > num)\ncur = cur.left;\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse\nbreak;\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\nreturn cur;\n}\n
            binary_search_tree.rs
            /* \u67e5\u627e\u8282\u70b9 */\npub fn search(&self, num: i32) -> Option<TreeNodeRc> {\nlet mut cur = self.root.clone();\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile let Some(node) = cur.clone() {\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif node.borrow().val < num {\ncur = node.borrow().right.clone();\n}\n// \u76ee\u6807\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse if node.borrow().val > num {\ncur = node.borrow().left.clone();\n}\n// \u627e\u5230\u76ee\u6807\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nelse {\nbreak;\n}\n}\n// \u8fd4\u56de\u76ee\u6807\u8282\u70b9\ncur\n}\n
            "},{"location":"chapter_tree/binary_search_tree/#2","title":"2. \u00a0 \u63d2\u5165\u8282\u70b9","text":"

            \u7ed9\u5b9a\u4e00\u4e2a\u5f85\u63d2\u5165\u5143\u7d20 num \uff0c\u4e3a\u4e86\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u201c\u5de6\u5b50\u6811 < \u6839\u8282\u70b9 < \u53f3\u5b50\u6811\u201d\u7684\u6027\u8d28\uff0c\u63d2\u5165\u64cd\u4f5c\u5206\u4e3a\u4e24\u6b65\uff1a

            1. \u67e5\u627e\u63d2\u5165\u4f4d\u7f6e\uff1a\u4e0e\u67e5\u627e\u64cd\u4f5c\u76f8\u4f3c\uff0c\u4ece\u6839\u8282\u70b9\u51fa\u53d1\uff0c\u6839\u636e\u5f53\u524d\u8282\u70b9\u503c\u548c num \u7684\u5927\u5c0f\u5173\u7cfb\u5faa\u73af\u5411\u4e0b\u641c\u7d22\uff0c\u76f4\u5230\u8d8a\u8fc7\u53f6\u8282\u70b9\uff08\u904d\u5386\u81f3 \\(\\text{None}\\) \uff09\u65f6\u8df3\u51fa\u5faa\u73af\u3002
            2. \u5728\u8be5\u4f4d\u7f6e\u63d2\u5165\u8282\u70b9\uff1a\u521d\u59cb\u5316\u8282\u70b9 num \uff0c\u5c06\u8be5\u8282\u70b9\u7f6e\u4e8e \\(\\text{None}\\) \u7684\u4f4d\u7f6e\u3002

            \u4e8c\u53c9\u641c\u7d22\u6811\u4e0d\u5141\u8bb8\u5b58\u5728\u91cd\u590d\u8282\u70b9\uff0c\u5426\u5219\u5c06\u8fdd\u53cd\u5176\u5b9a\u4e49\u3002\u56e0\u6b64\uff0c\u82e5\u5f85\u63d2\u5165\u8282\u70b9\u5728\u6811\u4e2d\u5df2\u5b58\u5728\uff0c\u5219\u4e0d\u6267\u884c\u63d2\u5165\uff0c\u76f4\u63a5\u8fd4\u56de\u3002

            \u56fe\uff1a\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u63d2\u5165\u8282\u70b9

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_search_tree.java
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == null)\nreturn;\nTreeNode cur = root, pre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur.val == num)\nreturn;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur.left;\n}\n// \u63d2\u5165\u8282\u70b9\nTreeNode node = new TreeNode(num);\nif (pre.val < num)\npre.right = node;\nelse\npre.left = node;\n}\n
            binary_search_tree.cpp
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == nullptr)\nreturn;\nTreeNode *cur = root, *pre = nullptr;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != nullptr) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur->val == num)\nreturn;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur->val < num)\ncur = cur->right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur->left;\n}\n// \u63d2\u5165\u8282\u70b9\nTreeNode *node = new TreeNode(num);\nif (pre->val < num)\npre->right = node;\nelse\npre->left = node;\n}\n
            binary_search_tree.py
            def insert(self, num: int):\n\"\"\"\u63d2\u5165\u8282\u70b9\"\"\"\n# \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif self.root is None:\nreturn\n# \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\ncur, pre = self.root, None\nwhile cur is not None:\n# \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif cur.val == num:\nreturn\npre = cur\n# \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur.val < num:\ncur = cur.right\n# \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse:\ncur = cur.left\n# \u63d2\u5165\u8282\u70b9\nnode = TreeNode(num)\nif pre.val < num:\npre.right = node\nelse:\npre.left = node\n
            binary_search_tree.go
            /* \u63d2\u5165\u8282\u70b9 */\nfunc (bst *binarySearchTree) insert(num int) {\ncur := bst.root\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif cur == nil {\nreturn\n}\n// \u5f85\u63d2\u5165\u8282\u70b9\u4e4b\u524d\u7684\u8282\u70b9\u4f4d\u7f6e\nvar pre *TreeNode = nil\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nfor cur != nil {\nif cur.Val == num {\nreturn\n}\npre = cur\nif cur.Val.(int) < num {\ncur = cur.Right\n} else {\ncur = cur.Left\n}\n}\n// \u63d2\u5165\u8282\u70b9\nnode := NewTreeNode(num)\nif pre.Val.(int) < num {\npre.Right = node\n} else {\npre.Left = node\n}\n}\n
            binary_search_tree.js
            /* \u63d2\u5165\u8282\u70b9 */\nfunction insert(num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root === null) return;\nlet cur = root,\npre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur.val === num) return;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num) cur = cur.right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse cur = cur.left;\n}\n// \u63d2\u5165\u8282\u70b9\nlet node = new TreeNode(num);\nif (pre.val < num) pre.right = node;\nelse pre.left = node;\n}\n
            binary_search_tree.ts
            /* \u63d2\u5165\u8282\u70b9 */\nfunction insert(num: number): void {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root === null) {\nreturn;\n}\nlet cur = root,\npre: TreeNode | null = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\nif (cur.val === num) {\nreturn; // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n}\npre = cur;\nif (cur.val < num) {\ncur = cur.right as TreeNode; // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n} else {\ncur = cur.left as TreeNode; // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n}\n}\n// \u63d2\u5165\u8282\u70b9\nlet node = new TreeNode(num);\nif (pre!.val < num) {\npre!.right = node;\n} else {\npre!.left = node;\n}\n}\n
            binary_search_tree.c
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(binarySearchTree *bst, int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (bst->root == NULL)\nreturn;\nTreeNode *cur = bst->root, *pre = NULL;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != NULL) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur->val == num) {\nreturn;\n}\npre = cur;\nif (cur->val < num) {\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\ncur = cur->right;\n} else {\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\ncur = cur->left;\n}\n}\n// \u63d2\u5165\u8282\u70b9\nTreeNode *node = newTreeNode(num);\nif (pre->val < num) {\npre->right = node;\n} else {\npre->left = node;\n}\n}\n
            binary_search_tree.cs
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == null)\nreturn;\nTreeNode? cur = root, pre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur.val == num)\nreturn;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur.left;\n}\n// \u63d2\u5165\u8282\u70b9\nTreeNode node = new TreeNode(num);\nif (pre != null) {\nif (pre.val < num)\npre.right = node;\nelse\npre.left = node;\n}\n}\n
            binary_search_tree.swift
            /* \u63d2\u5165\u8282\u70b9 */\nfunc insert(num: Int) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif root == nil {\nreturn\n}\nvar cur = root\nvar pre: TreeNode?\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile cur != nil {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif cur!.val == num {\nreturn\n}\npre = cur\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur!.val < num {\ncur = cur?.right\n}\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse {\ncur = cur?.left\n}\n}\n// \u63d2\u5165\u8282\u70b9\nlet node = TreeNode(x: num)\nif pre!.val < num {\npre?.right = node\n} else {\npre?.left = node\n}\n}\n
            binary_search_tree.zig
            // \u63d2\u5165\u8282\u70b9\nfn insert(self: *Self, num: T) !void {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (self.root == null) return;\nvar cur = self.root;\nvar pre: ?*inc.TreeNode(T) = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur.?.val == num) return;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.?.val < num) {\ncur = cur.?.right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n} else {\ncur = cur.?.left;\n}\n}\n// \u63d2\u5165\u8282\u70b9\nvar node = try self.mem_allocator.create(inc.TreeNode(T));\nnode.init(num);\nif (pre.?.val < num) {\npre.?.right = node;\n} else {\npre.?.left = node;\n}\n}\n
            binary_search_tree.dart
            /* \u63d2\u5165\u8282\u70b9 */\nvoid insert(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (_root == null) return;\nTreeNode? cur = _root;\nTreeNode? pre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif (cur.val == num) return;\npre = cur;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur.left;\n}\n// \u63d2\u5165\u8282\u70b9\nTreeNode? node = TreeNode(num);\nif (pre!.val < num)\npre.right = node;\nelse\npre.left = node;\n}\n
            binary_search_tree.rs
            /* \u63d2\u5165\u8282\u70b9 */\npub fn insert(&mut self, num: i32) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif self.root.is_none() {\nreturn;\n}\nlet mut cur = self.root.clone();\nlet mut pre = None;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile let Some(node) = cur.clone() {\n// \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\nif node.borrow().val == num {\nreturn;\n}\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\npre = cur.clone();\nif node.borrow().val < num {\ncur = node.borrow().right.clone();\n}\n// \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse {\ncur = node.borrow().left.clone();\n}\n}\n// \u63d2\u5165\u8282\u70b9\nlet node = TreeNode::new(num);\nlet pre = pre.unwrap();\nif pre.borrow().val < num {\npre.borrow_mut().right = Some(Rc::clone(&node));\n} else {\npre.borrow_mut().left = Some(Rc::clone(&node));\n}\n}\n

            \u4e3a\u4e86\u63d2\u5165\u8282\u70b9\uff0c\u6211\u4eec\u9700\u8981\u5229\u7528\u8f85\u52a9\u8282\u70b9 pre \u4fdd\u5b58\u4e0a\u4e00\u8f6e\u5faa\u73af\u7684\u8282\u70b9\uff0c\u8fd9\u6837\u5728\u904d\u5386\u81f3 \\(\\text{None}\\) \u65f6\uff0c\u6211\u4eec\u53ef\u4ee5\u83b7\u53d6\u5230\u5176\u7236\u8282\u70b9\uff0c\u4ece\u800c\u5b8c\u6210\u8282\u70b9\u63d2\u5165\u64cd\u4f5c\u3002

            \u4e0e\u67e5\u627e\u8282\u70b9\u76f8\u540c\uff0c\u63d2\u5165\u8282\u70b9\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\u3002

            "},{"location":"chapter_tree/binary_search_tree/#3","title":"3. \u00a0 \u5220\u9664\u8282\u70b9","text":"

            \u4e0e\u63d2\u5165\u8282\u70b9\u7c7b\u4f3c\uff0c\u6211\u4eec\u9700\u8981\u5728\u5220\u9664\u64cd\u4f5c\u540e\u7ef4\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u201c\u5de6\u5b50\u6811 < \u6839\u8282\u70b9 < \u53f3\u5b50\u6811\u201d\u7684\u6027\u8d28\u3002\u9996\u5148\uff0c\u6211\u4eec\u9700\u8981\u5728\u4e8c\u53c9\u6811\u4e2d\u6267\u884c\u67e5\u627e\u64cd\u4f5c\uff0c\u83b7\u53d6\u5f85\u5220\u9664\u8282\u70b9\u3002\u63a5\u4e0b\u6765\uff0c\u6839\u636e\u5f85\u5220\u9664\u8282\u70b9\u7684\u5b50\u8282\u70b9\u6570\u91cf\uff0c\u5220\u9664\u64cd\u4f5c\u9700\u5206\u4e3a\u4e09\u79cd\u60c5\u51b5\uff1a

            \u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(0\\) \u65f6\uff0c\u8868\u793a\u5f85\u5220\u9664\u8282\u70b9\u662f\u53f6\u8282\u70b9\uff0c\u53ef\u4ee5\u76f4\u63a5\u5220\u9664\u3002

            \u56fe\uff1a\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u5220\u9664\u8282\u70b9\uff08\u5ea6\u4e3a 0\uff09

            \u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(1\\) \u65f6\uff0c\u5c06\u5f85\u5220\u9664\u8282\u70b9\u66ff\u6362\u4e3a\u5176\u5b50\u8282\u70b9\u5373\u53ef\u3002

            \u56fe\uff1a\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u5220\u9664\u8282\u70b9\uff08\u5ea6\u4e3a 1\uff09

            \u5f53\u5f85\u5220\u9664\u8282\u70b9\u7684\u5ea6\u4e3a \\(2\\) \u65f6\uff0c\u6211\u4eec\u65e0\u6cd5\u76f4\u63a5\u5220\u9664\u5b83\uff0c\u800c\u9700\u8981\u4f7f\u7528\u4e00\u4e2a\u8282\u70b9\u66ff\u6362\u8be5\u8282\u70b9\u3002\u7531\u4e8e\u8981\u4fdd\u6301\u4e8c\u53c9\u641c\u7d22\u6811\u201c\u5de6 \\(<\\) \u6839 \\(<\\) \u53f3\u201d\u7684\u6027\u8d28\uff0c\u56e0\u6b64\u8fd9\u4e2a\u8282\u70b9\u53ef\u4ee5\u662f\u53f3\u5b50\u6811\u7684\u6700\u5c0f\u8282\u70b9\u6216\u5de6\u5b50\u6811\u7684\u6700\u5927\u8282\u70b9\u3002

            \u5047\u8bbe\u6211\u4eec\u9009\u62e9\u53f3\u5b50\u6811\u7684\u6700\u5c0f\u8282\u70b9\uff08\u5373\u4e2d\u5e8f\u904d\u5386\u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\uff09\uff0c\u5219\u5220\u9664\u64cd\u4f5c\u4e3a\uff1a

            1. \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\u5728\u201c\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u201d\u4e2d\u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\uff0c\u8bb0\u4e3a tmp \u3002
            2. \u5c06 tmp \u7684\u503c\u8986\u76d6\u5f85\u5220\u9664\u8282\u70b9\u7684\u503c\uff0c\u5e76\u5728\u6811\u4e2d\u9012\u5f52\u5220\u9664\u8282\u70b9 tmp \u3002
            <1><2><3><4>

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u5220\u9664\u8282\u70b9\u793a\u4f8b

            \u5220\u9664\u8282\u70b9\u64cd\u4f5c\u540c\u6837\u4f7f\u7528 \\(O(\\log n)\\) \u65f6\u95f4\uff0c\u5176\u4e2d\u67e5\u627e\u5f85\u5220\u9664\u8282\u70b9\u9700\u8981 \\(O(\\log n)\\) \u65f6\u95f4\uff0c\u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u540e\u7ee7\u8282\u70b9\u9700\u8981 \\(O(\\log n)\\) \u65f6\u95f4\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDart binary_search_tree.java
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == null)\nreturn;\nTreeNode cur = root, pre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur.val == num)\nbreak;\npre = cur;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur.left;\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur == null)\nreturn;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur.left == null || cur.right == null) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nTreeNode child = cur.left != null ? cur.left : cur.right;\n// \u5220\u9664\u8282\u70b9 cur\nif (cur != root) {\nif (pre.left == cur)\npre.left = child;\nelse\npre.right = child;\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child;\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nTreeNode tmp = cur.right;\nwhile (tmp.left != null) {\ntmp = tmp.left;\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(tmp.val);\n// \u7528 tmp \u8986\u76d6 cur\ncur.val = tmp.val;\n}\n}\n
            binary_search_tree.cpp
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == nullptr)\nreturn;\nTreeNode *cur = root, *pre = nullptr;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != nullptr) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur->val == num)\nbreak;\npre = cur;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur->val < num)\ncur = cur->right;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur->left;\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur == nullptr)\nreturn;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur->left == nullptr || cur->right == nullptr) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\nTreeNode *child = cur->left != nullptr ? cur->left : cur->right;\n// \u5220\u9664\u8282\u70b9 cur\nif (cur != root) {\nif (pre->left == cur)\npre->left = child;\nelse\npre->right = child;\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child;\n}\n// \u91ca\u653e\u5185\u5b58\ndelete cur;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nTreeNode *tmp = cur->right;\nwhile (tmp->left != nullptr) {\ntmp = tmp->left;\n}\nint tmpVal = tmp->val;\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(tmp->val);\n// \u7528 tmp \u8986\u76d6 cur\ncur->val = tmpVal;\n}\n}\n
            binary_search_tree.py
            def remove(self, num: int):\n\"\"\"\u5220\u9664\u8282\u70b9\"\"\"\n# \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif self.root is None:\nreturn\n# \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\ncur, pre = self.root, None\nwhile cur is not None:\n# \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif cur.val == num:\nbreak\npre = cur\n# \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur.val < num:\ncur = cur.right\n# \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse:\ncur = cur.left\n# \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif cur is None:\nreturn\n# \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif cur.left is None or cur.right is None:\n# \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nchild = cur.left or cur.right\n# \u5220\u9664\u8282\u70b9 cur\nif cur != self.root:\nif pre.left == cur:\npre.left = child\nelse:\npre.right = child\nelse:\n# \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nself.root = child\n# \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse:\n# \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\ntmp: TreeNode = cur.right\nwhile tmp.left is not None:\ntmp = tmp.left\n# \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nself.remove(tmp.val)\n# \u7528 tmp \u8986\u76d6 cur\ncur.val = tmp.val\n
            binary_search_tree.go
            /* \u5220\u9664\u8282\u70b9 */\nfunc (bst *binarySearchTree) remove(num int) {\ncur := bst.root\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif cur == nil {\nreturn\n}\n// \u5f85\u5220\u9664\u8282\u70b9\u4e4b\u524d\u7684\u8282\u70b9\u4f4d\u7f6e\nvar pre *TreeNode = nil\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nfor cur != nil {\nif cur.Val == num {\nbreak\n}\npre = cur\nif cur.Val.(int) < num {\n// \u5f85\u5220\u9664\u8282\u70b9\u5728\u53f3\u5b50\u6811\u4e2d\ncur = cur.Right\n} else {\n// \u5f85\u5220\u9664\u8282\u70b9\u5728\u5de6\u5b50\u6811\u4e2d\ncur = cur.Left\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif cur == nil {\nreturn\n}\n// \u5b50\u8282\u70b9\u6570\u4e3a 0 \u6216 1\nif cur.Left == nil || cur.Right == nil {\nvar child *TreeNode = nil\n// \u53d6\u51fa\u5f85\u5220\u9664\u8282\u70b9\u7684\u5b50\u8282\u70b9\nif cur.Left != nil {\nchild = cur.Left\n} else {\nchild = cur.Right\n}\n// \u5220\u9664\u8282\u70b9 cur\nif cur != bst.root {\nif pre.Left == cur {\npre.Left = child\n} else {\npre.Right = child\n}\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nbst.root = child\n}\n// \u5b50\u8282\u70b9\u6570\u4e3a 2\n} else {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d\u5f85\u5220\u9664\u8282\u70b9 cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\ntmp := cur.Right\nfor tmp.Left != nil {\ntmp = tmp.Left\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nbst.remove(tmp.Val.(int))\n// \u7528 tmp \u8986\u76d6 cur\ncur.Val = tmp.Val\n}\n}\n
            binary_search_tree.js
            /* \u5220\u9664\u8282\u70b9 */\nfunction remove(num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root === null) return;\nlet cur = root,\npre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur.val === num) break;\npre = cur;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num) cur = cur.right;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse cur = cur.left;\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur === null) return;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur.left === null || cur.right === null) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nlet child = cur.left !== null ? cur.left : cur.right;\n// \u5220\u9664\u8282\u70b9 cur\nif (cur != root) {\nif (pre.left === cur) pre.left = child;\nelse pre.right = child;\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child;\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nlet tmp = cur.right;\nwhile (tmp.left !== null) {\ntmp = tmp.left;\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(tmp.val);\n// \u7528 tmp \u8986\u76d6 cur\ncur.val = tmp.val;\n}\n}\n
            binary_search_tree.ts
            /* \u5220\u9664\u8282\u70b9 */\nfunction remove(num: number): void {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root === null) {\nreturn;\n}\nlet cur = root,\npre: TreeNode | null = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur !== null) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur.val === num) {\nbreak;\n}\npre = cur;\nif (cur.val < num) {\ncur = cur.right as TreeNode; // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n} else {\ncur = cur.left as TreeNode; // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur === null) {\nreturn;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur.left === null || cur.right === null) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nlet child = cur.left !== null ? cur.left : cur.right;\n// \u5220\u9664\u8282\u70b9 cur\nif (cur != root) {\nif (pre!.left === cur) {\npre!.left = child;\n} else {\npre!.right = child;\n}\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child;\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nlet tmp = cur.right;\nwhile (tmp.left !== null) {\ntmp = tmp.left;\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(tmp!.val);\n// \u7528 tmp \u8986\u76d6 cur\ncur.val = tmp.val;\n}\n}\n
            binary_search_tree.c
            /* \u5220\u9664\u8282\u70b9 */\n// \u7531\u4e8e\u5f15\u5165\u4e86 stdio.h \uff0c\u6b64\u5904\u65e0\u6cd5\u4f7f\u7528 remove \u5173\u952e\u8bcd\nvoid removeNode(binarySearchTree *bst, int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (bst->root == NULL)\nreturn;\nTreeNode *cur = bst->root, *pre = NULL;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != NULL) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur->val == num)\nbreak;\npre = cur;\nif (cur->val < num) {\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 root \u7684\u53f3\u5b50\u6811\u4e2d\ncur = cur->right;\n} else {\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 root \u7684\u5de6\u5b50\u6811\u4e2d\ncur = cur->left;\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur == NULL)\nreturn;\n// \u5224\u65ad\u5f85\u5220\u9664\u8282\u70b9\u662f\u5426\u5b58\u5728\u5b50\u8282\u70b9\nif (cur->left == NULL || cur->right == NULL) {\n/* \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1 */\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\nTreeNode *child = cur->left != NULL ? cur->left : cur->right;\n// \u5220\u9664\u8282\u70b9 cur\nif (pre->left == cur) {\npre->left = child;\n} else {\npre->right = child;\n}\n} else {\n/* \u5b50\u8282\u70b9\u6570\u91cf = 2 */\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nTreeNode *tmp = cur->right;\nwhile (tmp->left != NULL) {\ntmp = tmp->left;\n}\nint tmpVal = tmp->val;\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremoveNode(bst, tmp->val);\n// \u7528 tmp \u8986\u76d6 cur\ncur->val = tmpVal;\n}\n}\n
            binary_search_tree.cs
            /* \u5220\u9664\u8282\u70b9 */\nvoid remove(int num) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (root == null)\nreturn;\nTreeNode? cur = root, pre = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur.val == num)\nbreak;\npre = cur;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.val < num)\ncur = cur.right;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse\ncur = cur.left;\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur == null || pre == null)\nreturn;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur.left == null || cur.right == null) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nTreeNode? child = cur.left != null ? cur.left : cur.right;\n// \u5220\u9664\u8282\u70b9 cur\nif (cur != root) {\nif (pre.left == cur)\npre.left = child;\nelse\npre.right = child;\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child;\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nTreeNode? tmp = cur.right;\nwhile (tmp.left != null) {\ntmp = tmp.left;\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(tmp.val);\n// \u7528 tmp \u8986\u76d6 cur\ncur.val = tmp.val;\n}\n}\n
            binary_search_tree.swift
            /* \u5220\u9664\u8282\u70b9 */\nfunc remove(num: Int) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif root == nil {\nreturn\n}\nvar cur = root\nvar pre: TreeNode?\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile cur != nil {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif cur!.val == num {\nbreak\n}\npre = cur\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif cur!.val < num {\ncur = cur?.right\n}\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse {\ncur = cur?.left\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif cur == nil {\nreturn\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif cur?.left == nil || cur?.right == nil {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nlet child = cur?.left != nil ? cur?.left : cur?.right\n// \u5220\u9664\u8282\u70b9 cur\nif cur !== root {\nif pre?.left === cur {\npre?.left = child\n} else {\npre?.right = child\n}\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nroot = child\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nvar tmp = cur?.right\nwhile tmp?.left != nil {\ntmp = tmp?.left\n}\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nremove(num: tmp!.val)\n// \u7528 tmp \u8986\u76d6 cur\ncur?.val = tmp!.val\n}\n}\n
            binary_search_tree.zig
            // \u5220\u9664\u8282\u70b9\nfn remove(self: *Self, num: T) void {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif (self.root == null) return;\nvar cur = self.root;\nvar pre: ?*inc.TreeNode(T) = null;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile (cur != null) {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif (cur.?.val == num) break;\npre = cur;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\nif (cur.?.val < num) {\ncur = cur.?.right;\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n} else {\ncur = cur.?.left;\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif (cur == null) return;\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif (cur.?.left == null or cur.?.right == null) {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\nvar child = if (cur.?.left != null) cur.?.left else cur.?.right;\n// \u5220\u9664\u8282\u70b9 cur\nif (pre.?.left == cur) {\npre.?.left = child;\n} else {\npre.?.right = child;\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\n} else {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nvar tmp = cur.?.right;\nwhile (tmp.?.left != null) {\ntmp = tmp.?.left;\n}\nvar tmp_val = tmp.?.val;\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nself.remove(tmp.?.val);\n// \u7528 tmp \u8986\u76d6 cur\ncur.?.val = tmp_val;\n}\n}\n

            ```dart title=\"binary_search_tree.dart\" /* \u63d2\u5165\u8282\u70b9 */ void insert(int num) { // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de if (_root == null) return; TreeNode? cur = _root; TreeNode? pre = null; // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa while (cur != null) { // \u627e\u5230\u91cd\u590d\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de if (cur.val == num) return; pre = cur; // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d if (cur.val < num) cur = cur.right; // \u63d2\u5165\u4f4d\u7f6e\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d else cur = cur.left; } // \u63d2\u5165\u8282\u70b9 TreeNode? node = TreeNode(num); if (pre!.val < num) pre.right = node; else pre.left = node; }

            /* \u5220\u9664\u8282\u70b9 */ void remove(int num) { // \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de if (_root == null) return;

              TreeNode? cur = _root;\n  TreeNode? pre = null;\n  // \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\n  while (cur != null) {\n    // \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\n    if (cur.val == num) break;\n    pre = cur;\n    // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\n    if (cur.val < num)\n      cur = cur.right;\n    // \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\n    else\n      cur = cur.left;\n  }\n  // \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u76f4\u63a5\u8fd4\u56de\n  if (cur == null) return;\n  // \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\n  if (cur.left == null || cur.right == null) {\n    // \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = null / \u8be5\u5b50\u8282\u70b9\n    TreeNode? child = cur.left ?? cur.right;\n    // \u5220\u9664\u8282\u70b9 cur\n    if (cur != _root) {\n      if (pre!.left == cur)\n        pre.left = child;\n      else\n        pre.right = child;\n    } else {\n      // \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\n      _root = child;\n    }\n  } else {\n    // \u5b50\u8282\u70b9\u6570\u91cf = 2\n    // \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\n    TreeNode? tmp = cur.right;\n    while (tmp!.left != null) {\n      tmp = tmp.left;\n    }\n    // \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\n    remove(tmp.val);\n    // \u7528 tmp \u8986\u76d6 cur\n    cur.val = tmp.val;\n  }\n}\n```\n
            Rust binary_search_tree.rs
            /* \u5220\u9664\u8282\u70b9 */\npub fn remove(&mut self, num: i32) {\n// \u82e5\u6811\u4e3a\u7a7a\uff0c\u76f4\u63a5\u63d0\u524d\u8fd4\u56de\nif self.root.is_none() { return; }\nlet mut cur = self.root.clone();\nlet mut pre = None;\n// \u5faa\u73af\u67e5\u627e\uff0c\u8d8a\u8fc7\u53f6\u8282\u70b9\u540e\u8df3\u51fa\nwhile let Some(node) = cur.clone() {\n// \u627e\u5230\u5f85\u5220\u9664\u8282\u70b9\uff0c\u8df3\u51fa\u5faa\u73af\nif node.borrow().val == num {\nbreak;\n}\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u53f3\u5b50\u6811\u4e2d\npre = cur.clone();\nif node.borrow().val < num {\ncur = node.borrow().right.clone();\n}\n// \u5f85\u5220\u9664\u8282\u70b9\u5728 cur \u7684\u5de6\u5b50\u6811\u4e2d\nelse {\ncur = node.borrow().left.clone();\n}\n}\n// \u82e5\u65e0\u5f85\u5220\u9664\u8282\u70b9\uff0c\u5219\u76f4\u63a5\u8fd4\u56de\nif cur.is_none() {\nreturn;\n}\nlet cur = cur.unwrap();\n// \u5b50\u8282\u70b9\u6570\u91cf = 0 or 1\nif cur.borrow().left.is_none() || cur.borrow().right.is_none() {\n// \u5f53\u5b50\u8282\u70b9\u6570\u91cf = 0 / 1 \u65f6\uff0c child = nullptr / \u8be5\u5b50\u8282\u70b9\nlet child = cur.borrow().left.clone().or_else(|| cur.borrow().right.clone());\nlet pre = pre.unwrap();\nlet left = pre.borrow().left.clone().unwrap();\n// \u5220\u9664\u8282\u70b9 cur\nif !Rc::ptr_eq(&cur, self.root.as_ref().unwrap()) {\nif Rc::ptr_eq(&left, &cur) {\npre.borrow_mut().left = child;\n} else {\npre.borrow_mut().right = child;\n}\n} else {\n// \u82e5\u5220\u9664\u8282\u70b9\u4e3a\u6839\u8282\u70b9\uff0c\u5219\u91cd\u65b0\u6307\u5b9a\u6839\u8282\u70b9\nself.root = child;\n}\n}\n// \u5b50\u8282\u70b9\u6570\u91cf = 2\nelse {\n// \u83b7\u53d6\u4e2d\u5e8f\u904d\u5386\u4e2d cur \u7684\u4e0b\u4e00\u4e2a\u8282\u70b9\nlet mut tmp = cur.borrow().right.clone();\nwhile let Some(node) = tmp.clone() {\nif node.borrow().left.is_some() {\ntmp = node.borrow().left.clone();\n} else {\nbreak;\n}\n}\nlet tmpval = tmp.unwrap().borrow().val;\n// \u9012\u5f52\u5220\u9664\u8282\u70b9 tmp\nself.remove(tmpval);\n// \u7528 tmp \u8986\u76d6 cur\ncur.borrow_mut().val = tmpval;\n}\n}\n
            "},{"location":"chapter_tree/binary_search_tree/#4","title":"4. \u00a0 \u6392\u5e8f","text":"

            \u6211\u4eec\u77e5\u9053\uff0c\u4e8c\u53c9\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u9075\u5faa\u201c\u5de6 \\(\\rightarrow\\) \u6839 \\(\\rightarrow\\) \u53f3\u201d\u7684\u904d\u5386\u987a\u5e8f\uff0c\u800c\u4e8c\u53c9\u641c\u7d22\u6811\u6ee1\u8db3\u201c\u5de6\u5b50\u8282\u70b9 \\(<\\) \u6839\u8282\u70b9 \\(<\\) \u53f3\u5b50\u8282\u70b9\u201d\u7684\u5927\u5c0f\u5173\u7cfb\u3002\u56e0\u6b64\uff0c\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u8fdb\u884c\u4e2d\u5e8f\u904d\u5386\u65f6\uff0c\u603b\u662f\u4f1a\u4f18\u5148\u904d\u5386\u4e0b\u4e00\u4e2a\u6700\u5c0f\u8282\u70b9\uff0c\u4ece\u800c\u5f97\u51fa\u4e00\u4e2a\u91cd\u8981\u6027\u8d28\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217\u662f\u5347\u5e8f\u7684\u3002

            \u5229\u7528\u4e2d\u5e8f\u904d\u5386\u5347\u5e8f\u7684\u6027\u8d28\uff0c\u6211\u4eec\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u83b7\u53d6\u6709\u5e8f\u6570\u636e\u4ec5\u9700 \\(O(n)\\) \u65f6\u95f4\uff0c\u65e0\u987b\u989d\u5916\u6392\u5e8f\uff0c\u975e\u5e38\u9ad8\u6548\u3002

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u4e2d\u5e8f\u904d\u5386\u5e8f\u5217

            "},{"location":"chapter_tree/binary_search_tree/#742","title":"7.4.2 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6548\u7387","text":"

            \u7ed9\u5b9a\u4e00\u7ec4\u6570\u636e\uff0c\u6211\u4eec\u8003\u8651\u4f7f\u7528\u6570\u7ec4\u6216\u4e8c\u53c9\u641c\u7d22\u6811\u5b58\u50a8\u3002

            \u89c2\u5bdf\u53ef\u77e5\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u5404\u9879\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u90fd\u662f\u5bf9\u6570\u9636\uff0c\u5177\u6709\u7a33\u5b9a\u4e14\u9ad8\u6548\u7684\u6027\u80fd\u8868\u73b0\u3002\u53ea\u6709\u5728\u9ad8\u9891\u6dfb\u52a0\u3001\u4f4e\u9891\u67e5\u627e\u5220\u9664\u7684\u6570\u636e\u9002\u7528\u573a\u666f\u4e0b\uff0c\u6570\u7ec4\u6bd4\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u6548\u7387\u66f4\u9ad8\u3002

            \u8868\uff1a\u6570\u7ec4\u4e0e\u641c\u7d22\u6811\u7684\u6548\u7387\u5bf9\u6bd4

            \u65e0\u5e8f\u6570\u7ec4 \u4e8c\u53c9\u641c\u7d22\u6811 \u67e5\u627e\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\) \u63d2\u5165\u5143\u7d20 \\(O(1)\\) \\(O(\\log n)\\) \u5220\u9664\u5143\u7d20 \\(O(n)\\) \\(O(\\log n)\\)

            \u5728\u7406\u60f3\u60c5\u51b5\u4e0b\uff0c\u4e8c\u53c9\u641c\u7d22\u6811\u662f\u201c\u5e73\u8861\u201d\u7684\uff0c\u8fd9\u6837\u5c31\u53ef\u4ee5\u5728 \\(\\log n\\) \u8f6e\u5faa\u73af\u5185\u67e5\u627e\u4efb\u610f\u8282\u70b9\u3002

            \u7136\u800c\uff0c\u5982\u679c\u6211\u4eec\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\u4e0d\u65ad\u5730\u63d2\u5165\u548c\u5220\u9664\u8282\u70b9\uff0c\u53ef\u80fd\u5bfc\u81f4\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u94fe\u8868\uff0c\u8fd9\u65f6\u5404\u79cd\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u4e5f\u4f1a\u9000\u5316\u4e3a \\(O(n)\\) \u3002

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u5e73\u8861\u4e0e\u9000\u5316

            "},{"location":"chapter_tree/binary_search_tree/#743","title":"7.4.3 \u00a0 \u4e8c\u53c9\u641c\u7d22\u6811\u5e38\u89c1\u5e94\u7528","text":"
            • \u7528\u4f5c\u7cfb\u7edf\u4e2d\u7684\u591a\u7ea7\u7d22\u5f15\uff0c\u5b9e\u73b0\u9ad8\u6548\u7684\u67e5\u627e\u3001\u63d2\u5165\u3001\u5220\u9664\u64cd\u4f5c\u3002
            • \u4f5c\u4e3a\u67d0\u4e9b\u641c\u7d22\u7b97\u6cd5\u7684\u5e95\u5c42\u6570\u636e\u7ed3\u6784\u3002
            • \u7528\u4e8e\u5b58\u50a8\u6570\u636e\u6d41\uff0c\u4ee5\u4fdd\u6301\u5176\u6709\u5e8f\u72b6\u6001\u3002
            "},{"location":"chapter_tree/binary_tree/","title":"7.1 \u00a0 \u4e8c\u53c9\u6811","text":"

            \u300c\u4e8c\u53c9\u6811 binary tree\u300d\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u4ee3\u8868\u7740\u7956\u5148\u4e0e\u540e\u4ee3\u4e4b\u95f4\u7684\u6d3e\u751f\u5173\u7cfb\uff0c\u4f53\u73b0\u7740\u201c\u4e00\u5206\u4e3a\u4e8c\u201d\u7684\u5206\u6cbb\u903b\u8f91\u3002\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u4e8c\u53c9\u6811\u7684\u57fa\u672c\u5355\u5143\u662f\u8282\u70b9\uff0c\u6bcf\u4e2a\u8282\u70b9\u5305\u542b\uff1a\u503c\u3001\u5de6\u5b50\u8282\u70b9\u5f15\u7528\u3001\u53f3\u5b50\u8282\u70b9\u5f15\u7528\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nint val;         // \u8282\u70b9\u503c\nTreeNode left;   // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode right;  // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode(int x) { val = x; }\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\nint val;          // \u8282\u70b9\u503c\nTreeNode *left;   // \u5de6\u5b50\u8282\u70b9\u6307\u9488\nTreeNode *right;  // \u53f3\u5b50\u8282\u70b9\u6307\u9488\nTreeNode(int x) : val(x), left(nullptr), right(nullptr) {}\n};\n
            class TreeNode:\n\"\"\"\u4e8c\u53c9\u6811\u8282\u70b9\u7c7b\"\"\"\ndef __init__(self, val: int):\nself.val: int = val                   # \u8282\u70b9\u503c\nself.left: Optional[TreeNode] = None  # \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nself.right: Optional[TreeNode] = None # \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\ntype TreeNode struct {\nVal   int\nLeft  *TreeNode\nRight *TreeNode\n}\n/* \u8282\u70b9\u521d\u59cb\u5316\u65b9\u6cd5 */\nfunc NewTreeNode(v int) *TreeNode {\nreturn &TreeNode{\nLeft:  nil, // \u5de6\u5b50\u8282\u70b9\u6307\u9488\nRight: nil, // \u53f3\u5b50\u8282\u70b9\u6307\u9488\nVal:   v,   // \u8282\u70b9\u503c\n}\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nfunction TreeNode(val, left, right) {\nthis.val = (val === undefined ? 0 : val); // \u8282\u70b9\u503c\nthis.left = (left === undefined ? null : left); // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nthis.right = (right === undefined ? null : right); // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nval: number;\nleft: TreeNode | null;\nright: TreeNode | null;\nconstructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {\nthis.val = val === undefined ? 0 : val; // \u8282\u70b9\u503c\nthis.left = left === undefined ? null : left; // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nthis.right = right === undefined ? null : right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\n}\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7ed3\u6784\u4f53 */\nstruct TreeNode {\nint val;                // \u8282\u70b9\u503c\nint height;             // \u8282\u70b9\u9ad8\u5ea6\nstruct TreeNode *left;  // \u5de6\u5b50\u8282\u70b9\u6307\u9488\nstruct TreeNode *right; // \u53f3\u5b50\u8282\u70b9\u6307\u9488\n};\ntypedef struct TreeNode TreeNode;\n/* \u6784\u9020\u51fd\u6570 */\nTreeNode *newTreeNode(int val) {\nTreeNode *node;\nnode = (TreeNode *)malloc(sizeof(TreeNode));\nnode->val = val;\nnode->height = 0;\nnode->left = NULL;\nnode->right = NULL;\nreturn node;\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nint val;          // \u8282\u70b9\u503c\nTreeNode? left;   // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode? right;  // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode(int x) { val = x; }\n}\n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nvar val: Int // \u8282\u70b9\u503c\nvar left: TreeNode? // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nvar right: TreeNode? // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\ninit(x: Int) {\nval = x\n}\n}\n
            \n
            /* \u4e8c\u53c9\u6811\u8282\u70b9\u7c7b */\nclass TreeNode {\nint val;         // \u8282\u70b9\u503c\nTreeNode? left;  // \u5de6\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode? right; // \u53f3\u5b50\u8282\u70b9\u5f15\u7528\nTreeNode(this.val, [this.left, this.right]);\n}\n
            \n

            \u6bcf\u4e2a\u8282\u70b9\u90fd\u6709\u4e24\u4e2a\u5f15\u7528\uff08\u6307\u9488\uff09\uff0c\u5206\u522b\u6307\u5411\u300c\u5de6\u5b50\u8282\u70b9 left-child node\u300d\u548c\u300c\u53f3\u5b50\u8282\u70b9 right-child node\u300d\uff0c\u8be5\u8282\u70b9\u88ab\u79f0\u4e3a\u8fd9\u4e24\u4e2a\u5b50\u8282\u70b9\u7684\u300c\u7236\u8282\u70b9 parent node\u300d\u3002\u5f53\u7ed9\u5b9a\u4e00\u4e2a\u4e8c\u53c9\u6811\u7684\u8282\u70b9\u65f6\uff0c\u6211\u4eec\u5c06\u8be5\u8282\u70b9\u7684\u5de6\u5b50\u8282\u70b9\u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u79f0\u4e3a\u8be5\u8282\u70b9\u7684\u300c\u5de6\u5b50\u6811 left subtree\u300d\uff0c\u540c\u7406\u53ef\u5f97\u300c\u53f3\u5b50\u6811 right subtree\u300d\u3002

            \u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u9664\u53f6\u8282\u70b9\u5916\uff0c\u5176\u4ed6\u6240\u6709\u8282\u70b9\u90fd\u5305\u542b\u5b50\u8282\u70b9\u548c\u975e\u7a7a\u5b50\u6811\u3002\u5728\u4ee5\u4e0b\u793a\u4f8b\u4e2d\uff0c\u82e5\u5c06\u201c\u8282\u70b9 2\u201d\u89c6\u4e3a\u7236\u8282\u70b9\uff0c\u5219\u5176\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\u5206\u522b\u662f\u201c\u8282\u70b9 4\u201d\u548c\u201c\u8282\u70b9 5\u201d\uff0c\u5de6\u5b50\u6811\u662f\u201c\u8282\u70b9 4 \u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u201d\uff0c\u53f3\u5b50\u6811\u662f\u201c\u8282\u70b9 5 \u53ca\u5176\u4ee5\u4e0b\u8282\u70b9\u5f62\u6210\u7684\u6811\u201d\u3002

            \u56fe\uff1a\u7236\u8282\u70b9\u3001\u5b50\u8282\u70b9\u3001\u5b50\u6811

            "},{"location":"chapter_tree/binary_tree/#711","title":"7.1.1 \u00a0 \u4e8c\u53c9\u6811\u5e38\u89c1\u672f\u8bed","text":"

            \u4e8c\u53c9\u6811\u6d89\u53ca\u7684\u672f\u8bed\u8f83\u591a\uff0c\u5efa\u8bae\u5c3d\u91cf\u7406\u89e3\u5e76\u8bb0\u4f4f\u3002

            • \u300c\u6839\u8282\u70b9 root node\u300d\uff1a\u4f4d\u4e8e\u4e8c\u53c9\u6811\u9876\u5c42\u7684\u8282\u70b9\uff0c\u6ca1\u6709\u7236\u8282\u70b9\u3002
            • \u300c\u53f6\u8282\u70b9 leaf node\u300d\uff1a\u6ca1\u6709\u5b50\u8282\u70b9\u7684\u8282\u70b9\uff0c\u5176\u4e24\u4e2a\u6307\u9488\u5747\u6307\u5411 \\(\\text{None}\\) \u3002
            • \u300c\u8fb9 edge\u300d\uff1a\u8fde\u63a5\u4e24\u4e2a\u8282\u70b9\u7684\u7ebf\u6bb5\uff0c\u5373\u8282\u70b9\u5f15\u7528\uff08\u6307\u9488\uff09\u3002
            • \u8282\u70b9\u6240\u5728\u7684\u300c\u5c42 level\u300d\uff1a\u4ece\u9876\u81f3\u5e95\u9012\u589e\uff0c\u6839\u8282\u70b9\u6240\u5728\u5c42\u4e3a 1 \u3002
            • \u8282\u70b9\u7684\u300c\u5ea6 degree\u300d\uff1a\u8282\u70b9\u7684\u5b50\u8282\u70b9\u7684\u6570\u91cf\u3002\u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u5ea6\u7684\u53d6\u503c\u8303\u56f4\u662f 0, 1, 2 \u3002
            • \u4e8c\u53c9\u6811\u7684\u300c\u9ad8\u5ea6 height\u300d\uff1a\u4ece\u6839\u8282\u70b9\u5230\u6700\u8fdc\u53f6\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002
            • \u8282\u70b9\u7684\u300c\u6df1\u5ea6 depth\u300d \uff1a\u4ece\u6839\u8282\u70b9\u5230\u8be5\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002
            • \u8282\u70b9\u7684\u300c\u9ad8\u5ea6 height\u300d\uff1a\u4ece\u6700\u8fdc\u53f6\u8282\u70b9\u5230\u8be5\u8282\u70b9\u6240\u7ecf\u8fc7\u7684\u8fb9\u7684\u6570\u91cf\u3002

            \u56fe\uff1a\u4e8c\u53c9\u6811\u7684\u5e38\u7528\u672f\u8bed

            \u9ad8\u5ea6\u4e0e\u6df1\u5ea6\u7684\u5b9a\u4e49

            \u8bf7\u6ce8\u610f\uff0c\u6211\u4eec\u901a\u5e38\u5c06\u201c\u9ad8\u5ea6\u201d\u548c\u201c\u6df1\u5ea6\u201d\u5b9a\u4e49\u4e3a\u201c\u8d70\u8fc7\u8fb9\u7684\u6570\u91cf\u201d\uff0c\u4f46\u6709\u4e9b\u9898\u76ee\u6216\u6559\u6750\u53ef\u80fd\u4f1a\u5c06\u5176\u5b9a\u4e49\u4e3a\u201c\u8d70\u8fc7\u8282\u70b9\u7684\u6570\u91cf\u201d\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u9ad8\u5ea6\u548c\u6df1\u5ea6\u90fd\u9700\u8981\u52a0 1 \u3002

            "},{"location":"chapter_tree/binary_tree/#712","title":"7.1.2 \u00a0 \u4e8c\u53c9\u6811\u57fa\u672c\u64cd\u4f5c","text":"

            \u521d\u59cb\u5316\u4e8c\u53c9\u6811\u3002\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u9996\u5148\u521d\u59cb\u5316\u8282\u70b9\uff0c\u7136\u540e\u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_tree.java
            // \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new TreeNode(1);\nTreeNode n2 = new TreeNode(2);\nTreeNode n3 = new TreeNode(3);\nTreeNode n4 = new TreeNode(4);\nTreeNode n5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
            binary_tree.cpp
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode* n1 = new TreeNode(1);\nTreeNode* n2 = new TreeNode(2);\nTreeNode* n3 = new TreeNode(3);\nTreeNode* n4 = new TreeNode(4);\nTreeNode* n5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1->left = n2;\nn1->right = n3;\nn2->left = n4;\nn2->right = n5;\n
            binary_tree.py
            # \u521d\u59cb\u5316\u4e8c\u53c9\u6811\n# \u521d\u59cb\u5316\u8282\u70b9\nn1 = TreeNode(val=1)\nn2 = TreeNode(val=2)\nn3 = TreeNode(val=3)\nn4 = TreeNode(val=4)\nn5 = TreeNode(val=5)\n# \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2\nn1.right = n3\nn2.left = n4\nn2.right = n5\n
            binary_tree.go
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nn1 := NewTreeNode(1)\nn2 := NewTreeNode(2)\nn3 := NewTreeNode(3)\nn4 := NewTreeNode(4)\nn5 := NewTreeNode(5)\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.Left = n2\nn1.Right = n3\nn2.Left = n4\nn2.Right = n5\n
            binary_tree.js
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = new TreeNode(1),\nn2 = new TreeNode(2),\nn3 = new TreeNode(3),\nn4 = new TreeNode(4),\nn5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
            binary_tree.ts
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = new TreeNode(1),\nn2 = new TreeNode(2),\nn3 = new TreeNode(3),\nn4 = new TreeNode(4),\nn5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
            binary_tree.c
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode *n1 = newTreeNode(1);\nTreeNode *n2 = newTreeNode(2);\nTreeNode *n3 = newTreeNode(3);\nTreeNode *n4 = newTreeNode(4);\nTreeNode *n5 = newTreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1->left = n2;\nn1->right = n3;\nn2->left = n4;\nn2->right = n5;\n
            binary_tree.cs
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new TreeNode(1);\nTreeNode n2 = new TreeNode(2);\nTreeNode n3 = new TreeNode(3);\nTreeNode n4 = new TreeNode(4);\nTreeNode n5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
            binary_tree.swift
            // \u521d\u59cb\u5316\u8282\u70b9\nlet n1 = TreeNode(x: 1)\nlet n2 = TreeNode(x: 2)\nlet n3 = TreeNode(x: 3)\nlet n4 = TreeNode(x: 4)\nlet n5 = TreeNode(x: 5)\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2\nn1.right = n3\nn2.left = n4\nn2.right = n5\n
            binary_tree.zig
            \n
            binary_tree.dart
            /* \u521d\u59cb\u5316\u4e8c\u53c9\u6811 */\n// \u521d\u59cb\u5316\u8282\u70b9\nTreeNode n1 = new TreeNode(1);\nTreeNode n2 = new TreeNode(2);\nTreeNode n3 = new TreeNode(3);\nTreeNode n4 = new TreeNode(4);\nTreeNode n5 = new TreeNode(5);\n// \u6784\u5efa\u5f15\u7528\u6307\u5411\uff08\u5373\u6307\u9488\uff09\nn1.left = n2;\nn1.right = n3;\nn2.left = n4;\nn2.right = n5;\n
            binary_tree.rs
            \n

            \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\u3002\u4e0e\u94fe\u8868\u7c7b\u4f3c\uff0c\u901a\u8fc7\u4fee\u6539\u6307\u9488\u6765\u5b9e\u73b0\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\u3002

            \u56fe\uff1a\u5728\u4e8c\u53c9\u6811\u4e2d\u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_tree.java
            TreeNode P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
            binary_tree.cpp
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode* P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1->left = P;\nP->left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1->left = n2;\n
            binary_tree.py
            # \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9\np = TreeNode(0)\n# \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = p\np.left = n2\n# \u5220\u9664\u8282\u70b9 P\nn1.left = n2\n
            binary_tree.go
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\np := NewTreeNode(0)\nn1.Left = p\np.Left = n2\n// \u5220\u9664\u8282\u70b9 P\nn1.Left = n2\n
            binary_tree.js
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nlet P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
            binary_tree.ts
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nconst P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
            binary_tree.c
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode *P = newTreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1->left = P;\nP->left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1->left = n2;\n
            binary_tree.cs
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
            binary_tree.swift
            let P = TreeNode(x: 0)\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P\nP.left = n2\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2\n
            binary_tree.zig
            \n
            binary_tree.dart
            /* \u63d2\u5165\u4e0e\u5220\u9664\u8282\u70b9 */\nTreeNode P = new TreeNode(0);\n// \u5728 n1 -> n2 \u4e2d\u95f4\u63d2\u5165\u8282\u70b9 P\nn1.left = P;\nP.left = n2;\n// \u5220\u9664\u8282\u70b9 P\nn1.left = n2;\n
            binary_tree.rs
            \n

            Note

            \u9700\u8981\u6ce8\u610f\u7684\u662f\uff0c\u63d2\u5165\u8282\u70b9\u53ef\u80fd\u4f1a\u6539\u53d8\u4e8c\u53c9\u6811\u7684\u539f\u6709\u903b\u8f91\u7ed3\u6784\uff0c\u800c\u5220\u9664\u8282\u70b9\u901a\u5e38\u610f\u5473\u7740\u5220\u9664\u8be5\u8282\u70b9\u53ca\u5176\u6240\u6709\u5b50\u6811\u3002\u56e0\u6b64\uff0c\u5728\u4e8c\u53c9\u6811\u4e2d\uff0c\u63d2\u5165\u4e0e\u5220\u9664\u64cd\u4f5c\u901a\u5e38\u662f\u7531\u4e00\u5957\u64cd\u4f5c\u914d\u5408\u5b8c\u6210\u7684\uff0c\u4ee5\u5b9e\u73b0\u6709\u5b9e\u9645\u610f\u4e49\u7684\u64cd\u4f5c\u3002

            "},{"location":"chapter_tree/binary_tree/#713","title":"7.1.3 \u00a0 \u5e38\u89c1\u4e8c\u53c9\u6811\u7c7b\u578b","text":""},{"location":"chapter_tree/binary_tree/#1","title":"1. \u00a0 \u5b8c\u7f8e\u4e8c\u53c9\u6811","text":"

            \u300c\u5b8c\u7f8e\u4e8c\u53c9\u6811 perfect binary tree\u300d\u9664\u4e86\u6700\u5e95\u5c42\u5916\uff0c\u5176\u4f59\u6240\u6709\u5c42\u7684\u8282\u70b9\u90fd\u88ab\u5b8c\u5168\u586b\u6ee1\u3002\u5728\u5b8c\u7f8e\u4e8c\u53c9\u6811\u4e2d\uff0c\u53f6\u8282\u70b9\u7684\u5ea6\u4e3a \\(0\\) \uff0c\u5176\u4f59\u6240\u6709\u8282\u70b9\u7684\u5ea6\u90fd\u4e3a \\(2\\) \uff1b\u82e5\u6811\u9ad8\u5ea6\u4e3a \\(h\\) \uff0c\u5219\u8282\u70b9\u603b\u6570\u4e3a \\(2^{h+1} - 1\\) \uff0c\u5448\u73b0\u6807\u51c6\u7684\u6307\u6570\u7ea7\u5173\u7cfb\uff0c\u53cd\u6620\u4e86\u81ea\u7136\u754c\u4e2d\u5e38\u89c1\u7684\u7ec6\u80de\u5206\u88c2\u73b0\u8c61\u3002

            Tip

            \u8bf7\u6ce8\u610f\uff0c\u5728\u4e2d\u6587\u793e\u533a\u4e2d\uff0c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u5e38\u88ab\u79f0\u4e3a\u300c\u6ee1\u4e8c\u53c9\u6811\u300d\u3002

            \u56fe\uff1a\u5b8c\u7f8e\u4e8c\u53c9\u6811

            "},{"location":"chapter_tree/binary_tree/#2","title":"2. \u00a0 \u5b8c\u5168\u4e8c\u53c9\u6811","text":"

            \u300c\u5b8c\u5168\u4e8c\u53c9\u6811 complete binary tree\u300d\u53ea\u6709\u6700\u5e95\u5c42\u7684\u8282\u70b9\u672a\u88ab\u586b\u6ee1\uff0c\u4e14\u6700\u5e95\u5c42\u8282\u70b9\u5c3d\u91cf\u9760\u5de6\u586b\u5145\u3002

            \u56fe\uff1a\u5b8c\u5168\u4e8c\u53c9\u6811

            "},{"location":"chapter_tree/binary_tree/#3","title":"3. \u00a0 \u5b8c\u6ee1\u4e8c\u53c9\u6811","text":"

            \u300c\u5b8c\u6ee1\u4e8c\u53c9\u6811 full binary tree\u300d\u9664\u4e86\u53f6\u8282\u70b9\u4e4b\u5916\uff0c\u5176\u4f59\u6240\u6709\u8282\u70b9\u90fd\u6709\u4e24\u4e2a\u5b50\u8282\u70b9\u3002

            \u56fe\uff1a\u5b8c\u6ee1\u4e8c\u53c9\u6811

            "},{"location":"chapter_tree/binary_tree/#4","title":"4. \u00a0 \u5e73\u8861\u4e8c\u53c9\u6811","text":"

            \u300c\u5e73\u8861\u4e8c\u53c9\u6811 balanced binary tree\u300d\u4e2d\u4efb\u610f\u8282\u70b9\u7684\u5de6\u5b50\u6811\u548c\u53f3\u5b50\u6811\u7684\u9ad8\u5ea6\u4e4b\u5dee\u7684\u7edd\u5bf9\u503c\u4e0d\u8d85\u8fc7 1 \u3002

            \u56fe\uff1a\u5e73\u8861\u4e8c\u53c9\u6811

            "},{"location":"chapter_tree/binary_tree/#714","title":"7.1.4 \u00a0 \u4e8c\u53c9\u6811\u7684\u9000\u5316","text":"

            \u5f53\u4e8c\u53c9\u6811\u7684\u6bcf\u5c42\u8282\u70b9\u90fd\u88ab\u586b\u6ee1\u65f6\uff0c\u8fbe\u5230\u201c\u5b8c\u7f8e\u4e8c\u53c9\u6811\u201d\uff1b\u800c\u5f53\u6240\u6709\u8282\u70b9\u90fd\u504f\u5411\u4e00\u4fa7\u65f6\uff0c\u4e8c\u53c9\u6811\u9000\u5316\u4e3a\u201c\u94fe\u8868\u201d\u3002

            • \u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u7406\u60f3\u60c5\u51b5\uff0c\u53ef\u4ee5\u5145\u5206\u53d1\u6325\u4e8c\u53c9\u6811\u201c\u5206\u6cbb\u201d\u7684\u4f18\u52bf\u3002
            • \u94fe\u8868\u5219\u662f\u53e6\u4e00\u4e2a\u6781\u7aef\uff0c\u5404\u9879\u64cd\u4f5c\u90fd\u53d8\u4e3a\u7ebf\u6027\u64cd\u4f5c\uff0c\u65f6\u95f4\u590d\u6742\u5ea6\u9000\u5316\u81f3 \\(O(n)\\) \u3002

            \u56fe\uff1a\u4e8c\u53c9\u6811\u7684\u6700\u4f73\u4e0e\u6700\u5dee\u7ed3\u6784

            \u5982\u4e0b\u8868\u6240\u793a\uff0c\u5728\u6700\u4f73\u548c\u6700\u5dee\u7ed3\u6784\u4e0b\uff0c\u4e8c\u53c9\u6811\u7684\u53f6\u8282\u70b9\u6570\u91cf\u3001\u8282\u70b9\u603b\u6570\u3001\u9ad8\u5ea6\u7b49\u8fbe\u5230\u6781\u5927\u6216\u6781\u5c0f\u503c\u3002

            \u8868\uff1a\u4e8c\u53c9\u6811\u7684\u6700\u4f73\u4e0e\u6700\u5dee\u60c5\u51b5

            \u5b8c\u7f8e\u4e8c\u53c9\u6811 \u94fe\u8868 \u7b2c \\(i\\) \u5c42\u7684\u8282\u70b9\u6570\u91cf \\(2^{i-1}\\) \\(1\\) \u9ad8\u5ea6 \\(h\\) \u6811\u7684\u53f6\u8282\u70b9\u6570\u91cf \\(2^h\\) \\(1\\) \u9ad8\u5ea6 \\(h\\) \u6811\u7684\u8282\u70b9\u603b\u6570 \\(2^{h+1} - 1\\) \\(h + 1\\) \u8282\u70b9\u603b\u6570 \\(n\\) \u6811\u7684\u9ad8\u5ea6 \\(\\log_2 (n+1) - 1\\) \\(n - 1\\)"},{"location":"chapter_tree/binary_tree_traversal/","title":"7.2 \u00a0 \u4e8c\u53c9\u6811\u904d\u5386","text":"

            \u4ece\u7269\u7406\u7ed3\u6784\u7684\u89d2\u5ea6\u6765\u770b\uff0c\u6811\u662f\u4e00\u79cd\u57fa\u4e8e\u94fe\u8868\u7684\u6570\u636e\u7ed3\u6784\uff0c\u56e0\u6b64\u5176\u904d\u5386\u65b9\u5f0f\u662f\u901a\u8fc7\u6307\u9488\u9010\u4e2a\u8bbf\u95ee\u8282\u70b9\u3002\u7136\u800c\uff0c\u6811\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u8fd9\u4f7f\u5f97\u904d\u5386\u6811\u6bd4\u904d\u5386\u94fe\u8868\u66f4\u52a0\u590d\u6742\uff0c\u9700\u8981\u501f\u52a9\u641c\u7d22\u7b97\u6cd5\u6765\u5b9e\u73b0\u3002

            \u4e8c\u53c9\u6811\u5e38\u89c1\u7684\u904d\u5386\u65b9\u5f0f\u5305\u62ec\u5c42\u5e8f\u904d\u5386\u3001\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u548c\u540e\u5e8f\u904d\u5386\u7b49\u3002

            "},{"location":"chapter_tree/binary_tree_traversal/#721","title":"7.2.1 \u00a0 \u5c42\u5e8f\u904d\u5386","text":"

            \u300c\u5c42\u5e8f\u904d\u5386 level-order traversal\u300d\u4ece\u9876\u90e8\u5230\u5e95\u90e8\u9010\u5c42\u904d\u5386\u4e8c\u53c9\u6811\uff0c\u5e76\u5728\u6bcf\u4e00\u5c42\u6309\u7167\u4ece\u5de6\u5230\u53f3\u7684\u987a\u5e8f\u8bbf\u95ee\u8282\u70b9\u3002

            \u5c42\u5e8f\u904d\u5386\u672c\u8d28\u4e0a\u5c5e\u4e8e\u300c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386 breadth-first traversal\u300d\uff0c\u5b83\u4f53\u73b0\u4e86\u4e00\u79cd\u201c\u4e00\u5708\u4e00\u5708\u5411\u5916\u6269\u5c55\u201d\u7684\u9010\u5c42\u904d\u5386\u65b9\u5f0f\u3002

            \u56fe\uff1a\u4e8c\u53c9\u6811\u7684\u5c42\u5e8f\u904d\u5386

            \u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u901a\u5e38\u501f\u52a9\u201c\u961f\u5217\u201d\u6765\u5b9e\u73b0\u3002\u961f\u5217\u9075\u5faa\u201c\u5148\u8fdb\u5148\u51fa\u201d\u7684\u89c4\u5219\uff0c\u800c\u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u5219\u9075\u5faa\u201c\u9010\u5c42\u63a8\u8fdb\u201d\u7684\u89c4\u5219\uff0c\u4e24\u8005\u80cc\u540e\u7684\u601d\u60f3\u662f\u4e00\u81f4\u7684\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_tree_bfs.java
            /* \u5c42\u5e8f\u904d\u5386 */\nList<Integer> levelOrder(TreeNode root) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nQueue<TreeNode> queue = new LinkedList<>();\nqueue.add(root);\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nList<Integer> list = new ArrayList<>();\nwhile (!queue.isEmpty()) {\nTreeNode node = queue.poll(); // \u961f\u5217\u51fa\u961f\nlist.add(node.val);           // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left != null)\nqueue.offer(node.left);   // \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif (node.right != null)\nqueue.offer(node.right);  // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\nreturn list;\n}\n
            binary_tree_bfs.cpp
            /* \u5c42\u5e8f\u904d\u5386 */\nvector<int> levelOrder(TreeNode *root) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nqueue<TreeNode *> queue;\nqueue.push(root);\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nvector<int> vec;\nwhile (!queue.empty()) {\nTreeNode *node = queue.front();\nqueue.pop();              // \u961f\u5217\u51fa\u961f\nvec.push_back(node->val); // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node->left != nullptr)\nqueue.push(node->left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif (node->right != nullptr)\nqueue.push(node->right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\nreturn vec;\n}\n
            binary_tree_bfs.py
            def level_order(root: TreeNode | None) -> list[int]:\n\"\"\"\u5c42\u5e8f\u904d\u5386\"\"\"\n# \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nqueue: deque[TreeNode] = deque()\nqueue.append(root)\n# \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nres = []\nwhile queue:\nnode: TreeNode = queue.popleft()  # \u961f\u5217\u51fa\u961f\nres.append(node.val)  # \u4fdd\u5b58\u8282\u70b9\u503c\nif node.left is not None:\nqueue.append(node.left)  # \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif node.right is not None:\nqueue.append(node.right)  # \u53f3\u5b50\u8282\u70b9\u5165\u961f\nreturn res\n
            binary_tree_bfs.go
            /* \u5c42\u5e8f\u904d\u5386 */\nfunc levelOrder(root *TreeNode) []any {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nqueue := list.New()\nqueue.PushBack(root)\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5207\u7247\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nnums := make([]any, 0)\nfor queue.Len() > 0 {\n// \u961f\u5217\u51fa\u961f\nnode := queue.Remove(queue.Front()).(*TreeNode)\n// \u4fdd\u5b58\u8282\u70b9\u503c\nnums = append(nums, node.Val)\nif node.Left != nil {\n// \u5de6\u5b50\u8282\u70b9\u5165\u961f\nqueue.PushBack(node.Left)\n}\nif node.Right != nil {\n// \u53f3\u5b50\u8282\u70b9\u5165\u961f\nqueue.PushBack(node.Right)\n}\n}\nreturn nums\n}\n
            binary_tree_bfs.js
            /* \u5c42\u5e8f\u904d\u5386 */\nfunction levelOrder(root) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nconst queue = [root];\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nconst list = [];\nwhile (queue.length) {\nlet node = queue.shift(); // \u961f\u5217\u51fa\u961f\nlist.push(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left) queue.push(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif (node.right) queue.push(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\nreturn list;\n}\n
            binary_tree_bfs.ts
            /* \u5c42\u5e8f\u904d\u5386 */\nfunction levelOrder(root: TreeNode | null): number[] {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nconst queue = [root];\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nconst list: number[] = [];\nwhile (queue.length) {\nlet node = queue.shift() as TreeNode; // \u961f\u5217\u51fa\u961f\nlist.push(node.val); // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left) {\nqueue.push(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n}\nif (node.right) {\nqueue.push(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\n}\nreturn list;\n}\n
            binary_tree_bfs.c
            /* \u5c42\u5e8f\u904d\u5386 */\nint *levelOrder(TreeNode *root, int *size) {\n/* \u8f85\u52a9\u961f\u5217 */\nint front, rear;\nint index, *arr;\nTreeNode *node;\nTreeNode **queue;\n/* \u8f85\u52a9\u961f\u5217 */\nqueue = (TreeNode **)malloc(sizeof(TreeNode *) * MAX_NODE_SIZE);\n// \u961f\u5217\u6307\u9488\nfront = 0, rear = 0;\n// \u52a0\u5165\u6839\u8282\u70b9\nqueue[rear++] = root;\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\n/* \u8f85\u52a9\u6570\u7ec4 */\narr = (int *)malloc(sizeof(int) * MAX_NODE_SIZE);\n// \u6570\u7ec4\u6307\u9488\nindex = 0;\nwhile (front < rear) {\n// \u961f\u5217\u51fa\u961f\nnode = queue[front++];\n// \u4fdd\u5b58\u8282\u70b9\u503c\narr[index++] = node->val;\nif (node->left != NULL) {\n// \u5de6\u5b50\u8282\u70b9\u5165\u961f\nqueue[rear++] = node->left;\n}\nif (node->right != NULL) {\n// \u53f3\u5b50\u8282\u70b9\u5165\u961f\nqueue[rear++] = node->right;\n}\n}\n// \u66f4\u65b0\u6570\u7ec4\u957f\u5ea6\u7684\u503c\n*size = index;\narr = realloc(arr, sizeof(int) * (*size));\n// \u91ca\u653e\u8f85\u52a9\u6570\u7ec4\u7a7a\u95f4\nfree(queue);\nreturn arr;\n}\n
            binary_tree_bfs.cs
            /* \u5c42\u5e8f\u904d\u5386 */\nList<int> levelOrder(TreeNode root) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nQueue<TreeNode> queue = new();\nqueue.Enqueue(root);\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nList<int> list = new();\nwhile (queue.Count != 0) {\nTreeNode node = queue.Dequeue(); // \u961f\u5217\u51fa\u961f\nlist.Add(node.val);              // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left != null)\nqueue.Enqueue(node.left);    // \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif (node.right != null)\nqueue.Enqueue(node.right);   // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\nreturn list;\n}\n
            binary_tree_bfs.swift
            /* \u5c42\u5e8f\u904d\u5386 */\nfunc levelOrder(root: TreeNode) -> [Int] {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nvar queue: [TreeNode] = [root]\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nvar list: [Int] = []\nwhile !queue.isEmpty {\nlet node = queue.removeFirst() // \u961f\u5217\u51fa\u961f\nlist.append(node.val) // \u4fdd\u5b58\u8282\u70b9\u503c\nif let left = node.left {\nqueue.append(left) // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n}\nif let right = node.right {\nqueue.append(right) // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\n}\nreturn list\n}\n
            binary_tree_bfs.zig
            // \u5c42\u5e8f\u904d\u5386\nfn levelOrder(comptime T: type, mem_allocator: std.mem.Allocator, root: *inc.TreeNode(T)) !std.ArrayList(T) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nconst L = std.TailQueue(*inc.TreeNode(T));\nvar queue = L{};\nvar root_node = try mem_allocator.create(L.Node);\nroot_node.data = root;\nqueue.append(root_node); // \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nvar list = std.ArrayList(T).init(std.heap.page_allocator);\nwhile (queue.len > 0) {\nvar queue_node = queue.popFirst().?;    // \u961f\u5217\u51fa\u961f\nvar node = queue_node.data;\ntry list.append(node.val);              // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left != null) {\nvar tmp_node = try mem_allocator.create(L.Node);\ntmp_node.data = node.left.?;\nqueue.append(tmp_node);             // \u5de6\u5b50\u8282\u70b9\u5165\u961f\n}\nif (node.right != null) {\nvar tmp_node = try mem_allocator.create(L.Node);\ntmp_node.data = node.right.?;\nqueue.append(tmp_node);             // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}        }\nreturn list;\n}\n
            binary_tree_bfs.dart
            /* \u5c42\u5e8f\u904d\u5386 */\nList<int> levelOrder(TreeNode? root) {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u8282\u70b9\nQueue<TreeNode?> queue = Queue();\nqueue.add(root);\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nList<int> res = [];\nwhile (queue.isNotEmpty) {\nTreeNode? node = queue.removeFirst(); // \u961f\u5217\u51fa\u961f\nres.add(node!.val); // \u4fdd\u5b58\u8282\u70b9\u503c\nif (node.left != null) queue.add(node.left); // \u5de6\u5b50\u8282\u70b9\u5165\u961f\nif (node.right != null) queue.add(node.right); // \u53f3\u5b50\u8282\u70b9\u5165\u961f\n}\nreturn res;\n}\n
            binary_tree_bfs.rs
            /* \u5c42\u5e8f\u904d\u5386 */\nfn level_order(root: &Rc<RefCell<TreeNode>>) -> Vec<i32> {\n// \u521d\u59cb\u5316\u961f\u5217\uff0c\u52a0\u5165\u6839\u7ed3\u70b9\nlet mut que = VecDeque::new();\nque.push_back(Rc::clone(&root));\n// \u521d\u59cb\u5316\u4e00\u4e2a\u5217\u8868\uff0c\u7528\u4e8e\u4fdd\u5b58\u904d\u5386\u5e8f\u5217\nlet mut vec = Vec::new();\nwhile let Some(node) = que.pop_front() {                 // \u961f\u5217\u51fa\u961f\nvec.push(node.borrow().val);                         // \u4fdd\u5b58\u7ed3\u70b9\u503c\nif let Some(left) = node.borrow().left.as_ref() {\nque.push_back(Rc::clone(left));                  // \u5de6\u5b50\u7ed3\u70b9\u5165\u961f\n}\nif let Some(right) = node.borrow().right.as_ref() {\nque.push_back(Rc::clone(right));                 // \u53f3\u5b50\u7ed3\u70b9\u5165\u961f\n};\n}\nvec\n}\n

            \u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u6240\u6709\u8282\u70b9\u88ab\u8bbf\u95ee\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\uff0c\u5176\u4e2d \\(n\\) \u4e3a\u8282\u70b9\u6570\u91cf\u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6\uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u6ee1\u4e8c\u53c9\u6811\u65f6\uff0c\u904d\u5386\u5230\u6700\u5e95\u5c42\u4e4b\u524d\uff0c\u961f\u5217\u4e2d\u6700\u591a\u540c\u65f6\u5b58\u5728 \\(\\frac{n + 1}{2}\\) \u4e2a\u8282\u70b9\uff0c\u5360\u7528 \\(O(n)\\) \u7a7a\u95f4\u3002

            "},{"location":"chapter_tree/binary_tree_traversal/#722","title":"7.2.2 \u00a0 \u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386","text":"

            \u76f8\u5e94\u5730\uff0c\u524d\u5e8f\u3001\u4e2d\u5e8f\u548c\u540e\u5e8f\u904d\u5386\u90fd\u5c5e\u4e8e\u300c\u6df1\u5ea6\u4f18\u5148\u904d\u5386 depth-first traversal\u300d\uff0c\u5b83\u4f53\u73b0\u4e86\u4e00\u79cd\u201c\u5148\u8d70\u5230\u5c3d\u5934\uff0c\u518d\u56de\u6eaf\u7ee7\u7eed\u201d\u7684\u904d\u5386\u65b9\u5f0f\u3002

            \u5982\u4e0b\u56fe\u6240\u793a\uff0c\u5de6\u4fa7\u662f\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u793a\u610f\u56fe\uff0c\u53f3\u4e0a\u65b9\u662f\u5bf9\u5e94\u7684\u9012\u5f52\u4ee3\u7801\u3002\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u5c31\u50cf\u662f\u7ed5\u7740\u6574\u4e2a\u4e8c\u53c9\u6811\u7684\u5916\u56f4\u201c\u8d70\u201d\u4e00\u5708\uff0c\u5728\u8fd9\u4e2a\u8fc7\u7a0b\u4e2d\uff0c\u5728\u6bcf\u4e2a\u8282\u70b9\u90fd\u4f1a\u9047\u5230\u4e09\u4e2a\u4f4d\u7f6e\uff0c\u5206\u522b\u5bf9\u5e94\u524d\u5e8f\u904d\u5386\u3001\u4e2d\u5e8f\u904d\u5386\u548c\u540e\u5e8f\u904d\u5386\u3002

            \u56fe\uff1a\u4e8c\u53c9\u641c\u7d22\u6811\u7684\u524d\u3001\u4e2d\u3001\u540e\u5e8f\u904d\u5386

            \u4ee5\u4e0b\u7ed9\u51fa\u4e86\u5b9e\u73b0\u4ee3\u7801\uff0c\u8bf7\u914d\u5408\u4e0a\u56fe\u7406\u89e3\u6df1\u5ea6\u4f18\u5148\u904d\u5386\u7684\u9012\u5f52\u8fc7\u7a0b\u3002

            JavaC++PythonGoJSTSCC#SwiftZigDartRust binary_tree_dfs.java
            /* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode root) {\nif (root == null)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.add(root.val);\npreOrder(root.left);\npreOrder(root.right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode root) {\nif (root == null)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root.left);\nlist.add(root.val);\ninOrder(root.right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode root) {\nif (root == null)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root.left);\npostOrder(root.right);\nlist.add(root.val);\n}\n
            binary_tree_dfs.cpp
            /* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode *root) {\nif (root == nullptr)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nvec.push_back(root->val);\npreOrder(root->left);\npreOrder(root->right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode *root) {\nif (root == nullptr)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root->left);\nvec.push_back(root->val);\ninOrder(root->right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode *root) {\nif (root == nullptr)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root->left);\npostOrder(root->right);\nvec.push_back(root->val);\n}\n
            binary_tree_dfs.py
            def pre_order(root: TreeNode | None):\n\"\"\"\u524d\u5e8f\u904d\u5386\"\"\"\nif root is None:\nreturn\n# \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nres.append(root.val)\npre_order(root=root.left)\npre_order(root=root.right)\ndef in_order(root: TreeNode | None):\n\"\"\"\u4e2d\u5e8f\u904d\u5386\"\"\"\nif root is None:\nreturn\n# \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\nin_order(root=root.left)\nres.append(root.val)\nin_order(root=root.right)\ndef post_order(root: TreeNode | None):\n\"\"\"\u540e\u5e8f\u904d\u5386\"\"\"\nif root is None:\nreturn\n# \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npost_order(root=root.left)\npost_order(root=root.right)\nres.append(root.val)\n
            binary_tree_dfs.go
            /* \u524d\u5e8f\u904d\u5386 */\nfunc preOrder(node *TreeNode) {\nif node == nil {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nnums = append(nums, node.Val)\npreOrder(node.Left)\npreOrder(node.Right)\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc inOrder(node *TreeNode) {\nif node == nil {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(node.Left)\nnums = append(nums, node.Val)\ninOrder(node.Right)\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunc postOrder(node *TreeNode) {\nif node == nil {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(node.Left)\npostOrder(node.Right)\nnums = append(nums, node.Val)\n}\n
            binary_tree_dfs.js
            /* \u524d\u5e8f\u904d\u5386 */\nfunction preOrder(root) {\nif (root === null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.push(root.val);\npreOrder(root.left);\npreOrder(root.right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunction inOrder(root) {\nif (root === null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root.left);\nlist.push(root.val);\ninOrder(root.right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunction postOrder(root) {\nif (root === null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root.left);\npostOrder(root.right);\nlist.push(root.val);\n}\n
            binary_tree_dfs.ts
            /* \u524d\u5e8f\u904d\u5386 */\nfunction preOrder(root: TreeNode | null): void {\nif (root === null) {\nreturn;\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.push(root.val);\npreOrder(root.left);\npreOrder(root.right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunction inOrder(root: TreeNode | null): void {\nif (root === null) {\nreturn;\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root.left);\nlist.push(root.val);\ninOrder(root.right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunction postOrder(root: TreeNode | null): void {\nif (root === null) {\nreturn;\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root.left);\npostOrder(root.right);\nlist.push(root.val);\n}\n
            binary_tree_dfs.c
            /* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode *root, int *size) {\nif (root == NULL)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\narr[(*size)++] = root->val;\npreOrder(root->left, size);\npreOrder(root->right, size);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode *root, int *size) {\nif (root == NULL)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root->left, size);\narr[(*size)++] = root->val;\ninOrder(root->right, size);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode *root, int *size) {\nif (root == NULL)\nreturn;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root->left, size);\npostOrder(root->right, size);\narr[(*size)++] = root->val;\n}\n
            binary_tree_dfs.cs
            /* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode? root) {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.Add(root.val);\npreOrder(root.left);\npreOrder(root.right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode? root) {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root.left);\nlist.Add(root.val);\ninOrder(root.right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode? root) {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root.left);\npostOrder(root.right);\nlist.Add(root.val);\n}\n
            binary_tree_dfs.swift
            /* \u524d\u5e8f\u904d\u5386 */\nfunc preOrder(root: TreeNode?) {\nguard let root = root else {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.append(root.val)\npreOrder(root: root.left)\npreOrder(root: root.right)\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfunc inOrder(root: TreeNode?) {\nguard let root = root else {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(root: root.left)\nlist.append(root.val)\ninOrder(root: root.right)\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfunc postOrder(root: TreeNode?) {\nguard let root = root else {\nreturn\n}\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(root: root.left)\npostOrder(root: root.right)\nlist.append(root.val)\n}\n
            binary_tree_dfs.zig
            // \u524d\u5e8f\u904d\u5386\nfn preOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\ntry list.append(root.?.val);\ntry preOrder(T, root.?.left);\ntry preOrder(T, root.?.right);\n}\n// \u4e2d\u5e8f\u904d\u5386\nfn inOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ntry inOrder(T, root.?.left);\ntry list.append(root.?.val);\ntry inOrder(T, root.?.right);\n}\n// \u540e\u5e8f\u904d\u5386\nfn postOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void {\nif (root == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\ntry postOrder(T, root.?.left);\ntry postOrder(T, root.?.right);\ntry list.append(root.?.val);\n}\n
            binary_tree_dfs.dart
            /* \u524d\u5e8f\u904d\u5386 */\nvoid preOrder(TreeNode? node) {\nif (node == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u8282\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nlist.add(node.val);\npreOrder(node.left);\npreOrder(node.right);\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nvoid inOrder(TreeNode? node) {\nif (node == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u8282\u70b9 -> \u53f3\u5b50\u6811\ninOrder(node.left);\nlist.add(node.val);\ninOrder(node.right);\n}\n/* \u540e\u5e8f\u904d\u5386 */\nvoid postOrder(TreeNode? node) {\nif (node == null) return;\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u8282\u70b9\npostOrder(node.left);\npostOrder(node.right);\nlist.add(node.val);\n}\n
            binary_tree_dfs.rs
            /* \u524d\u5e8f\u904d\u5386 */\nfn pre_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\nlet mut result = vec![];\nif let Some(node) = root {\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u6839\u7ed3\u70b9 -> \u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811\nresult.push(node.borrow().val);\nresult.append(&mut pre_order(node.borrow().left.as_ref()));\nresult.append(&mut pre_order(node.borrow().right.as_ref()));\n}\nresult\n}\n/* \u4e2d\u5e8f\u904d\u5386 */\nfn in_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\nlet mut result = vec![];\nif let Some(node) = root {\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u6839\u7ed3\u70b9 -> \u53f3\u5b50\u6811\nresult.append(&mut in_order(node.borrow().left.as_ref()));\nresult.push(node.borrow().val);\nresult.append(&mut in_order(node.borrow().right.as_ref()));\n}\nresult\n}\n/* \u540e\u5e8f\u904d\u5386 */\nfn post_order(root: Option<&Rc<RefCell<TreeNode>>>) -> Vec<i32> {\nlet mut result = vec![];\nif let Some(node) = root {\n// \u8bbf\u95ee\u4f18\u5148\u7ea7\uff1a\u5de6\u5b50\u6811 -> \u53f3\u5b50\u6811 -> \u6839\u7ed3\u70b9\nresult.append(&mut post_order(node.borrow().left.as_ref()));\nresult.append(&mut post_order(node.borrow().right.as_ref()));\nresult.push(node.borrow().val);\n}\nresult\n}\n

            \u65f6\u95f4\u590d\u6742\u5ea6\uff1a\u6240\u6709\u8282\u70b9\u88ab\u8bbf\u95ee\u4e00\u6b21\uff0c\u4f7f\u7528 \\(O(n)\\) \u65f6\u95f4\uff0c\u5176\u4e2d \\(n\\) \u4e3a\u8282\u70b9\u6570\u91cf\u3002

            \u7a7a\u95f4\u590d\u6742\u5ea6\uff1a\u5728\u6700\u5dee\u60c5\u51b5\u4e0b\uff0c\u5373\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u9012\u5f52\u6df1\u5ea6\u8fbe\u5230 \\(n\\) \uff0c\u7cfb\u7edf\u5360\u7528 \\(O(n)\\) \u6808\u5e27\u7a7a\u95f4\u3002

            Note

            \u6211\u4eec\u4e5f\u53ef\u4ee5\u4e0d\u4f7f\u7528\u9012\u5f52\uff0c\u4ec5\u57fa\u4e8e\u8fed\u4ee3\u5b9e\u73b0\u524d\u3001\u4e2d\u3001\u540e\u5e8f\u904d\u5386\uff0c\u6709\u5174\u8da3\u7684\u540c\u5b66\u53ef\u4ee5\u81ea\u884c\u7814\u7a76\u3002

            \u4e0b\u56fe\u5c55\u793a\u4e86\u524d\u5e8f\u904d\u5386\u4e8c\u53c9\u6811\u7684\u9012\u5f52\u8fc7\u7a0b\uff0c\u5176\u53ef\u5206\u4e3a\u201c\u9012\u201d\u548c\u201c\u5f52\u201d\u4e24\u4e2a\u9006\u5411\u7684\u90e8\u5206\uff1a

            1. \u201c\u9012\u201d\u8868\u793a\u5f00\u542f\u65b0\u65b9\u6cd5\uff0c\u7a0b\u5e8f\u5728\u6b64\u8fc7\u7a0b\u4e2d\u8bbf\u95ee\u4e0b\u4e00\u4e2a\u8282\u70b9\u3002
            2. \u201c\u5f52\u201d\u8868\u793a\u51fd\u6570\u8fd4\u56de\uff0c\u4ee3\u8868\u5f53\u524d\u8282\u70b9\u5df2\u7ecf\u8bbf\u95ee\u5b8c\u6bd5\u3002
            <1><2><3><4><5><6><7><8><9><10><11>

            \u56fe\uff1a\u524d\u5e8f\u904d\u5386\u7684\u9012\u5f52\u8fc7\u7a0b

            "},{"location":"chapter_tree/summary/","title":"7.6 \u00a0 \u5c0f\u7ed3","text":"
            • \u4e8c\u53c9\u6811\u662f\u4e00\u79cd\u975e\u7ebf\u6027\u6570\u636e\u7ed3\u6784\uff0c\u4f53\u73b0\u201c\u4e00\u5206\u4e3a\u4e8c\u201d\u7684\u5206\u6cbb\u903b\u8f91\u3002\u6bcf\u4e2a\u4e8c\u53c9\u6811\u8282\u70b9\u5305\u542b\u4e00\u4e2a\u503c\u4ee5\u53ca\u4e24\u4e2a\u6307\u9488\uff0c\u5206\u522b\u6307\u5411\u5176\u5de6\u5b50\u8282\u70b9\u548c\u53f3\u5b50\u8282\u70b9\u3002
            • \u5bf9\u4e8e\u4e8c\u53c9\u6811\u4e2d\u7684\u67d0\u4e2a\u8282\u70b9\uff0c\u5176\u5de6\uff08\u53f3\uff09\u5b50\u8282\u70b9\u53ca\u5176\u4ee5\u4e0b\u5f62\u6210\u7684\u6811\u88ab\u79f0\u4e3a\u8be5\u8282\u70b9\u7684\u5de6\uff08\u53f3\uff09\u5b50\u6811\u3002
            • \u4e8c\u53c9\u6811\u7684\u76f8\u5173\u672f\u8bed\u5305\u62ec\u6839\u8282\u70b9\u3001\u53f6\u8282\u70b9\u3001\u5c42\u3001\u5ea6\u3001\u8fb9\u3001\u9ad8\u5ea6\u548c\u6df1\u5ea6\u7b49\u3002
            • \u4e8c\u53c9\u6811\u7684\u521d\u59cb\u5316\u3001\u8282\u70b9\u63d2\u5165\u548c\u8282\u70b9\u5220\u9664\u64cd\u4f5c\u4e0e\u94fe\u8868\u64cd\u4f5c\u65b9\u6cd5\u7c7b\u4f3c\u3002
            • \u5e38\u89c1\u7684\u4e8c\u53c9\u6811\u7c7b\u578b\u6709\u5b8c\u7f8e\u4e8c\u53c9\u6811\u3001\u5b8c\u5168\u4e8c\u53c9\u6811\u3001\u6ee1\u4e8c\u53c9\u6811\u548c\u5e73\u8861\u4e8c\u53c9\u6811\u3002\u5b8c\u7f8e\u4e8c\u53c9\u6811\u662f\u6700\u7406\u60f3\u7684\u72b6\u6001\uff0c\u800c\u94fe\u8868\u662f\u9000\u5316\u540e\u7684\u6700\u5dee\u72b6\u6001\u3002
            • \u4e8c\u53c9\u6811\u53ef\u4ee5\u7528\u6570\u7ec4\u8868\u793a\uff0c\u65b9\u6cd5\u662f\u5c06\u8282\u70b9\u503c\u548c\u7a7a\u4f4d\u6309\u5c42\u5e8f\u904d\u5386\u987a\u5e8f\u6392\u5217\uff0c\u5e76\u6839\u636e\u7236\u8282\u70b9\u4e0e\u5b50\u8282\u70b9\u4e4b\u95f4\u7684\u7d22\u5f15\u6620\u5c04\u5173\u7cfb\u6765\u5b9e\u73b0\u6307\u9488\u3002
            • \u4e8c\u53c9\u6811\u7684\u5c42\u5e8f\u904d\u5386\u662f\u4e00\u79cd\u5e7f\u5ea6\u4f18\u5148\u641c\u7d22\u65b9\u6cd5\uff0c\u5b83\u4f53\u73b0\u4e86\u201c\u4e00\u5708\u4e00\u5708\u5411\u5916\u201d\u7684\u5206\u5c42\u904d\u5386\u65b9\u5f0f\uff0c\u901a\u5e38\u901a\u8fc7\u961f\u5217\u6765\u5b9e\u73b0\u3002
            • \u524d\u5e8f\u3001\u4e2d\u5e8f\u3001\u540e\u5e8f\u904d\u5386\u7686\u5c5e\u4e8e\u6df1\u5ea6\u4f18\u5148\u641c\u7d22\uff0c\u5b83\u4eec\u4f53\u73b0\u4e86\u201c\u8d70\u5230\u5c3d\u5934\uff0c\u518d\u56de\u5934\u7ee7\u7eed\u201d\u7684\u56de\u6eaf\u904d\u5386\u65b9\u5f0f\uff0c\u901a\u5e38\u4f7f\u7528\u9012\u5f52\u6765\u5b9e\u73b0\u3002
            • \u4e8c\u53c9\u641c\u7d22\u6811\u662f\u4e00\u79cd\u9ad8\u6548\u7684\u5143\u7d20\u67e5\u627e\u6570\u636e\u7ed3\u6784\uff0c\u5176\u67e5\u627e\u3001\u63d2\u5165\u548c\u5220\u9664\u64cd\u4f5c\u7684\u65f6\u95f4\u590d\u6742\u5ea6\u5747\u4e3a \\(O(\\log n)\\) \u3002\u5f53\u4e8c\u53c9\u641c\u7d22\u6811\u9000\u5316\u4e3a\u94fe\u8868\u65f6\uff0c\u5404\u9879\u65f6\u95f4\u590d\u6742\u5ea6\u4f1a\u52a3\u5316\u81f3 \\(O(n)\\) \u3002
            • AVL \u6811\uff0c\u4e5f\u79f0\u4e3a\u5e73\u8861\u4e8c\u53c9\u641c\u7d22\u6811\uff0c\u5b83\u901a\u8fc7\u65cb\u8f6c\u64cd\u4f5c\uff0c\u786e\u4fdd\u5728\u4e0d\u65ad\u63d2\u5165\u548c\u5220\u9664\u8282\u70b9\u540e\uff0c\u6811\u4ecd\u7136\u4fdd\u6301\u5e73\u8861\u3002
            • AVL \u6811\u7684\u65cb\u8f6c\u64cd\u4f5c\u5305\u62ec\u53f3\u65cb\u3001\u5de6\u65cb\u3001\u5148\u53f3\u65cb\u518d\u5de6\u65cb\u3001\u5148\u5de6\u65cb\u518d\u53f3\u65cb\u3002\u5728\u63d2\u5165\u6216\u5220\u9664\u8282\u70b9\u540e\uff0cAVL \u6811\u4f1a\u4ece\u5e95\u5411\u9876\u6267\u884c\u65cb\u8f6c\u64cd\u4f5c\uff0c\u4f7f\u6811\u91cd\u65b0\u6062\u590d\u5e73\u8861\u3002
            "},{"location":"chapter_tree/summary/#761-q-a","title":"7.6.1 \u00a0 Q & A","text":"

            \u5bf9\u4e8e\u53ea\u6709\u4e00\u4e2a\u8282\u70b9\u7684\u4e8c\u53c9\u6811\uff0c\u6811\u7684\u9ad8\u5ea6\u548c\u6839\u8282\u70b9\u7684\u6df1\u5ea6\u90fd\u662f \\(0\\) \u5417\uff1f

            \u662f\u7684\uff0c\u56e0\u4e3a\u9ad8\u5ea6\u548c\u6df1\u5ea6\u901a\u5e38\u5b9a\u4e49\u4e3a\u201c\u8d70\u8fc7\u8fb9\u7684\u6570\u91cf\u201d\u3002

            \u4e8c\u53c9\u6811\u4e2d\u7684\u63d2\u5165\u4e0e\u5220\u9664\u4e00\u822c\u90fd\u662f\u7531\u4e00\u5957\u64cd\u4f5c\u914d\u5408\u5b8c\u6210\u7684\uff0c\u8fd9\u91cc\u7684\u201c\u4e00\u5957\u64cd\u4f5c\u201d\u6307\u4ec0\u4e48\u5462\uff1f\u53ef\u4ee5\u7406\u89e3\u4e3a\u8d44\u6e90\u7684\u5b50\u8282\u70b9\u7684\u8d44\u6e90\u91ca\u653e\u5417\uff1f

            \u62ff\u4e8c\u53c9\u641c\u7d22\u6811\u6765\u4e3e\u4f8b\uff0c\u5220\u9664\u8282\u70b9\u64cd\u4f5c\u8981\u5206\u4e3a\u4e09\u79cd\u60c5\u51b5\u5904\u7406\uff0c\u5176\u4e2d\u6bcf\u79cd\u60c5\u51b5\u90fd\u9700\u8981\u8fdb\u884c\u591a\u4e2a\u6b65\u9aa4\u7684\u8282\u70b9\u64cd\u4f5c\u3002

            \u4e3a\u4ec0\u4e48 DFS \u904d\u5386\u4e8c\u53c9\u6811\u6709\u524d\u3001\u4e2d\u3001\u540e\u4e09\u79cd\u987a\u5e8f\uff0c\u5206\u522b\u6709\u4ec0\u4e48\u7528\u5462\uff1f

            DFS \u7684\u524d\u3001\u4e2d\u3001\u540e\u5e8f\u904d\u5386\u548c\u8bbf\u95ee\u6570\u7ec4\u7684\u987a\u5e8f\u7c7b\u4f3c\uff0c\u662f\u904d\u5386\u4e8c\u53c9\u6811\u7684\u57fa\u672c\u65b9\u6cd5\uff0c\u5229\u7528\u8fd9\u4e09\u79cd\u904d\u5386\u65b9\u6cd5\uff0c\u6211\u4eec\u53ef\u4ee5\u5f97\u5230\u4e00\u4e2a\u7279\u5b9a\u987a\u5e8f\u7684\u904d\u5386\u7ed3\u679c\u3002\u4f8b\u5982\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4e2d\uff0c\u7531\u4e8e\u7ed3\u70b9\u5927\u5c0f\u6ee1\u8db3 \u5de6\u5b50\u7ed3\u70b9\u503c < \u6839\u7ed3\u70b9\u503c < \u53f3\u5b50\u7ed3\u70b9\u503c \uff0c\u56e0\u6b64\u6211\u4eec\u53ea\u8981\u6309\u7167 \u5de6->\u6839->\u53f3 \u7684\u4f18\u5148\u7ea7\u904d\u5386\u6811\uff0c\u5c31\u53ef\u4ee5\u83b7\u5f97\u6709\u5e8f\u7684\u8282\u70b9\u5e8f\u5217\u3002

            \u53f3\u65cb\u64cd\u4f5c\u662f\u5904\u7406\u5931\u8861\u8282\u70b9 node , child , grand_child \u4e4b\u95f4\u7684\u5173\u7cfb\uff0c\u90a3 node \u7684\u7236\u8282\u70b9\u548c node \u539f\u6765\u7684\u8fde\u63a5\u4e0d\u9700\u8981\u7ef4\u62a4\u5417\uff1f\u53f3\u65cb\u64cd\u4f5c\u540e\u5c82\u4e0d\u662f\u65ad\u6389\u4e86\uff1f

            \u6211\u4eec\u9700\u8981\u4ece\u9012\u5f52\u7684\u89c6\u89d2\u6765\u770b\u8fd9\u4e2a\u95ee\u9898\u3002\u53f3\u65cb\u64cd\u4f5c right_rotate(root) \u4f20\u5165\u7684\u662f\u5b50\u6811\u7684\u6839\u8282\u70b9\uff0c\u6700\u7ec8 return child \u8fd4\u56de\u65cb\u8f6c\u4e4b\u540e\u7684\u5b50\u6811\u7684\u6839\u8282\u70b9\u3002\u5b50\u6811\u7684\u6839\u8282\u70b9\u548c\u5176\u7236\u8282\u70b9\u7684\u8fde\u63a5\u662f\u5728\u8be5\u51fd\u6570\u8fd4\u56de\u540e\u5b8c\u6210\u7684\uff0c\u4e0d\u5c5e\u4e8e\u53f3\u65cb\u64cd\u4f5c\u7684\u7ef4\u62a4\u8303\u56f4\u3002

            \u5728 C++ \u4e2d\uff0c\u51fd\u6570\u88ab\u5212\u5206\u5230 private \u548c public \u4e2d\uff0c\u8fd9\u65b9\u9762\u6709\u4ec0\u4e48\u8003\u91cf\u5417\uff1f\u4e3a\u4ec0\u4e48\u8981\u5c06 height() \u51fd\u6570\u548c updateHeight() \u51fd\u6570\u5206\u522b\u653e\u5728 public \u548c private \u4e2d\u5462\uff1f

            \u4e3b\u8981\u770b\u65b9\u6cd5\u7684\u4f7f\u7528\u8303\u56f4\uff0c\u5982\u679c\u65b9\u6cd5\u53ea\u5728\u7c7b\u5185\u90e8\u4f7f\u7528\uff0c\u90a3\u4e48\u5c31\u8bbe\u8ba1\u4e3a private \u3002\u4f8b\u5982\uff0c\u7528\u6237\u5355\u72ec\u8c03\u7528 updateHeight() \u662f\u6ca1\u6709\u610f\u4e49\u7684\uff0c\u5b83\u53ea\u662f\u63d2\u5165\u3001\u5220\u9664\u64cd\u4f5c\u4e2d\u7684\u4e00\u6b65\u3002\u800c height() \u662f\u8bbf\u95ee\u7ed3\u70b9\u9ad8\u5ea6\uff0c\u7c7b\u4f3c\u4e8e vector.size() \uff0c\u56e0\u6b64\u8bbe\u7f6e\u6210 public \u4ee5\u4fbf\u4f7f\u7528\u3002

            \u8bf7\u95ee\u5982\u4f55\u4ece\u4e00\u7ec4\u8f93\u5165\u6570\u636e\u6784\u5efa\u4e00\u4e2a\u4e8c\u53c9\u641c\u7d22\u6811\uff1f\u6839\u8282\u70b9\u7684\u9009\u62e9\u662f\u4e0d\u662f\u5f88\u91cd\u8981\uff1f

            \u662f\u7684\uff0c\u6784\u5efa\u6811\u7684\u65b9\u6cd5\u5df2\u5728\u4e8c\u53c9\u641c\u7d22\u6811\u4ee3\u7801\u4e2d\u7684 build_tree() \u65b9\u6cd5\u4e2d\u7ed9\u51fa\u3002\u81f3\u4e8e\u6839\u8282\u70b9\u7684\u9009\u62e9\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u5c06\u8f93\u5165\u6570\u636e\u6392\u5e8f\uff0c\u7136\u540e\u7528\u4e2d\u70b9\u5143\u7d20\u4f5c\u4e3a\u6839\u8282\u70b9\uff0c\u518d\u9012\u5f52\u5730\u6784\u5efa\u5de6\u53f3\u5b50\u6811\u3002\u8fd9\u6837\u505a\u53ef\u4ee5\u6700\u5927\u7a0b\u5ea6\u4fdd\u8bc1\u6811\u7684\u5e73\u8861\u6027\u3002

            \u5728 Java \u4e2d\uff0c\u5b57\u7b26\u4e32\u5bf9\u6bd4\u662f\u5426\u4e00\u5b9a\u8981\u7528 equals() \u65b9\u6cd5\uff1f

            \u5728 Java \u4e2d\uff0c\u5bf9\u4e8e\u57fa\u672c\u6570\u636e\u7c7b\u578b\uff0c== \u7528\u4e8e\u5bf9\u6bd4\u4e24\u4e2a\u53d8\u91cf\u7684\u503c\u662f\u5426\u76f8\u7b49\u3002\u5bf9\u4e8e\u5f15\u7528\u7c7b\u578b\uff0c\u4e24\u79cd\u7b26\u53f7\u7684\u5de5\u4f5c\u539f\u7406\u4e0d\u540c\uff1a

            • == \uff1a\u7528\u6765\u6bd4\u8f83\u4e24\u4e2a\u53d8\u91cf\u662f\u5426\u6307\u5411\u540c\u4e00\u4e2a\u5bf9\u8c61\uff0c\u5373\u5b83\u4eec\u5728\u5185\u5b58\u4e2d\u7684\u4f4d\u7f6e\u662f\u5426\u76f8\u540c\u3002
            • equals()\uff1a\u7528\u6765\u5bf9\u6bd4\u4e24\u4e2a\u5bf9\u8c61\u7684\u503c\u662f\u5426\u76f8\u7b49\u3002

            \u56e0\u6b64\u5982\u679c\u8981\u5bf9\u6bd4\u503c\uff0c\u6211\u4eec\u901a\u5e38\u4f1a\u7528 equals() \u3002\u7136\u800c\uff0c\u901a\u8fc7 String a = \"hi\"; String b = \"hi\"; \u521d\u59cb\u5316\u7684\u5b57\u7b26\u4e32\u90fd\u5b58\u50a8\u5728\u5b57\u7b26\u4e32\u5e38\u91cf\u6c60\u4e2d\uff0c\u5b83\u4eec\u6307\u5411\u540c\u4e00\u4e2a\u5bf9\u8c61\uff0c\u56e0\u6b64\u4e5f\u53ef\u4ee5\u7528 a == b \u6765\u6bd4\u8f83\u4e24\u4e2a\u5b57\u7b26\u4e32\u7684\u5185\u5bb9\u3002

            \u5e7f\u5ea6\u4f18\u5148\u904d\u5386\u5230\u6700\u5e95\u5c42\u4e4b\u524d\uff0c\u961f\u5217\u4e2d\u7684\u8282\u70b9\u6570\u91cf\u662f \\(2^h\\) \u5417\uff1f

            \u662f\u7684\uff0c\u4f8b\u5982\u9ad8\u5ea6 \\(h = 2\\) \u7684\u6ee1\u4e8c\u53c9\u6811\uff0c\u5176\u8282\u70b9\u603b\u6570 \\(n = 7\\) \uff0c\u5219\u5e95\u5c42\u8282\u70b9\u6570\u91cf \\(4 = 2^h = (n + 1) / 2\\) \u3002

            "}]} \ No newline at end of file diff --git a/sitemap.xml.gz b/sitemap.xml.gz index d2773f8dbac7a3b55b52ca22fced134b3bf0d9a9..328347d57b443791886b62756a3c72fd3ef0ef16 100644 GIT binary patch delta 16 XcmX@kew>|MzMF%C!SK;W_5;iSDX|3X delta 16 XcmX@kew>|MzMF%?e8<5?uE>{Jq