Merge branch 'krahets:master' into master

This commit is contained in:
timi
2022-11-25 23:43:14 +08:00
committed by GitHub
17 changed files with 571 additions and 82 deletions

View File

@ -7,6 +7,7 @@ package chapter_computational_complexity
// twoSumBruteForce
func twoSumBruteForce(nums []int, target int) []int {
size := len(nums)
// 两层循环,时间复杂度 O(n^2)
for i := 0; i < size-1; i++ {
for j := i + 1; i < size; j++ {
if nums[i]+nums[j] == target {
@ -19,7 +20,9 @@ func twoSumBruteForce(nums []int, target int) []int {
// twoSumHashTable
func twoSumHashTable(nums []int, target int) []int {
// 辅助哈希表,空间复杂度 O(n)
hashTable := map[int]int{}
// 单层循环,时间复杂度 O(n)
for idx, val := range nums {
if preIdx, ok := hashTable[target-val]; ok {
return []int{preIdx, idx}

View File

@ -8,9 +8,10 @@ package chapter_computational_complexity;
import java.util.*;
class solution_brute_force {
class SolutionBruteForce {
public int[] twoSum(int[] nums, int target) {
int size = nums.length;
// 两层循环,时间复杂度 O(n^2)
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (nums[i] + nums[j] == target)
@ -21,10 +22,12 @@ class solution_brute_force {
}
}
class solution_hash_map {
class SolutionHashMap {
public int[] twoSum(int[] nums, int target) {
int size = nums.length;
// 辅助哈希表,空间复杂度 O(n)
Map<Integer, Integer> dic = new HashMap<>();
// 单层循环,时间复杂度 O(n)
for (int i = 0; i < size; i++) {
if (dic.containsKey(target - nums[i])) {
return new int[] { dic.get(target - nums[i]), i };
@ -43,11 +46,11 @@ public class leetcode_two_sum {
// ====== Driver Code ======
// 方法一
solution_brute_force slt1 = new solution_brute_force();
SolutionBruteForce slt1 = new SolutionBruteForce();
int[] res = slt1.twoSum(nums, target);
System.out.println(Arrays.toString(res));
// 方法二
solution_hash_map slt2 = new solution_hash_map();
SolutionHashMap slt2 = new SolutionHashMap();
res = slt2.twoSum(nums, target);
System.out.println(Arrays.toString(res));
}

View File

@ -100,7 +100,7 @@ public class space_complexity_types {
quadratic(n);
quadraticRecur(n);
// 指数阶
TreeNode tree = buildTree(n);
PrintUtil.printTree(tree);
TreeNode root = buildTree(n);
PrintUtil.printTree(root);
}
}

View File

@ -29,7 +29,6 @@ public class time_complexity_types {
int count = 0;
// 循环次数与数组长度成正比
for (int num : nums) {
// System.out.println(num);
count++;
}
return count;
@ -38,6 +37,7 @@ public class time_complexity_types {
/* 平方阶 */
static int quadratic(int n) {
int count = 0;
// 循环次数与数组长度成平方关系
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
@ -47,18 +47,22 @@ public class time_complexity_types {
}
/* 平方阶(冒泡排序) */
static void bubbleSort(int[] nums) {
int n = nums.length;
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - 1 - i; j++) {
static int bubbleSort(int[] nums) {
int count = 0; // 计数器
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for (int i = nums.length - 1; i > 0; i--) {
// 内循环:冒泡操作
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] nums[j + 1]
// 交换 nums[j] nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交换包含 3 个单元操作
}
}
}
return count;
}
/* 指数阶(循环实现) */
@ -135,6 +139,11 @@ public class time_complexity_types {
count = quadratic(n);
System.out.println("平方阶的计算操作数量 = " + count);
int[] nums = new int[n];
for (int i = 0; i < n; i++)
nums[i] = n - i; // [n,n-1,...,2,1]
count = bubbleSort(nums);
System.out.println("平方阶(冒泡排序)的计算操作数量 = " + count);
count = exponential(n);
System.out.println("指数阶(循环实现)的计算操作数量 = " + count);

View File

@ -57,6 +57,7 @@ def find(nums, target):
return i
return -1
""" Driver Code """
if __name__ == "__main__":
""" 初始化数组 """

View File

@ -41,9 +41,8 @@ def find(head, target):
index += 1
return -1
"""
Driver Code
"""
""" Driver Code """
if __name__ == "__main__":
""" 初始化链表 """
# 初始化各个结点

View File

@ -8,9 +8,8 @@ import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
"""
Driver Code
"""
""" Driver Code """
if __name__ == "__main__":
""" 初始化列表 """
list = [1, 3, 2, 5, 4]

View File

@ -8,7 +8,6 @@ import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 列表类简易实现 """
class MyList:
""" 构造函数 """
@ -71,9 +70,7 @@ class MyList:
return self._nums[:self._size]
"""
Driver Code
"""
""" Driver Code """
if __name__ == "__main__":
""" 初始化列表 """
list = MyList()

View File

@ -8,3 +8,34 @@ import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
class SolutionBruteForce:
def twoSum(self, nums: List[int], target: int) -> List[int]:
for i in range(len(nums) - 1):
for j in range(i + 1, len(nums)):
if nums[i] + nums[j] == target:
return i, j
return []
class SolutionHashMap:
def twoSum(self, nums: List[int], target: int) -> List[int]:
dic = {}
for i in range(len(nums)):
if target - nums[i] in dic:
return dic[target - nums[i]], i
dic[nums[i]] = i
return []
""" Driver Code """
if __name__ == '__main__':
# ======= Test Case =======
nums = [ 2,7,11,15 ];
target = 9;
# ====== Driver Code ======
# 方法一
res = SolutionBruteForce().twoSum(nums, target);
print(res)
# 方法二
res = SolutionHashMap().twoSum(nums, target);
print(res)

View File

@ -8,3 +8,71 @@ import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 函数 """
def function():
# do something
return 0
""" 常数阶 """
def constant(n):
# 常量、变量、对象占用 O(1) 空间
a = 0
nums = [0] * 10000
node = ListNode(0)
# 循环中的变量占用 O(1) 空间
for _ in range(n):
c = 0
# 循环中的函数占用 O(1) 空间
for _ in range(n):
function()
""" 线性阶 """
def linear(n):
# 长度为 n 的列表占用 O(n) 空间
nums = [0] * n
# 长度为 n 的哈希表占用 O(n) 空间
mapp = {}
for i in range(n):
mapp[i] = str(i)
""" 线性阶(递归实现) """
def linearRecur(n):
print("递归 n = ", n)
if n == 1: return
linearRecur(n - 1)
""" 平方阶 """
def quadratic(n):
# 二维列表占用 O(n^2) 空间
num_matrix = [[0] * n for _ in range(n)]
""" 平方阶(递归实现) """
def quadratic_recur(n):
if n <= 0: return 0
nums = [0] * n
print("递归 n = {} 中的 nums 长度 = {}".format(n, len(nums)))
return quadratic_recur(n - 1)
""" 指数阶(建立满二叉树) """
def build_tree(n):
if n == 0: return None
root = TreeNode(0)
root.left = build_tree(n - 1)
root.right = build_tree(n - 1)
return root
""" Driver Code """
if __name__ == "__main__":
n = 5
# 常数阶
constant(n)
# 线性阶
linear(n)
linearRecur(n)
# 平方阶
quadratic(n)
quadratic_recur(n)
# 指数阶
root = build_tree(n)
print_tree(root)

View File

@ -8,3 +8,133 @@ import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 常数阶 """
def constant(n):
count = 0
size = 100000
for _ in range(size):
count += 1
return count
""" 线性阶 """
def linear(n):
count = 0
for _ in range(n):
count += 1
return count
""" 线性阶(遍历数组)"""
def array_traversal(nums):
count = 0
# 循环次数与数组长度成正比
for num in nums:
count += 1
return count
""" 平方阶 """
def quadratic(n):
count = 0
# 循环次数与数组长度成平方关系
for i in range(n):
for j in range(n):
count += 1
return count
""" 平方阶(冒泡排序)"""
def bubble_sort(nums):
count = 0 # 计数器
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(len(nums) - 1, 0, -1):
# 内循环:冒泡操作
for j in range(i):
if nums[j] > nums[j + 1]:
# 交换 nums[j] 与 nums[j + 1]
tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # 元素交换包含 3 个单元操作
return count
""" 指数阶(循环实现)"""
def exponential(n):
count, base = 0, 1
# cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for _ in range(n):
for _ in range(base):
count += 1
base *= 2
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
""" 指数阶(递归实现)"""
def exp_recur(n):
if n == 1: return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
""" 对数阶(循环实现)"""
def logarithmic(n):
count = 0
while n > 1:
n = n / 2
count += 1
return count
""" 对数阶(递归实现)"""
def log_recur(n):
if n <= 1: return 0
return log_recur(n / 2) + 1
""" 线性对数阶 """
def linear_log_recur(n):
if n <= 1: return 1
count = linear_log_recur(n // 2) + \
linear_log_recur(n // 2)
for _ in range(n):
count += 1
return count
""" 阶乘阶(递归实现)"""
def factorial_recur(n):
if n == 0: return 1
count = 0
# 从 1 个分裂出 n 个
for _ in range(n):
count += factorial_recur(n - 1)
return count
""" Driver Code """
if __name__ == "__main__":
# 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
n = 8
print("输入数据大小 n =", n)
count = constant(n)
print("常数阶的计算操作数量 =", count)
count = linear(n)
print("线性阶的计算操作数量 =", count)
count = array_traversal([0] * n)
print("线性阶(遍历数组)的计算操作数量 =", count)
count = quadratic(n)
print("平方阶的计算操作数量 =", count)
nums = [i for i in range(n, 0, -1)] # [n,n-1,...,2,1]
count = bubble_sort(nums)
print("平方阶(冒泡排序)的计算操作数量 =", count)
count = exponential(n)
print("指数阶(循环实现)的计算操作数量 =", count)
count = exp_recur(n)
print("指数阶(递归实现)的计算操作数量 =", count)
count = logarithmic(n)
print("对数阶(循环实现)的计算操作数量 =", count)
count = log_recur(n)
print("对数阶(递归实现)的计算操作数量 =", count)
count = linear_log_recur(n)
print("线性对数阶(递归实现)的计算操作数量 =", count)
count = factorial_recur(n)
print("阶乘阶(递归实现)的计算操作数量 =", count)

View File

@ -8,3 +8,27 @@ import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱 """
def random_numbers(n):
# 生成数组 nums =: 1, 2, 3, ..., n
nums = [i for i in range(1, n + 1)]
# 随机打乱数组元素
random.shuffle(nums)
return nums
""" 查找数组 nums 中数字 1 所在索引 """
def find_one(nums):
for i in range(len(nums)):
if nums[i] == 1:
return i
return -1
""" Driver Code """
if __name__ == "__main__":
for i in range(10):
n = 100
nums = random_numbers(n)
index = find_one(nums)
print("\n数组 [ 1, 2, ..., n ] 被打乱后 =", nums)
print("数字 1 的索引为", index)