This commit is contained in:
krahets
2023-11-09 05:13:54 +08:00
parent 9a09f9407e
commit 3f666fa676
85 changed files with 619 additions and 610 deletions

View File

@ -3366,7 +3366,7 @@
<p>给定一个楼梯,你每步可以上 <span class="arithmatex">\(1\)</span> 阶或者 <span class="arithmatex">\(2\)</span> 阶,每一阶楼梯上都贴有一个非负整数,表示你在该台阶所需要付出的代价。给定一个非负整数数组 <span class="arithmatex">\(cost\)</span> ,其中 <span class="arithmatex">\(cost[i]\)</span> 表示在第 <span class="arithmatex">\(i\)</span> 个台阶需要付出的代价,<span class="arithmatex">\(cost[0]\)</span> 为地面起始点。请计算最少需要付出多少代价才能到达顶部?</p>
</div>
<p>如图 14-6 所示,若第 <span class="arithmatex">\(1\)</span><span class="arithmatex">\(2\)</span><span class="arithmatex">\(3\)</span> 阶的代价分别为 <span class="arithmatex">\(1\)</span><span class="arithmatex">\(10\)</span><span class="arithmatex">\(1\)</span> ,则从地面爬到第 <span class="arithmatex">\(3\)</span> 阶的最小代价为 <span class="arithmatex">\(2\)</span></p>
<p><a class="glightbox" href="../dp_problem_features.assets/min_cost_cs_example.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="爬到第 3 阶的最小代价" src="../dp_problem_features.assets/min_cost_cs_example.png" /></a></p>
<p><a class="glightbox" href="../dp_problem_features.assets/min_cost_cs_example.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="爬到第 3 阶的最小代价" class="animation-figure" src="../dp_problem_features.assets/min_cost_cs_example.png" /></a></p>
<p align="center"> 图 14-6 &nbsp; 爬到第 3 阶的最小代价 </p>
<p><span class="arithmatex">\(dp[i]\)</span> 为爬到第 <span class="arithmatex">\(i\)</span> 阶累计付出的代价,由于第 <span class="arithmatex">\(i\)</span> 阶只可能从 <span class="arithmatex">\(i - 1\)</span> 阶或 <span class="arithmatex">\(i - 2\)</span> 阶走来,因此 <span class="arithmatex">\(dp[i]\)</span> 只可能等于 <span class="arithmatex">\(dp[i - 1] + cost[i]\)</span><span class="arithmatex">\(dp[i - 2] + cost[i]\)</span> 。为了尽可能减少代价,我们应该选择两者中较小的那一个:</p>
@ -3616,7 +3616,7 @@ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]
</div>
</div>
<p>图 14-7 展示了以上代码的动态规划过程。</p>
<p><a class="glightbox" href="../dp_problem_features.assets/min_cost_cs_dp.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="爬楼梯最小代价的动态规划过程" src="../dp_problem_features.assets/min_cost_cs_dp.png" /></a></p>
<p><a class="glightbox" href="../dp_problem_features.assets/min_cost_cs_dp.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="爬楼梯最小代价的动态规划过程" class="animation-figure" src="../dp_problem_features.assets/min_cost_cs_dp.png" /></a></p>
<p align="center"> 图 14-7 &nbsp; 爬楼梯最小代价的动态规划过程 </p>
<p>本题也可以进行空间优化,将一维压缩至零维,使得空间复杂度从 <span class="arithmatex">\(O(n)\)</span> 降低至 <span class="arithmatex">\(O(1)\)</span></p>
@ -3834,7 +3834,7 @@ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]
<p>给定一个共有 <span class="arithmatex">\(n\)</span> 阶的楼梯,你每步可以上 <span class="arithmatex">\(1\)</span> 阶或者 <span class="arithmatex">\(2\)</span> 阶,<strong>但不能连续两轮跳 <span class="arithmatex">\(1\)</span></strong>,请问有多少种方案可以爬到楼顶。</p>
</div>
<p>例如图 14-8 ,爬上第 <span class="arithmatex">\(3\)</span> 阶仅剩 <span class="arithmatex">\(2\)</span> 种可行方案,其中连续三次跳 <span class="arithmatex">\(1\)</span> 阶的方案不满足约束条件,因此被舍弃。</p>
<p><a class="glightbox" href="../dp_problem_features.assets/climbing_stairs_constraint_example.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="带约束爬到第 3 阶的方案数量" src="../dp_problem_features.assets/climbing_stairs_constraint_example.png" /></a></p>
<p><a class="glightbox" href="../dp_problem_features.assets/climbing_stairs_constraint_example.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="带约束爬到第 3 阶的方案数量" class="animation-figure" src="../dp_problem_features.assets/climbing_stairs_constraint_example.png" /></a></p>
<p align="center"> 图 14-8 &nbsp; 带约束爬到第 3 阶的方案数量 </p>
<p>在该问题中,如果上一轮是跳 <span class="arithmatex">\(1\)</span> 阶上来的,那么下一轮就必须跳 <span class="arithmatex">\(2\)</span> 阶。这意味着,<strong>下一步选择不能由当前状态(当前楼梯阶数)独立决定,还和前一个状态(上轮楼梯阶数)有关</strong></p>
@ -3851,7 +3851,7 @@ dp[i, 1] = dp[i-1, 2] \\
dp[i, 2] = dp[i-2, 1] + dp[i-2, 2]
\end{cases}
\]</div>
<p><a class="glightbox" href="../dp_problem_features.assets/climbing_stairs_constraint_state_transfer.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="考虑约束下的递推关系" src="../dp_problem_features.assets/climbing_stairs_constraint_state_transfer.png" /></a></p>
<p><a class="glightbox" href="../dp_problem_features.assets/climbing_stairs_constraint_state_transfer.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="考虑约束下的递推关系" class="animation-figure" src="../dp_problem_features.assets/climbing_stairs_constraint_state_transfer.png" /></a></p>
<p align="center"> 图 14-9 &nbsp; 考虑约束下的递推关系 </p>
<p>最终,返回 <span class="arithmatex">\(dp[n, 1] + dp[n, 2]\)</span> 即可,两者之和代表爬到第 <span class="arithmatex">\(n\)</span> 阶的方案总数。</p>