mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-04 20:31:59 +08:00
Polish the chapter of graph, hashing, appendix
This commit is contained in:
@ -890,7 +890,7 @@ $$
|
||||
|
||||
### 指数阶 $O(2^n)$
|
||||
|
||||
指数阶常见于二叉树。高度为 $n$ 的「满二叉树」的节点数量为 $2^n - 1$ ,占用 $O(2^n)$ 空间。
|
||||
指数阶常见于二叉树。高度为 $n$ 的「满二叉树」的结点数量为 $2^n - 1$ ,占用 $O(2^n)$ 空间。
|
||||
|
||||
=== "Java"
|
||||
|
||||
|
@ -9,8 +9,8 @@
|
||||
### 时间复杂度
|
||||
|
||||
- 时间复杂度用于衡量算法运行时间随数据量增长的趋势,可以有效评估算法效率,但在某些情况下可能失效,如在输入数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣。
|
||||
- 最差时间复杂度使用大 $O$ 符号表示,即函数渐进上界,反映当 $n$ 趋向正无穷时,$T(n)$ 的增长级别。
|
||||
- 推算时间复杂度分为两步,首先统计计算操作数量,然后判断渐进上界。
|
||||
- 最差时间复杂度使用大 $O$ 符号表示,即函数渐近上界,反映当 $n$ 趋向正无穷时,$T(n)$ 的增长级别。
|
||||
- 推算时间复杂度分为两步,首先统计计算操作数量,然后判断渐近上界。
|
||||
- 常见时间复杂度从小到大排列有 $O(1)$ , $O(\log n)$ , $O(n)$ , $O(n \log n)$ , $O(n^2)$ , $O(2^n)$ , $O(n!)$ 等。
|
||||
- 某些算法的时间复杂度非固定,而是与输入数据的分布有关。时间复杂度分为最差、最佳、平均时间复杂度,最佳时间复杂度几乎不用,因为输入数据一般需要满足严格条件才能达到最佳情况。
|
||||
- 平均时间复杂度反映算法在随机数据输入下的运行效率,最接近实际应用中的算法性能。计算平均时间复杂度需要统计输入数据分布以及综合后的数学期望。
|
||||
|
Reference in New Issue
Block a user