feat: add the section of the introduction to dynamic programming (#571)

* add the section of the introduction to
dynamic programming

* add a code comments.
This commit is contained in:
Yudong Jin
2023-06-30 04:31:43 +08:00
committed by GitHub
parent 4722e7bca7
commit 3f03663d2e
28 changed files with 1268 additions and 4 deletions

View File

@ -0,0 +1,37 @@
"""
File: climbing_stairs_backtrack.py
Created Time: 2023-06-30
Author: Krahets (krahets@163.com)
"""
def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:
"""回溯"""
# 当爬到第 n 阶时,方案数量加 1
if state == n:
res[0] += 1
# 遍历所有选择
for choice in choices:
# 剪枝:不允许越过第 n 阶
if state + choice > n:
break
# 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res)
# 回退
def climbing_stairs_backtrack(n: int) -> int:
"""爬楼梯:回溯"""
choices = [1, 2] # 可选择向上爬 1 或 2 阶
state = 0 # 从第 0 阶开始爬
res = [0] # 使用 res[0] 记录方案数量
backtrack(choices, state, n, res)
return res[0]
"""Driver Code"""
if __name__ == "__main__":
n = 9
res = climbing_stairs_backtrack(n)
print(f"{n} 阶楼梯共有 {res} 种方案")

View File

@ -0,0 +1,28 @@
"""
File: climbing_stairs_dfs.py
Created Time: 2023-06-30
Author: Krahets (krahets@163.com)
"""
def dfs(i: int) -> int:
"""搜索"""
# 已知 dp[1] 和 dp[2] ,返回之
if i == 1 or i == 2:
return i
# dp[i] = dp[i-1] + dp[i-2]
count = dfs(i - 1) + dfs(i - 2)
return count
def climbing_stairs_dfs(n: int) -> int:
"""爬楼梯:搜索"""
return dfs(n)
"""Driver Code"""
if __name__ == "__main__":
n = 9
res = climbing_stairs_dfs(n)
print(f"{n} 阶楼梯共有 {res} 种方案")

View File

@ -0,0 +1,35 @@
"""
File: climbing_stairs_dfs_mem.py
Created Time: 2023-06-30
Author: Krahets (krahets@163.com)
"""
def dfs(i: int, mem: list[int]) -> int:
"""记忆化搜索"""
# 已知 dp[1] 和 dp[2] ,返回之
if i == 1 or i == 2:
return i
# 若存在记录 dp[i] ,则直接返回之
if mem[i] != -1:
return mem[i]
# dp[i] = dp[i-1] + dp[i-2]
count = dfs(i - 1, mem) + dfs(i - 2, mem)
# 记录 dp[i]
mem[i] = count
return count
def climbing_stairs_dfs_mem(n: int) -> int:
"""爬楼梯:记忆化搜索"""
# mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
mem = [-1] * (n + 1)
return dfs(n, mem)
"""Driver Code"""
if __name__ == "__main__":
n = 9
res = climbing_stairs_dfs_mem(n)
print(f"{n} 阶楼梯共有 {res} 种方案")

View File

@ -0,0 +1,40 @@
"""
File: climbing_stairs_dp.py
Created Time: 2023-06-30
Author: Krahets (krahets@163.com)
"""
def climbing_stairs_dp(n: int) -> int:
"""爬楼梯:动态规划"""
if n == 1 or n == 2:
return n
# 初始化 dp 列表,用于存储子问题的解
dp = [0] * (n + 1)
# 初始状态:预设最小子问题的解
dp[1], dp[2] = 1, 2
# 状态转移:从较小子问题逐步求解较大子问题
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
def climbing_stairs_dp_comp(n: int) -> int:
"""爬楼梯:状态压缩后的动态规划"""
if n == 1 or n == 2:
return n
a, b = 1, 2
for _ in range(3, n + 1):
a, b = b, a + b
return b
"""Driver Code"""
if __name__ == "__main__":
n = 9
res = climbing_stairs_dp(n)
print(f"{n} 阶楼梯共有 {res} 种方案")
res = climbing_stairs_dp_comp(n)
print(f"{n} 阶楼梯共有 {res} 种方案")

View File

@ -0,0 +1,43 @@
"""
File: min_cost_climbing_stairs_dp.py
Created Time: 2023-06-30
Author: Krahets (krahets@163.com)
"""
def min_cost_climbing_stairs_dp(cost: list[int]) -> int:
"""爬楼梯最小代价:动态规划"""
n = len(cost) - 1
if n == 1 or n == 2:
return cost[n]
# 初始化 dp 列表,用于存储子问题的解
dp = [0] * (n + 1)
# 初始状态:预设最小子问题的解
dp[1], dp[2] = cost[1], cost[2]
# 状态转移:从较小子问题逐步求解较大子问题
for i in range(3, n + 1):
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
return dp[n]
def min_cost_climbing_stairs_dp_comp(cost: list[int]) -> int:
"""爬楼梯最小代价:状态压缩后的动态规划"""
n = len(cost) - 1
if n == 1 or n == 2:
return cost[n]
a, b = cost[1], cost[2]
for i in range(3, n + 1):
a, b = b, min(a, b) + cost[i]
return b
"""Driver Code"""
if __name__ == "__main__":
cost = [0, 1, 10, 1, 1, 1, 10, 1, 1, 10, 1]
print(f"输入楼梯的代价列表为 {cost}")
res = min_cost_climbing_stairs_dp(cost)
print(f"爬完楼梯的最低代价为 {res}")
res = min_cost_climbing_stairs_dp_comp(cost)
print(f"爬完楼梯的最低代价为 {res}")