Prepare for release 1.0.0b4

This commit is contained in:
krahets
2023-07-26 03:15:49 +08:00
parent b067016bfa
commit 35973068a7
17 changed files with 209 additions and 181 deletions

View File

@ -7,27 +7,27 @@
## 问题判断
总的来说,如果一个问题包含重叠子问题、最优子结构,并满足无后效性,那么它通常就适合用动态规划求解,我们很难从问题描述上直接提取出这些特性。因此我们通常会放宽条件,**先观察问题是否适合使用回溯(穷举)解决**。
总的来说,如果一个问题包含重叠子问题、最优子结构,并满足无后效性,那么它通常就适合用动态规划求解。然而,我们很难从问题描述上直接提取出这些特性。因此我们通常会放宽条件,**先观察问题是否适合使用回溯(穷举)解决**。
**适合用回溯解决的问题通常满足“决策树模型”**,这种问题可以使用树形结构来描述,其中每一个节点代表一个决策,每一条路径代表一个决策序列。
换句话说,如果问题包含明确的决策概念,并且解是通过一系列决策产生的,那么它就满足决策树模型,通常可以使用回溯来解决。
在此基础上,还有一些判断问题是动态规划问题的“加分项”,包括:
在此基础上,还有一些动态规划问题的“加分项”,包括:
- 问题包含最大(小)或最多(少)等最优化描述
- 问题的状态能够使用一个列表、多维矩阵或树来表示,并且一个状态与其周围的状态存在某种递推关系
- 问题包含最大(小)或最多(少)等最优化描述
- 问题的状态能够使用一个列表、多维矩阵或树来表示,并且一个状态与其周围的状态存在递推关系
而相应的“减分项”包括:
- 问题的目标是找出所有可能的解决方案,而不是找出最优解。
- 问题描述中有明显的排列组合的特征,需要返回具体的多个方案。
如果一个问题满足决策树模型,并具有较为明显的“加分项“,我们就可以假设它是一个动态规划问题,并尝试求解它。
如果一个问题满足决策树模型,并具有较为明显的“加分项“,我们就可以假设它是一个动态规划问题,并在求解过程中验证它。
## 问题求解步骤
动态规划的解题流程可能会因问题的性质和难度而有所不同,但通常遵循以下步骤:描述决策,定义状态,建立 $dp$ 表,推导状态转移方程,确定边界条件等。
动态规划的解题流程会因问题的性质和难度而有所不同,但通常遵循以下步骤:描述决策,定义状态,建立 $dp$ 表,推导状态转移方程,确定边界条件等。
为了更形象地展示解题步骤,我们使用一个经典问题「最小路径和」来举例。
@ -51,9 +51,9 @@
!!! note
动态规划和回溯通常都会被描述为一个决策序列,而状态通常由所有决策变量构成。它应当包含描述解题进度的所有变量,其包含了足够的信息,能够用来推导出下一个状态。
动态规划和回溯过程可以被描述为一个决策序列,而状态由所有决策变量构成。它应当包含描述解题进度的所有变量,其包含了足够的信息,能够用来推导出下一个状态。
每个状态都对应一个子问题,我们会定义一个 $dp$ 表来存储所有子问题的解,状态的每个独立变量都是 $dp$ 表的一个维度。本质上看,$dp$ 表是子问题的解和状态之间的映射。
每个状态都对应一个子问题,我们会定义一个 $dp$ 表来存储所有子问题的解,状态的每个独立变量都是 $dp$ 表的一个维度。本质上看,$dp$ 表是状态和子问题的解之间的映射。
**第二步:找出最优子结构,进而推导出状态转移方程**
@ -69,29 +69,32 @@ $$
!!! note
基于定义好的 $dp$ 表,我们思考原问题和子问题的关系,找出如何通过子问题的解来构造原问题的
最优子结构揭示了原问题和子问题的递推关系,一旦我们找到了最优子结构,就可以使用它来构建出状态转移方程。
根据定义好的 $dp$ 表,思考原问题和子问题的关系,找出通过子问题的最优解来构造原问题的最优解的方法,即最优子结构
一旦我们找到了最优子结构,就可以使用它来构建出状态转移方程。
**第三步:确定边界条件和状态转移顺序**
在本题中,当 $i=0$ 或 $j=0$ 时只有一种可能的路径,即只能向右移动或只能向下移,因此首行和首列是边界条件。
在本题中,处在首行的状态只能向右转移,首列状态只能向下移,因此首行 $i = 0$ 和首列 $j = 0$ 是边界条件。
每个格子是由其左方格子和上方格子转移而来,因此我们使用两层循环来遍历矩阵即可,即外循环正序遍历各行、内循环正序遍历各列。
每个格子是由其左方格子和上方格子转移而来,因此我们使用采用循环来遍历矩阵外循环遍历各行、内循环遍历各列。
![边界条件与状态转移顺序](dp_solution_pipeline.assets/min_path_sum_solution_step3.png)
!!! note
边界条件即初始状态,在搜索中用于剪枝,在动态规划中用于初始化 $dp$ 表。状态转移顺序的核心是要保证在计算当前问题时,所有它依赖的更小子问题都已经被正确地计算出来
边界条件在动态规划中用于初始化 $dp$ 表,在搜索中用于剪枝
状态转移顺序的核心是要保证在计算当前问题的解时,所有它依赖的更小子问题的解都已经被正确地计算出来。
接下来,我们就可以实现动态规划代码。然而,由于子问题分解是一种从顶至底的思想,因此按照“暴力搜索 $\rightarrow$ 记忆化搜索 $\rightarrow$ 动态规划”的顺序实现更加符合思维习惯。
根据以上分析,我们已经可以直接写出动态规划代码。然而子问题分解是一种从顶至底的思想,因此按照“暴力搜索 $\rightarrow$ 记忆化搜索 $\rightarrow$ 动态规划”的顺序实现更加符合思维习惯。
### 方法一:暴力搜索
从状态 $[i, j]$ 开始搜索,不断分解为更小的状态 $[i-1, j]$ 和 $[i, j-1]$ ,包括以下递归要素:
- **递归参数**:状态 $[i, j]$ **返回值**:从 $[0, 0]$ 到 $[i, j]$ 的最小路径和 $dp[i, j]$
- **递归参数**:状态 $[i, j]$
- **返回值**:从 $[0, 0]$ 到 $[i, j]$ 的最小路径和 $dp[i, j]$
- **终止条件**:当 $i = 0$ 且 $j = 0$ 时,返回代价 $grid[0, 0]$
- **剪枝**:当 $i < 0$ 时或 $j < 0$ 时索引越界此时返回代价 $+\infty$ 代表不可行
@ -161,9 +164,9 @@ $$
[class]{}-[func]{minPathSumDFS}
```
我们尝试画出以 $dp[2, 1]$ 为根节点的递归树。观察下图,递归树包含一些重叠子问题,其数量会随着网格 `grid` 的尺寸变大而急剧增多。
下图给出了以 $dp[2, 1]$ 为根节点的递归树,其中包含一些重叠子问题,其数量会随着网格 `grid` 的尺寸变大而急剧增多。
直观上看,**存在多条路径可以从左上角到达一单元格**,这便是该问题存在重叠子问题的内在原因
本质上看,造成重叠子问题的原因为:**存在多条路径可以从左上角到达一单元格**。
![暴力搜索递归树](dp_solution_pipeline.assets/min_path_sum_dfs.png)
@ -171,7 +174,7 @@ $$
### 方法二:记忆化搜索
为了避免重复计算重叠子问题,我们引入一个和网格 `grid` 相同尺寸的记忆列表 `mem` ,用于记录各个子问题的解,提升搜索效率
我们引入一个和网格 `grid` 相同尺寸的记忆列表 `mem` ,用于记录各个子问题的解,并将重叠子问题进行剪枝
=== "Java"
@ -239,13 +242,13 @@ $$
[class]{}-[func]{minPathSumDFSMem}
```
如下图所示,引入记忆化可以消除所有重复计算,时间复杂度取决于状态总数,即网格尺寸 $O(nm)$ 。
引入记忆化后,所有子问题的解只需计算一次,因此时间复杂度取决于状态总数,即网格尺寸 $O(nm)$ 。
![记忆化搜索递归树](dp_solution_pipeline.assets/min_path_sum_dfs_mem.png)
### 方法三:动态规划
动态规划代码是从底至顶的,仅需循环即可实现
基于迭代实现动态规划解法
=== "Java"
@ -313,7 +316,9 @@ $$
[class]{}-[func]{minPathSumDP}
```
下图展示了最小路径和的状态转移过程。该过程遍历了整个网格,因此时间复杂度为 $O(nm)$ ;数组 `dp` 使用 $O(nm)$ 空间
下图展示了最小路径和的状态转移过程,其遍历了整个网格,**因此时间复杂度为 $O(nm)$**
数组 `dp` 大小为 $n \times m$ **因此空间复杂度为 $O(nm)$** 。
=== "<1>"
![最小路径和的动态规划过程](dp_solution_pipeline.assets/min_path_sum_dp_step1.png)
@ -353,9 +358,9 @@ $$
### 状态压缩
如果希望进一步节省空间使用,可以考虑进行状态压缩。每个格子只与左边和上边的格子有关,因此我们可以只用一个单行数组来实现 $dp$ 表。
由于每个格子只与左边和上边的格子有关,因此我们可以只用一个单行数组来实现 $dp$ 表。
由于数组 `dp` 只能表示一行的状态,因此我们无法提前初始化首列状态,而是在遍历每行中更新它。
请注意,因为数组 `dp` 只能表示一行的状态,所以我们无法提前初始化首列状态,而是在遍历每行中更新它。
=== "Java"