This commit is contained in:
krahets
2023-07-11 19:21:38 +08:00
parent 4c792892a1
commit 2c96e433e2
117 changed files with 4713 additions and 132 deletions

View File

@ -1906,6 +1906,8 @@
@ -2032,6 +2034,20 @@
<li class="md-nav__item">
<a href="../unbounded_knapsack_problem/" class="md-nav__link">
13.5. &nbsp; 完全背包问题New
</a>
</li>
</ul>
</nav>
</li>
@ -2225,7 +2241,7 @@
<p>给定一个楼梯,你每步可以上 <span class="arithmatex">\(1\)</span> 阶或者 <span class="arithmatex">\(2\)</span> 阶,每一阶楼梯上都贴有一个非负整数,表示你在该台阶所需要付出的代价。给定一个非负整数数组 <span class="arithmatex">\(cost\)</span> ,其中 <span class="arithmatex">\(cost[i]\)</span> 表示在第 <span class="arithmatex">\(i\)</span> 个台阶需要付出的代价,<span class="arithmatex">\(cost[0]\)</span> 为地面起始点。请计算最少需要付出多少代价才能到达顶部?</p>
</div>
<p>如下图所示,若第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> , <span class="arithmatex">\(3\)</span> 阶的代价分别为 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(10\)</span> , <span class="arithmatex">\(1\)</span> ,则从地面爬到第 <span class="arithmatex">\(3\)</span> 阶的最小代价为 <span class="arithmatex">\(2\)</span></p>
<p><img alt="爬到第 3 阶的最小代价" src="../intro_to_dynamic_programming.assets/min_cost_cs_example.png" /></p>
<p><img alt="爬到第 3 阶的最小代价" src="../dp_problem_features.assets/min_cost_cs_example.png" /></p>
<p align="center"> Fig. 爬到第 3 阶的最小代价 </p>
<p><span class="arithmatex">\(dp[i]\)</span> 为爬到第 <span class="arithmatex">\(i\)</span> 阶累计付出的代价,由于第 <span class="arithmatex">\(i\)</span> 阶只可能从 <span class="arithmatex">\(i - 1\)</span> 阶或 <span class="arithmatex">\(i - 2\)</span> 阶走来,因此 <span class="arithmatex">\(dp[i]\)</span> 只可能等于 <span class="arithmatex">\(dp[i - 1] + cost[i]\)</span><span class="arithmatex">\(dp[i - 2] + cost[i]\)</span> 。为了尽可能减少代价,我们应该选择两者中较小的那一个,即:</p>
@ -2341,7 +2357,7 @@ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]
</div>
</div>
</div>
<p><img alt="爬楼梯最小代价的动态规划过程" src="../intro_to_dynamic_programming.assets/min_cost_cs_dp.png" /></p>
<p><img alt="爬楼梯最小代价的动态规划过程" src="../dp_problem_features.assets/min_cost_cs_dp.png" /></p>
<p align="center"> Fig. 爬楼梯最小代价的动态规划过程 </p>
<p>这道题同样也可以进行状态压缩,将一维压缩至零维,使得空间复杂度从 <span class="arithmatex">\(O(n)\)</span> 降低至 <span class="arithmatex">\(O(1)\)</span></p>
@ -2446,7 +2462,7 @@ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]
<p>给定一个共有 <span class="arithmatex">\(n\)</span> 阶的楼梯,你每步可以上 <span class="arithmatex">\(1\)</span> 阶或者 <span class="arithmatex">\(2\)</span> 阶,<strong>但不能连续两轮跳 <span class="arithmatex">\(1\)</span></strong>,请问有多少种方案可以爬到楼顶。</p>
</div>
<p>例如,爬上第 <span class="arithmatex">\(3\)</span> 阶仅剩 <span class="arithmatex">\(2\)</span> 种可行方案,其中连续三次跳 <span class="arithmatex">\(1\)</span> 阶的方案不满足约束条件,因此被舍弃。</p>
<p><img alt="带约束爬到第 3 阶的方案数量" src="../intro_to_dynamic_programming.assets/climbing_stairs_constraint_example.png" /></p>
<p><img alt="带约束爬到第 3 阶的方案数量" src="../dp_problem_features.assets/climbing_stairs_constraint_example.png" /></p>
<p align="center"> Fig. 带约束爬到第 3 阶的方案数量 </p>
<p>在该问题中,<strong>下一步选择不能由当前状态(当前楼梯阶数)独立决定,还和前一个状态(上轮楼梯阶数)有关</strong>。如果上一轮是跳 <span class="arithmatex">\(1\)</span> 阶上来的,那么下一轮就必须跳 <span class="arithmatex">\(2\)</span> 阶。</p>
@ -2463,7 +2479,7 @@ dp[i, 1] = dp[i-1, 2] \\
dp[i, 2] = dp[i-2, 1] + dp[i-2, 2]
\end{cases}
\]</div>
<p><img alt="考虑约束下的递推关系" src="../intro_to_dynamic_programming.assets/climbing_stairs_constraint_state_transfer.png" /></p>
<p><img alt="考虑约束下的递推关系" src="../dp_problem_features.assets/climbing_stairs_constraint_state_transfer.png" /></p>
<p align="center"> Fig. 考虑约束下的递推关系 </p>
<p>最终,返回 <span class="arithmatex">\(dp[n, 1] + dp[n, 2]\)</span> 即可,两者之和代表爬到第 <span class="arithmatex">\(n\)</span> 阶的方案总数。</p>