Use underline format for the technical terms (#1213)

* Use underline format for the technical terms

* Bug fixes
This commit is contained in:
Yudong Jin
2024-04-03 03:52:17 +08:00
committed by GitHub
parent 06068927cd
commit 2b1a98fb61
42 changed files with 105 additions and 105 deletions

View File

@ -4,7 +4,7 @@
## 迭代
迭代 iteration是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段代码,直到这个条件不再满足。
<u>迭代iteration</u>是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段代码,直到这个条件不再满足。
### for 循环
@ -60,7 +60,7 @@
## 递归
递归 recursion是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。
<u>递归recursion</u>是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。
1. **递**:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。
2. **归**:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。
@ -106,7 +106,7 @@
### 尾递归
有趣的是,**如果函数在返回前的最后一步才进行递归调用**,则该函数可以被编译器或解释器优化,使其在空间效率上与迭代相当。这种情况被称为尾递归 tail recursion
有趣的是,**如果函数在返回前的最后一步才进行递归调用**,则该函数可以被编译器或解释器优化,使其在空间效率上与迭代相当。这种情况被称为<u>尾递归tail recursion</u>
- **普通递归**:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下文。
- **尾递归**:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他操作,因此系统无须保存上一层函数的上下文。
@ -147,7 +147,7 @@
[file]{recursion}-[class]{}-[func]{fib}
```
观察以上代码,我们在函数内递归调用了两个函数,**这意味着从一个调用产生了两个调用分支**。如下图所示,这样不断递归调用下去,最终将产生一棵层数为 $n$ 的递归树 recursion tree
观察以上代码,我们在函数内递归调用了两个函数,**这意味着从一个调用产生了两个调用分支**。如下图所示,这样不断递归调用下去,最终将产生一棵层数为 $n$ 的<u>递归树recursion tree</u>
![斐波那契数列的递归树](iteration_and_recursion.assets/recursion_tree.png)

View File

@ -24,11 +24,11 @@
## 理论估算
由于实际测试具有较大的局限性,因此我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为渐近复杂度分析 asymptotic complexity analysis」,简称「复杂度分析」
由于实际测试具有较大的局限性,因此我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为<u>渐近复杂度分析asymptotic complexity analysis</u>,简称<u>复杂度分析</u>
复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。**它描述了随着输入数据大小的增加,算法执行所需时间和空间的增长趋势**。这个定义有些拗口,我们可以将其分为三个重点来理解。
- “时间和空间资源”分别对应时间复杂度 time complexity」和「空间复杂度 space complexity
- “时间和空间资源”分别对应<u>时间复杂度time complexity</u><u>空间复杂度space complexity</u>
- “随着输入数据大小的增加”意味着复杂度反映了算法运行效率与输入数据体量之间的关系。
- “时间和空间的增长趋势”表示复杂度分析关注的不是运行时间或占用空间的具体值,而是时间或空间增长的“快慢”。

View File

@ -1,6 +1,6 @@
# 空间复杂度
空间复杂度 space complexity用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。
<u>空间复杂度space complexity</u>用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。
## 算法相关空间

View File

@ -32,7 +32,7 @@
**Q**:函数和方法这两个术语的区别是什么?
函数 function可以被独立执行,所有参数都以显式传递。方法 method与一个对象关联,被隐式传递给调用它的对象,能够对类的实例中包含的数据进行操作。
<u>函数function</u>可以被独立执行,所有参数都以显式传递。<u>方法method</u>与一个对象关联,被隐式传递给调用它的对象,能够对类的实例中包含的数据进行操作。
下面以几种常见的编程语言为例来说明。

View File

@ -713,7 +713,7 @@ $$
$T(n)$ 是一次函数,说明其运行时间的增长趋势是线性的,因此它的时间复杂度是线性阶。
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号称为「大 $O$ 记号 big-$O$ notation,表示函数 $T(n)$ 的渐近上界 asymptotic upper bound
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号称为<u>大($O$ 记号 big-$O$ notation</u>,表示函数 $T(n)$ 的<u>渐近上界asymptotic upper bound</u>
时间复杂度分析本质上是计算“操作数量 $T(n)$”的渐近上界,它具有明确的数学定义。