diff --git a/.prettierrc b/.prettierrc new file mode 100644 index 000000000..5a938ce18 --- /dev/null +++ b/.prettierrc @@ -0,0 +1,4 @@ +{ + "tabWidth": 4, + "useTabs": false +} diff --git a/codes/javascript/chapter_computational_complexity/time_complexity.js b/codes/javascript/chapter_computational_complexity/time_complexity.js new file mode 100644 index 000000000..2e4688dd2 --- /dev/null +++ b/codes/javascript/chapter_computational_complexity/time_complexity.js @@ -0,0 +1,155 @@ +/** + * File: time_complexity.js + * Created Time: 2023-01-02 + * Author: RiverTwilight (contact@rene.wang) + */ + +/* 常数阶 */ +function constant(n) { + let count = 0; + const size = 100000; + for (let i = 0; i < size; i++) count++; + return count; +} + +/* 线性阶 */ +function linear(n) { + let count = 0; + for (let i = 0; i < n; i++) count++; + return count; +} + +/* 线性阶(遍历数组) */ +function arrayTraversal(nums) { + let count = 0; + // 循环次数与数组长度成正比 + for (let i = 0; i < nums.length; i++) { + count++; + } + return count; +} + +/* 平方阶 */ +function quadratic(n) { + let count = 0; + // 循环次数与数组长度成平方关系 + for (let i = 0; i < n; i++) { + for (let j = 0; j < n; j++) { + count++; + } + } + return count; +} + +/* 平方阶(冒泡排序) */ +function bubbleSort(nums) { + let count = 0; // 计数器 + // 外循环:待排序元素数量为 n-1, n-2, ..., 1 + for (let i = nums.length - 1; i > 0; i--) { + // 内循环:冒泡操作 + for (let j = 0; j < i; j++) { + if (nums[j] > nums[j + 1]) { + // 交换 nums[j] 与 nums[j + 1] + let tmp = nums[j]; + nums[j] = nums[j + 1]; + nums[j + 1] = tmp; + count += 3; // 元素交换包含 3 个单元操作 + } + } + } + return count; +} + +/* 指数阶(循环实现) */ +function exponential(n) { + let count = 0, + base = 1; + // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) + for (let i = 0; i < n; i++) { + for (let j = 0; j < base; j++) { + count++; + } + base *= 2; + } + // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 + return count; +} + +/* 指数阶(递归实现) */ +function expRecur(n) { + if (n == 1) return 1; + return expRecur(n - 1) + expRecur(n - 1) + 1; +} + +/* 对数阶(循环实现) */ +function logarithmic(n) { + let count = 0; + while (n > 1) { + n = n / 2; + count++; + } + return count; +} + +/* 对数阶(递归实现) */ +function logRecur(n) { + if (n <= 1) return 0; + return logRecur(n / 2) + 1; +} + +/* 线性对数阶 */ +function linearLogRecur(n) { + if (n <= 1) return 1; + let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); + for (let i = 0; i < n; i++) { + count++; + } + return count; +} + +/* 阶乘阶(递归实现) */ +function factorialRecur(n) { + if (n == 0) return 1; + let count = 0; + // 从 1 个分裂出 n 个 + for (let i = 0; i < n; i++) { + count += factorialRecur(n - 1); + } + return count; +} + +/* Driver Code */ +// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 +const n = 8; +console.log("输入数据大小 n = " + n); + +let count = constant(n); +console.log("常数阶的计算操作数量 = " + count); + +count = linear(n); +console.log("线性阶的计算操作数量 = " + count); +count = arrayTraversal(new Array(n)); +console.log("线性阶(遍历数组)的计算操作数量 = " + count); + +count = quadratic(n); +console.log("平方阶的计算操作数量 = " + count); +let nums = new Array(n); +for (let i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] +count = bubbleSort(nums); +console.log("平方阶(冒泡排序)的计算操作数量 = " + count); + +count = exponential(n); +console.log("指数阶(循环实现)的计算操作数量 = " + count); +count = expRecur(n); +console.log("指数阶(递归实现)的计算操作数量 = " + count); + +count = logarithmic(n); +console.log("对数阶(循环实现)的计算操作数量 = " + count); +count = logRecur(n); +console.log("对数阶(递归实现)的计算操作数量 = " + count); + +count = linearLogRecur(n); +console.log("线性对数阶(递归实现)的计算操作数量 = " + count); + +count = factorialRecur(n); +console.log("阶乘阶(递归实现)的计算操作数量 = " + count); diff --git a/codes/javascript/chapter_computational_complexity/worst_best_time_complexity.js b/codes/javascript/chapter_computational_complexity/worst_best_time_complexity.js new file mode 100644 index 000000000..949e50b04 --- /dev/null +++ b/codes/javascript/chapter_computational_complexity/worst_best_time_complexity.js @@ -0,0 +1,45 @@ +/* + * File: worst_best_time_complexity.js + * Created Time: 2023-01-05 + * Author: RiverTwilight (contact@rene.wang) + */ + +/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ +function randomNumbers(n) { + let nums = Array(n); + // 生成数组 nums = { 1, 2, 3, ..., n } + for (let i = 0; i < n; i++) { + nums[i] = i + 1; + } + // 随机打乱数组元素 + for (let i = 0; i < n; i++) { + let r = Math.floor(Math.random() * (i + 1)); + let temp = nums[i]; + nums[i] = nums[r]; + nums[r] = temp; + } + return nums; +} + +/* 查找数组 nums 中数字 1 所在索引 */ +function findOne(nums) { + for (let i = 0; i < nums.length; i++) { + if (nums[i] === 1) { + return i; + } + } + return -1; +} + +/* Driver Code */ +function main() { + for (let i = 0; i < 10; i++) { + let n = 100; + let nums = randomNumbers(n); + let index = findOne(nums); + console.log( + "\n数组 [ 1, 2, ..., n ] 被打乱后 = [" + nums.join(", ") + "]" + ); + console.log("数字 1 的索引为 " + index); + } +} diff --git a/codes/typescript/chapter_computational_complexity/time_complexity.ts b/codes/typescript/chapter_computational_complexity/time_complexity.ts new file mode 100644 index 000000000..e5dde67c6 --- /dev/null +++ b/codes/typescript/chapter_computational_complexity/time_complexity.ts @@ -0,0 +1,155 @@ +/** + * File: time_complexity.ts + * Created Time: 2023-01-02 + * Author: RiverTwilight (contact@rene.wang) + */ + +/* 常数阶 */ +function constant(n: number): number { + let count = 0; + const size = 100000; + for (let i = 0; i < size; i++) count++; + return count; +} + +/* 线性阶 */ +function linear(n: number): number { + let count = 0; + for (let i = 0; i < n; i++) count++; + return count; +} + +/* 线性阶(遍历数组) */ +function arrayTraversal(nums: number[]): number { + let count = 0; + // 循环次数与数组长度成正比 + for (let i = 0; i < nums.length; i++) { + count++; + } + return count; +} + +/* 平方阶 */ +function quadratic(n: number): number { + let count = 0; + // 循环次数与数组长度成平方关系 + for (let i = 0; i < n; i++) { + for (let j = 0; j < n; j++) { + count++; + } + } + return count; +} + +/* 平方阶(冒泡排序) */ +function bubbleSort(nums: number[]): number { + let count = 0; // 计数器 + // 外循环:待排序元素数量为 n-1, n-2, ..., 1 + for (let i = nums.length - 1; i > 0; i--) { + // 内循环:冒泡操作 + for (let j = 0; j < i; j++) { + if (nums[j] > nums[j + 1]) { + // 交换 nums[j] 与 nums[j + 1] + let tmp = nums[j]; + nums[j] = nums[j + 1]; + nums[j + 1] = tmp; + count += 3; // 元素交换包含 3 个单元操作 + } + } + } + return count; +} + +/* 指数阶(循环实现) */ +function exponential(n: number): number { + let count = 0, + base = 1; + // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) + for (let i = 0; i < n; i++) { + for (let j = 0; j < base; j++) { + count++; + } + base *= 2; + } + // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 + return count; +} + +/* 指数阶(递归实现) */ +function expRecur(n: number): number { + if (n == 1) return 1; + return expRecur(n - 1) + expRecur(n - 1) + 1; +} + +/* 对数阶(循环实现) */ +function logarithmic(n: number): number { + let count = 0; + while (n > 1) { + n = n / 2; + count++; + } + return count; +} + +/* 对数阶(递归实现) */ +function logRecur(n: number): number { + if (n <= 1) return 0; + return logRecur(n / 2) + 1; +} + +/* 线性对数阶 */ +function linearLogRecur(n: number): number { + if (n <= 1) return 1; + let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); + for (let i = 0; i < n; i++) { + count++; + } + return count; +} + +/* 阶乘阶(递归实现) */ +function factorialRecur(n: number): number { + if (n == 0) return 1; + let count = 0; + // 从 1 个分裂出 n 个 + for (let i = 0; i < n; i++) { + count += factorialRecur(n - 1); + } + return count; +} + +/* Driver Code */ +// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 +const n = 8; +console.log("输入数据大小 n = " + n); + +let count = constant(n); +console.log("常数阶的计算操作数量 = " + count); + +count = linear(n); +console.log("线性阶的计算操作数量 = " + count); +count = arrayTraversal(new Array(n)); +console.log("线性阶(遍历数组)的计算操作数量 = " + count); + +count = quadratic(n); +console.log("平方阶的计算操作数量 = " + count); +var nums = new Array(n); +for (let i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] +count = bubbleSort(nums); +console.log("平方阶(冒泡排序)的计算操作数量 = " + count); + +count = exponential(n); +console.log("指数阶(循环实现)的计算操作数量 = " + count); +count = expRecur(n); +console.log("指数阶(递归实现)的计算操作数量 = " + count); + +count = logarithmic(n); +console.log("对数阶(循环实现)的计算操作数量 = " + count); +count = logRecur(n); +console.log("对数阶(递归实现)的计算操作数量 = " + count); + +count = linearLogRecur(n); +console.log("线性对数阶(递归实现)的计算操作数量 = " + count); + +count = factorialRecur(n); +console.log("阶乘阶(递归实现)的计算操作数量 = " + count); diff --git a/codes/typescript/chapter_computational_complexity/worst_best_time_complexity.ts b/codes/typescript/chapter_computational_complexity/worst_best_time_complexity.ts new file mode 100644 index 000000000..a7318634f --- /dev/null +++ b/codes/typescript/chapter_computational_complexity/worst_best_time_complexity.ts @@ -0,0 +1,45 @@ +/* + * File: worst_best_time_complexity.ts + * Created Time: 2023-01-05 + * Author: RiverTwilight (contact@rene.wang) + */ + +/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ +function randomNumbers(n: number): number[] { + let nums = Array(n); + // 生成数组 nums = { 1, 2, 3, ..., n } + for (let i = 0; i < n; i++) { + nums[i] = i + 1; + } + // 随机打乱数组元素 + for (let i = 0; i < n; i++) { + let r = Math.floor(Math.random() * (i + 1)); + let temp = nums[i]; + nums[i] = nums[r]; + nums[r] = temp; + } + return nums; +} + +/* 查找数组 nums 中数字 1 所在索引 */ +function findOne(nums: number[]): number { + for (let i = 0; i < nums.length; i++) { + if (nums[i] === 1) { + return i; + } + } + return -1; +} + +/* Driver Code */ +function main(): void { + for (let i = 0; i < 10; i++) { + let n = 100; + let nums = randomNumbers(n); + let index = findOne(nums); + console.log( + "\n数组 [ 1, 2, ..., n ] 被打乱后 = [" + nums.join(", ") + "]" + ); + console.log("数字 1 的索引为 " + index); + } +} diff --git a/docs/chapter_computational_complexity/time_complexity.md b/docs/chapter_computational_complexity/time_complexity.md index 42bf2c256..42d43624b 100644 --- a/docs/chapter_computational_complexity/time_complexity.md +++ b/docs/chapter_computational_complexity/time_complexity.md @@ -79,13 +79,31 @@ $$ === "JavaScript" ```js title="" - + // 在某运行平台下 + function algorithm(n) { + var a = 2; // 1 ns + a = a + 1; // 1 ns + a = a * 2; // 10 ns + // 循环 n 次 + for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ + console.log(0); // 5 ns + } + } ``` === "TypeScript" ```typescript title="" - + // 在某运行平台下 + function algorithm(n: number): void { + var a: number = 2; // 1 ns + a = a + 1; // 1 ns + a = a * 2; // 10 ns + // 循环 n 次 + for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ + console.log(0); // 5 ns + } + } ``` === "C" @@ -229,13 +247,44 @@ $$ === "JavaScript" ```js title="" + // 算法 A 时间复杂度:常数阶 + function algorithm_A(n) { + console.log(0); + } + // 算法 B 时间复杂度:线性阶 + function algorithm_B(n) { + for (let i = 0; i < n; i++) { + console.log(0); + } + } + // 算法 C 时间复杂度:常数阶 + function algorithm_C(n) { + for (let i = 0; i < 1000000; i++) { + console.log(0); + } + } ``` === "TypeScript" ```typescript title="" - + // 算法 A 时间复杂度:常数阶 + function algorithm_A(n: number): void { + console.log(0); + } + // 算法 B 时间复杂度:线性阶 + function algorithm_B(n: number): void { + for (let i = 0; i < n; i++) { + console.log(0); + } + } + // 算法 C 时间复杂度:常数阶 + function algorithm_C(n: number): void { + for (let i = 0; i < 1000000; i++) { + console.log(0); + } + } ``` === "C" @@ -322,7 +371,7 @@ $$ ## 函数渐近上界 -设算法「计算操作数量」为 $T(n)$ ,其是一个关于输入数据大小 $n$ 的函数。例如,以下算法的操作数量为 +设算法「计算操作数量」为 $T(n)$ ,其是一个关于输入数据大小 $n$ 的函数。例如,以下算法的操作数量为 $$ T(n) = 3 + 2n @@ -378,20 +427,38 @@ $$ // 循环 n 次 for i := 0; i < n; i++ { // +1 fmt.Println(a) // +1 - } + } } ``` === "JavaScript" ```js title="" + function algorithm(n){ + var a = 1; // +1 + a += 1; // +1 + a *= 2; // +1 + // 循环 n 次 + for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++) + console.log(0); // +1 + } + } ``` === "TypeScript" ```typescript title="" + function algorithm(n: number): void{ + var a: number = 1; // +1 + a += 1; // +1 + a *= 2; // +1 + // 循环 n 次 + for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++) + console.log(0); // +1 + } + } ``` === "C" @@ -562,13 +629,39 @@ $$ === "JavaScript" ```js title="" - + function algorithm(n) { + let a = 1; // +0(技巧 1) + a = a + n; // +0(技巧 1) + // +n(技巧 2) + for (let i = 0; i < 5 * n + 1; i++) { + console.log(0); + } + // +n*n(技巧 3) + for (let i = 0; i < 2 * n; i++) { + for (let j = 0; j < n + 1; j++) { + console.log(0); + } + } + } ``` === "TypeScript" ```typescript title="" - + function algorithm(n: number): void { + let a = 1; // +0(技巧 1) + a = a + n; // +0(技巧 1) + // +n(技巧 2) + for (let i = 0; i < 5 * n + 1; i++) { + console.log(0); + } + // +n*n(技巧 3) + for (let i = 0; i < 2 * n; i++) { + for (let j = 0; j < n + 1; j++) { + console.log(0); + } + } + } ``` === "C" @@ -730,13 +823,25 @@ $$ === "JavaScript" ```js title="time_complexity.js" - + /* 常数阶 */ + function constant(n) { + let count = 0; + const size = 100000; + for (let i = 0; i < size; i++) count++; + return count; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" - + /* 常数阶 */ + function constant(n: number): number { + let count = 0; + const size = 100000; + for (let i = 0; i < size; i++) count++; + return count; + } ``` === "C" @@ -837,13 +942,23 @@ $$ === "JavaScript" ```js title="time_complexity.js" - + /* 线性阶 */ + function linear(n) { + let count = 0; + for (let i = 0; i < n; i++) count++; + return count; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" - + /* 线性阶 */ + function linear(n: number): number { + let count = 0; + for (let i = 0; i < n; i++) count++; + return count; + } ``` === "C" @@ -948,13 +1063,29 @@ $$ === "JavaScript" ```js title="time_complexity.js" - + /* 线性阶(遍历数组) */ + function arrayTraversal(nums) { + let count = 0; + // 循环次数与数组长度成正比 + for (let i = 0; i < nums.length; i++) { + count++; + } + return count; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" - + /* 线性阶(遍历数组) */ + function arrayTraversal(nums: number[]): number { + let count = 0; + // 循环次数与数组长度成正比 + for (let i = 0; i < nums.length; i++) { + count++; + } + return count; + } ``` === "C" @@ -1069,13 +1200,33 @@ $$ === "JavaScript" ```js title="time_complexity.js" - + /* 平方阶 */ + function quadratic(n) { + let count = 0; + // 循环次数与数组长度成平方关系 + for (let i = 0; i < n; i++) { + for (let j = 0; j < n; j++) { + count++; + } + } + return count; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" - + /* 平方阶 */ + function quadratic(n: number): number { + let count = 0; + // 循环次数与数组长度成平方关系 + for (let i = 0; i < n; i++) { + for (let j = 0; j < n; j++) { + count++; + } + } + return count; + } ``` === "C" @@ -1230,13 +1381,47 @@ $$ === "JavaScript" ```js title="time_complexity.js" - + /* 平方阶(冒泡排序) */ + function bubbleSort(nums) { + let count = 0; // 计数器 + // 外循环:待排序元素数量为 n-1, n-2, ..., 1 + for (let i = nums.length - 1; i > 0; i--) { + // 内循环:冒泡操作 + for (let j = 0; j < i; j++) { + if (nums[j] > nums[j + 1]) { + // 交换 nums[j] 与 nums[j + 1] + let tmp = nums[j]; + nums[j] = nums[j + 1]; + nums[j + 1] = tmp; + count += 3; // 元素交换包含 3 个单元操作 + } + } + } + return count; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" - + /* 平方阶(冒泡排序) */ + function bubbleSort(nums: number[]): number { + let count = 0; // 计数器 + // 外循环:待排序元素数量为 n-1, n-2, ..., 1 + for (let i = nums.length - 1; i > 0; i--) { + // 内循环:冒泡操作 + for (let j = 0; j < i; j++) { + if (nums[j] > nums[j + 1]) { + // 交换 nums[j] 与 nums[j + 1] + let tmp = nums[j]; + nums[j] = nums[j + 1]; + nums[j + 1] = tmp; + count += 3; // 元素交换包含 3 个单元操作 + } + } + } + return count; + } ``` === "C" @@ -1392,13 +1577,40 @@ $$ === "JavaScript" ```js title="time_complexity.js" + /* 指数阶(循环实现) */ + function exponential(n) { + let count = 0, + base = 1; + // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) + for (let i = 0; i < n; i++) { + for (let j = 0; j < base; j++) { + count++; + } + base *= 2; + } + // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 + return count; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" - + /* 指数阶(循环实现) */ + function exponential(n: number): number { + let count = 0, + base = 1; + // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) + for (let i = 0; i < n; i++) { + for (let j = 0; j < base; j++) { + count++; + } + base *= 2; + } + // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 + return count; + } ``` === "C" @@ -1510,12 +1722,21 @@ $$ === "JavaScript" ```js title="time_complexity.js" - + /* 指数阶(递归实现) */ + function expRecur(n) { + if (n == 1) return 1; + return expRecur(n - 1) + expRecur(n - 1) + 1; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" + /* 指数阶(递归实现) */ + function expRecur(n: number): number { + if (n == 1) return 1; + return expRecur(n - 1) + expRecur(n - 1) + 1; + } ``` @@ -1617,13 +1838,29 @@ $$ === "JavaScript" ```js title="time_complexity.js" - + /* 对数阶(循环实现) */ + function logarithmic(n) { + let count = 0; + while (n > 1) { + n = n / 2; + count++; + } + return count; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" - + /* 对数阶(循环实现) */ + function logarithmic(n: number): number { + let count = 0; + while (n > 1) { + n = n / 2; + count++; + } + return count; + } ``` === "C" @@ -1721,13 +1958,21 @@ $$ === "JavaScript" ```js title="time_complexity.js" - + /* 对数阶(递归实现) */ + function logRecur(n) { + if (n <= 1) return 0; + return logRecur(n / 2) + 1; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" - + /* 对数阶(递归实现) */ + function logRecur(n: number): number { + if (n <= 1) return 0; + return logRecur(n / 2) + 1; + } ``` === "C" @@ -1775,7 +2020,7 @@ $$ /* 线性对数阶 */ int linearLogRecur(float n) { if (n <= 1) return 1; - int count = linearLogRecur(n / 2) + + int count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; @@ -1790,7 +2035,7 @@ $$ /* 线性对数阶 */ int linearLogRecur(float n) { if (n <= 1) return 1; - int count = linearLogRecur(n / 2) + + int count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; @@ -1832,13 +2077,29 @@ $$ === "JavaScript" ```js title="time_complexity.js" - + /* 线性对数阶 */ + function linearLogRecur(n) { + if (n <= 1) return 1; + let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); + for (let i = 0; i < n; i++) { + count++; + } + return count; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" - + /* 线性对数阶 */ + function linearLogRecur(n: number): number { + if (n <= 1) return 1; + let count = linearLogRecur(n / 2) + linearLogRecur(n / 2); + for (let i = 0; i < n; i++) { + count++; + } + return count; + } ``` === "C" @@ -1966,13 +2227,31 @@ $$ === "JavaScript" ```js title="time_complexity.js" - + /* 阶乘阶(递归实现) */ + function factorialRecur(n) { + if (n == 0) return 1; + let count = 0; + // 从 1 个分裂出 n 个 + for (let i = 0; i < n; i++) { + count += factorialRecur(n - 1); + } + return count; + } ``` === "TypeScript" ```typescript title="time_complexity.ts" - + /* 阶乘阶(递归实现) */ + function factorialRecur(n: number): number { + if (n == 0) return 1; + let count = 0; + // 从 1 个分裂出 n 个 + for (let i = 0; i < n; i++) { + count += factorialRecur(n - 1); + } + return count; + } ``` === "C" @@ -2056,7 +2335,7 @@ $$ } return res; } - + /* 查找数组 nums 中数字 1 所在索引 */ int findOne(int[] nums) { for (int i = 0; i < nums.length; i++) { @@ -2065,7 +2344,7 @@ $$ } return -1; } - + /* Driver Code */ public void main(String[] args) { for (int i = 0; i < 10; i++) { @@ -2125,7 +2404,7 @@ $$ ```python title="worst_best_time_complexity.py" """ 生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱 """ def random_numbers(n): - # 生成数组 nums =: 1, 2, 3, ..., n + # 生成数组 nums =: 1, 2, 3, ..., n nums = [i for i in range(1, n + 1)] # 随机打乱数组元素 random.shuffle(nums) @@ -2190,13 +2469,89 @@ $$ === "JavaScript" ```js title="worst_best_time_complexity.js" + /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ + function randomNumbers(n) { + let nums = Array(n); + // 生成数组 nums = { 1, 2, 3, ..., n } + for (let i = 0; i < n; i++) { + nums[i] = i + 1; + } + // 随机打乱数组元素 + for (let i = 0; i < n; i++) { + let r = Math.floor(Math.random() * (i + 1)); + let temp = nums[i]; + nums[i] = nums[r]; + nums[r] = temp; + } + return nums; + } + /* 查找数组 nums 中数字 1 所在索引 */ + function findOne(nums) { + for (let i = 0; i < nums.length; i++) { + if (nums[i] === 1) { + return i; + } + } + return -1; + } + + /* Driver Code */ + function main() { + for (let i = 0; i < 10; i++) { + let n = 100; + let nums = randomNumbers(n); + let index = findOne(nums); + console.log( + "\n数组 [ 1, 2, ..., n ] 被打乱后 = [" + nums.join(", ") + "]" + ); + console.log("数字 1 的索引为 " + index); + } + } ``` === "TypeScript" ```typescript title="worst_best_time_complexity.ts" + /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ + function randomNumbers(n: number): number[] { + let nums = Array(n); + // 生成数组 nums = { 1, 2, 3, ..., n } + for (let i = 0; i < n; i++) { + nums[i] = i + 1; + } + // 随机打乱数组元素 + for (let i = 0; i < n; i++) { + let r = Math.floor(Math.random() * (i + 1)); + let temp = nums[i]; + nums[i] = nums[r]; + nums[r] = temp; + } + return nums; + } + /* 查找数组 nums 中数字 1 所在索引 */ + function findOne(nums: number[]): number { + for (let i = 0; i < nums.length; i++) { + if (nums[i] === 1) { + return i; + } + } + return -1; + } + + /* Driver Code */ + function main(): void { + for (let i = 0; i < 10; i++) { + let n = 100; + let nums = randomNumbers(n); + let index = findOne(nums); + console.log( + "\n数组 [ 1, 2, ..., n ] 被打乱后 = [" + nums.join(", ") + "]" + ); + console.log("数字 1 的索引为 " + index); + } + } ``` === "C"