mirror of
https://github.com/krahets/hello-algo.git
synced 2025-12-19 07:17:54 +08:00
Add the Python codes for the chapter of Graph and Heap (#382)
This commit is contained in:
62
codes/python/chapter_heap/heap.py
Normal file
62
codes/python/chapter_heap/heap.py
Normal file
@@ -0,0 +1,62 @@
|
||||
"""
|
||||
File: heap.py
|
||||
Created Time: 2023-02-23
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
import sys, os.path as osp
|
||||
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
|
||||
from include import *
|
||||
|
||||
def test_push(heap, val, flag=1):
|
||||
heapq.heappush(heap, flag * val) # 元素入堆
|
||||
print(f"\n元素 {val} 入堆后")
|
||||
print_heap([flag * val for val in heap])
|
||||
|
||||
def test_pop(heap, flag=1):
|
||||
val = flag * heapq.heappop(heap) # 堆顶元素出堆
|
||||
print(f"\n堆顶元素 {val} 出堆后")
|
||||
print_heap([flag * val for val in heap])
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 初始化小顶堆
|
||||
min_heap, flag = [], 1
|
||||
# 初始化大顶堆
|
||||
max_heap, flag = [], -1
|
||||
|
||||
print("\n以下测试样例为大顶堆")
|
||||
# Python 的 heapq 模块默认实现小顶堆
|
||||
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
|
||||
# 在本示例中,flag = 1 时对应小顶堆,flag = -1 时对应大顶堆
|
||||
""" 元素入堆 """
|
||||
test_push(max_heap, 1, flag)
|
||||
test_push(max_heap, 3, flag)
|
||||
test_push(max_heap, 2, flag)
|
||||
test_push(max_heap, 5, flag)
|
||||
test_push(max_heap, 4, flag)
|
||||
|
||||
""" 获取堆顶元素 """
|
||||
peek = flag * max_heap[0]
|
||||
print(f"\n堆顶元素为 {peek}")
|
||||
|
||||
""" 堆顶元素出堆 """
|
||||
test_pop(max_heap, flag)
|
||||
test_pop(max_heap, flag)
|
||||
test_pop(max_heap, flag)
|
||||
test_pop(max_heap, flag)
|
||||
test_pop(max_heap, flag)
|
||||
|
||||
""" 获取堆大小 """
|
||||
size = len(max_heap)
|
||||
print(f"\n堆元素数量为 {size}")
|
||||
|
||||
""" 判断堆是否为空 """
|
||||
is_empty = not max_heap
|
||||
print(f"\n堆是否为空 {is_empty}")
|
||||
|
||||
""" 输入列表并建堆 """
|
||||
# 时间复杂度为 O(n) ,而非 O(nlogn)
|
||||
min_heap = [1, 3, 2, 5, 4]
|
||||
heapq.heapify(min_heap)
|
||||
print("\n输入列表并建立小顶堆后")
|
||||
print_heap(min_heap)
|
||||
144
codes/python/chapter_heap/my_heap.py
Normal file
144
codes/python/chapter_heap/my_heap.py
Normal file
@@ -0,0 +1,144 @@
|
||||
"""
|
||||
File: my_heap.py
|
||||
Created Time: 2023-02-23
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
import sys, os.path as osp
|
||||
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
|
||||
from include import *
|
||||
|
||||
# 大顶堆
|
||||
class MaxHeap:
|
||||
# 使用列表而非数组,这样无需考虑扩容问题
|
||||
def __init__(self, nums: List[int]):
|
||||
# 将列表元素原封不动添加进堆
|
||||
self.max_heap = nums
|
||||
# 堆化除叶结点以外的其他所有结点
|
||||
for i in range(self.parent(self.size() - 1), -1, -1):
|
||||
self.sift_down(i)
|
||||
|
||||
# 获取左子结点索引
|
||||
def left(self, i: int) -> int:
|
||||
return 2 * i + 1
|
||||
|
||||
# 获取右子结点索引
|
||||
def right(self, i: int) -> int:
|
||||
return 2 * i + 2
|
||||
|
||||
# 获取父结点索引
|
||||
def parent(self, i: int) -> int:
|
||||
return (i - 1) // 2 # 向下整除
|
||||
|
||||
# 交换元素
|
||||
def swap(self, i: int, j: int):
|
||||
a, b = self.max_heap[i], self.max_heap[j]
|
||||
self.max_heap[i], self.max_heap[j] = b, a
|
||||
|
||||
# 获取堆大小
|
||||
def size(self) -> int:
|
||||
return len(self.max_heap)
|
||||
|
||||
# 判断堆是否为空
|
||||
def is_empty(self) -> bool:
|
||||
return self.size() == 0
|
||||
|
||||
# 访问堆顶元素
|
||||
def peek(self) -> int:
|
||||
return self.max_heap[0]
|
||||
|
||||
# 元素入堆
|
||||
def push(self, val: int):
|
||||
# 添加结点
|
||||
self.max_heap.append(val)
|
||||
# 从底至顶堆化
|
||||
self.sift_up(self.size() - 1)
|
||||
|
||||
# 从结点 i 开始,从底至顶堆化
|
||||
def sift_up(self, i: int):
|
||||
while True:
|
||||
# 获取结点 i 的父结点
|
||||
p = self.parent(i)
|
||||
# 当“越过根结点”或“结点无需修复”时,结束堆化
|
||||
if p < 0 or self.max_heap[i] <= self.max_heap[p]:
|
||||
break
|
||||
# 交换两结点
|
||||
self.swap(i, p)
|
||||
# 循环向上堆化
|
||||
i = p
|
||||
|
||||
# 元素出堆
|
||||
def poll(self) -> int:
|
||||
# 判空处理
|
||||
assert not self.is_empty()
|
||||
# 交换根结点与最右叶结点(即交换首元素与尾元素)
|
||||
self.swap(0, self.size() - 1)
|
||||
# 删除结点
|
||||
val = self.max_heap.pop()
|
||||
# 从顶至底堆化
|
||||
self.sift_down(0)
|
||||
# 返回堆顶元素
|
||||
return val
|
||||
|
||||
# 从结点 i 开始,从顶至底堆化
|
||||
def sift_down(self, i: int):
|
||||
while True:
|
||||
# 判断结点 i, l, r 中值最大的结点,记为 ma
|
||||
l, r, ma = self.left(i), self.right(i), i
|
||||
if l < self.size() and self.max_heap[l] > self.max_heap[ma]:
|
||||
ma = l
|
||||
if r < self.size() and self.max_heap[r] > self.max_heap[ma]:
|
||||
ma = r
|
||||
# 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
|
||||
if ma == i:
|
||||
break
|
||||
# 交换两结点
|
||||
self.swap(i, ma)
|
||||
# 循环向下堆化
|
||||
i = ma
|
||||
|
||||
# 打印堆(二叉树)
|
||||
def print(self):
|
||||
print_heap(self.max_heap)
|
||||
|
||||
|
||||
def test_push(max_heap: MaxHeap, val: int):
|
||||
max_heap.push(val) # 元素入堆
|
||||
print(f"\n添加元素 {val} 后\n")
|
||||
max_heap.print()
|
||||
|
||||
|
||||
def test_poll(max_heap: MaxHeap):
|
||||
val = max_heap.poll() # 堆顶元素出堆
|
||||
print(f"\n出堆元素为 {val}\n")
|
||||
max_heap.print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 初始化大顶堆
|
||||
max_heap = MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2])
|
||||
print("\n输入列表并建堆后")
|
||||
max_heap.print()
|
||||
|
||||
# 获取堆顶元素
|
||||
peek = max_heap.peek()
|
||||
print(f"\n堆顶元素为 {peek}")
|
||||
|
||||
# 元素入堆
|
||||
val = 7
|
||||
max_heap.push(val)
|
||||
print(f"\n元素 {val} 入堆后")
|
||||
max_heap.print()
|
||||
|
||||
# 堆顶元素出堆
|
||||
peek = max_heap.poll()
|
||||
print(f"\n堆顶元素 {peek} 出堆后")
|
||||
max_heap.print()
|
||||
|
||||
# 获取堆大小
|
||||
size = max_heap.size()
|
||||
print(f"\n堆元素数量为 {size}")
|
||||
|
||||
# 判断堆是否为空
|
||||
is_empty = max_heap.is_empty()
|
||||
print(f"\n堆是否为空 {is_empty}")
|
||||
Reference in New Issue
Block a user