mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-21 23:16:41 +08:00
deploy
This commit is contained in:
@ -1834,7 +1834,7 @@
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="../../chapter_backtracking/subset_sum_problem/" class="md-nav__link">
|
||||
12.3. 子集和问题(New)
|
||||
12.3. 子集和问题
|
||||
</a>
|
||||
</li>
|
||||
|
||||
@ -1909,6 +1909,8 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -2071,6 +2073,20 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="../summary/" class="md-nav__link">
|
||||
13.7. 小结(New)
|
||||
</a>
|
||||
</li>
|
||||
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
</nav>
|
||||
</li>
|
||||
@ -2439,7 +2455,8 @@ dp[i] = dp[i-1] + dp[i-2]
|
||||
<p align="center"> Fig. 方案数量递推关系 </p>
|
||||
|
||||
<p>也就是说,在爬楼梯问题中,<strong>各个子问题之间不是相互独立的,原问题的解可以由子问题的解构成</strong>。</p>
|
||||
<p>我们可以基于此递推公式写出暴力搜索代码:以 <span class="arithmatex">\(dp[n]\)</span> 为起始点,<strong>从顶至底地将一个较大问题拆解为两个较小问题的和</strong>,直至到达最小子问题 <span class="arithmatex">\(dp[1]\)</span> 和 <span class="arithmatex">\(dp[2]\)</span> 时返回。其中,最小子问题的解 <span class="arithmatex">\(dp[1] = 1\)</span> , <span class="arithmatex">\(dp[2] = 2\)</span> 是已知的,代表爬到第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶分别有 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 种方案。</p>
|
||||
<p>我们可以基于此递推公式写出暴力搜索代码:以 <span class="arithmatex">\(dp[n]\)</span> 为起始点,<strong>从顶至底地将一个较大问题拆解为两个较小问题的和</strong>,直至到达最小子问题 <span class="arithmatex">\(dp[1]\)</span> 和 <span class="arithmatex">\(dp[2]\)</span> 时返回。</p>
|
||||
<p>请注意,最小子问题的解 <span class="arithmatex">\(dp[1] = 1\)</span> , <span class="arithmatex">\(dp[2] = 2\)</span> 是已知的,代表爬到第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶分别有 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 种方案。</p>
|
||||
<p>观察以下代码,它和标准回溯代码都属于深度优先搜索,但更加简洁。</p>
|
||||
<div class="tabbed-set tabbed-alternate" data-tabs="2:11"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JavaScript</label><label for="__tabbed_2_6">TypeScript</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label><label for="__tabbed_2_11">Dart</label></div>
|
||||
<div class="tabbed-content">
|
||||
@ -2914,7 +2931,7 @@ dp[i] = dp[i-1] + dp[i-2]
|
||||
</div>
|
||||
</div>
|
||||
<p><strong>我们将这种空间优化技巧称为「状态压缩」</strong>。在许多动态规划问题中,当前状态仅与前面有限个状态有关,不必保存所有的历史状态,这时我们可以应用状态压缩,只保留必要的状态,通过“降维”来节省内存空间。</p>
|
||||
<p>总的看来,子问题分解是一种通用的算法思路,在分治算法、动态规划、回溯算法中各有特点:</p>
|
||||
<p>总的看来,<strong>子问题分解是一种通用的算法思路,在分治、动态规划、回溯中各有特点</strong>:</p>
|
||||
<ul>
|
||||
<li>分治算法将原问题划分为几个独立的子问题,然后递归解决子问题,最后合并子问题的解得到原问题的解。例如,归并排序将长数组不断划分为两个短子数组,再将排序好的子数组合并为排序好的长数组。</li>
|
||||
<li>动态规划也是将原问题分解为多个子问题,但与分治算法的主要区别是,<strong>动态规划中的子问题往往不是相互独立的</strong>,原问题的解依赖于子问题的解,而子问题的解又依赖于更小的子问题的解。因此,动态规划通常会引入记忆化,保存已经解决的子问题的解,避免重复计算。</li>
|
||||
|
Reference in New Issue
Block a user