translation: Add Python and Java code for EN version (#1345)

* Add the intial translation of code of all the languages

* test

* revert

* Remove

* Add Python and Java code for EN version
This commit is contained in:
Yudong Jin
2024-05-06 05:21:51 +08:00
committed by GitHub
parent b5e198db7d
commit 1c0f350ad6
174 changed files with 12349 additions and 0 deletions

View File

@ -0,0 +1,44 @@
"""
File: bubble_sort.py
Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
"""
def bubble_sort(nums: list[int]):
"""Bubble sort"""
n = len(nums)
# Outer loop: unsorted range is [0, i]
for i in range(n - 1, 0, -1):
# Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
for j in range(i):
if nums[j] > nums[j + 1]:
# Swap nums[j] and nums[j + 1]
nums[j], nums[j + 1] = nums[j + 1], nums[j]
def bubble_sort_with_flag(nums: list[int]):
"""Bubble sort (optimized with flag)"""
n = len(nums)
# Outer loop: unsorted range is [0, i]
for i in range(n - 1, 0, -1):
flag = False # Initialize flag
# Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
for j in range(i):
if nums[j] > nums[j + 1]:
# Swap nums[j] and nums[j + 1]
nums[j], nums[j + 1] = nums[j + 1], nums[j]
flag = True # Record swapped elements
if not flag:
break # If no elements were swapped in this round of "bubbling", exit
"""Driver Code"""
if __name__ == "__main__":
nums = [4, 1, 3, 1, 5, 2]
bubble_sort(nums)
print("Bubble sort completed nums =", nums)
nums1 = [4, 1, 3, 1, 5, 2]
bubble_sort_with_flag(nums1)
print("Bubble sort completed nums =", nums1)

View File

@ -0,0 +1,35 @@
"""
File: bucket_sort.py
Created Time: 2023-03-30
Author: krahets (krahets@163.com)
"""
def bucket_sort(nums: list[float]):
"""Bucket sort"""
# Initialize k = n/2 buckets, expected to allocate 2 elements per bucket
k = len(nums) // 2
buckets = [[] for _ in range(k)]
# 1. Distribute array elements into various buckets
for num in nums:
# Input data range is [0, 1), use num * k to map to index range [0, k-1]
i = int(num * k)
# Add num to bucket i
buckets[i].append(num)
# 2. Sort each bucket
for bucket in buckets:
# Use built-in sorting function, can also replace with other sorting algorithms
bucket.sort()
# 3. Traverse buckets to merge results
i = 0
for bucket in buckets:
for num in bucket:
nums[i] = num
i += 1
if __name__ == "__main__":
# Assume input data is floating point, range [0, 1)
nums = [0.49, 0.96, 0.82, 0.09, 0.57, 0.43, 0.91, 0.75, 0.15, 0.37]
bucket_sort(nums)
print("Bucket sort completed nums =", nums)

View File

@ -0,0 +1,64 @@
"""
File: counting_sort.py
Created Time: 2023-03-21
Author: krahets (krahets@163.com)
"""
def counting_sort_naive(nums: list[int]):
"""Counting sort"""
# Simple implementation, cannot be used for sorting objects
# 1. Count the maximum element m in the array
m = 0
for num in nums:
m = max(m, num)
# 2. Count the occurrence of each digit
# counter[num] represents the occurrence of num
counter = [0] * (m + 1)
for num in nums:
counter[num] += 1
# 3. Traverse counter, filling each element back into the original array nums
i = 0
for num in range(m + 1):
for _ in range(counter[num]):
nums[i] = num
i += 1
def counting_sort(nums: list[int]):
"""Counting sort"""
# Complete implementation, can sort objects and is a stable sort
# 1. Count the maximum element m in the array
m = max(nums)
# 2. Count the occurrence of each digit
# counter[num] represents the occurrence of num
counter = [0] * (m + 1)
for num in nums:
counter[num] += 1
# 3. Calculate the prefix sum of counter, converting "occurrence count" to "tail index"
# counter[num]-1 is the last index where num appears in res
for i in range(m):
counter[i + 1] += counter[i]
# 4. Traverse nums in reverse order, placing each element into the result array res
# Initialize the array res to record results
n = len(nums)
res = [0] * n
for i in range(n - 1, -1, -1):
num = nums[i]
res[counter[num] - 1] = num # Place num at the corresponding index
counter[num] -= 1 # Decrement the prefix sum by 1, getting the next index to place num
# Use result array res to overwrite the original array nums
for i in range(n):
nums[i] = res[i]
"""Driver Code"""
if __name__ == "__main__":
nums = [1, 0, 1, 2, 0, 4, 0, 2, 2, 4]
counting_sort_naive(nums)
print(f"Counting sort (unable to sort objects) completed nums = {nums}")
nums1 = [1, 0, 1, 2, 0, 4, 0, 2, 2, 4]
counting_sort(nums1)
print(f"Counting sort completed nums1 = {nums1}")

View File

@ -0,0 +1,45 @@
"""
File: heap_sort.py
Created Time: 2023-05-24
Author: krahets (krahets@163.com)
"""
def sift_down(nums: list[int], n: int, i: int):
"""Heap length is n, start heapifying node i, from top to bottom"""
while True:
# Determine the largest node among i, l, r, noted as ma
l = 2 * i + 1
r = 2 * i + 2
ma = i
if l < n and nums[l] > nums[ma]:
ma = l
if r < n and nums[r] > nums[ma]:
ma = r
# If node i is the largest or indices l, r are out of bounds, no further heapification needed, break
if ma == i:
break
# Swap two nodes
nums[i], nums[ma] = nums[ma], nums[i]
# Loop downwards heapification
i = ma
def heap_sort(nums: list[int]):
"""Heap sort"""
# Build heap operation: heapify all nodes except leaves
for i in range(len(nums) // 2 - 1, -1, -1):
sift_down(nums, len(nums), i)
# Extract the largest element from the heap and repeat for n-1 rounds
for i in range(len(nums) - 1, 0, -1):
# Swap the root node with the rightmost leaf node (swap the first element with the last element)
nums[0], nums[i] = nums[i], nums[0]
# Start heapifying the root node, from top to bottom
sift_down(nums, i, 0)
"""Driver Code"""
if __name__ == "__main__":
nums = [4, 1, 3, 1, 5, 2]
heap_sort(nums)
print("Heap sort completed nums =", nums)

View File

@ -0,0 +1,25 @@
"""
File: insertion_sort.py
Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
"""
def insertion_sort(nums: list[int]):
"""Insertion sort"""
# Outer loop: sorted range is [0, i-1]
for i in range(1, len(nums)):
base = nums[i]
j = i - 1
# Inner loop: insert base into the correct position within the sorted range [0, i-1]
while j >= 0 and nums[j] > base:
nums[j + 1] = nums[j] # Move nums[j] to the right by one position
j -= 1
nums[j + 1] = base # Assign base to the correct position
"""Driver Code"""
if __name__ == "__main__":
nums = [4, 1, 3, 1, 5, 2]
insertion_sort(nums)
print("Insertion sort completed nums =", nums)

View File

@ -0,0 +1,55 @@
"""
File: merge_sort.py
Created Time: 2022-11-25
Author: timi (xisunyy@163.com), krahets (krahets@163.com)
"""
def merge(nums: list[int], left: int, mid: int, right: int):
"""Merge left subarray and right subarray"""
# Left subarray interval is [left, mid], right subarray interval is [mid+1, right]
# Create a temporary array tmp to store the merged results
tmp = [0] * (right - left + 1)
# Initialize the start indices of the left and right subarrays
i, j, k = left, mid + 1, 0
# While both subarrays still have elements, compare and copy the smaller element into the temporary array
while i <= mid and j <= right:
if nums[i] <= nums[j]:
tmp[k] = nums[i]
i += 1
else:
tmp[k] = nums[j]
j += 1
k += 1
# Copy the remaining elements of the left and right subarrays into the temporary array
while i <= mid:
tmp[k] = nums[i]
i += 1
k += 1
while j <= right:
tmp[k] = nums[j]
j += 1
k += 1
# Copy the elements from the temporary array tmp back to the original array nums at the corresponding interval
for k in range(0, len(tmp)):
nums[left + k] = tmp[k]
def merge_sort(nums: list[int], left: int, right: int):
"""Merge sort"""
# Termination condition
if left >= right:
return # Terminate recursion when subarray length is 1
# Partition stage
mid = (left + right) // 2 # Calculate midpoint
merge_sort(nums, left, mid) # Recursively process the left subarray
merge_sort(nums, mid + 1, right) # Recursively process the right subarray
# Merge stage
merge(nums, left, mid, right)
"""Driver Code"""
if __name__ == "__main__":
nums = [7, 3, 2, 6, 0, 1, 5, 4]
merge_sort(nums, 0, len(nums) - 1)
print("Merge sort completed nums =", nums)

View File

@ -0,0 +1,129 @@
"""
File: quick_sort.py
Created Time: 2022-11-25
Author: timi (xisunyy@163.com)
"""
class QuickSort:
"""Quick sort class"""
def partition(self, nums: list[int], left: int, right: int) -> int:
"""Partition"""
# Use nums[left] as the pivot
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
j -= 1 # Search from right to left for the first element smaller than the pivot
while i < j and nums[i] <= nums[left]:
i += 1 # Search from left to right for the first element greater than the pivot
# Swap elements
nums[i], nums[j] = nums[j], nums[i]
# Swap the pivot to the boundary between the two subarrays
nums[i], nums[left] = nums[left], nums[i]
return i # Return the index of the pivot
def quick_sort(self, nums: list[int], left: int, right: int):
"""Quick sort"""
# Terminate recursion when subarray length is 1
if left >= right:
return
# Partition
pivot = self.partition(nums, left, right)
# Recursively process the left subarray and right subarray
self.quick_sort(nums, left, pivot - 1)
self.quick_sort(nums, pivot + 1, right)
class QuickSortMedian:
"""Quick sort class (median pivot optimization)"""
def median_three(self, nums: list[int], left: int, mid: int, right: int) -> int:
"""Select the median of three candidate elements"""
l, m, r = nums[left], nums[mid], nums[right]
if (l <= m <= r) or (r <= m <= l):
return mid # m is between l and r
if (m <= l <= r) or (r <= l <= m):
return left # l is between m and r
return right
def partition(self, nums: list[int], left: int, right: int) -> int:
"""Partition (median of three)"""
# Use nums[left] as the pivot
med = self.median_three(nums, left, (left + right) // 2, right)
# Swap the median to the array's leftmost position
nums[left], nums[med] = nums[med], nums[left]
# Use nums[left] as the pivot
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
j -= 1 # Search from right to left for the first element smaller than the pivot
while i < j and nums[i] <= nums[left]:
i += 1 # Search from left to right for the first element greater than the pivot
# Swap elements
nums[i], nums[j] = nums[j], nums[i]
# Swap the pivot to the boundary between the two subarrays
nums[i], nums[left] = nums[left], nums[i]
return i # Return the index of the pivot
def quick_sort(self, nums: list[int], left: int, right: int):
"""Quick sort"""
# Terminate recursion when subarray length is 1
if left >= right:
return
# Partition
pivot = self.partition(nums, left, right)
# Recursively process the left subarray and right subarray
self.quick_sort(nums, left, pivot - 1)
self.quick_sort(nums, pivot + 1, right)
class QuickSortTailCall:
"""Quick sort class (tail recursion optimization)"""
def partition(self, nums: list[int], left: int, right: int) -> int:
"""Partition"""
# Use nums[left] as the pivot
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
j -= 1 # Search from right to left for the first element smaller than the pivot
while i < j and nums[i] <= nums[left]:
i += 1 # Search from left to right for the first element greater than the pivot
# Swap elements
nums[i], nums[j] = nums[j], nums[i]
# Swap the pivot to the boundary between the two subarrays
nums[i], nums[left] = nums[left], nums[i]
return i # Return the index of the pivot
def quick_sort(self, nums: list[int], left: int, right: int):
"""Quick sort (tail recursion optimization)"""
# Terminate when subarray length is 1
while left < right:
# Partition operation
pivot = self.partition(nums, left, right)
# Perform quick sort on the shorter of the two subarrays
if pivot - left < right - pivot:
self.quick_sort(nums, left, pivot - 1) # Recursively sort the left subarray
left = pivot + 1 # Remaining unsorted interval is [pivot + 1, right]
else:
self.quick_sort(nums, pivot + 1, right) # Recursively sort the right subarray
right = pivot - 1 # Remaining unsorted interval is [left, pivot - 1]
"""Driver Code"""
if __name__ == "__main__":
# Quick sort
nums = [2, 4, 1, 0, 3, 5]
QuickSort().quick_sort(nums, 0, len(nums) - 1)
print("Quick sort completed nums =", nums)
# Quick sort (median pivot optimization)
nums1 = [2, 4, 1, 0, 3, 5]
QuickSortMedian().quick_sort(nums1, 0, len(nums1) - 1)
print("Quick sort (median pivot optimization) completed nums =", nums1)
# Quick sort (tail recursion optimization)
nums2 = [2, 4, 1, 0, 3, 5]
QuickSortTailCall().quick_sort(nums2, 0, len(nums2) - 1)
print("Quick sort (tail recursion optimization) completed nums =", nums2)

View File

@ -0,0 +1,69 @@
"""
File: radix_sort.py
Created Time: 2023-03-26
Author: krahets (krahets@163.com)
"""
def digit(num: int, exp: int) -> int:
"""Get the k-th digit of element num, where exp = 10^(k-1)"""
# Passing exp instead of k can avoid repeated expensive exponentiation here
return (num // exp) % 10
def counting_sort_digit(nums: list[int], exp: int):
"""Counting sort (based on nums k-th digit)"""
# Decimal digit range is 0~9, therefore need a bucket array of length 10
counter = [0] * 10
n = len(nums)
# Count the occurrence of digits 0~9
for i in range(n):
d = digit(nums[i], exp) # Get the k-th digit of nums[i], noted as d
counter[d] += 1 # Count the occurrence of digit d
# Calculate prefix sum, converting "occurrence count" into "array index"
for i in range(1, 10):
counter[i] += counter[i - 1]
# Traverse in reverse, based on bucket statistics, place each element into res
res = [0] * n
for i in range(n - 1, -1, -1):
d = digit(nums[i], exp)
j = counter[d] - 1 # Get the index j for d in the array
res[j] = nums[i] # Place the current element at index j
counter[d] -= 1 # Decrease the count of d by 1
# Use result to overwrite the original array nums
for i in range(n):
nums[i] = res[i]
def radix_sort(nums: list[int]):
"""Radix sort"""
# Get the maximum element of the array, used to determine the maximum number of digits
m = max(nums)
# Traverse from the lowest to the highest digit
exp = 1
while exp <= m:
# Perform counting sort on the k-th digit of array elements
# k = 1 -> exp = 1
# k = 2 -> exp = 10
# i.e., exp = 10^(k-1)
counting_sort_digit(nums, exp)
exp *= 10
"""Driver Code"""
if __name__ == "__main__":
# Radix sort
nums = [
10546151,
35663510,
42865989,
34862445,
81883077,
88906420,
72429244,
30524779,
82060337,
63832996,
]
radix_sort(nums)
print("Radix sort completed nums =", nums)

View File

@ -0,0 +1,26 @@
"""
File: selection_sort.py
Created Time: 2023-05-22
Author: krahets (krahets@163.com)
"""
def selection_sort(nums: list[int]):
"""Selection sort"""
n = len(nums)
# Outer loop: unsorted range is [i, n-1]
for i in range(n - 1):
# Inner loop: find the smallest element within the unsorted range
k = i
for j in range(i + 1, n):
if nums[j] < nums[k]:
k = j # Record the index of the smallest element
# Swap the smallest element with the first element of the unsorted range
nums[i], nums[k] = nums[k], nums[i]
"""Driver Code"""
if __name__ == "__main__":
nums = [4, 1, 3, 1, 5, 2]
selection_sort(nums)
print("Selection sort completed nums =", nums)