translation: Add Python and Java code for EN version (#1345)

* Add the intial translation of code of all the languages

* test

* revert

* Remove

* Add Python and Java code for EN version
This commit is contained in:
Yudong Jin
2024-05-06 05:21:51 +08:00
committed by GitHub
parent b5e198db7d
commit 1c0f350ad6
174 changed files with 12349 additions and 0 deletions

View File

@ -0,0 +1,48 @@
"""
File: coin_change_greedy.py
Created Time: 2023-07-18
Author: krahets (krahets@163.com)
"""
def coin_change_greedy(coins: list[int], amt: int) -> int:
"""Coin change: Greedy"""
# Assume coins list is ordered
i = len(coins) - 1
count = 0
# Loop for greedy selection until no remaining amount
while amt > 0:
# Find the smallest coin close to and less than the remaining amount
while i > 0 and coins[i] > amt:
i -= 1
# Choose coins[i]
amt -= coins[i]
count += 1
# If no feasible solution is found, return -1
return count if amt == 0 else -1
"""Driver Code"""
if __name__ == "__main__":
# Greedy: can ensure finding a global optimal solution
coins = [1, 5, 10, 20, 50, 100]
amt = 186
res = coin_change_greedy(coins, amt)
print(f"\ncoins = {coins}, amt = {amt}")
print(f"The minimum number of coins needed to make up {amt} is {res}")
# Greedy: cannot ensure finding a global optimal solution
coins = [1, 20, 50]
amt = 60
res = coin_change_greedy(coins, amt)
print(f"\ncoins = {coins}, amt = {amt}")
print(f"The minimum number of coins needed to make up {amt} is {res}")
print(f"In reality, the minimum number needed is 3, i.e., 20 + 20 + 20")
# Greedy: cannot ensure finding a global optimal solution
coins = [1, 49, 50]
amt = 98
res = coin_change_greedy(coins, amt)
print(f"\ncoins = {coins}, amt = {amt}")
print(f"The minimum number of coins needed to make up {amt} is {res}")
print(f"In reality, the minimum number needed is 2, i.e., 49 + 49")

View File

@ -0,0 +1,46 @@
"""
File: fractional_knapsack.py
Created Time: 2023-07-19
Author: krahets (krahets@163.com)
"""
class Item:
"""Item"""
def __init__(self, w: int, v: int):
self.w = w # Item weight
self.v = v # Item value
def fractional_knapsack(wgt: list[int], val: list[int], cap: int) -> int:
"""Fractional knapsack: Greedy"""
# Create an item list, containing two properties: weight, value
items = [Item(w, v) for w, v in zip(wgt, val)]
# Sort by unit value item.v / item.w from high to low
items.sort(key=lambda item: item.v / item.w, reverse=True)
# Loop for greedy selection
res = 0
for item in items:
if item.w <= cap:
# If the remaining capacity is sufficient, put the entire item into the knapsack
res += item.v
cap -= item.w
else:
# If the remaining capacity is insufficient, put part of the item into the knapsack
res += (item.v / item.w) * cap
# No remaining capacity left, thus break the loop
break
return res
"""Driver Code"""
if __name__ == "__main__":
wgt = [10, 20, 30, 40, 50]
val = [50, 120, 150, 210, 240]
cap = 50
n = len(wgt)
# Greedy algorithm
res = fractional_knapsack(wgt, val, cap)
print(f"The maximum item value without exceeding knapsack capacity is {res}")

View File

@ -0,0 +1,33 @@
"""
File: max_capacity.py
Created Time: 2023-07-21
Author: krahets (krahets@163.com)
"""
def max_capacity(ht: list[int]) -> int:
"""Maximum capacity: Greedy"""
# Initialize i, j, making them split the array at both ends
i, j = 0, len(ht) - 1
# Initial maximum capacity is 0
res = 0
# Loop for greedy selection until the two boards meet
while i < j:
# Update maximum capacity
cap = min(ht[i], ht[j]) * (j - i)
res = max(res, cap)
# Move the shorter board inward
if ht[i] < ht[j]:
i += 1
else:
j -= 1
return res
"""Driver Code"""
if __name__ == "__main__":
ht = [3, 8, 5, 2, 7, 7, 3, 4]
# Greedy algorithm
res = max_capacity(ht)
print(f"Maximum capacity is {res}")

View File

@ -0,0 +1,33 @@
"""
File: max_product_cutting.py
Created Time: 2023-07-21
Author: krahets (krahets@163.com)
"""
import math
def max_product_cutting(n: int) -> int:
"""Maximum product of cutting: Greedy"""
# When n <= 3, must cut out a 1
if n <= 3:
return 1 * (n - 1)
# Greedy cut out 3s, a is the number of 3s, b is the remainder
a, b = n // 3, n % 3
if b == 1:
# When the remainder is 1, convert a pair of 1 * 3 into 2 * 2
return int(math.pow(3, a - 1)) * 2 * 2
if b == 2:
# When the remainder is 2, do nothing
return int(math.pow(3, a)) * 2
# When the remainder is 0, do nothing
return int(math.pow(3, a))
"""Driver Code"""
if __name__ == "__main__":
n = 58
# Greedy algorithm
res = max_product_cutting(n)
print(f"Maximum product of cutting is {res}")