mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-06 22:34:18 +08:00
translation: Add Python and Java code for EN version (#1345)
* Add the intial translation of code of all the languages * test * revert * Remove * Add Python and Java code for EN version
This commit is contained in:
101
en/codes/python/chapter_dynamic_programming/knapsack.py
Normal file
101
en/codes/python/chapter_dynamic_programming/knapsack.py
Normal file
@ -0,0 +1,101 @@
|
||||
"""
|
||||
File: knapsack.py
|
||||
Created Time: 2023-07-03
|
||||
Author: krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
|
||||
def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:
|
||||
"""0-1 Knapsack: Brute force search"""
|
||||
# If all items have been chosen or the knapsack has no remaining capacity, return value 0
|
||||
if i == 0 or c == 0:
|
||||
return 0
|
||||
# If exceeding the knapsack capacity, can only choose not to put it in the knapsack
|
||||
if wgt[i - 1] > c:
|
||||
return knapsack_dfs(wgt, val, i - 1, c)
|
||||
# Calculate the maximum value of not putting in and putting in item i
|
||||
no = knapsack_dfs(wgt, val, i - 1, c)
|
||||
yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
|
||||
# Return the greater value of the two options
|
||||
return max(no, yes)
|
||||
|
||||
|
||||
def knapsack_dfs_mem(
|
||||
wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int
|
||||
) -> int:
|
||||
"""0-1 Knapsack: Memoized search"""
|
||||
# If all items have been chosen or the knapsack has no remaining capacity, return value 0
|
||||
if i == 0 or c == 0:
|
||||
return 0
|
||||
# If there is a record, return it
|
||||
if mem[i][c] != -1:
|
||||
return mem[i][c]
|
||||
# If exceeding the knapsack capacity, can only choose not to put it in the knapsack
|
||||
if wgt[i - 1] > c:
|
||||
return knapsack_dfs_mem(wgt, val, mem, i - 1, c)
|
||||
# Calculate the maximum value of not putting in and putting in item i
|
||||
no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
|
||||
yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
|
||||
# Record and return the greater value of the two options
|
||||
mem[i][c] = max(no, yes)
|
||||
return mem[i][c]
|
||||
|
||||
|
||||
def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
|
||||
"""0-1 Knapsack: Dynamic programming"""
|
||||
n = len(wgt)
|
||||
# Initialize dp table
|
||||
dp = [[0] * (cap + 1) for _ in range(n + 1)]
|
||||
# State transition
|
||||
for i in range(1, n + 1):
|
||||
for c in range(1, cap + 1):
|
||||
if wgt[i - 1] > c:
|
||||
# If exceeding the knapsack capacity, do not choose item i
|
||||
dp[i][c] = dp[i - 1][c]
|
||||
else:
|
||||
# The greater value between not choosing and choosing item i
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
|
||||
return dp[n][cap]
|
||||
|
||||
|
||||
def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
|
||||
"""0-1 Knapsack: Space-optimized dynamic programming"""
|
||||
n = len(wgt)
|
||||
# Initialize dp table
|
||||
dp = [0] * (cap + 1)
|
||||
# State transition
|
||||
for i in range(1, n + 1):
|
||||
# Traverse in reverse order
|
||||
for c in range(cap, 0, -1):
|
||||
if wgt[i - 1] > c:
|
||||
# If exceeding the knapsack capacity, do not choose item i
|
||||
dp[c] = dp[c]
|
||||
else:
|
||||
# The greater value between not choosing and choosing item i
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
|
||||
return dp[cap]
|
||||
|
||||
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
wgt = [10, 20, 30, 40, 50]
|
||||
val = [50, 120, 150, 210, 240]
|
||||
cap = 50
|
||||
n = len(wgt)
|
||||
|
||||
# Brute force search
|
||||
res = knapsack_dfs(wgt, val, n, cap)
|
||||
print(f"The maximum item value without exceeding knapsack capacity is {res}")
|
||||
|
||||
# Memoized search
|
||||
mem = [[-1] * (cap + 1) for _ in range(n + 1)]
|
||||
res = knapsack_dfs_mem(wgt, val, mem, n, cap)
|
||||
print(f"The maximum item value without exceeding knapsack capacity is {res}")
|
||||
|
||||
# Dynamic programming
|
||||
res = knapsack_dp(wgt, val, cap)
|
||||
print(f"The maximum item value without exceeding knapsack capacity is {res}")
|
||||
|
||||
# Space-optimized dynamic programming
|
||||
res = knapsack_dp_comp(wgt, val, cap)
|
||||
print(f"The maximum item value without exceeding knapsack capacity is {res}")
|
Reference in New Issue
Block a user