translation: Add Python and Java code for EN version (#1345)

* Add the intial translation of code of all the languages

* test

* revert

* Remove

* Add Python and Java code for EN version
This commit is contained in:
Yudong Jin
2024-05-06 05:21:51 +08:00
committed by GitHub
parent b5e198db7d
commit 1c0f350ad6
174 changed files with 12349 additions and 0 deletions

View File

@ -0,0 +1,65 @@
"""
File: iteration.py
Created Time: 2023-08-24
Author: krahets (krahets@163.com)
"""
def for_loop(n: int) -> int:
"""for loop"""
res = 0
# Loop sum 1, 2, ..., n-1, n
for i in range(1, n + 1):
res += i
return res
def while_loop(n: int) -> int:
"""while loop"""
res = 0
i = 1 # Initialize condition variable
# Loop sum 1, 2, ..., n-1, n
while i <= n:
res += i
i += 1 # Update condition variable
return res
def while_loop_ii(n: int) -> int:
"""while loop (two updates)"""
res = 0
i = 1 # Initialize condition variable
# Loop sum 1, 4, 10, ...
while i <= n:
res += i
# Update condition variable
i += 1
i *= 2
return res
def nested_for_loop(n: int) -> str:
"""Double for loop"""
res = ""
# Loop i = 1, 2, ..., n-1, n
for i in range(1, n + 1):
# Loop j = 1, 2, ..., n-1, n
for j in range(1, n + 1):
res += f"({i}, {j}), "
return res
"""Driver Code"""
if __name__ == "__main__":
n = 5
res = for_loop(n)
print(f"\nfor loop sum result res = {res}")
res = while_loop(n)
print(f"\nwhile loop sum result res = {res}")
res = while_loop_ii(n)
print(f"\nwhile loop (two updates) sum result res = {res}")
res = nested_for_loop(n)
print(f"\nDouble for loop traversal result {res}")

View File

@ -0,0 +1,69 @@
"""
File: recursion.py
Created Time: 2023-08-24
Author: krahets (krahets@163.com)
"""
def recur(n: int) -> int:
"""Recursion"""
# Termination condition
if n == 1:
return 1
# Recursive: recursive call
res = recur(n - 1)
# Return: return result
return n + res
def for_loop_recur(n: int) -> int:
"""Simulate recursion with iteration"""
# Use an explicit stack to simulate the system call stack
stack = []
res = 0
# Recursive: recursive call
for i in range(n, 0, -1):
# Simulate "recursive" by "pushing onto the stack"
stack.append(i)
# Return: return result
while stack:
# Simulate "return" by "popping from the stack"
res += stack.pop()
# res = 1+2+3+...+n
return res
def tail_recur(n, res):
"""Tail recursion"""
# Termination condition
if n == 0:
return res
# Tail recursive call
return tail_recur(n - 1, res + n)
def fib(n: int) -> int:
"""Fibonacci sequence: Recursion"""
# Termination condition f(1) = 0, f(2) = 1
if n == 1 or n == 2:
return n - 1
# Recursive call f(n) = f(n-1) + f(n-2)
res = fib(n - 1) + fib(n - 2)
# Return result f(n)
return res
"""Driver Code"""
if __name__ == "__main__":
n = 5
res = recur(n)
print(f"\nRecursive function sum result res = {res}")
res = for_loop_recur(n)
print(f"\nSimulate recursion with iteration sum result res = {res}")
res = tail_recur(n, 0)
print(f"\nTail recursive function sum result res = {res}")
res = fib(n)
print(f"\nThe n th term of the Fibonacci sequence is {res}")

View File

@ -0,0 +1,90 @@
"""
File: space_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import ListNode, TreeNode, print_tree
def function() -> int:
"""Function"""
# Perform some operations
return 0
def constant(n: int):
"""Constant complexity"""
# Constants, variables, objects occupy O(1) space
a = 0
nums = [0] * 10000
node = ListNode(0)
# Variables in a loop occupy O(1) space
for _ in range(n):
c = 0
# Functions in a loop occupy O(1) space
for _ in range(n):
function()
def linear(n: int):
"""Linear complexity"""
# A list of length n occupies O(n) space
nums = [0] * n
# A hash table of length n occupies O(n) space
hmap = dict[int, str]()
for i in range(n):
hmap[i] = str(i)
def linear_recur(n: int):
"""Linear complexity (recursive implementation)"""
print("Recursive n =", n)
if n == 1:
return
linear_recur(n - 1)
def quadratic(n: int):
"""Quadratic complexity"""
# A two-dimensional list occupies O(n^2) space
num_matrix = [[0] * n for _ in range(n)]
def quadratic_recur(n: int) -> int:
"""Quadratic complexity (recursive implementation)"""
if n <= 0:
return 0
# Array nums length = n, n-1, ..., 2, 1
nums = [0] * n
return quadratic_recur(n - 1)
def build_tree(n: int) -> TreeNode | None:
"""Exponential complexity (building a full binary tree)"""
if n == 0:
return None
root = TreeNode(0)
root.left = build_tree(n - 1)
root.right = build_tree(n - 1)
return root
"""Driver Code"""
if __name__ == "__main__":
n = 5
# Constant complexity
constant(n)
# Linear complexity
linear(n)
linear_recur(n)
# Quadratic complexity
quadratic(n)
quadratic_recur(n)
# Exponential complexity
root = build_tree(n)
print_tree(root)

View File

@ -0,0 +1,151 @@
"""
File: time_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
def constant(n: int) -> int:
"""Constant complexity"""
count = 0
size = 100000
for _ in range(size):
count += 1
return count
def linear(n: int) -> int:
"""Linear complexity"""
count = 0
for _ in range(n):
count += 1
return count
def array_traversal(nums: list[int]) -> int:
"""Linear complexity (traversing an array)"""
count = 0
# Loop count is proportional to the length of the array
for num in nums:
count += 1
return count
def quadratic(n: int) -> int:
"""Quadratic complexity"""
count = 0
# Loop count is squared in relation to the data size n
for i in range(n):
for j in range(n):
count += 1
return count
def bubble_sort(nums: list[int]) -> int:
"""Quadratic complexity (bubble sort)"""
count = 0 # Counter
# Outer loop: unsorted range is [0, i]
for i in range(len(nums) - 1, 0, -1):
# Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
for j in range(i):
if nums[j] > nums[j + 1]:
# Swap nums[j] and nums[j + 1]
tmp: int = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # Element swap includes 3 individual operations
return count
def exponential(n: int) -> int:
"""Exponential complexity (loop implementation)"""
count = 0
base = 1
# Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
for _ in range(n):
for _ in range(base):
count += 1
base *= 2
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
def exp_recur(n: int) -> int:
"""Exponential complexity (recursive implementation)"""
if n == 1:
return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
def logarithmic(n: int) -> int:
"""Logarithmic complexity (loop implementation)"""
count = 0
while n > 1:
n = n / 2
count += 1
return count
def log_recur(n: int) -> int:
"""Logarithmic complexity (recursive implementation)"""
if n <= 1:
return 0
return log_recur(n / 2) + 1
def linear_log_recur(n: int) -> int:
"""Linear logarithmic complexity"""
if n <= 1:
return 1
count: int = linear_log_recur(n // 2) + linear_log_recur(n // 2)
for _ in range(n):
count += 1
return count
def factorial_recur(n: int) -> int:
"""Factorial complexity (recursive implementation)"""
if n == 0:
return 1
count = 0
# From 1 split into n
for _ in range(n):
count += factorial_recur(n - 1)
return count
"""Driver Code"""
if __name__ == "__main__":
# Can modify n to experience the trend of operation count changes under various complexities
n = 8
print("Input data size n =", n)
count: int = constant(n)
print("Constant complexity operation count =", count)
count: int = linear(n)
print("Linear complexity operation count =", count)
count: int = array_traversal([0] * n)
print("Linear complexity (traversing an array) operation count =", count)
count: int = quadratic(n)
print("Quadratic complexity operation count =", count)
nums = [i for i in range(n, 0, -1)] # [n, n-1, ..., 2, 1]
count: int = bubble_sort(nums)
print("Quadratic complexity (bubble sort) operation count =", count)
count: int = exponential(n)
print("Exponential complexity (loop implementation) operation count =", count)
count: int = exp_recur(n)
print("Exponential complexity (recursive implementation) operation count =", count)
count: int = logarithmic(n)
print("Logarithmic complexity (loop implementation) operation count =", count)
count: int = log_recur(n)
print("Logarithmic complexity (recursive implementation) operation count =", count)
count: int = linear_log_recur(n)
print("Linear logarithmic complexity (recursive implementation) operation count =", count)
count: int = factorial_recur(n)
print("Factorial complexity (recursive implementation) operation count =", count)

View File

@ -0,0 +1,36 @@
"""
File: worst_best_time_complexity.py
Created Time: 2022-11-25
Author: krahets (krahets@163.com)
"""
import random
def random_numbers(n: int) -> list[int]:
"""Generate an array with elements: 1, 2, ..., n, order shuffled"""
# Generate array nums =: 1, 2, 3, ..., n
nums = [i for i in range(1, n + 1)]
# Randomly shuffle array elements
random.shuffle(nums)
return nums
def find_one(nums: list[int]) -> int:
"""Find the index of number 1 in array nums"""
for i in range(len(nums)):
# When element 1 is at the start of the array, achieve best time complexity O(1)
# When element 1 is at the end of the array, achieve worst time complexity O(n)
if nums[i] == 1:
return i
return -1
"""Driver Code"""
if __name__ == "__main__":
for i in range(10):
n = 100
nums: list[int] = random_numbers(n)
index: int = find_one(nums)
print("\nThe array [ 1, 2, ..., n ] after being shuffled =", nums)
print("Index of number 1 =", index)