translation: Add Python and Java code for EN version (#1345)

* Add the intial translation of code of all the languages

* test

* revert

* Remove

* Add Python and Java code for EN version
This commit is contained in:
Yudong Jin
2024-05-06 05:21:51 +08:00
committed by GitHub
parent b5e198db7d
commit 1c0f350ad6
174 changed files with 12349 additions and 0 deletions

View File

@ -0,0 +1,62 @@
"""
File: n_queens.py
Created Time: 2023-04-26
Author: krahets (krahets@163.com)
"""
def backtrack(
row: int,
n: int,
state: list[list[str]],
res: list[list[list[str]]],
cols: list[bool],
diags1: list[bool],
diags2: list[bool],
):
"""Backtracking algorithm: n queens"""
# When all rows are placed, record the solution
if row == n:
res.append([list(row) for row in state])
return
# Traverse all columns
for col in range(n):
# Calculate the main and minor diagonals corresponding to the cell
diag1 = row - col + n - 1
diag2 = row + col
# Pruning: do not allow queens on the column, main diagonal, or minor diagonal of the cell
if not cols[col] and not diags1[diag1] and not diags2[diag2]:
# Attempt: place the queen in the cell
state[row][col] = "Q"
cols[col] = diags1[diag1] = diags2[diag2] = True
# Place the next row
backtrack(row + 1, n, state, res, cols, diags1, diags2)
# Retract: restore the cell to an empty spot
state[row][col] = "#"
cols[col] = diags1[diag1] = diags2[diag2] = False
def n_queens(n: int) -> list[list[list[str]]]:
"""Solve n queens"""
# Initialize an n*n size chessboard, where 'Q' represents the queen and '#' represents an empty spot
state = [["#" for _ in range(n)] for _ in range(n)]
cols = [False] * n # Record columns with queens
diags1 = [False] * (2 * n - 1) # Record main diagonals with queens
diags2 = [False] * (2 * n - 1) # Record minor diagonals with queens
res = []
backtrack(0, n, state, res, cols, diags1, diags2)
return res
"""Driver Code"""
if __name__ == "__main__":
n = 4
res = n_queens(n)
print(f"Input chessboard dimensions as {n}")
print(f"The total number of queen placement solutions is {len(res)}")
for state in res:
print("--------------------")
for row in state:
print(row)

View File

@ -0,0 +1,44 @@
"""
File: permutations_i.py
Created Time: 2023-04-15
Author: krahets (krahets@163.com)
"""
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""Backtracking algorithm: Permutation I"""
# When the state length equals the number of elements, record the solution
if len(state) == len(choices):
res.append(list(state))
return
# Traverse all choices
for i, choice in enumerate(choices):
# Pruning: do not allow repeated selection of elements
if not selected[i]:
# Attempt: make a choice, update the state
selected[i] = True
state.append(choice)
# Proceed to the next round of selection
backtrack(state, choices, selected, res)
# Retract: undo the choice, restore to the previous state
selected[i] = False
state.pop()
def permutations_i(nums: list[int]) -> list[list[int]]:
"""Permutation I"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res
"""Driver Code"""
if __name__ == "__main__":
nums = [1, 2, 3]
res = permutations_i(nums)
print(f"Input array nums = {nums}")
print(f"All permutations res = {res}")

View File

@ -0,0 +1,46 @@
"""
File: permutations_ii.py
Created Time: 2023-04-15
Author: krahets (krahets@163.com)
"""
def backtrack(
state: list[int], choices: list[int], selected: list[bool], res: list[list[int]]
):
"""Backtracking algorithm: Permutation II"""
# When the state length equals the number of elements, record the solution
if len(state) == len(choices):
res.append(list(state))
return
# Traverse all choices
duplicated = set[int]()
for i, choice in enumerate(choices):
# Pruning: do not allow repeated selection of elements and do not allow repeated selection of equal elements
if not selected[i] and choice not in duplicated:
# Attempt: make a choice, update the state
duplicated.add(choice) # Record selected element values
selected[i] = True
state.append(choice)
# Proceed to the next round of selection
backtrack(state, choices, selected, res)
# Retract: undo the choice, restore to the previous state
selected[i] = False
state.pop()
def permutations_ii(nums: list[int]) -> list[list[int]]:
"""Permutation II"""
res = []
backtrack(state=[], choices=nums, selected=[False] * len(nums), res=res)
return res
"""Driver Code"""
if __name__ == "__main__":
nums = [1, 2, 2]
res = permutations_ii(nums)
print(f"Input array nums = {nums}")
print(f"All permutations res = {res}")

View File

@ -0,0 +1,36 @@
"""
File: preorder_traversal_i_compact.py
Created Time: 2023-04-15
Author: krahets (krahets@163.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import TreeNode, print_tree, list_to_tree
def pre_order(root: TreeNode):
"""Pre-order traversal: Example one"""
if root is None:
return
if root.val == 7:
# Record solution
res.append(root)
pre_order(root.left)
pre_order(root.right)
"""Driver Code"""
if __name__ == "__main__":
root = list_to_tree([1, 7, 3, 4, 5, 6, 7])
print("\nInitialize binary tree")
print_tree(root)
# Pre-order traversal
res = list[TreeNode]()
pre_order(root)
print("\nOutput all nodes with value 7")
print([node.val for node in res])

View File

@ -0,0 +1,42 @@
"""
File: preorder_traversal_ii_compact.py
Created Time: 2023-04-15
Author: krahets (krahets@163.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import TreeNode, print_tree, list_to_tree
def pre_order(root: TreeNode):
"""Pre-order traversal: Example two"""
if root is None:
return
# Attempt
path.append(root)
if root.val == 7:
# Record solution
res.append(list(path))
pre_order(root.left)
pre_order(root.right)
# Retract
path.pop()
"""Driver Code"""
if __name__ == "__main__":
root = list_to_tree([1, 7, 3, 4, 5, 6, 7])
print("\nInitialize binary tree")
print_tree(root)
# Pre-order traversal
path = list[TreeNode]()
res = list[list[TreeNode]]()
pre_order(root)
print("\nOutput all root-to-node 7 paths")
for path in res:
print([node.val for node in path])

View File

@ -0,0 +1,43 @@
"""
File: preorder_traversal_iii_compact.py
Created Time: 2023-04-15
Author: krahets (krahets@163.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import TreeNode, print_tree, list_to_tree
def pre_order(root: TreeNode):
"""Pre-order traversal: Example three"""
# Pruning
if root is None or root.val == 3:
return
# Attempt
path.append(root)
if root.val == 7:
# Record solution
res.append(list(path))
pre_order(root.left)
pre_order(root.right)
# Retract
path.pop()
"""Driver Code"""
if __name__ == "__main__":
root = list_to_tree([1, 7, 3, 4, 5, 6, 7])
print("\nInitialize binary tree")
print_tree(root)
# Pre-order traversal
path = list[TreeNode]()
res = list[list[TreeNode]]()
pre_order(root)
print("\nOutput all root-to-node 7 paths, not including nodes with value 3")
for path in res:
print([node.val for node in path])

View File

@ -0,0 +1,71 @@
"""
File: preorder_traversal_iii_template.py
Created Time: 2023-04-15
Author: krahets (krahets@163.com)
"""
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
from modules import TreeNode, print_tree, list_to_tree
def is_solution(state: list[TreeNode]) -> bool:
"""Determine if the current state is a solution"""
return state and state[-1].val == 7
def record_solution(state: list[TreeNode], res: list[list[TreeNode]]):
"""Record solution"""
res.append(list(state))
def is_valid(state: list[TreeNode], choice: TreeNode) -> bool:
"""Determine if the choice is legal under the current state"""
return choice is not None and choice.val != 3
def make_choice(state: list[TreeNode], choice: TreeNode):
"""Update state"""
state.append(choice)
def undo_choice(state: list[TreeNode], choice: TreeNode):
"""Restore state"""
state.pop()
def backtrack(
state: list[TreeNode], choices: list[TreeNode], res: list[list[TreeNode]]
):
"""Backtracking algorithm: Example three"""
# Check if it's a solution
if is_solution(state):
# Record solution
record_solution(state, res)
# Traverse all choices
for choice in choices:
# Pruning: check if the choice is legal
if is_valid(state, choice):
# Attempt: make a choice, update the state
make_choice(state, choice)
# Proceed to the next round of selection
backtrack(state, [choice.left, choice.right], res)
# Retract: undo the choice, restore to the previous state
undo_choice(state, choice)
"""Driver Code"""
if __name__ == "__main__":
root = list_to_tree([1, 7, 3, 4, 5, 6, 7])
print("\nInitialize binary tree")
print_tree(root)
# Backtracking algorithm
res = []
backtrack(state=[], choices=[root], res=res)
print("\nOutput all root-to-node 7 paths, requiring paths not to include nodes with value 3")
for path in res:
print([node.val for node in path])

View File

@ -0,0 +1,48 @@
"""
File: subset_sum_i.py
Created Time: 2023-06-17
Author: krahets (krahets@163.com)
"""
def backtrack(
state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]
):
"""Backtracking algorithm: Subset Sum I"""
# When the subset sum equals target, record the solution
if target == 0:
res.append(list(state))
return
# Traverse all choices
# Pruning two: start traversing from start to avoid generating duplicate subsets
for i in range(start, len(choices)):
# Pruning one: if the subset sum exceeds target, end the loop immediately
# This is because the array is sorted, and later elements are larger, so the subset sum will definitely exceed target
if target - choices[i] < 0:
break
# Attempt: make a choice, update target, start
state.append(choices[i])
# Proceed to the next round of selection
backtrack(state, target - choices[i], choices, i, res)
# Retract: undo the choice, restore to the previous state
state.pop()
def subset_sum_i(nums: list[int], target: int) -> list[list[int]]:
"""Solve Subset Sum I"""
state = [] # State (subset)
nums.sort() # Sort nums
start = 0 # Start point for traversal
res = [] # Result list (subset list)
backtrack(state, target, nums, start, res)
return res
"""Driver Code"""
if __name__ == "__main__":
nums = [3, 4, 5]
target = 9
res = subset_sum_i(nums, target)
print(f"Input array nums = {nums}, target = {target}")
print(f"All subsets equal to {target} res = {res}")

View File

@ -0,0 +1,50 @@
"""
File: subset_sum_i_naive.py
Created Time: 2023-06-17
Author: krahets (krahets@163.com)
"""
def backtrack(
state: list[int],
target: int,
total: int,
choices: list[int],
res: list[list[int]],
):
"""Backtracking algorithm: Subset Sum I"""
# When the subset sum equals target, record the solution
if total == target:
res.append(list(state))
return
# Traverse all choices
for i in range(len(choices)):
# Pruning: if the subset sum exceeds target, skip that choice
if total + choices[i] > target:
continue
# Attempt: make a choice, update elements and total
state.append(choices[i])
# Proceed to the next round of selection
backtrack(state, target, total + choices[i], choices, res)
# Retract: undo the choice, restore to the previous state
state.pop()
def subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]:
"""Solve Subset Sum I (including duplicate subsets)"""
state = [] # State (subset)
total = 0 # Subset sum
res = [] # Result list (subset list)
backtrack(state, target, total, nums, res)
return res
"""Driver Code"""
if __name__ == "__main__":
nums = [3, 4, 5]
target = 9
res = subset_sum_i_naive(nums, target)
print(f"Input array nums = {nums}, target = {target}")
print(f"All subsets equal to {target} res = {res}")
print(f"Please note that the result of this method includes duplicate sets")

View File

@ -0,0 +1,52 @@
"""
File: subset_sum_ii.py
Created Time: 2023-06-17
Author: krahets (krahets@163.com)
"""
def backtrack(
state: list[int], target: int, choices: list[int], start: int, res: list[list[int]]
):
"""Backtracking algorithm: Subset Sum II"""
# When the subset sum equals target, record the solution
if target == 0:
res.append(list(state))
return
# Traverse all choices
# Pruning two: start traversing from start to avoid generating duplicate subsets
# Pruning three: start traversing from start to avoid repeatedly selecting the same element
for i in range(start, len(choices)):
# Pruning one: if the subset sum exceeds target, end the loop immediately
# This is because the array is sorted, and later elements are larger, so the subset sum will definitely exceed target
if target - choices[i] < 0:
break
# Pruning four: if the element equals the left element, it indicates that the search branch is repeated, skip it
if i > start and choices[i] == choices[i - 1]:
continue
# Attempt: make a choice, update target, start
state.append(choices[i])
# Proceed to the next round of selection
backtrack(state, target - choices[i], choices, i + 1, res)
# Retract: undo the choice, restore to the previous state
state.pop()
def subset_sum_ii(nums: list[int], target: int) -> list[list[int]]:
"""Solve Subset Sum II"""
state = [] # State (subset)
nums.sort() # Sort nums
start = 0 # Start point for traversal
res = [] # Result list (subset list)
backtrack(state, target, nums, start, res)
return res
"""Driver Code"""
if __name__ == "__main__":
nums = [4, 4, 5]
target = 9
res = subset_sum_ii(nums, target)
print(f"Input array nums = {nums}, target = {target}")
print(f"All subsets equal to {target} res = {res}")