mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 04:31:55 +08:00
Add the section of unbounded knapsack problem.
This commit is contained in:
60
codes/python/chapter_dynamic_programming/coin_change.py
Normal file
60
codes/python/chapter_dynamic_programming/coin_change.py
Normal file
@ -0,0 +1,60 @@
|
||||
"""
|
||||
File: coin_change.py
|
||||
Created Time: 2023-07-10
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
|
||||
def coin_change_dp(coins: list[int], amt: int) -> int:
|
||||
"""零钱兑换:动态规划"""
|
||||
n = len(coins)
|
||||
MAX = amt + 1
|
||||
# 初始化 dp 表
|
||||
dp = [[0] * (amt + 1) for _ in range(n + 1)]
|
||||
# 状态转移:首行首列
|
||||
for a in range(1, amt + 1):
|
||||
dp[0][a] = MAX
|
||||
# 状态转移:其余行列
|
||||
for i in range(1, n + 1):
|
||||
for a in range(1, amt + 1):
|
||||
if coins[i - 1] > a:
|
||||
# 若超过背包容量,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a]
|
||||
else:
|
||||
# 不选和选硬币 i 这两种方案的较小值
|
||||
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)
|
||||
return dp[n][amt] if dp[n][amt] != MAX else -1
|
||||
|
||||
|
||||
def coin_change_dp_comp(coins: list[int], amt: int) -> int:
|
||||
"""零钱兑换:状态压缩后的动态规划"""
|
||||
n = len(coins)
|
||||
MAX = amt + 1
|
||||
# 初始化 dp 表
|
||||
dp = [MAX] * (amt + 1)
|
||||
dp[0] = 0
|
||||
# 状态转移
|
||||
for i in range(1, n + 1):
|
||||
# 正序遍历
|
||||
for a in range(1, amt + 1):
|
||||
if coins[i - 1] > a:
|
||||
# 若超过背包容量,则不选硬币 i
|
||||
dp[a] = dp[a]
|
||||
else:
|
||||
# 不选和选硬币 i 这两种方案的较小值
|
||||
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)
|
||||
return dp[amt] if dp[amt] != MAX else -1
|
||||
|
||||
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
coins = [1, 2, 5]
|
||||
amt = 4
|
||||
|
||||
# 动态规划
|
||||
res = coin_change_dp(coins, amt)
|
||||
print(f"凑到目标金额所需的最少硬币数量为 {res}")
|
||||
|
||||
# 状态压缩后的动态规划
|
||||
res = coin_change_dp_comp(coins, amt)
|
||||
print(f"凑到目标金额所需的最少硬币数量为 {res}")
|
||||
59
codes/python/chapter_dynamic_programming/coin_change_ii.py
Normal file
59
codes/python/chapter_dynamic_programming/coin_change_ii.py
Normal file
@ -0,0 +1,59 @@
|
||||
"""
|
||||
File: coin_change_ii.py
|
||||
Created Time: 2023-07-10
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
|
||||
def coin_change_ii_dp(coins: list[int], amt: int) -> int:
|
||||
"""零钱兑换 II:动态规划"""
|
||||
n = len(coins)
|
||||
# 初始化 dp 表
|
||||
dp = [[0] * (amt + 1) for _ in range(n + 1)]
|
||||
# 初始化首列
|
||||
for i in range(n + 1):
|
||||
dp[i][0] = 1
|
||||
# 状态转移
|
||||
for i in range(1, n + 1):
|
||||
for a in range(1, amt + 1):
|
||||
if coins[i - 1] > a:
|
||||
# 若超过背包容量,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a]
|
||||
else:
|
||||
# 不选和选硬币 i 这两种方案之和
|
||||
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]
|
||||
return dp[n][amt]
|
||||
|
||||
|
||||
def coin_change_ii_dp_comp(coins: list[int], amt: int) -> int:
|
||||
"""零钱兑换 II:状态压缩后的动态规划"""
|
||||
n = len(coins)
|
||||
# 初始化 dp 表
|
||||
dp = [0] * (amt + 1)
|
||||
dp[0] = 1
|
||||
# 状态转移
|
||||
for i in range(1, n + 1):
|
||||
# 正序遍历
|
||||
for a in range(1, amt + 1):
|
||||
if coins[i - 1] > a:
|
||||
# 若超过背包容量,则不选硬币 i
|
||||
dp[a] = dp[a]
|
||||
else:
|
||||
# 不选和选硬币 i 这两种方案之和
|
||||
dp[a] = dp[a] + dp[a - coins[i - 1]]
|
||||
return dp[amt]
|
||||
|
||||
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
coins = [1, 2, 5]
|
||||
amt = 5
|
||||
n = len(coins)
|
||||
|
||||
# 动态规划
|
||||
res = coin_change_ii_dp(coins, amt)
|
||||
print(f"凑出目标金额的硬币组合数量为 {res}")
|
||||
|
||||
# 状态压缩后的动态规划
|
||||
res = coin_change_ii_dp_comp(coins, amt)
|
||||
print(f"凑出目标金额的硬币组合数量为 {res}")
|
||||
@ -0,0 +1,55 @@
|
||||
"""
|
||||
File: unbounded_knapsack.py
|
||||
Created Time: 2023-07-10
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
|
||||
def unbounded_knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
|
||||
"""完全背包:动态规划"""
|
||||
n = len(wgt)
|
||||
# 初始化 dp 表
|
||||
dp = [[0] * (cap + 1) for _ in range(n + 1)]
|
||||
# 状态转移
|
||||
for i in range(1, n + 1):
|
||||
for c in range(1, cap + 1):
|
||||
if wgt[i - 1] > c:
|
||||
# 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c]
|
||||
else:
|
||||
# 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])
|
||||
return dp[n][cap]
|
||||
|
||||
|
||||
def unbounded_knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
|
||||
"""完全背包:状态压缩后的动态规划"""
|
||||
n = len(wgt)
|
||||
# 初始化 dp 表
|
||||
dp = [0] * (cap + 1)
|
||||
# 状态转移
|
||||
for i in range(1, n + 1):
|
||||
# 正序遍历
|
||||
for c in range(1, cap + 1):
|
||||
if wgt[i - 1] > c:
|
||||
# 若超过背包容量,则不选物品 i
|
||||
dp[c] = dp[c]
|
||||
else:
|
||||
# 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
|
||||
return dp[cap]
|
||||
|
||||
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
wgt = [1, 2, 3]
|
||||
val = [5, 11, 15]
|
||||
cap = 4
|
||||
|
||||
# 动态规划
|
||||
res = unbounded_knapsack_dp(wgt, val, cap)
|
||||
print(f"不超过背包容量的最大物品价值为 {res}")
|
||||
|
||||
# 状态压缩后的动态规划
|
||||
res = unbounded_knapsack_dp_comp(wgt, val, cap)
|
||||
print(f"不超过背包容量的最大物品价值为 {res}")
|
||||
Reference in New Issue
Block a user