mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 04:31:55 +08:00
Add the section of unbounded knapsack problem.
This commit is contained in:
72
codes/java/chapter_dynamic_programming/coin_change.java
Normal file
72
codes/java/chapter_dynamic_programming/coin_change.java
Normal file
@ -0,0 +1,72 @@
|
||||
/**
|
||||
* File: coin_change.java
|
||||
* Created Time: 2023-07-11
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_dynamic_programming;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
public class coin_change {
|
||||
/* 零钱兑换:动态规划 */
|
||||
static int coinChangeDP(int[] coins, int amt) {
|
||||
int n = coins.length;
|
||||
int MAX = amt + 1;
|
||||
// 初始化 dp 表
|
||||
int[][] dp = new int[n + 1][amt + 1];
|
||||
// 状态转移:首行首列
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
dp[0][a] = MAX;
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
if (coins[i - 1] > a) {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a];
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案的较小值
|
||||
dp[i][a] = Math.min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][amt] != MAX ? dp[n][amt] : -1;
|
||||
}
|
||||
|
||||
/* 零钱兑换:状态压缩后的动态规划 */
|
||||
static int coinChangeDPComp(int[] coins, int amt) {
|
||||
int n = coins.length;
|
||||
int MAX = amt + 1;
|
||||
// 初始化 dp 表
|
||||
int[] dp = new int[amt + 1];
|
||||
Arrays.fill(dp, MAX);
|
||||
dp[0] = 0;
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
if (coins[i - 1] > a) {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[a] = dp[a];
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案的较小值
|
||||
dp[a] = Math.min(dp[a], dp[a - coins[i - 1]] + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amt] != MAX ? dp[amt] : -1;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
int[] coins = { 1, 2, 5 };
|
||||
int amt = 4;
|
||||
|
||||
// 动态规划
|
||||
int res = coinChangeDP(coins, amt);
|
||||
System.out.println("凑到目标金额所需的最少硬币数量为 " + res);
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = coinChangeDPComp(coins, amt);
|
||||
System.out.println("凑到目标金额所需的最少硬币数量为 " + res);
|
||||
}
|
||||
}
|
||||
67
codes/java/chapter_dynamic_programming/coin_change_ii.java
Normal file
67
codes/java/chapter_dynamic_programming/coin_change_ii.java
Normal file
@ -0,0 +1,67 @@
|
||||
/**
|
||||
* File: coin_change_ii.java
|
||||
* Created Time: 2023-07-11
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_dynamic_programming;
|
||||
|
||||
public class coin_change_ii {
|
||||
/* 零钱兑换 II:动态规划 */
|
||||
static int coinChangeIIDP(int[] coins, int amt) {
|
||||
int n = coins.length;
|
||||
// 初始化 dp 表
|
||||
int[][] dp = new int[n + 1][amt + 1];
|
||||
// 初始化首列
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i][0] = 1;
|
||||
}
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
if (coins[i - 1] > a) {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a];
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案之和
|
||||
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]];
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][amt];
|
||||
}
|
||||
|
||||
/* 零钱兑换 II:状态压缩后的动态规划 */
|
||||
static int coinChangeIIDPComp(int[] coins, int amt) {
|
||||
int n = coins.length;
|
||||
// 初始化 dp 表
|
||||
int[] dp = new int[amt + 1];
|
||||
dp[0] = 1;
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int a = 1; a <= amt; a++) {
|
||||
if (coins[i - 1] > a) {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[a] = dp[a];
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案之和
|
||||
dp[a] = dp[a] + dp[a - coins[i - 1]];
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amt];
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
int[] coins = { 1, 2, 5 };
|
||||
int amt = 5;
|
||||
|
||||
// 动态规划
|
||||
int res = coinChangeIIDP(coins, amt);
|
||||
System.out.println("凑出目标金额的硬币组合数量为 " + res);
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = coinChangeIIDPComp(coins, amt);
|
||||
System.out.println("凑出目标金额的硬币组合数量为 " + res);
|
||||
}
|
||||
}
|
||||
@ -0,0 +1,63 @@
|
||||
/**
|
||||
* File: unbounded_knapsack.java
|
||||
* Created Time: 2023-07-11
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_dynamic_programming;
|
||||
|
||||
public class unbounded_knapsack {
|
||||
/* 完全背包:动态规划 */
|
||||
static int unboundedKnapsackDP(int[] wgt, int[] val, int cap) {
|
||||
int n = wgt.length;
|
||||
// 初始化 dp 表
|
||||
int[][] dp = new int[n + 1][cap + 1];
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int c = 1; c <= cap; c++) {
|
||||
if (wgt[i - 1] > c) {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap];
|
||||
}
|
||||
|
||||
/* 完全背包:状态压缩后的动态规划 */
|
||||
static int unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {
|
||||
int n = wgt.length;
|
||||
// 初始化 dp 表
|
||||
int[] dp = new int[cap + 1];
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int c = 1; c <= cap; c++) {
|
||||
if (wgt[i - 1] > c) {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[c] = dp[c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap];
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
int[] wgt = { 1, 2, 3 };
|
||||
int[] val = { 5, 11, 15 };
|
||||
int cap = 4;
|
||||
|
||||
// 动态规划
|
||||
int res = unboundedKnapsackDP(wgt, val, cap);
|
||||
System.out.println("不超过背包容量的最大物品价值为 " + res);
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = unboundedKnapsackDPComp(wgt, val, cap);
|
||||
System.out.println("不超过背包容量的最大物品价值为 " + res);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user