mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 12:58:42 +08:00
Finetune the chapter of hashing,
divide and conquer, backtracking, tree
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
# 桶排序
|
||||
|
||||
前述的几种排序算法都属于“基于比较的排序算法”,它们通过比较元素间的大小来实现排序。此类排序算法的时间复杂度无法超越 $O(n \log n)$ 。接下来,我们将探讨几种“非比较排序算法”,它们的时间复杂度可以达到线性水平。
|
||||
前述的几种排序算法都属于“基于比较的排序算法”,它们通过比较元素间的大小来实现排序。此类排序算法的时间复杂度无法超越 $O(n \log n)$ 。接下来,我们将探讨几种“非比较排序算法”,它们的时间复杂度可以达到线性阶。
|
||||
|
||||
「桶排序 Bucket Sort」是分治思想的一个典型应用。它通过设置一些具有大小顺序的桶,每个桶对应一个数据范围,将数据平均分配到各个桶中;然后,在每个桶内部分别执行排序;最终按照桶的顺序将所有数据合并。
|
||||
|
||||
|
||||
@ -7,11 +7,10 @@
|
||||
- 桶排序包含三个步骤:数据分桶、桶内排序和合并结果。它同样体现了分治策略,适用于数据体量很大的情况。桶排序的关键在于对数据进行平均分配。
|
||||
- 计数排序是桶排序的一个特例,它通过统计数据出现的次数来实现排序。计数排序适用于数据量大但数据范围有限的情况,并且要求数据能够转换为正整数。
|
||||
- 基数排序通过逐位排序来实现数据排序,要求数据能够表示为固定位数的数字。
|
||||
- 总的来说,我们希望找到一种排序算法,具有高效率、稳定、原地以及正向自适应性等优点。然而,正如其他数据结构和算法一样,没有一种排序算法能够同时满足所有这些条件。在实际应用中,我们需要根据数据的特性来选择合适的排序算法。
|
||||
|
||||

|
||||
|
||||
- 总的来说,我们希望找到一种排序算法,具有高效率、稳定、原地以及正向自适应性等优点。然而,正如其他数据结构和算法一样,没有一种排序算法能够同时满足所有这些条件。在实际应用中,我们需要根据数据的特性来选择合适的排序算法。
|
||||
|
||||
## Q & A
|
||||
|
||||
!!! question "排序算法稳定性在什么情况下是必须的?"
|
||||
@ -32,9 +31,9 @@
|
||||
|
||||
再深入思考一下,如果我们选择 `nums[right]` 为基准数,那么正好反过来,必须先“从左往右查找”。
|
||||
|
||||
!!! question "关于尾递归优化,为什么选短的数组能保证递归深度不超过 $log n$ ?"
|
||||
!!! question "关于尾递归优化,为什么选短的数组能保证递归深度不超过 $\log n$ ?"
|
||||
|
||||
递归深度就是当前未返回的递归方法的数量。每轮哨兵划分我们将原数组划分为两个子数组。在尾递归优化后,向下递归的子数组长度最大为原数组的一半长度。假设最差情况,一直为一半长度,那么最终的递归深度就是 $log n$ 。
|
||||
递归深度就是当前未返回的递归方法的数量。每轮哨兵划分我们将原数组划分为两个子数组。在尾递归优化后,向下递归的子数组长度最大为原数组的一半长度。假设最差情况,一直为一半长度,那么最终的递归深度就是 $\log n$ 。
|
||||
|
||||
回顾原始的快速排序,我们有可能会连续地递归长度较大的数组,最差情况下为 $n, n - 1, n - 2, ..., 2, 1$ ,从而递归深度为 $n$ 。尾递归优化可以避免这种情况的出现。
|
||||
|
||||
|
||||
Reference in New Issue
Block a user