copy zig codes of chapter_array_and_linkedlist and chapter_computatio… (#319)

* copy zig codes of chapter_array_and_linkedlist and chapter_computational_complexity to markdown files

* Update time_complexity.md

---------

Co-authored-by: Yudong Jin <krahets@163.com>
This commit is contained in:
sjinzh
2023-02-03 19:15:34 +08:00
committed by GitHub
parent b39b84acba
commit 15efaca85d
8 changed files with 566 additions and 41 deletions

View File

@ -914,7 +914,17 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 常数阶
fn constant(n: i32) i32 {
_ = n;
var count: i32 = 0;
const size: i32 = 100_000;
var i: i32 = 0;
while(i<size) : (i += 1) {
count += 1;
}
return count;
}
```
### 线性阶 $O(n)$
@ -1033,7 +1043,15 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 线性阶
fn linear(n: i32) i32 {
var count: i32 = 0;
var i: i32 = 0;
while (i < n) : (i += 1) {
count += 1;
}
return count;
}
```
「遍历数组」和「遍历链表」等操作,时间复杂度都为 $O(n)$ ,其中 $n$ 为数组或链表的长度。
@ -1171,7 +1189,15 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 线性阶(遍历数组)
fn arrayTraversal(nums: []i32) i32 {
var count: i32 = 0;
// 循环次数与数组长度成正比
for (nums) |_| {
count += 1;
}
return count;
}
```
### 平方阶 $O(n^2)$
@ -1325,7 +1351,19 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 平方阶
fn quadratic(n: i32) i32 {
var count: i32 = 0;
var i: i32 = 0;
// 循环次数与数组长度成平方关系
while (i < n) : (i += 1) {
var j: i32 = 0;
while (j < n) : (j += 1) {
count += 1;
}
}
return count;
}
```
![time_complexity_constant_linear_quadratic](time_complexity.assets/time_complexity_constant_linear_quadratic.png)
@ -1551,7 +1589,26 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 平方阶(冒泡排序)
fn bubbleSort(nums: []i32) i32 {
var count: i32 = 0; // 计数器
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
var i: i32 = @intCast(i32, nums.len ) - 1;
while (i > 0) : (i -= 1) {
var j: usize = 0;
// 内循环:冒泡操作
while (j < i) : (j += 1) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
var tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交换包含 3 个单元操作
}
}
}
return count;
}
```
### 指数阶 $O(2^n)$
@ -1732,7 +1789,22 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 指数阶(循环实现)
fn exponential(n: i32) i32{
var count: i32 = 0;
var bas: i32 = 1;
var i: i32 = 0;
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
while (i < n) : (i += 1) {
var j: i32 = 0;
while (j < bas) : (j += 1) {
count += 1;
}
bas *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
```
![time_complexity_exponential](time_complexity.assets/time_complexity_exponential.png)
@ -1839,7 +1911,11 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 指数阶(递归实现)
fn expRecur(n: i32) i32{
if (n == 1) return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
```
### 对数阶 $O(\log n)$
@ -1980,7 +2056,18 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 对数阶(循环实现)
fn logarithmic(n: f32) i32
{
var count: i32 = 0;
var n_var = n;
while (n_var > 1)
{
n_var = n_var / 2;
count +=1;
}
return count;
}
```
![time_complexity_logarithmic](time_complexity.assets/time_complexity_logarithmic.png)
@ -2086,7 +2173,12 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 对数阶(递归实现)
fn logRecur(n: f32) i32
{
if (n <= 1) return 0;
return logRecur(n / 2) + 1;
}
```
### 线性对数阶 $O(n \log n)$
@ -2234,7 +2326,18 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 线性对数阶
fn linearLogRecur(n: f32) i32
{
if (n <= 1) return 1;
var count: i32 = linearLogRecur(n / 2) +
linearLogRecur(n / 2);
var i: f32 = 0;
while (i < n) : (i += 1) {
count += 1;
}
return count;
}
```
![time_complexity_logarithmic_linear](time_complexity.assets/time_complexity_logarithmic_linear.png)
@ -2392,7 +2495,17 @@ $$
=== "Zig"
```zig title="time_complexity.zig"
// 阶乘阶(递归实现)
fn factorialRecur(n: i32) i32 {
if (n == 0) return 1;
var count: i32 = 0;
var i: i32 = 0;
// 从 1 个分裂出 n 个
while (i < n) : (i += 1) {
count += factorialRecur(n - 1);
}
return count;
}
```
![time_complexity_factorial](time_complexity.assets/time_complexity_factorial.png)
@ -2687,7 +2800,28 @@ $$
=== "Zig"
```zig title="worst_best_time_complexity.zig"
// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱
pub fn randomNumbers(comptime n: usize) [n]i32 {
var nums: [n]i32 = undefined;
// 生成数组 nums = { 1, 2, 3, ..., n }
for (nums) |*num, i| {
num.* = @intCast(i32, i) + 1;
}
// 随机打乱数组元素
const rand = std.crypto.random;
rand.shuffle(i32, &nums);
return nums;
}
// 查找数组 nums 中数字 1 所在索引
pub fn findOne(nums: []i32) i32 {
for (nums) |num, i| {
// 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
// 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
if (num == 1) return @intCast(i32, i);
}
return -1;
}
```
!!! tip