Mention figures and tables in normal texts.

Fix some figures.
Finetune texts.
This commit is contained in:
krahets
2023-08-21 19:33:45 +08:00
parent 1aff6d6cc2
commit 106f02809a
64 changed files with 277 additions and 240 deletions

View File

@@ -2,7 +2,7 @@
在上两节中,我们了解了哈希表的工作原理和哈希冲突的处理方法。然而无论是开放寻址还是链地址法,**它们只能保证哈希表可以在发生冲突时正常工作,但无法减少哈希冲突的发生**。
如果哈希冲突过于频繁,哈希表的性能则会急剧劣化。对于链地址哈希表,理想情况下键值对平均分布在各个桶中,达到最佳查询效率;最差情况下所有键值对都被存储到同一个桶中,时间复杂度退化至 $O(n)$ 。
如果哈希冲突过于频繁,哈希表的性能则会急剧劣化。如下图所示,对于链地址哈希表,理想情况下键值对平均分布在各个桶中,达到最佳查询效率;最差情况下所有键值对都被存储到同一个桶中,时间复杂度退化至 $O(n)$ 。
![哈希冲突的最佳与最差情况](hash_algorithm.assets/hash_collision_best_worst_condition.png)

View File

@@ -11,7 +11,7 @@
## 链式地址
在原始哈希表中,每个桶仅能存储一个键值对。「链式地址 separate chaining」将单个元素转换为链表将键值对作为链表节点将所有发生冲突的键值对都存储在同一链表中。
在原始哈希表中,每个桶仅能存储一个键值对。「链式地址 separate chaining」将单个元素转换为链表将键值对作为链表节点将所有发生冲突的键值对都存储在同一链表中。下图展示了一个链式地址哈希表的例子。
![链式地址哈希表](hash_collision.assets/hash_table_chaining.png)
@@ -118,7 +118,9 @@
- **插入元素**:通过哈希函数计算数组索引,若发现桶内已有元素,则从冲突位置向后线性遍历(步长通常为 $1$ ),直至找到空位,将元素插入其中。
- **查找元素**:若发现哈希冲突,则使用相同步长向后线性遍历,直到找到对应元素,返回 `value` 即可;如果遇到空位,说明目标键值对不在哈希表中,返回 $\text{None}$ 。
![线性探测](hash_collision.assets/hash_table_linear_probing.png)
下图展示了一个在开放寻址(线性探测)下工作的哈希表。
![开放寻址和线性探测](hash_collision.assets/hash_table_linear_probing.png)
然而,线性探测存在以下缺陷:

View File

@@ -2,15 +2,15 @@
「哈希表 hash table」又称「散列表」其通过建立键 `key` 与值 `value` 之间的映射,实现高效的元素查询。具体而言,我们向哈希表输入一个键 `key` ,则可以在 $O(1)$ 时间内获取对应的值 `value`
以一个包含 $n$ 个学生的数据库为例,每个学生都有“姓名”和“学号”两项数据。假如我们希望实现“输入一个学号,返回对应的姓名”的查询功能,则可以采用哈希表来实现。
如下图所示,给定 $n$ 个学生,每个学生都有“姓名”和“学号”两项数据。假如我们希望实现“输入一个学号,返回对应的姓名”的查询功能,则可以采用哈希表来实现。
![哈希表的抽象表示](hash_map.assets/hash_table_lookup.png)
除哈希表外,我们还可以使用数组链表实现查询功能。若将学生数据看作数组(链表)元素,则有:
除哈希表外,数组链表也可以实现查询功能,它们的效率对比如下表所示。
- **添加元素**:仅需将元素添加至数组(链表)的尾部即可,使用 $O(1)$ 时间。
- **查询元素**:由于数组(链表)是乱序的,因此需要遍历其中的所有元素,使用 $O(n)$ 时间。
- **删除元素**:需要先查询到元素,再从数组中删除,使用 $O(n)$ 时间。
- **删除元素**:需要先查询到元素,再从数组(链表)中删除,使用 $O(n)$ 时间。
<p align="center"> 表:元素查询效率对比 </p>
@@ -578,7 +578,9 @@ index = hash(key) % capacity
![哈希冲突示例](hash_map.assets/hash_collision.png)
容易想到,哈希表容量 $n$ 越大,多个 `key` 被分配到同一个桶中的概率就越低,冲突就越少。因此,**我们可以通过扩容哈希表来减少哈希冲突**。如下图所示,扩容前键值对 `(136, A)` 和 `(236, D)` 发生冲突,扩容后冲突消失。
容易想到,哈希表容量 $n$ 越大,多个 `key` 被分配到同一个桶中的概率就越低,冲突就越少。因此,**我们可以通过扩容哈希表来减少哈希冲突**。
如下图所示,扩容前键值对 `(136, A)` 和 `(236, D)` 发生冲突,扩容后冲突消失。
![哈希表扩容](hash_map.assets/hash_table_reshash.png)