mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 04:31:55 +08:00
Mention figures and tables in normal texts.
Fix some figures. Finetune texts.
This commit is contained in:
@ -128,7 +128,7 @@ $$
|
||||
dp[i] = dp[i-1] + dp[i-2]
|
||||
$$
|
||||
|
||||
这意味着在爬楼梯问题中,各个子问题之间存在递推关系,**原问题的解可以由子问题的解构建得来**。
|
||||
这意味着在爬楼梯问题中,各个子问题之间存在递推关系,**原问题的解可以由子问题的解构建得来**。下图展示了该递推关系。
|
||||
|
||||

|
||||
|
||||
@ -430,6 +430,10 @@ $$
|
||||
[class]{}-[func]{climbing_stairs_dp}
|
||||
```
|
||||
|
||||
下图模拟了以上代码的执行过程。
|
||||
|
||||

|
||||
|
||||
与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如,爬楼梯问题的状态定义为当前所在楼梯阶数 $i$ 。
|
||||
|
||||
总结以上,动态规划的常用术语包括:
|
||||
@ -438,8 +442,6 @@ $$
|
||||
- 将最小子问题对应的状态(即第 $1$ , $2$ 阶楼梯)称为「初始状态」。
|
||||
- 将递推公式 $dp[i] = dp[i-1] + dp[i-2]$ 称为「状态转移方程」。
|
||||
|
||||

|
||||
|
||||
## 状态压缩
|
||||
|
||||
细心的你可能发现,**由于 $dp[i]$ 只与 $dp[i-1]$ 和 $dp[i-2]$ 有关,因此我们无须使用一个数组 `dp` 来存储所有子问题的解**,而只需两个变量滚动前进即可。
|
||||
|
||||
Reference in New Issue
Block a user