translation: Capitalize all the headers, list headers and figure captions (#1206)

* Capitalize all the headers, list headers and figure captions

* Fix the term "LRU"

* Fix the names of source code link in avl_tree.md

* Capitalize only first letter for nav trees in mkdocs.yml

* Update code comments

* Update linked_list.md

* Update linked_list.md
This commit is contained in:
Yudong Jin
2024-04-04 17:09:53 +08:00
committed by GitHub
parent 5e2eef0b4d
commit 07f7eb12ff
34 changed files with 376 additions and 376 deletions

View File

@ -1,14 +1,14 @@
# Double-Ended Queue
# Double-ended queue
In a queue, we can only delete elements from the head or add elements to the tail. As shown in the following diagram, a "double-ended queue (deque)" offers more flexibility, allowing the addition or removal of elements at both the head and the tail.
![Operations in Double-Ended Queue](deque.assets/deque_operations.png)
![Operations in double-ended queue](deque.assets/deque_operations.png)
## Common Operations in Double-Ended Queue
## Common operations in double-ended queue
The common operations in a double-ended queue are listed below, and the names of specific methods depend on the programming language used.
<p align="center"> Table <id> &nbsp; Efficiency of Double-Ended Queue Operations </p>
<p align="center"> Table <id> &nbsp; Efficiency of double-ended queue operations </p>
| Method Name | Description | Time Complexity |
| ------------- | --------------------------- | --------------- |
@ -340,11 +340,11 @@ Similarly, we can directly use the double-ended queue classes implemented in pro
https://pythontutor.com/render.html#code=from%20collections%20import%20deque%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%0A%20%20%20%20deq%20%3D%20deque%28%29%0A%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%85%A5%E9%98%9F%0A%20%20%20%20deq.append%282%29%20%20%23%20%E6%B7%BB%E5%8A%A0%E8%87%B3%E9%98%9F%E5%B0%BE%0A%20%20%20%20deq.append%285%29%0A%20%20%20%20deq.append%284%29%0A%20%20%20%20deq.appendleft%283%29%20%20%23%20%E6%B7%BB%E5%8A%A0%E8%87%B3%E9%98%9F%E9%A6%96%0A%20%20%20%20deq.appendleft%281%29%0A%20%20%20%20print%28%22%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%20deque%20%3D%22,%20deq%29%0A%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E5%85%83%E7%B4%A0%0A%20%20%20%20front%20%3D%20deq%5B0%5D%20%20%23%20%E9%98%9F%E9%A6%96%E5%85%83%E7%B4%A0%0A%20%20%20%20print%28%22%E9%98%9F%E9%A6%96%E5%85%83%E7%B4%A0%20front%20%3D%22,%20front%29%0A%20%20%20%20rear%20%3D%20deq%5B-1%5D%20%20%23%20%E9%98%9F%E5%B0%BE%E5%85%83%E7%B4%A0%0A%20%20%20%20print%28%22%E9%98%9F%E5%B0%BE%E5%85%83%E7%B4%A0%20rear%20%3D%22,%20rear%29%0A%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%87%BA%E9%98%9F%0A%20%20%20%20pop_front%20%3D%20deq.popleft%28%29%20%20%23%20%E9%98%9F%E9%A6%96%E5%85%83%E7%B4%A0%E5%87%BA%E9%98%9F%0A%20%20%20%20print%28%22%E9%98%9F%E9%A6%96%E5%87%BA%E9%98%9F%E5%85%83%E7%B4%A0%20%20pop_front%20%3D%22,%20pop_front%29%0A%20%20%20%20print%28%22%E9%98%9F%E9%A6%96%E5%87%BA%E9%98%9F%E5%90%8E%20deque%20%3D%22,%20deq%29%0A%20%20%20%20pop_rear%20%3D%20deq.pop%28%29%20%20%23%20%E9%98%9F%E5%B0%BE%E5%85%83%E7%B4%A0%E5%87%BA%E9%98%9F%0A%20%20%20%20print%28%22%E9%98%9F%E5%B0%BE%E5%87%BA%E9%98%9F%E5%85%83%E7%B4%A0%20%20pop_rear%20%3D%22,%20pop_rear%29%0A%20%20%20%20print%28%22%E9%98%9F%E5%B0%BE%E5%87%BA%E9%98%9F%E5%90%8E%20deque%20%3D%22,%20deq%29%0A%0A%20%20%20%20%23%20%E8%8E%B7%E5%8F%96%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%E7%9A%84%E9%95%BF%E5%BA%A6%0A%20%20%20%20size%20%3D%20len%28deq%29%0A%20%20%20%20print%28%22%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%E9%95%BF%E5%BA%A6%20size%20%3D%22,%20size%29%0A%0A%20%20%20%20%23%20%E5%88%A4%E6%96%AD%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%0A%20%20%20%20is_empty%20%3D%20len%28deq%29%20%3D%3D%200%0A%20%20%20%20print%28%22%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%20%3D%22,%20is_empty%29&cumulative=false&curInstr=3&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
## Implementing a Double-Ended Queue *
## Implementing a double-ended queue *
The implementation of a double-ended queue is similar to that of a regular queue, it can be based on either a linked list or an array as the underlying data structure.
### Implementation Based on Doubly Linked List
### Implementation based on doubly linked list
Recall from the previous section that we used a regular singly linked list to implement a queue, as it conveniently allows for deleting from the head (corresponding to the dequeue operation) and adding new elements after the tail (corresponding to the enqueue operation).
@ -373,7 +373,7 @@ The implementation code is as follows:
[file]{linkedlist_deque}-[class]{linked_list_deque}-[func]{}
```
### Implementation Based on Array
### Implementation based on array
As shown in the figure below, similar to implementing a queue with an array, we can also use a circular array to implement a double-ended queue.
@ -398,7 +398,7 @@ The implementation only needs to add methods for "front enqueue" and "rear deque
[file]{array_deque}-[class]{array_deque}-[func]{}
```
## Applications of Double-Ended Queue
## Applications of double-ended queue
The double-ended queue combines the logic of both stacks and queues, **thus, it can implement all their respective use cases while offering greater flexibility**.

View File

@ -1,6 +1,6 @@
# Stack and Queue
# Stack and queue
![Stack and Queue](../assets/covers/chapter_stack_and_queue.jpg)
![Stack and queue](../assets/covers/chapter_stack_and_queue.jpg)
!!! abstract

View File

@ -4,13 +4,13 @@
As shown in the figure below, we call the front of the queue the "head" and the back the "tail." The operation of adding elements to the rear of the queue is termed "enqueue," and the operation of removing elements from the front is termed "dequeue."
![Queue's First-In-First-Out Rule](queue.assets/queue_operations.png)
![Queue's first-in-first-out rule](queue.assets/queue_operations.png)
## Common Operations on Queue
## Common operations on queue
The common operations on a queue are shown in the table below. Note that method names may vary across different programming languages. Here, we use the same naming convention as that used for stacks.
<p align="center"> Table <id> &nbsp; Efficiency of Queue Operations </p>
<p align="center"> Table <id> &nbsp; Efficiency of queue operations </p>
| Method Name | Description | Time Complexity |
| ----------- | -------------------------------------- | --------------- |
@ -318,11 +318,11 @@ We can directly use the ready-made queue classes in programming languages:
https://pythontutor.com/render.html#code=from%20collections%20import%20deque%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E9%98%9F%E5%88%97%0A%20%20%20%20%23%20%E5%9C%A8%20Python%20%E4%B8%AD%EF%BC%8C%E6%88%91%E4%BB%AC%E4%B8%80%E8%88%AC%E5%B0%86%E5%8F%8C%E5%90%91%E9%98%9F%E5%88%97%E7%B1%BB%20deque%20%E7%9C%8B%E4%BD%9C%E9%98%9F%E5%88%97%E4%BD%BF%E7%94%A8%0A%20%20%20%20%23%20%E8%99%BD%E7%84%B6%20queue.Queue%28%29%20%E6%98%AF%E7%BA%AF%E6%AD%A3%E7%9A%84%E9%98%9F%E5%88%97%E7%B1%BB%EF%BC%8C%E4%BD%86%E4%B8%8D%E5%A4%AA%E5%A5%BD%E7%94%A8%0A%20%20%20%20que%20%3D%20deque%28%29%0A%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%85%A5%E9%98%9F%0A%20%20%20%20que.append%281%29%0A%20%20%20%20que.append%283%29%0A%20%20%20%20que.append%282%29%0A%20%20%20%20que.append%285%29%0A%20%20%20%20que.append%284%29%0A%20%20%20%20print%28%22%E9%98%9F%E5%88%97%20que%20%3D%22,%20que%29%0A%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E9%98%9F%E9%A6%96%E5%85%83%E7%B4%A0%0A%20%20%20%20front%20%3D%20que%5B0%5D%0A%20%20%20%20print%28%22%E9%98%9F%E9%A6%96%E5%85%83%E7%B4%A0%20front%20%3D%22,%20front%29%0A%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%87%BA%E9%98%9F%0A%20%20%20%20pop%20%3D%20que.popleft%28%29%0A%20%20%20%20print%28%22%E5%87%BA%E9%98%9F%E5%85%83%E7%B4%A0%20pop%20%3D%22,%20pop%29%0A%20%20%20%20print%28%22%E5%87%BA%E9%98%9F%E5%90%8E%20que%20%3D%22,%20que%29%0A%0A%20%20%20%20%23%20%E8%8E%B7%E5%8F%96%E9%98%9F%E5%88%97%E7%9A%84%E9%95%BF%E5%BA%A6%0A%20%20%20%20size%20%3D%20len%28que%29%0A%20%20%20%20print%28%22%E9%98%9F%E5%88%97%E9%95%BF%E5%BA%A6%20size%20%3D%22,%20size%29%0A%0A%20%20%20%20%23%20%E5%88%A4%E6%96%AD%E9%98%9F%E5%88%97%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%0A%20%20%20%20is_empty%20%3D%20len%28que%29%20%3D%3D%200%0A%20%20%20%20print%28%22%E9%98%9F%E5%88%97%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%20%3D%22,%20is_empty%29&cumulative=false&curInstr=3&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
## Implementing a Queue
## Implementing a queue
To implement a queue, we need a data structure that allows adding elements at one end and removing them at the other. Both linked lists and arrays meet this requirement.
### Implementation Based on a Linked List
### Implementation based on a linked list
As shown in the figure below, we can consider the "head node" and "tail node" of a linked list as the "front" and "rear" of the queue, respectively. It is stipulated that nodes can only be added at the rear and removed at the front.
@ -341,7 +341,7 @@ Below is the code for implementing a queue using a linked list:
[file]{linkedlist_queue}-[class]{linked_list_queue}-[func]{}
```
### Implementation Based on an Array
### Implementation based on an array
Deleting the first element in an array has a time complexity of $O(n)$, which would make the dequeue operation inefficient. However, this problem can be cleverly avoided as follows.
@ -375,7 +375,7 @@ The above implementation of the queue still has its limitations: its length is f
The comparison of the two implementations is consistent with that of the stack and is not repeated here.
## Typical Applications of Queue
## Typical applications of queue
- **Amazon Orders**. After shoppers place orders, these orders join a queue, and the system processes them in order. During events like Singles' Day, a massive number of orders are generated in a short time, making high concurrency a key challenge for engineers.
- **Various To-Do Lists**. Any scenario requiring a "first-come, first-served" functionality, such as a printer's task queue or a restaurant's food delivery queue, can effectively maintain the order of processing with a queue.
- **Amazon orders**: After shoppers place orders, these orders join a queue, and the system processes them in order. During events like Singles' Day, a massive number of orders are generated in a short time, making high concurrency a key challenge for engineers.
- **Various to-do lists**: Any scenario requiring a "first-come, first-served" functionality, such as a printer's task queue or a restaurant's food delivery queue, can effectively maintain the order of processing with a queue.

View File

@ -6,13 +6,13 @@ We can compare a stack to a pile of plates on a table. To access the bottom plat
As shown in the figure below, we refer to the top of the pile of elements as the "top of the stack" and the bottom as the "bottom of the stack." The operation of adding elements to the top of the stack is called "push," and the operation of removing the top element is called "pop."
![Stack's Last-In-First-Out Rule](stack.assets/stack_operations.png)
![Stack's last-in-first-out rule](stack.assets/stack_operations.png)
## Common Operations on Stack
## Common operations on stack
The common operations on a stack are shown in the table below. The specific method names depend on the programming language used. Here, we use `push()`, `pop()`, and `peek()` as examples.
<p align="center"> Table <id> &nbsp; Efficiency of Stack Operations </p>
<p align="center"> Table <id> &nbsp; Efficiency of stack operations </p>
| Method | Description | Time Complexity |
| -------- | ----------------------------------------------- | --------------- |
@ -312,13 +312,13 @@ Typically, we can directly use the stack class built into the programming langua
https://pythontutor.com/render.html#code=%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E6%A0%88%0A%20%20%20%20%23%20Python%20%E6%B2%A1%E6%9C%89%E5%86%85%E7%BD%AE%E7%9A%84%E6%A0%88%E7%B1%BB%EF%BC%8C%E5%8F%AF%E4%BB%A5%E6%8A%8A%20list%20%E5%BD%93%E4%BD%9C%E6%A0%88%E6%9D%A5%E4%BD%BF%E7%94%A8%0A%20%20%20%20stack%20%3D%20%5B%5D%0A%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%85%A5%E6%A0%88%0A%20%20%20%20stack.append%281%29%0A%20%20%20%20stack.append%283%29%0A%20%20%20%20stack.append%282%29%0A%20%20%20%20stack.append%285%29%0A%20%20%20%20stack.append%284%29%0A%20%20%20%20print%28%22%E6%A0%88%20stack%20%3D%22,%20stack%29%0A%0A%20%20%20%20%23%20%E8%AE%BF%E9%97%AE%E6%A0%88%E9%A1%B6%E5%85%83%E7%B4%A0%0A%20%20%20%20peek%20%3D%20stack%5B-1%5D%0A%20%20%20%20print%28%22%E6%A0%88%E9%A1%B6%E5%85%83%E7%B4%A0%20peek%20%3D%22,%20peek%29%0A%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%87%BA%E6%A0%88%0A%20%20%20%20pop%20%3D%20stack.pop%28%29%0A%20%20%20%20print%28%22%E5%87%BA%E6%A0%88%E5%85%83%E7%B4%A0%20pop%20%3D%22,%20pop%29%0A%20%20%20%20print%28%22%E5%87%BA%E6%A0%88%E5%90%8E%20stack%20%3D%22,%20stack%29%0A%0A%20%20%20%20%23%20%E8%8E%B7%E5%8F%96%E6%A0%88%E7%9A%84%E9%95%BF%E5%BA%A6%0A%20%20%20%20size%20%3D%20len%28stack%29%0A%20%20%20%20print%28%22%E6%A0%88%E7%9A%84%E9%95%BF%E5%BA%A6%20size%20%3D%22,%20size%29%0A%0A%20%20%20%20%23%20%E5%88%A4%E6%96%AD%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%0A%20%20%20%20is_empty%20%3D%20len%28stack%29%20%3D%3D%200%0A%20%20%20%20print%28%22%E6%A0%88%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%20%3D%22,%20is_empty%29&cumulative=false&curInstr=2&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
## Implementing a Stack
## Implementing a stack
To gain a deeper understanding of how a stack operates, let's try implementing a stack class ourselves.
A stack follows the principle of Last-In-First-Out, which means we can only add or remove elements at the top of the stack. However, both arrays and linked lists allow adding and removing elements at any position, **therefore a stack can be seen as a restricted array or linked list**. In other words, we can "shield" certain irrelevant operations of an array or linked list, aligning their external behavior with the characteristics of a stack.
### Implementation Based on Linked List
### Implementation based on a linked list
When implementing a stack using a linked list, we can consider the head node of the list as the top of the stack and the tail node as the bottom of the stack.
@ -339,7 +339,7 @@ Below is an example code for implementing a stack based on a linked list:
[file]{linkedlist_stack}-[class]{linked_list_stack}-[func]{}
```
### Implementation Based on Array
### Implementation based on an array
When implementing a stack using an array, we can consider the end of the array as the top of the stack. As shown in the figure below, push and pop operations correspond to adding and removing elements at the end of the array, respectively, both with a time complexity of $O(1)$.
@ -358,7 +358,7 @@ Since the elements to be pushed onto the stack may continuously increase, we can
[file]{array_stack}-[class]{array_stack}-[func]{}
```
## Comparison of the Two Implementations
## Comparison of the two implementations
**Supported Operations**
@ -383,7 +383,7 @@ However, since linked list nodes require extra space for storing pointers, **the
In summary, we cannot simply determine which implementation is more memory-efficient. It requires analysis based on specific circumstances.
## Typical Applications of Stack
## Typical applications of stack
- **Back and forward in browsers, undo and redo in software**. Every time we open a new webpage, the browser pushes the previous page onto the stack, allowing us to go back to the previous page through the back operation, which is essentially a pop operation. To support both back and forward, two stacks are needed to work together.
- **Memory management in programs**. Each time a function is called, the system adds a stack frame at the top of the stack to record the function's context information. In recursive functions, the downward recursion phase keeps pushing onto the stack, while the upward backtracking phase keeps popping from the stack.

View File

@ -1,6 +1,6 @@
# Summary
### Key Review
### Key review
- Stack is a data structure that follows the Last-In-First-Out (LIFO) principle and can be implemented using arrays or linked lists.
- In terms of time efficiency, the array implementation of the stack has a higher average efficiency. However, during expansion, the time complexity for a single push operation can degrade to $O(n)$. In contrast, the linked list implementation of a stack offers more stable efficiency.