mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-25 03:08:54 +08:00
deploy
This commit is contained in:
@ -1904,6 +1904,8 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -2014,9 +2016,23 @@
|
||||
|
||||
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="../dp_solution_pipeline.md" class="md-nav__link">
|
||||
13.3. DP 解题步骤(New)
|
||||
</a>
|
||||
</li>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="../knapsack_problem/" class="md-nav__link">
|
||||
13.3. 0-1 背包问题(New)
|
||||
13.4. 0-1 背包问题(New)
|
||||
</a>
|
||||
</li>
|
||||
|
||||
@ -2391,8 +2407,8 @@ dp[i] = dp[i-1] + dp[i-2]
|
||||
<p align="center"> Fig. 方案数量递推关系 </p>
|
||||
|
||||
<p>也就是说,在爬楼梯问题中,<strong>各个子问题之间不是相互独立的,原问题的解可以由子问题的解构成</strong>。</p>
|
||||
<p>我们可以基于此递推公式写出暴力搜索代码:以 <span class="arithmatex">\(dp[n]\)</span> 为起始点,<strong>从顶至底地将一个较大问题拆解为两个较小问题的和</strong>,直至到达最小子问题 <span class="arithmatex">\(dp[1]\)</span> 和 <span class="arithmatex">\(dp[2]\)</span> 时返回。其中,最小子问题的解是已知的,即爬到第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶分别有 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 种方案。</p>
|
||||
<p>观察以下代码,它与回溯解法都属于深度优先搜索,但比回溯算法更加简洁。</p>
|
||||
<p>我们可以基于此递推公式写出暴力搜索代码:以 <span class="arithmatex">\(dp[n]\)</span> 为起始点,<strong>从顶至底地将一个较大问题拆解为两个较小问题的和</strong>,直至到达最小子问题 <span class="arithmatex">\(dp[1]\)</span> 和 <span class="arithmatex">\(dp[2]\)</span> 时返回。其中,最小子问题的解 <span class="arithmatex">\(dp[1] = 1\)</span> , <span class="arithmatex">\(dp[2] = 2\)</span> 是已知的,代表爬到第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶分别有 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 种方案。</p>
|
||||
<p>观察以下代码,它和标准回溯代码都属于深度优先搜索,但更加简洁。</p>
|
||||
<div class="tabbed-set tabbed-alternate" data-tabs="2:11"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JavaScript</label><label for="__tabbed_2_6">TypeScript</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label><label for="__tabbed_2_11">Dart</label></div>
|
||||
<div class="tabbed-content">
|
||||
<div class="tabbed-block">
|
||||
@ -2505,7 +2521,7 @@ dp[i] = dp[i-1] + dp[i-2]
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<p>下图展示了该方法形成的递归树。对于问题 <span class="arithmatex">\(dp[n]\)</span> ,递归树的深度为 <span class="arithmatex">\(n\)</span> ,时间复杂度为 <span class="arithmatex">\(O(2^n)\)</span> 。指数阶的运行时间增长地非常快,如果我们输入一个比较大的 <span class="arithmatex">\(n\)</span> ,则会陷入漫长的等待之中。</p>
|
||||
<p>下图展示了暴力搜索形成的递归树。对于问题 <span class="arithmatex">\(dp[n]\)</span> ,其递归树的深度为 <span class="arithmatex">\(n\)</span> ,时间复杂度为 <span class="arithmatex">\(O(2^n)\)</span> 。指数阶的运行时间增长地非常快,如果我们输入一个比较大的 <span class="arithmatex">\(n\)</span> ,则会陷入漫长的等待之中。</p>
|
||||
<p><img alt="爬楼梯对应递归树" src="../intro_to_dynamic_programming.assets/climbing_stairs_dfs_tree.png" /></p>
|
||||
<p align="center"> Fig. 爬楼梯对应递归树 </p>
|
||||
|
||||
@ -2767,10 +2783,10 @@ dp[i] = dp[i-1] + dp[i-2]
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<p>与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如对于爬楼梯问题,状态定义为当前所在楼梯阶数。<strong>动态规划的常用术语包括</strong>:</p>
|
||||
<p>与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如对于爬楼梯问题,状态定义为当前所在楼梯阶数 <span class="arithmatex">\(i\)</span> 。<strong>动态规划的常用术语包括</strong>:</p>
|
||||
<ul>
|
||||
<li>将 <span class="arithmatex">\(dp\)</span> 数组称为「状态列表」,<span class="arithmatex">\(dp[i]\)</span> 代表第 <span class="arithmatex">\(i\)</span> 个状态的解;</li>
|
||||
<li>将最简单子问题对应的状态(即第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶楼梯)称为「初始状态」;</li>
|
||||
<li>将最小子问题对应的状态(即第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶楼梯)称为「初始状态」;</li>
|
||||
<li>将递推公式 <span class="arithmatex">\(dp[i] = dp[i-1] + dp[i-2]\)</span> 称为「状态转移方程」;</li>
|
||||
</ul>
|
||||
<p><img alt="爬楼梯的动态规划过程" src="../intro_to_dynamic_programming.assets/climbing_stairs_dp.png" /></p>
|
||||
|
Reference in New Issue
Block a user