Add Dart codes to the documents. (#529)

This commit is contained in:
Yudong Jin
2023-06-02 02:40:26 +08:00
committed by GitHub
parent 041a989d33
commit 025051c81b
38 changed files with 849 additions and 96 deletions

View File

@@ -72,6 +72,12 @@
[class]{MaxHeap}-[func]{init}
```
=== "Dart"
```dart title="my_heap.dart"
[class]{MaxHeap}-[func]{MaxHeap}
```
## 复杂度分析
为什么第二种建堆方法的时间复杂度是 $O(n)$ ?我们来展开推算一下。

View File

@@ -301,6 +301,12 @@
```
=== "Dart"
```dart title="heap.dart"
```
## 堆的实现
下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断取逆(例如,将 $\geq$ 替换为 $\leq$ )。感兴趣的读者可以自行实现。
@@ -417,6 +423,16 @@
[class]{MaxHeap}-[func]{parent}
```
=== "Dart"
```dart title="my_heap.dart"
[class]{MaxHeap}-[func]{_left}
[class]{MaxHeap}-[func]{_right}
[class]{MaxHeap}-[func]{_parent}
```
### 访问堆顶元素
堆顶元素即为二叉树的根节点,也就是列表的首个元素。
@@ -481,6 +497,12 @@
[class]{MaxHeap}-[func]{peek}
```
=== "Dart"
```dart title="my_heap.dart"
[class]{MaxHeap}-[func]{peek}
```
### 元素入堆
给定元素 `val` ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏。因此,**需要修复从插入节点到根节点的路径上的各个节点**,这个操作被称为「堆化 Heapify」。
@@ -596,6 +618,14 @@
[class]{MaxHeap}-[func]{siftUp}
```
=== "Dart"
```dart title="my_heap.dart"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{siftUp}
```
### 堆顶元素出堆
堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化修复变得困难。为了尽量减少元素索引的变动,我们采取以下操作步骤:
@@ -718,6 +748,14 @@
[class]{MaxHeap}-[func]{siftDown}
```
=== "Dart"
```dart title="my_heap.dart"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{siftDown}
```
## 堆常见应用
- **优先队列**:堆通常作为实现优先队列的首选数据结构,其入队和出队操作的时间复杂度均为 $O(\log n)$ ,而建队操作为 $O(n)$ ,这些操作都非常高效。