import sys """ Dynamic Programming Implementation of Matrix Chain Multiplication Time Complexity: O(n^3) Space Complexity: O(n^2) Reference: https://en.wikipedia.org/wiki/Matrix_chain_multiplication """ def matrix_chain_order(array: list[int]) -> tuple[list[list[int]], list[list[int]]]: """ >>> matrix_chain_order([10, 30, 5]) ([[0, 0, 0], [0, 0, 1500], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]]) """ n = len(array) matrix = [[0 for _ in range(n)] for _ in range(n)] sol = [[0 for _ in range(n)] for _ in range(n)] for chain_length in range(2, n): for a in range(1, n - chain_length + 1): b = a + chain_length - 1 matrix[a][b] = sys.maxsize for c in range(a, b): cost = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: matrix[a][b] = cost sol[a][b] = c return matrix, sol def print_optimal_solution(optimal_solution: list[list[int]], i: int, j: int): """ Print order of matrix with Ai as Matrix. """ if i == j: print("A" + str(i), end=" ") else: print("(", end=" ") print_optimal_solution(optimal_solution, i, optimal_solution[i][j]) print_optimal_solution(optimal_solution, optimal_solution[i][j] + 1, j) print(")", end=" ") def main(): """ Size of matrix created from array [30, 35, 15, 5, 10, 20, 25] will be: 30*35 35*15 15*5 5*10 10*20 20*25 """ array = [30, 35, 15, 5, 10, 20, 25] n = len(array) matrix, optimal_solution = matrix_chain_order(array) print("No. of Operation required: " + str(matrix[1][n - 1])) print_optimal_solution(optimal_solution, 1, n - 1) if __name__ == "__main__": main()