mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-06 02:13:15 +08:00
all valid python 3
This commit is contained in:
@ -7,7 +7,7 @@ By considering the terms in the Fibonacci sequence whose values do not exceed n,
|
||||
e.g. for n=10, we have {2,8}, sum is 10.
|
||||
'''
|
||||
"""Python 3"""
|
||||
n = int(raw_input())
|
||||
n = int(input())
|
||||
a=0
|
||||
b=2
|
||||
count=0
|
||||
|
@ -19,7 +19,7 @@ def isprime(no):
|
||||
return True
|
||||
|
||||
maxNumber = 0
|
||||
n=int(raw_input())
|
||||
n=int(input())
|
||||
if(isprime(n)):
|
||||
print(n)
|
||||
else:
|
||||
|
@ -4,7 +4,7 @@ The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor o
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
n=int(raw_input())
|
||||
n=int(input())
|
||||
prime=1
|
||||
i=2
|
||||
while(i*i<=n):
|
||||
|
@ -4,7 +4,7 @@ A palindromic number reads the same both ways. The largest palindrome made from
|
||||
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
limit = int(raw_input("limit? "))
|
||||
limit = int(input("limit? "))
|
||||
|
||||
# fetchs the next number
|
||||
for number in range(limit-1,10000,-1):
|
||||
@ -26,4 +26,4 @@ for number in range(limit-1,10000,-1):
|
||||
print(number)
|
||||
exit(0)
|
||||
|
||||
divisor -=1
|
||||
divisor -=1
|
||||
|
@ -12,8 +12,8 @@ for i in range(999,100,-1):
|
||||
arr.append(i*j)
|
||||
arr.sort()
|
||||
|
||||
n=int(raw_input())
|
||||
n=int(input())
|
||||
for i in arr[::-1]:
|
||||
if(i<n):
|
||||
print(i)
|
||||
exit(0)
|
||||
exit(0)
|
||||
|
@ -5,7 +5,7 @@ What is the smallest positive number that is evenly divisible(divisible with no
|
||||
'''
|
||||
from __future__ import print_function
|
||||
|
||||
n = int(raw_input())
|
||||
n = int(input())
|
||||
i = 0
|
||||
while 1:
|
||||
i+=n*(n-1)
|
||||
@ -18,4 +18,4 @@ while 1:
|
||||
if(i==0):
|
||||
i=1
|
||||
print(i)
|
||||
break
|
||||
break
|
||||
|
@ -13,7 +13,7 @@ def gcd(x,y):
|
||||
def lcm(x,y):
|
||||
return (x*y)//gcd(x,y)
|
||||
|
||||
n = int(raw_input())
|
||||
n = int(input())
|
||||
g=1
|
||||
for i in range(1,n+1):
|
||||
g=lcm(g,i)
|
||||
|
@ -12,9 +12,9 @@ from __future__ import print_function
|
||||
|
||||
suma = 0
|
||||
sumb = 0
|
||||
n = int(raw_input())
|
||||
n = int(input())
|
||||
for i in range(1,n+1):
|
||||
suma += i**2
|
||||
sumb += i
|
||||
sum = sumb**2 - suma
|
||||
print(sum)
|
||||
print(sum)
|
||||
|
@ -9,8 +9,8 @@ Hence the difference between the sum of the squares of the first ten natural num
|
||||
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
n = int(raw_input())
|
||||
n = int(input())
|
||||
suma = n*(n+1)/2
|
||||
suma **= 2
|
||||
sumb = n*(n+1)*(2*n+1)/6
|
||||
print(suma-sumb)
|
||||
print(suma-sumb)
|
||||
|
@ -16,7 +16,7 @@ def isprime(n):
|
||||
if(n%i==0):
|
||||
return False
|
||||
return True
|
||||
n = int(raw_input())
|
||||
n = int(input())
|
||||
i=0
|
||||
j=1
|
||||
while(i!=n and j<3):
|
||||
@ -27,4 +27,4 @@ while(i!=n):
|
||||
j+=2
|
||||
if(isprime(j)):
|
||||
i+=1
|
||||
print(j)
|
||||
print(j)
|
||||
|
@ -4,7 +4,7 @@ def isprime(number):
|
||||
if number%i==0:
|
||||
return False
|
||||
return True
|
||||
n = int(raw_input('Enter The N\'th Prime Number You Want To Get: ')) # Ask For The N'th Prime Number Wanted
|
||||
n = int(input('Enter The N\'th Prime Number You Want To Get: ')) # Ask For The N'th Prime Number Wanted
|
||||
primes = []
|
||||
num = 2
|
||||
while len(primes) < n:
|
||||
|
@ -1,7 +1,7 @@
|
||||
import sys
|
||||
def main():
|
||||
LargestProduct = -sys.maxsize-1
|
||||
number=raw_input().strip()
|
||||
number=input().strip()
|
||||
for i in range(len(number)-13):
|
||||
product=1
|
||||
for j in range(13):
|
||||
|
@ -6,7 +6,7 @@ Find maximum possible value of product of a,b,c among all such Pythagorean tripl
|
||||
|
||||
product=-1
|
||||
d=0
|
||||
N = int(raw_input())
|
||||
N = int(input())
|
||||
for a in range(1,N//3):
|
||||
"""Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c """
|
||||
b=(N*N-2*a*N)//(2*N-2*a)
|
||||
|
@ -4,11 +4,11 @@ Work out the first ten digits of the sum of the N 50-digit numbers.
|
||||
'''
|
||||
from __future__ import print_function
|
||||
|
||||
n = int(raw_input().strip())
|
||||
n = int(input().strip())
|
||||
|
||||
array = []
|
||||
for i in range(n):
|
||||
array.append(int(raw_input().strip()))
|
||||
array.append(int(input().strip()))
|
||||
|
||||
print(str(sum(array))[:10])
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
power = int(raw_input("Enter the power of 2: "))
|
||||
power = int(input("Enter the power of 2: "))
|
||||
num = 2**power
|
||||
|
||||
string_num = str(num)
|
||||
|
@ -15,7 +15,7 @@ def split_and_add(number):
|
||||
return sum_of_digits
|
||||
|
||||
# Taking the user input.
|
||||
number = int(raw_input("Enter the Number: "))
|
||||
number = int(input("Enter the Number: "))
|
||||
|
||||
# Assigning the factorial from the factorial function.
|
||||
factorial = factorial(number)
|
||||
|
Reference in New Issue
Block a user