mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 17:34:49 +08:00
Add flake8-builtins to pre-commit and fix errors (#7105)
Ignore `A003` Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
This commit is contained in:
@ -25,7 +25,7 @@ def armstrong_number(n: int) -> bool:
|
||||
return False
|
||||
|
||||
# Initialization of sum and number of digits.
|
||||
sum = 0
|
||||
total = 0
|
||||
number_of_digits = 0
|
||||
temp = n
|
||||
# Calculation of digits of the number
|
||||
@ -36,9 +36,9 @@ def armstrong_number(n: int) -> bool:
|
||||
temp = n
|
||||
while temp > 0:
|
||||
rem = temp % 10
|
||||
sum += rem**number_of_digits
|
||||
total += rem**number_of_digits
|
||||
temp //= 10
|
||||
return n == sum
|
||||
return n == total
|
||||
|
||||
|
||||
def pluperfect_number(n: int) -> bool:
|
||||
@ -55,7 +55,7 @@ def pluperfect_number(n: int) -> bool:
|
||||
# Init a "histogram" of the digits
|
||||
digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||||
digit_total = 0
|
||||
sum = 0
|
||||
total = 0
|
||||
temp = n
|
||||
while temp > 0:
|
||||
temp, rem = divmod(temp, 10)
|
||||
@ -63,9 +63,9 @@ def pluperfect_number(n: int) -> bool:
|
||||
digit_total += 1
|
||||
|
||||
for (cnt, i) in zip(digit_histogram, range(len(digit_histogram))):
|
||||
sum += cnt * i**digit_total
|
||||
total += cnt * i**digit_total
|
||||
|
||||
return n == sum
|
||||
return n == total
|
||||
|
||||
|
||||
def narcissistic_number(n: int) -> bool:
|
||||
|
@ -67,7 +67,7 @@ def _subsum(
|
||||
@param precision: same as precision in main function
|
||||
@return: floating-point number whose integer part is not important
|
||||
"""
|
||||
sum = 0.0
|
||||
total = 0.0
|
||||
for sum_index in range(digit_pos_to_extract + precision):
|
||||
denominator = 8 * sum_index + denominator_addend
|
||||
if sum_index < digit_pos_to_extract:
|
||||
@ -79,8 +79,8 @@ def _subsum(
|
||||
)
|
||||
else:
|
||||
exponential_term = pow(16, digit_pos_to_extract - 1 - sum_index)
|
||||
sum += exponential_term / denominator
|
||||
return sum
|
||||
total += exponential_term / denominator
|
||||
return total
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -14,13 +14,13 @@ def negative_exist(arr: list) -> int:
|
||||
[-2, 0, 0, 0, 0]
|
||||
"""
|
||||
arr = arr or [0]
|
||||
max = arr[0]
|
||||
max_number = arr[0]
|
||||
for i in arr:
|
||||
if i >= 0:
|
||||
return 0
|
||||
elif max <= i:
|
||||
max = i
|
||||
return max
|
||||
elif max_number <= i:
|
||||
max_number = i
|
||||
return max_number
|
||||
|
||||
|
||||
def kadanes(arr: list) -> int:
|
||||
|
@ -2,7 +2,7 @@ import math
|
||||
from collections.abc import Generator
|
||||
|
||||
|
||||
def slow_primes(max: int) -> Generator[int, None, None]:
|
||||
def slow_primes(max_n: int) -> Generator[int, None, None]:
|
||||
"""
|
||||
Return a list of all primes numbers up to max.
|
||||
>>> list(slow_primes(0))
|
||||
@ -20,7 +20,7 @@ def slow_primes(max: int) -> Generator[int, None, None]:
|
||||
>>> list(slow_primes(10000))[-1]
|
||||
9973
|
||||
"""
|
||||
numbers: Generator = (i for i in range(1, (max + 1)))
|
||||
numbers: Generator = (i for i in range(1, (max_n + 1)))
|
||||
for i in (n for n in numbers if n > 1):
|
||||
for j in range(2, i):
|
||||
if (i % j) == 0:
|
||||
@ -29,7 +29,7 @@ def slow_primes(max: int) -> Generator[int, None, None]:
|
||||
yield i
|
||||
|
||||
|
||||
def primes(max: int) -> Generator[int, None, None]:
|
||||
def primes(max_n: int) -> Generator[int, None, None]:
|
||||
"""
|
||||
Return a list of all primes numbers up to max.
|
||||
>>> list(primes(0))
|
||||
@ -47,7 +47,7 @@ def primes(max: int) -> Generator[int, None, None]:
|
||||
>>> list(primes(10000))[-1]
|
||||
9973
|
||||
"""
|
||||
numbers: Generator = (i for i in range(1, (max + 1)))
|
||||
numbers: Generator = (i for i in range(1, (max_n + 1)))
|
||||
for i in (n for n in numbers if n > 1):
|
||||
# only need to check for factors up to sqrt(i)
|
||||
bound = int(math.sqrt(i)) + 1
|
||||
@ -58,7 +58,7 @@ def primes(max: int) -> Generator[int, None, None]:
|
||||
yield i
|
||||
|
||||
|
||||
def fast_primes(max: int) -> Generator[int, None, None]:
|
||||
def fast_primes(max_n: int) -> Generator[int, None, None]:
|
||||
"""
|
||||
Return a list of all primes numbers up to max.
|
||||
>>> list(fast_primes(0))
|
||||
@ -76,9 +76,9 @@ def fast_primes(max: int) -> Generator[int, None, None]:
|
||||
>>> list(fast_primes(10000))[-1]
|
||||
9973
|
||||
"""
|
||||
numbers: Generator = (i for i in range(1, (max + 1), 2))
|
||||
numbers: Generator = (i for i in range(1, (max_n + 1), 2))
|
||||
# It's useless to test even numbers as they will not be prime
|
||||
if max > 2:
|
||||
if max_n > 2:
|
||||
yield 2 # Because 2 will not be tested, it's necessary to yield it now
|
||||
for i in (n for n in numbers if n > 1):
|
||||
bound = int(math.sqrt(i)) + 1
|
||||
|
@ -8,9 +8,9 @@ def sum_of_series(first_term: int, common_diff: int, num_of_terms: int) -> float
|
||||
>>> sum_of_series(1, 10, 100)
|
||||
49600.0
|
||||
"""
|
||||
sum = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
|
||||
total = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
|
||||
# formula for sum of series
|
||||
return sum
|
||||
return total
|
||||
|
||||
|
||||
def main():
|
||||
|
Reference in New Issue
Block a user