mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 17:34:49 +08:00
Pyupgrade to Python 3.9 (#4718)
* Pyupgrade to Python 3.9 * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
@ -12,10 +12,10 @@ It is possible to write ten as the sum of primes in exactly five different ways:
|
||||
What is the first value which can be written as the sum of primes in over
|
||||
five thousand different ways?
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from functools import lru_cache
|
||||
from math import ceil
|
||||
from typing import Optional, Set
|
||||
|
||||
NUM_PRIMES = 100
|
||||
|
||||
@ -30,7 +30,7 @@ for prime in range(3, ceil(NUM_PRIMES ** 0.5), 2):
|
||||
|
||||
|
||||
@lru_cache(maxsize=100)
|
||||
def partition(number_to_partition: int) -> Set[int]:
|
||||
def partition(number_to_partition: int) -> set[int]:
|
||||
"""
|
||||
Return a set of integers corresponding to unique prime partitions of n.
|
||||
The unique prime partitions can be represented as unique prime decompositions,
|
||||
@ -47,7 +47,7 @@ def partition(number_to_partition: int) -> Set[int]:
|
||||
elif number_to_partition == 0:
|
||||
return {1}
|
||||
|
||||
ret: Set[int] = set()
|
||||
ret: set[int] = set()
|
||||
prime: int
|
||||
sub: int
|
||||
|
||||
@ -60,7 +60,7 @@ def partition(number_to_partition: int) -> Set[int]:
|
||||
return ret
|
||||
|
||||
|
||||
def solution(number_unique_partitions: int = 5000) -> Optional[int]:
|
||||
def solution(number_unique_partitions: int = 5000) -> int | None:
|
||||
"""
|
||||
Return the smallest integer that can be written as the sum of primes in over
|
||||
m unique ways.
|
||||
|
Reference in New Issue
Block a user