mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 01:09:40 +08:00
Pyupgrade to Python 3.9 (#4718)
* Pyupgrade to Python 3.9 * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
@ -11,11 +11,11 @@ Algorithm :
|
||||
1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1
|
||||
2. Take n = ra*by + rb*ax
|
||||
"""
|
||||
from typing import Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
# Extended Euclid
|
||||
def extended_euclid(a: int, b: int) -> Tuple[int, int]:
|
||||
def extended_euclid(a: int, b: int) -> tuple[int, int]:
|
||||
"""
|
||||
>>> extended_euclid(10, 6)
|
||||
(-1, 2)
|
||||
|
@ -1,7 +1,7 @@
|
||||
from typing import Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def diophantine(a: int, b: int, c: int) -> Tuple[float, float]:
|
||||
def diophantine(a: int, b: int, c: int) -> tuple[float, float]:
|
||||
"""
|
||||
Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the
|
||||
diophantine equation a*x + b*y = c has a solution (where x and y are integers)
|
||||
@ -95,7 +95,7 @@ def greatest_common_divisor(a: int, b: int) -> int:
|
||||
return b
|
||||
|
||||
|
||||
def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
|
||||
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
|
||||
"""
|
||||
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers
|
||||
x and y, then d = gcd(a,b)
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Tuple
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def modular_division(a: int, b: int, n: int) -> int:
|
||||
@ -73,7 +73,7 @@ def modular_division2(a: int, b: int, n: int) -> int:
|
||||
return x
|
||||
|
||||
|
||||
def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
|
||||
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
|
||||
"""
|
||||
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x
|
||||
and y, then d = gcd(a,b)
|
||||
@ -101,7 +101,7 @@ def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
|
||||
return (d, x, y)
|
||||
|
||||
|
||||
def extended_euclid(a: int, b: int) -> Tuple[int, int]:
|
||||
def extended_euclid(a: int, b: int) -> tuple[int, int]:
|
||||
"""
|
||||
Extended Euclid
|
||||
>>> extended_euclid(10, 6)
|
||||
|
Reference in New Issue
Block a user