Pyupgrade to Python 3.9 (#4718)

* Pyupgrade to Python 3.9

* updating DIRECTORY.md

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Christian Clauss
2021-09-07 13:37:03 +02:00
committed by GitHub
parent 5d5831bdd0
commit cecf43d648
142 changed files with 523 additions and 530 deletions

View File

@ -11,11 +11,11 @@ Algorithm :
1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1
2. Take n = ra*by + rb*ax
"""
from typing import Tuple
from __future__ import annotations
# Extended Euclid
def extended_euclid(a: int, b: int) -> Tuple[int, int]:
def extended_euclid(a: int, b: int) -> tuple[int, int]:
"""
>>> extended_euclid(10, 6)
(-1, 2)

View File

@ -1,7 +1,7 @@
from typing import Tuple
from __future__ import annotations
def diophantine(a: int, b: int, c: int) -> Tuple[float, float]:
def diophantine(a: int, b: int, c: int) -> tuple[float, float]:
"""
Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the
diophantine equation a*x + b*y = c has a solution (where x and y are integers)
@ -95,7 +95,7 @@ def greatest_common_divisor(a: int, b: int) -> int:
return b
def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
"""
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers
x and y, then d = gcd(a,b)

View File

@ -1,4 +1,4 @@
from typing import Tuple
from __future__ import annotations
def modular_division(a: int, b: int, n: int) -> int:
@ -73,7 +73,7 @@ def modular_division2(a: int, b: int, n: int) -> int:
return x
def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
"""
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x
and y, then d = gcd(a,b)
@ -101,7 +101,7 @@ def extended_gcd(a: int, b: int) -> Tuple[int, int, int]:
return (d, x, y)
def extended_euclid(a: int, b: int) -> Tuple[int, int]:
def extended_euclid(a: int, b: int) -> tuple[int, int]:
"""
Extended Euclid
>>> extended_euclid(10, 6)