Pyupgrade to Python 3.9 (#4718)

* Pyupgrade to Python 3.9

* updating DIRECTORY.md

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Christian Clauss
2021-09-07 13:37:03 +02:00
committed by GitHub
parent 5d5831bdd0
commit cecf43d648
142 changed files with 523 additions and 530 deletions

View File

@ -1,14 +1,14 @@
"""
Checks if a system of forces is in static equilibrium.
"""
from typing import List
from __future__ import annotations
from numpy import array, cos, cross, ndarray, radians, sin
def polar_force(
magnitude: float, angle: float, radian_mode: bool = False
) -> List[float]:
) -> list[float]:
"""
Resolves force along rectangular components.
(force, angle) => (force_x, force_y)

View File

@ -3,12 +3,12 @@
Reference:
- https://en.wikipedia.org/wiki/LU_decomposition
"""
from typing import Tuple
from __future__ import annotations
import numpy as np
def lower_upper_decomposition(table: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""Lower-Upper (LU) Decomposition
Example:

View File

@ -1,7 +1,7 @@
# https://www.geeksforgeeks.org/newton-forward-backward-interpolation/
from __future__ import annotations
import math
from typing import List
# for calculating u value
@ -22,7 +22,7 @@ def ucal(u: float, p: int) -> float:
def main() -> None:
n = int(input("enter the numbers of values: "))
y: List[List[float]] = []
y: list[list[float]] = []
for i in range(n):
y.append([])
for i in range(n):

View File

@ -2,15 +2,16 @@
# Author: Syed Haseeb Shah (github.com/QuantumNovice)
# The Newton-Raphson method (also known as Newton's method) is a way to
# quickly find a good approximation for the root of a real-valued function
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F401, F403
from typing import Union
from sympy import diff
def newton_raphson(
func: str, a: Union[float, Decimal], precision: float = 10 ** -10
func: str, a: float | Decimal, precision: float = 10 ** -10
) -> float:
"""Finds root from the point 'a' onwards by Newton-Raphson method
>>> newton_raphson("sin(x)", 2)