mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-04 16:57:32 +08:00
pre-commit: Upgrade psf/black for stable style 2023 (#8110)
* pre-commit: Upgrade psf/black for stable style 2023 Updating https://github.com/psf/black ... updating 22.12.0 -> 23.1.0 for their `2023 stable style`. * https://github.com/psf/black/blob/main/CHANGES.md#2310 > This is the first [psf/black] release of 2023, and following our stability policy, it comes with a number of improvements to our stable style… Also, add https://github.com/tox-dev/pyproject-fmt and https://github.com/abravalheri/validate-pyproject to pre-commit. I only modified `.pre-commit-config.yaml` and all other files were modified by pre-commit.ci and psf/black. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@ -74,7 +74,6 @@ def centroid_pairwise_dist(x, centroids):
|
||||
|
||||
|
||||
def assign_clusters(data, centroids):
|
||||
|
||||
# Compute distances between each data point and the set of centroids:
|
||||
# Fill in the blank (RHS only)
|
||||
distances_from_centroids = centroid_pairwise_dist(data, centroids)
|
||||
@ -100,10 +99,8 @@ def revise_centroids(data, k, cluster_assignment):
|
||||
|
||||
|
||||
def compute_heterogeneity(data, k, centroids, cluster_assignment):
|
||||
|
||||
heterogeneity = 0.0
|
||||
for i in range(k):
|
||||
|
||||
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
|
||||
member_data_points = data[cluster_assignment == i, :]
|
||||
|
||||
|
@ -49,7 +49,6 @@ def main() -> None:
|
||||
|
||||
for _ in range(epochs):
|
||||
for j in range(len(training_samples)):
|
||||
|
||||
# training sample
|
||||
sample = training_samples[j]
|
||||
|
||||
|
@ -82,7 +82,6 @@ class SmoSVM:
|
||||
k = self._k
|
||||
state = None
|
||||
while True:
|
||||
|
||||
# 1: Find alpha1, alpha2
|
||||
try:
|
||||
i1, i2 = self.choose_alpha.send(state)
|
||||
@ -146,7 +145,6 @@ class SmoSVM:
|
||||
|
||||
# Predict test samples
|
||||
def predict(self, test_samples, classify=True):
|
||||
|
||||
if test_samples.shape[1] > self.samples.shape[1]:
|
||||
raise ValueError(
|
||||
"Test samples' feature length does not equal to that of train samples"
|
||||
|
@ -41,7 +41,6 @@ def xgboost(features: np.ndarray, target: np.ndarray) -> XGBClassifier:
|
||||
|
||||
|
||||
def main() -> None:
|
||||
|
||||
"""
|
||||
>>> main()
|
||||
|
||||
|
Reference in New Issue
Block a user