mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-06 10:31:29 +08:00
Re-design psnr.py code and change image names (#592)
* Change some Image File names & re-code the psnr algorithm (conserving both methods). Also Added new example. * Selected psnr method and reformat some code from arithmetic_analysis
This commit is contained in:

committed by
Harshil

parent
39912aed57
commit
beafe3656f
@ -15,7 +15,7 @@ def bisection(function, a, b): # finds where the function becomes 0 in [a,b] us
|
||||
return
|
||||
else:
|
||||
mid = (start + end) / 2
|
||||
while abs(start - mid) > 0.0000001: # until we achieve precise equals to 10^-7
|
||||
while abs(start - mid) > 10**-7: # until we achieve precise equals to 10^-7
|
||||
if function(mid) == 0:
|
||||
return mid
|
||||
elif function(mid) * function(start) < 0:
|
||||
@ -29,5 +29,5 @@ def bisection(function, a, b): # finds where the function becomes 0 in [a,b] us
|
||||
def f(x):
|
||||
return math.pow(x, 3) - 2*x - 5
|
||||
|
||||
|
||||
print(bisection(f, 1, 1000))
|
||||
if __name__ == "__main__":
|
||||
print(bisection(f, 1, 1000))
|
||||
|
@ -5,12 +5,13 @@ def intersection(function,x0,x1): #function is the f we want to find its root an
|
||||
x_n1 = x1
|
||||
while True:
|
||||
x_n2 = x_n1-(function(x_n1)/((function(x_n1)-function(x_n))/(x_n1-x_n)))
|
||||
if abs(x_n2 - x_n1)<0.00001 :
|
||||
if abs(x_n2 - x_n1) < 10**-5:
|
||||
return x_n2
|
||||
x_n=x_n1
|
||||
x_n1=x_n2
|
||||
|
||||
def f(x):
|
||||
return math.pow(x,3)-2*x-5
|
||||
return math.pow(x , 3) - (2 * x) -5
|
||||
|
||||
print(intersection(f,3,3.5))
|
||||
if __name__ == "__main__":
|
||||
print(intersection(f,3,3.5))
|
||||
|
@ -1,13 +1,14 @@
|
||||
# lower–upper (LU) decomposition - https://en.wikipedia.org/wiki/LU_decomposition
|
||||
import numpy
|
||||
|
||||
def LUDecompose (table):
|
||||
#table that contains our data
|
||||
#table has to be a square array so we need to check first
|
||||
# Table that contains our data
|
||||
# Table has to be a square array so we need to check first
|
||||
rows,columns=numpy.shape(table)
|
||||
L=numpy.zeros((rows,columns))
|
||||
U=numpy.zeros((rows,columns))
|
||||
if rows!=columns:
|
||||
return
|
||||
return []
|
||||
for i in range (columns):
|
||||
for j in range(i-1):
|
||||
sum=0
|
||||
@ -22,13 +23,10 @@ def LUDecompose (table):
|
||||
U[i][j]=table[i][j]-sum1
|
||||
return L,U
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
matrix =numpy.array([[2,-2,1],[0,1,2],[5,3,1]])
|
||||
L,U = LUDecompose(matrix)
|
||||
print(L)
|
||||
print(U)
|
||||
if __name__ == "__main__":
|
||||
matrix =numpy.array([[2,-2,1],
|
||||
[0,1,2],
|
||||
[5,3,1]])
|
||||
L,U = LUDecompose(matrix)
|
||||
print(L)
|
||||
print(U)
|
||||
|
@ -1,15 +1,18 @@
|
||||
# Newton's Method - https://en.wikipedia.org/wiki/Newton%27s_method
|
||||
|
||||
def newton(function,function1,startingInt): #function is the f(x) and function1 is the f'(x)
|
||||
x_n=startingInt
|
||||
while True:
|
||||
x_n1=x_n-function(x_n)/function1(x_n)
|
||||
if abs(x_n-x_n1)<0.00001:
|
||||
if abs(x_n-x_n1) < 10**-5:
|
||||
return x_n1
|
||||
x_n=x_n1
|
||||
|
||||
def f(x):
|
||||
return (x**3)-2*x-5
|
||||
return (x**3) - (2 * x) -5
|
||||
|
||||
def f1(x):
|
||||
return 3*(x**2)-2
|
||||
return 3 * (x**2) -2
|
||||
|
||||
print(newton(f,f1,3))
|
||||
if __name__ == "__main__":
|
||||
print(newton(f,f1,3))
|
||||
|
Reference in New Issue
Block a user