mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 09:21:13 +08:00
[pre-commit.ci] pre-commit autoupdate (#11322)
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2) - [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
![66853113+pre-commit-ci[bot]@users.noreply.github.com](/assets/img/avatar_default.png)
committed by
GitHub

parent
5f95d6f805
commit
bc8df6de31
@ -5,6 +5,7 @@ For example:
|
||||
for i in allocation_list:
|
||||
requests.get(url,headers={'Range':f'bytes={i}'})
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
Find the area of various geometric shapes
|
||||
Wikipedia reference: https://en.wikipedia.org/wiki/Area
|
||||
"""
|
||||
|
||||
from math import pi, sqrt, tan
|
||||
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""
|
||||
Approximates the area under the curve using the trapezoidal rule
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Callable
|
||||
|
@ -1,4 +1,5 @@
|
||||
"""Implementation of Basic Math in Python."""
|
||||
|
||||
import math
|
||||
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
"""For more information about the Binomial Distribution -
|
||||
https://en.wikipedia.org/wiki/Binomial_distribution"""
|
||||
https://en.wikipedia.org/wiki/Binomial_distribution"""
|
||||
|
||||
from math import factorial
|
||||
|
||||
|
||||
|
@ -11,6 +11,7 @@ Algorithm :
|
||||
1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1
|
||||
2. Take n = ra*by + rb*ax
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
@ -4,7 +4,6 @@ Finding the continuous fraction for a rational number using python
|
||||
https://en.wikipedia.org/wiki/Continued_fraction
|
||||
"""
|
||||
|
||||
|
||||
from fractions import Fraction
|
||||
from math import floor
|
||||
|
||||
|
@ -4,6 +4,7 @@
|
||||
Implementation of entropy of information
|
||||
https://en.wikipedia.org/wiki/Entropy_(information_theory)
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
@ -8,6 +8,7 @@ The gamma function is defined for all complex numbers except
|
||||
the non-positive integers
|
||||
Python's Standard Library math.gamma() function overflows around gamma(171.624).
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
from numpy import inf
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""
|
||||
Reference: https://en.wikipedia.org/wiki/Gaussian_function
|
||||
"""
|
||||
|
||||
from numpy import exp, pi, sqrt
|
||||
|
||||
|
||||
|
@ -7,6 +7,7 @@ The function takes the list of numeric values as input and returns the IQR.
|
||||
Script inspired by this Wikipedia article:
|
||||
https://en.wikipedia.org/wiki/Interquartile_range
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
@ -3,6 +3,7 @@ References: wikipedia:square free number
|
||||
psf/black : True
|
||||
ruff : True
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
""" Multiply two numbers using Karatsuba algorithm """
|
||||
"""Multiply two numbers using Karatsuba algorithm"""
|
||||
|
||||
|
||||
def karatsuba(a: int, b: int) -> int:
|
||||
|
@ -1,13 +1,13 @@
|
||||
"""
|
||||
In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne
|
||||
numbers. https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
|
||||
In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne
|
||||
numbers. https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test
|
||||
|
||||
A Mersenne number is a number that is one less than a power of two.
|
||||
That is M_p = 2^p - 1
|
||||
https://en.wikipedia.org/wiki/Mersenne_prime
|
||||
A Mersenne number is a number that is one less than a power of two.
|
||||
That is M_p = 2^p - 1
|
||||
https://en.wikipedia.org/wiki/Mersenne_prime
|
||||
|
||||
The Lucas–Lehmer test is the primality test used by the
|
||||
Great Internet Mersenne Prime Search (GIMPS) to locate large primes.
|
||||
The Lucas–Lehmer test is the primality test used by the
|
||||
Great Internet Mersenne Prime Search (GIMPS) to locate large primes.
|
||||
"""
|
||||
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""
|
||||
https://en.wikipedia.org/wiki/Taylor_series#Trigonometric_functions
|
||||
"""
|
||||
|
||||
from math import factorial, pi
|
||||
|
||||
|
||||
|
@ -6,6 +6,7 @@ Instead of using a nested for loop, in a Brute force approach we will use a tech
|
||||
called 'Window sliding technique' where the nested loops can be converted to a single
|
||||
loop to reduce time complexity.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
"""
|
||||
Modular Exponential.
|
||||
Modular exponentiation is a type of exponentiation performed over a modulus.
|
||||
For more explanation, please check
|
||||
https://en.wikipedia.org/wiki/Modular_exponentiation
|
||||
Modular Exponential.
|
||||
Modular exponentiation is a type of exponentiation performed over a modulus.
|
||||
For more explanation, please check
|
||||
https://en.wikipedia.org/wiki/Modular_exponentiation
|
||||
"""
|
||||
|
||||
"""Calculate Modular Exponential."""
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""
|
||||
@author: MatteoRaso
|
||||
"""
|
||||
|
||||
from collections.abc import Callable
|
||||
from math import pi, sqrt
|
||||
from random import uniform
|
||||
|
@ -4,6 +4,7 @@ Use the Adams-Bashforth methods to solve Ordinary Differential Equations.
|
||||
https://en.wikipedia.org/wiki/Linear_multistep_method
|
||||
Author : Ravi Kumar
|
||||
"""
|
||||
|
||||
from collections.abc import Callable
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
@ -1,11 +1,11 @@
|
||||
"""
|
||||
Python program to show how to interpolate and evaluate a polynomial
|
||||
using Neville's method.
|
||||
Neville’s method evaluates a polynomial that passes through a
|
||||
given set of x and y points for a particular x value (x0) using the
|
||||
Newton polynomial form.
|
||||
Reference:
|
||||
https://rpubs.com/aaronsc32/nevilles-method-polynomial-interpolation
|
||||
Python program to show how to interpolate and evaluate a polynomial
|
||||
using Neville's method.
|
||||
Neville’s method evaluates a polynomial that passes through a
|
||||
given set of x and y points for a particular x value (x0) using the
|
||||
Newton polynomial form.
|
||||
Reference:
|
||||
https://rpubs.com/aaronsc32/nevilles-method-polynomial-interpolation
|
||||
"""
|
||||
|
||||
|
||||
|
@ -9,6 +9,7 @@ with the precision of the approximation increasing as the number of iterations i
|
||||
|
||||
Reference: https://en.wikipedia.org/wiki/Newton%27s_method
|
||||
"""
|
||||
|
||||
from collections.abc import Callable
|
||||
|
||||
RealFunc = Callable[[float], float]
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""
|
||||
Approximates the area under the curve using the trapezoidal rule
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import Callable
|
||||
|
@ -4,6 +4,7 @@ Use the Runge-Kutta-Gill's method of order 4 to solve Ordinary Differential Equa
|
||||
https://www.geeksforgeeks.org/gills-4th-order-method-to-solve-differential-equations/
|
||||
Author : Ravi Kumar
|
||||
"""
|
||||
|
||||
from collections.abc import Callable
|
||||
from math import sqrt
|
||||
|
||||
|
@ -2,6 +2,7 @@
|
||||
Implementing Secant method in Python
|
||||
Author: dimgrichr
|
||||
"""
|
||||
|
||||
from math import exp
|
||||
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""
|
||||
python/black : True
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
@ -9,7 +9,6 @@ For manual testing run:
|
||||
python3 geometric_series.py
|
||||
"""
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
@ -9,7 +9,6 @@ For manual testing run:
|
||||
python3 p_series.py
|
||||
"""
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
@ -10,6 +10,7 @@ Reference: https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
|
||||
doctest provider: Bruno Simas Hadlich (https://github.com/brunohadlich)
|
||||
Also thanks to Dmitry (https://github.com/LizardWizzard) for finding the problem
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
|
@ -9,7 +9,6 @@ More details and concepts about this can be found on:
|
||||
https://en.wikipedia.org/wiki/Solovay%E2%80%93Strassen_primality_test
|
||||
"""
|
||||
|
||||
|
||||
import random
|
||||
|
||||
|
||||
|
@ -8,6 +8,7 @@ Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers.
|
||||
|
||||
On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188
|
||||
"""
|
||||
|
||||
PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401)
|
||||
FAILING: tuple = (-153, -1, 0, 1.2, 200, "A", [], {}, None)
|
||||
|
||||
|
@ -3,6 +3,7 @@ https://en.wikipedia.org/wiki/Weird_number
|
||||
|
||||
Fun fact: The set of weird numbers has positive asymptotic density.
|
||||
"""
|
||||
|
||||
from math import sqrt
|
||||
|
||||
|
||||
|
@ -9,6 +9,7 @@ element of the vector mostly -1 between 1.
|
||||
Script inspired from its corresponding Wikipedia article
|
||||
https://en.wikipedia.org/wiki/Activation_function
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
@ -3,6 +3,7 @@ Given an array of integers and another integer target,
|
||||
we are required to find a triplet from the array such that it's sum is equal to
|
||||
the target.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from itertools import permutations
|
||||
|
@ -17,6 +17,7 @@ return [0, 1].
|
||||
|
||||
[1]: https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
@ -11,6 +11,7 @@ Given nums = [2, 7, 11, 15], target = 9,
|
||||
Because nums[0] + nums[1] = 2 + 7 = 9,
|
||||
return [0, 1].
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
|
@ -3,6 +3,7 @@ Find the volume of various shapes.
|
||||
* https://en.wikipedia.org/wiki/Volume
|
||||
* https://en.wikipedia.org/wiki/Spherical_cap
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from math import pi, pow
|
||||
|
Reference in New Issue
Block a user