mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-06 01:56:26 +08:00
Delete arithmetic_analysis/
directory and relocate its contents (#10824)
* Remove eval from arithmetic_analysis/newton_raphson.py * Relocate contents of arithmetic_analysis/ Delete the arithmetic_analysis/ directory and relocate its files because the purpose of the directory was always ill-defined. "Arithmetic analysis" isn't a field of math, and the directory's files contained algorithms for linear algebra, numerical analysis, and physics. Relocated the directory's linear algebra algorithms to linear_algebra/, its numerical analysis algorithms to a new subdirectory called maths/numerical_analysis/, and its single physics algorithm to physics/. * updating DIRECTORY.md --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
203
linear_algebra/jacobi_iteration_method.py
Normal file
203
linear_algebra/jacobi_iteration_method.py
Normal file
@ -0,0 +1,203 @@
|
||||
"""
|
||||
Jacobi Iteration Method - https://en.wikipedia.org/wiki/Jacobi_method
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import numpy as np
|
||||
from numpy import float64
|
||||
from numpy.typing import NDArray
|
||||
|
||||
|
||||
# Method to find solution of system of linear equations
|
||||
def jacobi_iteration_method(
|
||||
coefficient_matrix: NDArray[float64],
|
||||
constant_matrix: NDArray[float64],
|
||||
init_val: list[float],
|
||||
iterations: int,
|
||||
) -> list[float]:
|
||||
"""
|
||||
Jacobi Iteration Method:
|
||||
An iterative algorithm to determine the solutions of strictly diagonally dominant
|
||||
system of linear equations
|
||||
|
||||
4x1 + x2 + x3 = 2
|
||||
x1 + 5x2 + 2x3 = -6
|
||||
x1 + 2x2 + 4x3 = -4
|
||||
|
||||
x_init = [0.5, -0.5 , -0.5]
|
||||
|
||||
Examples:
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
||||
[0.909375, -1.14375, -0.7484375]
|
||||
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Coefficient matrix dimensions must be nxn but received 2x3
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(
|
||||
... coefficient, constant, init_val, iterations
|
||||
... ) # doctest: +NORMALIZE_WHITESPACE
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but
|
||||
received 3x3 and 2x1
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5]
|
||||
>>> iterations = 3
|
||||
>>> jacobi_iteration_method(
|
||||
... coefficient, constant, init_val, iterations
|
||||
... ) # doctest: +NORMALIZE_WHITESPACE
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Number of initial values must be equal to number of rows in coefficient
|
||||
matrix but received 2 and 3
|
||||
|
||||
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
||||
>>> constant = np.array([[2], [-6], [-4]])
|
||||
>>> init_val = [0.5, -0.5, -0.5]
|
||||
>>> iterations = 0
|
||||
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Iterations must be at least 1
|
||||
"""
|
||||
|
||||
rows1, cols1 = coefficient_matrix.shape
|
||||
rows2, cols2 = constant_matrix.shape
|
||||
|
||||
if rows1 != cols1:
|
||||
msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
|
||||
raise ValueError(msg)
|
||||
|
||||
if cols2 != 1:
|
||||
msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}"
|
||||
raise ValueError(msg)
|
||||
|
||||
if rows1 != rows2:
|
||||
msg = (
|
||||
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
|
||||
f"received {rows1}x{cols1} and {rows2}x{cols2}"
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
if len(init_val) != rows1:
|
||||
msg = (
|
||||
"Number of initial values must be equal to number of rows in coefficient "
|
||||
f"matrix but received {len(init_val)} and {rows1}"
|
||||
)
|
||||
raise ValueError(msg)
|
||||
|
||||
if iterations <= 0:
|
||||
raise ValueError("Iterations must be at least 1")
|
||||
|
||||
table: NDArray[float64] = np.concatenate(
|
||||
(coefficient_matrix, constant_matrix), axis=1
|
||||
)
|
||||
|
||||
rows, cols = table.shape
|
||||
|
||||
strictly_diagonally_dominant(table)
|
||||
|
||||
"""
|
||||
# Iterates the whole matrix for given number of times
|
||||
for _ in range(iterations):
|
||||
new_val = []
|
||||
for row in range(rows):
|
||||
temp = 0
|
||||
for col in range(cols):
|
||||
if col == row:
|
||||
denom = table[row][col]
|
||||
elif col == cols - 1:
|
||||
val = table[row][col]
|
||||
else:
|
||||
temp += (-1) * table[row][col] * init_val[col]
|
||||
temp = (temp + val) / denom
|
||||
new_val.append(temp)
|
||||
init_val = new_val
|
||||
"""
|
||||
|
||||
# denominator - a list of values along the diagonal
|
||||
denominator = np.diag(coefficient_matrix)
|
||||
|
||||
# val_last - values of the last column of the table array
|
||||
val_last = table[:, -1]
|
||||
|
||||
# masks - boolean mask of all strings without diagonal
|
||||
# elements array coefficient_matrix
|
||||
masks = ~np.eye(coefficient_matrix.shape[0], dtype=bool)
|
||||
|
||||
# no_diagonals - coefficient_matrix array values without diagonal elements
|
||||
no_diagonals = coefficient_matrix[masks].reshape(-1, rows - 1)
|
||||
|
||||
# Here we get 'i_col' - these are the column numbers, for each row
|
||||
# without diagonal elements, except for the last column.
|
||||
i_row, i_col = np.where(masks)
|
||||
ind = i_col.reshape(-1, rows - 1)
|
||||
|
||||
#'i_col' is converted to a two-dimensional list 'ind', which will be
|
||||
# used to make selections from 'init_val' ('arr' array see below).
|
||||
|
||||
# Iterates the whole matrix for given number of times
|
||||
for _ in range(iterations):
|
||||
arr = np.take(init_val, ind)
|
||||
sum_product_rows = np.sum((-1) * no_diagonals * arr, axis=1)
|
||||
new_val = (sum_product_rows + val_last) / denominator
|
||||
init_val = new_val
|
||||
|
||||
return new_val.tolist()
|
||||
|
||||
|
||||
# Checks if the given matrix is strictly diagonally dominant
|
||||
def strictly_diagonally_dominant(table: NDArray[float64]) -> bool:
|
||||
"""
|
||||
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 4, -4]])
|
||||
>>> strictly_diagonally_dominant(table)
|
||||
True
|
||||
|
||||
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 3, -4]])
|
||||
>>> strictly_diagonally_dominant(table)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Coefficient matrix is not strictly diagonally dominant
|
||||
"""
|
||||
|
||||
rows, cols = table.shape
|
||||
|
||||
is_diagonally_dominant = True
|
||||
|
||||
for i in range(rows):
|
||||
total = 0
|
||||
for j in range(cols - 1):
|
||||
if i == j:
|
||||
continue
|
||||
else:
|
||||
total += table[i][j]
|
||||
|
||||
if table[i][i] <= total:
|
||||
raise ValueError("Coefficient matrix is not strictly diagonally dominant")
|
||||
|
||||
return is_diagonally_dominant
|
||||
|
||||
|
||||
# Test Cases
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Reference in New Issue
Block a user