mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 09:21:13 +08:00
Delete arithmetic_analysis/
directory and relocate its contents (#10824)
* Remove eval from arithmetic_analysis/newton_raphson.py * Relocate contents of arithmetic_analysis/ Delete the arithmetic_analysis/ directory and relocate its files because the purpose of the directory was always ill-defined. "Arithmetic analysis" isn't a field of math, and the directory's files contained algorithms for linear algebra, numerical analysis, and physics. Relocated the directory's linear algebra algorithms to linear_algebra/, its numerical analysis algorithms to a new subdirectory called maths/numerical_analysis/, and its single physics algorithm to physics/. * updating DIRECTORY.md --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
86
linear_algebra/gaussian_elimination.py
Normal file
86
linear_algebra/gaussian_elimination.py
Normal file
@ -0,0 +1,86 @@
|
||||
"""
|
||||
Gaussian elimination method for solving a system of linear equations.
|
||||
Gaussian elimination - https://en.wikipedia.org/wiki/Gaussian_elimination
|
||||
"""
|
||||
|
||||
|
||||
import numpy as np
|
||||
from numpy import float64
|
||||
from numpy.typing import NDArray
|
||||
|
||||
|
||||
def retroactive_resolution(
|
||||
coefficients: NDArray[float64], vector: NDArray[float64]
|
||||
) -> NDArray[float64]:
|
||||
"""
|
||||
This function performs a retroactive linear system resolution
|
||||
for triangular matrix
|
||||
|
||||
Examples:
|
||||
2x1 + 2x2 - 1x3 = 5 2x1 + 2x2 = -1
|
||||
0x1 - 2x2 - 1x3 = -7 0x1 - 2x2 = -1
|
||||
0x1 + 0x2 + 5x3 = 15
|
||||
>>> gaussian_elimination([[2, 2, -1], [0, -2, -1], [0, 0, 5]], [[5], [-7], [15]])
|
||||
array([[2.],
|
||||
[2.],
|
||||
[3.]])
|
||||
>>> gaussian_elimination([[2, 2], [0, -2]], [[-1], [-1]])
|
||||
array([[-1. ],
|
||||
[ 0.5]])
|
||||
"""
|
||||
|
||||
rows, columns = np.shape(coefficients)
|
||||
|
||||
x: NDArray[float64] = np.zeros((rows, 1), dtype=float)
|
||||
for row in reversed(range(rows)):
|
||||
total = np.dot(coefficients[row, row + 1 :], x[row + 1 :])
|
||||
x[row, 0] = (vector[row][0] - total[0]) / coefficients[row, row]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def gaussian_elimination(
|
||||
coefficients: NDArray[float64], vector: NDArray[float64]
|
||||
) -> NDArray[float64]:
|
||||
"""
|
||||
This function performs Gaussian elimination method
|
||||
|
||||
Examples:
|
||||
1x1 - 4x2 - 2x3 = -2 1x1 + 2x2 = 5
|
||||
5x1 + 2x2 - 2x3 = -3 5x1 + 2x2 = 5
|
||||
1x1 - 1x2 + 0x3 = 4
|
||||
>>> gaussian_elimination([[1, -4, -2], [5, 2, -2], [1, -1, 0]], [[-2], [-3], [4]])
|
||||
array([[ 2.3 ],
|
||||
[-1.7 ],
|
||||
[ 5.55]])
|
||||
>>> gaussian_elimination([[1, 2], [5, 2]], [[5], [5]])
|
||||
array([[0. ],
|
||||
[2.5]])
|
||||
"""
|
||||
# coefficients must to be a square matrix so we need to check first
|
||||
rows, columns = np.shape(coefficients)
|
||||
if rows != columns:
|
||||
return np.array((), dtype=float)
|
||||
|
||||
# augmented matrix
|
||||
augmented_mat: NDArray[float64] = np.concatenate((coefficients, vector), axis=1)
|
||||
augmented_mat = augmented_mat.astype("float64")
|
||||
|
||||
# scale the matrix leaving it triangular
|
||||
for row in range(rows - 1):
|
||||
pivot = augmented_mat[row, row]
|
||||
for col in range(row + 1, columns):
|
||||
factor = augmented_mat[col, row] / pivot
|
||||
augmented_mat[col, :] -= factor * augmented_mat[row, :]
|
||||
|
||||
x = retroactive_resolution(
|
||||
augmented_mat[:, 0:columns], augmented_mat[:, columns : columns + 1]
|
||||
)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Reference in New Issue
Block a user