mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 01:09:40 +08:00
psf/black code formatting (#1277)
This commit is contained in:

committed by
Christian Clauss

parent
07f04a2e55
commit
9eac17a408
@ -9,8 +9,8 @@
|
||||
|
||||
# importing all the required libraries
|
||||
|
||||
''' Implementing logistic regression for classification problem
|
||||
Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac'''
|
||||
""" Implementing logistic regression for classification problem
|
||||
Helpful resources : 1.Coursera ML course 2.https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac"""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
@ -24,6 +24,7 @@ from sklearn import datasets
|
||||
|
||||
# sigmoid function or logistic function is used as a hypothesis function in classification problems
|
||||
|
||||
|
||||
def sigmoid_function(z):
|
||||
return 1 / (1 + np.exp(-z))
|
||||
|
||||
@ -31,17 +32,14 @@ def sigmoid_function(z):
|
||||
def cost_function(h, y):
|
||||
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
|
||||
|
||||
|
||||
def log_likelihood(X, Y, weights):
|
||||
scores = np.dot(X, weights)
|
||||
return np.sum(Y*scores - np.log(1 + np.exp(scores)) )
|
||||
return np.sum(Y * scores - np.log(1 + np.exp(scores)))
|
||||
|
||||
|
||||
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
|
||||
def logistic_reg(
|
||||
alpha,
|
||||
X,
|
||||
y,
|
||||
max_iterations=70000,
|
||||
):
|
||||
def logistic_reg(alpha, X, y, max_iterations=70000):
|
||||
theta = np.zeros(X.shape[1])
|
||||
|
||||
for iterations in range(max_iterations):
|
||||
@ -53,42 +51,35 @@ def logistic_reg(
|
||||
h = sigmoid_function(z)
|
||||
J = cost_function(h, y)
|
||||
if iterations % 100 == 0:
|
||||
print(f'loss: {J} \t') # printing the loss after every 100 iterations
|
||||
print(f"loss: {J} \t") # printing the loss after every 100 iterations
|
||||
return theta
|
||||
|
||||
|
||||
# In[68]:
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
iris = datasets.load_iris()
|
||||
X = iris.data[:, :2]
|
||||
y = (iris.target != 0) * 1
|
||||
|
||||
alpha = 0.1
|
||||
theta = logistic_reg(alpha,X,y,max_iterations=70000)
|
||||
print("theta: ",theta) # printing the theta i.e our weights vector
|
||||
|
||||
theta = logistic_reg(alpha, X, y, max_iterations=70000)
|
||||
print("theta: ", theta) # printing the theta i.e our weights vector
|
||||
|
||||
def predict_prob(X):
|
||||
return sigmoid_function(np.dot(X, theta)) # predicting the value of probability from the logistic regression algorithm
|
||||
|
||||
return sigmoid_function(
|
||||
np.dot(X, theta)
|
||||
) # predicting the value of probability from the logistic regression algorithm
|
||||
|
||||
plt.figure(figsize=(10, 6))
|
||||
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='b', label='0')
|
||||
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='r', label='1')
|
||||
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color="b", label="0")
|
||||
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color="r", label="1")
|
||||
(x1_min, x1_max) = (X[:, 0].min(), X[:, 0].max())
|
||||
(x2_min, x2_max) = (X[:, 1].min(), X[:, 1].max())
|
||||
(xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max),
|
||||
np.linspace(x2_min, x2_max))
|
||||
(xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
|
||||
grid = np.c_[xx1.ravel(), xx2.ravel()]
|
||||
probs = predict_prob(grid).reshape(xx1.shape)
|
||||
plt.contour(
|
||||
xx1,
|
||||
xx2,
|
||||
probs,
|
||||
[0.5],
|
||||
linewidths=1,
|
||||
colors='black',
|
||||
)
|
||||
plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors="black")
|
||||
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
Reference in New Issue
Block a user