Added Dequeue in Python

This commit is contained in:
97arushisharma
2017-10-25 01:37:11 +05:30
commit 9bc80eac2d
105 changed files with 295341 additions and 0 deletions

101
Graphs/a_star.py Normal file
View File

@ -0,0 +1,101 @@
grid = [[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],#0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0]]
'''
heuristic = [[9, 8, 7, 6, 5, 4],
[8, 7, 6, 5, 4, 3],
[7, 6, 5, 4, 3, 2],
[6, 5, 4, 3, 2, 1],
[5, 4, 3, 2, 1, 0]]'''
init = [0, 0]
goal = [len(grid)-1, len(grid[0])-1] #all coordinates are given in format [y,x]
cost = 1
#the cost map which pushes the path closer to the goal
heuristic = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
heuristic[i][j] = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
heuristic[i][j] = 99 #added extra penalty in the heuristic map
#the actions we can take
delta = [[-1, 0 ], # go up
[ 0, -1], # go left
[ 1, 0 ], # go down
[ 0, 1 ]] # go right
#function to search the path
def search(grid,init,goal,cost,heuristic):
closed = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]# the referrence grid
closed[init[0]][init[1]] = 1
action = [[0 for col in range(len(grid[0]))] for row in range(len(grid))]#the action grid
x = init[0]
y = init[1]
g = 0
f = g + heuristic[init[0]][init[0]]
cell = [[f, g, x, y]]
found = False # flag that is set when search is complete
resign = False # flag set if we can't find expand
while not found and not resign:
if len(cell) == 0:
resign = True
return "FAIL"
else:
cell.sort()#to choose the least costliest action so as to move closer to the goal
cell.reverse()
next = cell.pop()
x = next[2]
y = next[3]
g = next[1]
f = next[0]
if x == goal[0] and y == goal[1]:
found = True
else:
for i in range(len(delta)):#to try out different valid actions
x2 = x + delta[i][0]
y2 = y + delta[i][1]
if x2 >= 0 and x2 < len(grid) and y2 >=0 and y2 < len(grid[0]):
if closed[x2][y2] == 0 and grid[x2][y2] == 0:
g2 = g + cost
f2 = g2 + heuristic[x2][y2]
cell.append([f2, g2, x2, y2])
closed[x2][y2] = 1
action[x2][y2] = i
invpath = []
x = goal[0]
y = goal[1]
invpath.append([x, y])#we get the reverse path from here
while x != init[0] or y != init[1]:
x2 = x - delta[action[x][y]][0]
y2 = y - delta[action[x][y]][1]
x = x2
y = y2
invpath.append([x, y])
path = []
for i in range(len(invpath)):
path.append(invpath[len(invpath) - 1 - i])
print "ACTION MAP"
for i in range(len(action)):
print action[i]
return path
a = search(grid,init,goal,cost,heuristic)
for i in range(len(a)):
print a[i]

267
Graphs/basic-graphs.py Normal file
View File

@ -0,0 +1,267 @@
# Accept No. of Nodes and edges
n, m = map(int, raw_input().split(" "))
# Initialising Dictionary of edges
g = {}
for i in xrange(n):
g[i + 1] = []
"""
--------------------------------------------------------------------------------
Accepting edges of Unweighted Directed Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().split(" "))
g[x].append(y)
"""
--------------------------------------------------------------------------------
Accepting edges of Unweighted Undirected Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y = map(int, raw_input().split(" "))
g[x].append(y)
g[y].append(x)
"""
--------------------------------------------------------------------------------
Accepting edges of Weighted Undirected Graphs
--------------------------------------------------------------------------------
"""
for _ in xrange(m):
x, y, r = map(int, raw_input().split(" "))
g[x].append([y, r])
g[y].append([x, r])
"""
--------------------------------------------------------------------------------
Depth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
S - Traversal Stack
--------------------------------------------------------------------------------
"""
def dfs(G, s):
vis, S = set([s]), [s]
print s
while S:
flag = 0
for i in G[S[-1]]:
if i not in vis:
S.append(i)
vis.add(i)
flag = 1
print i
break
if not flag:
S.pop()
"""
--------------------------------------------------------------------------------
Breadth First Search.
Args : G - Dictionary of edges
s - Starting Node
Vars : vis - Set of visited nodes
Q - Traveral Stack
--------------------------------------------------------------------------------
"""
from collections import deque
def bfs(G, s):
vis, Q = set([s]), deque([s])
print s
while Q:
u = Q.popleft()
for v in G[u]:
if v not in vis:
vis.add(v)
Q.append(v)
print v
"""
--------------------------------------------------------------------------------
Dijkstra's shortest path Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def dijk(G, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(G) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in G[u]:
if v[0] not in known:
if dist[u] + v[1] < dist.get(v[0], 100000):
dist[v[0]] = dist[u] + v[1]
path[v[0]] = u
for i in dist:
if i != s:
print dist[i]
"""
--------------------------------------------------------------------------------
Topological Sort
--------------------------------------------------------------------------------
"""
from collections import deque
def topo(G, ind=None, Q=[1]):
if ind == None:
ind = [0] * (len(G) + 1) # SInce oth Index is ignored
for u in G:
for v in G[u]:
ind[v] += 1
Q = deque()
for i in G:
if ind[i] == 0:
Q.append(i)
if len(Q) == 0:
return
v = Q.popleft()
print v
for w in G[v]:
ind[w] -= 1
if ind[w] == 0:
Q.append(w)
topo(G, ind, Q)
"""
--------------------------------------------------------------------------------
Reading an Adjacency matrix
--------------------------------------------------------------------------------
"""
def adjm():
n, a = input(), []
for i in xrange(n):
a.append(map(int, raw_input().split()))
return a, n
"""
--------------------------------------------------------------------------------
Floyd Warshall's algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to every other node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def floy((A, n)):
dist = list(A)
path = [[0] * n for i in xrange(n)]
for k in xrange(n):
for i in xrange(n):
for j in xrange(n):
if dist[i][j] > dist[i][k] + dist[k][j]:
dist[i][j] = dist[i][k] + dist[k][j]
path[i][k] = k
print dist
"""
--------------------------------------------------------------------------------
Prim's MST Algorithm
Args : G - Dictionary of edges
s - Starting Node
Vars : dist - Dictionary storing shortest distance from s to nearest node
known - Set of knows nodes
path - Preceding node in path
--------------------------------------------------------------------------------
"""
def prim(G, s):
dist, known, path = {s: 0}, set(), {s: 0}
while True:
if len(known) == len(G) - 1:
break
mini = 100000
for i in dist:
if i not in known and dist[i] < mini:
mini = dist[i]
u = i
known.add(u)
for v in G[u]:
if v[0] not in known:
if v[1] < dist.get(v[0], 100000):
dist[v[0]] = v[1]
path[v[0]] = u
"""
--------------------------------------------------------------------------------
Accepting Edge list
Vars : n - Number of nodes
m - Number of edges
Returns : l - Edge list
n - Number of Nodes
--------------------------------------------------------------------------------
"""
def edglist():
n, m = map(int, raw_input().split(" "))
l = []
for i in xrange(m):
l.append(map(int, raw_input().split(' ')))
return l, n
"""
--------------------------------------------------------------------------------
Kruskal's MST Algorithm
Args : E - Edge list
n - Number of Nodes
Vars : s - Set of all nodes as unique disjoint sets (initially)
--------------------------------------------------------------------------------
"""
def krusk((E, n)):
# Sort edges on the basis of distance
E.sort(reverse=True, key=lambda x: x[2])
s = [set([i]) for i in range(1, n + 1)]
while True:
if len(s) == 1:
break
print s
x = E.pop()
for i in xrange(len(s)):
if x[0] in s[i]:
break
for j in xrange(len(s)):
if x[1] in s[j]:
if i == j:
break
s[j].update(s[i])
s.pop(i)
break