mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-07-05 01:09:40 +08:00
[mypy] fix small folders 2 (#4293)
* Update perceptron.py * Update binary_tree_traversals.py * fix machine_learning * Update build.yml * Update perceptron.py * Update machine_learning/forecasting/run.py Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
@ -29,8 +29,7 @@ def linear_regression_prediction(
|
||||
>>> abs(n - 5.0) < 1e-6 # Checking precision because of floating point errors
|
||||
True
|
||||
"""
|
||||
x = [[1, item, train_mtch[i]] for i, item in enumerate(train_dt)]
|
||||
x = np.array(x)
|
||||
x = np.array([[1, item, train_mtch[i]] for i, item in enumerate(train_dt)])
|
||||
y = np.array(train_usr)
|
||||
beta = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), x)), x.transpose()), y)
|
||||
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2])
|
||||
|
@ -200,7 +200,7 @@ if False: # change to true to run this test case.
|
||||
|
||||
|
||||
def ReportGenerator(
|
||||
df: pd.DataFrame, ClusteringVariables: np.array, FillMissingReport=None
|
||||
df: pd.DataFrame, ClusteringVariables: np.ndarray, FillMissingReport=None
|
||||
) -> pd.DataFrame:
|
||||
"""
|
||||
Function generates easy-erading clustering report. It takes 2 arguments as an input:
|
||||
|
@ -61,7 +61,7 @@ def term_frequency(term: str, document: str) -> int:
|
||||
return len([word for word in tokenize_document if word.lower() == term.lower()])
|
||||
|
||||
|
||||
def document_frequency(term: str, corpus: str) -> int:
|
||||
def document_frequency(term: str, corpus: str) -> tuple[int, int]:
|
||||
"""
|
||||
Calculate the number of documents in a corpus that contain a
|
||||
given term
|
||||
|
Reference in New Issue
Block a user